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Abstract. CRYSTALS-Dilithium as a lattice-based digital signature
scheme has been selected as a finalist in the Post-Quantum Cryptog-
raphy (PQC) standardization process of NIST. As part of this selec-
tion, a variety of software implementations have been evaluated re-
garding their performance and memory requirements for platforms like
x86 or ARM Cortex-M4. In this work, we present a first set of Field-
Programmable Gate Array (FPGA) implementations for the low-end
Xilinx Artix-7 platform, evaluating the peculiarities of the scheme in
hardware, reflecting all available round-3 parameter sets. As a key com-
ponent in our analysis, we present results for a specifically adapted
Number-Theoretic Transform (NTT) core for the Dilithium cryptosys-
tem, optimizing this component for an optimal Look-Up Table (LUT)
and Flip-Flop (FF) utilization by efficient use of special purpose Digital
Signal Processors (DSPs). Presenting our results, we aim to shed further
light on the performance of lattice-based cryptography in low-cost and
high-throughput configurations and their respective potential use-cases
in practice.

1 Introduction

In the light of continuous progress and advancement on the development of
quantum computers, security of existing public-key cryptographic schemes starts
to crumble [11]. While most existing and currently deployed schemes rely on the
hardness of integer factorization or computing discrete logarithms, broken by
Shor’s quantum algorithm [14], given that an attacker has access to a large-scale
quantum computer, a call for the design, proposal, and standardization of new
post-quantum secure schemes for Key Encapsulation Mechanism (KEM) and
digital signatures has been initiated by the United States National Institute for
Standards and Technology (NIST) in 2017 [9].

After two competitive rounds of thorough scrutiny and examination, NIST
announced the seven finalists from the initial field of 69 candidates in 2020 which
still have to undergo further evaluation in a third and final round. Moreover, the
seven finalists can be categorized into the four key establishment schemes, Classic
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McEliece, Kyber, NTRU, and Saber as well as the three digital signature schemes
Dilithium, Falcon, and Rainbow.

Interestingly, five out of the seven remaining finalists are using hard lattice
problems as fundamental security assumption. Along with Falcon [6], Dilithium [4]
is one of the two remaining lattice-based digital signature schemes, while Rainbow
is based on multivariate cryptography instead. Further, Dilithium and Kyber are
part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS) using struc-
tured lattices to allow fast arithmetic and enable compact key, ciphertext and
signature sizes. More precisely, the underlying polynomial ring enables efficient
polynomial multiplication leveraging the Number-Theoretic Transform (NTT).

While literature is rich in efficient and optimized implementations on lattice-
based KEMs, to date, lattice-based digital signature schemes are mostly ne-
glected. In particular, efficient implementation of lattice-based signature schemes
in reconfigurable hardware urgently needs to be investigated in order to guide
and support the selection of the future post-quantum cryptography standards.
In this regard, we are only aware of a two existing hardware implementations of
Dilithium [12,15], while several optimized software implementations, e.g., target-
ing AVX2 [3] or Cortex-M4 [7] architectures, have been presented recently. Fur-
ther, even though the design in [12] has been implemented on a high-performance
Virtex-7 Field-Programmable Gate Array (FPGA), it does not exploit important
features of modern reconfigurable hardware architectures efficiently. For this, we
present a novel set of efficient and compact FPGA implementations specifically
targeting a low-end Xilinx Artix-7 series through evaluating the peculiarities
of the Dilithium digital signature scheme for efficient and clever mapping into
modern FPGA features and components’.

Contribution. For this, our contribution can be summarized as follows:

— A specifically crafted and adapted NTT making extensive use of Digital
Signal Processors (DSPs) is presented to exploit peculiarities and features
of modern low-end FPGAs.

— Our Dilithium core is compact and comprehensive, providing functionalities
for key generation, signature generation, signature verification, precompu-
tation, arbitrary-length message digesting, and packing and unpacking keys
and signatures.

