
 

 
 
 

Active Implementation of 
End-to-End Post-Quantum 

Encryption 
 

Anton Tutoveanu 
 

University of Wollongong 
amt597@uowmail.edu.au 

 
 

Abstract 
Constant advancements in quantum computing bring      
closer the reality of current public key encryption        
schemes becoming computationally feasible to be      
broken. Many developers working in the industry are        
just finding out about this and will be rapid to look           
into changing their web applications to be secure in         
the quantum era. This paper presents a tried and         
tested construction for a quantum-resistant,     
end-to-end encryption scheme which has been      
implemented in an online web application. The       
implementation is shown to work well without       
significant impact on the performance time in       
comparison to its pre-quantum counterpart. 
 

1. Introduction 
As reported by NIST in their Report on Post-Quantum         
Cryptography [1] the existence of large scale quantum        
computers are expected to become viable in the next 15          
years or so. This means that current cryptographic        
primitives such as Diffie-Hellman, elliptic curves and the        
RSA cryptosystem won't be sufficient enough to provide        
the security needed for privacy and confidentiality in        
digital communications. 

While this is a popular topic in the cryptographic          
community only some developers in the industry have        
heard of the concerns that quantum computers will bring         
and are subsequently not prepared for making the        
transition to post-quantum security. Despite the estimates       
indicating still some years away, the goal is to start          
preparing early to ensure a smooth change over. The         
initial stage of progress has started with researchers and         
cryptographers designing new quantum-resistant    
algorithms to replace the current affected ones. These        
algorithms have been submitted to NIST's Post-Quantum       
Cryptography project [2] which has since been       
short-listed [3]. Researchers are now in the process of         
analysing, testing and evaluating these finalist algorithms       
for future standardised use.  

This paper addresses the gap between a widely         
implemented security feature called end-to-end encryption      
and post-quantum era security. Outlined is the standard        
end-to-end encryption model and the specific application       
where this has been implemented. Quantum-resistance is       
covered with a brief background on quantum computation        
and how it can break current public key cryptosystems.         
An overview of the popular RSA public key exchange         
and the underlying hard problem of integer factorisation        
that is broken with Shor's algorithm in polynomial time is          
shown. Then, from going over how current pre-quantum        
PKE cryptography is not sufficient anymore, a promising        
replacment, called lattice-based cryptography, is     
introduced. Some of the hard mathematical problems in        
lattices are mentioned, such as the shortest vector        
problem, short integer solution problem and      
learning-with-errors. Afterwards the   
CRYSTALS-KYBER key exchange algorithm and its      
functionality is described. The construction for a complete        
implementation of a post-quantum secure transmission      
channel between a client and server is then specified in          
detail with codes made available for a JavaScript frontend         
(client) and Go language backend (server). An isolated        
time performance benchmark is also then listed in        
comparison to its 'pre-quantum' counterpart. 

2. End-to-End Encryption 
An additional layer of security in online communications        
between client and servers when related to web        
applications is a feature called end-to-end encryption       
(E2EE) [4]. End-to-end encryption is used by many        
applications and devices to provide the user with an extra          
assurance of security and data privacy on top of the          
protocols offered by TLS and IPSec. Internet banking,        
financial transactions, ecommerce, etc should all      
implement E2EE [5], [6], [7]. 

The standard model of E2EE as viewed between a client           
and server can be described as at least two end-devices          
that communicate via a completely secure transmission       
channel where all information is encrypted before it        
leaves one end-point and after receiving on the other         
end-point. The client and server both have the capabilities         
to encrypt data for sending and decrypt data that is          
received. This is useful in applications where the        
transmission channel isn't secure or as an extra layer of          
security on top of existing ones. It could be the case that a             
layer gets compromised so it also acts as a safety net. The            
two parties can confidently and securely communicate       
without worrying about revealing or transmitting data to        
other unauthorised or unintended parties. However, in       
some web applications or in cloud computing/storage, it is         
required that the information remain encrypted on the        
external server or end-device to maintain full and        
complete privacy of user data (no developer access). The         
standard client-server model can be extended to preserve        
the confidentiality of the data from when leaving the         
client and continuing onto the end-point. The server won't         
be able to decrypt or obtain any information about the          
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plaintext data that was made by the client. In these          
infrastructures the external server storing or processing       
data from the user, must be kept hidden from people          
managing the end-device such as developers or system        
administrators. 

