
MPCAuth: Multi-factor Authentication for
Distributed-trust Systems

Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa
University of California, Berkeley

{sijuntan, weikengchen, rdeng2614, raluca.popa}@berkeley.edu

Abstract—Systems with distributed trust have attracted growing
research attention and seen increasing industry adoptions. In these
systems, critical secrets are distributed across N servers, and
computations are performed privately using secure multi-party
computation (SMPC). Authentication for these distributed-trust
systems faces two challenges. The first challenge is ease-of-use.
Namely, how can an authentication protocol maintain its user
experience without sacrificing security? To avoid a central point
of attack, a client needs to authenticate to each server separately.
However, this would require the client to authenticate N times
for each authentication factor, which greatly hampers usability.
The second challenge is privacy, as the client’s sensitive profiles
are now exposed to all N servers under different trust domains,
which creates N times the attack surface for the profile data.

We present MPCAuth, a multi-factor authentication system for
distributed-trust applications that address both challenges. Our
system enables a client to authenticate to N servers independently
with the work of only one authentication. In addition, our
system is profile hiding, meaning that the client’s authentication
profiles such as her email username, phone number, passwords,
and biometric features are not revealed unless all servers are
compromised. We propose secure and practical protocols for an
array of widely adopted authentication factors, including email
passcodes, SMS messages, U2F, security questions/passwords, and
biometrics. Our system finds practical applications in the space
of cryptocurrency custody and collaborative machine learning,
and benefits future adoptions of distributed-trust applications.

I. INTRODUCTION

Decentralizing trust has become a fundamental principle in
designing modern computing systems and security applications.
In the past decade, we have seen tremendous interest from
both academia and industry in systems that rely on distributed
trust. Some examples include: cryptocurrency custody (e.g.
Fireblocks [16], Curv [11], MPCVault [22]), collaborative
learning (e.g. Meta [23], Ant Group [3], Cerebro [90], Senate
[75]), encrypted search systems (e.g. Dory [56]), and aggregate
statistics (e.g. Prio [55]).

In many of these systems, clients (users) possess critical
secrets that they want to store securely and later perform
computations on them privately. To do so, they distribute their
secrets to N servers hosted in different trust domains so that
none of the servers can access the secrets. Some of these
servers, but not all, can be compromised by a malicious attacker.
These servers later jointly perform private computations using
cryptographic tools such as secure multi-party computation
(SMPC) [88, 62, 42, 53]. This construction avoids a central
point of attack as no servers can see the secrets.

(a) If the client authenticates
to a master server that other
servers trust, then an attacker
controlling it could impersonate
the client to recover the secrets.

(b) If the client authenticates
to each server individually, she
needs to perform the work N×
M times for N servers and M
factors.

Fig. 1: The dilemma between ease-of-use and security for
authentication under distributed trust. The closed envelopes
are the client’s secrets secret shared on the servers.

One concrete application of such systems is cryptocurrency
custody. The critical secrets in this space are the signing keys,
which represent ownership of digital assets (e.g. cryptocur-
rencies, Defi tokens, NFTs) that could be worth millions of
dollars today. If an attacker compromises the keys, he can steal
the client’s valuable assets. Cryptocurrency custody companies
such as Curv [11] and Fireblocks [16] offer services to store
clients’ signing keys as secret shares on multiple servers. When
a client wants to authorize a transaction, the servers jointly
produce a digital signature with the secret-shared signing key
using SMPC.

Collaborative training/analytics on sensitive organizational
data provides another application. Organizations such as banks
or hospitals want to collaborate on each other’s data to
jointly train a machine learning (ML) model or perform
SQL analytics. However, these data often contain sensitive
information that organizations do not want to disclose. Major
tech companies (e.g. Meta [23], Ant group [3]) as well as
confidential computing startups (e.g. Huakong Tsingjiao [18],
Basebit [5]) provide services for clients to distribute their data
as secret-shares to multiple servers, and then use SMPC to
jointly train ML models or perform SQL analytics on the

secret-shared data.
One critical component of these services is authentication.

A client must first authenticate to the N servers before she can
authorize cryptocurrency transactions or train machine learning
models. To avoid a central point of attack with authentication,
the client must use multiple factors of authentication, say M .
Two challenges naturally arise in this setting.

The first challenge is ease-of-use. Namely, how can we retain
the ease of use of a traditional system while keeping the security
guarantees of a distributed-trust application? One strawman
could be for the client to authenticate to one master server
that the other servers trust. However, this approach breaks
distributed trust because, if the master server is compromised,
an attacker can authenticate as the client with all the N servers
and issue unauthorized transactions with the client’s secrets.
To maintain security, the client can authenticate to N servers
independently. However, for common factors such as email
passcodes, SMS messages, and U2F, the client now has to
perform N times the work – reading N emails, looking at N
messages, and tapping the U2F device N times. This results
in a client work of N ×M authentication factors. Even for
N = 2 in which there is only one additional email and text
message, the user experience is completely different and adds
friction to a space already plagued by usability issues (e.g.,
“Why Johnny can’t encrypt?” [85, 78]). Many academic works
[84, 47] reaffirm the importance of the consistency of user
experience and minimizing user effort for better adoption.
Another strawman approach one might think of is to build
a client app that automatically performs the N authentication
for the clients. These solutions work for some authentication
factors such as passwords and biometrics, but fall short of other
factors. We explain in Section VI why they are not sufficient
enough to address the problem.

The second challenge is privacy. Authentication factors such
as email, SMS messages, and server-based biometrics can leak
sensitive information about the client – her email username,
phone number, and biometric features – to the servers. Whereas
in a traditional centralized trust system, one (logical) server
learns the client’s profile information, in a distributed trust
setting, there are additional N − 1 servers in different trust
domains also learning this private information. Essentially, this
is N times the attack surface for the client’s identity data.

A. MPCAUTH

In this work, we propose MPCAuth, an authentication system
for distributed-trust applications that simultaneously addresses
both challenges. Specifically, MPCAuth enables a client to
authenticate to N servers independently by doing only the
work of authenticating to one. MPCAuth also hides the client’s
authentication profile, such as her email username, phone
number, and biometric information from the N servers.

MPCAuth supports many authentication factors that clients
are accustomed to, including email, SMS, U2F, security
questions/passwords, and biometrics, as discussed in Section IV.
For all supported factors, MPCAuth offers the same security
properties as the underlying authentication protocols even in

the presence of a malicious adversary that can compromise up
to N − 1 of the N servers.

B. Summary of techniques

We now summarize the insights and techniques behind
MPCAuth.

One logical server, N physical servers. In a typical authen-
tication workflow, the server sends a challenge to the client,
to which the client responds. For example, in the email/SMS
authentication case, the challenge is a one-time passcode sent
to the client’s email address or phone number, and a client
with the credential can respond with the correct passcode.
In email/SMS authentication, the N servers need to talk to
an email/SMS server that is responsible for distributing the
email/SMS message to the client. MPCAuth enables these
N physical servers to jointly act as a single logical server,
and generate one collective challenge to the client. Since
servers do not trust each other, they need to verify the client
response individually with their own secret challenge. The
question is, how can the servers generate a collective secret
challenge, and send one email or SMS to the user with this
secret challenge inside without any server learning this secret?
While this formulation seems reminiscent of secure multi-party
computation, it does not answer the questions of what server
can send the actual email or SMS over the network given the
distributed trust, and how to run the SMTP protocol or the
SMS protocol in a secure distributed trust way so that the
user’s email/SMS provider accepts this email/SMS.

The insight is that the N servers in MPCAuth run in SMPC
a logical server (instead of a function) within which they:
(1) generate a joint challenge, (2) run the SMTP email or
SMS protocol for sending email or SMS, and (3) run the TLS
protocol for encrypting the channel of communication for the
email or SMS – all these operations in SMPC. MPCAuth’s
SMPC is maliciously-secure tolerating the compromise of N−1
servers. What comes out of the SMPC is TLS-encrypted and
authenticated traffic. Since this content is protected by TLS,
any one of the servers can simply forward it to the email
provider.

Efficient TLS-encrypted channel within SMPC. TLS is an
intricate protocol that involves many cryptographic operations.
If we run the TLS endpoint using an off-to-shelf maliciously
secure SMPC library, our experiments in Section V-E show
that it would be at least 8× more expensive than our protocol.
We designed our TLS-in-SMPC protocol and optimized its
efficiency with a number of insights based on the TLS protocol
itself, and integrated it with the wolfSSL library.

Hiding client profiles inside SMPC. In a traditional centralized
system, hiding a client’s profile from the server is difficult –
the server needs the client’s email address or phone number
to send emails or SMS messages to him. In a distributed-trust
setting, however, we leverage the preexisting distributed-trust
infrastructure to achieve profile hiding. MPCAuth shards the
user’s information, such as email username and phone number,
across the N servers. When the N servers perform SMPC to

2

send email or SMS to the user, they also assemble the email
or phone number of the user inside SMPC and encrypt that
information with TLS. The server sending the network packets
only needs to know the email provider or mobile carrier. None
of the servers sees the profiles in plaintext during the whole
process. We give our concrete definition of MPCAuth’s profile-
hiding property in Definition II.3, and discuss how each factor
achieves the desired property in Section IV.

Secure and practical constructions of common authenti-
cation factors. Beyond email/SMS, MPCAuth additionally
supports U2F, security questions, and server-side biometrics.
These are all widely-adopted authentication factors on the web
today, and all of them encounter either usability or privacy
issues under the distributed-trust setting. For U2F, the client
needs to tap the U2F button N times to respond to each
server’s challenges. And for security questions and server-side
biometrics, the answers to the questions and biometric features
are exposed to all servers. While each factor has its unique
set of challenges, one core challenge for all these factors is
to ensure their security properties are not weakened under
MPCAuth’s threat model. More specifically, replay attacks
are a common threat to authentication protocols. Under our
threat model, when a malicious server receives a response
from the client, this server may attempt to use the response to
impersonate the client and authenticate with the other servers.
We formally define MPCAuth’s security goal in Section II-D
and prove our constructions’ security in Section C.

C. Summary of contributions

Here are the main contributions of this paper:
• We present a novel multi-factor authentication system for

distributed-trust applications. Our system enables a client
to authenticate independently to N servers by doing the
work of one authentication.

• We design secure, practical, and profile-hiding construc-
tions for a comprehensive set of authentication factors. As
a subpart of this, we propose TLS-in-SMPC, an efficient
protocol to establish TLS connections in SMPC, as an
important building block to some of our supported factors.

• We provide efficient implementations and experimental
evaluations of all our authentication protocols, and demon-
strate their practicality. In particular, our TLS-in-SMPC
protocol is 8× faster than a naive implementation without
our application-specific optimizations. As a result, when
N = 5, our email authentication protocol only takes 1.81
seconds to perform the TLS handshake and send the email
payload, which is efficient enough to avoid a TLS timeout
and successfully communicate with an unmodified TLS
email server.

II. SYSTEM OVERVIEW

A. System setup and trust model

A deployment of MPCAuth consists of a set of N servers
and many clients. These servers jointly host an application (e.g.
cryptocurrency custody, collaborative learning) that requires

distributed trust. A client needs to authenticate to these servers
to use the service. These N servers are hosted under different
trust domains.

Our system operates under the multi-factor authentication
(MFA) model. Each client selects multiple authentication
factors for their account, with a minimum of two distinct factors
required for registration. Typically the first factor is password;
MPCAuth supports this factor but gives the client flexibility to
choose other passwordless authentication factors as their first
factor. Additionally, clients must provide a unique identifier
(e.g., username) to MPCAuth. We note that each factor’s
protocol within MPCAuth operates independently from the
others, enabling the individual protocols to be used separately
in authentication models beyond MFA.

Since MPCAuth operates in an MFA model, trust is dis-
tributed across multiple authentication providers. MPCAuth can
therefore tolerate untrusted authentication providers that try to
impersonate the clients, so long as they do not all collude. To
enable account recovery, the client needs to register additional
factors so that when she loses some factor, she could resort
to other factors to recover her account. We discuss account
recovery in greater detail in Section VI.