— For Dilithium-III, our core uses 30k Look-Up Tables (LUTs), 11k Flip-Flops
(FFs), 45 DSPs and 23 Block-RAMs (BRAMSs) with fi,4. = 142 MHz. For
key generation, our core is capable of performing 4290 OP/s, for signature
generation 1351 OP/s and for signature verification 11751 OP/s.

Related Work. Many lattice-based schemes have been proposed in recent years
and there is a wide variety of implementations in hardware. The first implemen-
tation of a lattice-based signature scheme was proposed by Giineysu et al. [8]

!Our implementation will be publicly available at: https://github.com/
Chair-for-Security-Engineering/dilithium-artix?7.
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in 2012. Péppelmann et al. extend this work in [10]. For Dilithium, to the best
of our knowledge, there are two other implementations on FPGA: The first one
uses a High Level Synthesis (HLS) approach [15] for Artix-7 and the second one
using Virtex-7 as platform [12]. Other post-quantum secure signature schemes
that have been implemented in reconfigurable hardware include Rainbow [5] and
SPHINCS [1]. Furthermore, efficient implementation of the NTT in hardware
has been research very well. Roy et al. presented an efficient design that uses
two merged NTT layers [13]. Banerhee et al. presented an Application-Specific
Integrated Circuit (ASIC) design of the NTT that can be used to accelerate
multiple schemes [2]. Finally, Zhang et al. present a way to integrate the post-
processing of the inverse transformation into the main computation resulting in
a low-complexity implementation [16].

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and ¢ = 223 — 2'3 + 1. Further, let Rq be a
polynomial ring with R = Z4[X]/(X™ + 1). In addition, let us denote vectors
in bold lower-case letters, e.g., v, while matrices are denoted in bold upper-case
letters, e.g., A. Polynomials in NTT domain are indicated by a hat.

2.2 Number-Theoretic Transform

The NTT, as used in Dilithium, can be seen as a discrete Fourier transform over
polynomials in R,, where the complex arithmetic is replaced by the modular
arithmetic of the polynomial coefficients. Since the ring structure enables positive
wrapped convolution, we can use an n-point NT'T for fast polynomial multipli-
cation by transforming both factor polynomials to the NTT domain, multiplying
coefficient-wise in NTT domain, and then applying the inverse transform to the
result to obtain the final product polynomial.

2.3 CRYSTALS-Dilithium

In July 2020, the NIST announced the 7 finalist and 8 alternate candidates
for the Post-Quantum Cryptography (PQC) standardization competition, with
both schemes of the CRYSTALS being selected as finalist for their respective
categories. In particular the digital signature scheme Dilithium has undergone a
thorough scrutiny during the competition process and since then reached version
3.1 [4], while most recently some major changes and updates for the various
security parameter sets have been presented.

In general, the Dilithium digital signature scheme has been designed to adopt
simple and secure design principles, in particular substituting discrete Gaussian
sampling in favor of uniform sampling. In addition, all remaining fundamental



operations have been carefully chosen such that they easily can be performed
in constant time. Aiming at long-term security, the different security levels and
parameters have been chosen conservatively while endeavoring to minimize the
combined size of public key and signatures. Eventually, the modular construc-
tion of Dilithium favors efficient and highly optimized implementations across all
security levels and parameter sets as the main operations rely on SHAKE-128 or
SHAKE-256 and the multiplication in the polynomial ring R, regardless of the
security level. Instead, higher or lower security is only achieved through addition
or reduction in the number of operations performed in R,.

Further, as a digital signature scheme, Dilithium provides the following three
core methods for key generation, signature generation, and signature verification.

Key Generation. For key generation, the respective algorithm generates a kx1
matrix A such that each entry in the matrix is a polynomial of the ring R,. Using
randomly sampled vectors s; and so, with coefficients being small elements from
Ry, the second part of the public key is generated as t = As; + sg, performing
all algebraic operations over R,.

