
Private Blocklist Lookups with Checklist

Dmitry Kogan
Stanford University

Henry Corrigan-Gibbs
MIT CSAIL

Abstract. This paper presents Checklist, a system for private
blocklist lookups. In Checklist, a client can determine whether
a particular string appears on a server-held list of blocklisted
strings, without leaking its string to the server. Checklist is
the first blocklist-lookup system that (1) leaks no information
about the client’s string to the server and (2) allows the
server to respond to the client’s query in time sublinear in
the blocklist size. To make this possible, we construct a new
two-server private-information-retrieval protocol that is both
asymptotically and concretely faster, in terms of server-side
time, than those of prior work. We evaluate Checklist in
the context of Google’s “Safe Browsing” blocklist, which
all major browsers use to prevent web clients from visiting
malware-hosting URLs. Today, lookups to this blocklist leak
partial hashes of a subset of clients’ visited URLs to Google’s
servers. We have modified Firefox to perform Safe-Browsing
blocklist lookups via Checklist servers, which eliminate the
leakage of partial URL hashes from the Firefox client to
the blocklist servers. This privacy gain comes at the cost of
increasing communication by a factor of 3.3×, and the server-
side compute costs by 9.8×. Use of our new PIR protocol
reduces server-side costs by 6.7×, compared to what would
be possible prior state-of-the-art two-server PIR.

1 Introduction
This paper proposes a new system for private blocklist lookups.
In this setting, there is a client, who holds a private bitstring,
and a server, which holds a set of blocklisted strings. The
client wants to determine whether its string is on the server’s
blocklist, without revealing its string to the server.

This blocklist-lookup problem arises often in computer
systems:
• Web browsers check public-key certificates against block-

lists of revoked certificates [51, 56, 57].
• Users of Google’s Password Checkup and the “Have I Been

Pwned?” service check their passwords against a blocklist
of breached credentials [48, 58, 61, 77, 80].

• Antivirus tools check the hashes of executed binaries
against blocklists of malicious software [24, 54, 63].

• Browsers and mail clients check URLs against Google’s
Safe Browsing blocklist of phishing sites [8, 34, 40].
In each of these settings, the string that the client is checking

against the blocklist is private: the client wants to hide from
the server which websites she is visiting, or which passwords
she is using, or which programs she is running.

Today, there are two common approaches to solving this
private blocklist-lookup problem. The first approach is to
store the entire blocklist on the client side. Maintaining a
client-side blocklist offers maximal client privacy, since the
server learns nothing about which strings the client checks
against the blocklist. The downside is that the client must
download and store the entire blocklist—consuming scarce
client-side bandwidth and storage. Because of these resource
constraints, Chrome’s client-side certificate-revocation block-
list [56] (version 6391, as of January 2020) covers under
one thousand revoked certificates out of millions of revoked
certificates on the web [49], and thus provides suboptimal
protection against revoked certificates.

The second approach is to store the blocklist on the server
side. The downside of this technique is that the client may
leak bits of its private string when it queries the blocklist
server. For example, when the Firefox web browser queries
the server-side Safe Browsing blocklist, the browser reveals
a 32-bit hash of its query to the server. This hash allows the
server to make a good guess at which URL the browser is
visiting [8, 34, 79].

Both existing techniques for private blocklist lookups are
inadequate. Keeping the blocklist on the client is infeasible
when the blocklist is large. Keeping the blocklist on the server
leaks sensitive client data to the server.

This paper presents the design and implementation of
Checklist, a new privacy-respecting blocklist-lookup system.
Using Checklist is less expensive, in terms of total communi-
cation, than maintaining a client-side blocklist. And, unlike
conventional server-side blocklists, Checklist leaks nothing
about the client’s blocklist queries to the system’s servers. We
achieve this privacy property using a new high-throughput
form of two-server private information retrieval. Checklist
requires only a modest amount of server-side computation:
in a blocklist of 𝑛 entries, the amortized server-side cost is
𝑂 (
√
𝑛) work per query. Concretely, a server can answer client

queries to the three-million-entry Safe Browsing blocklist in
under half a core-millisecond per query on average. Our new
PIR scheme reduces the server-side compute costs by 6.7×,
compared with a private-blocklist scheme based on existing
PIR protocols.

1



To our knowledge, Checklist is the first blocklist-lookup
system that (1) leaks no information about the client’s string to
the server and (2) achieves per-query server-side computation
that is sublinear in the blocklist size.

At the heart of Checklist is a new “offline/online” private-
information-retrieval scheme [11,25, 66]. These schemes use
client-specific preprocessing in an offline phase to reduce the
computation required at query (online) time. On a blocklist
𝑛 entries and with security parameter 𝜆 ≈ 128, our scheme
requires the servers to perform work 𝑂 (

√
𝑛) per query, on

average. This improves the𝑂 (𝜆
√
𝑛) per-query cost of schemes

from prior work [25] and amounts to a roughly 128-fold
concrete speedup. In addition, prior offline/online schemes
do not perform well when the blocklist/database changes
often (since even a single-line change to the blocklist requires
rerunning the preprocessing step). By carefully structuring the
blocklist into a cascade of smaller blocklists, we demonstrate
that it is possible to reap the benefits of these fast offline/online
private-information-retrieval schemes even when the blocklist
contents change often. In particular, in a blocklist of 𝑛 entries,
our scheme requires server-side computation 𝑂 (log 𝑛) per
blocklist update per client, whereas a straightforward use of
offline/online private-information-retrieval schemes would
yield Ω(𝑛) time per update per client.
Limitations. First, since Checklist builds on a two-server
private-information-retrieval scheme, it requires two inde-
pendent servers to maintain replicas of the blocklist. The
system protects client privacy as long as at least one of these
two servers is honest (the other may deviate arbitrarily from
the prescribed protocol). In practice, two major certification
authorities could run the servers for certificate-revocation
blocklists. Google and Mozilla could run the servers for the
Safe-Browsing blocklist. An OS vendor and antivirus vendor,
such as Microsoft and Symantec, could each run a server for
malware blocklists. Second, while Checklist reduces server-
side CPU costs, compared with a system built on the most
communication-efficient prior two-server PIR scheme [14]
(e.g., by 6.7× when used for Safe Browsing), Checklist in-
creases the client-to-server communication (by 2.7×) relative
to a system based on this earlier PIR scheme. In applications
in which client resources are extremely scarce, Checklist may
not be appropriate. But for applications in which server-side
costs are important, Checklist will dominate.
Experimental results. We implemented our private blocklist-
lookup system in 2481 lines of Go and 497 lines of C. In
addition, we configure the Firefox web browser to use our
private blocklist-lookup system to query the Safe Browsing
blacklist. (By default Firefox makes Safe-Browsing blocklist
queries to the server via the Safe Browsing v4 API, which leaks
a 32-bit hash of a subset of visited URLs to Google’s servers.)
Under a real browsing workload, our private-blocklisting
system requires 9.4×more servers than a non-private baseline
with the same latency and increases total communication cost
by 3.3×. We thus show that it is possible to eliminate a major

private risk in the Safe Browsing API at manageable cost.
Contributions. The contributions of this paper are:
• A new two-server offline/online private-information-

retrieval protocol that reduces the servers’ computation by
a factor of the security parameter 𝜆 ≈ 128.

• A general technique for efficiently supporting database
updates in private-information-retrieval schemes that use
database-specific preprocessing.

• A blocklist-lookup system that uses these new private-
information-retrieval techniques to protect client privacy.

• An open-source implementation and experimental valida-
tion of Checklist applied to the Safe Browsing API. (Our
code is available on GitHub [1].)

2 Goals and overview
2.1 Problem statement
In the private-blocklist-lookup problem, there is a client and
one or more blocklist servers. There is a set 𝐵 ⊆ {0, 1}∗ of
blocklisted strings, of which each server has a copy. Initially,
the client may download some information about the blocklist
from the servers. Later on, client would like to issue queries
to the blocklist: the client holds a query string 𝑠 ∈ {0, 1}∗
and, after interaction with the servers, the client should learn
whether or not the query string 𝑠 is on the servers’ blocklist
(i.e., whether 𝑠 ∈ 𝐵). In addition, the servers may add and
remove strings from the blocklist over time. We do not attempt
to hide the blocklist from the client, though it is possible to
do so using an extension described in Section 9.

The goals of such a system, stated informally, are:
• Correctness. Provided that the client and servers correctly

execute the prescribed protocol, the client should receive
correct answers to its blocklist queries, except with some
negligible failure probability.

• Privacy. In our setting, there are two blocklist servers
and as long as one of these servers executes the protocol
faithfully, an adversary controlling the network and the
other blocklist server learns nothing about the queries
that the client makes to the blocklist (apart from the total
number of queries).
Formally, the adversarial server should be able to simulate
its view of its interaction with the client and the honest
server given only the system’s public parameters, and the
number of queries that the client makes.
We assume, without loss of generality, that the blocklisted

strings are all of some common length (e.g., 256 bits). If the
strings are longer or shorter, we can always hash them to 256
bits using a collision-resistant hash function, such as SHA256.
Efficiency. In our setting, the two key efficiency metrics are:
• Server-side computation: The amount of computation that

the servers need to perform per query.

2



• Total communication: The number of bits of communica-
tion between the client and blocklist servers.

Since clients typically make many queries to the same blocklist,
we consider both of these costs as amortized over many queries
and many blocklist updates (additions and removals).

Using a client-side blocklist minimizes server-side compu-
tation, but requires communication linear in the number of
blocklist updates. Using standard private-information-retrieval
protocols [14, 22, 35, 55] minimizes communication but re-
quires per-client server-side computation linear in the blocklist
size. Checklist minimizes the server-side computation while
keeping the total communication without the client having to
download and store the entire blocklist.

2.2 Design overview
Checklist achieves consists of three main layers: the first
layer provides private database lookups, albeit to static array-
like databases. The second layer further allows the server
to continuously add entries to the database. The third layer
enables key-value lookups. We now explain the design of each
of the layers.

Private lookups. A straightforward way to implement private
lookups is to use private information retrieval (PIR) [14,21,22].
With standard PIR schemes, the running time of the server on
each lookup is linear in the blocklist size 𝑛. In contrast, recent
“offline/online” PIR schemes [25] reduce the server’s online
computational cost to 𝜆

√
𝑛, after the client runs a linear-time

preprocessing phase with the server. During this preprocess-
ing phase, the client downloads a compressed representation
of the blocklist. These offline/online PIR schemes are well
suited to our setting: the client and server can run the (rela-
tively expensive) preprocessing step when the client first joins
Checklist. Thereafter, the server can answer private blocklist
queries from the client in time sublinear time in the blocklist
length—much faster than conventional PIR.

To instantiate this paradigm, we construct in Section 4 a
new offline/online PIR scheme that achieves a roughly 128-
fold speedup over the state of the art, in terms of server-side
computation. (Asymptotically, our new scheme reduces the
servers’ online time to roughly

√
𝑛 from 𝜆

√
𝑛, where 𝜆 ≈ 128

is the security parameter.)
As with many PIR schemes, our protocol requires two

servers and it protects client privacy as long as at least one
server is honest.

Database updates. Offline/online PIR schemes allow the
server to answer client queries at low cost after the client and
server have run a relatively expensive preprocessing phase.
One hitch in using these schemes in practice is that the client
and server have to rerun the expensive preprocessing step
whenever the server-side blocklist (database) changes. If the
blocklist changes often, then the client and server will have to
rerun the preprocessing phase frequently. If this happens, the

cost of rerunning this preprocessing phase often may negate
any savings that an offline/online PIR scheme would afford.

