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Abstract. Single Secret Leader Election (SSLE) protocols allow a set of users to elect a leader among
them so that the identity of the winner remains secret until she decides to reveal herself. This notion
was formalized and implemented in a recent result by Boneh, et al. (ACM Advances on Financial
Technology 2020) and finds important applications in the area of Proof of Stake blockchains.
In this paper we propose new solutions to the problem that advance the state of the art both from a
theoretical and a practical perspective. On the theoretical front, we propose a definition of SSLE in
the universal composability framework. We believe this to be the right setting for highly concurrent
contexts such as those of many blockchain-related applications. Next, we propose a UC-realization of
SSLE from public key encryption with keyword search (PEKS) and based on the ability of distributing
the PEKS key generation and encryption algorithms. Finally, we present an efficient MPC-friendly
PEKS that allows us to efficiently instantiate the abstract scheme.
Our concrete construction compares favorably with previous work (both in terms of computational
costs and in terms of overall communication overhead) while guaranteeing much stronger composability
guarantees.
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1 Introduction

Leader Election protocols are of fundamental importance to realize consensus in distributed systems.
The rise of blockchain and its numerous applications brought renewed interest on this topic and
motivated the need to consider consensus protocols that also provide some secrecy guarantees.
This is the case, for example, of leader elections in the context Proof of Stake blockchains (e.g.,
[AMM18, GHM+17, KKKZ19, GOT19]) where one may wish to randomly select a secret leader,
i.e., a leader that remains hidden until she reveals herself. In these contexts, leader-secrecy allows
to protect against several attacks that would otherwise compromise the liveness of the blockchain.
Indeed, if a malicious party could know the identity of a future leader, he could try to deny the
leader’s access to the network (using a denial of service attack, for instance) before the latter
publishes her block, and this would affect, at least temporarily, the liveness and finality of the
system. An adversary could also try to bribe a potential leader to influence the set of transactions
that are going to be published.

Many existing solutions address this question by selecting a few potential leaders in expectation
(e.g. [BGM16, BPS16]). This means that, for every given round, on expectation a single block leader
is elected. Unfortunately, however, this also means that even many (or zero) leaders can be elected
in any round.

This state of affairs led to the quest for an election protocol that secretly produces a single leader
[Lab19], i.e., where exactly one single candidate is able to prove that she won the election. We note
here that, although in principle this problem could be solved using general multiparty computation,
the need of an efficient solution rules this option out.

The question was formally addressed in a recent work of Boneh et al. [BEHG20] who put forward
the notion of Single Secret Leader Election (SSLE, from now on). Informally, an SSLE scheme is
a distributed protocol that secretly elects a leader and satisfies uniqueness (exactly one leader is
elected), fairness (all participants have the same probability of becoming the leader) and unpre-
dictability (if the adversary does not win the election, she should not be able to guess the leader
better than at random). Boneh et al. [BEHG20] also proposed three constructions meeting this
notion that are based on different approaches and that achieve different efficiency (and security)
tradeoffs (cf. Table 1 for a summary). Their first SSLE scheme relies on indistinguishability obfus-
cation (iO) [GGH+13] and its main advantage is that every election involves a single constant-size
message from the winner. At the same time, given the status of iO realizations, this SSLE proto-
col is of very limited (if any) practical interest. The second construction in [BEHG20] builds on
Threshold Fully homomorphic Encryption (TFHE) [BGG+18] and is asymptotically less efficient
than the iO-based one: every election needs O(t) communication (where t is a bound on the number
of malicious users tolerated by the system) to partially decrypt a publicly computable ciphertext;
after this, the winner can prove her victory. A nice aspect of the TFHE-based solution is that it
actually requires only a leveled scheme for circuits that for, say, N = 216 participants, can be of
depth as little as 10. On the other hand, other aspects of this solution makes it far from practi-
cal, e.g., it requires large O(N logN) secret key shares, and no concrete distributed setup (for the
TFHE scheme) is explicitly provided in [BGG+18]. So to the best of our knowledge one would have
to rely on general multiparty computation techniques to achieve it. The third SSLE construction
in [BEHG20] is based on shuffling and the decisional Diffie-Hellman assumption. Asymptotically,
it performs worse than the other two solutions: every new election requires a freshly shuffled list

3



Election
SSLE Setup State Comm. Rounds

iO trusted O(N) O(1) 0
TFHE trusted O(N) O(t) 1
Shuffle-N – O(N) O(N) 1

Shuffle-
√
N – O(N) O(

√
N) 1

Ours (worst) trusted O(λ) O(t) κ+ 3
Ours (optim.) trusted O(λ) O(κ logN) 4

Table 1: Comparison between the SSLE solutions from [BEHG20] and the SSLE of this work. In our
case, κ is a statistical security parameter, which gives good enough security already for κ ≈ logN .
Shuffle-

√
N achieves a weak unpredictability notion.

of N Diffie-Hellman pairs4 (along with a NIZK of shuffle). The authors also describe a lightweight
variant whose communication costs are O(

√
N), but the tradeoff here is a scheme with significantly

lower security guarantees, as the secret leader is selected in a public subset of only
√
N users.

We note that all the three SSLE schemes of [BEHG20] require users to maintain an O(N)-
long state information in order to perform and verify elections, and that the iO- and TFHE-based
SSLE need a trusted setup. The latter must be realized with a distributed protocol and should
be in principle refreshed when new users join the system. On the other hand, the shuffle-based
solution is essentially setup-free and thus can handle more easily users that join and leave the
system dynamically.

Beyond efficiency considerations, another fundamental limitation of the constructions above is
that they are proved secure with respect to a (stand-alone) game-based definition which makes their
actual security in concurrent settings unclear. This is problematic in practice as it is hardly the case
that distributed consensus protocols are executed stand-alone.

Given this state of affairs, the main question that motivates our work is:
is it possible to build an SSLE protocol where the communication costs of an election are sub-linear
in the number of players and that achieves good practical performances while also realizing strong
composability guarantees?

1.1 Our contribution

In this paper we propose a new SSLE solution that answers the above question in the affirmative.
Our first contribution is the proposal of a new definition of SSLE in the universal composability
model [Can01] (see Section 3). We believe this to be the right notion to model security in the highly
distributed, often concurrent, blockchain-like applications where electing a leader is required. Our
new definition implies the game-based definition of Boneh et al. [BEHG20], but, needless to say, the
converse is not true.

As a second contribution, we propose a UC-secure construction of SSLE. Our protocol is based
on public key encryption with keyword search (PEKS) [BDOP04] and performs an election with
communication O(κ logN) in an optimistic scenario where a subset of users correctly collaborate in

4 Precisely, when the winner no longer wants to participate in future elections, there is no need to shuffle for the
next election; we ignore this special case in our analysis.
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the protocol (where κ is a statistical security parameter that can be as low as 10), and O(t) in the
worst case.

An overview of our SSLE protocol. Let us describe our protocol and its efficiency in slightly
more detail. PEKS is a notion of functional encryption [BSW11, O’N10] in which given a ciphertext
c encrypting a keyword w and secret key sk associated to another keyword w′, the decryption allows
one to learn if w = w′ and nothing more. Our SSLE protocol is based on the simple idea that for
every election a small committee of users generates a ciphertext c that encrypts a random keyword
j ∈ {1, . . . , N}, every user is given a secret key ski associated to an integer i, and can claim victory
by giving a NIZK proof that she can decrypt the election’s ciphertext.

More specifically, our protocol consists of three phases: (1) a setup in which the users run an
MPC protocol to generate the public key of the PEKS and distribute its secret keys, (2) an election’s
preprocessing in which a randomly sampled committee of κ players generates a commitment to the
election’s ciphertext in a distributed way, and (3) the election online phase in which the commitment
is opened by the committee and the winner claims victory.

We formalize this approach in a generic SSLE protocol that we prove UC-secure assuming ideal
functionalities for the setup and encryption algorithms of any PEKS (see Section 4). Our main
technical contribution, however is to design an efficient instantiation of this blueprint, by showing
an “MPC-friendly” PEKS and by proposing efficient protocols for the setup and election phases,
which correspond to distributed versions of the PEKS key generation and encryption algorithms
respectively. To devise such a PEKS we build on (a modified variant of) the functional encryption
for orthogonality (OFE) scheme recently proposed by Wee [Wee17] and on a novel technique so that
the PEKS can test keywords equality mod N albeit the message space is over a large field Fq. We
refer to Section 5.1 for an informal overview of our techniques and the technical challenges to be
overcome.

Analysis and comparison with previous SSLE protocols. In an optimistic scenario where all
the committee members send correct messages, our election’s preprocessing completes in 3 rounds in
which every player in the committee sends O(logN) group elements. In the worst case, preprocessing
can additionally take about κ rounds in which, roughly speaking, a faulty player is excluded and
the protocol is restarted. The online phase instead requires one message from every committee
member to open the committed ciphertext. In the bad case that some player does not collaborate
in this opening, the protocol resorts to a threshold decryption in which t players send partial
decryptions of the commitment, where t is the minimum number of honest players that is assumed
(e.g., t = N/2 + 1).

In summary, our SSLE protocol achieves, in the worst case, similar asymptotic efficiency as the
TFHE-based construction of [BEHG20] (a setup protocol for N players, and an O(t) election’s cost),
but significantly better concrete costs thanks to our efficient realization. In the optimistic scenario,
our protocol performs an election with a communication of O(κ logN) group elements, where κ can
be as low as logN . For instance, for an instantiation with N = 214 participants (as suggested in
[Lab19]), the election requires a total of 47 kB in the offline phase and 2 kB in the online one. A
downside of our protocol compared to the TFHE-based one5 is that we need the additional 3 rounds
of preprocessing. However we stress that these can be performed offline, e.g., while performing other
elections. Furthermore, and perhaps more interestingly, our preprocessing can be used to prepare in

5 The TFHE solution of [BEHG20] requires one round of partial decryption followed by another one to claim victory.
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parallel a batch of any size of election’s ciphertexts. This way these 3 rounds can be easily amortized
over many elections.

Compared to the shuffle-based solution of [BEHG20], our election’s protocol requires much less
communication in the optimistic scenario: O(κ logN) offline and O(κ) online vs. O(N) in [BEHG20].
This comes at the price of a somewhat heavy setup to generate the secret keys of all the users which,
despite doable in 5 rounds, requires players to send roughly 6 kB to every other user. If we compare
the total communication cost for 1000 elections, our protocol (including the setup) is still competitive
as it entails a total communication sent/received by each player of 80 MB, in contrast to 1.1 GB
in [BEHG20]. On another note, in our case the registration of new users is more convoluted as we
need to perform a distributed key generation whenever a new user wants to join. To mitigate the
problem, we propose a locally-static/globally-dynamic approach as follows. Informally, we assume
that the life of the system is divided in epochs. In each epoch, the system is assumed to be static,
parties can leave but no new user can join. We let new users join the system by including them
in the set of participants for a future time period. This way, some (say λ), randomly chosen, users
of current epoch T can setup the system for users of subsequent time periods without explicitly
requiring an extra setup phase.

In summary, the main contribution of our solution is to propose the first efficient SSLE protocol
with sub-linear election costs. We believe that realizing a practical UC-secure SSLE with a setup-
free and dynamic registration and sub-linear election’s costs is an interesting problem left for future
work.

A word on the optimistic scenario. Finally, we would like to justify why it can be reasonable to
assume that our protocol is executed in the optimistic scenario. An important feature of our protocol
is that, when a malicious behavior occurs, we can identify misbehaving parties exactly. This allows
us to consider the possibility of imposing financial penalties to bad players. Such punishments
would then incentivize honest behavior when assuming that players are rational (and penalties are
sufficiently high).

This approach was put forward in [ADMM14a] and [BK14] and it, essentially, requires partici-
pants to deposit (on the blockchain) a collateral associated to their key. If a party is caught cheating,
the collateral is then distributed among the (honest) ones. Such countermeasures make sense in the
contexts where SSLE is currently needed (e.g. Proof of stake blockchains) and make the assumption
of honest behavior more acceptable in practice than in usual MPC scenarios.

1.2 Other related work

The problem of extending proof of stake systems to consider privacy was considered, among others,
in [GOT19] and in [KKKZ19]. Leader election protocols were also considered by Algorand [GHM+17]
and Fantomette [AMM18]. There the idea is to first identify few potential leaders (via a VRF) that
then reveal themselves in order and choose the winner via some simple tie break method (e.g. lowest
VRF output wins). The approach is efficient but has the drawback that the elected leader does not
know she was elected until everybody else published their value. Moreover, implicitly requires all
nodes to be able to see the winner’s output: users not getting this information might incorrectly
think that another leader was elected (causing the chain to fork). We stress that this cannot happen
in our setting.

The idea of imposing financial punishments to cheating users was also considered, generalized
and improved (mainly in terms of amount of interaction required) in [KMB15, KB16, KZZ16]. In
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[ADMM14a, ADMM14b, KMB15] authors considered the notion of MPC with cash distribution,
where inputs and outputs of players consists of both data and money. Finally, Baum et al. [BDD20]
recently proposed a modular approach to the problem called Insured MPC.

2 Preliminaries

2.1 Notation

Throughout this paper λ ∈ N is the main security parameter, and we say that a function ε(λ) is
negligible if it vanishes faster than the inverse of any polynomial in λ. We also use κ for a statistical
security parameter. We denote [n] = {0, . . . , n − 1}. Bold font (a,u,w, . . .) is reserved for vectors
of field or group elements, while calligraphic font for Turing machines (A,B,D, . . .). x←$ S means
that x is sampled uniformly and with fresh randomness from S. N is the number of players and t
the threshold parameter.

We denote with G(1λ) a bilinear group generator, that is an algorithm which takes as input the se-
curity parameter and outputs the description of a bilinear group setting bg = (q,G1,G2,GT , e, g1, g2),
where G1, G2 and GT are groups of the same prime order q > 2λ, g1 ∈ G1 and g2 ∈ G2 are two
generators, and e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear map. We
use gT = e(g1, g2) to denote a canonical generator of GT . When G1 = G2, the groups are called
symmetric; otherwise they are called asymmetric. In our work we use Type-III asymmetric bilinear
groups [GPS08] in which there is no known efficiently computable isomorphism between G1 and G2.

We use Fq to denote the finite field of prime cardinality q. Given a vector a = (ai)
n
i=1 ∈ Fnq

and a group element g we denote [a]g = (ga1 , . . . , gan). When the base is g1, g2 or gT we replace
the above notation with [a]1, [a]2 and [a]T respectively. Operations with vectors in Gn are entry-
wise, i.e., for g,h ∈ Gn, g · h = (gi · hi)ni=1, g

a = (gai )ni=1. Pairings are the only exception where
e(g,h) = e(g1, h1) · · · e(gn, hn) for g ∈ Gn

1 and h ∈ Gn
2 . Similarly ga = ga1

1 · . . . · gann .

2.2 SXDH assumption

In our efficient construction we rely on the SXDH assumption in bilinear groups, which informally
states that the classical DDH assumption holds in both G1 and G2. More formally,

Definition 1 (SXDH assumption). Let G be a bilinear group generator. We say that the SXDH
assumption holds for G if for every PPT adversary A, and every s ∈ {1, 2} there exists a negligible
function ε such that:

|Pr [A(bg, [a]s, [b]s, [c]s) = 1]− Pr [A(bg, [a]s, [b]s, [ab]s) = 1]| ≤ ε(λ)

where the probabilities are over the random choice of a, b, c←$ Fq and bg = (q,G1,G2,GT , g1, g2)←$

G(1λ).

When the above assumption is considered in only one group Gs, for either s = 1 or s = 2, we
refer to it as DDH in Gs. We call DDH0 a game in which A received the first distribution and
DDH1 a game in which he receives the second one. In the paper we also use an extension of DDH
for vectors of n elements, called DDHn, which briefly says that it is hard to distinguish the tuple
([a1]s , . . . , [an]s , [b]s , [c1]s , . . . , [cn]s), denoted as DDH0

n, from the tuple ([a1]s , . . . , [an]s , [b]s , [a1b]s , . . . , [anb]s)
denoted as DDH1

n, for random ai, b, ci ∈ Fq. We note that DDHn can be reduced to DDH in the
same group [NR97].
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2.3 Functional Encryption

We recall the definition of Functional Encryption [BSW11, O’N10].

Definition 2. A functionality F is a family of functions F = {f : X → Y}, where X is the plaintext
space and Y is the output space.

Definition 3. A functional encryption scheme for a functionality F is a tuple (FE.Setup,
FE.Enc,FE.KeyGen,FE.Dec) of PPTalgorithms such that

– FE.Setup(1λ)
$−→(mpk,msk) generates the secret and public master keys.

– FE.Enc(m,mpk; r)→ c returns a ciphertext. The randomness r may be omitted.

– FE.KeyGen(f,msk)
$−→skf returns a key associated to the function f ∈ F.

– FE.Dec(c, f,mpk, skf )→ x a bit string.

The scheme is correct if for any m ∈ X and f ∈ F, sampled mpk,msk ←$ FE.Setup(1λ), c ←$

FE.Enc(m,mpk), skf ←$ FE.KeyGenmsk(f), then up to negligible probability FE.Dec(c, f,mpk, skf ) =
f(m).

We recall the definition of selective security for FE, which is sufficient for our application.

Definition 4. A functional encryption scheme achieves selective security if for any PPT algo-
rithm A there exists a negligible function ε such that

AdvASSFE(1λ) =

∣∣∣∣Pr
[
ExpASSFE(1λ) = 1

]
− 1

2

∣∣∣∣ ≤ ε(λ).

Selective Security Game ExpASSFE(1λ):
1 : m0,m1 ←$ A
2 : Sample b←$ {0, 1}, mpk,msk←$ FE.Setup(1λ), c←$ FE.Enc(mb,mpk)

3 : Send A ← mpk, c

4 : When A queries f , if f(m0) 6= f(m1) then A ←⊥. Otherwise:
5 : Compute skj ←$ FE.KeyGen(f,msk) and send A ← skf

6 : When A → b′: Return b ?
= b′

2.4 Functional Encryption for Keyword Search

In our work we make use of an FE scheme for the keyword search functionality [BDOP04, ABC+05]
Fks = {fy : X → {0, 1}}, where each function fy ∈ Fks is defined by an element y ∈ X and is such
that fy(x) returns 1 if x = y and 0 otherwise. More precisely, our realization works with the more
general functionality FB,Nks = {fy : [B] → {0, 1}} parametrized by two positive integers B,N (of
polynomial size), and such that each function fy ∈ FB,Nks is defined by an integer y ∈ [N ] and fy(x)

returns 1 if x = y mod N , and 0 otherwise. Note that Fks for X = Fq coincides with FB,Nks when
B = N = q.
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2.5 Our Realization of FE for Keyword Search

We realize our FE scheme for the keyword search functionality FB,Nks through a more powerful
scheme for the so-called orthogonality functionality [KSW08]. In the latter we have the message
space X = Fnq and each function fy is defined by a vector y ∈ Fnq and is such that fy(x) returns 1

when y>x = 0, and 0 otherwise.
A construction of FE for Fks from FE for orthogonality already appears in previous work

[KSW08]. In this paper, we tweak this construction in order to support the more general func-
tionality FB,Nks described earlier. We present our construction in Fig. 1. The idea is to use the FE for
orthogonality (with dimension n = 2) so that: encryption of a value x ∈ [B] is an encryption of the
vector x′ = (x,−1), and a key for y ∈ [N ] is a collection of keys for the vectors yi = (1, y + i ·N),
with i ∈ [k] where k is such that B ≤ k ·N . This way, decryption can be realized by testing if one
of the keys successfully decrypts, which is justified by the fact that, with these encodings, x = y
holds if y>i x

′ = 0 for an i ∈ [k].