Each client can download a stateless client application
or use a web client to participate in these protocols. This
minimalist client app does not retain secrets or demand intrusive
permissions to data in other applications such as a client’s
emails or text messages; it simply serves as an interface between
the client and the servers.

Supported authentication factors. MPCAuth supports the
following authentication factors:

– Email/SMS: The N servers jointly send one email/SMS to
the client’s address with a passcode. During authentication,
the servers expect the client to enter this passcode.

– U2F: The N servers jointly initiate one request to a
U2F device. During authentication, the servers expect a
signature, signed by the U2F device, over this request.

– Security questions/passwords: The client initially provides
a series of questions and answers to the servers. During
authentication, the servers expect answers consistent with
those that are set initially. Passwords are a special case
of security questions.

– Biometrics: The client scans her biometrics and sends its
feature vector to the servers. During authentication, the
client scans her biometrics again to obtain a new feature
vector. The servers expect this new vector to be close to
the one stored initially.

Authentication workflow. The authentication workflow is as
follows:

• Enrollment. A client contacts the N servers through the
client app and provides a number of authentication factors.
If the client is new, the N servers ask the client to
provide a unique identifier and set up an account with that
identifier. For each factor, the N servers run MPCAuth’s
authentication protocol of that factor. If the client passes

3

all factors’ protocol checks, the servers store the relevant
information of that factor under the client’s account for
future authentication.

• Authentication. The client contacts the N servers through
the client app, provides his unique identifier, and chooses
at least two authentication factors. For each factor, the
N servers invoke MPCAuth’s authentication protocol of
that factor. If the client passes the protocol’s check, the
N servers consider the client authenticated.

B. Practical use cases for MPCAuth

We analyze a few real-world deployments of distributed-trust
applications and show how MPCAuth could fit into their trust
model to provide authentication.

• Curv [11], Fireblocks [16], and MPCVault [22] are compa-
nies that offer digital asset custody services. These services
protect the client’s asset by secret-sharing its signing key
among N servers. When the client authorizes a transaction,
the servers use SMPC to jointly produce a digital signature
with the signing key. These companies operate under
different trust models. Some service providers take full
custody of the client’s digital assets. They maintain all
servers, and distribute client secrets to these servers to
avoid a central point of attack. In this case, the clients
do have to trust the service provider not to recover their
signing keys. Other providers let some external institutions
maintain a subset of servers so that there are multiple trust
domains. In either case, a client needs to authenticate to
these servers before she could store her assets on them and
later authorize transactions. These services could leverage
MPCAuth to provide multi-factor authentication.

• Meta [23], Ant group [3], Huakong Tsingjiao [18], and
Basebit [5] are companies that provide collaborative
learning services. Typically, institutions that want to
collaborate on data would each maintain their own server
that has the SMPC software installed. The service provider
may provide a server that acts as a trusted third party
or directly participates in the SMPC protocol. Clients, in
this case, would be the employees of these institutions
that are responsible for uploading data and authorizing
collaborative training/analytics. These clients need to
authenticate to all trust domains to prevent a central point
of attack, which MPCAuth could help.

Beyond these existing use cases, we expect other emerging
distributed-trust applications to benefit from MPCAuth in the
upcoming years.

C. Threat model

In MPCAuth’s threat model, there are N servers hosting a
distributed-trust application, multiple honest clients that use the
application, and a malicious attacker. The malicious attacker
tries to impersonate these honest clients. The malicious attacker
can compromise up to N − 1 of the N servers, but at least
one server is honest and uncompromised. The attacker can
observe and modify all inputs, states, and network traffic of
the compromised servers. The attacker does not control the

honest client, but it can observe all network traffic between
the honest client and compromised servers. In email/SMS
authentication, there is an additional TLS server hosted by the
authenticator that the N servers talk to. We assume the TLS
server is uncompromised, and the attacker does not control or
collude with the authenticator.

We assume that an honest client uses an uncompromised
client app. The client app does not carry any secrets, but it must
be obtained from a trusted source. The client app either has
hard coded the TLS certificates of the N servers, or obtains
them from a trusted certificate authority or a transparency
ledger [9, 21]. This enables clients and servers to connect to
one another securely using the TLS protocol. As guaranteed by
the security of the TLS protocol, the attacker can not observe
the network traffic between an honest client and an honest
server.

D. Security goals

Since MPCAuth is built on top of existing authentication
factors, it maintains the same security properties that the
existing factors provide under this threat model. For each
authentication factor, MPCAuth’s security goal is to enable
an honest client that holds credential w of that factor to
successfully authenticate to the servers, and reject a malicious
attacker who does not hold the credential, even if the attacker
compromises N − 1 out of N servers.

Definition II.1 (Security of an authentication protocol). Infor-
mally, an N -wise authentication protocol Π for a factor is said
to be secure if it satisfies the following properties:

• Correctness: Assuming all N servers are honest, Π accepts
an honest client who holds credential w of that factor with
overwhelming probability.

• Soundness: Given a malicious attacker who compromises
N − 1 servers, but does not hold credential w. Π rejects
with overwhelming probability.

In particular, for soundness to hold, the authentication
protocol needs to protect against replay attacks. A replay attack
happens if the client authenticates to the servers with the same
response. Under MPCAuth’s threat model, if a malicious server
that receives the client’s response reaches the honest server
faster than the client, then the honest server will consider the
malicious server authenticated instead of the client. In this case,
the malicious server can reconstruct the shares and obtain the
client’s critical secrets. To prevent replay attacks, the client
needs to send each server a different response.

We give our formal definition of an authentication protocol,
the security of the protocol, as well as the security proofs in
Section C. Our system does not handle denial-of-service (DoS)
attacks, but we discuss how to extend our system to handle
these attacks in Section VI.

The security of MPCAuth, in addition, relies on the security
of the TLS-in-SMPC protocol. Formally, we define in Section B
an ideal functionality FTLS that models the TLS client software
that communicates with a trusted, unmodified TLS server.
Based on FTLS, we define the security of our TLS-in-SMPC

4

protocol using a standard definition for (standalone) malicious
security [70]:

Definition II.2 (Security of TLS-in-SMPC). A protocol Π
is said to securely compute FTLS in the presence of static
malicious adversaries that compromise up to N − 1 of the
N servers, if, for every non-uniform probabilistic polynomial-
time (PPT) adversary A in the real world, there exists a non-
uniform PPT adversary S in the ideal world, such that for
every I ⊆ {1, 2, ..., N},

{IDEALFTLS,I,S(z)(x⃗)}x⃗,z
c
≈ {REALΠ,I,A(z)(x⃗)}x⃗,z

where x⃗ denotes all parties’ input, z denotes an auxiliary
input for the adversary A, IDEALFTLS,I,S(z)(x⃗) denotes the
joint output of S and the honest parties, and REALΠ,I,A(x⃗)
denotes the joint output of A and the honest parties.

We go over our TLS-in-SMPC protocol, in Section III, present
a formal description in Fig. 6, and prove that it securely realizes
FTLS in Section B.

E. Hiding authentication profiles

Additionally, a client may want to hide her authentication
profiles from the N servers. Authentication factors of different
types have distinct privacy goals to meet. For knowledge
(e.g. security questions/passwords) or inherence factors (e.g.
biometrics), profile-hiding means that the client hides the
knowledge/inherence from the servers. For authentication
factors involving possession (e.g., email, SMS, U2F), the factors
are considered profile-hiding if the servers cannot associate the
client’s application account with their owned device or object.
To be more concrete, we define the profile-hiding property we
hope to achieve for each authentication factor below.

Definition II.3 (Profile hiding). MPCAuth’s authentication
protocol is profile-hiding if, given an attacker that compromises
N − 1 out of N servers:

• Email: The attacker does not learn the email username. It
may learn the email domain name of the user.

• SMS: The attacker does not learn the client’s phone
number. It may learn the mobile carrier of the client.

• U2F: The attacker cannot associate the U2F’s public key
to the client.

• Security questions & passwords: The attacker does not
learn the contents of the security questions as well as their
answers (passwords).

• Biometric: The attacker does not learn the biometric
features of the client.

We require the client to provide a unique identifier to the N
servers that all servers store as plaintext. To preserve privacy,
this unique identifier should be made different from the user’s
email address or phone number. Typically, this unique identifier
is a username the client enters when setting up an account.
From now on, we will use ‘username’ to refer to this identifier.
The servers use this username as the index for all the client’s
account information. One question is how a client can recover
her account if she forgets his username. The client cannot

TLS SMPC
Endpoint

TLS connection

Email/SMS server

Receives passcode
Enters passcode

Sends email/SMS with
a passcode

Fig. 2: TLS-in-SMPC’s application to email/SMS authentica-
tion. The N servers jointly create a TLS endpoint connecting
to the client’s email/SMS server. Then, the N servers generate
a passcode and send it over the TLS channel; the client who
receives the passcode from her email/SMS server enters it on
her client app, which forwards it back to the N servers.

resort to her authentication factors since they are indexed by
this username and stored privately on the servers. In Section VI,
we discuss this problem in greater detail and propose some
recovery mechanisms.

While MPCAuth’s profile-hiding protocols provide enhanced
privacy, there are still several limitations to consider. First, for
email and SMS authentication, our our system does not hide all
profile information – it leaks the client’s email service provider
and mobile carrier to the N servers. We discuss these leakages
in greater detail in Section IV. Second, our system does not
hide the IP addresses of the client that authenticates to the
servers. Finally, our protocols do not hide access patterns of
the clients, which could be used to infer sensitive information
about client behavior. Academic work, such as [82, 58, 54],
explores using ORAM on top of SMPC to hide access patterns
for distributed-trust applications. We leave it as future work to
extend MPCAuth to address access pattern leakage.

III. BUILDING BLOCK: TLS IN SMPC

One important building block for our authentication protocols
is TLS-in-SMPC, which enables N servers to jointly establish
a secure TLS connection with an unmodified TLS server. This
tool is later used to construct our email and SMS authentication
protocols. In our work, we choose to build upon the latest TLS
1.3 [76] protocol.

A. Overview

In TLS-in-SMPC, N servers jointly participate in a TLS
connection with an unmodified TLS server. Since these N
servers do not trust each other, any one of them must not be
able to decrypt the traffic sent over the TLS connection. The
insight is for these N servers to jointly create a TLS client
endpoint within SMPC that can communicate with the TLS
server over a TLS connection.

5

As Figure 2 shows, the N servers run a TLS client
within SMPC, which establishes a TLS connection with the
unmodified TLS server. The TLS session keys are only known
by the TLS server. The N servers that act as the TLS client
jointly hold the session keys within SMPC, but each of them
does not have access to the keys. Hence, the N servers must
work together to participate in this TLS connection.

In the following section, we give a step-by-step breakdown
of the TLS-in-SMPC protocol. We also provide a formal
description of the protocol in Figure 6, and prove its security
in Section B.

Challenge. A straightforward implementation of the TLS-in-
SMPC protocol is to use any off-the-shelf malicious SMPC pro-
tocol. If this protocol does not support offline precomputation
or is ill-suited for the type of computation being performed,
the online latency may cause a timeout that terminates the
connection. For example, we found that Gmail’s SMTP servers
have a TLS handshake timeout of 10 s. Our implementation is
efficient enough to consistently meet this timeout, as discussed
in Section V.

Comparisons with related work. There are a few prior and
concurrent works that also propose constructions involving
TLS and SMPC. We highlight our differences with them in
Section VII.

B. Notations and definitions

We use P to denote the logical TLS client that the N servers
act as, and Pi to denote the i-th server. We use S to denote the
TLS server. We use [N] to denote the set {1, ..., N}, Z+

p to
denote the set {1, 2, ..., p−1} where p is a prime. We use JxKi
to denotes Pi’s secret-share of x, and λ denotes the security
parameter.