The second layer of our system, described in detail in
Section 5, reaps the efficiency benefits of offline/online PIR
schemes, which require preprocessing the blocklist, even in a
setting in which the blocklist changes frequently. Our high-
level idea is to divide the length-𝑛 blocklist into 𝑂 (log 𝑛)
buckets, where the 𝑖th bucket contains at most 2𝑖 entries. The
efficiency gains come from the fact that only the contents of
the small buckets, for which preprocessing is inexpensive,
change often. The large buckets, for which preprocessing is
costly, change rarely. (Specifically, the contents of bucket 𝑖
change only after every 2𝑖 blocklist updates.)

With this strategy, if a handful of database entries change
between each client blocklist lookup, the amortized cost per
blocklist update is 𝑂 (log 𝑛) in the blocklist size. In contrast,
a naïve application of offline/online PIR would lead to Ω(𝑛)
amortized cost per update.
Lookup by key. PIR protocols typically treat the database
as an array of 𝑛 rows. To fetch a row, a PIR client must then
specify the index 𝑖 ∈ [𝑛] of the row. In contrast, Checklist, as
many other applications of PIR, needs to support key-value
lookups, in which the database is a collection of key-value
pairs {(𝑘𝑖 , 𝑣𝑖)}𝑛𝑖=1, the client holds a key 𝑘𝑖 and it wants the
corresponding value 𝑣𝑖 (if one exists). A blocklist is then as a
database with 256-bit keys and one-bit values. It is possible
to construct such PIR-by-keywords schemes from normal PIR
schemes in a black-box way [21] or directly using modern
PIR constructions [14]. The cost of such schemes, both in
communication and server-side computation, matches the cost
of standard PIR, up to low-order terms. In our implementation
of Checklist, we use an alternative approach, that takes advan-
tage of an existing feature in Safe Browsing, due to it being
the main target application in this work. Specifically, the Safe
Browsing protocol enables a client to rule out the appearance
in the blocklist of a vast majority of URLs by shipping to the
browser a list of partial hashes of the URLs in the blocklist.
Checklist then uses the position of each partial hash in this
list as a keyword-to-index mapping. We discuss this in more
detail in Section 6.

3 Background
This section summarizes the relevant background on private
information retrieval.
Notation. For a natural number 𝑛, the notation [𝑛] refers to
the set {1, 2, . . . , 𝑛} and 1𝑛 denotes the all-ones binary string
of length 𝑛. All logarithms are base 2. We ignore integrality
concerns and treat expressions like

√
𝑛, log 𝑛, and 𝑚/𝑛 as

integers. The expression poly(·) refers to a fixed polynomial
and negl(·) refers to a function whose inverse grows faster than
any fixed polynomial. For a finite set 𝑆, the notation 𝑥 ←R 𝑆

refers to choosing 𝑥 independently and uniformly at random

3



from the set 𝑆. For 𝑝 ∈ [0, 1], the notation 𝑏 ←R Bernoulli(𝑝)
refers to choosing the bit 𝑏 to be “1” with probability 𝑝 and
“0” with probability 1 − 𝑝. For a bit 𝑏 ∈ {0, 1}, we use 𝑏 to
denote the bit 1 − 𝑏.

3.1 Private information retrieval (PIR)
In a private information retrieval (PIR) system [22, 23], a
set of servers holds identical copies of an 𝑛-row database.
The client wants to fetch the 𝑖th row of the database, without
leaking the index 𝑖 of its desired row to the servers. We work
in the two-server setting, in which the client interacts with
two database replicas. The system protects the client’s privacy
as long the adversary controls at most one of the two servers.

In traditional PIR schemes, the servers must take a linear
scan over the entire database in the process of answering
each client query. In the standard setting of PIR, in which the
servers store the database in its original form, this linear-time
server-side computation is inherent [6].
Offline/online PIR. This linear-time cost on the servers is a
performance bottleneck so, following recent work [11, 25, 27,
66], we construct “offline/online” PIR schemes, which move
the servers’ linear-time computation to an offline preprocessing
phase. Offline/online PIR schemes work in two phases:
• In the offline phase, which takes place before the client

decides which database row it wants to fetch, the client
downloads a hint from one of the PIR servers. If the
database contains 𝑛 rows, generating each hint takes ≈
𝑛 log 𝑛 time, but the hint only has size ≈

√
𝑛.

• In the online phase, which takes place once the client
decides which database row it wants to fetch, the client
uses its hint to issue a query to the PIR servers. The total
communication required in this step is ≈ log 𝑛 and the
servers can answer the client’s query in ≈

√
𝑛 time. The

client can use a single hint to make arbitrarily many online
queries.

There are two benefits to using offline/online PIR schemes:
1. Lower latency. The amount of online computation that the

servers need to perform to service a client query is only
≈
√
𝑛, instead of ≈ 𝑛. This lower online cost can translate

into lower perceived latency for the client.
2. Lower total amortized cost. Since each client can reuse a

single hint for making many online queries, the amortized
server-side computational cost per query is only ≈

√
𝑛,

compared with ≈ 𝑛 for standard PIR schemes.

3.2 Puncturable pseudorandom set
To construct our PIR schemes, we will use puncturable pseudo-
random sets [25,71], for which there are simple constructions
from any pseudorandom generator (e.g., AES-CTR).

Informally, a puncturable pseudorandom set gives a way to
describe of a pseudorandom size-

√
𝑛 subset 𝑆 ⊆ {1, . . . , 𝑛}

using a short cryptographic key sk. (The set size is a tunable

parameter, but in this paper we always take the subset size to be√
𝑛.) Furthermore, it is possible to “puncture” the key sk at any

element 𝑖 ∈ 𝑆 to get a key skp that is a concise description of the
set 𝑆′ = 𝑆r{𝑖}. The important property of the punctured key is
that it hides the punctured element, in a strong cryptographic
sense. That is, given only skp, an adversary cannot guess
which was the punctured element with better probability than
randomly guessing an element from [𝑛]r𝑆′. This notion of
puncturing comes directly from the literature on puncturable
pseudorandom functions [12, 15, 47, 53, 69].

The full syntax and definitions appear in prior work [25], but
we recall the important ideas here. More formally, a punctured
pseudorandom set consists of the following algorithms, where
we leave the security parameter implicit:
• Gen() → sk. Generate a puncturable set key sk.
• GenWith(𝑖) → sk. Given an element 𝑖 ∈ [𝑛], generate a

puncturable set key sk such that the element 𝑖 ∈ Eval(sk).
• Eval(sk) → 𝑆. Given a key sk (or punctured set key skp),

output a pseudorandom set 𝑆 ⊆ [𝑛] of size
√
𝑛.

• Punc(sk, 𝑖) → skp. Given a set key sk and element
𝑖 ∈ Eval(sk), output a punctured set key skp such that
Eval(skp) = Eval(sk)r{𝑖}.

We include the formal correctness and security definitions for
puncturable pseudorandom sets in Appendix A.
Constructions. Prior work [25] constructs puncturable sets
from any pseudorandom generator 𝐺 : {0, 1}𝜆 → {0, 1}2𝜆
(e.g., AES in counter mode) such that: (a) the set keys are 𝜆
bits long and (b) the punctured set keys have are 𝑂 (𝜆 log 𝑛)
bits long. Furthermore, the computation cost of Eval consists
almost entirely of 𝑂 (

√
𝑛) invocations of the PRG.

4 PIR with faster online time
In this section, we describe our new two-server offline/online
PIR protocol. Compared with the best prior two-server
scheme [25], ours improves the servers’ online time and
the online communication by a multiplicative factor of the
security parameter 𝜆. Since we typically take 𝜆 ≈ 128 in prac-
tice, this improvement gives roughly a 128-fold improvement
in communication and online computation cost.

Specifically, on database size 𝑛 and security parameter 𝜆,
the online server in the existing PIR schemes have online com-
munication 𝑂 (𝜆2 log 𝑛) and have online server time 𝑂 (𝜆

√
𝑛),

measured in terms of main-memory reads and evaluations
of a length-doubling PRG. We bring the online communica-
tion cost down to 𝑂 (𝜆 log 𝑛) bits and the online server-side
computation time down to 𝑂 (

√
𝑛) operations (dominated by

the cost of 𝑂 (
√
𝑛) AES operations and 𝑂 (

√
𝑛) random-access

memory lookups). Concretely, these cost are modest—less
than 2KB of communication and under 150 microseconds,
even for blocklists with millions of entries.

In terms of the preprocessing phase, our protocol uses 𝜆
√
𝑛

bits of communication and requires the server to do 𝑂 (𝜆𝑛)

4



work per client.

4.1 Definition
A two-server offline/online PIR scheme for an 𝑛-bit database
consists of the following four algorithms, where we leave the
security parameter implicit. We refer to the two PIR servers
as the “left” and “right” servers.
Hint(𝐷) → ℎ. The left database server uses the Hint algo-

rithm to generate a preprocessed data structure ℎ that a client
can later use to privately query the database 𝐷 ∈ {0, 1}𝑛.
The Hint algorithm is randomized, and the left server must
run this algorithm once per client.

Query(ℎ, 𝑖) → (st, 𝑞0, 𝑞1). The client uses the Query algo-
rithm to generate the PIR queries it makes to the database
servers. The algorithm takes as input the hint ℎ and the
database index 𝑖 ∈ [𝑛] that the client wants to read. The
algorithm outputs client state st and PIR queries 𝑞0 and 𝑞1.

Answer(𝐷, 𝑞) → 𝑎. The servers uses Answer, on database
𝐷 ∈ {0, 1}𝑛 and client query 𝑞 to produce an answer 𝑎.

Reconstruct(st, 𝑎0, 𝑎1) → (ℎ′, 𝐷𝑖). The client uses state st,
generated at query time, and the servers’ answers 𝑎0 and 𝑎1
to produce a new hint ℎ′ and the database bit 𝐷𝑖 ∈ {0, 1}.

We sketch the correctness and privacy definitions here for
the case in which the client makes a single query. Prior work
gives the (lengthy) definitions for the multi-query setting [25].
Correctness. If an honest client interacts with honest servers,
the client recovers its desired database bit. We say that an
offline/online PIR scheme is correct if, for all databases
𝐷 = (𝐷1, . . . , 𝐷𝑛) ∈ {0, 1}𝑛 and all 𝑖 ∈ [𝑛], the probability

Pr

𝐷
′
𝑖 = 𝐷𝑖 :

ℎ ← Hint(𝐷)
(st, 𝑞0, 𝑞1) ← Query(ℎ, 𝑖)

𝑎 ← Answer(𝐷, 𝑞)
(_, 𝐷 ′

𝑖
) ← Reconstruct(st, 𝑎0, 𝑎1)


is at least 1 − negl(𝜆), on (implicit) security parameter 𝜆.
Security. An attacker who controls either one of the two
servers learns nothing about which database bit the client is
querying, even if the attacker deviates arbitrarily from the pre-
scribed protocol. More formally, for a database 𝐷 ∈ {0, 1}𝑛,
𝛽 ∈ {0, 1}, and 𝑖 ∈ [𝑛], define the probability distribution
View𝐷,𝛽,𝑖 , capturing the “view” of server 𝛽 as:

View𝐷,𝛽,𝑖 :=

{
𝑞𝛽 :

ℎ ← Hint(𝐷)
(_, 𝑞0, 𝑞1) ← Query(ℎ, 𝑖)

}
.