KS.Setup(1λ, B,N):
(mpk′,msk′)←$ FE.Setup(1λ, 2)

Let k be the smallest integer s.t. B ≤ kN
return mpk = (mpk′, B,N, k),msk = msk′

KS.Enc(x,mpk):
return c←$ FE.Enc((x,−1),mpk)

KS.KeyGen(y,msk):
for i = 0 . . . k − 1 do

ski ←$ FE.KeyGen((1, y + i ·N),msk)

return sky ← (sk0, . . . , skk−1)

KS.Dec(c, y,mpk, sky):
if ∃i ∈ [k] : FE.Dec(c, y + iN,mpk, ski) = 1

return 1

else return 0

Fig. 1: Our FE for FB,Nks from FE for orthogonality

This scheme is secure under a weaker notion in which the adversary asks secret keys for keywords
y such that y 6= x0 mod N and y 6= x1 mod N . This restriction (which corresponds to the notion
of weak attribute-hiding) is sufficient in our application as we want to hide the winning index x
only from those users that will not win i.e. from those holding keys for y 6= x mod N .

2.6 Our Construction of FE for orthogonality

Among the known constructions of FE for orthogonality, we choose the pairing-based one proposed
in [Wee17] for its MPC-friendliness. However, as the construction of [Wee17] achieves a stronger
security definition for a larger functionality and under weaker assumptions than SXDH, we tailor
and simplify their solution to meet our goals in the most efficient way. Our variant is detailed in
Figure 2 while in the appendix, Section D.1 we prove the following theorem.

Proposition 1. The scheme in Fig. 2 is selective secure under the SXDH assumption

9



FE.Setup(1λ, n):
a,u,w1, . . . ,wn ←$ F2

q s. t. a>u 6= 0

mpk←
(
[a]1 ,

[
a>u

]
1
,
[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
msk← (wi)

n
i=1 and return (mpk,msk)

FE.KeyGen(y,msk):
r ←$ Fq \ {0}

return sky ←

[
n∑
i=1

ryiwi

]
2

, [r]2

FE.Dec(c,y,mpk, sky):
Parse c = (c0, c1, . . . , cn) with c0 ∈ G2

1

Parse sky = (d0, d1) with d0 ∈ G2
2

if d1 6= g0
2 return e(c0,d0)

?
= e(cy11 · · · cynn , d1)

FE.Enc(x,mpk):
s←$ Fq \ {0}

ci ←
[
sa>(xiu + wi)

]
1

return c←
(
[sa]1 , c1, . . . , cn

)
Fig. 2: Our simplified version of [Wee17] FE scheme for orthogonality

2.7 Non Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a tuple of PPT algorithms
(NIZK.G,NIZK.P,NIZK.V) where: NIZK.G on input the security parameter outputs a common ref-
erence string crs; NIZK.P(crs, x, w), given (x,w) ∈ R, outputs a proof π; NIZK.V(crs, x, π), given
statement x and proof π outputs 0 (reject) or 1 (accept). We say that a NIZK for R is correct
if for every crs ←$ NIZK.G(1λ) and all (x,w) ∈ R, NIZK.V (crs, x,NIZK.P(crs, x, w)) = 1 holds
with probability 1. Note that for ease of notation we usually omit the crs from the input. In our
protocols we require the NIZKs to satisfy the notions of weak simulation extractability [Sah99] and
zero-knowledge [FLS90].
About the first property, we remark that it only guarantees the extractability of proofs produced
by the adversary that are not equal to proofs previously observed. For this reason we make them
"unique" by adding implicitly a session ID to the statement. Concretely this means that in the
Fiat Shamir transform, the hash function evaluation needs to be salted with the unique session
ID. Finally we won’t detail how to handle these sid, in the same way we don’t detail it for ideal
functionalities invocations.

We now define three relations useful when dealing with group elements. The first one checks
whether two vectors g,h ∈ G1 are proportional, i.e., there exists a ∈ Fq s.t. ga = h. The second
one is a generalisation of the former and asks for the existence of solutions to the system AX = B
for A,B matrices given in the exponent. Finally the last one checks that an ElGamal ciphertext
encrypts a message lying in a given range.

RDDH = {((g,h), s) : g,h ∈ Gn, gs = h}

RLin =
{

(([A]1 , [B]1), X) : A ∈ Fk,mq , B ∈ Fk,nq , X ∈ Fm,nq , AX = B
}

RRng = {((g, h, k, gr, hrkm, [B]), (r,m)) : g, h, k ∈ G1, r ∈ Fq, m ∈ [B] ⊆ Fq}

Moreover, as players need to prove their ability to decrypt a given ciphertext, we introduce RDec

a relation based on the language Lkey that captures all the secret keys satisfying correctness. We
remark that this relation does not implies that sk was correctly generated.

Lkey = {(mpk, f, sk) : ∀x, r c = FE.Enc(x,mpk; r) ⇒
⇒ FE.Dec(c, f,mpk, sk) = f(x)}

10



RDec = {((mpk, c, f), sk) : (mpk, f, sk) ∈ Lkey, FE.Dec(c, f,mpk, sk) = 1}

To construct our protocols, we assume the existence of a NIZK argument for each of these
relations. We note that there exists a sigma protocol for each of these relations, and that Fiat-
Shamir based NIZKs from sigma protocols can be proven weakly-simulation-extractable [FKMV12]
based on a special property of sigma protocols called quasi-unique responses (which is essentially
satisfied by all Schnorr-like protocols where the third message is uniquely determined given the
previous two). For the relations RDDH and RLin, we can use generalised Schnorr sigma protocols
provided in [Mau15]. For the proof of range,6 we propose a variant of the folklore solution based on
binary decomposition, detailed in the appendix, Section B.2. We propose a sigma protocol for RDec

in appendix B.1.

2.8 UC model and Ideal Functionalities

The celebrated UC model, introduced in the seminal work of Ran Canetti [Can01], is a framework
that allows to prove security properties of a protocol that are preserved under composition. This
is done by comparing the protocol to an ideal functionality F defined to capture the intended
properties. A protocol securely realise F if there exists a simulator S such that the composition
F ◦S is indistinguishable from the real protocol. The distinguisher Z, also called the environment, is
granted the power to choose all parties input, learn their output and corrupt any number of parties
learning their internal state and influencing their behaviour. The challenge for S is therefore to
reproduce all the messages sent by uncorrupted parties in a consistent way with their input/output,
even though S cannot access it. To make this possible in non trivial cases, functionalities are often
designed to leak some information to S and allow the simulator to influence the result in some way.
Below we define three functionalities required in our construction: FCom to model commitments,
FCzk to model committed NIZK Proof of Knowledge and FDCT to model a random beacon.
The first one was introduced in [CF01]. Our definition slightly differ as all the recipients receive the
same value in the opening phase. This deviation is justified by our assumption of an authenticated
broadcast channel. The second one resemble the Fzk functionality introduced in [CF01] but the
interaction is divided in a commitment phase and in proof phase. In practice FCzk can be efficiently
realised sending a commitment to an online-extractable NIZK discussed in [Fis05]. The latter was
recently introduced in [CD20] and realised assuming a suboptimal honest majority under standard
assumptions.
All these functionalities can be realised more efficiently assuming a global random oracle in the GUC
model [CDPW07]. For instance in [CDG+18] the security of the folklore commitment H(m||r) is
proved assuming a restricted programmable and observable random oracle.

2.9 Single Secret Leader Election

In this section we present the notion of a single secret leader election scheme as formalized by Boneh
et al. [BEHG20] using a game-based approach. Informally, Boneh et al. define SSLE as a collection
of protocols that allow a set of users to setup the system, register to be eligible or quit, secretly elect
a single leader among registered users, claim victory and verify these claims. Security is captured
by three (game-base) properties uniqueness, fairness and unpredictability respectively implying that
6 For this, the most efficient choice to date may be an adaptation of Bulletproofs [BBB+18]; however, to the best of
our knowledge, this is not known to be simulation-sound.
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The Commitment Functionality FCom:

– Upon receiving (commit, sid,m) from Pi, if there is no record of (sid, i, ·)
store (sid, i,m) and broadcast (recepit, sid, i).

– Upon receiving (open, sid) from Pi if (sid, i,m) was previously stored
broadcast (decom, sid, i,m). Ignore further request on sid from Pi.

The Committed ZK Functionality FRCzk:

– Upon receiving (prove, sid, x, w) from Pi, if there is no record of (sid, i, ·)
and (x,w) ∈ R store (sid, i, x) and broadcast (recepit, sid, i).

– Upon receiving (open, sid) from Pi if (sid, i, x) was previously stored
broadcast (proof, sid, i, x). Ignore further request on sid from Pi.

The Coin Tossing Functionality FDCT:
Parametrized by a distribution D. Upon receiving (toss, sid) from all the
honest parties, sample x←$ D and broadcast (tossed, sid, x)

there is only one elected leader, that the election is not biased, and that the adversary has no
information on the winner until she reveals herself.

In the definitions given below we slightly depart from the syntax and games in [BEHG20]. First,
[BEHG20] assumes a protocol to verify the registration of a given user: we incorporate this step as
part of the registration protocol. Second, we add a revocation protocol that removes a player from
future elections: this change was already suggested by [BEHG20], but not fully formalized. The
third and more relevant difference is that, in contrast to the definitions in [BEHG20], our security
games further require that no sub protocol aborts, i.e. halts without returning any input. To justify
this addition we observe that without it, security is not guaranteed for protocols that restart a sub
procedure that has failed. To the best of our understanding, this assumption is de facto present
in the security proofs of all schemes in [BEHG20]. The fourth difference is that we consider two
threshold parameters to model the maximum number of users that the adversary can corrupt: t is a
threshold over the total number N of users in the system (i.e., the adversary can corrupt up to t out
of N users); ϑ(n) is instead a threshold function over the number of registered users in an election
(i.e., the adversary can corrupt < ϑ(n) users that are registered in the election). This change is
done to let the definition capture more constructions: indeed there may be schemes where one needs
honest majority over the total number of users (e.g., because they all hold a share of a global secret
key), and others that can be secure even when the adversary controls a majority of all the users,
but security of a given election still needs an honest majority of the users that participate in it.

Finally, we recall that our constructions satisfy a UC-secure notion of SSLE that we introduce
in the next section. We provide the following game-based notion for the sake of a comparison. As
shown in the next section, game-based SSLE is implied by UC-secure SSLE, while the converse may
not hold.
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Definition 5. A Secret Single Leader Election is a tuple of six protocols (SSLE.Setup, SSLE.Reg,
SSLE.Rev, SSLE.Elect, SSLE.Claim, SSLE.Vrf) executed among N users, such that

– SSLE.Setup returns pp to every player and spi to Pi.
– SSLE.Regpp(i) registers player Pi for future elections
– SSLE.Revpp(i) revokes the registration of player Pi from future elections
– SSLE.Electpp returns publicly a challenge c.
– SSLE.Claimpp(c, spi, i)→ π/ ⊥ returns publicly a proof to claim victory.
– SSLE.Vrfpp(c, π, i)→ 0/1 verifies the correctness of a claim.

Definition 6 (Uniqueness). An SSLE scheme satisfies (t, ϑ)-threshold uniqueness if for all
PPTA that corrupt T < t parties there exists a negligible function ε s.t.

Pr
[
ExpAUniq(1λ, N, ϑ) = 1

]
≤ ε(λ).

If t = N and ϑ = 1N (i.e. ϑ is the identity function) we simply say that the scheme satisfies
uniqueness.

Definition 7 (Fairness). An SSLE scheme satisfies (t, ϑ)-threshold η(κ)-fairness if for every
PPTalgorithm A that corrupts T < t players there exists a negligible function ε such that∣∣∣∣Pr

[
ExpAFair(1

λ, N, ϑ) = 1
]
− n− τ

n

∣∣∣∣ ≤ ε(λ) + η(κ).

where n and τ are defined in the experiment. If η(κ) = 0 we say that the scheme satisfies (t, ϑ)-
threshold fairness. Finally if T = N and ϑ = 1N we simply say that scheme satisfies fairness.

Definition 8 (Unpredictability). An SSLE scheme satisfies (t, ϑ)-threshold η(κ)-unpredictability
if for every PPTA that corrupts T < t parties there exists a negligible function ε such that

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1|HW
]
≤ 1

n− τ
+ ε(λ) + η(κ)

where HW is the event “∃i ∈ [N ] \M : SSLE.Vrf(cs, πi,s, i) = 1” requiring the existence of at least
one honest winner in the challenge phase.
If η(κ) = 0 the scheme satisfies (t, ϑ)-threshold unpredictability. If t = N and ϑ = 1N the scheme
is simply said to satisfy unpredictability.

3 Universally Composable SSLE

The game-based security definitions given in the previous section (i.e., definitions 6, 7, and 8) capture
the three essential properties an SSLE scheme should have. Yet, the security experiments do not
model scenarios where multiple executions of the setup/registration/election protocols may occur
concurrently. Moreover, as in most game-based notion, security is not guaranteed to hold when the
primitive is used in a more complex protocol.

For this reason, we propose a definition of SSLE in the universal composability model. To this
end, we define an ideal functionality FSSLE that performs elections and reveals the winners in an
ideal way. A UC-secure SSLE scheme is then any protocol that securely realizes FSSLE.
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Uniqueness Experiment ExpAUniq(1λ, N, t, ϑ):
1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Revpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 :
When A halts, return 1 if any protocol failed or if ∃s′ ∈ [s] and i, j ∈ [N ] distinct such
that SSLE.Vrfpp(ct, πi,s′ , i) = SSLE.Vrfpp(ct, πj,s′ , j) = 1

Fairness Experiment ExpAFair(1
λ, N, t, ϑ):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅.
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Revpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 : When chall← A and |R ∩M | < ϑ(|R|): Call n = |R| and τ = |R ∩M |;
9 : Execute SSLE.Electpp → cs

10 : πi,s ← SSLE.Claimpp(cs, spi, i) ∀i ∈ R \M

11 : Return 1 if no protocol fails and ∃i ∈ R \M such that SSLE.Vrfpp(cs, πi,s, i) = 1, 0
otherwise

At a high-level, FSSLE consists of the following commands. By using (register) and (revoke), a
user can register to and be removed from an election. When all the honest users call (elect, eid), a
new election with identifier eid is performed, that is the ideal functionality samples a winner index
j uniformly at random from the set of registered users. By using the (elect, eid) command, every
honest user is informed by the ideal functionality on whether she is the winner of the election eid.
Using (reveal, eid), an honest winning user instructs the ideal functionality to announce the election’s
outcome to everyone. Finally, the (fake_rejected, eid, j) command is reserved to the adversary to
instruct the ideal functionality to announce to everyone that the (corrupted) user j is not the winner.
This model a scenario in which an adversary deviates from the protocol to claim victory in spite of
being the leader. The formal definition of the FSSLE functionality is given below.

In order to emulate the (t, ϑ)-threshold definitions in Section 2.9 we need to specify a class of
environments that (1) corrupts M with |M | < t parties; (2) induce FSSLE to perform elections only
when |R ∩M | < ϑ(|R|). Those properties are formally captured by the following definition

Definition 9. A protocol Π is said to (t, ϑ)-threshold realise FSSLE if there exists a simulator S
such that Π is indistinguishable from FSSLE ◦ S for all PPT environments Z that statically corrupt
a set M of parties with |M | < t and such that, each time an honest player returns (won, eid,R) or
(lost, eid,R) then |R ∩M | < ϑ(|R|).
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Unpredictability Experiment ExpAUnpr(1
λ, N):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅.
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Regpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 : When chall← A and |R ∩M | < ϑ(|R|): Call n = |R| and τ = |R ∩M |;
9 : Execute SSLE.Electpp → cs

10 : πi,s ← SSLE.Claimpp(c, spi, i) ∀i ∈ R \M ; j ← A
11 : Return 1 if any protocol fails or if SSLE.Vrfpp(cs, πj,s, j) = 1, 0 otherwise

The SSLE functionality FSSLE:
Initialise E,R← ∅ and let M be the set of corrupted parties. Upon receiv-
ing:

– (register) from Pi: if i /∈ R, add R← R∪{i} and broadcast (registered, i).

– (revoke) from Pi: if i ∈ R, remove R← R \ {i} and broadcast (revoked, i).

– (elect, eid) from all honest parties: if R 6= ∅ and eid was not requested
before sample j ←$ R and send (won, eid,R) to Pj and (lost, eid,R) to
Pi for i ∈ R \ {j}. Store E ← E ∪ {(eid, j, R)}.

– (reveal, eid) from Pi: if (eid, j, R′) ∈ E and i ∈ R′, broadcast
(result, eid,R′, i) if i = j, (rejected, eid,R′, i).

– (fake_rejected, eid, j) from the adversary: if (eid, ·, R′) ∈ E, j ∈ R′, and
Pj is corrupted broadcast (rejected, eid,R′, j).

Definition 10. A (t, ϑ)-threshold statically secure UC-SSLE is a protocol Π that (t, ϑ)-securely
realise FSSLE. If t = N and ϑ = 1N then Π is called a statically secure UC-SSLE.

To further motivate our UC-secure notion of SSLE we compare it to the game-based notion of
the previous section. First, in the following Proposition, we show that the UC notion implies the
game-based one. A proof appears in the appendix, Section C.1

Proposition 2. If Π is a (t, ϑ)-threshold statically secure UC-SSLE protocol, then its derived SSLE
scheme described in Figure 3 satisfies (t, ϑ)-threshold uniqueness, (t, ϑ)-threshold fairness and (t, ϑ)-
threshold unpredictability.

Second, we argue that our UC notion is strictly stronger than the game-based one. For this, we
simply observe that we can take one of the protocols from [BEHG20] (e.g., the one based on TFHE
or the one based on Shuffling) and notice that they cannot be UC-secure if the zero-knowledge
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SSLE.Setup:
Pi sets (pp, spi, cnt)← (⊥,⊥, 0)

SSLE.Electpp:
All players send (elect, cnt) to Π

cnt← cnt + 1

When (won, eid, R)← Π or
When (lost, eid, R)← Π:
Return c← (eid,R)

SSLE.Regpp(i):
Pi sends (register, i) to Π
Others wait (registered, i)← Π

SSLE.Claimpp(c, spi, i):
Send (reveal, c). Return π ←⊥

SSLE.Revpp(i):
Pi sends (revoke, i) to Π
Others wait (revoked, i)← Π

SSLE.Vrfpp(c, π, i):
When (result, c, i)← Π return 1

When (rejected, c, i)← Π return 0

Fig. 3: The derived SSLE scheme from a UC-SSLE protocol Π

proofs they employ are not UC-secure.7 In [BEHG20], these protocols are proven secure without
making any UC assumption on these zero-knowledge proofs; so they constitute a counterexample
of protocols that are secure in the game-based sense but would not be secure according to our UC
notion.

