
A Configurable Hardware Implementation of XMSS?

Jan Philipp Thoma1 and Tim Güneysu1,2

1 Ruhr University Bochum, Horst Görtz Institute Bochum, Germany
jan.thoma@rub.de, tim.gueneysu@rub.de

2 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract. As a fundamental building block in today’s digital world,
Digital Signature Schemes (DSS) provide the ability to authenticate
messages exchanged over untrusted channels. Unfortunately, virtually all
currently used DSS are built upon mathematical problems that can effi-
ciently be solved using quantum computers, thus rendering schemes such
as RSA and ECC insecure. Due to its conservative security properties,
the eXtended Merkle Signature Scheme (XMSS) is an outstanding can-
didate for a quantum-secure DSS which has already been standardized
by NIST and IETF.
In this paper we present the first full hardware accelerator for XMSS
whose generic design approach allows matching the requirements of sev-
eral projected use-cases. In particular, we provide a full design explo-
ration regarding the choice of parameters and hash functions to identify
configurations for optimal performance and area utilization.

Keywords: XMSS · Hardware Implementation · Digital Signatures.

1 Introduction

Today’s digital signature algorithms are mostly built on hard mathematical prob-
lems such as prime factoring of large numbers or the discrete logarithm problem.
These mathematical problems have been thoroughly studied for decades and are
hence genuinely believed to be hard on a classical computer, i.e. they cannot be
solved in polynomial time. Cryptographic schemes based on these mathematical
problems, such as RSA, ElGamal, Diffie-Hellmann and DSA are widely deployed
over a large range of devices. However, this pleasant story of success is about to
be rudely interrupted by the introduction of large-scale quantum computers. In
contrast to classical computers, quantum computers are able to perform quan-
tum parallelism [7] which is useful to speedup some probabilistic algorithms.
As a consequence to this threat, many institutions are currently working on
standardizing post-quantum cryptography, laying the foundation for industry to
adapt these algorithms.

? The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research (BMBF) under the project “QuantumRISC”
(ID 16KIS1038) [20] and project “PQC4MED” (ID 16KIS1044).

https://orcid.org/0000-0003-1613-732X
https://orcid.org/0000-0002-3293-4989

2 J. Thoma and T. Güneysu

In this work we will investigate XMSS which was recently standardized by
the IETF [12] and is recommended by NIST [6] and the Federal Cyber Security
Authority of Germany (BSI) [2]. In addition to the standardization efforts by
federal agencies, a security proof has been given in [4], showing that the security
requirements of XMSS are minimal, i.e. if any digital signature scheme exists at
all, there exists a secure instantiation of XMSS.

Generally speaking, post-quantum cryptography is more expensive in terms
of computational complexity, be it due to larger key and signature sizes or due
to more complex arithmetic operations. Hence, for many use cases the require-
ments to expected latency or computing capacities do not fit the new algo-
rithms. Dedicated hardware accelerators like the one presented in this work
can be used to increase the performance of the schemes or outsource the com-
putation from the main processing unit. Since the cryptographic primitives
are in an early stage of standardization, hardware accelerators face the chal-
lenge of agility - if the parameter set changes throughout the process, be it
due to security considerations or practicality, the hardware accelerators must
be adapted with high effort. We address this challenge by making our hard-
ware implementation highly configurable and easily adaptable to algorithmic
changes without the need of a complete re-implementation. The configurability
includes many XMSS parameters like the tree height, the WOTS chain length
and most importantly the used hash algorithm which is easily exchangeable.
We further provide a cryptoagile configuration that allows selecting the hash
algorithm at runtime. All files of the hardware implementation are available at
https://github.com/Chair-for-Security-Engineering/XMSS-VHDL

1.1 Our Contributions

We present the first full-fledged hardware accelerator for the emerging quantum
secure signature standard XMSS. As part of our work we conduct an in-depth
design exploration to investigate optimal performance and area results for dif-
ferent possible use-cases and configurations. Our final design proposal is highly
configurable to adapt to various use-cases, including an agile instantiation for
long-term security in case one of the deployed hash algorithms should become
obsolete. The configurability, that is inherent part of our design, enables a large
spectrum of time/area trade-offs.