An offline/online PIR scheme is secure if, for all databases 𝐷 ∈
{0, 1}𝑛, 𝛽 ∈ {0, 1}, and 𝑖, 𝑗 ∈ [𝑛]: View𝐷,𝛽,𝑖 ≈𝑐 View𝐷,𝛽, 𝑗 .

4.2 Our scheme
Prior offline/online PIR schemes [25] natively have relatively
large correctness error: the online phase fails with relatively
large probability ≈ 1/

√
𝑛. To allow the client to recover

its database bit of interest with overwhelming probability,
the client and server must run the online-phase protocol
𝜆 times in parallel to drive the correctness error down to
(1/
√
𝑛)𝜆 = negl(𝜆). Our improved PIR scheme is slightly

more complicated than those of prior work, but the benefit
is that it has very low (i.e., cryptographically negligible)
correctness error. Since our protocol has almost no correctness
error, the parties need not repeat the protocol𝜆 times in parallel,
which yields our 𝜆-fold performance gain.

Our main result of this section is:

Theorem 1. Construction 2 is a computationally secure
offline/online PIR scheme, assuming the security of the un-
derlying puncturable pseudorandom set. On database size
𝑛 ∈ N and security parameter 𝜆 ∈ N (used to instantiate the
puncturable pseudorandom set), the scheme has:
• offline communication 𝜆(

√
𝑛 + 1) bits,

• offline time 𝜆𝑛,
• client query time 𝑛,
• online communication 2(𝜆 + 1) log 𝑛 + 4 bits, and
• online time

√
𝑛.

Remark. If each database record is ℓ bits long, the offline
communication increases to 𝜆(

√
𝑛 · ℓ + 1) bits and the online

communication increases to 2(𝜆 log 𝑛 + 1) log 𝑛 + 4ℓ bits.
We formally analyze the correctness and security of Con-

struction 2 in Appendix B. Here, we describe the intuition
behind how the construction works.
Offline phase. In the offline phase of the protocol, the left
server samples 𝑇 = 𝜆

√
𝑛 puncturable pseudorandom set keys

(sk1, . . . , sk𝑇 ). Then, for each 𝑡 ∈ [𝑇], the server computes
the parity of the database bits indexed by the set Eval(sk𝑡 ). If
the database is 𝐷 = 𝐷1 · · ·𝐷𝑛 ∈ {0, 1}𝑛, then the 𝑡-th parity
bit is: ℎ𝑡 =

∑
𝑗∈Eval(sk𝑡 ) 𝐷 𝑗 mod 2. The 𝑡 keys (sk1, . . . , sk𝑇 )

along with the𝑇 parity bits (ℎ1, . . . , ℎ𝑇 ) form the hint that the
server sends to the client. If the server uses a pseudorandom
generator seeded with seed to generate the randomness for the
𝑇 invocations of Gen, the hint consists of (seed, ℎ1, . . . , ℎ𝑇 )
and has length 𝜆 + 𝜆

√
𝑛 bits.

The key property of this hint is that with overwhelming
probability (at least 1 − 2−𝜆), each bit of the database will be
included in at least one of the parity bits. That is, for every
𝑖 ∈ [𝑛], there exists a 𝑡 ∈ [𝑇] such that 𝑖 ∈ Eval(sk𝑡 ).
Online phase. In the online phase, the client has decided that
it wants to fetch the 𝑖th bit of the database, for 𝑖 ∈ [𝑛]. At the
start of the offline phase, the client holds the hint it received in
the offline phase, which consists of a seed for a pseudorandom
generator and a set of 𝑇 hint bits (ℎ1, . . . , ℎ𝑇 ).

The client’s first task is to expand the seed into a set of
puncturable pseudorandom set keys sk1, . . . , sk𝑇 . (These sets
are the same keys that the server generated in the offline
phase.) Next the client searches for a key sk𝑡 ∈ {sk1, . . . , sk𝑇 }
such that the index of the client’s desired bit 𝑖 ∈ Eval(sk𝑡 ).

5



At this point, the client holds a set 𝑆𝑡 = Eval(sk𝑡 ) of size√
𝑛, which contains the client’s desired bit 𝑖. The client also

holds the parity ℎ𝑡 of the database bits indexed by 𝑆𝑡 To
recover the database bit 𝐷𝑖 , the client needs only to learn
the parity ℎ′ of all of the database bits indexed by the set
𝑆𝑡r{𝑖}, as it would allow the client to recover its database bit
of interest as:

ℎ + ℎ′ =
(∑

𝑗∈𝑆𝑡 𝐷 𝑗

)
+
(∑

𝑗∈𝑆𝑡r{𝑖 } 𝐷 𝑗

)
= 𝐷𝑖 (mod 2).

The key challenge is thus for the client to fetch the bit ℎ′
from the servers. There are two cases here:
• Easy case (most of the time). Most of the time, the client

can just send the set 𝑆′← 𝑆𝑡r{𝑖} to the right server. (To
save communication, the client compresses this set using
puncturable pseudorandom sets.) The server returns the
parity ℎ′ of the database bits indexed by this set 𝑆′.
However, the set 𝑆′ never contains the index 𝑖 of the client’s
desired database bit. So the client cannot always follow
this strategy, otherwise the right server would learn which
database bits the client is definitely not querying. So, with
small probability, the client executes the following case.

• Hard case (rarely). With small probability (roughly 1/
√
𝑛),

the client must send a set containing 𝑖 to each server. To
ensure that the client can still recover its desired database
bit 𝐷𝑖 in this case, we have the client send fresh correlated
random sets to the servers.
Specifically, in this case, the client samples a random size-
(
√
𝑛 − 1) set 𝑆new of values in [𝑛]. The client chooses

one of the two servers at random. The client then sends
𝑍 ← 𝑆newr {𝑖} to this server (again, compressed using
puncturable pseudorandom sets), along with the index of
a random element 𝑤 ←R 𝑆newr{𝑖}. The server returns the
parity ℎ𝑍 of the database bits indexed by 𝑍 along with the
value of the database bit 𝐷𝑤 .
To the other server, the client sends 𝑍 ′ ← 𝑆newr {𝑤}.
The server replies with the parity ℎ𝑍 ′ of the database bits
indexed by 𝑍 ′. Now, the client can recover its database bit
of interest as: 𝐷𝑖 = ℎ𝑍 + ℎ𝑍 ′ + 𝐷𝑤 mod 2, since this sum
is equal to(∑

𝑗∈𝑆newr{𝑖 } 𝐷 𝑗

)
+
(∑

𝑗∈𝑆newr{𝑤 } 𝐷 𝑗

)
+𝐷𝑤 = 𝐷𝑖 (mod 2).

To hide which server plays which role, the client sends a
dummy value 𝑤′ to this second server.
To hide whether the client is in the “easy case” or “hard

case,” the client sends dummy queries to the servers in the
easy case to mimic its behavior in the hard case.

5 Handling database changes
with waterfall updates

In an offline/online PIR scheme, the client downloads a pre-
processed “hint” about the database in the offline phase. To

generate the hint, the servers must run a costly computation,
which takes time linear in the database size. Given the hint, the
client can make an essentially unlimited number of subsequent
private database queries, each of which the servers can answer
in time sublinear in the database size.

This approach works well as long as the database is static.
However, a problem arises when the database changes, since
any update to the database invalidates the client’s hint.
The simple solution works poorly. The simplest way to
handle database updates is to have the servers compute a new
hint relative to the latest database state after every update. The
servers then send this updated hint to the client. The problem
is that if the rate of updates is relatively high, the cost of
regenerating these hints will be prohibitive.

Specifically, if the database changes at roughly the same
rate as the client makes queries (e.g., once per hour), the client
will have to download a new hint before making each query.
In this case, the server-side costs of generating these hints will
be so large as to negate the benefit of using an offline/online
PIR scheme in the first place.
Our approach: Waterfall updates. Instead of paying the
hint-generation cost for the full database on each change, we
design a tiered update scheme, which is much more efficient.
Specifically, if there is a single database update between
each pair of client queries, the asymptotic online cost of
our scheme is still 𝑂 (

√
𝑛)—the same cost as if the database

had not changed. As the frequency of updates increases, the
performance of our scheme gracefully degrades.

Our strategy, is to have the servers maintain an array of
𝐵 = log 𝑛 sub-databases, which we call “buckets.” (Here, we
assume for simplicity that 𝑛 is a power of two.) The 𝑏’th
bucket will contain at most 2𝑏 database rows. Before a client
makes a query, it will hold a preprocessed hint for each of
the 𝐵 buckets. When a client makes a database query, it will
make one PIR query to each of the 𝐵 buckets.

The key to achieving our cost savings is that, as the database
changes, the contents of the smallest buckets will change
frequently, but it is relatively inexpensive for the servers to
regenerate the hints for these buckets. The contents of the
larger buckets—for which hint generation is expensive—will
change relatively infrequently.

The use of a hierarchy of buckets is a classic idea for con-
verting static data structures into dynamic data structures [9].
Cryptographic constructions using this idea to handle data
updates include oblivious RAMs [37], proofs of retrievabil-
ity [18,72], searchable encryption [76], and accumulators [65].

In more detail, if the database is an array of 𝑛 bits
(𝐷1, . . . , 𝐷𝑛), the contents of the 𝑏’th bucket in our up-
date scheme is a list of 2𝑏 pairs of the form (𝑖, 𝐷𝑖), where
𝑖 ∈ [𝑛] is the index of a database bit and 𝐷𝑖 ∈ {0, 1} is that
bit’s value.

Initially, the servers store the entire database in the bottom
(biggest) bucket and all of the other bucket start out empty.

6



Construction 2 (Our offline/online PIR scheme). Parameters: database size 𝑛 ∈ N, security parameter 𝜆 ∈ N, 𝑇 := 𝜆
√
𝑛,

puncturable pseudorandom set (Gen,GenWith,Eval,Punc) construction of Section 3.2 with universe size 𝑛 and set size
√
𝑛.

Hint(𝐷) → ℎ.
• For 𝑡 ∈ [𝑇]:

– Sample a puncturable-set key sk𝑡 ← Gen(𝑛).
// To reduce the hint size, we can sample the
// randomness for the 𝑇 invocations of Gen from a
// pseudorandom generator, whose seed we include
// in the hint.

– Set 𝑆𝑡 ← Eval(sk𝑡 ).
– Compute the parity ℎ𝑡 ∈ {0, 1} of the database bits

indexed by the set 𝑆𝑡 .
That is, let ℎ𝑡 ←

∑
𝑗∈𝑆𝑡 𝐷 𝑗 mod 2.

• Output the hint as: ℎ←
(
(sk1, . . . , sk𝑇 ), (𝑏1, . . . , 𝑏𝑇 )

)
.

Query(ℎ, 𝑖) → (st, 𝑞0, 𝑞1).
• Parse the hint ℎ as

(
(sk1, . . . , sk𝑇 ), (𝑏1, . . . , 𝑏𝑇 )

)
.

• Let 𝑡 ∈ [𝑇] be a value such that 𝑖 ∈ Eval(sk𝑡 ).
(If no such value 𝑡 exists, abort.)

• Sample bits 𝛽←R Bernoulli(2(
√
𝑛 − 1)/𝑛)

and 𝛾 ←R {0, 1}.
• If 𝛽 = 0: (sknew, 𝑞0, 𝑞1) ← QueryEasy(𝑖, sk𝑡 ).
• If 𝛽 = 1: (sknew, 𝑞0, 𝑞1) ← QueryHard(𝑖, 𝛾).
• Set st← (ℎ, 𝑡, 𝛽, 𝛾, sknew).
• Return (st, 𝑞0, 𝑞1).