In some cases the server might require to do processing           
on the user's data. As of end-2020 in the specific web           
application [8] that this end-to-end encryption is       
implemented, the model looks like this: 
 

 

Fig. 1: Application Specific Model 
 
User data is retrieved from an API which is subsequently           

processed into the format required by the application.        
Immediately after, it is encrypted and stored in a database          
to then be sent to a client upon request. Is it possible to             
preserve data confidentiality while also achieving      
server-processing functionality? Yes. [9] However this is       
yet to be considered for the E2EE construction for this          
application. Regardless, it is inevitable that raw data is         
received by the server from the API at some initial point.           
The goal then is to minimise the existence of this sort of            
data while on the server. As such the design settles on           
encrypting 'data-at-rest' [10]. 

Acknowledging a range of different applications and        
their requirements, both models described earlier and the        
model in ​Fig. 1 can be implemented with tweaks (if          
needed) of the codes that are available and referenced in          
this paper for the construction of an end-to-end encryption         
scheme. 

3. Quantum-Resistance 
The security of current pre-quantum encryption      
algorithms rely on the hard mathematical problems of        
integer factorisation and discrete logarithms [11]. With       
large enough prime numbers and over carefully chosen        
number sets these problems cannot be solved within a         
feasible amount of time by classical computers. This is         
what currently makes public key encryption methods such        
as RSA and elliptic-curves cryptographically secure. 

Classical computation is based on two binary states,         
being 0 and 1. Quantum computation is also based on          
these two states and an additional state referred to as          
superposition [12]. A state of superposition allows for the         
representation of many logical states simultaneously.      
Classical information units are referred to as bits, while         
quantum information units are called qubits. Quantum       

computing is realised with the construction of quantum        
circuits which are made up of quantum gates in addition          
to classical logic control. These circuits still ultimately        
work with 0's and 1's but its these specialised quantum          
gates which facilitate the property of superposition that        
allow one to write quantum algorithms that speed up         
computational problem solving. A quantum algorithm can       
consider multiple logical states at once which lowers the         
time complexity of the problem reaching the output        
solution. This is essentially what threatens public key        
encryption schemes. The hard mathematical problems      
underlying them that weren't previously able to be        
feasibly solved by classical computers are now       
theoretically able to be solved by quantum computers in a          
short amount of time. 

A prominent quantum algorithm called Shor's algorithm        
[13] can solve the integer factorisation problem in        
polynomial time. The RSA public key cryptosystem that        
is widely used for encryption and distributing symmetric        
keys between two parties relies on this specific problem         
for its security [14]. With a sufficiently large enough         
quantum computer running Shor's algorithm, this      
cryptosystem is broken. RSA typically uses 1024-4096       
size keys (which is the size in bits of the modulus ​n​), but             
NIST recommends using upwards of 2048 bits [15]. RSA         
is quite slow and is usually used in conjunction with a           
symmetric key algorithm (like AES) to provide a secure         
transmission channel between parties. In practise it is        
primarily used in a hybrid mode for key distribution.  

RSA works with each party generating a public and          
private key pair. An entity wishing to send an encrypted          
message to another entity known as the receiver must         
encrypt the message with the receiver's public key. Then         
after sending, only the receiver is able to decrypt the          
message with their private key that only they know of. If           
one can somehow calculate the private key linked to the          
public key that is known to everyone, then all encrypted          
messages are able to be decrypted hence breaking the         
cryptosystem. 
  To generate an RSA public and private key pair: 
 

 
The best approach to breaking RSA encryption would be          

to first factor ​n (which is public) to find the two large            
primes ​p and ​q​. From there ϕ(​n​) can be calculated, and           
then ​d (since ​e is also public). Due to this, computing the            
RSA decryption exponent ​d from the public key (​e​, ​n​) and           
the problem of factoring ​n can be considered as         
computationally equivalent [16]. 
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Alg. 1: RSA Key Generation 

1. Generate two large and distinct primes, ​p​ and ​q​. 
2. Compute ​n​ = ​pq​. 
3. Compute ϕ(​n​) = (​p​-1)(​q​-1). 
4. Choose ​e​ such that gcd(​e​, ϕ(​n​)) = 1. 
5. Compute ​d​ = ​e​-1​ mod ϕ(​n​). 
 