1.2 Related Work

XMSS was introduced in 2011 as a quantum-secure digital signature scheme
with minimal security assumptions in [4] and has since been standardized by
the IETF in RFC 8391 [12]. The scheme is closely related to Leighton-Micali
Signatures (LMS) which is also standardized by the IETF [16], tough LMS does
not have such minimal requirements for security. A comparison between the two
schemes has been conducted in [5, 13]. The side-channel security of XMSS has
been studied in [14] which was improved upon in [22]. A hardware/software co-
design of XMSS using the RISC-V architecture was implemented in [21]. The

https://github.com/Chair-for-Security-Engineering/XMSS-VHDL

A Configurable Hardware Implementation of XMSS 3

entirely hardware-based accelerator of this work, however, can specifically adapt
its performance to the individual use-cases.

There are several other proposals for quantum secure signature schemes,
most of which are part of the NIST post-quantum cryptography (PQC) compe-
tition [18]. In [19], a hardware accelerator for the number theoretic transform
is implemented using high level synthesis. This accelerator can be utilized to
speed up quantum-secure signature schemes such as Falcon [11] and Crystals-
Dilithium [9]. In [1], an agile crypto co-processor is implemented that can accel-
erate various lattice based schemes. The multivariate Rainbow signature scheme
was presented in [8] and implemented in hardware in [10].

1.3 Organization

The remainder of this paper is structured as follows: In Section 2 we introduce
the scheme and its underlying algorithms. Key features of our implementation
are presented in Section 3. Then, we evaluate the implementation in Section 4
with focus on different target use cases. We provide both performance figures
as well as data on the area utilization and compare our implementation against
related work. Finally, we conclude in Section 5.

2 Preliminaries

In this section, we introduce a variant of the Winternitz One-Time Signature
(WOTS) scheme dubbed WOTS+ and then present XMSS which uses WOTS+.

2.1 Winternitz One-Time Signatures

Most hash-based signature schemes build upon one-time signatures, such as the
Winternitz One-Time Signature (WOTS) scheme [17] which originates in 1989.
The WOTS scheme improves upon the Lamport Diffie one-time signature scheme
[15].

The WOTS scheme is defined by a Winternitz parameter w and the di-
gest length n of the cryptographic one-way function H : {0, 1}∗ → {0, 1}n.
To sign a n-bit message, it is first split into len1, w-bit blocks such that m =
m(1)||...||m(len1);m(i) ∈ Zw∀i ∈ {1, ..., len1} where

len1 =

⌈
n

lg(w)

⌉
(1)

Additionally, a checksum is computed over the message and converted into a
w-bit representation as follows

c =

len1∑
i=1

w − 1−m(i) = c(1)||...||c(len2); c(i) ∈ Zw (2)

4 J. Thoma and T. Güneysu

The length of the checksum in base-w representation len2 computes as

len2 =

⌊
lg(len1 ∗ (w − 1))

lg(w)

⌋
+ 1 (3)

We define m′ = m(1)||...||m(len1)||c(1)||...||c(len2) as the concatenation of the mes-
sage and the checksum in base-w representation. The WOTS secret key consists
of len = len1 + len2 randomly chosen n-bit values. The signature and public key
are generated by applying the one-way function H(·), m(i)- respectively w-times
to the secret key, thus generating a WOTS chain. Hence, both the signature and
the public key consist of len pseudorandom n-bit values. The secret key is the
start of the chain, the signature an intermediate value and the public key the
last value form the chain.

To verify a WOTS signature, the verifier applies H(·), w−m′(i)− 1-times to
the signature for each i ∈ {1, ..., len} which yields the public key if and only if
the signature is valid.

A variant of the WOTS scheme dubbed WOTS+ has been introduced in [3]. A
pseudorandom function (PRF) is used to generate a unique hash key and bitmask
during each iteration of the WOTS+ chaining. The process is depicted in Figure
1. To generate the key and the bitmask, the PRF is used with a public seed

...