3.1 A weaker definition

Definition 10 provides a higher level of security with respect to the game-based definition, but at
the same time requires more structure from the underlying protocol and therefore may imply higher
costs. For this reason we chose to present here a weaker functionality FκSSSLE that is static, i.e. does
not accept register or revoke requests and allows the adversary to control a certain election with
probability smaller than 2−κ.

The reason we add dummy parties to the definition is technical as it allows external players to
check the result of an election without actively taking part. Thanks to this addition in Section C.3,
we show how to realise FSSLE in the FκSSSLE-hybrid model when κ = Θ(λ). The idea is to emulate
register and verify requests by invoking a new FκSSSLE functionality with different sid.

At the same time providing more freedom on the choice of κ formalizes the intuition that in
practice weaker forms of fairness and unpredictability might be sufficient, especially if these lead to
significant efficiency gains. In Section C.2 we show how to construct a SSLE scheme (from a generic
protocol realizing FκSSSLE and tolerating less than ϑ(n) corrupted players) that achieves 2−κ-fairness
and η(κ)-unpredictability with

η(κ) = max
n∈[N ]+1

(
n

n− ϑ(n)

)
1

2κ
.

For fairness, the 2−κ bound simply means that for k = logN an adversary controlling T parties,
wins the election with probability less than (T + 1)/N . This is the same winning probability of an
7 Here, as the candidate protocol we are assuming the one where each sub protocol is used to implement the
corresponding command, i.e., SSLE.Reg for register, SSLE.Elect for elect, etc.
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The Static Parametrised SSLE functionality FκSSSLE:
Executed with parties P1, . . . , PN , dummy parties P̄1, . . . , P̄N̄ and malicious
users M ⊆ [N ]. Initially set E ← ∅. Upon receiving:

– (elect, eid) from all honest parties: if eid was not requested before leak
(electing, eid). Upon receiving (prob, eid, p) with p ≤ 2−κ:
With probability p instead leak (corrupted, eid) and wait for the adversary
to reply with (infl, eid, j). Otherwise sample j ←$ [N ].
Send (won, eid) to Pj and (lost, eid) to Pi for i ∈ [N ] \ {j}. Add
E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi with (eid, j) ∈ E: broadcast (result, eid, i) if j = i,
otherwise broadcast (rejected, eid, i)

– (fake_rejected, eid, j) from the adversary: if (eid, ·) ∈ E and Pj is cor-
rupted broadcast (rejected, eid, j)

adversary that runs a fair election and corrupts one single extra player! More precise details are in
appendix C.3

4 UC-secure SSLE from FE for Keyword Search

In this section we present a generic construction of a UC-SSLE protocol based on functional en-
cryption for keyword search, which, besides being of independent interest, serves as a stepping stone
toward our full construction. More specifically we realise FκSSSLE assuming the existence of a pro-
tocol Π that securely performs a distributed key generation and on request produces ciphertexts
encrypting messages uniformly distributed.
The protocol works as follows: Initially the keys mpk, ski are distributed among N users with ski
being associated to the keyword i. Each time an election is requested, users invokes Π which gener-
ate a challenge ciphertext c encrypting a message m ∈ [N ] and they check whether they won or lost
by decrypting. Whoever can decrypt c to 1 is the leader and can claim victory by broadcasting a
NIZK argument of this. Finally other users accept the claim if the NIZK argument given is correct.
To proceed we formally define a functionality FSnC, that shapes behaviour and security of Π, and a
protocol {P (i)

KS−SSLE : i ∈ [N ]} in the FSnC-hybrid model that realises FκSSSLE. The following theorem
is proven in Appendix D.2.

Theorem 1 The protocol {P (i)
KS−SSLE : i ∈ [N ]} securely realises FκSSSLE, for any κ, in the FSnC-

hybrid model for the class of PPTenvironments Z that statically corrupts up to N players.

5 An Efficient UC-secure SSLE from SXDH

In this section we propose our main contribution, an SSLE protocol that works over bilinear groups
and that we prove UC-secure under the SXDH assumption.
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The Setup and Challenge Functionality FSnC:

Generate crs ←$ NIZK.GDec(1
λ), mpk,msk ←$ KS.Setup(1λ) and ski ←$

KS.KeyGen(i,msk) for all i ∈ [N ]. Upon receiving

– (setup) from Pi: send (input, crs,mpk, ski) to Pi

– (ch_request, eid) from all honest parties: If eid was not requested be-
fore, sample j ←$ [N ] and compute c ←$ KS.Enc(j,mpk). Broadcast
(challenge, eid, c)

Party P
(i)
KS−SSLE realising FκSSSLE:

Initially set C ← ∅, send setup to FκSnC and wait for the reply
(input, crs,mpk, ski). Upon receiving input:

– (elect, eid): send (ch_request) to FκSnC

– (challenge, eid, c) from FSnC: store C ← C ∪ {(eid, c)}. Return (won, eid)
if 1← KS.Dec(c, i,mpk, ski), otherwise return (lost, eid).

– (reveal, eid): if (eid, c) ∈ C and 1 ← KS.Dec(c, i,mpk, ski), prove
π ←$ NIZK.PDec(crs,mpk, c, i, ski) and broadcast (claim, eid, π). Other-
wise broadcast (claim, eid,⊥)

– (claim, eid, π) from Pj : if 1 ← NIZK.VDec(crs,mpk, c, i, π) return
(result, eid, j) otherwise (rejected, eid, j)

5.1 Intuition

The idea is to instantiate the generic construction of Section 4 with the keyword search FE scheme
obtained applying the transformation in Figure 1 to our OFE in Figure 2.

The first challenge is to make the encryption algorithm MPC-friendly. To address this, we select
a random committee Q ⊆ [N ] of players through a random beacon, that produces an encryption of
an integer m obtained as the sum of mj ∈ [N ] secretly chosen by Pj for j ∈ Q. A downside is that
now m ∈ [|Q|N ]. For this reason, we use the FE for the functionality FB,Nks with B = |Q| ·N . This
way, decryption still provides a good way to test if one wins, as with this functionality the holder
of secret key for index i learns if m = i mod N . Also, if at least one mj is uniform over [N ], so is
m mod N . Moreover, in our case B is still a small value as |Q| ≤ κ and thus the decryption of our
scheme of Fig. 1 is efficient.

Next step is to show in more detail how the committee can accomplish its task. The ciphertext
we want to produce has the following shape:

c0 = [sa]1 , c1 =
[
sa>(mu + w1)

]
1
, c2 =

[
sa>(w2 − u)

]
1
.
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c0 and c2 are easy to generate in a distributed fashion: each party Pi can choose a random si, broad-
cast a commitment to [sia]1,

[
sia
>(w2 − u)

]
1
and then, after every party sent this, the commitments

can be opened and each party can compute the product of all the received elements.
To produce c1 we need more rounds of communication. The idea is to let every party send a

commitment to
[
mia

>u
]
1
by using an homomorphic commitment8 like ElGamal. This way, everyone

can locally compute a commitment to[
sia
>
(∑

j∈Q
mju−w1

)]
1

through the homomorphic properties of the commitment (i.e., by taking the product of all the
commitments, multiplying it by

[
a>w1

]
1
, and finally exponentiating the result by si. Once these

commitments are broadcasted and received, everyone can locally compute a commitment to c1 =[
sa>(mu + w1)

]
1
, where s =

∑
i si. In conclusion players jointly open c1.

The reason our protocol is more elaborated than the idea presented so far is that, to the best
of our knowledge, with all the homomorphic commitments the adversary can get the committed
message before the honest parties in this opening phase,9 and consequently it may refuse to open it
if he figures out from the ciphertext that he lost the associated election. This issue would break the
fairness property.

To solve this last issue we deploy a threshold ElGamal commitment. In this way, each time a
player refuses to open its commitment, a threshold decryption can be performed in alternative. We
remark that, even though reconstructions have linear communication complexity, each time one is
performed a dishonest player is detected, upper bounding their number by t.

In order to achieve security against malicious players, our final protocol includes NIZK proofs
to show consistency of the messages, e.g., that an mi in the appropriate range [N ] is encrypted, or
that the same si is used in the various group elements. Notably, all these NIZKs can be instantiated
with very simple and efficient sigma protocols (see Section 2.7).

Finally, to complete the protocol we also show how to distribute the setup and key generation
of our FE scheme. For ease of exposition, we first present a protocol assuming an ideal setup
functionality in Section 5.2, and then in Section 5.3 we show how this functionality can be UC-
realized.

5.2 SSLE protocol with Ideal Setup Functionality

We show a protocol that securely realizes the FκSSSLE ideal functionality for N players. To this end
we use the following building blocks:

– The FE scheme for orthogonality in Fig. 2, denoted FE.
– NIZKs for relations RDDH ,RRng and RDec. For readability, we suppress the crs from the inputs

of the prover and verifier algorithm, e.g., NIZK.PDDH(·, ·) stands for NIZK.PDDH(crsDDH , ·, ·).
– An ideal functionality FCom for commitments.
– An ideal functionality FSetup that generates the CRS of the above NIZKs and performs the

FE.Setup algorithm and distributes to each player Pi a collection of secret keys for the vectors
{(1, i+ j ·N)}j∈[κ]. The availability of this functionality is done to keep the exposition simple in
this section.

8 Supporting in this case the product of committed elements, the product of known elements and exponentiations
9 One reason for this problem is that we are implicitly assuming a dishonest majority within the committee, where
guaranteed output delivery cannot always be obtained.
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– An ideal functionality Fκ,DCT for coin tossing that returns a random subset Q of [N ] \ D with
cardinality `, where ` is the smallest integer such that(

t− |D| − 1

`

)(
N − |D|

`

)−1

≤ 2−κ.

Note that this implies that for any setM such that D ⊆M ⊆ [N ] and |M | < t then Pr [Q ⊆M ] ≤
2−κ. Also if t ≤ N/2 then ` ≤ κ.

For ease of presentation, we let φ : [κN ] → [N ] be such that φ(m) = m mod N . Its preimages are
then sets of the form φ−1(i) = {(1, i+ j ·N)}j∈[κ]. The protocol is fully described in Fig. 4,5. Below
we provide an explanation of its main steps.

The election protocol starts by having all parties calling the coin tossing functionality (line 1),
which returns a randomly sampled committee Q ⊂ [N ]\D (line 2). Next (lines 3–6), every player Pi
in the selected committee chooses a random mi ∈ [N ], creates an ElGamal commitment (Ri, c̃1,i) to[
mia

>u
]
1
and implicitly commits in (G̃i, H̃i) to a randomly sampled si, which represents its share

of the randomness for the ciphertext to be created. Pi also creates two NIZKs πiRng and π0,i
DDH to

prove, respectively, that mi lies in the correct range [N ] and that (G̃i, H̃i) = (g, h)si (i.e., they share
the same discrete log). All these messages are first broadcasted in committed form (line 6) and then,
after all the players of the committee spoke or sent an error10, opened (line 9). Whenever a committee
member sends error, the honest participants exclude him from Q and, in case the committee set
remained empty, a new committee is sampled by calling the coin tossing functionality.

Next (lines 11–15), upon receipt of the commitment opening, the players aggregate the answers
and compute Gi = gsri , Hi = hsri , and a share of the ciphertext

c0,i ← [sia]1 , c1,i = hrsi
[
sia
>(mu + w1)

]
1
, c2,i ←

[
sia
>(w2 − u)

]
1

along with three NIZK to prove the wellformedness of all these elements. All these values are
broadcasted (line 17), except for Hi and the third NIZK which are instead broadcasted in committed
form. If any error occurs parties remove detected player and repeat the previous step for the new
set Q (lines 18–20).

This is the point up to which the protocol can be carried out in an offline phase. The online
phase thus starts with every member of the committee executing line 21. As before users check
the proof and compute c1 removing the mask H =

∏
j∈QHj . Is some users, call A the set of their

indices, refuse to send a correct Hj then honest users jointly generate
∏
j∈AHj from

∏
j∈AGj and

their secret shares.
At the end (line 29), every player has the ciphertext (c0, c1, c2) and can use his keys to check if

he can decrypt it.
Finally, upon receiving (reveal, eid) the winner generates a NIZK to prove that it can decrypt the

election’s ciphertext. Every other player receiving a message (claim, eid, π,m) from Pj , can check
the NIZK and if so to get convinced that Pj is the winner.

Theorem 2 The protocol {P (i)
κ,SSLE : i ∈ [N ]} securely realizes FκSSLE in the (FCT,FCom,FSetup)-

hybrid model under the SXDH assumption for the class of PPTenvironments Z that statically cor-
rupts up bN/2c players

10 For simplicity, we assume that Pj sends error if no message is received from him before a timeout.

20



The Setup Functionality FSetup

Generate crsDDH ←$ NIZK.GDDH(1λ), crsRng ←$ NIZK.GRng(1λ),
crsDec ←$ NIZK.GDec(1

λ)
Sample mpk,msk←$ FE.Setup(1λ, 2), g ←$ G1, f ←$ Fq[x]≤t.
For all i ∈ [N ] and m ∈ φ−1(i) compute ski,m ←$ FE.KeyGen((1,m),msk).
Set ski ← (ski,m)m∈φ−1(i), h← gf(−1) and ki = gf(i).
Set pp← (crsDDH , crsRng, crsDec,mpk, g, h, k0, . . . , kN−1), spi ← (ski, f(i)).

Upon receiving setup from Pi send (input, pp, spi).

5.3 Realising the Setup

For what regards SSLE.Setup, in Figure 6 we presented for simplicity a centralized version. Here we
describe how to realise it in a distributed way.

First of all, in order to emulate private communication channels, not available in our model, that
are necessary to distribute the secret parameters we assume that each user is associated to some
ElGamal public key of which it knows the respective secret key. Second, we do not consider the
realization of the NIZK crs generation as in our instantiations these are realized by applying Fiat-
Shamir to sigma protocols and thus can be achieved by assuming a programmable random oracle
ideal functionality. Next, in our realization we will not focus on the distribution of polynomial shares
as this can be easily achieved through VSS modeled by the FVSS functionality. Our main focus will
be on showing how to generate the public and secret keys of the FE scheme in Figure 2. To this
aim, recall that

mpk = [a]1 ,
[
a>u

]
1
,
[
a>w1

]
1
,
[
a>w2

]
1
, sk(1,m) = [rw1 + rmw2]2 , [r]2 .

In the random oracle model [a]1 and [r]2 can be uniformly sampled without any communication
assuming two hash functions whose image is respectively G1 and G2. Moreover, when a 6= 0, a>u
is uniform over Fq and independent from all the other components. Hence we can also generate[
a>u

]
1
through the random oracle.

For what regards the other components of mpk, sk(1,m), they now depend linearly only on w1,w2.
Hence proceed choosing a random committee Q and letting every party Pi in Q sample wi,1,wi,2 ←$

F2
q and compute

[
a>wi,1

]
1
,
[
a>wi,2

]
1
and an encryption of [r(wi,1 +mwi,2)]2 = di,m. If no party

deviates, committing to those values and then multiplying the results produces the right output.
To catch malicious users, without adding a linear number of NIZK arguments, we device a series
of ad-hoc checks. First of all calling kj,1 and kj,2 the shares of the public key returned by Pj , we
ask Pj to produce a UC proof of knowledge of wj,1,wj,2 such that kj,b = kwj,b . Next each player
perform the test

e([a]1 ,dj,m)
?
= e(kj,1k

m
j,2, [r]2).

Although this condition does not implies dj,m = [rwj,1 + rmwj,2]2, if this is not the case with
significant probability then the adversary is also capable of braking DDH over G1. To see this
observe that extracting wj,b one can set

tm = dj,m [−rwj,1 − rmwj,2]2 ⇒ e(k, tm) = 1.
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Party P
(i)
κ,SSLE realising FκSSSLE:

Initialize C,D ← ∅. Send setup to FSetup and wait for the reply (input, pp, spi). Parse pp =
mpk, g, h, k0, . . . , kN−1, with mpk = [a]1 ,

[
a>u

]
1
,
[
a>w1

]
1
,
[
a>w2

]
1
together with bilinear

groups description, and spi = ski, f(i). Upon receiving:
1 : (elect, eid): Send (toss, eid) to Fκ,DCT and set cnt← 1

2 : (tossed, eid,Q) from Fκ,DCT : if i ∈ Q,

3 : si, ri ←$ Fq, mi ←$ [N ], G̃i ← gsi , H̃i ← hsi , Ri ← gri , c̃1,i ← hri
[
mia

>u
]
1

4 : πiRng ←$ NIZK.PRng

(
g, h,

[
a>u

]
1
, Ri, c̃1,i, [N ], ri,mi

)
5 : π0,i

DDH ←
$ NIZK.PDDH

(
(g, h), (G̃i, H̃i), si

)
6 : Send

(
commit, eid||0, G̃i, H̃i, Ri, c̃1,i, πiRng, π0,i

DDH

)
to FCom

7 : (error) from Pj for some j ∈ Q:

8 : Set Q← Q \ {j} and D ← D ∪ {j}. If Q = ∅ send (toss, eid|| ⊥) to Fκ,DCT

9 : (recepit, eid||0, j) from FCom ∀j ∈ Q: Send (open, eid||0) to FCom

10 : (decom, eid||0, j, G̃j , H̃j , Rj , c̃1,j , πjRng.π
0,j
DDH) for all j ∈ Q:

11 : Compute: G̃←
∏
j∈Q G̃j , H̃ ←

∏
j∈Q H̃j , c̃1 ←

[
a>w1

]
1

∏
j∈Q c̃1,j ,

12 : Gi ← G̃ri , Hi ← H̃ri , c0,i ← [sia]1 , c1,i ← c̃si1 , c2,i ←
[
sia
>(w2 − u)

]
1

13 : π1,i
DDH ← NIZK.PDDH

((
g, [a]1 , c̃1,

[
a>(w2 − u)

]
1

)
, (G̃i, c0,i, c1,i, c2,i), si

)
14 : π2,i

DDH ← NIZK.PDDH

(
(g, G̃), (Ri, Gi), ri

)
,

15 : π3,i
DDH ← NIZK.PDDH

(
(g, H̃), (Ri, Hi), ri

)
16 : Send (commit, eid||cnt, Hi, π

3,i
DDH) to FCom

17 : Broadcast
(
msg, eid||cnt, Gi, c0,i, c1,i, c2,i, π

1,i
DDH, π

2,i
DDH

)
Fig. 4: Protocol P (i)

κ,SSSLE, first part

If tm is a non trivial vector it allows to decide whether k′ is proportional to k or random by testing
e(k′, tm) = 1. In the first case the condition is always satisfied while in the second this happens
with probability smaller than q−1.
One drawback of this test is that it make parties acts like decryption oracle. For this reason we
require also a NIZK PoK of the randomness used to encrypt. By recycling randomness, that is safe
in ElGamal encryption with several recipients, we reduce the number of these NIZKs from κN to κ
per dealer.
Finally for technical reasons we sample w̄1, w̄2 ←$ F2

q through the random beacon and multiply the
master public key’s last components by kw̄b and the secret key’s first term dm by [rw̄1 + rmw̄2]2.
This helps our simulator in removing the contributions of malicious parties.