Answer(𝐷, 𝑞) → 𝑎.
• Parse the query 𝑞 as a pair (skp, 𝑖), where skp is a

punctured set key and 𝑖 ∈ [𝑛].
• Compute 𝑆p ← Eval(skp) and compute the parity
𝑏p ∈ {0, 1} of the database bits indexed by this set:
𝑏p ←

∑
𝑗∈𝑆p

𝐷𝑖 mod 2.
• Return 𝑎 ← (𝑏p, 𝐷𝑖) ∈ {0, 1}2 to the client.

Reconstruct(st, 𝑎0, 𝑎1) → (ℎ′, 𝐷𝑖).
• Parse the state st as (ℎ, 𝑡, 𝛽, 𝛾, sknew).
• Parse the hint ℎ as

(
(sk1, . . . , sk𝑇 ), (𝑏1, . . . , 𝑏𝑇 )

)
.

• Parse the answers as bits (𝑢0, 𝑣0) and (𝑢1, 𝑣1).
– If 𝛽 = 0: // Easy case

∗ Set 𝐷𝑖 ← 𝑏𝑡 + 𝑢1 mod 2.
// The client updates the 𝑡-th component of the hint.
∗ Set sk𝑡 ← sknew and 𝑏𝑡 ← 𝐷𝑖 + 𝑢0 mod 2.
∗ Set ℎ′←

(
(sk1, . . . , sk𝑇 ), (𝑏1, . . . , 𝑏𝑇 )

)
.

– If 𝛽 = 1: // Hard case
∗ Set 𝐷𝑖 ← 𝑢0 + 𝑢1 + 𝑣𝛾 mod 2.
∗ Set ℎ′← ℎ. // The hint is unmodified.

• Return (ℎ′, 𝐷𝑖).

QueryEasy(𝑖, sk𝑡 ) → (sknew, 𝑞0, 𝑞1).
// The client asks both servers for the parity of

√
𝑛 − 1 bits

// and the value of one database bit.
// – None of the bits are the desired database bit 𝐷𝑖 .
// – The client asks the right server for the parity of the
// database bits in 𝑆𝑡r{𝑖}. This parity is equal
// to 𝑏𝑡 + 𝐷𝑖 mod 2.
• Sample sknew ← GenWith(𝑛, 𝑖).
• Compute:

𝑆new ← Eval(sknew) 𝑆𝑡 ← Eval(sk𝑡 )
𝑤0 ←R 𝑆newr{𝑖} 𝑤1 ←R 𝑆𝑡r{𝑖}

skp0 ← Punc(sknew, 𝑖) skp1 ← Punc(sk𝑡 , 𝑖)
𝑞0 ← (skp0, 𝑤0) 𝑞1 ← (skp1, 𝑤1).

• Return (sknew, 𝑞0, 𝑞1).

QueryHard(𝑖, 𝛾) → (sknew, 𝑞0, 𝑞1).
// The client asks both servers for the parity of

√
𝑛 − 1 bits

// and the value of one database bit.
// – The client asks one of the servers (determined by bit 𝛾)
// for the parity of a random set of bits containing 𝐷𝑖 .
// – The client asks the other server for the parity of the
// same set of bits, along with the database bit needed to
// reconstruct 𝐷𝑖 .
• Sample sknew ← GenWith(𝑛, 𝑖).
• Compute:

𝑆new ← Eval(sknew)
𝑤𝛾 ←R 𝑆newr{𝑖} 𝑤𝛾 ←R 𝑆newr{𝑤𝛾}

skp𝛾 ← Punc(sknew, 𝑖) skp𝛾 ← Punc(sknew, 𝑤𝛾)
𝑞𝛾 ← (skp𝛾 , 𝑤𝛾) 𝑞𝛾 ← (skp𝛾 , 𝑤𝛾).

• Return (sknew, 𝑞0, 𝑞1).

7



h0Bucket 0:
h1Bucket 1:
h2Bucket 2:
h3Bucket 3:

[insertion]
h0
h1
h2
h3

(After 1 insertion.)

[insertion]
h0
h1
h2
h3

(After 2 insertions.)

[insertion]
h0
h1
h2
h3

(After 3 insertions.)

[insertion]
h0
h1
h2
h3

(After 4 insertions.)

h0
h1
h2

h1

h2

h2
h2 h2

h1 h1 h1
h2

h0 h0 h′0 h′0

Figure 1: The database in our PIR scheme consists of many buckets, where the 𝑖th bucket can hold 2𝑖 database rows. The client holds a hint (h𝑖)
corresponding to each non-empty bucket 𝑖. The smaller buckets change frequently, but these hints are inexpensive to recompute. The larger
buckets change infrequently, and these hints are expensive to recompute.

That is, the last bucket holds the pairs {(𝑖, 𝐷𝑖)}𝑖∈[𝑛] .
When the servers want to update the value of a bit 𝐷𝑖 in

the database to a new value 𝐷 ′
𝑖
, the servers insert the pair

(𝑖, 𝐷 ′
𝑖
) into the topmost (smallest) bucket. Such an update can

cause a bucket 𝑏 to “fill up”—to contain more than 2𝑏 entries.
When this happens, the servers “flush” the contents of bucket
𝑏 down to bucket 𝑏 + 1. (If this flush causes bucket 𝑏 + 1 to
fill up, the servers continue flushing buckets until all buckets
are below their maximum capacity.)

The two servers execute this process in lockstep to en-
sure that their views of the database state remain consistent
throughout. In addition, the servers maintain a last-modified
timestamp for each bucket.

When the client initially fetches its hint, it fetches a hint for
each bucket. In steady state, when the client wants to find the
value of the 𝑖th database bit, it queries each of the 𝐵 = log 𝑛
buckets in parallel for a pair (𝑖, 𝐷𝑖), using an offline/online
PIR-by-keywords scheme on keyword 𝑖 ∈ [𝑛]. The client uses
the value of 𝐷𝑖 from the smallest bucket (i.e., the bucket that
was updated most recently).

Before making a query, the client updates its locally stored
hints. To do this, the client sends to the servers the timestamp
𝜏 at which it received its last hint. The servers sends back to
the client the hint for each bucket that was modified after 𝜏.
Analysis. Note that the server needs a new hint for bucket 𝑏
only each time all of the buckets {1, . . . , 𝑏−1} overflow. When
this happens, the servers flush 1 +∑𝑏−1

𝑖=1 2𝑖 = 2𝑏 elements into
bucket 𝑏. Intuitively, if the server generates a new hint after
each update, then after 𝑢 updates, the server has generated
𝑢/2𝑏 hints for bucket 𝑏, each of which takes time roughly
𝜆2𝑏 to generate, on security parameter 𝜆. (This is because our
offline/online scheme has hint-generation time 𝜆𝑛, on security
parameter 𝜆 and database size 𝑛.)

The total hint generation time with this waterfall scheme
after 𝑢 updates, on security parameter 𝜆, with 𝐵 = log 𝑛
buckets, is then at most 𝜆𝑢𝐵 = 𝜆𝑢 log 𝑛. In contrast, if we
generate a hint for the entire database on each change using
the simple scheme, we get total hint generation time of 𝜆𝑢𝑛 =

𝜆𝑢2𝐵 (since 𝑛 = 2𝐵), if generating a hint from scratch on
each change using the base scheme. That is, the waterfall
scheme gives an exponential improvement in server-side hint-
generation time over the simple scheme.

The query time of this waterfall scheme is
∑𝐵

𝑏=1 𝑂 (
√

2𝑏) =

𝑂 (
√
𝑛). So, we achieve an exponential improvement in hint-

generation cost at a modest (less than fourfold) increase in
online query time.
Subtleties. There are a few corner cases still to consider. For
example, in our base offline/online PIR scheme, the length
of a hint for a layer of size 2𝑏 is roughly 𝜆

√
2𝑏. For layers

smaller than 𝜆2, we would naively get a hint that is larger
than the layer itself, and so using offline-online PIR would
be worse than just downloading the contents of the entire
bucket. To make the communication cost more affordable,
we truncate the smallest buckets—the smallest bucket in our
scheme is of size at least 5𝜆2. For that smallest bucket, we use
a traditional PIR scheme, that does not require the client to
download a hint on each change. As a result, the client only
needs to download an updated hint once every 5𝜆2 ≈ 80000
updates to the database.
Modifications and deletions. To modify an existing database
record (𝑖, 𝐷𝑖), the server adds the updated record (𝑖, 𝐷 ′

𝑖
) to

the topmost bucket. When the client reads index 𝑖 from the
database, if it gets different values from different buckets, it
uses the value from the smallest (most recently updated) bucket.
In the bottom-most bucket, the servers can garbage collect
old updates by discarding all-but-the-latest (𝑖, ·) records for
every database index 𝑖. Similarly, to delete a record with index
𝑖 from the database, the server adds a key-value pair (𝑖,⊥) for
some special value ⊥ to the topmost bucket.

6 Use case: Safe Browsing
Every major web browser today, including Chrome, Firefox,
and Safari, uses Google’s “Safe Browsing” service to warn
users before they visit potentially “unsafe” URLs. In this
context, unsafe URLs include those that Google suspects are
hosting malware, phishing pages, or other social-engineering
content. If the user of a Safe-Browsing-enabled browser tries
to visit an unsafe URL, the browser displays a warning page
and may even prevent the user from viewing the page.

6.1 How Safe Browsing works today
At the most basic level, the Safe Browsing service maintains
a blocklist of unsafe URL prefixes. The browser checks each
URL it visits against this blocklist before rendering the page to

8



the client. Since the blocklist contains URL prefixes, Google
can blocklist an entire portion of a site by just blocklisting
the appropriate prefix. (In reality, there are multiple Safe
Browsing blocklists, separated by the type of threat, but that
detail is not important for our discussion.)

Two factors complicate the implementation:
• The blocklist is too large for clients to download and

store. The Safe Browsing blocklist contains roughly three
million URL prefixes. Even sending a 256-bit hash of each
blocklisted URL prefix would increase a browser’s down-
load size and memory footprint by 96MB. This would more
than double the binary size of Chrome on Android [38].

• The browser cannot make a network request for every
blocklist lookup. For every webpage load, the browser
must check every page resource (image, JS file, etc.) against
the Safe Browsing blocklist. If the browser made a call to
the Safe Browsing API over the network for every blocklist
lookup, the latency of page loads, as well as the load on
Google’s servers, would be tremendous.
The current Safe Browsing system (API v4) [40] addresses

both of these problems using a two-step blocklisting strategy.
Step 1: Check URLs against an approximate local blocklist.
Google ships to each Safe Browsing client a data structure
that represents an approximate and compressed version of
the Safe Browsing blocklist, similar to a Bloom filter [10, 16].
Before the browser renders a web resource, it checks the
corresponding URL against its local compressed blocklist.
This local blocklist data structure has no false negatives (it
will always correctly identify unsafe URLs) but it has false
positives (sometimes it will flag safe URLs as unsafe). In
other words, when given a URL, the local blocklist either
replies “definitely safe” or “possibly unsafe.” Thus, whenever
the local blocklist identifies a URL as safe, the browser can
immediately render the web resource without further checks.

In practice, this local data structure is a list of 32-bit
hashes of each blocklisted URL prefix. The browser checks a
URL (e.g., http://a.b.c/1/2.html?param=1) by splitting it
into substrings (a.b.c/1/2.html?param=1, a.b.c/1/2.html,
a.b.c./1, a.b.c/, b.c/, etc.), hashing each of them, and
checking each hash against the local blocklist. This local
blocklist is roughly 8× smaller than the list of all 256-bit
hashes of the blocklisted URL prefixes.
Step 2: Eliminate false positives using an API call. Whenever
the browser encounters a possibly unsafe URL, as determined
by its local blocklist, the browser makes a call to the Safe
Browsing API over the network to determine whether the
possibly unsafe URL is truly unsafe or whether it was a false
positive in the browser’s local blocklist.