Chain Step i− 1

PRF(Pub. Seed, OTS Addr(1))

H0 PRF(Pub. Seed, OTS Addr(0))

Chain Step i

...

Fig. 1. Chain iteration in WOTS+. Each hash operation is keyed and obfuscated using
a PRF.

and a 256-bit OTS address which is defined in the XMSS standardization [12].
The address differs in one bit which per definition of a PRF yields completely
unrelated pseudorandom results.

Each WOTS key must only be used to sign one message. Using a key for
more than one signature enables trivial attacks as the attacker then knows in-
termediate values for each of the WOTS chains, giving him/her some degrees of
freedom to modify the signature while still maintaining its validity

A Configurable Hardware Implementation of XMSS 5

2.2 XMSS

The eXtended Merkle Signature Scheme (XMSS) is based on Merkle Signa-
tures [17] which construct a many-time signature scheme from a one-time signa-
ture using a balanced binary tree. The tree structure of XMSS is shown in Figure
2. Each leaf node of the tree structure holds a WOTS+ public key that is com-

Root

...

Leaf

OTS

Key

Leaf

OTS

Key

...
...

...
...

...
...

...

Leaf

OTS

Key

Leaf

OTS

Key

Fig. 2. Balanced binary tree structure of XMSS. The authentication path nodes for
the leftmost leaf node are marked in red.

pressed to a n-bit value. To achieve this, each len ∗ n-bit WOTS+ public key is
represented as an unbalanced binary tree (L-Tree) where the leaf nodes contain
a single n-bit key value each. The L-Tree hence has len leaf nodes. Then, two
sibling nodes from the L-Tree are iteratively compressed using the hash function,
yielding a single root node of the L-Tree which is used as leaf node in the XMSS
Merkle Tree. Similar to the WOTS+ structure, the hashing of sibling nodes in
the L-Tree makes use of a keyed hash function as well as bitmasks to randomize
the hash function input. In each instance, first a n-bit key is pseudorandomly
generated using the PRF, followed by two pseudorandom n-bit bitmasks which
are xor-ed to one of the sibling nodes each. The extensive use of pseudoran-
dom keys and bitmasks throughout XMSS is attributed to the minimal security
requirements mentioned beforehand. The generation of the XMSS root node fol-
lows the same procedure as for the L-Trees: Two sibling nodes are hashed using
a pseudorandom key and a bitmask to generate the parent node. XMSS distin-
guishes between PRF operations and normal hash operations by prepending an
unambiguous padding before each operation of the hash function.

XMSS is a stateful signature scheme since it must be ensured that each leaf
node is used only once to sign a single message. The state (i.e. the current leaf
node index) is part of the XMSS secret key. Additionally, the secret key contains
a seed used to pseudorandomly generate the WOTS+ seeds and a n-bit value
SK PRF which is used as a hash key in the signing algorithm to randomize the

6 J. Thoma and T. Güneysu

message hash. The public key holds the root node of the balanced binary tree
as well as a n-bit public seed.

During the key generation of XMSS, the binary tree is constructed. Hence,
2h WOTS+ public keys are generated, where h is the tree height. This is done
pseudorandomly using the seed which is part of the XMSS secret key. To sign
a message of arbitrary length, it is hashed together with a n-bit randomization
value R as well as the leaf index of the one-time key. Then, the WOTS+ signa-
ture of the resulting n-bit message hash is computed. Finally, on each level of
the tree, the sibling node of the node located directly on the path to the root
node is stored as part of the authentication path (see Figure 2). The signature
consists of the len ∗n-bit WOTS+ signature, the leaf node index, the n-bit ran-
domization value R, and the h ∗ n-bit authentication path. To verify a message,
the verifier generates the randomized message hash using the leaf index and the
randomization value R. Then s/he computes a candidate for the root node of the
tree using the authentication path from the signature. Only if the computed root
node candidate matches the root node from the XMSS public key, the signature
is valid.