To summarize our protocol for setup (see Figure 6) uses:

– NIZKs for relations RDDH and RLin.
– A global random oracle H, which is also used to realize the setup assumption of the above NIZKs.
– The coin tossing functionality Fλ,D,1CT which, as in the previous sections, returns a random subset
Q ⊆ [N ] \D plus a string R ∼ U({0, 1}λ).

– Another coin tossing functionality, Fn,FqCT , which returns a uniformly distributed vector of Fnq .
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Party P
(i)
κ,SSLE realising FκSSSLE (second half):

18 : (recepit, eid||cnt, j), (msg, eid||cnt, Gj , c0,j , c1,j , c2,j) or error from Pj , ∀j ∈ Q:
19 : If the set M of parties that sent error or got π1,j

DDH, π
2,j
DDH rejected is non-empty:

20 : Q← Q \M , D ← D ∪M , cnt← cnt + 1 and restart from line 11
21 : Else: send (open, eid||cnt) to FCom

22 : (decom, eid||cnt, j,Hj , π3,j
DDH) from FCom or error from Pj for all j ∈ Q:

23 : If the set A of Pj who sent error or an invalid π3,j
DDH is empty set H ←

∏
j∈QHj ;

24 : Else: G←
∏
j∈AGj , Ki ← Gf(i), π4,i

DDH ← NIZK.PDDH ((g,G), (ki,Ki), f(i))

25 : Send (recon,Ki, π
4,i
DDH); Upon receiving (recon,Kj , π

4,j
DDH):

26 : If the set R of Pj who sent valid π4,j
DDH is s.t. |R| = t+ 1:

27 : Reconstruct HA ←
∏
k∈RK

λk
k with λk the Lagrange coefficients to get f(−1)

28 : Set H ← HA ·
∏
j∈Q\AHj

29 : Set c0 ←
∏
j∈Q c0,j , c1 ← H−1∏

j∈Q c1,j , c2 ←
∏
j∈Q c2,j and c← (c0, c1, c2)

30 : Store C ← C ∪ {(eid, c)}
31 : If ∃m ∈ φ−1(i) such that 1← FE.Dec(c, (1,m),mpk, ski,m): Return (won, eid)

32 : Else: Return (lost, eid)

33 : (reveal, eid):
34 : If (eid, c) ∈ C and ∃m ∈ φ−1(i) such that 1← FE.Dec(c, (1,m),mpk, ski,m):
35 : Prove π ←$ NIZK.PDec(mpk, c, (1,m), ski,m) and broadcast (claim, eid, π,m)

36 : (claim, eid, π,m) from Pj with (eid, c) ∈ C:
37 : If φ(m) = j and π is accepted return (result, eid, j) otherwise (rejected, eid, j)

Fig. 5: Protocol P (i)
κ,SSLE, second part

The VSS Functionality FVSS

Sample g ←$ G1, f ←$ Fq[x]<t and compute si = gsi .
Upon receiving (share_request, sid) from Pi send (share, sid, g, (sj)

N−1
j=0 , f(i))

Finally we keep the conventions on S = [κN ] and φ : S → [N ] the reduction modulo N . Moreover
we call ψ : S → [κ] the floored division by N i.e. such that m = Nψ(m) + φ(m) for all m ∈ S.

Theorem 3 The protocol {P (i)
Setup : i ∈ [N ]} securely realises FSetup in the (FCT,FCzk,FCom,FVSS)-

hybrid model under the SXDH assumption for the class of PPTenvironments Z that statically corrupt
up to bN/2c players.

6 Efficiency considerations

In this section we provide a detailed analysis of the communication efficiency of our protocol, for
both the setup and the election phases.

In each case we also provide a concrete estimation, considering an instantiation of the protocol
with N = 214 users, and 128 bits of security (so that we can assume that the bitsize of elements of
Fq,G1,G2 and GT is 256, 256, 512 and 3072 respectively, and a commitment is 256 bits long). Also
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Party P
(i)
Setup realising FSetup:

Initialize D ← ∅, xi ←$ F2
q, ĥi ← [xi]2 and prove πiLin ← NIZK.PLin(g2, ĥi,xi). Send

(commit,⊥, ĥi, πiLin) to FCom. Upon receiving (recepit,⊥, j) or error for all j ∈ [N ] \ {i},
send (open,⊥) to FCom and wait for (decom,⊥, j, ĥj , πjLin) or error for all Pj . Add to D
players who sent error or got πjLin rejected. Upon receiving:

1 : (setup, sid): Send (share_request, sid) to FVSS; wait (share, sid, g, (sj)
N−1
j=0 , f(i)).

2 : Send (toss, sid) to Fλ,D,1CT

3 : (tossed, sid,Q,R) from Fλ,D,1CT : If i ∈ Q:
4 : Compute k, k0, (dm)m∈S ← H(R) with k ∈ G2

1, k0 ∈ G1 and each dm ∈ G2

5 : Sample wi,1,wi,2 ←$ F2
q, ri,ψ(m) ←$ Fq; for all m ∈ φ−1([N ] \D) compute:

6 : ki,1 ← kwi,1 , ki,2 ← kwi,2 , di,m ← [w1,i +mw2,i]dm

7 : Gi,ψ(m) ←
[
ri,ψ(m)

]
2
, Ci,m ← ĥ

ri,ψ(m)

φ(m) · di,m

8 : π
j,ψ(m)
DDH ← NIZK.PDDH

(
g2, Gi,ψ(m), ri,ψ(m)

)
9 : Send (commit, sid,Gi,ψ(m), Ci,m, π

i,ψ(m)
DDH ) to FCom

10 : Send (prove, sid,k>, (ki,1, ki,2), (wi,1,wi,2)>) to FLin
Czk

11 : (recepit, sid, j) from both FCom and FLin
Czk or error for all j ∈ Q:

12 : For all Pj that sent error, add D ← D ∪ {j} and remove Q← Q \ {j}
13 : Send (open, sid) to FCom and FLin

Czk

14 : (decom, sid, j,Gj,ψ(m), Cj,m, π
j,ψ(m)
DDH ), (proof, sid, j,k, (kj,1, kj,2)) or error, ∀ ∈ Q:

15 : Remove from Q and add to D parties that sent error or incorrect πj,ψ(m)
DDH

16 : Send (toss, sid) to F4,Fq
CT

17 : For all j ∈ Q, m ∈ φ−1(i): Decrypt dj,m ← Cj,m ·G−xi
j,ψ(m)

18 : If e(k,dj,m) 6= e(kj,1k
m
j,2, dm) for some m ∈ φ−1(i):

19 : Prove πj,mLin ← NIZK.PLin

((
g2, Gj,ψ(m)

)
,
(
ĥi, Cj,md−1

j,m

)
,x>i

)
20 : Broadcast

(
complain, πj,mLin ,dj,m, j,m

)
21 : Else: Broadcast (accept, j).

22 : (complain, πj
′,m

Lin ,dj,m, j,m) or error from Pj′ :

23 : If Pj′ sent error, π
j,m
Lin is rejected or e(k,dj,m) 6= e(k1,jk

m
2,j , dm): add D ← D ∪ {j′}

24 : Otherwise add D ← D ∪ {j} and remove Q← Q \ {j}

25 : (accept, j) for all j ∈ Q and (tossed, sid, w̄1, w̄2) from F4,Fq
CT :

26 : For all m ∈ φ−1(i) compute : k1 ← kw̄1 ·
∏
j∈Q kj,1, k2 ← kw̄2 ·

∏
j∈Q kj,2

27 : dm ← [w̄1 +mw̄2]dm ·
∏
j∈Q dj,m, σm ←$ Fq, ski,m ← (dσmm , dσmm )

28 : ski ← (ski,m)m∈φ−1(i), mpk← (k, k0, k1, k2)

29 : Call pp← (mpk, g, h, (sj)
N−1
j=0 ), spi ← (ski, f(i)) and return (input, sid, pp, spi)

Fig. 6: Realisation of the ideal FSetup functionality
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we set the statistical security parameter for the size of the committee used in the setup phase as
κs = 80, while for the election we set it as κe = logN = 14.

Setup. The rounds and the messages sent in the protocol are as follows.

1. Every player sends one commitment.
2. Every player Pj opens the commitment, sending 4 elements of G2 and 2 elements of Fq (ĥj , πjLin).
3. All the players execute a VSS protocol.
4. All the players invoke the coin tossing functionality.
5. Every player in Q sends two commitments.
6. Every player in Q opens the commitments, sending κe ·N elements of G2

2 ({Ci,m}), κe elements
of G2 ({Gi,ψ(m)}), 2 elements of G1 (ki,1, ki,2), 40 elements of G1 and 20 of Fq (FLin

Czk proof), κe
elements of G2 and Fq (πi,ψ(m)

DDH ).
7. Invoke the coin toss functionality. Let A be the set of players who misbehave. Every player may

send 2 elements of G2 (dj,m) and 4 elements of G2 and 2 elements of Fq (πj,mLin ) for every Pj s.t.
j ∈ A.

To evaluate the VSS we assume that every player Pj in the committee samples a polynomial fj ←$

Fq[x]<t and broadcasts gf(i) and an encryption of f(i), that is N + 1 elements in G1 and roughly N
field elements. So ignoring the cost of the coin tossing functionalities, every player in the committee
Q (which has size κs) sends in total 3 commitments, 42 elements of G1, 2κe(N + 1) + 4 elements
of G2, and 22 + κe elements of Fq. In addition, in the last round, every player may send 6 elements
of G2 and 2 of Fq for every player that misbehaved. With the parameters mentioned earlier, each
player in the setup committee sends about 29 MB, while any user receive about 480 kB11 to build
its secret key.

Election. The rounds and the messages sent in the preprocessing phase of the election protocol (in
case no party misbehaves) are as follows:

1. All the players execute the coin tossing functionality
2. Every player in Q sends one commitment
3. Every player in Q opens the commitments, sending 4 elements of G1 (G̃i, H̃i, Ri, c̃1,i), 1 range

proof (πiRng), 1 element of G1 and 1 of Fq (π0,i
DDH).

4. Every player in Q sends one commitment and 5 elements of G1 (Gi, c0,i, c1,i, c2,i), 2 elements of
G1 and of Fq (π1,i

DDH, π
2,i
DDH).

The online phase instead proceeds in the following way:

1. Every player in Q opens the commitment, sending two elements of G1 and one of Fq (Hi, π
3,i
DDH).

2. If one of the messages sent in the above round is incorrect (or the player didn’t answer), the
honest players post partial decryptions, sending 2 elements of G1 and one of Fq (Ki, π

4,i
DDH).

3. The winner sends a proof of correct decryption, which consists of 2 elements of GT and 3 elements
of G2.

So, without considering the cost of building the random beacon, every player in the committee
Q (of size κe) in the processing sends 2 commitments, 15 + 3 logN elements of G1 and 6 + 3 logN
elements of Fq (and receives about κe× this information from all the other users). Using κe = logN

11 And by considering a higher κe = 80 these costs become roughly 5× more.
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(resp. κe = 80) as a statistical parameter for the committee size in the election, we have that each
player sends about 3 kB and must receives 47 kB (resp. 274 kB). The online phase is quite efficient.
In the best case (when all members of Q open the commitment), it involves the sending of a total
of 2.3 kB (resp. 8.6 kB). In the worst case, the threshold decryption requires the communication of
789 kB in total. Finally, the winner only needs to send less than 1 kB to claim her victory.

Comparison with the efficient construction from [BEHG20]. To compare our costs with
those of the efficient shuffle-based construction from [BEHG20] in the fairest possible way, we
consider two possible ways of implementing their protocol. In both variants we distinguish a setup
phase and an election phase12, the difference lies in how the setup is realized. The first variant
assumes a preliminary stage where users register their Diffie-Hellman pairs. Next, a committee (of
κs users) is randomly selected via the random beacon. The committee then proceeds by performing
κs shuffling sequentially. Using the same parameters as above, in such a setting, each player sends
only 1 MB but needs to receive about 85 Mbytes (to store the κe lists and check the shufflings).
The second variant, which is actually the one explicitly suggested in [BEHG20], consists in each
newly registered player performing a shuffling when entering in the system. Then, whenever a leader
is elected the latter re-registers with new keys and performs a new shuffle. The disadvantage of this
solution is that it requires very high initial costs. Again assuming the same parameters as above,
setting up the system from scratch requires every player to receive 8.5 GB.

We stress, however, that in both variants, setup is done once and for all at the beginning of the
protocol (i.e. no need to repeat it when the set of participants changes, only one shuffle per new
participants is needed).

As per the election phase, both variants induce communication costs of 1 MB (as the winner
needs to re-register to be able to take part of future elections).

In conclusion, these figures suggest that our scheme is a better option in settings where many
elections, involving a stable set of participants, are expected. This allows to take advantage of the
sublinear election costs of the scheme while reducing the impact of the high setup costs. If we
compare the total communication cost for 1000 elections, our protocol (including the setup, and
1000 offline and online elections) is still competitive as it entails a total communication sent/received
by each player of 80 MB, in contrast to 1.1 GB in [BEHG20].

In highly dynamic scenarios, on the other hand, the shuffling-based solution works better as the
higher election costs are mitigated by the benefits of a more flexible setup.
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A Statistical Distance

Definition 11. Given a finite set S and two random variables x, y ∼ S we define their statistical
distance as

∆(x, y) =
1

2

∑
a∈S
|Pr [x = a]− Pr [y = a]|

If A is an event and x ∼ S a random variable we denote with x|A the conditional random
variable such that for all a ∈ A, Pr

[
x|A = a

]
= Pr [x = a|A]. In the rest of this subsection we list

some properties of the statistical distance we use in the last proofs.

Proposition 1 Let G be a finite group g, h ∼ G1 be statistically independent and u ∼ U(G1) then

∆(gh, u) ≤ ∆(g, u).

Proposition 2 Given S1, S2 two sets, x, y ∼ S1 and f : S1 → S2 any function then ∆(f(x), f(y)) ≤
∆(x, y).

Proposition 3 Given two set S1, S2 and f : S1 → S2 a bijection, if x ∼ U(S1) then f(x) ∼ U(S2)

Proposition 4 Given a finite set S and x, y ∼ S, then for any subset A ⊆ S

|Pr [x ∈ A]− Pr [y ∈ A]| ≤ ∆(x, y).

The next proposition allows to bound the joint statistical distance of two vectors (x1, y1), (x2, y2)
using upper bounds on the distance of x1, x2 and of y1, y2 conditioned on x1 = x, x2 = x for almost
all x.

Proposition 5 Given four random variables x1, x2 ∼ X, y1, y2 ∼ Y and called X+ = {a ∈ X :
Pr [xi = a] > 0, i ∈ [2]}, if there exists A ⊆ X such that

P (x1 ∈ A) ≤ ε1, ∆(x1, x2) ≤ ε2, ∆(y1|x1=x, y2|x2=x) ≤ ε3 ∀x ∈ X+ \A,

for positive real numbers ε1, ε2, ε3 ∈ R+, then ∆((x1, y1), (x2, y2)) ≤ ε1 + ε2 + ε3.

B Sigma Protocols

B.1 The Decryption Relation

In this section we provide a sigma protocol inspired by [Mau15] for the relation RDec, define in
Section 2.7, instantiated for the FE scheme in Figure 2. Even though in our SSLE protocol we use
this scheme only with message space of dimension n = 2, the protocol provided here works for
message space of any dimension and, remarkably, its communication costs always consist of 5 group
elements regardless of the dimension n.

Proposition 6 Protocol 7 satisfies perfect completeness, special soundness and perfect HVZK
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PDec(mpk, c,y, sk) : VDec(mpk, c,y) :

Parse mpk = (k, k∗, ki)
n
i=1, Parse mpk = (k, k∗, ki)

n
i=1,

c = (c, ci)
n
i=1, y = (yi)

n
i=1, c = (c, ci)

n
i=1, y = (yi)

n
i=1,

sk = (d, d)

v←$ G2
2, ρ←$ Fq

d̂← dρ, d̂← dρ

T0 ← e(k,v)

T1 ← e(c,v) d̂, T0, T1

r r ←$ Fq

z← d̂r · v z

Check:

d̂ 6= 1G2

e(k, z)
?
= T0 · e(ky11 , . . . , kynn , d̂)r

e(c, z)
?
= T1 · e(cy11 , . . . , cynn , d̂)r

Fig. 7: Sigma protocol for the RDec relation

Proof. Completeness: Given (mpk, c,y, sk) ∈ RDec by construction (mpk,y, sk) ∈ Lkey. Parsing
mpk = (k, k∗, k1, . . . , kn) and sk = (d, d) with

k = [a]1 , k∗ =
[
a>u

]
1
, ki =

[
a>wi

]
1

we have that the vector c′ = (k, k1, . . . , kn) is the encryption of 0 with randomness 1. From the
definition of Lkey, as y>0 = 0 we deduce that FE.Dec(c′,y,mpk, sk) = 1 and d 6= 1, while by
definition of RDec we get FE.Dec(c,y,mpk, sk) = 1 and in particular{

e(k,d) = e(ky1
1 · . . . · k

yn
n , d)

e(c,d) = e(cy1
1 · . . . · c

yn
n , d)

⇒

{
e(k,dρrv) = e(k,v) · e(ky1

1 · . . . · k
yn
n , dρ)r

e(c,dρrv) = e(c,v) · e(cy1
1 · . . . · c

yn
n , dρ)r

Special Soundness: Given (d̂, T0, T1, r1, z1) and (d̂, T0, T1, r2, z2) two accepting transcripts, calling
d̂ = (z1 · z−1

2 )(r1−r2)−1 we have that{
e(k, d̂) = e(ky1

1 · . . . · k
yn
n , d̂)

e(c, d̂) = e(cy1
1 · . . . · c

yn
n , d̂).

From the second line sk = (d̂, d̂) decrypts c, that is FE.Dec(c,y, sk,mpk) = 1. We show now that
the first equation implies (mpk,y, sk) ∈ Lkey. Fixed mpk = (k, k∗, k1, . . . , kn) with

k = [a]1 , k∗ =
[
a>u

]
1
, ki =

[
a>wi

]
1

and d̂ = [x]2, d̂ = [σ]2, from the first equation

a>x = a>
∑n

i=1
σyiwi
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Unfortunately this does not imply x =
∑n

i=1 σyiwi, but is enough to conclude the proof. Indeed let
(c̄, c̄1, . . . , c̄n) be the encryption of a vector m with randomness s 6= 0. By construction

c̄ = [sa]1 , c̄i = [sa(miu + wi)]1 ⇒ e(c̄, d̂) · e(c̄y1
1 · . . . · c̄

yn
n , d̂)−1 =

=
[
sa> + sa>

∑n

i=1
σyimiu− sa>

∑n

i=1
σyiwi

]
T

=
[
s(a>u)(y>m)

]
T
.

Since s 6= 0 and a>u 6= 0, the last term is zero if and only if y>m = 0, that is the thesis.