Signature Generation. The fundamental operation of Dilithium is the gen-
eration of digital signatures. For this, the signing algorithm chooses a masking
vector y in order to compute Ay and chooses wi to be the higher-order bits of
the coeflicients in the resulting vector. The challenge ¢, a polynomial in R, is
the hash of the message and w; and is used to generate the potential signature
z =y + cs1. Using rejection sampling, leakage of the secret key is prevented, at
the penalty of repeating the signature generation process if the signature fails
the security and correctness checks.

Signature Verification. For signature verification, w/ is set to be the higher-
order bits of Az — ct. A signature is valid and accepted if the coefficients in z
pass the security check and if ¢ is the hash of the message and w].

Parameter Sets. With introduction of version 3.1 of the Dilithium algorithm
specification, the list of supported security parameter sets has been adjusted
for the three NIST security levels II, III, and V. Since the operations in R, do
not change for the different parameter sets, the performance-critical dimensions
of A are adjusted, resulting in an increased or reduced number of operations,
depending on the targeted security level.

3 Design Considerations

Modern FPGA generations are equipped with a multitude of general purpose
logic. However, for certain applications, highly optimized special purpose com-
ponents such as very compact and optimized DSP cores are provided, offering



efficient and fast integer arithmetic operations, or BRAM, offering compact true
dual-port memory banks for easy storage of larger amounts of data. Given this,
our primary design goal was to reduce the footprint of our architecture in terms
of general purpose components such as LUTs and FFs, as these components
usually are limited in larger systems.

3.1 Arithmetic

As a first step, we opted to implement most coefficient-level arithmetic in DSP
modules for fast and efficient arithmetic, since these components are rarely used
due to their special purpose character. More precisely, we exploit several special
features of modern Xilinx DSP blocks, including:

Runtime reconfiguration. During design and synthesis time, the DSP can
be configured to provide different functionalities during runtime. Based on
this, we configured all our instantiated DSP modules to provide multiple
different arithmetic operations, allowing to re-use the same DSP for different
operations, hence resulting in a highly integrated and optimized design with
respect to area and utilization.

Pre-addition. Besides fast integer multiplication, each DSP unit is equipped
with a pre-adder stage, allowing to merge multiple arithmetic operations
within a single DSP.

Single Instruction Multiple Data. Although each DSP unit can perform up
to 48-bit wide additions, we opted to use the DSP cores in a Single Instruc-
tion Multiple Data (SIMD) fashion, allowing to perform two 24-bit additions
instead, perfectly fitting the constrains of underlying arithmetic operations
in the polynomial ring.

Number-Theoretic Transform. Further, for the design of the NTT, we adapt
the fundamental ideas from [16] and transferred the concepts to the polynomial
ring and modulus of Dilithium. Analogous to their approach, our NTT architec-
ture relies on two optimized and reconfigurable Butterfly Units (BFUs).

3.2 Memory

Besides efficient arithmetic, a sophisticated memory architecture and layout is
required to store and load coefficients and polynomials efficiently during arith-
metic operations. Given the design considerations for our arithmetic modules,
in particular the NTT unit, we identified the following two constraints for our
memory architecture:

1. Due to the NTT architecture, our design must be capable of reading and
writing up to four coefficients simultaneously. For this, we decided to use
four simple dual port BRAMs to store polynomials. More precisely, we use
four parallel 18K BRAM instances for this, each of them holding up to



512 coefficients. This means, since for a single polynomial only 64 coefficients
are stored per BRAM, we can fill the four 18K BRAM units with up to eight
full polynomials.

2. The memory layout has to be adjusted such that read and write conflicts are
avoided for each operation. In particular, the layout has to ensure that the
coefficients of the polynomials are distributed among the BRAMs such that
we always can read or write data during the arithmetic operations without
stalling due to memory access conflicts. For further details, we refer to [16].