MPCAuth’s construction relies on several cryptographic
primitives. We use (1) PRF(sk, x) to denote a pseudorandom
function with sk as its seed and x as inputs, (2) CRH to denote
a collision-resistant hash function and Hash(x) to denote its
hash on an input x, (3) Sig := (Setup,Sign,Verify) to denote
a digital signature algorithm, and (4) Commit(m, r) to denote
a commitment scheme that produces a commitment of message
m with randomness r. Their detailed definitions are described
in Section A.

C. TLS handshake in SMPC

TLS 1.3 uses Diffie-Hellman key exchange to obtain a shared
DH key, which is then used by both the client and the server
to derive session keys using the key derivation function. In this
section, we discuss how MPCAuth’s TLS-in-SMPC protocol
handles Diffie-Hellman key exchange. We do not discuss RSA
key exchange as it is not supported in TLS 1.3.

Background: Diffie-Hellman key exchange [57]. Let G be
the generator of a suitable elliptic curve of prime order p. The
key exchange consists of three steps:

1) In the ClientHello message, the TLS client samples
α← Z+

p and sends α ·G to the TLS server.

2) In the ServerHello message, the TLS server samples
β ← Z+

p and sends β ·G to the TLS client.
3) The TLS client and server compute αβ ·G and—with other

information—derive the TLS session keys, as specified in
the TLS standards [31, 20].

In our protocol, the N servers act as the TLS client P
which establishes connections with a TLS server S . The TLS
handshake protocol proceeds as follows:

Step 1: Distributed generation of key share α · G. The N
servers need to jointly generate the ClientHello message
and send it to S. To generate the key share α · G used
in the ClientHello message without revealing α, each
server Pi randomly samples αi, and they jointly construct
a corresponding key share α ·G as follows:

1) ∀i ∈ [N], the i-th server Pi samples αi ← Z+
p , computes

αi ·G locally, and revealing αi ·G to the other parties.
2) P1 receives aiG from all other parties, computes α ·G =∑N

i=1 αi ·G and sends it to the TLS server.

Step 2: Distributed computation of key exchange result
αβ · G. After receiving the ServerHello message β ·G from
the TLS server, the N servers need to jointly compute the DH
key αβ ·G, which works as follows:

• Each party Pi computes αi(βG) locally, and then the
SMPC engine takes αi(βG) as input from Pi to compute
αβ ·G =

∑n
i=1 αi(βG).

After the protocol, each party obtains a secret share of the
DH key αβ · G, denoted as Jαβ · GKi. The result is used to
derive the TLS handshake keys as discussed next.

Step 3: Distributed key derivation. In TLS 1.3, the next step
is to compute the TLS handshake keys, which are later used
in step 4. The N servers, which act as the TLS client, need to
compute this key derivation function KDF in SMPC. The key
derivation function takes the share of the DH key Jαβ ·GKi, the
hash of ClientHello Hash(α·G) and ServerHello message
Hash(β ·G) as input, and outputs the handshake keys hk as
secret-shares within SMPC.

We identify that the hashes of the ClientHello and
ServerHello messages can be computed outside SMPC,
which reduces the overhead. The forwarding server P1 who
computes α ·G and receives β ·G from the TLS server can
broadcast these messages to other parties. Each party Pi then
computes the hash of these messages in plaintext, and uses
these hashes, as well as their share of the DH key, as inputs
to the SMPC engine.

Step 4: Verifying the TLS connection. In the final step of
the TLS handshake, the TLS server needs to authenticate to
the TLS client, by sending a response containing its certificate,
a signature over β ·G, and verification data, with which the
TLS client verifies and replies. Performing this verification in
SMPC is slow because (1) the certificate format is difficult
to parse without revealing access patterns and (2) verifying
signatures involves hashing and prime field computation, both
of which are slow in SMPC.

6

In MPCAuth, we are able to remove this task from SMPC.
The insight is that the handshake keys, which encrypt the
response, are only designed to hide the TLS endpoints’ identity,
which is unnecessary because the N servers must confirm the
TLS server’s identity in our setting. Several works show that
revealing the keys does not affect other guarantees of TLS
[44, 89, 38, 59]. We formalize this insight in our definition of
the ideal functionality FTLS, as described in Section B-B.

Therefore, verifying the TLS server’s response is as follows:
after all the N servers receive and acknowledge all the messages
from ServerHello to ServerFinished sent by the TLS
server and forwarded by the first server, the SMPC protocol
reveals the TLS handshake keys hk to all the N servers.
Each server decrypts the response, and verifies the certificate,
signature, and verification data within it. Using the handshake
keys, the N servers can then assemble the client’s verification
message ClientFinished within SMPC, and send it to the
TLS server.

Step 5: Session keys derivation and precomputation for
authenticated encryption. Lastly, the N servers use the same
key derivation function from step 3 to derive the session keys
(application keys) and IVs (initialization vectors) in SMPC.
This key derivation function maintains an internal state and
takes the hash of the new messages from the transcript as
additional inputs to generate new keys. These session keys and
IVs are later used by the authenticated encryption protocol
during the data exchange phase.

We now finish the TLS handshake phase and are ready to
proceed to the next stage: the data exchange phase. Before
we get to the next stage, we observe that the authenticated
encryption scheme used in the data exchange phase may allow
some one-time precomputation that can be done as part of the
TLS handshake phase. For example, for AES-GCM, MPCAuth
can precompute the AES key schedule and secret-share the
GCM power series. We provide more details of these protocols
in Section III-D.

D. Data exchange in SMPC.

The rest of the TLS-in-SMPC protocol involves data en-
cryption and decryption. The session keys obtained from the
handshake protocol are now used as the symmetric keys to
encrypt and apply MAC on data transmitted over the network.
In TLS, the MAC and the ciphertexts are generated together
using an authenticated encryption algorithm chosen from the
TLS cipher suites. An opportunity to reduce the latency is to
choose the TLS cipher suites carefully, as shown by both our
investigation and prior work [89, 81].

During TLS handshake, typically the TLS client offers
several TLS cipher suites that it supports, and the TLS server
selects one of them to use. In order to minimize latency, when
given the choice, our protocol always selects the most SMPC-
friendly cipher suite that is also secure.

Cost of different cipher suites in SMPC. The cost of TLS
cipher suites in SMPC has rarely been studied. Here, we
implement the boolean circuits of two commonly used cipher

suites, AES-GCM-128 and Chacha20-Poly1305—which are
part of the TLS 1.3 standard and supported in many TLS 1.2
implementations—and measure their cost.

After common optimizations, the main overhead rests on
the amortized cost of (1) AES without key schedule and (2)
Chacha20 in terms of the number of AND gates in boolean
circuits. The amortized cost per 128 bits for AES is 5120 AND
gates while Chacha20 takes 96256 AND gates due to integer
additions. Thus, it is preferred to choose AES-GCM-128 when
available.

Efficient AES-GCM-128 in SMPC. The AES-GCM-128 ci-
pher applies GCM mode-of-operation on the AES block cipher
to simultaneously ensure the confidentiality and authenticity of
data. AES-GCM-128 takes the session keys, IVs, and plaintext
data as inputs, and outputs the ciphertext and MAC. Many prior
works have already proposed efficient protocols to evaluate
AES in SMPC [63, 72, 71, 83], and we adapt the circuit
proposed in [83].

For the GCM protocol, we use a protocol from DECO [89]
to efficiently compute the GCM tag, and adapt it to the N -party
setting. After deriving the TLS application key within SMPC,
the servers compute the GCM generator H = EK(0) and
the power series of H: H,H2, H3, ...,HL within SMPC. The
power series is secret-shared among the N servers. To compute
the GCM tag for some data S1, S2, ..., SL (authenticated data
or ciphertexts), each server computes a share of the polynomial∑L

i=1 Si ·Hi and combines these shares with the encryption
of initialization vector (IV) within SMPC.

We additionally optimize the choice of L, the number of
blocks to transmit, which has not been done in DECO. For
efficiency, L needs to be chosen carefully. A small L will
increase the number of encryption operations, and a large L
will increase the cost of computing the GCM power series.
Formally, to encrypt a message of N bytes with AES (the
block size is 16 bytes), we find L that minimizes the overall
encryption cost:

Lopt = argminL

[
(L− 1) · 16384 + 1280 + 5120
+M · 5120 + ⌈N+M

16 ⌉ · 5120

]
.

where M = ⌈ N
16·(L−2)−1⌉ is the number of data packets in

the TLS layer.1 For example, for N = 512, choosing L =
N/16 = 32 is 2.3× the cost compared with Lopt = 5.

IV. MPCAUTH AUTHENTICATION

In this section, we present MPCAuth’s authentication proto-
col for email, SMS, U2F, security questions, and biometrics.
For each factor, we also describe how it achieves profile hiding,
and prove its security in Section C. In addition, we describe
how a new client sets up the authentication factor when she
enrolls in the service.

General workflow. In general, MPCAuth’s authentication
protocols consist of two stages:

1Besides the actual payload data, the GCM hash also adds on two additional
blocks (record header and the data size) and one byte (TLS record content
type), which explains the term 16 · (L− 2)− 1.

7

– The N servers jointly send one challenge to the client.
– The client replies with a response to each server, which

will be different for each server.

A. MPCAUTH email

MPCAuth’s email authentication protocol sends the client
only one email which contains a passcode. If the client proves
knowledge of this passcode in some way, the N servers will
consider the client authenticated. Note that the protocol sends
the email using the intergateway SMTP protocol, rather than
the one normally used by a client.

Email authentication protocol Πemail. Given the share of the
client’s email address JaddrKi, MPCAuth’s email authentication
protocol proceeds as follows:

1) The i-th server Pi generates a random number si and
provides it as input to SMPC.

2) Inside SMPC, the servers computes s =
⊕N

i si, where
⊕ is bitwise XOR, and outputs π′

i = PRF(s, i) to Pi.
3) The N servers run the TLS-in-SMPC protocol to create

a TLS endpoint acting as an email gateway for some
domains. The TLS endpoint opens a TLS connection with
the client’s SMTP server. Over this connection, the N
servers send a message which includes the email address
addr, and the email content that contains the passcode s.
The SMTP server then forwards the email to addr.

4) The client receives the email and enters s into the client
app, which computes πi = PRF(s, i) and sends πi to Pi.
Pi considers the client authenticated if πi = π′

i.

Enrollment. The enrollment workflow is as follows:
1) The client opens a TLS connection with each of the N

servers, secret-shares her email address, and sends the
i-th share JaddrKi to Pi.

2) The N servers run Πemail, in which the servers jointly
send a confirmation email to the client, with a passcode.

3) If the client is authenticated, each server keeps a mapping
from the client’s username to JaddrKi.

Profile hiding. Profile hiding of email authentication requires
that the servers to not learn the email username of the client.
This is achieved because the email address is stored as secret
shares on the servers, and during authentication, this address
is encrypted and transmitted within SMPC during TLS’s data
exchange phase. None of the servers see the email address in
plaintext, and an attacker cannot recover the address unless it
compromises all N servers.

Note that in TLS-in-SMPC, since the N servers verify the
TLS server certificate outside SMPC for efficiency reasons,
the email provider’s mail gateway address is revealed to the
N servers. We believe that hiding only the email username
instead of the full address suffices for our privacy goal because
(1) major email service providers (e.g. Google, Microsoft) have
millions and even billions of accounts, and (2) most organi-
zations with custom domains also uses email services from
these major providers (e.g. many universities and companies
use Gmail or Outlook). In the latter case, the N servers contact

the email service provider’s SMTP server, and only learn the
provider’s gateway address instead of the organization’s custom
domain name.

Avoiding misclassification as spam. A common issue is that
this email might be misclassified as spam, which can be handled
using standard practices as follows.

– Sender Policy Framework (SPF). MPCAuth can follow the
SPF standard [28], in which the sender domain, registered
during the setup of MPCAuth, has a TXT record indicating
the IP addresses of email gateways eligible to send emails
from this sender domain.

– Domain Keys Identified Mail (DKIM). The DKIM standard
[12] requires each email to have a signature from the
sender domain under a public key listed in a TXT record.
MPCAuth can have the server generate the keys and sign
the email, both in a distributed manner.

Our experiments show that supporting SPF is sufficient to avoid
Gmail labeling MPCAuth’s email as spam.