To execute this check, the browser identifies the 32-bit
hash in its local blocklist that matches the hash of the URL.
The browser then queries the Safe Browsing API for the full
256-bit hash corresponding to this 32-bit hash.

Finally, the browser hashes the URL in question down to

256 bits and checks whether this full hash matches the one
that the Safe Browsing API returned. If the hashes match, then
the browser flags the URL as unsafe. Otherwise, the browser
renders the URL as safe.
This two-step blocklisting strategy is useful for two reasons.
First, it requires much less client storage and bandwidth,
compared to downloading and storing the full blocklist locally.
Second, it adds no network traffic in the common case. The
client only queries the Safe Browsing API when there is
a false positive, which happens with probability roughly
𝑛/232 ≈ 2−11. So, only one in every 2,000 or so blocklist
lookups requires making an API call.

However, as we discuss next, the current Safe Browsing
architecture leaks information about the user’s browsing
history to the Safe Browsing servers.

6.2 Safe Browsing privacy failure
The Safe Browsing protocol leaks information about the user’s
browsing history to the servers that run the Safe Browsing
API—that is, to Google. Prior work has observed this fact [8,
34,79], though given the ubiquity of the Safe Browsing API—
and especially given its inclusion in privacy-sensitive browsers
such as Firefox and Safari—it is worth emphasizing.

In particular, whenever the user visits a URL that is on
the Safe Browsing blocklist, user’s browser sends a 32-bit
hash of this URL to Google’s Safe Browsing API endpoint.
Since Google knows which unsafe URLs correspond to which
32-bit hashes, Google then can conclude with good probability
which potentially unsafe URL a user was visiting. (To provide
some masking for the client’s query, Firefox mixes the client’s
true query with queries for four random 32-bit hashes. Still,
the server can easily make an educated guess at which URL
triggered the client’s query.)

There is some chance (a roughly one in 2,000) that a user
queries the Safe Browsing API due to a false positive—when
the 32-bit hash of a safe URL collides with the 32-bit hash
of an unsafe URL. Even in this case, Google can identify a
small list of candidate safe URLs that the user could have
been browsing to cause the false positive.

6.3 Private Safe Browsing with Checklist
We design a private Safe-Browsing service based on Checklist,
which uses our new two-server PIR scheme of Section 4. So,
our scheme has the cost of requiring two non-colluding entities
(e.g., CloudFlare and Google) to host copies of the blocklist,
but it has the privacy benefit of not revealing the client’s query
to either server.

Our Checklist-based Safe Browsing client works largely
the same as today’s Safe Browsing client does (Figure 2). The
only difference is that when the client makes an online Safe
Browsing API call (to check whether a hit on the client’s local
compressed blocklist is a false positive), the client uses our
PIR scheme to execute the online query. In this way, the client

9



Firefox 
browser

Partial
hashes

Checklist 
client proxy

Lookup
0x24C1 2

3
Full hash

0x24C1A8… 4

0x104
0x130
0x1F3
0x1FF
0x24C
0x2B2
...

Checklist
PIR queryChecklist 

client 
state

Server B
Blocklist

Server A

Blocklist

5
Warn?

Figure 2: Using Checklist for Safe Browsing. Ê The browser checks
whether the URL’s partial hash appears in its local blocklist. Ë If
so, the browser issues a Safe Browsing API query for the full hash
corresponding to the matching partial hash. Ì The Checklist client
proxy issues a PIR query for the full hash to the two Checklist servers.
Í The Checklist client proxy returns the full hash of the blocklisted
URL to the browser. Î The browser warns the user if the URL hash
matches the hash of the blocklisted URL.

can check URLs against the Safe Browsing blocklist without
revealing any information about its URLs to the server (apart
from the fact that the client is querying the server on some
URL).

When the client visits a URL whose 32-bit hash appears
in the client’s local blocklist, the client needs to fetch the
full 256-bit SHA256 hash of the blocked URL from the Safe
Browsing servers. To do this, the client identifies the index
𝑖 ∈ [𝑛] of the entry in its local blocklist that caused the hit.
(Here 𝑛 is the total number of entries in the local blocklist.)
The client then executes the PIR protocol of Section 4 with
the Safe Browsing servers to recover the 𝑖th 256-bit URL hash.
If the full hash from the servers matches the full hash of the
client’s URL, the browser flags the webpage as suspect. If not,
it is a false positive and the browser renders the page.

As the Safe Browsing blocklist changes, the client can fetch
updates to its local blocklist using the method of Section 5.
Remaining privacy leakage. Using Checklist for the online
Safe Browsing queries prevents the Safe Browsing server from
learning the partial hash of the URL that the client is visiting.
However, the fact that the client makes a query to the server
at all leaks some information to the server: the servers learn
that the client visited some URL whose partial hash appears
on the blocklist. While this minimal leakage is inherent to the
two-part design of the Safe Browsing API, it may be possible
to ameliorate even this risk using structured noise queries [30].

7 Implementation and evaluation
We implement Checklist in 2481 lines of Go and 497 lines of C.
(Our code is available on GitHub [1].) We use C for the most
performance-sensitive portions, including the puncturable
pseudorandom set. We discuss low-level optimizations in
Appendix C.

7.1 Microbenchmarks for offline-online PIR
First, we evaluate the computational and communication costs
of the new offline-online PIR protocol, compared to two pre-

vious PIR schemes. One is an information-theoretic protocol
of Chor et al. [23] (“Matrix PIR”), which uses

√
𝑛 bits of

communication on an 𝑛-bit database. The second comparison
protocol is that of Boyle, Gilboa, and Ishai [14], based on
distributed point functions (“DPF”). This protocol requires
only 𝑂 (log 𝑛) communication and uses only symmetric-key
cryptographic primitives. We use the optimized DPF code
of Kales [52]. We run our benchmarks on a single-machine
single-threaded setup, running on a e2-standard-4 Google
Compute Engine machine (4 vCPUs, 16 GB memory).
Static database. We begin with evaluating performance on a
static database. Specifically, we consider a database of three
million 32-byte records. Figure 3 presents the servers’ and
client’s per-query CPU time and communication costs. Since
the Checklist PIR scheme has both offline and per-query costs,
the figure also presents the amortized per-query cost as a
function of the number of queries to the static database made
by the same client following an initial offline phase. Figure 3
shows that the offline-online PIR scheme reduces the server’s
online computation time by 100× at the cost of an expensive
eleven-second offline phase, run once per client. Even with this
high offline cost, for a sufficiently large number of queries, the
Checklist PIR scheme provides overall computational savings
for the server. For example, after 1,500 queries, the total
computational work of a server using Checklist PIR is two to
four times less than that of a server using the previous PIR
schemes. The Checklist PIR scheme is relatively expensive in
terms of client computation—up to 20× higher compared to
the previous PIR schemes.
Database with periodic updates. Next we evaluate the per-
formance of the waterfall updates mechanism (Section 5).
This experiment starts with a database consisting of three
million 32-byte records. We then apply a sequence of 200
updates to the database, where each update modifies 1% of the
database records. After each update, we compute the cost for
the server of generating an updated hint for the client. Figure 4
shows the cost of this sequence of updates. The majority of
the updates require very little server computation, as they
trigger an update of only the smallest bucket in the waterfall
scheme. We also plot the average update cost (dashed line) in
the waterfall scheme. and the cost of naively regenerating the
hint from scratch on each update (red square). The waterfall
scheme reduces the average cost by more than 45×.

Next, we evaluate the impact of using the waterfall update
scheme on the query costs. This experiment begins with a
database of 𝑛 = 3 × 106 records, of size 32 bytes each, and
runs through a sequence of periods. In the beginning of each
period, we apply a batch of 𝐵 = 500 updates to the database,
after which the client fetches an hint update from the server,
and then performs a sequence of queries. We measure the cost
to the server of generating the update and responding to the
queries. We amortize the per-update costs across queries in
each period, and we average the costs across 𝑛/𝐵 consecutive
periods, thus essentially evaluating the long-term amortized

10



Offline-Online online offline amortized DPF Matrix

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Se
rv

er
tim

e
(µ

s)

(a) Server CPU time

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Co
m

m
un

ic
at

io
n

(b
yt

es
)

(b) Communication

0 2000 4000 6000 8000 10000
Num Queries

101
102
103
104
105
106

Cl
ie

nt
tim

e
(µ

s)

(c) Client CPU time

Figure 3: For a static database of three million 32-byte records, we show the query cost in server time, client time, and communication. For the
new offline-online PIR scheme, which includes a relatively expensive offline cost, we also show the total cost, amortized over the number of
queries that the client makes to the database. The new scheme requires an expensive setup phase but has lower per-query server-side time than
prior PIR schemes.

0
(0%)

50
(50%)

100
(100%)

150
(150%)

200
(200%)

250
(250%)

300
(300%)

Updates (% DB changed)

0.0001

0.001

0.01

0.1

1

10

Se
rv

er
tim

e
(s

ec
)

Initial setup
Waterfall update
Running average

Figure 4: Server-side cost of client updates. At each time step, 1%
of the three million records change. The waterfall update scheme
reduces the average update cost by more than 45× relative to a naive
solution of rerunning the offline phase on each change.

costs of the scheme. Figure 5 presents the amortized server
costs as a function of the number of queries made by a single
client in each period. The new PIR scheme outperforms the
previous schemes as long as the client makes a query at
least every 10 periods (i.e., at least once every 5000 database
changes). As queries become more frequent, the reduced
online time of our scheme outweighs its costly hint updates.

7.2 Safe Browsing with Checklist
To evaluate the feasibility of using Checklist for Safe Browsing,
we integrate Checklist with Firefox’s Safe Browsing mecha-
nism. We avoid the need to change the core browser code by
building a proxy that implements the standard Safe Browsing
API. The proxy runs locally on the same machine as the
browser, and we redirect all of the browser’s Safe Browsing
requests to the proxy by changing the Safe Browsing server
URL in Firefox configuration. See Figure 2.

We begin by measuring the rate of updates to the Safe
Browsing database and the pattern of queries generated in the
course of typical web browsing. To this end, our proxy forwards

1/32 1/4 2 16 128
Number of queries per period

1

10

100

A
m

or
tiz

ed
se

rv
er

tim
e

pe
rq

ue
ry

[m
s]

Offline-online
DPF
Matrix

Figure 5: The amortized server compute costs of PIR queries on a
database with updates. As the number of queries between each pair
of subsequent database updates grows, the offline-online PIR scheme
achieves lower compute costs compared to previous PIR schemes.

all the Safe Browsing requests it intercepts to Google’s server.
Since the browser maintains an updated list of partial hashes,
we can measure the rate of updates to the database by observing
the updates to the list of partial hashes that the browser
downloads from the server. Furthermore, we can directly
measure the query frequency. We run this tool on our personal

0 1 2 3 4 5 6 7
Time (days)

24

28

212

216

220

224

M
es

sa
ge

le
ng

th
(b

yt
es

)

0 1 2 3 4 5 6 7
Time (days)

Update
Lookup

Figure 6: Communication on recorded trace (left) and on the same
trace replayed with Checklist (right). Shaded regions are 10pm-7am
each day.