Given that we can store up to 8 polynomials using four BRAM units, the
total number of BRAM instances is governed by the security level. In particular,
we need to hold k-1+3l+6k+1 polynomials in total, i.e., 53 polynomials for level
I1, 82 polynomials for level III, and 127 polynomials for level V. Fortunately, we
were able to identify efficient memory mappings for each parameter set, such
that it requires only requires [4(kl 4+ 31 4+ 6k + 1)/8] 18K BRAM primitives and
further enables the following operations in a pipelined or parallel fashion:

— During matrix-vector multiplication, the vector elements are transformed
sequentially to NTT domain. Upon completion of the transformation, the
multiply-accumulate module updates the resulting vector elements through
coeflicient-wise multiplication with the A polynomials.

— In pre-computations for signature generation and verification, the matrix A
is expanded and in parallel, NTTs of sq, s, tg and t; can be performed.

— The norm check of z can be performed in parallel to sampling c.

3.3 Functionality

In order to provide an integrated and self-contained core for generation and
verification of digital signatures based on the Dilithium scheme, our architecture
needs to support the full set of the following operations:

KeyGen Generation of a key from a given seed.

Signpre Expansion of A and pre-computation of 81, 82, and to.
Sign Signature computation.

Verifypre Expansion of A and pre-computation of 1.

Verify Signature verification.

Digestimsg Hashing of arbitrary-length messages along with ¢r (of the public key).
Store Storing and unpacking public keys, secret keys, signatures, or seeds.

Load Packing and sending public keys, secret keys, or signatures.

4 Implementation on Reconfigurable Hardware

In this section, we outline the basic architecture of our comprehensive Dilithium
architecture. In particular, our construction exploits special purpose units and
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Fig. 1: Dilithium High-Level Architecture

features of a modern Xilinx 7-series Zynq System-on-Chip (SoC) platform host-
ing an Artix-7 FPGA (XC7Z020).

4.1 Architectural Details

The high-level architecture of our implementation is shown in Fig. 1. All basic
arithmetic operations are performed by the NT'T, Multiply-Accumulate (MACC),
and Matriz- Vector Multiplication units. However, even though the matrix-vector
multiplication serves as master and control unit for the NTT and MACC cores,
both sub-cores must be accessible from the global operation control unit as well
to provide auxiliary support for additional arithmetic operations. Besides, the
check units directly access polynomials in the memory for norm checking and
provide the check result to the operation control module. The Sampler module
controls and accesses the Keccak hash core in order to buffer the hash output
before writing the uniformly generated random samples to memory. However,
the Keccak-based hash core is also accessible from the operation control unit,
mostly required for random seed expansion. Finally, the hint modules control
read and write access to the hint registers in the memory unit. Further, as
already highlighted in Section 3, the memory unit consists of several BRAMs
for the intermediate polynomials, two 512-bit registers to store p’ and p as well
as some additional 256-bit registers for p, ¢, tr, K, and the seed for the key
generation.

Number-Theoretic Transform. As already mentioned in Section 3, our NTT
implementation follows the design principles of [16], however, applying the fol-
lowing two modifications. First, we make use of the true dual-port capabilities of
the BRAM modules, enabling our design to read two twiddle factors simultane-
ously in the lowest NTT layer and thus still allowing processing four coefficients
at the same time. Second, the stored twiddle factors for the inverse transform
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Fig. 2: Architecture of the BFU. DSPs are numbered, D; are shift registers that com-
pensate for the DSPs or the reduction as given in their respective index. Da;g compen-
sates for the difference of cycle counts between D1 2 r and D3 4

are pre-multiplied by a factor of 27! in order to avoid any additional modular
division logic.

At the core of the NTT, we instantiate two independent BFUs, as depicted
in Fig. 2. More precisely, each BFU receives two unsigned 23-bit coefficients, an
unsigned 23-bit twiddle factor, and the signed 24-bit value a — b. Note, however,
that this value can be pre-computed for both BFUs simultaneously using a single
DSP in SIMD mode.