B. MPCAUTH SMS

MPCAuth’s SMS protocol sends the client one text message,
which contains a passcode. The enrollment and authentication
protocols resemble the email authentication protocol except
that the passcode is sent via SMS.

SMS authentication protocol ΠSMS. We leverage the fact
that many mobile carriers, including AT&T [4], Sprint [29],
and Verizon [32], provide commercial REST APIs to send text
messages. The N servers, who secret-share the API key, can use
MPCAuth’s TLS-in-SMPC protocol to send a text message to
the client through the relevant API. The authentication protocol
for SMS is the same as Πemail except that during step 3), the
N servers create a TLS endpoint with the mobile carrier’s
gateway server. During enrollment, the client’s phone number
is stored as secret shares.

Profile hiding. Similar to profile hiding for email authenti-
cation, the client’s phone number is stored as secret shares
during enrollment and encrypted within TLS-in-SMPC so none
of the servers sees this number in plaintext. The N servers
need to know the client’s mobile carrier to send the message.
Since major mobile carriers such as AT&T and T-Mobile
have hundreds of millions of users, we believe this leakage is
acceptable in practice.

C. MPCAUTH U2F

The universal second factor (U2F) [33] is an emerging
authentication standard in which the user uses U2F devices to
produce signatures to prove the user’s identity. Devices that
support U2F include YubiKey [36] and Google Titan [30]. The
goal of MPCAuth’s U2F protocol is to have the user operates
on the U2F device once.

Background: U2F. A U2F device attests to a client’s identity
by generating a signature on a challenge requested by a server
under a public key that the server knows. The U2F protocol

8

handle, appId,
challenge

handle, appId,
challenge, origin

counter,
signature

counter, origin,
signature

U2F device Client app Server

Fig. 3: Protocol of universal second factor (U2F).

consists of an enrollment phase and an authentication phase,
described as follows.

In the enrollment phase, the U2F device generates an
application-specific keypair and sends a key handle and the
public key to the server. The server stores the key handle and
the public key. In the authentication phase, the server generates
a random challenge and sends it over together with the key
handle and the application identifier (appId) to a U2F interface
such as a client app, which is then, along with the origin name
of the server, forwarded to the U2F device. Then, upon the
user’s confirmation, such as tapping a button on the device
[36, 30], the U2F device generates a signature over the request.
The signature also includes a monotonic counter to discover
cloning attacks. The server receives the signature and verifies
it using the public key stored in the enrollment phase.

An insecure strawman. An intuitive approach to avoid the
client tapping the U2F device multiple times is to have the
servers generate a joint challenge which is then signed by
the U2F device. The client can secret-share the signature,
and the servers can then reconstruct and verify the signature
within SMPC. This approach works but introduces unnecessary
overhead.

Note that, unlike other factors, U2F does not store any
private authentication profiles on the servers. The public key
and the signature are meant to be public, so there is no need
to secret-share them and run SMPC on them. The client can
obtain a signature over the servers’ joint challenge from U2F,
and sends the signature to each server. Each server can simply
verify this signature individually.

This strawman approach, however, is insecure because it
suffers from the replay attack described in Section II-D. When
a malicious server receives the signature from the client, this
server can impersonate the honest user by sending this signature
to the other servers.

MPCAUTH U2F’s protocol ΠU2F. To address the usability
challenge while preventing the replay attack, our construction
needs to satisfy the following three requirements: (1) the
challenge signed by the U2F device is generated using all
the servers’ randomness s1, s2, ..., sN ; (2) the client can prove
to server Pi that the signed challenge uses si without revealing
si to other servers; and (3) the client’s response to each server
is unique, and the attacker cannot forge Pi’s response without
knowing si.

We identify that aggregating the servers’ randomness via a
Merkle tree combined with a commitment scheme, as Figure 4

Root hash

ℋ

Challenge to U2F

ℋ

cm!

cm! = Commit(𝑠!, 𝑟!)
cm" cm# cm$

Fig. 4: The Merkle tree for U2F challenge generation.

shows, satisfies these requirements. We can use a cryptographic
commitment scheme to commit to the client’s randomness si,
and aggregate all these commitments using a Merkle tree. The
U2F device can then sign a signature over the Merkle root
hash. The detailed protocol is as follows:

1) Each server Pi opens a TLS connection with the client
and sends over a random value si.

2) The client randomly samples ri for Pi and builds a Merkle
tree over the committed values cmi = Commit(si, ri), as
illustrated in Figure 4. The client then requests the U2F
device to sign the root hash root.

3) The client then operates on the U2F device once, which
produces a signature σroot over root. The client app
computes the Merkle tree inclusion proof πMerkle

i , and
sends the tuple (root, σroot, π

Merkle
i , cmi, ri) to each server.

4) Each server Pi (1) verifies the signature σroot with
Sig.Verify, (2) checks that cmi = Commit(si, ri) and (3)
checks the Merkle lookup proof to verify cmi is indeed
a leaf in the tree. Pi consider the client authenticated if
everything is verified.

Enrollment. The enrollment workflow is as follows:
1) The client and the servers engage in the standard U2F

enrollment protocol [33], in which the servers obtain the
key handle and the public key.

2) The client and the servers run MPCAuth’s U2F authenti-
cation protocol ΠU2F as described above.

Profile hiding. Based on the definition, profile hiding of ΠU2F
means that the N servers cannot associate their public key with
the client’s device. The original U2F protocol already provides
measures to hide the device’s identity. [34, 15]. Namely, the
U2F device does not have any publicly available serial number,
is not tied to the client’s device, and generates a new key pair
for every service it registers. These properties are preserved in
the N servers setting; an attacker compromising N − 1 servers
can neither identify the U2F’s secret key given the public key,
nor associate the key pair with the client’s device.

D. MPCAUTH Biometrics

Biometric authentication [45, 66] relies on a client’s unique
biological characteristics to verify her identity. Fingerprints,
facial recognition, and retina scans are some of the common
biometrics used today. Biometrics protocols fall into two
categories: device-side and server-side. Device-side biomet-
rics [1, 2] performs the authentication locally, where the client

9

uses her biometric information to unlock a key stored on her
device. This key is then used to sign the servers’ challenges.
Since the authentication workflow of device-side biometrics is
similar to that of U2F, we can use U2F’s protocol described
in Section IV-C to authenticate to N servers. In this section,
we focus our presentation on the server-side protocol.

For server-side biometrics, the client scans her biometrics
on a device. The biometric information is processed by some
processing algorithms (e.g. a machine learning model) to obtain
the feature vector, which is sent to the server. The server
compares this vector with the client’s registered feature vector
by computing a distance function (normally an l2 distance),
and accepts if the distance is below a certain threshold.

MPCAUTH’s Biometrics protocol Πbio. Given a processing
algorithm M : R∗ → Rλ that produces a feature vector of
length λ, the protocol works as follows:

• During enrollment, the client scans her biometrics infor-
mation x, the client app processes it with M and get
the feature vector y = M(x). The client app then secret-
shares y and sends JyKi to server Pi.

• During authentication, the client scans her biometrics x′.
The client app computes its feature vector y′ = M(x′),
and sends Jy′K to the servers. The servers compute the
l2 distance between JyK and Jy′K, and compare it with a
given threshold, both in SMPC. The servers reconstruct
the comparison bit b ∈ {0, 1} and accept if the b is 1.

Bounding vector components. The l2 distance between
two n dimensional vector is defined as l2(x,y) =√
(x1 − y1)2 + ...+ (xn − yn)2. As SMPC protocol works

over finite rings, individual component of the vector wraps
around the ring. It is possible to create an attack vector with
large component-wise distances but a small l2 distance by
overflowing the l2 value. Therefore, we additionally need to
specify a maximum value w for each individual component
xi so that −w < xi < w. In addition, instead of comparing l2
with the threshold, we compare (l2)

2 with the square of the
threshold to avoid the costly square root operation in SMPC.

Profile hiding. Privacy concerns are the major obstacle
that prevents the adoption of server-side biometrics [17, 7].
Previously, preserving the privacy of biometrics is difficult: to
compare between features, the server needs to store the client’s
biometric features directly without applying any hashes. If an
attacker compromises the server, they can not only use them
to authenticate to other services, but even recover the original
biometrics as well.

In the distributed-trust setting, we are able to hide this
information from the servers since they are stored as secret
shares. The authentication protocol is also computed within
SMPC. The servers learn no information other than the fact
that the client is authenticated.

E. MPCAUTH security questions

The last MPCAuth authentication factor we present is
security questions. Note that passwords are a special type

of security question – the account name is the question and the
password is the answer. As the most common authentication
factor, protocols for security questions have been extensively
studied by prior work [40, 37]. We present MPCAuth’s protocol
here for completeness. Without loss of generality, let’s assume
that the client provides one security question and answer. The
protocol is as follows:

• During enrollment, the client provides security question
q ∈ {0, 1}∗ and its answer a ∈ {0, 1}∗ to the client app,
hashes each of them with a CRH, and sends the secret-
shares of the hashes to the N servers. Server Pi holds
the tuple (JHash(q)Ki, JHash(a)Ki).

• During authentication, the client again sends secret
shares of the hashes (JHash(q)K′i, JHash(a)K′i) to Pi.
The N servers runs a private comparison proto-
col between the pair (JHash(q)Ki, JHash(q)Ki) and
(JHash(a)Ki, JHash(a)K′i) to check that their reconstruc-
tions are the same. The server considers the client
authenticated if the check passes.

Profile hiding. The construction is profile hiding because both
questions and answers are stored as secret shares, and are never
materialized during authentication. Note that in the special case
where the answer is a password, we do not hide the account
name from the servers. This is because the account name is
a unique identifier for the client and must be stored publicly.
(see Section II-D)

Previously, security questions have to avoid asking users for
critical personal secrets, such as their SSN, because the secrets
are in a small domain and an offline brute-force attack is enough
to recover them. The profile-hiding aspect of MPCAuth’s
protocol may encourage the user to choose sensitive questions
and answers that they are previously uncomfortable sharing.

V. IMPLEMENTATION AND EVALUATION

In this section we discuss MPCAuth’s performance by
answering the following questions:

1) Is MPCAuth’s TLS-in-SMPC protocol practical? Can it
meet the TLS handshake timeout? (Section V-C)

2) How efficient are MPCAuth’s authentication protocols?
(Section V-D)

3) How does MPCAuth compare with baseline implementa-
tions and prior work? (Section V-E)

Our benchmark results show that MPCAuth’s TLS-in-SMPC
protocol can consistently meet the TLS handshake timeout for
N ≤ 5, and is 8x faster compared to a baseline implementation.

A. Implementation details.

We use MP-SPDZ [24], emp-toolkit [13, 87] and wolfSSL
[35] to implement MPCAuth’s TLS-in-SMPC protocol. The
TLS handshake protocol consists of point additions (for elliptic
curve Diffie-Hellman) and key derivations. We observe that
point additions can be efficiently expressed as an arithmetic
circuit whose native field is exactly the point’s coordinate

10

2 3 4 5
Number of Parties N

0

5

10

15

20
O

ffl
in

e
Ph

as
e

L
at

en
cy

(s
)

Total
TLS Handshake
Data Exchange

(a) Offline phase latency.

2 3 4 5
Number of Parties N

0.0

0.5

1.0

1.5

2.0

O
nl

in
e

Ph
as

e
L

at
en

cy
(s

) Total
TLS Handshake
Data Exchange

(b) Online phase latency.

2 3 4 5
Number of Parties N

0.0

0.3

0.6

0.9

1.2

1.5

G
ar

bl
ed

C
ir

cu
it

Si
ze

(G
B

)

Total
TLS Handshake
Data Exchange

(c) Garbled circuit size.

Fig. 5: The overall online/offline phase latencies and the garbled circuit size of the TLS-in-SMPC protocol for N = 2, 3, 4, 5
servers when sending an email with a passcode (the mail body is 34 bytes).