3 Configurable and Efficient Hardware Implementation

We now provide the details for our XMSS hardware accelerator. The main goal
of our implementation is a universal and agile design, offering high performance.
The development of hardware accelerators for hash-based signature schemes has
not been investigated yet in favor of adding a hardware-accelerated hash core
which achieves some speed-up compared to a pure software solution. However,
our implementation can easily be configured with an arbitrary number of hash
cores and WOTS+ chaining modules, allowing increased performance by true
parallel computation of WOTS+ chains. We implement a low overhead hash
bus design that allows optimal utilization of all configured hash cores to address
various use-cases. Moreover, we provide a simple interface between the hash core
and the bus system, such that it is easy to implement different hash algorithms.

In the provided implementation, a global configuration file allows switching
the hash algorithm, setting the block RAM (BRAM) address layout, configuring
the XMSS tree height as well as the Winternitz parameter w and defining the
number of hash cores and WOTS+ chaining modules present. We further imple-
ment support for cryptoagile versions of XMSS, allowing to instantiate multiple
hash algorithms in parallel and configuring the implementation during runtime.
Finally, we implement a embedded-verification unit that strips all logic needed
for key generation and sign to create a low-area verification unit.

3.1 Selection of Parameters

Following the standardization document [12], we implement the SHA2-256 hash
function as a primary candidate. Furthermore, we implement the optional SHAKE-
128 extendable-output function (XOF) to demonstrate the feasibility of a simple

A Configurable Hardware Implementation of XMSS 7

exchange of hash algorithms. The XMSS tree height is freely configurable which
includes the mandatory values 10, 16 and 20. The Winternitz parameter can be
chosen as any power of two.

3.2 WOTS+ Chain Parallelism

XMSS is strongly dependent on the performance of the deployed hash core.
All bitmasks and keys used throughout XMSS are generated pesudorandomly
using the hash function which results in a high capacity utilization of the hash
core. However, simply adding a large number of hash cores is not sufficient to
parallelize the scheme effectively since most of the hash operations depend on the
result of prior operations. For example, during the WOTS+ chaining algorithm,
a bitmask and the hash key are generated using the hash core in PRF mode. The
next hash operation takes the key and some value obfuscated by the bitmask as
input. Since this operation depends on the previously generated key and bitmask,
the implementation would need to stall regardless of the amount of hash cores
available. This problem can be solved by computing multiple WOTS+ chains in
parallel, yielding a much improved utilization of the available hash cores. Write
collision between the chaining modules on the hash bus are prevented using
time-division multiplexing (TDM).

3.3 Signature Generation

The key generation is the computationally most expensive part of XMSS. That
is, since all WOTS+ public keys need to be generated to compute the root node
of the Merkle Tree. In a naive implementation, one would need to generate the
whole tree during each sign operation in order to compute the authentication
path for a given leaf node. To thwart this necessity and speed up the signa-
ture generation by several orders of magnitude, our implementation stores the
compressed leaf nodes during key generation in BRAM. Naturally, this solution
does not scale for arbitrary tree heights since the amount of memory is limited.
However, at a tree height of 20 which is the maximum height standardized by
the IETF, the required storage for the leaf nodes is 220 ∗ 32B ≈ 35MB. This is
still feasible on many FPGA boards.

3.4 Constant Time

The minimal configuration of the key generation and signature generation is
isochronously designed, operating with one hash core and one WOTS+ chain.
Most importantly, the time needed for signature generation does not depend
on the message since regardless of the message, the complete WOTS+ chain
is computed. For configurations with multiple hash cores and WOTS+ chains,
collisions on the bus may lead to minor delays due to arbitration. Such a collision
occurs for example, if two hash cores try to request the next message block at the
same time. These timing deviations lay in the nature of a small bus architecture
but are not related to the message and thus do not incur any timing issues.

8 J. Thoma and T. Güneysu

4 Evaluation

We now evaluate our implementation for different use-cases. For all configura-
tions, we fix a XMSS tree height of 10 which allows 1024 messages to be signed.
Larger tree heights are configurable in the global parameter file.