Forward Number-Theoretic Transform. In general, the forward NTT computes
two values A and B such that (A, B) := (a+b-w,a—b-w), given that w denotes
the pre-computed twiddle factor. For this, we use the DSPs 1 and 2 to compute
a + bw. More precisely, we need to combine two DSPs for this operation since
each DSP itself can only perform signed 25x18-bit multiplications. However,
when combining DSPs for larger multiplications, we can leverage a dedicated
low-latency cascade path. After multiplication, the resulting product is reduced
to a representative in [0,¢) and already provides the first part of the forward
NTT computation. Further, subtracting the first part from 2a and adding or
subtracting ¢ (depending on the sign of the subtraction result), we obtain the
second part of the forward NTT output.

In addition, for increased throughput, the BFUs have been pipelined, using
shift register instances to delay the input a of the third DSP. More specifically,
the first part of the result is also delayed through a shift register in order to
return both parts of the forward NTT computation simultaneously.



Inverse Number-Theoretic Transform. Similar to the forward NTT, the inverse
NTT computes two values A and B, such that (A, B) := (27(a +b), (a — b)w).
However, as already mentioned before, this time the operand w for the inverse
NTT is already pre-processed to incorporate the factor 271,

Here, w and the pre-computed, signed value a — b are used as input for the
multiplication DSPs 1 and 2. Further, depending on the sign bit of the value a—b,
we choose between adding ¢ or 0 using the pre-adder stage of the multiplication
DSPs to obtain a positive multiplication result. Finally, the multiplication result
is then reduced and serves as output. Besides, the second part of the output is
designed to be 271(a + b). For this, we use DSP 3 as 3-input adder with inputs
la/2], |b/2] and either 1 (if both least signification bits (LSBs) of @ and b are 1),
or (g +1)/2 (if the LSB of either a or b is 1), or 0 otherwise. Since the result of
this operation might be greater or equal to g, we use the fourth DSP to subtract
q from the result. The second part of the BFU output is then chosen between
the output of DSPs 3 and 4.

Multiply-Accumulate. The second arithmetic core is used to perform multiply-

accumulate operations. More specifically, this core is designed to perform four

computations per clock cycle in parallel in order to make full use of the available

memory bandwidth. It consists of eight DSPs and four reduction modules. Each

two DSPs perform one of the following operation, while the result then is fed

into the reduction module.

a-b+c: The first DSP performs the multiplication of a with the lower 17 bits of b
and the addition. The second DSP multiplies a with the remaining upper
bits of b and updates the first result to the final 46 bit value that is then
fed into the reduction module.

a+b: The first DSP computes the sum, while the second one subtracts ¢q. Even-
tually, the result of the second DSP is selected if it is non-negative, else the
result of the first DSP is selected.

b—a: The first DSP computes the subtraction, while the second one adds q. Even-
tually, the result of the first DSP is selected as output if it is positive, else
the output of the second DSP is selected.

Note that for operations without multiplication, the reduction module can
be bypassed, resulting in a lower latency. Again, this module is fully pipelined,
allowing to process an entire polynomial within 64 cycles (in addition to the
initial pipeline length).

Matrix-Vector Multiplication. This module controls both the NTT module
and the MACC module to (1) transform the polynomials in the input vector
into NTT domain and (2) perform a matrix-vector multiplication with A. The
resulting polynomial vector is then in NTT representation as well.

Modular Reduction. In our implementation, we need a total of six reduc-
tion module instantiations: While each BFU module contains a single reduction



Table 1: Resource Utilization on a XC7Z020 FPGA

Parameter Set

Component II IIT v
Look-Up Tables 24320 29987 42860
Flip-Flops 9668 11274 14136
Digital Signal Processors 45 45 45
Block-RAMs 15 23 33
fmaz 140 MHz 142 MHz 127 MHz

module, the MACC module contains four reduction modules. For the modular re-
duction of a 46-bit value s, we recursively exploit the relation 223 = 2!3—1 mod ¢
in a similar way as in [16]. Our reduction utilizes four DSPs and two small LUT-
based adders. For further details on the reduction, please refer to Appendix A.