Component Offline Phase Latency (s) Online Phase Latency (s)
N = 2 N = 3 N = 4 N = 5 N = 2 N = 3 N = 4 N = 5

TLS connection establishment 7.43 8.16 11.11 14.83 0.67 0.92 1.08 1.38
⋄ Key share generation 0.30 0.30 0.30 0.30 — — — —
⋄ Key exchange result computation 0.02 0.06 0.09 0.15 0.25 0.35 0.37 0.47
⋄ Key derivation 6.55 7.05 9.73 13.1 0.37 0.51 0.64 0.83
⋄ GCM power series (L = 5) 0.49 0.65 0.87 1.15 0.03 0.04 0.05 0.06
⋄ AES key schedule 0.07 0.10 0.12 0.13 0.02 0.02 0.02 0.02
Sending an email of 34 bytes in TLS 2.52 2.90 3.37 3.69 0.38 0.39 0.41 0.43
Sending a SMTP heartbeat in TLS 0.43 0.49 0.57 0.63 0.06 0.07 0.07 0.07

TABLE I: Breakdown of the TLS-in-SMPC latencies for sending an email with a passcode (the mail body is 34 bytes).

field, and key derivations can be efficiently expressed as a
boolean circuit. Our insight to achieve efficiency here is to mix
SMPC protocols by first implementing point additions with
SPDZ using MASCOT [67] for the offline phase, and then
transferring the result to AG-MPC [83, 87] for key derivation
via a maliciously secure mixing protocol [77, 39, 60]. Both
SPDZ and AG-MPC support offline precomputation, which
helps reduce the online latency and meet the TLS handshake
timeout.

The AES-GCM-256 algorithm during the data exchange
phase can be expressed as a garbled circuit. Besides, AES-
GCM-256, many operations in TLS-in-SMPC, including the
hash function SHA-256 and the key derivation function are
expressed as garbled circuits. We synthesize the circuit files in
TLS-in-SMPC using Synopsys’s Design Compiler and tools
in TinyGarble [79], SCALE-MAMBA [27], and ZKCSP [50].
These circuits are already open-sourced.

All our authentication protocols are implemented in C++
and Python. For our biometrics protocol, we choose fa-
cial recognition as the biometrics and use an open-sourced
‘face recognition’ [14] library to extract facial features. The
library provides APIs to encode facial images into feature
vectors of 128 dimensions.

B. Experiment setup

We ran our experiments on c5n.2xlarge instances on EC2,
each equipped with a 3.0 GHz 8-core CPU and 21 GB memory.
To model a cross-state setup, we set a 20 ms round-trip time
and a bandwidth of 2 Gbit/s between servers (including the
TLS server) and 100 Mbit/s between clients and servers.

Remark V.1 (On the size of N). N is the number of parties that
host the distributed-trust applications. Most industry adoption
of MPC systems (e.g. Fireblocks MPC wallet [16], Meta private
ads [23] consider less than 5 parties, and the majority of them
only have 2-3 parties in their settings. We, therefore, consider
N from 2 to 5 in our experiments.

C. TLS-in-SMPC’s performance

For the TLS-in-SMPC protocol, we measured the offline
and online phases’ latencies and the size of the garbled circuits
sent in the offline phase and show the results in Figure 5. From
the figure, we see that the offline and online phase latencies
and the total circuit size grow roughly linearly to the number
of servers. For all values of N that we tested, the protocol
always meets the TLS handshake timeout.

A large portion of the offline cost is in transmitting
the garbled circuits used in AG-MPC, as Figure 5 shows.
MPCAuth’s servers run the offline phase before the TLS
connection is established to avoid this extra overhead. To load
these circuits to the memory efficiently, one can use a memory
planner optimized for secure computation [68]. Malicious users
can perform DoS attacks by wasting computation done in the
offline phase. MPCAuth can defend against such attacks using
well-studied techniques, such as proof-of-work or payment
[69, 64].

Latency breakdown. In Table I we show a breakdown of
the offline and online phase latencies for the TLS-in-SMPC
protocol. From the table, we see that most of the computation
is in the offline phase, and the online phase has a small latency.
Therefore, if we run an SMPC protocol off the shelf that does
not precompute the offline phase, from Table I we see that for

11

Offline Phase Online Phase
Latency (s) Latency (s)

Email 10.96 (2.90) 1.29 (0.39)
SMS 12.26 (4.10) 1.48 (0.56)
U2F — 0.03
Security Questions 0.03 0.04
Biometrics 8.89 0.38

TABLE II: Latencies of MPCAuth (N = 3). Numbers in
parentheses are the cost given an established TLS connection.

N = 5, the key exchange has a latency of 14.83 s and cannot
meet a TLS handshake timeout of 10 s.

We see from Table I that the latency for establishing the
TLS connection dominates. However, MPCAuth can create a
persistent connection with the email-receiving gateway server,
allowing this to be a one-time cost, which is particularly
useful for popular email service providers like Gmail. With an
established connection, sending an email with N = 5 only takes
3.69 s in the offline phase and 0.43 s in the online phase, which
is drastically smaller. To maintain this connection, MPCAuth
servers can send SMTP heartbeats (a NOOP command). Our
experiment with Gmail shows that one heartbeat per 120 s is
sufficient to maintain a long-term connection for at least 30
minutes.

D. MPCAUTH’s performance

We measured the offline and online phase latencies of the
MPCAuth protocols and presented the results in Table II. We
now discuss the results in more detail.

Email/SMS. Using a message of 34 characters that includes a
short sentence and a passcode, the MPCAuth email protocol
(without DKIM signatures) sends 165 bytes via TLS-in-SMPC,
and MPCAuth’s SMS protocol sends 298 bytes via TLS-in-
SMPC.

U2F. We implement the collision-resistant hash and commit-
ments with SHA256. The computation time for the client and
the server is less than 1 ms. The protocol incurs additional
communication costs, as the client sends each server a Merkle
proof of 412 bytes. We note that all of the overhead comes
from the online phase.

Security questions. Checking the hashed answer of one
security question can be implemented in AG-MPC, which
takes 255 AND gates.

Biometrics. We implemented the entire protocol in MP-SPDZ
using MASCOT. Given a 128-dimension feature vector, the
protocol performs 257 comparisons and 128 multiplications,
which requires 14293 authenticated triples generated during
the preprocessing phase.

E. Comparisons

Comparison with off-the-shelf SMPC. We compare MP-
CAuth’s implementation with an off-the-shelf one in emp-
toolkit [13, 87]. We estimate this cost by implementing the

computation of αβ ·G in key exchange, which offers a lower
bound on its performance of TLS and is already much slower
than MPCAuth. With N = 5 servers, the overall latency is
at least 8× slower compared with MPCAuth’s TLS-in-SMPC
implementation. This is because computing αβ · G involves
expensive prime field operations using 107 AND gates. With
N = 5 servers, this step already takes 150 s in the offline
phase and 8.6 s in the online phase.

VI. DISCUSSION

Handling denial-of-service attacks. In this paper, we consider
denial-of-service attacks by the servers to be out of scope, as
discussed in Section II-C. There are some defenses against
these types of attacks, as follows:

– Threshold secret sharing. A malicious server can refuse
to provide its share of the secret to prevent the user from
recovering it. To handle this, the user can share the secret
in a threshold manner with a threshold parameter t which
will allow the user’s secret to be recoverable as long as t
servers provide their shares. This approach has a small
cost, as a boolean circuit for Shamir secret sharing only
takes 10240 AND gates by using characteristic-2 fields
for efficient computation.

– Identifiable abort. Some new SMPC protocols allow
for identifiable abort, in which parties who perform
DoS attacks by aborting the SMPC protocol can be
identified [41, 65]. MPCAuth can support identifiable
abort by incorporating these SMPC protocols and standard
identification techniques in its authentication protocols.

A client app is not sufficient. One potential approach to
address the usability challenge is to build a client app that
automatically performs the N authentications for the client.
This approach works for passwords and biometrics, but it does
not work for email and SMS. Consider a strawman where
a client app would read the emails and SMSes of a user to
discover messages from the N servers. This process requires
the client app to receive intrusive permissions to scan over the
client’s email and SMS messages, which significantly affects
the privacy of the client. Such apps become a dangerous central
point of attack because the client’s email and SMS are used
to authenticate to other systems and applications as well (e.g.,
banking, payments, shopping). In fact, operating systems such
as iOS do not give the app permission to access this data
because of this privacy infringement. Alternatively, the client
app can rely on specialized APIs from the operating systems to
autofill these one-time passcodes N times without scanning the
client data itself. For example, both iOS and Android provide
APIs to autofill one-time passcodes for SMS messages. This
approach is still problematic because the client still has to tap
the autofill button N times, which remains an undesirable user
experience, and this autofill approach does not work for email.

Account Recovery. In Section II-A, we require the client to
register at least two distinct factors. This is not enough if she
wants to enable account recovery. If she loses access to one

12

of the factors, then she would not be able to successfully log
in. Therefore, she needs to register for additional factors in
case some factors are lost. For account recovery, it would be
important for the client to provide at least two authentication
factors. Otherwise, a malicious authenticator could use the
account recovery mechanism to steal her account. In general,
to tolerate k lost factors, the client needs to register for at least
k + 2 factors.

In our constructions, we also require that our client remember
her username, which is used by the servers to index her
authentication profiles. Without this information, the servers are
unable to authenticate the client. There are several approaches
to recover this username in case it is forgotten/lost. First, the
client app can store this username for the client. Second, if the
client registers for email/SMS authentication, the servers can
include the client’s username in every email/SMS message. The
client can also ask the servers to send an additional email/SMS
that contains the username.

VII. RELATED WORK

TLS and SMPC. There are works using TLS with secure
two-party computation (S2PC), but in a prover-verifier setting
in which the prover proves statements about the information
on the web. BlindCA [81] uses S2PC to inject packets in a
TLS connection to allow the prover to prove to the certificate
authority that they own a certain email address. DECO [89]
uses TLS within S2PC to prove to an outside party statements
about data encrypted in the TLS channel. Both work heavily
rely on the fact that one party knows all the plaintext because
this party needs to prove knowledge of the plaintext of TLS-
encrypted traffic. For this reason, many of their techniques
do not apply to our setting. The technique we could reuse
from DECO (Section III-D) was only a small component of
our protocol. In addition, both of these works are restricted to
two parties based on their intended settings, while MPCAuth
supports an arbitrary number of parties.

A concurrent work [38] 2also proposes running TLS in secure
multiparty computation similarly to our building block TLS-in-
SMPC. When comparing to our building block TLS-in-SMPC,
they did not implement their proposal (we provide an end-to-
end implementation compatible with an existing TLS library,
wolfSSL), did not evaluate a concrete implementation, and
did not contribute techniques for speeding up AES and GCM
in MPC (Section III-D). More importantly, when comparing
overall contributions, [38] does not propose or contribute au-
thentication protocols for distributed-trust applications, whereas
the core ideas and contributions of MPCAuth are (1) the
idea that a user can authenticate to N distrusting servers
simultaneously while performing only the usual work of
authenticating to one (“imaginary”) server, (2) showing how this
can be achieved by running inside SMPC the SMTP protocol
or the HTTP protocol in addition to TLS, (3) implementation
and evaluation of the resulting authentication protocols, and (4)

2This work is concurrent to the eprint version of our paper, which is originally
published in March 2021.

demonstrating how this capability addresses crucial roadblocks
for applications like cryptocurrency custody/wallets, and col-
laborative learning/analytics, currently seeing adoption from
companies in these areas.

Decentralized authentication. Decentralized authentication
has been studied for many years and is still a hot research
topic today. The main goal is to avoid having centralized trust
in the authentication system. One idea is to replace centralized
trust with trust relationships among different entities [86, 43],
which has been used in the PGP protocol in which individuals
prove the identities of each other by signing each other’s
public key [26, 6]. Another idea is to make the authentication
system transparent to the users. For example, blockchain-based
authentication systems, such as IBM Verify Credentials [19],
BlockStack [8], and Civic Wallet [10], and certificate/key
transparency systems [9, 74, 21, 46, 80, 61] have been deployed
in the real world.