4.1 Use-Case: Time/Area Tradeoff

First, we target an optimal time/area trade-off using the SHA2-256 hash core.
We first measure the performance of the XMSS implementation with up to 6
hash cores and WOTS+ chains. This is multiplied by the lookup table (LUT)
utilization, yielding a time/area product. The results are shown in Figure 3. We
performed the same analysis for the flip-flop-based area utilization which lead to
a similar result. The figure shows an optimal configuration for the configuration
with three hash cores and two WOTS+ chains. We ran the place-and-route algo-

1 2 3 4 5 6
WOTS Chains

1

2

3

4

5

6

H
a
sh

C
o
re
s

66 77 83 94 105 114

61 61 69 73 81 87

61 52 55 60 66 70

71 60 58 63 68 72

81 68 64 67 72 76

89 74 70 71 76 80
60

70

80

90

100

110

k
x
C
ycles

x
A
rea

(L
U
T
s)

Fig. 3. Time (cycles) / area (LUTs) product for up to 6 hash cores and WOTS+
chains. (H=10, w=16)

rithm with an Xilinx Artix-7 FPGA as target device which is the recommended
hardware platform by the NIST. The configuration allows clock frequencies of
up to 100 MHz, utilizes 12,463 LUTs and 6,525 flip flops. The key generation
takes 1.68 seconds, sign takes 4.98 ms and verify about 1.01 ms, depending on
the message.

4.2 Use-Case: High Performance

For a performance-oriented version, we first measure the latency of the XMSS
sign algorithm for configurations with up to 6 hash cores and WOTS+ chains.
The resulting heatmap is depicted in Figure 4. It shows that configuring multiple

A Configurable Hardware Implementation of XMSS 9

1 2 3 4 5 6
WOTS Chains

1

2

3

4

5

6

H
a
sh

C
o
re
s

1033 1032 1031 1032 1031 1031

759 692 691 691 690 691

624 492 491 489 488 490

623 491 457 454 455 457

622 490 447 434 435 436

622 490 446 422 422 423
500

600

700

800

900

1000

x
1000

[C
lock

C
ycles]

Fig. 4. Heatmap for the latency (measured in 1000 clock cycles) for single sign opera-
tion in XMSS with varying number of hash cores and WOTS+ chains using SHA2-256.
(H=10, w=16)

WOTS+ chains with only one hash core does not improve the performance. That
is, since the hash core is used heavily throughout the WOTS+ chaining algorithm
and hence, such configurations need to stall frequently. The addition of a second
hash core drastically improves the performance by more than 25%. At this point,
the effect of parallel WOTS+ chain computation starts showing, gaining another
9% performance compared to the configuration with two hash cores and one
WOTS+ chain. A further observation is, that using many parallel hash cores
is not sufficient to accelerate the sign algorithm when only one WOTS+ chain
is configured. That is, due to dependencies within the hash operations of the
WOTS+ chains which limit parallelism in hash computation.

While the performance of our implementation generally increases the more
hash cores and WOTS+ chains are configured, the effectiveness of additional
hash cores and WOTS+ chains fades for a larger number of cores and chains.
That is, since the sign operation of XMSS consists of two phases: First, a
WOTS+ signature is generated and secondly, the Treehash authentication path
is computed. The WOTS+ part can efficiently be parallelized using multiple
WOTS+ chains and a sufficiently large number of hash cores. That is, since the
WOTS+ chains are independent of each other. The second part of the algorithm
allows only limited parallelization and hence limits the overall speedup during
signature generation.

Although larger - and hence faster - configurations are possible with our
implementation, for means of demonstration we choose the configuration with
9 hash cores and 7 WOTS+ chains as exemplary performance-oriented version
which takes about 400,000 clock cycles to complete a sign operation. The config-
uration can be placed on a Xilinx Artix-7 FPGA using 30,454 LUTs, 15,191 flip
flops and a maximum clock frequency of 95 MHz. The key generation takes 0.77

10 J. Thoma and T. Güneysu

seconds, the sign algorithm 1.32 ms and signature verification approximately
561.01 us depending on the message.