HVZK: Below we provide the description of a simulator SDec that produces an accepting transcript
with the right distribution.
Given a tuple (mpk, c,y, sk) ∈ RDec we show that the statistical distance between (d̂, T0, T1, r, z) and

Simulator SDec(mpk, c,y):
1 : Parse mpk = (k, k∗, k1, . . . , kn), c = (c, c1, . . . , cn), y = (y1, . . . , yn)

2 : Sample r′ ←$ Fq, d̂′ ←$ G2, z′ ←$ G2
2

3 : T ′0 ← e(k, z′) · e(ky11 · . . . · kynn , d̂′)−r, T ′1 ← e(c, z′) · e(cy11 · . . . · cynn , d̂′)−r

4 : Return (d̂′, T ′0, T
′
1, r
′, z′)

(d̂′, T ′0, T
′
1, r
′, z′) is zero, where the first one is the transcript generated by PDec, VDec and the second

one is the output of SDec. We begin observing that (z, d̂, r) ∼ U(G3
2×Fq) and (z, d̂′, r′) ∼ U(G3

2×Fq).
This is true in the first case because v, ρ and r are uniformly and independently distributed, in the
second one by construction. Consequently they have statistical distance 0 and by Proposition 5 we
only need to show that ∀z0, d̂0, r0, upon conditioning on d̂ = d̂0 = d̂′, z = z0 = z′ and r = r0 = r′,
the vectors (T0, T1), (T ′0, T

′
1) have statistical distance 0.

In the real protocol z = z0 implies v = z0d
−ρr0 and in particular

T0 = e(k,v) = e(k, z0) · e(k,dρ)−r0 =

= e(k, z0) · e(ky1
1 · . . . · k

yn
n , d

ρ)−r0 =

= e(k, z0) · e(ky1
1 · . . . · k

yn
n , d̂0)−r0 = T ′0.

Analogously T1 = T ′1 and therefore ∆((T0, T1), (T ′0, T
′
1)) = 0.

B.2 Proof of Range

We now provide a sigma protocol that proves, for uniformly random g, h, k provided in the CRS,
that given u, v there exist r ∈ Fq and m ∈ [2µ] such that u = gr and v = hrkm. We begin by
splitting this statement in two easier ones to prove, that is

– ∃r′,m′ ∈ Fq : u = gr
′
, v = hr

′
km
′

– ∃r ∈ Fq, m ∈ [2ν ] : v = hrkm

The first relation can be proven with a proof system for RLin because it is equivalent to showing
the existence of r′,m′ ∈ Fq such that [

g 1
h k

]
·
(
r′

m′

)
=

[
u
v

]
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To prove the second one we use the folklore trick of committing to m’s bits bi with a Pedersen
commitment and prove that each of them contains indeed a bit and m =

∑µ−1
i=0 bi2

i. More in detail,
sampling ri ←$ Fq for every i, one can send ci = hrikbi and then show that

– ∃ri ∈ Fq, bi ∈ {0, 1} : ci = hrikbi

– ∃ρ ∈ Fq, hρ ·
∏µ−1
i=0 c

2i
i = v

To prove the first one, a known method is to show that the prover can open ci both to bi and
b2i . Since Pedersen commitments are computationally binding if the Discrete Logarithm Problem is
hard in G then this implies that bi = b2i that is bi ∈ {0, 1}. To do so, we observe that it is enough
to prove the existence of (bi, ri, si) ∈ Fq such that

[
k h 1
ci 1 h

]
·

biri
si

 =

[
ci
ci

]
⇐⇒

{
ci = kbihri

ci = cbii h
si

⇐⇒

{
ci = kbihri

ci = kb
2
i hbiri+si

where si = (1− bi)ri. Again, this can be proven with a sigma protocol for RLin. Finally the knowl-
edge of ρ is tested with a standard Schnorr proof. In conclusion, calling SP.PLin,SP.VLin,SP.SLin

respectively the prover, verifier and simulator for the sigma protocol that proves RLin, we provide a
formal description of the protocol as follows

Proposition 3. If the Discrete Logarithm Problem is hard in G then Protocol 8 is a sigma protocol
for RRng.
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PRng(g, h, k, u, v, [2
µ], r,m) : VRng(g, h, k, u, v, [2µ]) :

ri ←$ Fq, m =
∑µ−1
i=0 bi2

i

si ← (1− bi)ri, ci ← hrikbi

ρ← r −
∑µ−1
i=0 ri2

i

cµ ← c ·
∏µ−1
i=0 c

−2i

i

A← ((g, 1), (h, k))

Ai ← ((k, h, 1), (ci, 1, h))

B ← (u, v), Bi ← (ci, ci)

vi = (bi, ri, si)

C ←$ SP.PLin(A,B, (r,m))

Ci ←$ SP.PLin(Ai, Bi,vi)

Cµ ←$ SP.PLin(h, cµ, ρ)

C,Cµ, {ci, Ci}µ−1
i=0

e e←$ Fq

Z ← SP.PLin(A,B, (r,m), C, e)

Zi ← SP.PLin(Ai, Bi,vi, Ci, e)

Zµ ← SP.PLin(h, cµ, ρ, Cµ, e)

Z,Zµ, {Zi}µ−1
i=0

A← ((g, 1), (h, k))

Ai ← ((k, h, 1), (ci, 1, h))

B ← (u, v), Bi ← (ci, ci)

cµ ← c ·
∏µ−1
i=0 c

−2i

i

β ← SP.VLin(A,B,C, e, Z)

βi ← SP.VLin(Ai, Bi, Ci, e, Zi)

βµ ← SP.VLin(h, cµ, Cµ, e, Zµ)

Return β ∧ β0 ∧ . . . ∧ βµ

Fig. 8: Sigma protocol for the RRng relation
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C Comparing UC and Game-Based Definition

C.1 Proof of Proposition 2

Proof. Let S be a simulator such that Π is indistinguishable from FSSLE ◦S for the class of efficient
environments Z introduced in definition 9. In the following we first argue that the composition of
any PPTadversary A with C the challenger of Uniqueness, Fairness or Unpredictability Experiment
respectively is an environment for Π in the above class. Then we show the three properties hold
replacing Π with FSSLE ◦ S.

Uniqueness: First of all for any efficient A corrupting |M | < t, observe that A ◦ C only requests
an election to FSSLE when |R ∩M | < ϑ(|R|). Therefore if Pk is an honest user, when it returns
(won, eid,R) or (lost, eid,R) we have |R ∩M | < ϑ(|R|).
Next we claim that, calling E the set used by FSSLE to record past elections (see Section 3),
(eid, i, R), (eid, j, R) ∈ E implies i = j. Assume by contradiction that i 6= j and suppose (eid, i, R)
is added first. Then (eid, j, R) would not be added afterwards as FSSLE ignores any election request
with the same eid.
To prove uniqueness suppose by contradiction that there exists an election ID eid and two distinct
players Pi, Pj such that SSLE.Vrfpp(eid, π, i) = SSLE.Vrfpp(eid, π, j) = 1 and let k ∈ [N ] \M . As
a consequence Pk receives from FSSLE both (result, eid, i) and (result, eid, j). By construction this
implies (eid, i, R), (eid, j, R) ∈ E and in particular i = j.

Fairness: For any efficient A corrupting |M | < t users, as before the composition A ◦ C, with the
latter being the challenger of the Fairness experiment, only requests election when |R∩M | < ϑ(|R|).
Next let R be the set of registered users when A sends chall, n = |R| and τ = |R ∩ M |. By
construction during the last election FSSLE samples a random j ←$ R and sends (won, eid) to Pj .
Also by construction this the only player that by sending (reveal, eid) can make FSSLE broadcasts
(result, eid, j). In particular SSLE.Vrfpp(eid,⊥, i) = 1 holds only when j = i. It follows that

Pr
[
ExpAFair(1

λ, N, ϑ) = 1
]

= Pr [j ∈ R \M ] =
|R \M |
|R|

=
n− τ
n

.

Unpredictability: For any efficient A corrupting |M | < t users, as before the composition A ◦ C,
with the latter being the challenger of the Unpredictability experiment, only requests election when
|R ∩M | < ϑ(|R|).
Let R be the set of registered users when A sends chall. In this phase, calling (eid, j, R) the last
tuple added to E in this phase by FSSLE, then j is independent from all the previous messages sent
by FSSLE. Moreover conditioning on HW, that is equivalent to j ∈ R \M , and calling j′ the last
message sent by A

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1
]

= Pr
[
j′ = j|j ∈ R \M

]
=

1

|R|
|R|

|R \M |
=

1

n− τ
.

C.2 SSLE schemes from Static and Parametrised SSLE

In this section we show how to a adapt a protocol Π realising FκSSSLE to an SSLE scheme with
relaxed security guarantees. Since we will need to interact with several instances of the protocol
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we now explicitly write the session ID. For simplicity we say “Run (Πn, sid) with players in R" to
mean that ordering R = {r1, . . . , rn}, Pri will interact with Πn and session ID sid with player index
i. Conversely ordering [N ] \ R = {s1, . . . , sN−n}, Psi interacts with Πn and session ID sid as the
dummy player P̄i. In particular they can only receive result or rejected messages.

SSLE.Setup:
Pi sets (pp, spi, cnt)← (⊥,⊥, 0)

sid← ∅
R← ∅
n← 0

SSLE.Electpp:
All players send (elect, sid, cnt) to Πn
cnt← cnt + 1

When Πn sends (won, sid, eid)

Return (n, sid, eid)

When Πn send (lost, sid, eid)

Return (n, sid, eid)

SSLE.Regpp(i):
R← R ∪ {i}, n← |R|
sid← R

Run (Πn, sid) with players in R

SSLE.Claimpp(c, spi, i):
Parse c = (n′, sid′, eid′)

Send (reveal, sid′, eid′) to Πn′

Return π ←⊥

SSLE.Revpp(i):
R← R \ {i}, n← |R|
sid← R

Run (Πn, sid) with players in R

SSLE.Vrfpp(c, π, i):
Parse c = (n′, sid′, eid′); When:

(result, sid′, eid′, i)← Πn′ return 1

(rejected, sid′, eid′, i)← Πn′ return 0

Fig. 9: The derived SSLE from Π realising FκSSSLE

Proposition 4. Given a family of protocols Πn that securely realise FκSSSLE among n players and
N−n dummy players for the class of environments that statically corrupts T < ϑ(n) players then the
derived SSLE scheme defined in Figure 9 satisfy ϑ-threshold uniqueness, ϑ-threshold 2−κ-fairness
and ϑ-threshold η(κ)-unpredictability with

η(κ) = max
n∈[N ]+1

(
n

n− ϑ(n)

)
1

2κ
.

Proof. Let Sn be a simulator such thatΠn is indistinguishable from Sn◦FκSSSLE for any PPTenvironment
corrupting less than ϑ(n) users. We show that the composition of any adversary A that corrupts
players in M and the challenger respectively of the Uniqueness, Fairness or Unpredictability experi-
ment with parameters (1λ, N, ϑ) lies in this class of environments and then prove that the property
hold for S ◦ FκSSSLE.

Uniqueness: First of all let C be the challenger that instantiate the Uniqueness Experiment. For
any A, the composition A ◦ C is a PPTalgorithm that only performs elections with Πn when
|R ∩ M | < ϑ(n) – therefore only when less than ϑ(n) non-dummy users are malicious. There-
fore for A ◦ C, Πn is indistinguishable from FκSSSLE ◦ Sn.
Next we shall show that, calling E the set used by FκSSSLE to register past elections – see Section
3.1 – (eid, i), (eid, j) ∈ E implies i = j. By contradiction assume that i 6= j and without loss of
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generality that (eid, i) is added first. Then, when FκSSSLE is invoked again to register (eid, j), eid
was already used so the functionality ignores the request.
By contradiction now assume that for a given sid = R there exist two different players Pi, Pj such
that SSLE.Vrf(c, π, i) = SSLE.Vrf(c, π, j) = 1. If k ∈ [N ] \M is the index of an uncorrupted player
then Pk receives from FκSSSLE two messages (reveal, sid, eid, i) and (reveal, sid, eid, j). By construc-
tion this implies (eid, i), (eid, j) ∈ E that is i = j.

Fairness: As before, calling C the challenger of the Fairness experiment, for any A the composition
A ◦ C only interacts with Πn when |R ∩M | < ϑ(n). Therefore for A ◦ C, Πn is indistinguishable
from FκSSSLE ◦ Sn.
Next, call R with n = |R| and τ = |R ∩ M | the set of registered users when A send chall and
τ < ϑ(n). Without loss of generality we assume R = [n]. Let bad be the event that FkSSSLE sends
(corrupted, R, eid) to Sn. By construction Pr [bad] ≤ 2−κ. Let also (eid, j) be the last value FκSSSLE
adds to his list after this election.
If ¬bad then j ∼ U([n]) by definition and Pj is the only winner, i.e. the only one for which FκSSSLE
broadcasts (result, R, eid, j). Therefore

Pr
[
ExpAFair(1

λ, N, ϑ) = 1|¬bad
]

= Pr [j ∈ [n] \M |¬bad] =
n− τ
n

.

We can so conclude that
∣∣Pr
[
ExpAFair(1

λ, N, ϑ) = 1
]
− n−τ

n

∣∣ =∣∣∣∣Pr
[
ExpAFair(1

λ, N, ϑ) = 1|bad
]
− n− τ

n

∣∣∣∣Pr [bad] ≤ max

(
τ

n
,
n− τ
n

)
1

2κ
≤ 1

2κ
.

Unpredictability: As before if C is the challenger of the unpredictability experiment, A ◦ C
invoke Πn only when less that ϑ(n) users are corrupted.
Also as before let R with n = |R| and τ = |R ∩M | be the set of registered users when A send chall
and τ < ϑ(n) (wlog R = [n]), H = R \M the set of honest registered users, bad the event that
FkSSSLE sends (corrupted, R, eid) to Sn and (eid, j) the last message FκSSSLE store in his list. Clearly
there is a honest winner if and only if j ∈ [n] \M . Calling j′ the output of A we have that

Pr
[
j = j′|j ∈ H, ¬bad

]
≤ Pr [j = j′|¬bad]

Pr [j ∈ H|¬bad]
=

1

n
· n

n− τ
=

1

n− τ
.

Therefore the probability that the experiment succeed is

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1
]

= Pr
[
j = j′|j ∈ H, ¬bad

]
Pr [¬bad|j ∈ H] +

+ Pr
[
j = j′|j ∈ H, bad

]
Pr [bad|j ∈ H] ≤

≤ 1

n− τ
· Pr [¬bad|j ∈ H] + Pr [bad|j ∈ H] =

=
1

n− τ
+
n− τ − 1

n− τ
· Pr [bad|j ∈ H] ≤

≤ 1

n− τ
+ Pr [bad|j ∈ H] .
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To evaluate the last term we set p1 = Pr [j ∈ H|bad] and p2 = Pr [bad]. Then

Pr [bad|j ∈ H] =
Pr [j ∈ H|bad] Pr [bad]

Pr [j ∈ H]
=

=
Pr [j ∈ H|bad] Pr [bad]

Pr [j ∈ H|bad] Pr [bad] + Pr [j ∈ H|¬bad] Pr [¬bad]
=

= p1p2

(
p1p2 +

n− τ
n

(1− p2)

)−1

≤

≤ 1

2κ

(
1

2κ
+
n− τ
n

(1− 2−κ)

)−1

=

=
n

n+ (n− τ)(2κ − 1)
≤

≤ n

n− τ
1

2κ
≤ n

n− ϑ(n)

1

2κ
≤ max

n∈[N ]+1

(
n

n− ϑ(n)

)
1

2κ

where the first inequality follows from standard calculus techniques recalling that (p1, p2) ∈ [0, 1]×
[0, 2−κ].

C.3 UC-SSLE from Static and Parametrised SSLE

In this section we show how to realise FSSLE in the FκSSSLE-hybrid model when κ = Θ(λ). Although
the result and construction presented here are related to those in Section C.2 they are ultimately
incomparable due to the fact that now κ has the same size of the security parameter. As in previous
section the idea is to run several instances of FκSSSLE with different session ID associated to the
group of currently registered users.

Proposition 5. Protocol {P iSSLE : i ∈ [N ]} realises FSSLE in the FκSSSLE-hybrid model if κ = Θ(λ).

Proof. Below we provide a trivial simulator S such that FSSLE ◦ S is identical to the real protocol
up to negligible probability.
Description of S: Initially wait for Z to sendM ⊆ [N ] the set of corrupted parties. Upon receiving:

– A request to send (registered, i): broadcast (register_request) to malicious users as Pi. Let FSSLE

send his message.

– (register_request) from Pj : send (register) as Pj to FSSLE

– A request to send (revoked, i): broadcast (revoke_request) to malicious users as Pi. Let FSSLE send
his message.

– (revoke_request) from Pj : send (register) as Pj to FSSLE

– A request to send (won, eid,R), (lost, eid,R) messages: send (electing, R, eid) to Z:
Upon receiving (prob, R, eid, p): For j ∈M∩R, if (won, eid,R) was directed to Pj send (won, R, eid)
to Pj . If (lost, eid,R) was directed to Pj send (lost, R, eid). Let FSSLE send his messages
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Party P
(i)
SSLE realising FSSLE:

Initially set C,R← ∅:

– (register): Broadcast (register_request)

– (register_request) from Pj : Add R← R ∪ {j}; Return (registered, i)

– (revoke): Broadcast revoke_request

– (revoke_request) from Pj : Remove R← R \ {j}; Return (revoked, i)

– (elect, eid) with (eid, ·) /∈ C: order R = {r1, . . . , rn} and
[N ] \ R = {s1, . . . , sN−n}. If i = rk send (elect, R, eid) to FκSSSLE
as Pk. If i = sk execute FκSSSLE as P̄k. Add C ← C ∪ {(eid,R)}

– (won, sid, eid) from FκSSSLE: Return (won, eid, sid)

– (lost, sid, eid) from FκSSSLE: Return (lost, eid, sid)

– (reveal, eid): if (eid,R′) ∈ C, R′ = {r1, . . . , rn} and i = rk send
(reveal, eid) to FκSSSLE as Pk

– (result, sid, eid, j) from FκSSSLE: return (result, eid, sid, j)

– (rejected, sid, eid, j) from FκSSSLE: return (rejected, eid, sid, j)

– A request to send (result, eid,R, j): Broadcast (result, R, eid, j) to malicious players. Let FSSLE

send his message

– A request to send (rejected, eid,R, j): Broadcast (rejected, R, eid, j) to malicious players. Let FSSLE

send his message

– (reveal, eid) from Pj : Send (reveal, eid) to FSSLE

– (fake_rejected, R, eid, j) from Z: send (fake_rejected, eid, j) to FSSLE

It is easy to observe that the real protocol differ from FSSLE ◦ S only when some instance of FκSSSLE
returns (corrupted, R, eid) in the real execution. However, if we call L and upper bound on the
number of elections requested by Z then with a union bound the probability that in some election
FκSSSLE returns (corrupted, R, eid) is smaller than L · 2−κ that is negligible when κ = Θ(λ).
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D Postponed Proofs

D.1 Selective Security of FE for Orthogonality

Proof (of Proposition 1). We proceed with a sequence of hybrid games as in [Wee17]. Let x0 and
x1 be the message returned by A(1λ). Then define

– Hb
0: The selective security game where the challenger encrypts xb.