A recent concurrent work [48] also addresses decentralized
authentication for cryptocurrency by integrating U2F and
security questions with smart contracts. Their construction
does not support SMS/email authentication due to limitations
of smart contracts, and does not work with cryptocurrencies
that do not support smart contracts like Bitcoin. In sum, their
approach targets a different setting than MPCAuth, as we focus
on the usability issues of having the user perform N -times the
work.

OAuth. OAuth [25] is a standard protocol used for access
delegation, which allows users to grant access to applications
without giving out their passwords. While OAuth has several
desirable properties, it does not work for all of MPCAuth’s
factors. It is, therefore, less general and flexible than MPCAuth.
In addition, if a user authenticates through OAuth and wants
distributed trust, she has to perform the authorization N times,
once for each server. MPCAuth can incorporate OAuth as a
separate authentication factor—the N servers can secret-share
the OAuth client secret and then, using TLS-in-SMPC, obtain
the identity information through the OAuth API.

VIII. CONCLUSION

MPCAuth is an authentication system for distributed-trust
applications that enables users to authenticate to N servers by
only performing the work of a single authentication, and in the
meantime hides the client’s authentication profile. MPCAuth
offers authentication protocols that achieve both properties for
various commonly used authentication factors. An important
building block of MPCAuth is a TLS-in-SMPC protocol, which
we designed to be efficient enough to meet the TLS timeout
and successfully communicate with an unmodified TLS server.
We hope that MPCAuth will facilitate the adoption of new
systems with distributed trust.

REFERENCES

[1] Accessing keychain items with face id or touch id.
https://developer.apple.com/documentation/localauthentication/
accessing keychain items with face id or touch id.

13

https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id

[2] Android’s biometrics. https://source.android.com/docs/security/features/
biometric.

[3] Ant morse. https://antchain.antgroup.com/products/morse.
[4] AT&T SMS API. https://developer.att.com/sms.
[5] Basebit. https://www.basebit.ai/en/core.aspx.
[6] Biglumber: Key signing coordination. http://www.biglumber.com/.
[7] Biometrics and privacy. https://ovic.

vic.gov.au/privacy/resources-for-organisations/
biometrics-and-privacy-issues-and-challenges.

[8] Blockstack. https://www.blockstack.org/.
[9] Certificate transparency. https://www.certificate-transparency.org/.

[10] Civic wallet - digital wallet for money and cryptocurrency.
https://www.civic.com/.

[11] Curv: The institutional standard for digital asset security. https://www.
curv.co.

[12] DomainKeys identified mail (DKIM) signatures. https://tools.ietf.org/
html/rfc6376.

[13] Efficient multi-party (EMP) computation toolkit. https://github.com/
emp-toolkit/.

[14] face recognition. https://github.com/ageitgey/face recognition.
[15] Fido technotes: The truth about attestation. https://fidoalliance.org/

fido-technotes-the-truth-about-attestation/.
[16] Fireblocks. https://fireblocks.com/.
[17] How the biometrics industry can overcome

the privacy obstacle. https://findbiometrics.com/
yir-how-biometrics-industry-overcome-privacy-obstacle-702099.

[18] Huakong tsingjiao. https://www.tsingj.com/.
[19] IBM Verify Credentials: Transforming digital identity into decentralized

identity. https://www.ibm.com/blockchain/solutions/identity.
[20] The illustrated TLS 1.3 connection. https://tls13.ulfheim.net/.
[21] Key transparency. https://github.com/google/keytransparency.
[22] Mpcvault. https://mpcvault.com/.
[23] Multi-party computation - facebook. https://privacytech.fb.com/

multi-party-computation/.
[24] Multi-Protocol SPDZ (MP-SPDZ). https://github.com/data61/MP-SPDZ.
[25] OAuth. https://www.oauth.net/.
[26] OpenPGP message format. https://tools.ietf.org/html/rfc4880.
[27] Scale-mamba. https://github.com/KULeuven-COSIC/SCALE-MAMBA.
[28] Sender policy framework (SPF) for authorizing use of domains in email.

https://tools.ietf.org/html/rfc7208.
[29] Sprint enterprise messaging developer APIs. https://sem.sprint.com/

developer-apis/.
[30] Titan security key. https://cloud.google.com/titan-security-key.
[31] The transport layer security (TLS) protocol version 1.3. https://tools.ietf.

org/html/rfc8446.
[32] Verizon’s enterprise messaging access gateway. https://ess.emag.vzw.

com/emag/login.
[33] What is U2F? https://developers.yubico.com/U2F/.
[34] Why FIDO U2F was designed to protect your privacy. https://www.

yubico.com/blog/fido-u2f-designed-protect-privacy.
[35] wolfssl embedded ssl/tls library — now supporting tls 1.3. https://https:

//www.wolfssl.com/.
[36] YubiKey strong two factor authentication. https://www.yubico.com/.
[37] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval.

Robust password-protected secret sharing. In ESORICS ’16, 2016.
[38] Damiano Abram, Ivan Damgård, Peter Scholl, and Sven Trieflinger.

Oblivious TLS via multi-party computation. In CT-RSA ’21, 2021.
[39] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart,

and Tim Wood. Zaphod: Efficiently combining LSSS and garbled circuits
in SCALE. In WAHC ’19.

[40] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu.
Password-protected secret sharing. In CCS ’11, 2011.

[41] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Efficient constant-round MPC with identifiable abort and
public verifiability. In CRYPTO ’20, 2020.

[42] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In STOC ’88.

[43] Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of trust
in open networks. In ESORICS ’94.

[44] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.
In S&P ’17.

[45] Debnath Bhattacharyya, Rahul Ranjan, Farkhod Alisherov, Minkyu Choi,
et al. Biometric authentication: A review. International Journal of u-and
e-Service, Science and Technology, 2(3):13–28, 2009.

[46] Joseph Bonneau. EthIKS: Using Ethereum to audit a CONIKS key
transparency log. In FC ’16.

[47] Christina Braz and Jean-Marc Robert. Security and usability: The case
of the user authentication methods. In International Conference of the
Association Francophone d’Interaction Homme-Machine ’06, 2006.

[48] Florian Breuer, Vipul Goyal, and Giulio Malavolta. Cryptocurrencies
with security policies and two-factor authentication. In EuroS&P ’21,
2021.

[49] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann,
and Gregory Neven. The wonderful world of global random oracles. In
EUROCRYPT ’18.

[50] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca
Nizzardo. Zero-knowledge contingent payments revisited: Attacks and
payments for services. In CCS ’17.

[51] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS ’01.

[52] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC
security with a global random oracle. In CCS ’14.

[53] David Chaum, Crépeau. Claude, and Ivan Damgård. Multiparty
unconditionally secure protocols. In STOC ’88.

[54] Weikeng Chen and Raluca Ada Popa. Metal: A metadata-hiding file-
sharing system. In NDSS Symposium 2020, 2020.

[55] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 259–
282, Boston, MA, March 2017. USENIX Association.

[56] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and
Ion Stoica. {DORY}: An encrypted search system with distributed
trust. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1101–1119, 2020.

[57] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
In TIT ’76.

[58] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 523–535, 2017.

[59] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila.
A cryptographic analysis of the TLS 1.3 handshake protocol candidates.
In CCS ’15, 2015.

[60] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and
Peter Scholl. Improved primitives for MPC over mixed arithmetic-binary
circuits. In CRYPTO ’20.

[61] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh.
Certificate transparency with privacy. In PETS ’17.

[62] Oded Goldreich, Silvio M. Micali, and Avi Wigderson. How to play
ANY mental game: A completeness theorem for protocols with honest
majority. In STOC ’87.

[63] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost
constant round mpc combining bmr and oblivious transfer. Journal of
Cryptology, 33(4):1732–1786, 2020.

[64] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. Ghostor: Toward a
secure data-sharing system from decentralized trust. In NSDI ’20, 2020.

[65] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party
computation with identifiable abort. In CRYPTO ’14, 2014.

[66] Anil K Jain and Karthik Nandakumar. Biometric authentication: System
security and user privacy. Computer, 45(11):87–92, 2012.

[67] Marcel Keller and Emmanuela Orsini. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In CCS ’16, 2016.

[68] Sam Kumar, David Culler, and Raluca Ada Popa. Nearly zero-cost
virtual memory for secure computation. In OSDI ’21, 2021.

[69] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure
communication without leaking metadata. In OSDI ’16.

[70] Yehuda Lindel. How to simulate it: A tutorial on the simulation proof
technique, pages 277–346. 2017.

[71] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant-round multi-party computation combining bmr and
spdz. Journal of Cryptology, 32(3):1026–1069, 2019.

[72] Yehuda Lindell, Nigel P Smart, and Eduardo Soria-Vazquez. More
efficient constant-round multi-party computation from bmr and she. In
Theory of Cryptography Conference, pages 554–581. Springer, 2016.

[73] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity
of multi-party computation functionalities. In IACR ePrint 2013/042.

14

https://source.android.com/docs/security/features/biometric
https://source.android.com/docs/security/features/biometric
https://antchain.antgroup.com/products/morse
https://developer.att.com/sms
https://www.basebit.ai/en/core.aspx
http://www.biglumber.com/
https://ovic.vic.gov.au/privacy/resources-for-organisations/biometrics-and-privacy-issues-and-challenges
https://ovic.vic.gov.au/privacy/resources-for-organisations/biometrics-and-privacy-issues-and-challenges
https://ovic.vic.gov.au/privacy/resources-for-organisations/biometrics-and-privacy-issues-and-challenges
https://www.blockstack.org/
https://www.certificate-transparency.org/
https://www.curv.co
https://www.curv.co
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://github.com/emp-toolkit/
https://github.com/emp-toolkit/
https://github.com/ageitgey/face_recognition
https://fidoalliance.org/fido-technotes-the-truth-about-attestation/
https://fidoalliance.org/fido-technotes-the-truth-about-attestation/
https://fireblocks.com/
https://findbiometrics.com/yir-how-biometrics-industry-overcome-privacy-obstacle-702099
https://findbiometrics.com/yir-how-biometrics-industry-overcome-privacy-obstacle-702099
https://www.tsingj.com/
https://www.ibm.com/blockchain/solutions/identity
https://tls13.ulfheim.net/
https://github.com/google/keytransparency
https://mpcvault.com/
https://privacytech.fb.com/multi-party-computation/
https://privacytech.fb.com/multi-party-computation/
https://github.com/data61/MP-SPDZ
https://www.oauth.net/
https://tools.ietf.org/html/rfc4880
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://tools.ietf.org/html/rfc7208
https://sem.sprint.com/developer-apis/
https://sem.sprint.com/developer-apis/
https://cloud.google.com/titan-security-key
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://ess.emag.vzw.com/emag/login
https://ess.emag.vzw.com/emag/login
https://developers.yubico.com/U2F/
https://www.yubico.com/blog/fido-u2f-designed-protect-privacy
https://www.yubico.com/blog/fido-u2f-designed-protect-privacy
https://https://www.wolfssl.com/
https://https://www.wolfssl.com/
https://www.yubico.com/

[74] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten,
and Michael J. Freedman. CONIKS: bringing key transparency to end
users. In SEC ’15.

[75] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M. Hellerstein. Senate: A Maliciously-Secure MPC
platform for collaborative analytics. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2129–2146. USENIX Association, August
2021.

[76] Eric Rescorla. The transport layer security (tls) protocol version 1.3.
Technical report, 2018.

[77] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and
boolean circuits with active security. In INDOCRYPT ’19, 2019.

[78] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent E. Seamons. Why
johnny still, still can’t encrypt: Evaluating the usability of a modern PGP
client. In arXiv:1510.08555 ’15, 2015.

[79] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas
Schneider, and Farinaz Koushanfar. Tinygarble: Highly compressed and
scalable sequential garbled circuits. In S&P ’15.

[80] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos
Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. Transparency
logs via append-only authenticated dictionaries. In CCS ’19.

[81] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ristenpart, and abhi
shelat. Blind certificate authorities. In S&P’ 19, 2019.