Keccak. A fundamental part of Dilithium is the application of SHAKE-128 and
SHAKE-256, both as hash function or as Extendable-Output Function (XOF).
More precisely, both functions use the same Keccak permutation with the same
state size of 1500 bits but a different rate r, which either is 1344 bits for SHAKE-
128 or 1088 bits for SHAKE-256. Thus, our implementation features a single
Keccak core that performs the permutation in 24 cycles (i.e., using a single cycle
per round).

For data input and output we decided to implement 32-bit buses. During I/0
operations, the Keccak module rotates the internal state for » = 1344 on a 32-
bit basis while simultaneously, the input is added (exclusive-or) to the rotation
feedback. Note that this behavior can also be used to compute SHAKE-256, i.e.,
by just using an unaltered feedback for the last 8 = (1344 — 1088)/32 words.

Sampling. Dilithium requires several sampling algorithms that use the output
of SHAKE. Unfortunately, none of the sampling algorithms is aligned to work
on 32-bit words. We solved this problem using buffers with a length of the least
common multiple of 32 and the desired output bit width. This enables converting
a stream of 32-bit words to a stream of words with the desired output bit width.

Sampling the challenge ¢ involves the Fisher-Yates shuffle. We implement
this using a shift register with variable depth that contains all offsets of the non-
zero coefficients and their sign bit. Once a random offset is found in rejection
sampling, we rotate through the shift register and compare the stored offsets
with the newly sampled one. If they are equal, we replace the old one with the
current rejection threshold (keeping the sign bit), which essentially performs the
swap. Then we increase the register depth and shift in the newly sampled offset
with the corresponding sign bit. Finally, the polynomial is written to the BRAM.

For further details regarding making and checking the hints as well as round-
ing, refer to Appendix B and Appendix C.
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Table 2: Performance Results

Parameter Set

II II1 v

cycles oP/s cycles oP/s cycles OP/s
Operation [min) [avg] [avg] [min] [avg] [avg] [min) [avg) [avg]
KeyGen 18600 18761 7462 32943 33102 4290 50669 50982 2491
Signpre 9634 9647 14512 18066 18089 7850 33742 33767 3761
Sign 19423 66966 2091 26979 105129 1351 36609 112145 1132
Verifypre 10890 10917 12824 19945 19966 7112 36244 36250 3503
Verify 8759 8770 15963 12072 12084 11751 16447 16462 7715

4.2 Utilization and Performance Results

This section provides area utilization and performance results obtained after
Place-and-Route (PnR) on a Xilinx XC7Z020 Artix-7 FPGA using the Vi-
vado 2020.1 tool suite.

Utilization. Table 1 lists the results for resource utilization as well as the maxi-
mum frequency f,q. obtained after synthesis and implementation. As expected,
the LUT, FF, and BRAM utilization increases with the parameter sets, while
the DSP utilization, governed by the NTT and MACC modules, is independent
of the parameter sets.

Further, as the critical path delay mostly is determined by high net delays,
reducing the area footprint, e.g., for dedicated sign-only or verify-only cores, can
help to reduce delays and increase overall performance. For this, we would like
to emphasize that even though we take advantage of sharing components for
different operations, we still see potential for additional optimizations in this
direction.

Performance. Table 2 shows performance results for our implementations,
obtained after 1000 executions on random inputs.