– Hb
1: Given k ∼ U(Fq), the challenge ciphertext is replaced by

c(1) =
(

[k]1 ,
[
k>(xb,1u + w1)

]
1
, . . . ,

[
k>(xb,nu + wn)

]
1

)
– Hb

2: As Hb
1 but the challenger aborts if a,k are proportional. Otherwise he computes â such that

a>â = 0 and k>â = 1 and set for w∗i ∼ U(F2
q)

mpk(2) =
(

[a]1 ,
[
a>u

]
1
,
[
a>w∗1

]
1
, . . . ,

[
a>w∗n

]
1

)
c(2) =

(
[k]1 ,

[
k>w∗1

]
1
, . . . ,

[
k>w∗n

]
1

)
sk

(2)
y =

[∑n

i=1
ryiwi − r(k>u)(x>b y) · â

]
2
, [r]2

– Hb
3: As Hb

2 but sky is generated by sampling a fresh δ ←$ Fq and returning

sk
(3)
y =

[∑n

i=1
ryiwi − δ(x>b y)â

]
2
, [r]2

The thesis follows if H0
0 is indistinguishable from H1

0. To this aim we argue that Hb
0,H

b
1 cannot be

distinguished if DDH is hard in G1, Hb
1,H

b
2 are statistically close, Hb

2,H
b
3 are indistinguishable as-

suming DDH is hard over G2 and H0
2,H

1
2 are equally distributed.

– Hb
0 − Hb

1. For any distinguisher D we define A breaking DDH over G1.

Adversary A(1λ, [α]1 , [β]1 , [γ]1) breaking DDH over G1

1 : Sample ρ←$ Fq and set [a]1 ← [(ρ, ρα)]1, [k]1 ← [(β, γ)]1

2 : Sample u,w1, . . . ,wn ←$ F2
q with a>u 6= 0 and run (x0,x1)←$ D(1λ)

3 : Compute mpk←
(
[a]1 ,

[
a>u

]
1
,
[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
4 : Set c←

(
[k]1 ,

[
k>(xb,1u + w1)

]
1
, . . . ,

[
k>(xb,nu + wn)

]
1

)
5 : Send D ← mpk, c

6 : When y← D: If only one of x>0 y,x>1 y is zero send D ←⊥. Else:

7 : Compute sky ←
[∑n

i=1 ryiwi

]
2
, [r]2 and send D ← sky

8 : When b′ ← D: Return b′.

Recall than in DDH1 calling s = βρ−1 ∼ U(Fq) then k = sa with s 6= 0 up to negligible prob-
ability, while a,k are uniform and independent in DDH0. Therefore in the first case A perfectly
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simulates Hb
0, while in the second Hb

1. As a consequence D has the same advantage of A that is
negligible.

– Hb
1 −Hb

2. Observe that in Hb
1, a,k are uniform over F2

q , hence the probability that k lies in the
linear span of a is q−1. Up to this negligible probability a,k are independent, so there exists a
unique vector â satisfying a>â = 0 and k>â = 1. Calling w∗i = wi + xi,b(k

>u) · â this is still
uniformly distributed and we obtain the distribution of game Hb

2 since

a>wi = a>(w∗i − xi(k>u) · â) = a>w∗i

k>(xi,bu + wi) = xi,b(k
>u) + k>(w∗i − xi,b(k>u) · â) = k>w∗i∑n

i=1
yiwi =

∑n

i=1
yi(w

∗
i − xi,b(k>u)) · â =

∑n

i=1
yiw

∗
i − (x>b y)(k>u) · â.

Hence the statistical distance from this two games is smaller than q−1.

– Hb
2−Hb

3. For any distinguisher D that query at most ` keys, we define A that plays against DDH`

over G2.

Adversary A(1λ, [r1]2 , . . . , [r`]2 , [σ]2 , [δ1]2 , . . . , [δ`]2) for DDH` over G2

1 : Sample a,k,w1, . . . ,wn ←$ F2
q, u←$ Fq and run D(1λ)→ (x0,x1)

2 : Compute â such that k>â = 1 and a>â = 0

3 : Set mpk←
(
[a]1 , [u]1 ,

[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
4 : Set c←

(
[k]1 ,

[
k>w1

]
1
, . . . ,

[
k>wn

]
1

)
and send D ← mpk, c

5 : The j-th time D → y: if only one of x>0 y, x>1 y is zero send D ←⊥. Else:
6 : Set sky ←

[∑n
i=1 rjyiwi − δj(x>b y) · â

]
2
, [rj ]2 and send D ← sky

7 : When D → b′, return b′.

Again up to negligible probability a,k are linearly independent and â can be computed. In this
case, when A receives a truly random tuple in DDH0

` it perfectly simulates Hb
3. Conversely in

DDH1
` δj = σrj . Since in Hb

2, u is uniform and a,k are linearly independent, the values a>u and
k>u are uniformly and independently distributed. Hence, replacing u = a>u and σ = k>u we
deduce that A in this case perfectly simulates Hb

2. It follows that D’s advantage is negligible as it
is smaller that A’s advantage plus a negligible term.

– H0
3 − H1

3. In this case observe that the only difference lies in the secret key associated to y.
However, if x>0 y = 0 = x>1 y in both worlds the key returned is [

∑n
i=1 ryiwi]2 , [r]2. If instead

x>0 y 6= 0 6= x>1 y then the key returned in H0
3 or H1

3 follows the same distribution of[∑n

i=1
ryiwi − δâ

]
2
, [r]2 .

To see this one can substitute δ = δ∗ · (x>b y) which remains uniformly distributed over Fq as
(x>b y) 6= 0. Finally if y is orthogonal to only one of x0,x1, ⊥ is returned in both experiments.

The proof is therefore concluded.
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D.2 Proof of Theorem 1

Proof. To prove the statement we have to provide a simulator S that interacts with FκSSSLE such
that for all environments Z, S ◦ FκSSSLE is indistinguishable from the real protocol.
Description of S: Initially generates mpk,msk←$ KS.Setup(1λ), the secret keys ski ←$ KS.KeyGen(i,msk)
and wait for M ←$ Z. Call i0 = min([N ] \M). Upon receiving

– (setup) from Pj : send (input,mpk, skj) to Pj

– (electing, eid) from FκSSSLE: send back (prob, eid, 0).

– (won, eid) to Pj from FκSSSLE: compute c←$ KS.Enc(j,mpk) and broadcast (challenge, eid, c). Let
FκSSSLE send (lost, eid) to honest users.

– (lost, eid) to Pj for all j ∈ M from FκSSSLE: compute c ←$ KS.Enc(i0,mpk) and broadcast
(challenge, eid, c). Let FκSSSLE send (won, eid) and (lost, eid) to honest users.

– a request to broadcast (result, eid, i): Simulate π ←$ NIZK.SDec(mpk, c, i) and broadcast (claim, eid, π).
Let FκSSSLE send (result, eid, i).

– (rejected, eid, i) from FκSSSLE: Broadcast (claim, eid,⊥) on behalf of Pi.

– (claim, eid, π) from Pj : if 1← NIZK.VDec(mpk, c, j, π) send (reveal, eid) to FκSSSLE as Pj . Otherwise
send (fake_reject, eid) to FκSSSLE.

We proceed to prove that S is the right simulator through a series of hybrid games. Let L be an
upper bound on the number of election Z requests through the honest parties. Then we define

– Hreal: the real protocol

– H0: as Hreal but all the NIZK proofs of honest parties are simulated.

– H1: as H0 but when all honest parties request (elect, eid), sample j ←$ [N ], c ← KS.Enc(j,mpk)
and store E ← E ∪ {(eid, j)}. Send (won, eid) to Pj if j /∈ M , (lost, eid) to the other player in
[N ] \M and to users in M broadcast (challenge, eid, c).
Furthermore when Pi send (reveal, eid) check if (eid, j) ∈ E and in this case, if i = j broad-
cast (result, eid, i) to honest players and (claim, eid, π) with a simulated π to malicious parties.
If i 6= j instead broadcast (rejected, eid, i) to honest players and (claim, eid,⊥) to malicious parties.

– H2: as H1 but when Pj sends (claim, eid, π) each honest player return (result, eid, j) if π is accepted
and (eid, j) ∈ E, (rejected, eid, j) otherwise.

– H`
3: As H2 but in the first ` elections if j /∈M then c← KS.Enc(i0,mpk)

Hreal ≡ H0: From the perfect zero knowledge property of the NIZK arguments used the two games
produces identically distributed transcripts.
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H0 ≡ H1: To prove that these two games are behaviourally identical we begin showing that (eid, i) ∈
E if and only if 1← KS.Dec(c, i,mpk, ski). Assuming (eid, i) ∈ E then c is the encryption of i and
in particular by correctness 1 ← KS.Dec(c, i,mpk, ski). Conversely let c be the encryption of j and
assume that 1← KS.Dec(c, i,mpk, ski). Then again by correctness j = i, that is (eid, i) ∈ E.
We remark that in H0 during reveal request, if the decryption algorithm returns 1 then the claim
is always accepted by honest parties because of the perfect completeness of (NIZK.PDec,NIZK.VDec).

H1 ≡ H2: By the soundness property we can assume, up to negligible probability, that all the state-
ments proved through accepted NIZK arguments are true. Conditioning to this event the two games
are then identical since each time (claim, eid, π) sent by Pj is accepted by honest players then, calling
(eid, c) ∈ C, there exists sk such that (mpk, c, j, sk) ∈ RDec (see Section 2.7). Therefore

(mpk, i, sk) ∈ Lkey, 1← KS.Dec(c, i,mpk, sk)

In particular if (eid, j) ∈ E then c is an encryption of j and by the definition of Lkey we deduce
that j = i. In conclusion we showed that each time π is accepted (eid, j) ∈ E and therefore adding
this internal check does not change the behaviour of the game.

H`
3 ≡ H`−1

3 : We reduce the indistinguishability of these two games to the selective security of the
underlying encryption scheme, i.e. given a distinguisher D we define an algorithm A breaking the
selective security.
Description of A: Initially run M ←$ D, set i0 = min([N ] \M) and sample i1 ←$ [N ] \M . Send
(i0, i1) to the challenger and wait for (mpk, c∗). The request the secret key skj associated to the
keyword j for all j ∈M . Initialise ectn← 0, E,C ← ∅ and run D until it returns

– (setup) on behalf of Pj : send (input,mpk, skj).

– (elect, eid) from all honest parties: set ecnt ← ecnt + 1 and sample j′ ←$ [N ]. If j′ ∈ M set
c← KS.Enc(j,mpk) and j ← j′ else if j′ /∈M

If ecnt < ` : c←$ KS.Enc(i0,mpk), j ← j′

If ecnt = ` : c← c∗, j ← i1

If ecnt > ` : c←$ KS.Enc(j,mpk), j ← j′.

Send (won, eid) to Pj if j /∈ M , (lost, eid) to the other honest parties and (challenge, eid, c) to
corrupted players. Store E ← E ∪ {(eid, j)} and C ← C ∪ {(eid, j)}.

– (reveal, eid) from Pi with (eid, j) ∈ E: If j 6= i broadcast (rejected, eid, i) to honest and (claim, eid,⊥
) to dishonest parties. If j = i find (eid, c) ∈ C, simulate π ← NIZK.SDec(mpk, c, i) and broadcast
(result, eid, i) to honest and (claim, eid, π) to malicious users.

– (claim, eid, π) from Pj with (eid, c) ∈ C and (eid, j′) ∈ E: If j = j′ and 1←$ NIZK.VDec(mpk, c, j, π)
broadcast to honest users (result, eid, j). Otherwise broadcast (rejected, eid, j).

– a bit b: Return b.
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Proof of Claim: By inspection it’s clear that A behaves as in H`
3 or H`−1

3 when D sends setup, reveal
or claim requests. The same applies to elect messages when enct 6= `. When ecnt = ` instead we
begin observing that j is uniform. Indeed for any α ∈ [N ], if α ∈M

Pr [j = α] = Pr
[
j = α|j′ ∈M

]
Pr
[
j′ ∈M

]
+ Pr

[
j = α|j′ ∈ [N ] \M

]
Pr
[
j′ ∈M

]
= Pr

[
j′ = α|j′ ∈M

]
Pr
[
j′ ∈M

]
= Pr

[
j′ = α

]
= 1/N.

Similarly for all α ∈ [N ] \M

Pr [j = α] = Pr
[
j = α|j′ ∈M

]
Pr
[
j′ ∈M

]
+ Pr

[
j = α|j′ ∈ [N ] \M

]
Pr
[
j′ ∈M

]
= Pr [i1 = α] Pr

[
j′ ∈ [N ] \M

]
=

1

N − |M |
· N − |M |

N
=

1

N
.

Finally call iβ the message chosen by the challenger. When β = 1 and j′ /∈ M then c contains the
encryption of i1 = j therefore A perfectly simulates H`−1

3 . Conversely when β = 0 and j′ /∈ M the
c contains the encryption of i0 as in H`

3. It follows that D has the same advantage of A, that is
negligible.

HL
3 ≡ S ◦ FκSSSLE: follows by inspection.

D.3 Proof of Theorem 2

Proof (Proof of Theorem 2). In order to prove the statement we must provide a simulator S
that interacts with FκSSSLE such that the protocol is indistinguishable from S ◦ FκSSSLE for any PPT
environment Z that statically corrupts strictly less than t players. Intuitively we use the security of
Threshold Elgamal and the UC-commitment to make the simulator alter the message contained in
the `-th ciphertext. If an honest party wins, this choice will be uniformly random. As this message
cannot be decrypted by anyone with overwhelming probability, by selective security of the underly-
ing FE scheme Z can’t distinguish it from the encryption of a vector associated to a honest player.
Reveal request are then handled simulating the associated proof and the message m properly.
A detailed description of S is provided below, where we omit to specify the behaviour of honest
parties when this equals the correct one. We remark however that S can always simulate it as he
initially generates all the public and private parameters.

Description of S: Initially wait M from Z and forward it to FκSSSLE. Set B ← ∅, generate
mpk,msk ←$ FE.KeyGen(1λ), skφ(m),m ← FE.KeyGen((1,m),msk) and ski ← (ski,m)m∈φ−1(i). Sam-
ple f ←$ Fq[x]<t, g ←$ G1 call σ ← f(−1) and compute h ← gσ, ki ← gf(i). Set pp ←
(mpk, g, h, k0, . . . , kN−1) and spi ← (ski, f(i)). Upon receiving:

1. (setup) from Pj : sends (input,mpk, spj) to Pj

2. (electing, eid) from FκSSSLE: Set p the probability that a random committee is malicious and send
(prob, eid, p) to FκSSSLE

3. A request to send (won, eid), (lost, eid) from FκSSSLE: If FκSSSLE is sending (won, eid) to Pj , j ∈M ,
then set j∗ ← j, otherwise set j∗ ←⊥. Sample Q ⊆ [N ] \ D such that Q * M and broadcast
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(tossed, eid,Q). Simulate honestly all player but Pi with i = min(Q \M). For Pi:
Sample α, β, γ, si ←$ Fq and v1, v2 ←$ G1. Initialise cnt← 1 set

u1 ← gα, u2 ← gβ, v3 ← gγ , v4 ← hγ

G̃i ← v3, H̃i ← v4, Ri ← u1, c̃1,i ← u2

and simulate πiRng, π
0,i
DDH. Upon receiving

3.1. (commit, eid||0, G̃j , H̃j , Rj , c̃1,j , π
j
Rng, π

j
DDH) from all Pj , j ∈ Q ∩M : For all j with accepting

proofs extract mj as the discrete logarithm of R−σj c̃1,j with base
[
a>u

]
1
.

3.2. (open, eid||0) form all Pj , j ∈ Q ∩M : Run Pi setting

Gi ← v1 ·
∏

j 6=i
G̃αj , c1,i ← v2 ·

∏
j 6=i

Rγσj

c0,i ←
[
sia
>u
]

1
, c2,i ←

[
sia
>(w2 − u)

]
1

and simulating π1,i
DDH, π

2,i
DDH, π

3,i
DDH. (recepit, eid||cnt).

3.3. (commit, eid||cnt, Hj , π
3,j
DDH), (msg, Gj , c0,j , c1,j , c2,j , π

1,j
DDH, π

2,j
DDH) from Pj , j ∈ Q∩M : If all the

proofs are accepted set m←
∏
j 6=imj , J ←

∏
j 6=i G̃j .

If j∗ =⊥ set Hi ←$ G1. Otherwise find mi ∈ [N ] such that φ(m+mi) = j∗ and set

Hi ←
(∏

j 6=i
Hβ
j

)
· v2 ·

[
−sia>((m+mi)u + w1)

]
1
·
[
x−1a>(miu + w1)

]
J
.

Store B ← B ∪ {(eid,m)} and broadcast (decom, eid||cnt, i,Hi, π
3,i
DDH).

Conversely if some proof is rejected update cnt← cnt + 1 and restart from the previous point.

3.4. (open, eid||cnt) or error from Pj for all j ∈ Q ∩M : Instruct FκSSSLE to send (elect, eid).

3.5. (error) from Pj : Execute all parties honestly. If Q = ∅ simulate correctly Fκ,DCT

4. (corrupted, eid) from FκSSSLE: Sample Q ⊆ M and broadcast (tossed, eid,Q). During the protocol
using σ extract mj for all j ∈ Q.
If the election succeed before Q = ∅ set m ←

∑
j∈Qmj , add B ← B ∪ {(eid,m)} and send

(infl, eid, φ(m)).

5. (result, eid, j) from FκSSSLE: Find (eid,m′) ∈ B, set m ∈ [N ] +m′ such that φ(m) = j, simulate π
from NIZK.SDec and broadcast (claim, eid, π,m). Instruct FκSSSLE to send (result, eid, j).

6. (claim, eid, π,m) from Pj : If φ(m) = j and π is accepted, send (reveal, eid) to FκSSSLE as Pj ,
otherwise send (fake_rejected, eid, j) to FκSSSLE.

Next, called L the maximum number of election that Z requests through honest parties, we provide
a sequence of hybrid games H0

0, . . . ,H
3
` where H

`
· modifies the `-th election when Q *M by altering

the messages sent by Pi with i = min(Q\M). To avoid repetitions observe that messages contained
in the first commitment sent in a committee, i.e. G̃j , H̃j , Rj , c̃1,j , uniquely identifies sj , rj ,mj ∈ Fq
such that G̃j = gsj , Rj = grj , c̃1,j = hrj

[
mja

>u
]
1
.
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– Hreal the real protocol.

– H0
0 as Hreal but Pi simulates all the NIZK arguments.

– H`
0 as H`−1

0 , but Pi samples u1, u2 ←$ G1, sets Ri ← u1, c̃1,i ← u2

[
mia

>u
]
1
, updates s ←∑

j∈Q\{i} and sets
Gi ← us1u

si
1 , Hi ← us2u

si
2

– H0
1 = HL

0 . H`
1 as H`−1

1 , but Pi samples v1, v2, v3 ←$ G1, θ ←$ Fq calls v4 ← vσ3 , where σ ∈ Fq such
that h = gσ, updates s←

∑
j∈Q\{i} sj , r ←

∑
j∈Q\{i} rj , m←

∑
j∈Q\{i} and sets

G̃i ← v3, H̃i ← v4, Gi ← us1v1, Hi ← us2v2

c1,i ← vr4v2

[
sia
>((m+mi)u + w1)

]
1

– H0
2 = HL

1 . H`
2 as H`−1

2 , but Pi sets

c̃1,i ← u2, c1,i ← vr4v2, Hi ← us2v2

[
−sia>((m+mi)u + w1)

]
1

[
−smia

>u
]

1

– H?
2 as HL

2 , but initially call B,E ← ∅ and during the election with ID eid set m←
∑

j∈Q\{i}mj

and add E ← E ∪ {(eid, φ(m+mi))}, B ← B ∪ {eid,m}.
For each (reveal, eid) request to Pj , if (eid, j) ∈ E broadcast (results, eid, j) to honest players.
Moreover given (eid,m) ∈ B, compute m′ ∈ [N ] such that φ(m + m′) = j∗, simulate π and
broadcast (claim, eid, π,m+m′) to malicious parties.