[82] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
850–861, 2015.

[83] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS ’17, 2017.

[84] Catherine S. Weir, Gary Douglas, Tim Richardson, and Mervyn A. Jack.
Usable security: User preferences for authentication methods in eBanking
and the effects of experience. In Interacting with Computers ’10, 2010.

[85] Alma Whitten and J. Doug Tygar. Why johnny can’t encrypt: A usability
evaluation of PGP 5.0. In USENIX Security ’99, 1999.

[86] Raphael Yahalom, Birgit Klein, and Thomas Beth. Trust relationships in
secure systems: A distributed authentication perspective. In S&P ’93,
1993.

[87] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from
improved triple generation and authenticated garbling. In CCS ’20, 2021.

[88] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
FOCS ’86.

[89] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data using decentralized
oracles for TLS. In CCS ’20, 2020.

[90] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit
Panda, and Ion Stoica. Cerebro: A platform for Multi-Party cryptographic
collaborative learning. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2723–2740. USENIX Association, August 2021.

A CRYPTOGRAPHIC BUILDING BLOCKS

Pseudorandom functions. PRF = {PRFk : {0, 1}∗ →
{0, 1}O(|k|)}k where k denotes the seed. Functions in PRF
are computationally indistinguishable from random functions
to anyone who does not know the seed k.

Collision-resistant hash functions. A collision resistant hash
function is a tuple of algorithms CRH = (Setup,Hash) that
works as follows:

• Setup→ ppCRH: samples a public parameter ppCRH.
• Hash(ppCRH,m)→ h: given the public parameter, outputs

a hash h on the message m.
The hash function is collision resistant if it is computation-
ally infeasible to find x ̸= y such that Hash(ppCRH, x) =
Hash(ppCRH, y).

Digital signatures. A digital signature scheme is a tuple of
algorithms Sig = (Setup,Sign,Verify) that enables a user to

produce a signature over a message that can be later verified
by everyone.

• Setup → (sk, vk): generate a signing key sk and a
verification key vk.

• Sign(sk,m) → σ: produce a signature with signing key
sk on message m.

• Verify(vk, σ,m)→ {0, 1}: given the verification key vk,
outputs 1 if σ is a valid signature on message m, and 0
otherwise.

A secure signature scheme needs to be unforgeable, meaning
that someone without sk is unable to forge a valid signature
that makes Verify accept.

Commitments. A commitment schemes is a tuple of algorithms
Comm = (Setup,Commit,Open) that produces a commitment
to a message m.

• Setup(λ)→ ppComm: samples a public parameter ppCRH.
• Commit(ppComm,m, r) → cm: produces a commitment

on the message m, given the randomness r.
• Open(ppComm,m, r, cm)→ π: outputs a proof π showing

that cm is indeed the commitment of message m.
A commitment scheme needs to satisfy hiding and binding
properties. Hiding means that cm reveals no information about
m, and binding means that the commitment cm bound to
message m can only be opened by m itself.

B SECURITY PROOF OF TLS-IN-SMPC

In this section we provide a security proof for TLS-in-SMPC,
following the definition in Section II-C.

A. Overview

We model the security in the real-ideal paradigm [70], which
considers the following two worlds:

• In the real world, the N servers run protocol Π,
MPCAuth’s TLS-in-SMPC protocol, which establishes,
inside SMPC, a TLS client endpoint that connects to
an unmodified, trusted TLS server. The adversary A can
statically compromise up to N−1 out of the N servers and
can eavesdrop and modify the messages being transmitted
in the network, although some of these messages are
encrypted.

• In the ideal world, the honest servers, including the
TLS server, hand over their information to the ideal
functionality FTLS. The simulator S obtains the input
of the compromised parties in x⃗ and can communicate
with FTLS. FTLS executes the TLS 1.3 protocol, which is
assumed to provide a secure communication channel.

We then prove the security in the {FSMPC,FrpRO}-hybrid
model, in which we abstract the SPDZ protocol and the AG-
MPC protocol as one ideal functionality FSMPC and abstract the
random oracle used in commitments with an ideal functionality
for a restricted programmable random oracle FrpRO, which is
formalized in [49, 52].

Remark: revealing the server handshake key is safe. In
the key exchange protocol described in Section III-C, the

15

The TLS-in-SMPC protocol

Notation: We use FFunc
SMPC to represents a function Func that is executed in SMPC.

TLS server S: follows the TLS 1.3 protocol.
TLS client P:
Offline phase:

• ∀i ∈ [N], Pi samples αi ← Z+
p , computes αi ·G, and broadcast it to all other parties.

• P1 receives αj ·G for j ∈ {2, ..., N}, computes α ·G =
∑N

1 αi ·G
On receiving ServerHello (β ·G) from S:

• ∀i ∈ [N], Pi computes xi := αi(βG), invokes FSum
SMPC(x1, ..., xn) :=

∑n
i=1 xi providing xi as its private input. Each

Pi receives Jαβ ·GKi
• ∀i ∈ [N], Pi provides (Jαβ ·GKi,Hash(αG),Hash(βG)) as inputs and invokes FKDF

SMPC to derive TLS handshake keys
hk = (hk1, hk2), where Pi holds (Jhk1Ki, Jhk2Ki).

On receiving ServerCert, ServerCertVerify, ServerFinished from S
• ∀i ∈ [N], Pi reconstructs the handshake keys hk, follows the TLS 1.3 protocol to verify ServerCert,
ServerCertVerify, and ServerFinished.

• ∀i ∈ [N], Pi invokes FSign
SMPC to produce ClientCertVerify, FHMAC

SMPC to produce the ClientFinished message, and
send it to S.

• ∀i ∈ [N], Pi provides Jαβ ·GKi as inputs and invokes FKDF
SMPC to derive session keys sk := (sk1, sk2) and IVs, where

Pi holds (Jsk1Ki, Jsk2Ki).
During data exchange:

• ∀i ∈ [N], Pi provides (Jsk1Ki, Jsk2Ki, JmsgK)i as inputs and invokes FAES−GCM−128
SMPC , which outputs m :=

(Enc(msg),MAC(msg)) in plaintext to P1.
• P1 sends m to S.

Fig. 6: The TLS-in-SMPC protocol.

protocol reveals the server handshake key and IV to all the
MPCAuth servers after they have received and acknowledged
the handshake messages. This has benefits for both simplicity
and efficiency as TLS-in-SMPC does not need to validate a
certificate inside SMPC, which would be expensive.

Informally, revealing the server handshake key is secure
because these keys are designed only to hide the server’s
identity [31], which is a new property of TLS 1.3 that does not
exist in TLS 1.2. This property is unnecessary in our setting
in which the identity of the unmodified TLS server is known.

Several works have formally studied this problem and show
that revealing the keys does not affect other guarantees of TLS
[44, 89, 38, 59]. Interested readers can refer to these works
for more information.

B. Ideal functionalities

Ideal functionality. In the ideal world, we model the TLS
interaction with the unmodified, trusted TLS server as an
ideal functionality FTLS. We adopt the workflow of the
standard secure message transmission (SMT) functionality
FSMT defined in [51].

Given the input x⃗, FTLS runs the TLS client endpoint, which
connects to the TLS server, and allows the adversary to be a
man-in-the-middle attacker by revealing the messages in the
connection to the attacker and allowing the attacker to modify
such messages. In more detail,

1) To start, all the N servers must first provide their parts
of the TLS client input x⃗ to FTLS.

2) For each session id sid, FTLS launches the TLS client
with input x⃗ and establishes the connection between the
TLS client and the TLS server.

3) The adversary can ask FTLS to proceed to the next TLS
message by sending a (Proceed, sid) message. Then,
FTLS generates the next message by continuing the TLS
protocol and sends this message to the adversary for
examination. The message is in the format of a backdoor
message (Sent, sid, S,R,m) where S and R denote the
sender and receiver. When the adversary replies with
(ok, sid,m′, R′), FTLS sends out this message m′ to the
receiver R′.

4) The adversary can send (GetHandshakeKeys, sid) to
FTLS for the server handshake key and IV after the
server’s handshake response has been delivered. This is
secure as discussed in Section B-D. FTLS responds with
(reveal, sid, skey, siv, ckey, civ) where skey and siv
are the server handshake key and IV, and ckey and civ
are the client handshake key and IV.

5) If any one of the TLS client and server exits, either because
there is an error due to invalid messages or because the
TLS session ends normally, FTLS considers the session
with session ID sid ended and no longer handles requests

16

for this sid.
6) FTLS ignores other inputs and messages.

Multiparty computation functionality. In the hybrid model,
we abstract SPDZ and AG-MPC as an ideal functionality
FSMPC, which provides the functionality of multiparty computa-
tion with abort. We require FSMPC to be reactive, meaning that
it can take some input and reveal some output midway through
execution, as specified in the function f being computed. A
reactive SMPC can be constructed from a non-reactive SMPC
scheme by secret-sharing the internal state among the N parties
in a non-malleable manner, as discussed in [73]. FSMPC works
as follows:

1) For each session sid, FSMPC waits for party Pi to send
(input, sid, i, xi, f), in which sid is the session ID, i is
the party ID, xi is the party’s input, and f is the function
to be executed.

2) Once FSMPC receives all the N inputs, it checks if all
parties agree on the same f , if so, it computes the
function f(x1, x2, ..., xN) → (y1, y2, ..., yN) and sends
(output, sid, i, yi) to party Pi. Otherwise, it terminates
this session and sends (abort, sid) to all the N parties.

3) If FSMPC receives (Abort, sid) from any of the N parties,
it sends (abort, sid) to all the N parties.

4) FSMPC ignores other inputs and messages.

Restricted programmable random oracle. We use commit-
ments in Section III-C to ensure that in Diffie-Hellman key
exchange, the challenge α · G is a random element. This is
difficult to do without commitments because the adversary can
control up to N − 1 parties to intentionally affect the result
of α · G =

∑N
i=1 αi · G. In our security proof, we leverage

a restricted programmable random oracle [49, 52], which is
described as follows:

1) FrpRO maintains an initially empty list of (m,h) for each
session, identified by session ID sid, where m is the
message, and h is the digest.

2) Any party can send a query message (Query, sid,m) to
FrpRO to ask for the digest of message m. If there exists
h such that (m,h) is already in the list for session sid,
FrpRO returns (result, sid,m, h) to this party. Otherwise,
it samples h from random, stores (m,h) in the list for
sid, and returns (result, sid,m, h).

3) Both the simulator S and the real-world adversary A can
send a message (Program,m, h) to FrpRO to program the
random oracle at an unspecified point h, meaning that
there does not exist m such that (m,h) is on the list.

4) In the real world, all the parties can check if a hash is
programmed, which means that if A programs a point,
other parties would discover. However, in the ideal world,
only S can perform such a check, and thus S can forge
the adversary’s state as if no point had been programmed.

C. Simulator
We now describe the simulator S . Without loss of generality,

we assume the attacker compromises exactly N − 1 servers

and does not abort the protocol, and we also assume that A
does not program the random oracle, since in the real world,
any parties can detect that and can then abort. We now follow
the TLS workflow to do simulation. As follows, we use I to
denote the set of identifiers of the compromised servers.

1) Simulator S provides the inputs of the compromised
servers to FTLS, which would start the TLS protocol.

2) S lets FTLS proceed in the TLS protocol and obtains the
ClientHello message, which contains a random α ·G.
Now, S simulates the distributed generation of α ·G as
follows:

a) S samples a random h in the digest domain, pretends
that it is the honest party’s commitment, and generates
the commitments of αi ·G for i ∈ I .

b) S sends (Program, r||(α · G −
∑

i∈I αi · G), h) to
FrpRO, where r is the randomness used for making
a commitment, and || is concatenation. As a result, S
can open the commitment h to be α ·G−

∑
i∈I αi ·G.

c) S continues with the TLS-in-SMPC protocol, in which
the N parties open the commitments and construct α·G
as the client challenge.