For signature verification, we report cycle counts for valid signatures only.
More precisely, since the norm check of z, taking less than 100 cycles, is per-
formed at the beginning, an invalid signature is processed subtantially faster.
Besides, for signature generation, the cycle count spreads widely due to the na-
ture of Dilithium. For this, we report both, minimum and average cycle counts.
More specifically, the minimum number of cycles is close to the theoretical lower
bound for the signature generation, corresponding to a best-case scenario in
which a signature is accepted in the first iteration during simulation. However,
for more realistic numbers, we also report average-case performance obtained
after 1000 simulations on random inputs.

4.3 Comparison to Existing Work

The NTT uses 531 LUTs, 426 FF's, 17 DSPs and 1 BRAM in our core and takes
533/536 cycles for NTT/iNTT. The utilization of LUTs and FFs is smaller or

11



Table 3: Comparison of Hardware Design for PQC Signature Schemes

Oper. Scheme Platform Utilization f t Ref.
LUT FF DSP BRAM MHz s

Dilithium-ITT XC7Z020 29987 11274 45 23 142 233 this
KeyGen Dilithium-I11?  Virtex-7 54183 25236 182 15 350 52 [12]
Dilithium-I1T1%'3  Artix-7 86646 17674 - - 119 1955 [15]
qTesla-3> Artix-7 111122 23398 - — 79 45650 [15]
Dilithium-III XC7Z020 29987 11274 45 23 142 740  this
Dilithium-IT112  Virtex-7 81530 83926 965 145 333 63 [12]
Dilithium-IT112%  Artix-7 90567 21160 - — 114 14140 [15]

Sign  gTesla-3° Artix-7 126008 25984 - - 79 7441 [15]
GLP Spartan-6 7465 8993 28  29.5 1074 [10]
Rainbow-Ia* Kintex-7 27712 27679 0 59 111 18 [5]
Rainbow-Ic* Kintex-7 52895 32476 0 67 90 11 [5]
SPHINCS-256  Kintex-7 19067 38132 3 36 525 1530 [1]
Dilithium-IIT XC72020 29987 11274 45 23 142 85  this

Verify Dilithium-IT112  Virtex-7 61738 34963 316 18 158 95 [12]
* Dilithium-I112%  Artix-7 65274 15169 - — 114 2491 [15]
qTesla-33 Artix-7 84834 17604 - - 79 1926 [15]

GLP Spartan-6 6225 6663 8 15 — 1002 [10]

2round-2 parameters >High Level Synthesis 4core enabling signing and verification

similar to existing implementations [13,16] even though our modulus is larger.
Also, since nearly all arithmetic is done in DSPs, our implementation results in
low logic delays enabling high frequencies.

In Table 3, we compare our implementation of Dilithium-IIT with other rel-
evant implementations of post-quantum signature schemes on reconfigurable
hardware. While existing implementations of Dilithium for Artix-7 [15] and Virtex-
7 [12] report area utilization, frequency, and latency individually per operation,
we would like to emphasize that our core combines and embeds all operations in
a single architecture.

Notably, our architecture outperforms existing solutions either in terms of
resource utilization or throughput thus provides a compact, self-contained, and
efficient solution for post-quantum secure digital signatures. In general, our de-
sign focuses on a reasonable trade-off between area consumption and perfor-
mance degradation, in order to provide a modestly large and fast architecture.

5 Conclusion

In our paper, we present the first set of FPGA implementations for all three
round-3 parameter sets of Dilithium for the low-end Artix-7 platform. Our de-
sign is a moderate proposal, featuring low latency compared to implementations
of other post-quantum secure signature algorithms on the one hand, but still
having a low area footprint on the other hand, making the usage of Dilithium
feasible for many low-cost and constrained scenarios. As a highlight, our imple-
mentations are full-service processors for Dilithium, being capable of performing
key generation, precomputations, signature generation, verification, arbitrary-
length message digesting as well as key and signature packing and unpacking.