– H0
3 = H?

2. H`
3 as H`−1

3 but initially set B,E ← ∅. In the `-th election Pi samples a random
j∗ ←$ [N ] and add E ← E ∪ {(eid, j∗)}, B ← B ∪ {(eid,m)}. If j∗ ∈M sets mi ∈ [N ] such that
φ(m+mi) = j∗, otherwise sets Hi ←$ G1.

– H4 as HL
3 , but each time a malicious player Pj request (claim, eid, π,m), honest parties reply with

(result, eid, j) after checking (eid, j) ∈ E, φ(m) = j and that π is accepted by NIZK.VDec

Hreal ≡ H0
0 : The two games follows the same distribution since the arguments used have perfect

HVZK.

H`−1
0 ≡ H`

0 : Given a PPT distinguisher D, we provide an algorithm A that breaks DDH with almost
the same advantage.
Description of A(1λ, [α]1 , [β]1 , [γ]1): Samples ρ←$ Fq and computes

(g, h, û1, û2)← ([ρ]1 , [ρα]1 , [β]1 , [γ]1).

Runs M ←$ D, wlog with |M | = t − 1. It initializes a counter ecnt ← 0, generates mpk,mpk ←$

FE.Setup(1λ) and ski for all i ∈ [N ], samples fj ←$ Fq and sets kj ← gfj . Calling λ−1, λj the
Lagrange coefficients to evaluate a polynomial in i from evaluations in M ∪ {−1}, A evaluates
ki = hλ−1

∏
j∈M k

λj
j for all i ∈ [N ] \M and sets pp ← (mpk, g, h, k0, . . . , kN−1), spj ← (skj , fj) for

j ∈M . It then executes D until it returns:
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1. (setup) as Pj : send (input, eid, pp, spj) to Pj
2. (elect, eid) or (toss, eid) from all parties: update ecnt ← ecnt + 1 and simulate Fκ,DCT returning

(tossed, eid,Q). If ecnt ≤ ` and Q *M let i = min(Q \M) and set

If ecnt < ` : u1, u2 ←$ G1

If ecnt = ` : u1, u2 ← û1, û2.

In this case execute Pi setting Ri ← u1, c̃1,i ← u2

[
mia

>u
]
1

2.1. (commit, eid||0, G̃j , H̃j , Rj , c̃1,j , π
j
Rng, π

0,j
DDH) or error from all Pj with j ∈ Q \M : extract from

the accepted π0,j
DDH and πjRng values sj , rj ,mj ∈ Fq such that G̃j = gsj , Rj = grj , c̃1,j =

hrj
[
mja

>u
]
1
.

2.2. (open, eid||0) or error from all Pj , j ∈M ∩Q: If ecnt ≤ ` keep executing Pi simulating the proofs
π0,i
DDH, π

1,i
DDH and setting

s←
∑

j∈Q\{i}
sj , Gj ← us+si1 , Hj ← us+si2 .

2.3. (msg, eid||cnt, Gj , c0,j , c1,j , c2,j , π
1,j
DDH, π

2,j
DDH) and (commit, eid||cnt, Hj , π

3,j
DDH) or error from all

Pj , j ∈ Q ∩M : Run all parties honestly
2.4. (open, eid||cnt) or error from all Pj , j ∈ Q ∩M : Call A ⊆ Q ∩M the set of parties who sent

error or got π3,j
DDH rejected. If A 6= ∅, for all i ∈ [N ] \M set

G←
∏

j∈A
Gj , rA ←

∑
j∈A

rj , s←
∑

j∈Q
sj , Ki ← ksrAi ,

simulate π4,i
DDH and send (recon, eid,Ki, π

4,i
DDH).

3. (reveal, eid) to Pi: Execute Pi normally
4. (claim, eid, π,m): Execute honest parties normally
5. a bit b: Return b.

Proof of Claim: First of all we remark that public and private parameters are correctly distributed
because, calling σ ∈ Fq s.t. h = gσ, the joint distribution σ, (fj)j∈M is uniform over Ftq and, since
the interpolation is an isomorphism between Ftq and Fq[x]<t, there exists a unique polynomial
f ∼ U(Fq[x]<t) such that f(−1) = σ and f(j) = fj . Moreover, by the properties of the Lagrange
coefficients

ki = hλ−1
∏

j∈M
k
fj
j =

[
λ−1f(−1) +

∑
j∈M

λjf(j)
]
g

= [f(i)]g .

Next by the simulation soundness property, up to a negligible probability ε all the statements proved
through an accepted NIZK argument are true. It follows that the reconstructions are correct because
Gj = G̃rj = gsrj ⇒

⇒ G =
∏

j∈A
gsrj = [srA]g ⇒ Gf(i) = gf(i)srA = ksrAi = Ki

Finally, under the above condition, A perfectly simulates H`
0 when executed in DDH0 while in DDH1

it simulates H`−1
0 because calling ri = ρ−1β ∼ U(Fq) then û1 = gri , û2 = hri . As a consequence in

the `-th election Pi’s messages are of the form Ri = gri , c̃1,i = hri
[
mia

>u
]
1
,

Gi = g(s+si)ri =
∏

j∈Q
G̃rij , Hi = h(s+si)ri =

∏
j∈Q

H̃ri
j
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It follows that D distinguishes the two world with advantage smaller than the advantage of A plus
ε(λ).

H`−1
1 ≡ H`

1: Given a PPTdistinguisher D, we provide an algorithm B that breaks DDH3 with almost
the same advantage.
Description of B((û1, û2, g), v̂0, (v̂1, v̂2, v̂3)): Run M ←$ D, wlog with |M | = t − 1. It initializes
a counter ecnt ← 0, generates mpk,msk ←$ FE.Setup(1λ) and ski for all i ∈ [N ], samples f ←$

Fq[x]<t and evaluates h ← gf(−1), ki ←$ gf(i). Finally it calls pp ← (mpk, g, h, k0, . . . , kN−1),
spi ←$ (ski, f(i)) and executes D until it returns:

1. (setup) as Pj : send (input, pp, spj) to Pj .

2. (elect, eid) or (toss, eid) from all parties: update ecnt ← ecnt + 1 and simulate Fκ,DCT returning
(tossed, eid,Q). If Q *M let i = min(Q \M), call

If ecnt < ` : u1, u2, v1, v2, v3 ←$ G1

If ecnt = ` : u1, u2, v1, v2, v3 ← û1, û2, v̂1, v̂2, v̂3

If ecnt > ` : u1, u2 ←$ G1, si ←$ Fq, v0, v1, v2, v3 ← gsi1 , u
si
1 , u

si
2 , g

si

and set v4 ←$ v
f(−1)
3 . Moreover in this case executes Pi setting G̃i ← v3, H̃i ← v4, Ri ← u1,

c̃1,i ← u2

[
mia

>u
]
1
.

2.1. (commit, eid||0, G̃j , H̃j , Rj , c̃1,j , π
j
Rng, π

0,j
DDH) or error from all Pj with j ∈ Q\M : extract from the

accepted arguments π0,j
DDH and πjRng values sj , rj ,mj ∈ Fq such that G̃j = gsj , Rj = grj , c̃1,j =

hrj
[
mja

>u
]
1
.

2.2. (open, eid||0) or error from all Pj , j ∈ M ∩ Q: keep executing Pi simulating its proofs, calling
s←

∑
j∈Q\{i} sj , r ←

∑
j∈Q\{i} rj , m←

∑
j∈Q\{i}mj and setting Gi ← us1v1, Hi ← us2v2,

c0,i ← [a]v0
, c1,i ← vr4v2

[
a>((m+mi)u + wi)

]
v0

, c2,i ←
[
a>(w2 − u)

]
v0

2.3. (msg, eid||cnt, . . .) and (commit, eid||cnt, . . .) or error for all dishonest players in Q: Run all par-
ties honestly.

2.4. (open, eid||cnt) or error from all dishonest players in Q: Run all parties honestly.

3. (reveal, eid) to Pi: Execute Pi normally.

4. (claim, eid, π,m): Execute honest parties normally.

5. a bit b: Return b.

Proof of Claim: this time B can run honest parties both on reconstruction phases and on reveal
requests because initially it generates all the public and private parameters, not only the secret keys
of the encryption scheme.
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As before up to negligible probability ε, we assume that all the statements associated to accepted
argument are true. Next, since H`−1

1 ,H`
1 differs only in the `-th election, we show that when ecnt 6= `,

B sends to D the right distribution of messages. For ecnt < `, Pi’s message follows the right
distribution by inspection. For ecnt > `, Pi’s initial messages are

G̃i = gsi , H̃i = gf(−1)si = hsi , Ri = u1, c̃1,i = u2

[
mia

>u
]

1
.

Analogously for the subsequent messages Gi = us1u
si
1 , Hi = us2u

si
2 , c0,i =

[
sia
>u
]
1
, c2,i =[

sia
>(w2 − u)

]
1
and

c1,i = hrsiusi2

[
a>((m+mi)u + w1)

]
1

=

=
([

a>w1

]
1
· u2

[
mia

>u
]

1
·
∏

j 6=i
hrj
[
mja

>u
]

1

)si
=

=
([

a>w1

]
1
·
∏

j∈Q
c̃1,j

)si
= c̃si1 .

Therefore also in this case messages follows the right distribution.
Finally when B is executed in DDH1

3, there exists an si ∼ U(Fq) such that (v̂0, v̂1, v̂2, v̂3) =
(g1, û1, û2, g)si with û1, û2 ∼ U(G1). The same arguments used above shows that B perfectly simu-
lates H`−1

1 .
Conversely in DDH0

3 all received values are random, therefore the `-th election is carried out in the
same way as the first `− 1 elections and consequently B simulates H`

1. It follows that D’s advantage
is smaller that B’s plus ε.

H`−1
2 ≡ H`

2: To prove that the two game are equally distributed is enough to consider in the α-th
election the bijection over G2

1:

(u2, v2) 7→
(
u2

[
−mia

>u
]

1
, v2

[
−sia>((m+mi)u + w1)

]
1

)
.

Applying this map to u2, v2 in the `-th election shows that the two game have the same distribution.

HL
2 ≡ H?

2 We show that the two games are identically distributed through the perfect completeness
of the NIZK argument used to prove RDec. In particular we need to prove that (eid, j) ∈ E if and
only, calling c the ciphertext produced during the election with ID eid,

∃m ∈ φ−1(j) : FE.Dec(c, (1,m),mpk, skj,m)→ 1.

If (eid, j) ∈ E this means that c is the encryption of (m,−1) with j = φ(m). In particular the key
skj,m decrypts c because (m,−1)>(1,m) = 0. Moreover this key is generated through the key deriva-
tion algorithm, therefore (mpk, (1,m), skj,m) ∈ Lkey. In conclusions π ←$ NIZK.PDec(mpk, c, (1,m), skj,m)
is later accepted since the arguments belong to RDec.
Conversely, assuming that there exists a key skj,m that decrypts c, calling (m′,−1) by correctness
(m′,−1)>(1,m) = 0 that is m = m′ and therefore (eid, j) = (eid, φ(m′)) ∈ E.

H`−1
3 ≡ H`

3: Given a PPTdistinguisher D we build an algorithm C that breaks the selective security
of the underlying FE scheme.
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Description of C: Initially runs M ← D, samples m̄0 ←$ φ−1([N ] \M) and m̄1 ←$ Fq \ φ−1(M).
Sends (m̄0,−1), (m̄1,−1) to the challenger and waits for his reply (mpk, ĉ0, ĉ1, ĉ2), then requests
secret keys skφ(m),m for vectors (1,m) with m ∈ φ−1(M). Initializes a counter ecnt ← 0, and two
sets B,E ← ∅, samples f ←$ Fq[x]<t, g ←$ G1 and computes h = gf(−1), ki = gf(i). Called
pp← (mpk, g, h, k0, . . . , kN−1) and spj ← (skj , f(j)), runs D until it returns:

1. (setup) as Pj : send (input, pp, spj) to Pj .

2. (elect, eid) from all honest parties: update ecnt← ecnt+1 and simulate Fκ,DCT returning (tossed, eid,Q).
If Q * M call i = min(Q \M), sample u1, u2, v1, v2, v3 ←$ G1 and set v4 = v

f(−1)
3 . Execute Pi

simulating its proof and setting

G̃i ← v3, H̃i ← v4, Ri ← u1, c̃1,i ← u2

2.1. (commit, eid||0, G̃j , H̃j , Rj , c̃1,j , π
j
Rng, π

0,j
DDH) or error from all Pj with j ∈ Q \M : extract from

the accepted arguments sj , rj ,mj .

2.2. (open, eid||0) or error from all Pj , j ∈ M ∩ Q: Keep executing Pi simulating its arguments,
calling s←

∑
j∈Q\{i} sj , r ←

∑
j∈Q\{i} rj and setting Gi ← us1v1, c1,i ← vr4v2,

If ecnt 6= ` c0,i ← [sia]1 , c2,i ←
[
sia
>(w2 − u)

]
1

If ecnt = ` c0,i ← ĉ0, c2,i ← ĉ2,i

2.3. (msg, eid||cnt, Gj , c0,j , c1,j , c2,j , π
1,j
DDH, π

2,j
DDH) and (commit, eid||cnt, Hj , π

3,j
DDH) or error from all

Pj , j ∈ Q ∩M : Run all parties honestly.

2.4. (open, eid||cnt) or error from all Pj , j ∈ Q ∩M . Add B ← B ∪ {(eid,m)}.
If ecnt < ` : If m̄0 −m /∈ [N ] return a random bit and halt. Otherwise sample j∗ ←$ [N ] and
add E ← (eid, j∗). Find the only mi ∈ [N ] such that φ(m+mi) = j∗ and set

If j∗ /∈M : Hi ←$ G1.

If j∗ ∈M : Hi ← us2v2

[
−sia>((m+mi)u + w1)

]
1

[
−smia

>u
]

1
.

If ecnt = ` : sample j∗ ←$ [N ], find the only mi ∈ [N ] such that φ(m+mi) = j∗ and set

If j∗ /∈M : j ← φ(m̄0), Hi ← us2v2 · ĉ−1
1

[
−s(m̄0 −m)a>u

]
1

If j∗ ∈M : j ← j∗, Hi ← us2v2

[
−sia>((m+mi)u + w1)

]
1

[
−smia

>u
]

1
.

Finally add E ← E ∪ {(eid, j)}.
If ecnt > ` : add E ← E ∪ {(eid, φ(m+mi))} and set Hi normally, i.e.

Hi ← us2v2

[
−sia>((m+mi)u + w1)

]
1

[
−smia

>u
]

1
.

Send i′ ∈ [N ] \ φ−1(M) send to Pi′ (lost, eid) if i′ 6= j or (won, eid) otherwise.
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3. (reveal, eid) to Pi: If (eid, i) ∈ E and (eid,m) ∈ B findm′ ∈ [N ] such that φ(m+m′) = i, simulate
π and send (claim, eid, π,m+m′) to dishonest players and (results, eid, i) from honest ones.

4. (claim, eid, π,m) as Pj : Execute honest parties normally.

5. a bit b: Return b.

Proof of Claim: Initially observe that the coinciding phases of H`−1
3 and H`

3 are performed correctly
by C. First of all the public parameters are correct by inspection, while all the requests to skφ(m),m

for m ∈ φ−1(M) are accepted by the challenger because both m̄1, m̄2 /∈ φ−1(M), therefore

(m̄0,−1)>(1,m) = m̄0 −m 6= 0 (m̄1,−1)>(1,m) = m̄1 −m 6= 0.

Also reveal and claim requests are handled correctly as in H∗2.
Moving to the election phases, all the steps but the last one follows the right distribution. This is
clearly true when ecnt 6= `. To deal with the case ecnt = `, let us call β the plaintext chosen by the
challenger and si ∼ U(Fq) such that

ĉ0 = [sia]1 , ĉ1 =
[
sia
>(m̄βu + w1)

]
1
, ĉ2 =

[
sia
>(w2 − u)

]
1
.

Then it follows that even when ecnt = `, c0,i and c2,i are correctly distributed. Regarding the last
step instead when ecnt 6= `, the generation of Hi and the update of B,E is performed as prescribed
in H`−1

3 , H`
3. Next we show that Pr [m̄0 −m ∈ [N ]] = 1/κ.

Pr [m̄0 ∈ m+ [N ]] =
|(m+ [N ]) \ φ−1(M)|
|[N ] \ φ−1(M)|

=
N − T

κ(N − T )
=

1

κ−1
.

When β = 0 and the check m̄0−m ∈ [N ] passes, C perfectly simulates H`−1
3 because in the `-th

election, it produces Hi of the form

us2v2

[
−sia>((m+mi)u + w1)

]
1

[
−si(mi)a

>u
]

1

with mi = m̄0 −m ∈ [N ] when j∗ /∈M and mi ∈ [N ] such that φ(mi +m) = j∗ when j∗ ∈M . To
conclude we need to show that mi ∼ U([N ]) or equivalently that mi +m ∼ U([N ] +m).
To prove the latter, for all a ∈ [N ] +m, if φ(a) /∈M then

Pr [mi +m = a] = Pr [m̄0 = a|m̄0 −m ∈ [N ], j∗ /∈M ] Pr [j∗ /∈M ] +

+ Pr [m+mi = a|j∗ ∈M ] Pr [j∗ ∈M ] =

=
Pr [m̄0 = a] Pr [j∗ /∈M ]

Pr [m̄0 −m ∈ [N ]]
=

κ

κ(N − |M |)
· N − |M |

N
=

1

N

where in the second equality, the second term is zero because if m + mj = a then j∗ = φ(a) /∈ M .
Conversely if φ(a) ∈M then

Pr [m+mi = a] = Pr [m̄0 = a|m̄0 −m ∈ [N ], j∗ /∈M ] Pr [j∗ /∈M ] +

+ Pr [m+mi = a|j∗ ∈M ] Pr [j∗ ∈M ] =

= Pr [φ(a) = j∗|j∗ ∈M ] Pr [j∗ ∈M ] = Pr [φ(a) = j∗] =
1

N
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where the first term is zero because φ(a) ∈ M but φ(m̄0) /∈ M . Moreover the first equality holds
because j∗ ∈ M implies that m + mi = a ∈ [N ] + m if and only if φ(a) = j∗. Therefore under the
above conditions C simulates H`−1

3 . As a consequence, called ck the event m̄0−m ∈ [N ] and E(`−1)
the event that D returns 0 when executed with H`−1

3 then

Pr [C → 0|β = 0] = Pr [C → 0|β = 0, ck] Pr [ck] + Pr [C → 0|β = 0, ¬ck] Pr [¬ck]

= Pr [E(`− 1)]
1

κ
+
κ− 1

2κ
.