4.3 Use-Case: Embedded Verification

Next to our main implementation that can accelerate all XMSS functions, we
provide a minimal version that can only verify signatures. Therefore, we remove
all unused modules as well as the logic that is used to switch between different
modes in the original XMSS implementation. This version addresses the common
use case, where a signature needs to be verified by a low-cost embedded device,
e.g., for firmware updates. Though the implementation is equally configurable
regarding hash cores, WOTS+ chains and XMSS parameters, in this setting we
focus on a very low area footprint to especially address that use case. For the
verification, the XMSS signature is expected in BRAM according to the layout
defined in the global parameter file.

The embedded verification unit utilizes 4,596 LUTs and 2,646 flip flops when
placed on an Artix-7 FPGA. We used area optimized synthesis tools which is
why the maximum clock frequency is at 91 MHz. In our tests, the verification of
a signature on average takes approximately 2.92 ms for random messages.

4.4 SHA vs. SHAKE

Additionally to the SHA2-256 hash function, we implement SHAKE-128 as de-
fined as an optional XOF in the standardization [12]. For XMSS the most rel-
evant input lengths to the hash function are 768 and 1,024 bits. For SHA2,
messages with 768 bit length require two blocks whereas 1,024 bits inputs re-
quire 3 hash blocks. Hence, for 768 bit messages it takes 132 clock cycles for
the hash output to be present whereas for 1,024 bit messages it takes 197 clock
cycles. The SHAKE-128 hash core we use in our implementation is significantly
faster, requiring 33 clock cycles for messages with up to 1,344 bit length. This
performance gap has a direct impact to the performance of the overall XMSS
scheme as shown in Figure 5. The performance of the sign algorithm is approxi-
mately quartered for all configurations compared to the SHA2 version (c.f. Fig.
4). The overall characteristic regarding the interplay of WOTS+ chains and hash
cores remains similar.

It has to be noted that the SHAKE-128 hash core is much larger than the
SHA2-256 core. We placed the time / area tradeoff variant (which also yields
three hash cores and two WOTS+ chains for SHAKE) on an Artix-7 FPGA. The
implementation utilizes 20,651 LUTs and 12,368 flip flops, allowing a maximum
clock frequency of 95 MHz. The key generation takes 0.48 seconds, signing takes
1.32 ms and verification approximately 243.86 us.

4.5 Crypto-Agile Configuration

The crypto-agile configuration allows simultaneous placement of multiple hash
cores using different algorithms and hence, runtime configurability of the algo-
rithm. This is especially desirable for products with expected long life cycles as

A Configurable Hardware Implementation of XMSS 11

1 2 3 4 5 6
WOTS Chains

1

2

3

4

5

6
H
a
sh

C
o
re
s

255 255 254 255 254 254

188 168 168 167 168 168

159 125 121 121 121 121

159 124 113 112 113 113

159 124 113 108 107 108

159 124 113 107 105 104 120

140

160

180

200

220

240

x
1000

[C
lock

C
ycles]

Fig. 5. Heatmap for the latency (measured in 1000 clock cycles) for single sign op-
eration in XMSS with varying number of hash cores and WOTS+ chains using the
SHAKE-128 hash function. (H=10, w=16)

the crypto-agility allows reacting to new attacks on one of the hash algorithms.
While the performance is unaffected by this, the parallel instantiation of different
hash cores naturally affects the area utilization.

We implemented a crypto-agile version using one SHA2 core, one SHAKE-
128 core and one WOTS+ chain on an Artix-7 FPGA. The design utilizes 13,373
LUTs and 7,026 flip flops and can be run at 100 MHz. The timing results are
equal to the minimal configurations using SHA and SHAKE respectively (c.f.
Table 1).

4.6 Comparison

We gather the performance and area figures for each configuration in Table 1.
We further compare the results to the hardware/software co-design approach
form [21].