3) S lets FTLS proceed in the TLS protocol and obtains
the messages from ServerHello to ClientFinished,
which contain β · G and ciphertexts of the server’s
certificate, the server’s signature of β ·G, and the server
verification data. Now S needs to simulate the rest of the
key exchange.

a) S sends (GetHandshakeKeys, sid) to FTLS to obtain
the server/client handshake key and IV.

b) S simulates the computation of the handshake keys
in SMPC by pretending that the SMPC output is the
handshake keys.

c) S then simulates the remaining operations of key
exchange in SMPC, which checks the server verification
data and produces the client verification data.

4) S simulates the message encryption and decryption of
the application messages by simply pretending the SMPC
output is exactly the ciphertexts taken from actual TLS
messages, also provided by FTLS.

5) In the end, S outputs whatever the adversary A would
output in the real world.

D. Proof of indistinguishability

We now argue that the two worlds’ outputs are computation-
ally indistinguishable. The outputs are almost identical, so we
only need to discuss the differences.

1) In distributed generation of α ·G, the only difference in
the simulated output compared with Π’s is that the honest
party chooses its share as α ·G−

∑
i∈I αiG and uses a

programmed hash value h for commitment. Since α ·G
is sampled from random by the TLS client inside FTLS,
it has the same distribution as the αi ·G sampled by an
honest party. The properties of restricted programmable
random oracle FrpRO show that no parties can detect that
h has been programmed.

17

2) For the remaining operations, the main difference is that
the SMPC is simulated without the honest party’s secret
(in the real-world protocol Π, such secret is a share of
the internal SMPC state that contains the TLS session
keys). The properties of SMPC show that such simulation
is computationally indistinguishable.

As a result, we have the following theorem.

Theorem B.1. Assuming secure multiparty computation, ran-
dom oracle, and other standard cryptographic assumptions,
the TLS-in-SMPC protocol Π with N parties securely realizes
the TLS client ideal functionality FTLS in the presence of a
malicious attacker that statically compromises up to N −1 out
of the N parties.

C SECURITY OF MPCAUTH’S AUTHENTICATION
PROTOCOLS

In this section, we formalize the security goals of MPCAuth’s
authentication protocols, and provide proof sketches for each
protocol.

Definition C.1 (N -wise authentication protocol). An N -
wise authentication protocol Π can be characterized by two
phases: the enrollment phase and the authentication phase. The
enrollment phase can be characterized by the following set of
algorithms:

• CreateProfile → (id, {profilei}i∈[N]): The client gener-
ates an identifier and a set of authentication profiles. (e.g.
shares of email address/SMS/passcode), and send it to the
servers.

• Enrolli(id, profilei) → {0, 1}: Each server takes in the
client’s id and profiles, and stores them locally.

The authentication phase can be characterized by the
following sets of algorithms:

• GenerateChallengei(id, profilei) → ci: Each server Pi

generates a random challenge and sends it to the client.
• Prove(id, w, {ci}i∈[N]) → {π1, π2, ..., πn}: Client id

takes her credential w, and the set of servers’ challenges
{ci}i∈[N], outputs a set of N proofs where πi is for Pi.

• Verifyi(id, ci, πi, profilei) → {0, 1}: Server Pi takes the
client’s id, the proof πi, the challenge ci it generates, and
outputs 1 if it accepts and 0 if it rejects.

The protocol considers the client authenticated if
Verifyi(id, ci, πi, profilei)→ 1 for all i ∈ [N].

Definition C.2 (Security of an authentication protocol). A
N -wise authentication protocol Π is said to be secure if it
satisfies the following properties:

• Correctness: Π is correct if ∀i ∈ [N], an honest
client id with credential w can produce proof πi that
Verifyi(id, ci, πi, profilei) outputs 1 with overwhelming
probability.

• Soundness: Π is sound if, for a malicious attacker without
credential w, there is at least one party i such that
Verifyi(id, ci, π, profilei) outputs 0 with overwhelming
probability.

Formally, we model the soundness of MPCAuth’s authen-
tication protocol as a security game. In the game, there is
an attacker, an honest user, and N servers labeled as P1 to
PN . The honest user establishes a persistent TLS connection
(modeled as an ideal functionality) with each server. The
attacker compromises N − 1 servers and can observe and
modify all compromised servers’ inputs, states, and network
traffic. For email/SMS, there is an additional TLS server that
the honest user and the N servers talk to. We assume this TLS
server is trusted and uncompromised.

The attacker can ask the honest user to issue commands.
However, the attacker cannot see the states of the honest user
and the honest servers (P1 and the TLS server), as well as
the network traffic between them. The security game goes as
follows:

• The attacker chooses an authentication factor that it wants
to attack. The attacker specifies the username, and lets
the honest user runs MPCAuth’s protocol to enroll in that
factor using that username.

• The attacker can adaptively issue O(poly(λ)) commands
asking the honest user to authenticate using MPCAuth’s
protocol.

• Finally, the attacker uses the same username to authen-
ticate to the N servers. The attacker wins the game by
convincing all servers to output 1 with non-negligible
probability.

Without loss of generality, we assume that P1 is the
uncompromised honest server. Since the attacker controls
servers P2, ...,PN and can simply let all of them output
Verifyi(id, ci, πi, profilei) = 1. Soundness holds if and only
if server P1 rejects with overwhelming probability. Therefore,
the attacker wins iff Verify1(id, c1, π1, profile1) = 1 with non-
negligible probability.

A. Proof sketch for the security of Πemail and ΠSMS

We now prove the security of Πemail and ΠSMS. as referenced
in Section IV-A and Section IV-B. We assume that the TLS-in-
SMPC protocol securely realized the ideal functionality FTLS.
As modeled in FTLS, we assume that the TLS server that the
N servers talk to is trusted and uncompromised. The attacker
does not control this server and cannot see the network traffic
between this server and the honest user. We also assume the
attacker cannot access the honest user’s email account or SMS
messages, which we model as the honest user’s internal states.

In both protocols, the credential is the one-time passcode
s =

⊕N
i si, and the proof for Pi is PRF(s, i). The email/SMS

passcode protocol can be modeled as follows: The N servers
use TLS-in-SMPC protocol to send the passcode s to the
TLS server, and the TLS server forwards s to the honest user
via a secure TLS channel. Given our above assumptions, the
attacker cannot observe the passcode s. The attacker can see
the challenges s2, ...sN and PRF(s, 2), ...,PRF(s, i) from the
compromised servers. The honest server P1 accepts if and only
if the attacker can produce PRF(s, 1).

18

Correctness. The protocol is correct by construction. An
honest client with credential s is able to produce a proof
πi = PRF(s, i) = π′

i for Pi.

Soundness. To break soundness, the attacker needs to produce
PRF(s, 1) and send it to P1. As stated above, the attacker
cannot observe the passcode s. By the definition of PRF,
π′
i = PRF(s, i) is computationally indistinguishable to a

random string {0, 1}O(λ) for someone who does not know
s. PRF(s, 2), ...,PRF(s, i) therefore looks uniformly random
to the attacker. The probability of the attacker producing the
uniform random string PRF(s, 1) is negligible.

B. Proof sketch for the security of ΠU2F

In protocol ΠU2F, the credential is the U2F secret key sk, the
challenge from Pi is si, and the proof for Pi is the tuple πi =
(root, σroot, π

Merkle
i , cmi, ri). During enrollment, the attacker

observes pk. During authentication, the attacker observes all
proof tuples except for P1’s tuple π1. Therefore, it does not
have access to s1.

Correctness. An honest client with credential sk receives
{si}i∈[N]. It is able to commit to all si, create a Merkle tree
over {cmi}i∈[N], and produce a valid signature over its root
hash with sk.

Soundness. To break soundness, the attacker needs to produce
the tuple π1 = (root, σroot, π

Merkle
1 , cm1, r1) to make P1

accepts, who performs the following three checks:
1) The signature σroot is over the root hash root. The attacker

sees both values from one of the compromised servers,
so it can forward them to P1.

2) πMerkle
1 is a correct Merkle inclusion proof for leaf cm1.

The attacker can reconstruct the Merkle tree and produce
this proof.

3) cm1 = Commit(s1, r1). The attacker observes cm1, but
does not have access to s1 and r1. The hiding property
of the commitment scheme guarantees that cm1 does not
leak any information about s1. The binding property of
the commitment scheme guarantees the attacker cannot
forge a different cm′ ̸= cm1 that makes the honest server
accept. Soundness holds as a result.

C. Proof sketch for the security of ΠSQ

In protocol ΠSQ, the credential is the security question and
answer (q, a), and the proof for Pi is (JHash(q)K′i, JHash(a)K′i).
We model the private comparison protocol as a secure multi-
party computation protocol implemented via AGMPC [83]. We
model it as an ideal functionality Fcomparison, which is special
case of FSMPC.

Correctness. (Hash(q),Hash(a)) is stored on the N servers
as secret shares. A client holding the credential (q, a) is going
to produce secret shares of the same hash (Hash(q),Hash(a))
so that the private comparison protocol outputs 1.

Soundness. The private comparison protocol, modeled as an
ideal functionality Fcomparison, guarantees that P1 accepts iff the
attacker can produce a tuple that equals (Hash(q),Hash(a)).

During enrollment and authentication, the attacker ob-
serves (JHash(q)K′i, JHash(a)K′i) and (JHash(q)Ki, JHash(a)Ki)
for 2 ≤ i ≤ N . The attacker cannot reconstruct
(Hash(q),Hash(a)) given what it observes. The probabil-
ity of the attacker producing the uniformly random tuple
(Hash(q),Hash(a)) is negligible.

D. Proof sketch for the security of ΠBiometrics

In protocol ΠSQ, the credential is the biometric info x, the
authentication profile for Pi is the biometric feature share Jy′K.
The proof for Pi is the share of another biometric feature
vector Jy′K, where y′ = M(x′). We assume for the same user,
the model M always outputs feature vectors close to each
other (below the threshold). And for different users, the model
always output feature vectors far from each other (above the
threshold). The l2 distance protocol is a secure multi-party
computation protocol modeled as an ideal functionality Fl2 . It
is a special case of FSMPC.

Correctness. Given the assumption, an honest user always
produces feature vectors y and y′ with a l2 distance below
the threshold. And Fl2 guarantees correct execution of the l2
distance check.

Soundness. The private l2 distance check, modeled as an ideal
functionality Fl2 , guarantees that P1 accepts iff the attacker
can produce y′ close to y. Given our assumption, an attacker
that does not have biometric info x cannot produce a feature
vector y′ = M(x) that is close to y from the model M , nor
can it reconstruct the feature vector y by compromising N − 1
servers. Soundness holds as a result.

As a result, we have the following theorem:

Theorem C.3. Assuming secure multiparty computation for
private comparison and private l2 distance test, random oracle,
TLS-in-SMPC, and other standard cryptographic assump-
tions are securely realized, all MPCAuth’s protocols (Πemail,
ΠSMS,ΠU2F,ΠSQ,ΠBiometrics) are secure in the presence of a
malicious attacker that statically compromises up to N −1 out
of the N parties.

19

	Introduction
	MPCAuth
	Summary of techniques
	Summary of contributions

	System Overview
	System setup and trust model
	Practical use cases for MPCAuth
	Threat model
	Security goals
	Hiding authentication profiles

	Building Block: TLS in SMPC
	Overview
	Notations and definitions
	TLS handshake in SMPC
	Data exchange in SMPC.

	MPCAuth Authentication
	MPCAuth email
	MPCAuth SMS
	MPCAuth U2F
	MPCAuth Biometrics
	MPCAuth security questions

	Implementation and Evaluation
	Implementation details.
	Experiment setup
	TLS-in-SMPC's performance
	MPCAuth's performance
	Comparisons

	Discussion
	Related work
	Conclusion
	References
	 A: Cryptographic building blocks
	 B: Security proof of TLS-in-SMPC
	Overview
	Ideal functionalities
	Simulator
	Proof of indistinguishability

	 C: Security of MPCAuth's authentication protocols
	Proof sketch for the security of email and SMS
	Proof sketch for the security of U2F
	Proof sketch for the security of SQ
	Proof sketch for the security of Biometrics