Conversely when β = 1, we claim that C produces a distribution statistically close to the one D
observes in H`

3. With our previous considerations in mind it is enough to prove, recalling a>u 6= 0
and si 6= 0, that upon conditioning on all other messages sent by C, Hi in the `-th election is
statistically close to a uniformly distributed H∗i . We remind that in this case H∗i is equal to

Hi = us2v2

[
−sia>(m̄1u + w1)

]
1

[
−s(m̄0 −m)a>u

]
1

= us2v2

[
−sia>w1 − s(m̄0 −m)a>u

]
1

[
−sia>u

]m̄1

1
.

By Proposition 1 to conclude we only have to show that
[
−sia>a

]m̄1

1
is statistically close to the

uniform distribution. This follows as exponentiating a fixed generator, in this case
[
−sia>u

]
1
,

defines a bijection between Fq and G1. Now, m̄1 ∼ U(Fq \ φ−1(M)) so given a uniformly random
x ∼ Fq

∆(m̄1, x) =
|φ−1(M)|

q
=

κT

q

that is negligible. It follows that the claim is true and in particular the statistical distance between
the view simulated by C and the actual view of H`

3 by Proposition 5 is smaller than ε = (κT )q−1.
Calling E(`) the event D returns 0 in H`

3 and Ẽ(`) the event D returns 0 when executed by D with
β = 1 and m̄0 −m ∈ [N ] then by Propositions 2 and 4∣∣∣Pr [E(`)]− Pr

[
Ẽ(`)

]∣∣∣ ≤ ε.
Now, with the same steps used in the case β = 0

Pr [C → 0|β = 1] = Pr [C → 0|β = 1, ck] Pr [ck] + Pr [C → 0|β = 1, ¬ck] Pr [¬ck]

= Pr
[
Ẽ(`)

] 1

κ
+
κ− 1

2κ

In conclusion

|Pr [E(`− 1)]− Pr [E(`)]| ≤
∣∣∣Pr [E(`− 1)]− Pr

[
Ẽ(`)

]∣∣∣+
∣∣∣Pr
[
Ẽ(`)

]
− Pr [E(`)]

∣∣∣
≤ κ |Pr [C → 0|β = 0]− Pr [C → 0|β = 1]|+ ε

Therefore the advantage of D is negligible.

HL
3 ≡ H4: Every time a malicious Pj request (claim, eid, π,m) such that φ(m) = j and π is accepted

by NIZK.VDec then (eid, j) ∈ E. Let c be the ciphertext produced in the election eid. From the
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simulation soundness of π, up to negligible probability NIZK.VDec(mpk, c, (1,m), π) → 1 implies
that there exists sk with (mpk, sk, (1,m)) ∈ Lkey such that

FE.Dec(c, (1,m),mpk, sk) = 1.

From the definition of Lkey, calling (m′,−1) the message encrypted in c, (m′,−1)>(1,m) = 0
that is m = m′ and in particular φ(m′) = φ(m) = j. If (eid, j∗) ∈ E with j∗ /∈ M and if the
committee wasn’t fully dishonest then m′ was chosen randomly over Fq, even though this happens
with probability

Pr
[
φ(m′) = j

]
=
|φ−1(j)|

q
=

κ

q

that is negligible. Conversely if a dishonest committee produced c, then φ(m′) = j∗ implies j∗ = j.
Finally if j∗ ∈ M then by construction φ(m′) = j∗ which again implies j∗ = j and in particular
(eid, j) ∈ E as claimed.

H4 ≡ S ◦ FκSSLE: Follows by inspection.

D.4 Proof of Theorem 3

Proof. As in the proof of Theorem 2 we need to show that there exists a simulator such that S◦FSetup

is indistinguishable from the real protocol for any Z satisfying the hypothesis.

Description of S: Initially wait for M ←$ Z. For all i ∈ [N ] \M sample xi ← F2
q , set ĥi ← [xi]2,

πiLin ← NIZK.PLin(g2, ĥi,xi) and broadcast (recepit,⊥, i). Wait for (commit,⊥, ĥj , πjLin) or error from
Z on behalf of Pj for all j ∈M and broadcast (decom,⊥, i, ĥj , πjLin). Finally wait for (open,⊥) from
Z on behalf of Pj for all j ∈ M and add to D player who sent error or got πjLin rejected. Upon
receiving:

1. (share_request, sid) from Pj : Send (setup, sid) to FSetup. When it replies (input, pp, spj) with
pp = msk, g, h, (si)

N−1
i=0 , f(j), send (share, sid, g, h, (si)

N−1
i=0 , f(j)) to Pj .

2. A request to send (input, sid) to Pi form FSetup: Stop the message. When this has happened for
all honest parties, send (setup, sid) to FSetup for all j ∈ M and wait for (input, pp, spj). Parse
pp = mpk, g, h, (si)

N
i=0 and spi = skj , f(j) with

mpk = k̂, k̂0, k̂1, k̂2, skj = (skj,m)m∈φ−1(j), skj,m = (d̂m, d̂m)

SampleR←$ {0, 1}λ, d̂m ←$ G2 for allm ∈ [κN ]\φ−1(M) and programH(R) = (k̂, k̂0, dm)m∈[κN ].
Simulate Fλ,D,1CT returning (tossed, sid,Q,R) and abort if Q ⊆M .
Set i = min(Q \M), simulate all parties honestly besides Pi and broadcast (recepit, sid, i) from
both FCom and FLin

Czk

2.1. (commit, sid,Gj,ψ(m), Cj,m, π
j,ψ(m)
DDH ), (prove, sid,k, (kj,1, kj,2), (wj,1,wj,2)) or error from Pj , ∀j ∈

Q ∩M : Run Pi sampling wi,1,wi,2 ←$ F2
q , ri,ψ(m) ←$ Fq and setting

ki,1 ← k̂1 · kwi,1 , ki,2 ← k̂2 · kwi,2 ,
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di,m ← d̂m · [wi,1 +mwi,2]dm , Gi,ψ(m) ←
[
ri,ψ(m)

]
2

Moreover for m ∈ φ−1(M \ D) compute Ci,m ← ĥφ(m)ri,ψ(m)di,m and for m /∈ φ−1(M),
Ci,m ←$ G2

2.

2.2. (open, sid) to FCom,FLin
Czk or error from Pj for all j ∈ Q ∩M : Remove from Q player that sent

error and simulate FCom, FLin
Czk. Compute w̄1 = −

∑
j∈Qwj,1 and w̄2 = −

∑
j∈Qwj,2 and simu-

late F4,Fq
CT returning (tossed, sid, w̄1, w̄2).

Execute all player honestly from now on using (xi)i∈[N ]\M to decrypt.

2.3. (accept, sid, j′) or error from Pj , for all j ∈M and j′ ∈ Q: Allow FSetup to send (input, sid).

To prove the Theorem we go through a sequence of hybrid games. Let L be an upper bound on
the number of setups requested by the environment.

– Hreal: the real protocol
– H0: as Hreal but if any call to Fλ,D,1CT return (tossed, sid,Q,R) with R ⊆ M , ignore any further

message
– H0

0 = H0, HL+1
m = H0

m+1. H`+1
m : as H`

m but in the ` + 1-th instance of FSetup, calling Q,R the
message sent by Fλ,D,1CT and i = min(Q \M) if φ(m) /∈M set Ci,m ←$ G2

2

– H1: as HL+1
κN but k0, returned by the random oracle, is uniformly distributed over G1 \ {1G1}.

– H2: as H1 in all executions of FSetup, calling Q,R the message sent by Fλ,D,1CT and i = min(Q\M),
Pi sample w̄1, w̄2 ←$ F2

q and set

ki,1 ← kw̄1+wi,1 , ki,2 ← kw̄2+wi,2 , di,m ← [w̄1 + w1 +m(w̄2 + w2)]dm

Moreover calling wj,1,wj,2 the vectors received by FLin
Czk, then F

4,Fq
CT returns

−
∑

j∈Q
wj,1, −

∑
j∈Q

wj,2.

Hreal ≡ H0: By construction the event Q ⊆ M happens with probability 2−λ at most once per
instance of FSetup. Using a union bound the probability that H0 halts is smaller that L/2λ, where
L is polynomially bounded.

H`−1
m∗ ≡ H`

m∗ : Given a distinguisher D we can define A that breaks the DDH3 with the same
advantage.
Description of A: Initially wait for the challenger to send (g2,u), (v,v) ∈ G3

2 and M ←$ D. Call
i∗ = φ(m∗) and if i∗ ∈ M then simulate H`−1

m∗ until D halts. Otherwise for all i ∈ [N ] \M , i 6= i∗

sample xi ←$ F2
q compute ĥi ← [xi]2 while for i∗ set ĥi∗ ← u. For all i /∈M simulate πiLin. Broadcast

(recepit,⊥, i) and wait for (commit,⊥, ĥj , πjLin) or error from D on behalf of Pj .
Extract xj from accepting proofs and broadcast (decom,⊥, i, ĥi, πiLin) for i ∈ M . Finally wait for
(open,⊥) or error from D on behalf of Pj , j ∈ M and add to D those who sent error or a rejected
proof.
Next initialise scnt ← 0 and sample g ←$ G1, f ←$ Fq[x]<t and compute h ← gf(−1), si ← gf(i).
Run D until it returns:
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1. (share_request, sid) from corrupted user Pj : Simulate FVSS returning the tuple
(

share, sid, g, h, (si)
N−1
i=0 , f(j)

)
to Pj .

2. (setup, sid) from all honest users: Add scnt← scnt+1 and simulate Fλ,D,1CT returning (tossed, sid,Q,R).
If Q ⊆M halt and return a random bit, otherwise call i = min(Q\M), simulate all users honestly
and broadcast (recepit, sid, i′) from FCom,FLin

Czk for all i′ ∈ Q \M .

2.1. (commit, sid,Gj,ψ(m), Cj,m, π
j,ψ(m)
DDH ), (prove, sid,k, (kj,1, kj,2), (wj,1,wj,2)) or error from Pj for all

j ∈ Q∩M : Extract from accepting arguments rj,ψ(m) and simulate all users and functionalities
correctly besides Pi. Run Pi setting

If scnt 6= ` ∨ ψ(m) 6= ψ(m∗) Gi,ψ(m) ←
[
ri,ψ(m)

]
2

If scnt = ` ∧ ψ(m) = ψ(m∗) Gi,ψ(m) ← v

Moreover for m < m∗ and φ(m) /∈ M set Ci,m ←$ G2
2; for m > m∗ with ψ(m) = ψ(m∗) and

scnt = ` set Ci,m ← vxφ(m)di,m; for m∗

If scnt < ` Ci,m∗ ←$ G2
2

If scnt = ` Ci,m∗ ← v · di,m∗
If scnt > ` Ci,m∗ ← uri,ψ(m∗)di,m∗ .

In all other cases Ci,m = ĥ
ri,ψ(m)

φ(m) di,m.

2.2. (open, sid) for FCom,Fλ,D,1CT or error from Pj for all j ∈ Q ∩M : Execute all uncorrupted users
honestly but Pi∗ . Run Pi∗ setting dj,m ← u−rj,ψ(m) · Cj,m for m ∈ φ−1(i∗)

3. a bit b: Return b.

Proof of Claim: We by showing that regardless of the experiment A is executed in, he simulates
well the execution of Pi∗ after the commitment’s opening. To see this assume up to negligible
probability that all the statement proved through accepted NIZK are correct, then the ciphertexts
produced by Pj are of the form, for m ∈ φ−1(i∗)

Gj,m =
[
ri,ψ(m)

]
2
, Cj,m = ĥ

ri,ψ(m)

i∗ · di,m = uri,ψ(m) · di,m

therefore Pi∗ extract the right value. Next, if A is executed in DDH1
3 then there exists ri,ψ(m∗) ∼

U(Fq) such that v = uri,ψ(m∗) , v = uri,ψ(m∗) . Therefore we observe that ciphertext Ci,m withm < m∗

associated to uncorrupted users are well formed, since they are random. For m > m∗ the only case
we need to check is when ψ(m) = ψ(m∗) and snct = `. Under this conditions

Ci,m = vxφ(m)di,m =
[
ri,ψ(m)·xφ(m)

]
2
· di,m = ĥφ(m)ri,ψ(m)di,m.

Finally for m∗, when snct < ` the ciphertext is random as expected and the same is true for scnt > `
because u = ĥi∗ by construction. Finally when scnt = `

Ci,m∗ = v · di,m∗ = uri,ψ(m∗) · di,m∗ = ĥ
ri,ψ(m∗)
i∗ · di,m∗ .

In conclusion A simulates H`−1
m∗ . With analogous checks one could verify that in DDH0

3, A simulates
perfectly H`

m∗ . In conclusion the advantage of A and D are equal which proves the claim.
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HL
κN ≡ H1: Upon conditioning on the event that no k0 = 1G2 in the first experiment, the two

distributions are equal. Using a union bound, since the given environment execute the protocol
al most L times, it follows that the statistical distance of the two experiments is smaller that
LPr [k0 = 1G2 ] = Lq−1, that is negligible.

H1 ≡ H2: The two experiment follow the same probability distribution, conditioning on wj,1,wj,2

for j ∈ Q \ {i} because for b ∈ {1, 2}, wi,b, w̄b ∼ U(F4
q) and, calling vb = −

∑
j 6=iwj,b, the map

ϕ : F2
q × F2

q → F2
q × F2

q : ϕ(x,y) = (x + y,−x− v)

is bijective. Since applying ϕ to wi,1 and w̄1 in the distribution generated in H1 we get H2 the two
experiment have the same distribution.

Claim: When Z is executed in H3 then in the `-th execution of the setup up to negligible probability
the keys ski,m returned by Pi for i ∈ [N ] \M are of the form

ski,m =

([
ρm ·

(∑
j∈Q

wj,1 +m
∑

j∈Q
wj,2

)
+ ρm · (w̄1 +mw̄2)

]
2
, [ρm]2

)
for some ρm ∈ Fq where wj,b are the values received by FLin

Czk and (w̄1, w̄2) are the values returned
by F4,Fq

CT .

We build an adversary B using Z that breaks DDH over G1 with advantage proportional to the
probability that the event above does not happen in some execution.
Description of B: Wait for the challenger to send (k̃, h̃) ∈ G4

1 and run M ←$ Z. Simulate the
initial key generation and FVSS correctly, initialise scnt← 0, sample r ←$ Fq and compute k← k̃r.
Upon receiving:

1. (setup, sid) from all honest users: Add scnt← scnt+1. If scnt 6= ` simulate correctly H2. Otherwise
let (tossed, sid,Q,R) be the message sent by Fλ,D,1CT . Program H(R) = k, k0, dm for k0 ←$ G1 \
{1G1} and dm ←$ G2

1.1. (commit, sid, . . .), (prove, sid,k, (kj,1, kj,2), (wj,1,wj,2)) or error from Pj for all j ∈ Q ∩M : Exe-
cute uncorrupted parties as in H2.

1.2. (open, sid) for FCom, FLin
Czk or error from Pj for all j ∈ Q ∩M : Keep executing parties honestly

and let (tossed, sid, w̄1, w̄2) be the message sent by F4,Fq
CT

When at the end of the `-th setup Pi returns ski = (ski,m) parse ski,m = (d′m, d
′
m). If r = 0 return

a random bit. Conversely, if r 6= 0 and for some m ∈ φ−1([N ] \M)

tm = d′m ·
[∑

j∈Q
wj,1 +m

∑
j∈Q

wj,2 + (w̄1 +mw̄2)
]−1

d′m

6= (1G2 , 1G2)

then return 1 if e(h̃, tm) = 1GT , 0 otherwise. Return a random bit if the above condition is not
satisfied for any m.
Proof of Claim: When scnt 6= `, B correctly simulates H2 by construction. The same also holds
when scnt = ` because k̃ = (g2, k̃2) with k̃2 ∼ U(G1), therefore k = (gr2, k̃

r
2) ∼ U(G2

1).
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Next we show that for all m ∈ φ−1([N ] \M), e(k, tm) = 1GT . This holds because if at the end of
the setup j ∈ Q, with j 6= i it means that all player sent (accept, sid, j) and therefore

e(k,dj,m) = e(kj,1k
m
j,2, dm) = e(kwj,1+mwj,2 , dm) = e(k, [w1,j +mw2,j ]dm).

Recalling that d′m is obtained randomising with σm the product of all dj,m for j ∈ Q and [w̄1 +mw̄2]dm
we conclude that

e(k,d′m) = e
(
k, [w̄1 +mw̄2]dm

)σm∏
j∈Q

e
(
k, [wj,1 +mwj,2]dm

)σm
=

= e
(
k, [w̄1 +mw̄2]d′m

)∏
j∈Q

e
(
k, [wj,1 +mwj,2]d′m

)
=

= e

(
k,
[
(w̄1 +mw̄2) +

∑
j∈Q

wj,1 +m
∑

j∈Q
wj,2

]
d′m

)
.

Taking the inverse it follows that e(k, tm) = 1GT . In conclusion call E the event that tm is different
from the identity for some m. If B is executed in DDH1 then there exists x such that h̃ = k̃x = kxk

−1

where k 6= 0 up to negligible probability. Therefore e(h̃, tm) = e(k, tm)xr
−1

= 1GT and B always
returns 1.
Conversely if B is executed in DDH0, h̃ ∼ U(G2

2) but for tm 6= [0]2, the space L = {u : e(u, t) = [0]T }
is a proper space of dimension 1 - if we think G2

2 as an Fq-vector space. It follows that

Pr
[
e(h̃, tm) = [0]T

]
=
|L|
|G2

2|
=

q

q2
=

1

q
.

To sum up, calling β ∈ {0, 1} such that B is executed in DDHβ and recalling that b is B’s output
we proved so far that

Pr [b = 1|β = 0, E, r 6= 0] = 1, Pr [b = 1|β = 1, E, r 6= 0] =
1

q
.

In conclusion we evaluate the advantage of B as Adv(B) =

=
∣∣∣Pr [b = 1|β = 0]− Pr [b = 1|β = 1]

∣∣∣
=
∣∣∣Pr [b = 1|β = 0, ¬E] Pr [¬E] + Pr [b = 1|β = 0, E] Pr [E]−

− Pr [b = 1|β = 1, ¬E] Pr [¬E]− Pr [b = 1|β = 1, E] Pr [E]
∣∣∣

=
∣∣∣Pr [b = 1|β = 0, E]− Pr [b = 1|β = 1, E]

∣∣∣Pr [E]

=
∣∣∣ [Pr [b = 1|β = 0, E, r = 0]− Pr [b = 1|β = 1, E, r = 0]

]
Pr [r = 0, E]

+
[

Pr [b = 1|β = 0, E, r 6= 0]− Pr [b = 1|β = 1, E, r 6= 0]
]

Pr [r 6= 0, E]
∣∣∣

=

∣∣∣∣(1− 1

q

)
Pr [r 6= 0|E]

∣∣∣∣Pr [E]

=
q − 1

q
Pr [r 6= 0, E] ≥ q − 1

q
(Pr [E] + Pr [r 6= 0]− 1)

=
q − 1

q

(
Pr [E]− 1

q

)
.
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where the third equation follows as B returns a random bit when E does not hold and the fifth
because B returns random bit when r = 0. If we let ε be a negligible function bounding the advantage
of B then the claim is proven because

qε

q − 1
+

1

q
≥ Pr [E] .

H2 ≡ S ◦ FSetup: follows by inspection.
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