The results demonstrate the flexibility of our implementation. The minimal
SHA2 version using one hash core and one WOTS+ chain is roughly half the
size of the time/area tradeoff configuration. By stripping the logic required for
key generation and sign, we derived an embedded verify accelerator that is more
than 30% smaller than the minimal configuration performing all XMSS func-
tions. In general, the SHAKE-128 configurations are much larger than the SHA2
counterparts which is due to the increased size of the hash core itself. Our im-
plementation makes it easy to replace the hash core implementation and hence,
yields more opportunities to achieve a specifically tailored implementation for
each use-case.

The performance of the minimal version of our implementation featuring
only one hash core is comparable to the hardware/software co-design presented
in [21], though our implementation is slightly slower in key generation but much
faster in verification. It has to be noted that [21] uses an XMSS-optimized SHA2

12 J. Thoma and T. Güneysu

Table 1. Comparison between all configurations in area utilization and performance.
The minimal configurations are equipped with one hash core and one WOTS+ chain.
The HW / SW co-design from [21] uses a XMSS optimized version of SHA2 in contrast
to our general purpose hash accelerator. All variants use h=10, n=32, w=16.

Logic Memory Usage
FMax Gen Sign

Verify

(avg.)LUT MUX FF BRAM Slices

HW/SW [21]

(SHA*)
- - - - - 93 MHz 3.44 s 9.95 ms 5.68 ms

Minimal
(SHA) 7 177 552 3 027 14.5 2 128 100 MHz 4.63 s 10.33 ms 2.68 ms

Time /Area

(SHA)
12 463 340 6 525 14.5 3 666 100 MHz 1.68 s 4.98 ms 1.01 ms

Performance
(SHA) 30 454 307 15 191 14.5 8 675 95 MHz 0.77 s 4.20 ms 561.01 us

Minimal
(SHAKE) 10 932 269 5 960 14.5 3 248 100 MHz 1.18 s 2.58 ms 575.24 us

Time /Area

(SHAKE)
20 651 340 12 368 14.5 5 753 95 MHz 0.48 s 1.32 ms 243.86 us

Embd. Vrfy

(SHA)
4 596 48 2 646 14.5 1 467 91 MHz - - 2.92 ms

Cryptoagile

(SHA+KE)
13 373 304 7 026 14.5 3 893 100 MHz

4.63/
1.18 s

10.33/
2.58 ms

2.68/
0.58 ms

hash core and not a general-purpose hash core as part of this work. The larger
configurations which make use of the hash bus and WOTS+ chain parallelism
outperform the hardware / software approach by several orders of magnitude.
The performance version using the SHA2 hash algorithm is nearly 6 times faster
in key generation, about twice as fast during sign and more than 10 times faster
during verification while still maintaining a reasonable area utilization.

5 Conclusion

In this work, we presented the first configurable hardware implementation of
the eXtended Merkle Signature Scheme. We demonstrated the feasibility of such
XMSS hardware accelerators fitting the area requirements of even entry-level
FPGAs. We conducted a thorough design evaluation which gives an intention
for area and speed of the implementation far beyond the shown configurations. It
is important to notice that each of the parameters can be adjusted individually,
thus yielding a huge range for optimizations and improvements suited for many
specific use-cases.

Our implementation outperforms the existing hardware/software co-design
approach by multiple orders of magnitude, though even faster configurations of
our implementation are possible by adding even more hash cores and WOTS+
chains. The embedded verification implementation instantiates a minimal con-
figuration that can be used to verify XMSS signatures on embedded devices.

A Configurable Hardware Implementation of XMSS 13

A crypto-agile version can be used to configure the underlying hash algorithm
at runtime. This is especially interesting because, despite of implementation er-
rors, according to the proof the single point of failure of the XMSS remains its
hash function. In this context, we consider our crypto-agile design as currently
best option to achieve a long-term secure hardware implementation of a digital
signature scheme.