11



10K 100K 1M 10M
Throughput (users)

60

120

180

240

300

La
te

nc
y

(m
se

c)
Offline-online
DPF
Non-private

Figure 7: The performance of a Checklist server. Solid lines display
the average latency, and shaded regions show the latency of the
95th-percentile of requests.

laptop for a typical work week, using the instrumented browser
for all browsing. Figure 6 shows the pattern of updates and
queries in the recorded trace and plots the combined request
and response size for both updates and queries. The database
size is roughly three million records, which, along with the
rate of updates, is consistent with Google’s public statistics on
the Safe Browsing datasets [41]. In our trace, the client updates
its local state every 94 minutes on average and performs an
online lookup every 44 minutes on average.

We then measure the throughput and latency of the Checklist
system. We setup three virtual machines on Google Cloud: a
Checklist server, a Checklist client, and a load generator. The
load generator simulates concurrent virtual Checklist users, by
producing a stream of requests to the server. The generator sets
the relative frequency of update and query requests, as well as
the size of the updates, based on their values in the recorded
trace. With the Checklist server under load, an additional client
machine performs discrete Checklist lookups, and measures
their end-to-end latency. The measured latency includes the
time to generate the two queries, obtain the responses from the
server, and process the responses on the client side. The load
generator establishes a new TLS connection for each request to
simulate different users more faithfully. We compare between
(i) Checklist running the new offline-online PIR protocol, (ii)
Checklist running the DPF-based protocol, and (ii) Checklist
doing non-private lookups. Figure 7 shows that the throughput
of a single Checklist server providing private lookups using
offline-online PIR is 9.4× smaller (at a similar latency) than
that of a server providing non-private lookups. A Checklist
server achieves 6.7× higher throughput and a 30ms lower
latency when using offline-online PIR, compared to when
running DPF-based PIR.

To measure the communication costs for the client, we
repeatedly replay our recorded one-week trace to simulate
long-term usage of Checklist. Specifically, for each update
request in the trace, we first use the information from the
response to update the size of the database on the Checklist
server, such that the database size evolves as in the recording.

0 30 60 90 120 150 180
Time (days)

0

20

40

60

Co
m

m
un

ic
at

io
n

(M
B)

Offline-online
Offline
Online
DPF
Non-private

Figure 8: We repeatedly replay the trace of Safe Browsing queries and
updates, recorded on a seven-day user session. The computational
benefits of offline-online PIR come at a cost of higher communication
costs.

We then measure the cost of fulfilling the same update request
using Checklist, which includes updating the list of partial
hashes (as in the original implementation) and updating the
client’s PIR hint. For each lookup query in the trace, we
issue a random query to the Checklist server and measure
the associated costs. Figure 6 plots the size of the messages
when using Checklist compared to the existing non-private
implementation. Figure 8 shows the cumulative costs of using
Checklist with two different PIR schemes, as well as with
non-private lookups. The DPF-based PIR is communication
efficient, using only 20% more communication than non-
private lookups. Offline-online PIR has a more significant
communication cost, mostly due to the cost of maintaining the
hint: it doubles the communication cost of the initial setup,
and requires 2.7× more communication than DPF-based PIR
on a running basis.

We also measure the amount of local storage a Checklist
client requires for its persistent state. With DPF-based PIR,
or with non-private lookups, the client stores a 4-byte partial
hash for each database record. The client can compress the list
of partial hashes as an unordered set (e.g., using Rice-Golomb
encoding [39]) to further reduce the storage to fewer than 1.5
bytes per record (for a list of 3 million partial hashes). With
offline-online PIR, the Checklist client stores on average 6.8
bytes for each 32-byte database record, in order to store the
(ordered) list of partial hashes and the latest hint.

We summarize our evaluation of Safe Browsing with Check-
list in Table 9. We estimate that deploying Safe Browsing with
Checklist using offline-online PIR would require 9.4× more
servers than the non-private service with the same latency.
A DPF-based PIR protocol would require 63× more servers
than the non-private service and would increase the latency by
30ms, though it would use 2.7× less bandwidth on a running
basis.

12



Table 9: Summary of costs of Safe Browsing with Checklist. The
offline-online variant offers lower compute costs and latency, while
a DPF based system is more communication efficient.

PIR type Server costs Latency Client bandwidth
Initial Running

(servers per 1B users) (ms) (MB/user) (MB/month)

Non-private 143 91 5.0 3.0
Offline-Online 1348 90 10.3 9.8
DPF 9047 122 5.0 3.6

8 Related work
Certificate-revocation lists are an important type of blocklist
used on the Internet today. CRLite [57], used in the Firefox
browser today, gives a way to compress a blocklist of revoked
certificates to ship to the client. CRLite’s client-side storage
grows linearly with the size of the blocklist, unlike Checklist.
Revcast proposes broadcasting certificate-revocation informa-
tion over FM radio [70]. Let’s Revoke [74] proposes modifying
the public-key infrastructure to facilitate revocation. Solis and
Tsudik [75] identify privacy issues with OCSP certificate
revocation checks and propose heuristic privacy protections.

A number of tech companies today maintain blocklists of
passwords that have appeared in data breaches. Users can
check their passwords against these blocklists to learn whether
they should change passwords. Recent work [48,58,61,77,80]
develops protocols with which users can check their passwords
against these blocklists while (1) hiding their password from
the server and (2) without the server revealing the entire block-
list to the client. These systems use private-set-intersection
protocols [19, 20, 67, 68] to provide privacy for the client and
server. Some of these breach-notification services [77] leak a
partial hash of the user’s password to the server [61]. Using
Checklist for these applications would eliminate this leakage
and would reduce the server-side computational cost (since
our amortized lookup cost is sublinear in the blocklist size),
at the price of requiring two non-colluding blocklist servers.

Our focus application of Checklist is to the Safe Browsing
API. Prior work has demonstrated the privacy weaknesses of
the Safe Browsing API [8, 34], arising from the fact that the
client leaks 32-bit hashes of the URLs it visits to the server.

The core of Checklist is a new offline/online private-
information-retrieval (PIR) scheme. The body of work on
PIR is vast and we will only be able to scratch the sur-
face here. Chor et al. [22, 23] initiated the study of PIR in
which the client communicates with multiple non-colluding
servers. Gasarch [33] gives an excellent survey on the state
of multi-server PIR as of 2004. Recent work improves the
communication cost of two-server PIR using sophisticated
coding ideas [29, 31, 81]. Under mild assumptions, we can
now construct almost two-server PIR schemes with almost
optimal communication cost [13, 14, 35, 44]. An orthogonal
goal is to protect against PIR server misbehavior [26, 36].

A parallel line of work aims to reduce the server-side
computational cost of multi-server PIR. On a database of
𝑛 rows, the above PIR schemes have server-side cost Ω(𝑛).
Beimel et al. [7] show that if the servers preprocess the
database, they can respond to client queries in 𝑜(𝑛) time.
Alternatively, “batch PIR” [45,50] allows the client to fetch
many records at roughly the server-side cost of fetching a
single record. Lueks and Goldberg extend this approach to
allow the servers to answer queries from many mutually
distrusting clients at less than the cost of answering each
client’s request independently [62]. Other work relaxes the
privacy guarantees of PIR to improve performance [78]. Our
work builds on offline/online PIR protocols [25, 66], in which
the client fetches some information about the database in an
offline phase to improve online performance.

Under appropriate “public-key assumptions” [28], it is
possible [17,55] to construct PIR schemes in which the client
communicates with only a single database server. Sion and
Carbunar [73] ask whether single-server PIR schemes can
ever be more efficient (in terms of total time) than the naïve
PIR scheme in which the client downloads the entire database.
Olumofin and Goldberg [64] argue that modern lattice-based
protocols can indeed outperform the trivial PIR protocols.
Recent work has refined single-server lattice-based schemes,
additional using batch-PIR techniques to get relatively efficient
single-server PIR schemes [2, 3, 4, 5]. The reliance on public-
key primitives makes these schemes concretely more expensive
than the multi-server schemes we construct, but they are
invaluable in setting in which multiple servers are unavailable.

Finally, prior work has applied PIR to private media con-
sumption [43], eCommerce [46], and private messaging [5].

9 Discussion and conclusion
Extension: Privacy for the server. We focus on protecting
the privacy of the client’s blocklist query but we do not attempt
to hide the full blocklist from the client. In many applications,
such as to password-breach notification services [48,58,61,
77, 80], hiding the blocklist from the client is important. That
is, the only information that a client should learn about the
blocklist after a single interaction with the server is whether
its string appears on the blocklist.

Freedman, Ishai, Pinkas, and Reingold [32] show that
it is possible to lift a PIR scheme like ours, with privacy
for the client only, into a PIR scheme with privacy for the
client and servers using oblivious pseudorandom functions.
Their transformation is elegant and concretely efficient. It
makes black-box use of the underlying PIR and just requires
minimal extra server-side work and no additional rounds of
communication between the client and the server. While we
have not yet implemented this extension, since server-side
privacy is not crucial for us, we expect it to be a simple and
useful extension for other applications of Checklist.

13



Future work: Single-server setting. Checklist requires two
servers to maintain replicas of the blocklist, and client privacy
holds against adversaries that control at most one servers. In
practice, it can be difficult to deploy multi-party protocols at
scale, since it require coordination between multiple (possibly
competing) companies or organizations. An important direc-
tion for future work would be to extend our offline/online PIR
scheme to work in the single-server setting [55], taking advan-
tage of recent advances in lattice-based PIR schemes [2,3,4,5].
While prior work [25] shows that it is possible in theory to con-
struct single-server offline/online PIR schemes with sublinear
online server time, these schemes are orders of magnitude
less efficient than our two-server schemes.

Outlook. With Checklist, a client can check a string against
a server-side list of blocklisted strings, without revealing its
string to the server and without having to download and
maintain a local copy of the blocklist. Our new offline/online
private-information-retrieval scheme reduces the server-side
cost of Checklist compared to previous private-information-
retrieval schemes. We hope to see major browsers integrate
Checklist into their Safe Browsing clients, password-breach
alerting systems, and certificate-revocation blocklists to better
protect their users’ privacy.

Acknowledgements. We gratefully acknowledge Dan Boneh
for his advice and support throughout this project. Eric
Rescorla first brought these privacy concerns with Safe Brows-
ing to our attention and asked whether private-information-
retrieval schemes could ever be fast enough to address them.
We thank Kostis Kaffes for very helpful conversations on our
experimental evaluation. Krzysztof Pietrzak suggested a tech-
nique to improve the efficiency of our earlier PIR scheme [25],
which was helpful as we developed the results of Section 4.
Elaine Shi kindly pointed us to related work on dynamic data
structures. A team at Google, including Alex Wozniak, Emily
Stark, Rui Wang, Nathan Parker, and Varun Khaneja answered
a number of our questions about the internals of the Safe
Browsing service. This work was funded by NSF, DARPA, a
grant from ONR, the Simons Foundation, a Facebook research
award, and a Google Cloud Platform research-credits award.
Opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References
[1] Source code for Checklist. Available at: https://

github.com/dimakogan/checklist.

[2] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private information
retrieval for everyone. Proceedings on Privacy Enhanc-
ing Technologies, 2016(2):155–174, 2016.

[3] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR.
IACR Cryptol. ePrint Arch., 2019.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In IEEE Security and Privacy, pages
962–979, 2018.

[5] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In SOSP,
pages 551–569, 2016.

[6] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers computation in private information retrieval:
PIR with preprocessing. In CRYPTO, pages 55–73.
Springer, 2000.

[7] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers’ computation in private information retrieval:
PIR with preprocessing. J. Cryptol., 17(2):125–151,
2004.