12
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A  Reduction

We denote s[a : b], where a > b, as the bit slice of s bounded by the offsets a, b
counting from LSB to MSB, for example for s = 6 we have s[2: 1] = 115 = 3.

s[45 : 0] = 2%35[45 : 23] + 5[22 : 0] = 2'35[45 : 23] — s[45 : 23] + 5[22: 0]

= 2%35[45 : 33] 4 2'%5[32 : 23] — s[45 : 23] + 2

=213 (5[45 : 33] + s[45 : 23]) — (s[45 : 33] + s[45 : 23]) + 2

= 2%35[45 : 43] + 2" (s[42 : 33] 4 5[32: 23]) — (s[45 : 33] 4 s[45: 23]) + 2

=213 (5[45 : 43] + s[42 : 33] + s[32 : 23]) — (s[45 : 43] + s[45 : 33] + s[45 : 23]) + 2
=280 —y+2=2"2[11:10] +282[9: 0] —y + 2

=2" (2[11: 10] + 2[9: 0]) — (y + 2[11 : 10]) + 2 mod ¢

The result of our reduction can still be greater than 223 so that we could
repeat the substitution once again at the expense of additional depth and delay in
the arithmetic computation. However, observing that the result of the reduction
at this point is already within the interval (—q,2q)3. For this, we can simply
add q to a negative result or subtract q if the result is positive. Eventually,
delaying the reduced result, as well as given the sum and subtraction with q,
the final result is determined by selecting the non-negative value among the three
computations.

In practice, we use four DSPs and two additions implemented in general-
purpose logic to perform the modular reduction. The first DSP computes x
and y by using a Kronecker substitution-like approach: The lower bits compute
x and the higher bits compute y. However, as the computation does not fit
entirely into the pre-adder stage, we need to add the least-significant bit of x
using general-purpose logic outside the DSP and delay the result. Note, however,
that for recent Ultrascale FPGAs, the witdh of pre-adder stage within the DSPs
increased, which would allow to improve this reduction and give up the general-
purpose addition.

Further, the second DSP computes z + z[11 : 10] — y while in parallel, a
LUT-based adder computes z[11 : 10] 4+ z[9 : 0], before both results are summed
up in a third DSP. The fourth and final DSP adds q if the result of the third
DSP is negative or subtracts q otherwise. Eventually, only the positive result is
selected as output.

B Rounding

Implementing the Power2Round operation in hardware is very efficient, since
during the computation of t, we simply split result into the upper 10 bits and

3Since in our implementation all coefficients are stored in the standard repre-
sentation [0, q), this reduction also works for results of computations ab + ¢, since
(@—1)*+(q—1) <2*.

15



the lower 13 bits, stored into different polynomial memories. However, since the
to coefficients are interpreted as signed integers and our main paradigm is to
store coefficients always as standard representatives, we need to add q if the
most signification bit (MSB) is 1. Due to the structure of the operation, this is
efficient with a LUT-based adder, which allows to avoid the additional usage of
a DSP.

We implement the HighBits operation as a simple behavioral description of
a range look-up depending on the input coefficient, which is efficient since for
Yo = (¢ — 1)/32, there are only 16 different possible output values while for
~v2 = (g — 1)/88, there are only 44. Checking the low bits of w — ¢sa, however,
involves the MACC module in subtraction mode. Again, we implement a simple
look-up that returns HighBits times 275 and we subtract the result from the
coefficient to obtain the low bits and check their norm without storing them.

C Hint

We store the hint in two registers, i.e., one storing the 1’s offsets and the other
one storing the k polynomial boundaries in the same format as specified for the
packed signatures. For the MakeHint operation, we have w —csg and w—csa+ctg
stored separately such that both can be read simultaneously. Eventually, we look
up both HighBits and if differing, a new offset is shifted in. Further, for the
UseHint operation, the hint module looks up the HighBits for each coefficient,
i.e., both for h=0 and h=1. Then, selecting the correct one, the value is shifted
into a buffer register for sampling (as described before) and absorbed to compute
the value ¢, which ultimately is compared to the value of the signature during
verification.
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