References

1. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: A configurable crypto-
processor for post-quantum lattice-based protocols. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019(4), 17–61 (2019). https://doi.org/10.13154/tches.v2019.i4.17-
61, https://doi.org/10.13154/tches.v2019.i4.17-61

2. BSI: Technical Guideline - Cryptographic Mechanisms: Recommendations and Key
Lengths. Report BSI TR-02102-1, Bundesamt für Sicherheit in der Information-
stechnik (Mar 2020), version: 2020-01

3. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the Security
of the Winternitz One-Time Signature Scheme. In: International Conference on
Cryptology in Africa. pp. 363–378. Springer (2011)

4. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A Practical Forward Secure Signa-
ture Scheme Based on Minimal Security Assumptions. In: International Workshop
on Post-Quantum Cryptography. pp. 117–129. Springer (2011)

5. Campos, F., Kohlstadt, T., Reith, S., Stöttinger, M.: LMS vs XMSS: com-
parison of stateful hash-based signature schemes on ARM cortex-m4. In: Ni-
taj, A., Youssef, A.M. (eds.) Progress in Cryptology - AFRICACRYPT 2020
- 12th International Conference on Cryptology in Africa, Cairo, Egypt, July
20-22, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12174, pp.
258–277. Springer (2020). https://doi.org/10.1007/978-3-030-51938-4 13, https:

//doi.org/10.1007/978-3-030-51938-4_13

6. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for Stateful Hash-Based Signature Schemes. NIST Special
Publication 800, 208 (2020)

7. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 400(1818), 97–117 (1985)

8. Ding, J., Schmidt, D.: Rainbow, A New Multivariable Polynomial Signature
Scheme. In: International Conference on Applied Cryptography and Network Se-
curity. pp. 164–175. Springer (2005)

9. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: Crystals-dilithium: A lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018).
https://doi.org/10.13154/tches.v2018.i1.238-268, https://doi.org/10.13154/

tches.v2018.i1.238-268

10. Ferozpuri, A., Gaj, K.: High-Speed FPGA Implementation of the NIST Round 1
Rainbow Signature Scheme. In: 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). pp. 1–8. IEEE (2018)

11. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-based

https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268

14 J. Thoma and T. Güneysu

compact signatures over NTRU. Submission to the NIST’s PQC standardization
process (2018)

12. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. Internet Research Task Force (IRTF), RFC 8391, 1–74
(2018)

13. Kampanakis, P., Fluhrer, S.R.: LMS vs XMSS: A comparison of the stateful
hash-based signature proposed standards. IACR Cryptol. ePrint Arch. 2017, 349
(2017), http://eprint.iacr.org/2017/349

14. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential
power analysis of XMSS and SPHINCS. In: International Workshop on Construc-
tive Side-Channel Analysis and Secure Design. pp. 168–188. Springer (2018)

15. Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep.,
Technical Report CSL-98, SRI International (1979)

16. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali Hash-Based Signatures. In-
ternet Research Task Force (IRTF), RFC 8544 (2019)

17. Merkle, R.C.: A Certified Digital Signature. In: Conference on the Theory and
Application of Cryptology. pp. 218–238. Springer (1989)

18. Moody, D.: Round 2 of NIST PQC Competition. PQCrypto (2019)
19. Nguyen, D.T., Dang, V.B., Gaj, K.: A High-Level Synthesis Approach to the Soft-

ware/Hardware Codesign of NTT-Based Post-Quantum Cryptography Algorithms.
In: 2019 International Conference on Field-Programmable Technology (ICFPT).
pp. 371–374 (2019). https://doi.org/10.1109/ICFPT47387.2019.00070

20. QuantumRISC: Quantumrisc — next generation cryptography for embedded sys-
tems (2020), https://www.quantumrisc.org/

21. Wang, W., Jungk, B., Wälde, J., Deng, S., Gupta, N., Szefer, J., Niederhagen, R.:
XMSS and Embedded Systems. In: International Conference on Selected Areas in
Cryptography. pp. 523–550. Springer (2019)

22. Zujko, K.: Improving Differential Power Analysis of XMSS. In: The Book of Articles
National Scientific Conference “Science and Young Researchers” IV edition. p. 112
(2020)

http://eprint.iacr.org/2017/349
https://doi.org/10.1109/ICFPT47387.2019.00070
https://www.quantumrisc.org/

	A Configurable Hardware Implementation of XMSS