[8] Simon Bell and Peter Komisarczuk. An analysis of
phishing blacklists: Google Safe Browsing, OpenPhish,
and PhishTank. In Prem Prakash Jayaraman, Dimitrios
Georgakopoulos, Timos K. Sellis, and Abdur Forkan,
editors, Proceedings of the Australasian Computer Sci-
ence Week, ACSW 2020, Melbourne, VIC, Australia,
February 3-7, 2020, pages 3:1–3:11. ACM, 2020.

[9] Jon Louis Bentley and James B. Saxe. Decomposable
searching problems I: static-to-dynamic transformation.
J. Algorithms, 1(4):301–358, 1980.

[10] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[11] Dan Boneh, Sam Kim, and Hart William Montgomery.
Private puncturable PRFs from standard lattice assump-
tions. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT, volume 10210 of Lecture Notes
in Computer Science, pages 415–445, 2017.

[12] Dan Boneh and Brent Waters. Constrained pseudoran-
dom functions and their applications. In ASIACRYPT,
pages 280–300. Springer, 2013.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing. In EUROCRYPT, pages 337–367. Springer,
2015.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In CCS,
pages 1292–1303. ACM, 2016.

14

https://github.com/dimakogan/checklist
https://github.com/dimakogan/checklist


[15] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Func-
tional signatures and pseudorandom functions. In PKC,
pages 501–519. Springer, 2014.

[16] Andrei Broder and Michael Mitzenmacher. Network
applications of bloom filters: A survey. Internet mathe-
matics, 1(4):485–509, 2004.

[17] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In Jacques Stern, editor,
EUROCRYPT, volume 1592 of Lecture Notes in Com-
puter Science, pages 402–414. Springer, 1999.

[18] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Os-
trovsky. Locally updatable and locally decodable codes.
In Yehuda Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, 2014. Proceedings,
volume 8349 of Lecture Notes in Computer Science,
pages 489–514. Springer, 2014.

[19] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from fully homomorphic encryption with
malicious security. In CCS, pages 1223–1237, 2018.

[20] Hao Chen, Kim Laine, and Peter Rindal. Fast private
set intersection from homomorphic encryption. In CCS,
pages 1243–1255, 2017.

[21] Benny Chor, Niv Gilboa, and Moni Naor. Private in-
formation retrieval by keywords. Cryptology ePrint
Archive, 1998.

[22] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS,
pages 41–50. IEEE Computer Society, 1995.

[23] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. J. ACM,
45(6):965–982, 1998.

[24] ClamAV. ClamAV Documentation: File hash sig-
natures. https://www.clamav.net/documents/file-

hash-signatures. Accessed 28 January 2021.

[25] Henry Corrigan-Gibbs and Dmitry Kogan. Private
information retrieval with sublinear online time. In
EUROCRYPT, pages 44–75. Springer, 2020.

[26] Casey Devet, Ian Goldberg, and Nadia Heninger. Opti-
mally robust private information retrieval. In USENIX
Security, pages 269–283, 2012.

[27] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostro-
vsky. Universal service-providers for private information
retrieval. J. Cryptol., 14(1):37–74, 2001.

[28] Giovanni Di Crescenzo, Tal Malkin, and Rafail Os-
trovsky. Single database private information retrieval
implies oblivious transfer. In EUROCRYPT, pages 122–
138. Springer, 2000.

[29] Zeev Dvir and Sivakanth Gopi. 2-server PIR with
subpolynomial communication. J. ACM, 63(4):39:1–
39:15, 2016.

[30] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[31] Klim Efremenko. 3-query locally decodable codes of
subexponential length. SIAM J. Comput., 41(6):1694–
1703, 2012.

[32] Michael J Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC, pages 303–324. Springer,
2005.

[33] William Gasarch. A survey on private information
retrieval. Bulletin of the EATCS, 82(72-107):113, 2004.

[34] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux.
A privacy analysis of Google and Yandex Safe Browsing.
In 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2016, Toulouse,
France, June 28 - July 1, 2016, pages 347–358. IEEE
Computer Society, 2016.

[35] Niv Gilboa and Yuval Ishai. Distributed point functions
and their applications. In EUROCRYPT, pages 640–658.
Springer, 2014.

[36] Ian Goldberg. Improving the robustness of private
information retrieval. In Symposium on Security and
Privacy, pages 131–148. IEEE, 2007.

[37] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[38] Google. Chrome speed: Binary size metrics. https:

//chromium.googlesource.com/chromium/src/

+/master/docs/speed/binary_size/metrics.md.
Accessed 19 January 2021.

[39] Google. Compression in Safe Browsing APIs
(v4)). https://developers.google.com/safe-

browsing/v4/compression. Accessed 19 January
2021.

[40] Google. Safe Browsing APIs (v4). https:

//developers.google.com/safe-browsing/v4. Ac-
cessed 19 January 2021.

15

https://www.clamav.net/documents/file-hash-signatures
https://www.clamav.net/documents/file-hash-signatures
https://chromium.googlesource.com/chromium/src/+/master/docs/speed/binary_size/metrics.md
https://chromium.googlesource.com/chromium/src/+/master/docs/speed/binary_size/metrics.md
https://chromium.googlesource.com/chromium/src/+/master/docs/speed/binary_size/metrics.md
https://developers.google.com/safe-browsing/v4/compression
https://developers.google.com/safe-browsing/v4/compression
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4


[41] Google. Safe Browsing transparency report.
https://transparencyreport.google.com/safe-

browsing/overview. Accessed 28 January 2021.

[42] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu.
Efficient and secure multiparty computation from fixed-
key block ciphers. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020, pages 825–841. IEEE, 2020.

[43] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath Setty, Lorenzo Alvisi, and Michael Walfish. Scal-
able and private media consumption with Popcorn. In
NSDI, pages 91–107, 2016.

[44] Syed Mahbub Hafiz and Ryan Henry. A bit more than a
bit is more than a bit better: Faster (essentially) optimal-
rate many-server pir. Proceedings on Privacy Enhancing
Technologies, 2019(4):112–131, 2019.

[45] Ryan Henry. Polynomial batch codes for efficient IT-PIR.
PoPETs, 2016(4):202–218, 2016.

[46] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical
PIR for electronic commerce. In CCS, pages 677–690,
2011.

[47] Susan Hohenberger, Venkata Koppula, and Brent Waters.
Adaptively secure puncturable pseudorandom functions
in the standard model. In ASIACRYPT, pages 79–102.
Springer, 2015.

[48] Troy Hunt. Have I been pwned. https://

haveibeenpwned.com/FAQs. Accessed 26 January 2021.

[49] Internet Storm Center. SSL CRL activity. https://isc.
sans.edu/crls.html. Accessed 28 January 2021.

[50] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Batch codes and their applications. In László
Babai, editor, STOC, pages 262–271. ACM, 2004.

[51] J. C. Jones. Design of the CRLite infrastruc-
ture. https://blog.mozilla.org/security/2020/

12/01/crlite-part-4-infrastructure-design/,
December 2020. Accessed 28 January 2021.

[52] Daniel Kales. Go DPF library. https://github.com/
dkales/dpf-go, 2019. Accessed 26 January 2021.

[53] Aggelos Kiayias, Stavros Papadopoulos, Nikos Trian-
dopoulos, and Thomas Zacharias. Delegatable pseu-
dorandom functions and applications. In CCS, pages
669–684. ACM, 2013.

[54] Scott Knight. syspolicyd internals. https:

//knight.sc/reverse%20engineering/2019/02/

20/syspolicyd-internals.html, February 2019.
Accessed 26 January 2021.

[55] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS, pages 364–373. IEEE,
1997.

[56] Adam Langley. CRL set tools. https://github.com/
agl/crlset-tools. Accessed 28 January 2021.

[57] James Larisch, David Choffnes, Dave Levin, Bruce M
Maggs, Alan Mislove, and Christo Wilson. CRLite: A
scalable system for pushing all TLS revocations to all
browsers. In Symposium on Security and Privacy, pages
539–556. IEEE, 2017.

[58] Kristin Lauter, Sreekanth Kannepalli, Kim Laine,
and Radames Cruz Moreno. Password Moni-
tor: Safeguarding passwords in Microsoft Edge.
https://www.microsoft.com/en-us/research/

blog/password-monitor-safeguarding-passwords-

in-microsoft-edge/, January 2021. Accessed 26
January 2021.

[59] Daniel Lemire. A fast alternative to the modulo reduc-
tion. https://lemire.me/blog/2016/06/27/a-fast-

alternative-to-the-modulo-reduction/, 2016. Ac-
cessed 26 January 2021.

[60] Daniel Lemire. Fast random integer generation in an
interval. ACM Trans. Model. Comput. Simul., 29(1):3:1–
3:12, 2019.

[61] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS, pages 1387–1403,
2019.

[62] Wouter Lueks and Ian Goldberg. Sublinear scaling for
multi-client private information retrieval. In Financial
Cryptography, pages 168–186. Springer, 2015.

[63] Andrés Cecilia Luque. Apple is sending a request to
their servers for every piece of software you run on
your Mac. https://medium.com/@acecilia/apple-

is-sending-a-request-to-their-servers-for-

every-piece-of-software-you-run-on-your-mac-

b0bb509eee65, May 2020. Accessed 26 January 2021.

[64] Femi Olumofin and Ian Goldberg. Revisiting the com-
putational practicality of private information retrieval.
In Financial Cryptography, pages 158–172. Springer,
2011.

[65] Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. Authenticated hash tables
based on cryptographic accumulators. Algorithmica,
74(2):664–712, 2016.

16

https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
https://haveibeenpwned.com/FAQs
https://haveibeenpwned.com/FAQs
https://isc.sans.edu/crls.html
https://isc.sans.edu/crls.html
https://blog.mozilla.org/security/2020/12/01/crlite-part-4-infrastructure-design/
https://blog.mozilla.org/security/2020/12/01/crlite-part-4-infrastructure-design/
https://github.com/dkales/dpf-go
https://github.com/dkales/dpf-go
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://knight.sc/reverse%20engineering/2019/02/20/syspolicyd-internals.html
https://github.com/agl/crlset-tools
https://github.com/agl/crlset-tools
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65
https://medium.com/@acecilia/apple-is-sending-a-request-to-their-servers-for-every-piece-of-software-you-run-on-your-mac-b0bb509eee65


[66] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private
stateful information retrieval. In CCS, CCS ’18, page
1002–1019, New York, NY, USA, 2018. Association for
Computing Machinery.

[67] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Spot-light: Lightweight private set intersection
from sparse OT extension. In CRYPTO, pages 401–431.
Springer, 2019.

[68] Peter Rindal and Mike Rosulek. Malicious-secure private
set intersection via dual execution. In CCS, pages 1229–
1242, 2017.

[69] Amit Sahai and Brent Waters. How to use indistinguisha-
bility obfuscation: deniable encryption, and more. In
STOC, pages 475–484. ACM, 2014.

[70] Aaron Schulman, Dave Levin, and Neil Spring. RevCast:
Fast, private certificate revocation over fm radio. In CCS,
pages 799–810, 2014.

[71] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce Maggs. Puncturable pseudorandom sets and
private information retrieval with polylogarithmic band-
width and sublinear time. Cryptology ePrint Archive,
Report 2020/1592, 2020. https://eprint.iacr.org/
2020/1592.

[72] Elaine Shi, Emil Stefanov, and Charalampos Papaman-
thou. Practical dynamic proofs of retrievability. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 325–336. ACM, 2013.

[73] Radu Sion and Bogdan Carbunar. On the practicality
of private information retrieval. In NDSS. The Internet
Society, 2007.

[74] Trevor Smith, Luke Dickinson, and Kent Seamons. Let’s
revoke: Scalable global certificate revocation. In NDSS,
2020.

[75] John Solis and Gene Tsudik. Simple and flexible revoca-
tion checking with privacy. In International Workshop
on Privacy Enhancing Technologies, pages 351–367.
Springer, 2006.

[76] Emil Stefanov, Charalampos Papamanthou, and Elaine
Shi. Practical dynamic searchable encryption with small
leakage. In 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014.

[77] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi,
Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan

Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In
USENIX Security, pages 1556–1571, 2019.

[78] Raphael R Toledo, George Danezis, and Ian Goldberg.
Lower-cost 𝜖-private information retrieval. PoPETs,
2016(4):184–201, 2016.

[79] Trail of Bits Blog. How safe browsing fails to protect
user privacy. https://blog.trailofbits.com/2019/

10/30/how-safe-browsing-fails-to-protect-

user-privacy/, 2019. Accessed 26 January 2021.

[80] Ke Coby Wang and Michael K Reiter. Detecting stuffing
of a user’s credentials at her own accounts. In USENIX
Security, 2020.

[81] Sergey Yekhanin. Towards 3-query locally decodable
codes of subexponential length. J. ACM, 55(1):1:1–1:16,
2008.

A Definitions for
puncturable pseudorandom sets

This definition comes directly from prior work on puncturable
pseudorandom sets [25, 71].
Correctness. We say that a puncturable pseudorandom set
(Gen,GenWith,Eval,Punc) is correct if for all sk← Gen()
and 𝑆 ← Eval(sk):

(a) 𝑆 is a size-
√
𝑛 subset of [𝑛], and

(b) for all 𝑖 ∈ 𝑆, Eval(Punc(sk, 𝑖)) = 𝑆r{𝑖}.
In addition, for all 𝑖 ∈ [𝑛], sk ← GenWith(𝑖), and 𝑆 ←
Eval(sk), Properties (a) and (b) must hold and additionally it
must hold that 𝑖 ∈ 𝑆.
Security. We say that a puncturable pseudorandom set
(Gen,GenWith,Eval,Punc) is secure if for all efficiency ad-
versaries A the following quantity

�����Pr


𝑖 = 𝑖′ :

sk← Gen()
𝑆 ← Eval(sk)
𝑖 ←R 𝑆

skp ← Punc(sk, 𝑖)
𝑖′ ← A(skp)


− 1
𝑛 −
√
𝑛 + 1

�����
is less than some fixed negligible function in the implicit
security parameter 𝜆 ∈ N, for large enough 𝜆. The same
must hold if we sample sk by choosing 𝑖 ←R [𝑛] and setting
sk← GenWith(𝑖).

B Security analysis
We begin by analyzing a single query of Construction 2.

17

https://eprint.iacr.org/2020/1592
https://eprint.iacr.org/2020/1592
https://blog.trailofbits.com/2019/10/30/how-safe-browsing-fails-to-protect-user-privacy/
https://blog.trailofbits.com/2019/10/30/how-safe-browsing-fails-to-protect-user-privacy/
https://blog.trailofbits.com/2019/10/30/how-safe-browsing-fails-to-protect-user-privacy/


Lemma 3 (Correctness). For every 𝜆, 𝑛 ∈ N, every database
𝐷 ∈ {0, 1}𝑛, and every 𝑖 ∈ [𝑛], the client succeeds in re-
trieving the 𝑖th bit of the database with all but negligible
probability.

Proof. Suppose first that the Query algorithm does not abort.
Let 𝐷 ′

𝑖
be the bit output of Reconstruct. We consider the

following three cases:
• Easy case (𝛽 = 0): it holds that 𝐷 ′

𝑖
= 𝑏𝑡 + 𝑢1 mod 2

where 𝑏𝑡 is the 𝑡th hint bit and 𝑢1 is the parity bit in the
answer of the right server. Since we are in the easy case, it
holds that skp1 = Punc(sk𝑡 , 𝑖) and therefore 𝑆p1 = 𝑆𝑡r{𝑖}
and 𝑢1 =

∑
𝑗∈𝑆p1

𝐷 𝑗 =
∑

𝑗∈𝑆𝑡r{𝑖 } 𝐷 𝑗 = 𝑏𝑡 + 𝐷𝑖 (mod 2).
Therefore 𝐷 ′

𝑖
= 𝑏𝑡 + 𝑢1 mod 2 = 𝐷𝑖 .

• Hard case (𝛽 = 1): it holds that 𝐷 ′
𝑖
= 𝑢0 + 𝑢1 + 𝑣𝛾 mod 2

where 𝑢0 and 𝑢1 are the parity bits in the answers of the
two servers and 𝑣𝛾 = 𝐷𝑤𝛾

is the extra bit in the answer of
the server 𝛾. We have the following:

𝑆p𝛾 = 𝑆newr{𝑖}
𝑆p𝛾 = 𝑆newr{𝑤𝛾}

and therefore 𝐷 ′
𝑖
= 𝑢𝛾 +𝑢𝛾 + 𝑣𝛾 mod 2 =

∑
𝑗∈𝑆newr{𝑖 } 𝐷 𝑗 +∑

𝑗∈𝑆newr{𝑤𝛾 } 𝐷 𝑗 + 𝐷𝑤𝛾
mod 2 = 𝐷𝑖 .

Finally, observe that the Query algorithm only fails if none
of 𝑇 = 𝜆𝑛 pseudorandom set of size

√
𝑛 contain element

𝑖, which happens with negligible probability [25, Appendix
C.2]. �

We now turn to prove security of a single query of our
scheme.

Lemma 4 (Security). Suppose that the underlying puncturable
pseudorandom set is secure. Then for every 𝜆, 𝑛 ∈ N, every
database 𝐷 ∈ {0, 1}𝑛, every server 𝑠 ∈ {0, 1}, and every
𝑖, 𝑖′ ∈ [𝑛], View𝐷,𝑖,𝑠 ≈𝑐 View𝐷,𝑖′,𝑠 .

Proof. Consider the following sequence of distributions.
Hyb0 = View𝐷,𝑖,𝑠 = (skp𝑠 , 𝑤𝑠) is the view of server 𝑠 when
the client is reading index 𝑖.
Hyb1 = (skp𝑠 , 𝑤̃) where 𝑤̃ ←R Eval(skp1).

Observe that Hyb0 and Hyb1 are identically distributed since
in both QueryEasy and QueryHard, the extra index 𝑤𝑠 is a
uniformly random element in the punctured set 𝑆p𝑠 .
Hyb2: we modify theQuery algorithm such that after checking
that there exists a set 𝑡 ∈ [𝑇] such that 𝑖 ∈ 𝑆𝑡 , it always sets
sk𝑡 ← GenWith(𝑛, 𝑖) rather than taking the key from the hint.

If 𝑠 = 0 the two distributions are identically distributed since
skp0 is always chosen independently of 𝑆𝑡 . If 𝑠 = 1, then
observe that Hyb1 and Hyb2 are identically distributed since
choosing a set 𝑆𝑡 from a collection of random puncturable sets,
such that 𝑖 ∈ 𝑆𝑡— conditioned on the collection containing
at least one such set—is identical to sampling a new set with

GenWith(𝑛, 𝑖). If the collection does not contain such a set,
we abort in both cases.
Hyb3: we remove the check that there exists a set 𝑡 ∈ [𝑇] such
that 𝑖 ∈ 𝑆𝑡 from Query.

Observe that Hyb2 and Hyb3 are statistically indistinguishable
since (according to the correctness proof above) the check
fails with only negligible probability.
Hyb4: we modify the Query algorithm such that if 𝛽 = 1 and
𝛾 = 𝑠, it calls QueryEasy instead of QueryHard.

Observe that Hyb3 and Hyb4 are identically distributed since
if 𝛽 = 1 and 𝛾 = 𝑠, the procedure QueryHard sets skp𝑠 ←
Punc(sknew, 𝑖), which is identical to howQueryEasy sets skp𝑠 .
Hyb5: we modify the Query algorithm to so that it samples
𝛽←R Bernoulli((

√
𝑛−1)/𝑛) (notice that the probability is one

half of the original probability). If 𝛽 = 0 it calls QueryEasy,
and if 𝛽 = 1, it calls QueryHard with 𝛾 = 𝑠̄.

Observe that Hyb4 and Hyb5 are identically distributed, since
in eahc of them QueryHard is called with probability exactly
(
√
𝑛 − 1)/𝑛, and always with with 𝛾 = 𝑠̄.

We can now write Hyb5 explicitly as follows:

sknew ←R GenWith(𝑛, 𝑖)
𝑆new ←R Eval(sknew)
𝛽←R Bernoulli((

√
𝑛 − 1)/𝑛)

if 𝛽 = 0: 𝑖punc ← 𝑖

else: 𝑖punc ←R 𝑆newr{𝑖}
skp1 ← Punc(sknew, 𝑖punc)
𝑤̃ ←R 𝑆newr{𝑖punc}
Output(skp1, 𝑤̃)

Now, by Lemma 36 in [25], it holds that Hyb5 when
reading index 𝑖 is computationally indistinguishable from
Hyb′5 when reading index 𝑖′. Therefore Hyb0 = View𝐷,𝑖,𝑠 is
computationally indistinguishable from Hyb′0 = View𝐷,𝑖′,𝑠,
which completes the proof of the lemma. �

The extension to the multi-query case is identical to the
proof of Lemma 45 in [25].

C Additional optimizations
The puncturable pseudorandom set of Section 3.2 builds on
a tree-based construction of a pseudorandom-function. Each
node in the binary tree has an associated pseudorandom label,
where the two labels of each inner node’s two children are
recursively generated by evaluating a pseudorandom generator
on the label the parent node. The simple length-doubling pseu-
dorandom generator we use is based on fixed-key AES [42]
to avoid the additional cost of key scheduling that is incurred
with more traditional constructions of stream ciphers from

18



block ciphers (e.g., counter mode). We further reduce the time
to evaluate the pseudorandom generator on every node in a
binary tree by using a breadth-first traversal. A bread-first
evaluation computes the labels for an entire layer of the bi-
nary tree using a single tight loop that essentially encrypts a
sequence of blocks using AES with a single key. Evaluating
the entire tree requires calling said loop once per layer. This
results results in a 7× faster running time, compared to a
depth-first implementation, which essentially encrypts a much
larger number of “individual” blocks one by one.

Another implementation choice that reduces the
puncturable-set evaluation time is to use “Lemire’s trick” [59,
60] for mapping random 32-bit values to random integers in a
specified range without using arithmetic modulo operations.

Finally, we use SIMD compiler intrinsics whenever we
compute the XOR of a large number of database records.

19


	1 Introduction
	2 Goals and overview
	2.1 Problem statement
	2.2 Design overview

	3 Background
	3.1 Private information retrieval (PIR)
	3.2 Puncturable pseudorandom set

	4 PIR with faster online time
	4.1 Definition
	4.2 Our scheme

	5 Handling database changes with waterfall updates
	6 Use case: Safe Browsing
	6.1 How Safe Browsing works today
	6.2 Safe Browsing privacy failure
	6.3 Private Safe Browsing with Checklist

	7 Implementation and evaluation
	7.1 Microbenchmarks for offline-online PIR
	7.2 Safe Browsing with Checklist

	8 Related work
	9 Discussion and conclusion
	Acknowledgements
	References
	A Definitions for puncturable pseudorandom sets
	B Security analysis
	C Additional optimizations