Public key ← (​e​, ​n​) 
Private key ← (​d​, ​n​) 



 

To break RSA using Shor's algorithm, we can assume          
that ​n is the product of two prime integers. The algorithm           
is as follows: 
 

 
Steps 1-3 and 5-7 can be executed sufficiently on a           

classical computer using implementations of basic      
arithmetic operations, the Euclidean Algorithm and      
simple if statements. In the classical section, if the         
random guess of ​x is not a factor of ​n​, solving the            
factorisation problem can be boiled down to finding the         
order of the element ​x which is ​r in ​x​r ≡ 1 mod ​n (step 4),                
this is the period-finding problem. To solve this problem         
Shor utilised quantum phase estimations and quantum       
fourier transforms [18], these however won't be explained        
here. 

4. Lattices 
Now that its shown how current pre-quantum algorithms        
won't be resistant to future quantum computing attacks,        
what makes other potential future encryption algorithms       
resistant and safe in the quantum era? A promising and          
popular contender for post-quantum cryptographic     
schemes are lattice-based cryptosystems [19]. A lattice is        
a set of points in ​n​-dimensional space with a periodic          
structure [20]. It is also known as the set of all integer            
linear combinations of basis vectors , in       
notation as: 
 

  
 

For a 2-dimensional lattice, only 2 basis vectors are          
needed to generate the entire lattice over a finite or          
infinite space. 

 
Fig. 2a: 2D Lattice Basis 

 
Fig. 2b: 2D Lattice from Basis 

 
A lattice can be generated by many different possible          

basis vector sets [21]. In general, a good basis is one           
where the vectors are short in distance and are nearly          
orthogonal (or almost perpendicular). A bad basis is        
where the vectors are long, very askew and too close          
together. It should be mentioned that any ​n number of          
vectors cannot be a basis to make a specific lattice as           
some points will not be generated by integer linear         
combinations of those ​n number of vectors. Examples of a          
good, bad and invalid basis in a lattice are shown below. 
 

 
Fig. 3: Good, Bad and Invalid Bases 

4.1 Shortest Vector Problem 
Lattices have many hard mathematical problems that are        
deemed to be one-way functions and could be used to          
construct quantum-resistant cryptosystems. The most     
well-known is the shortest vector problem (SVP) which is         
hard in worst-case [22]. SVP is defined as: when given          
any arbitrary lattice basis (usually bad) as input, find the          
shortest non-zero vector in the lattice generated. The        
length of each vector is measured by a norm which is           
often the Euclidean norm: 
 

, 
 

where represents the vector's     
coordinates or cartesian values on an ​n​-dimensional plane.        
The shortest nonzero vector, also known as the successive         
minima, is denoted by . In some lattice cases there          
can be more than one shortest vector, however only one          
value will exist for the shortest distance. In a more general           
definition, represents the value of the smallest        
radius in a circular area containing ​k linearly independent         
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Alg. 2: Shor's Algorithm (classical section) [13][17] 

1. Choose a random integer ​x​ such that 1 < ​x​ < ​n​. 
2. Compute gcd(​x​,​n​). 
3. If gcd(​x​,​n​) ≠ 1, then ​x​ is a factor of ​n​. (end) 
4. If gcd(​x​,​n​) = 1, then use the quantum 
period-finding subroutine to find the smallest integer 
r​ such that ​x​r​ ≡ 1 mod ​n ​. 
5. If ​r​ is odd, go back to step 1. 
6. If ​x​r​/2​ ≡ -1 mod ​n​, go back to step 1. 
7. Otherwise gcd(​x​r​/2​+1,​n​) and gcd(​x​r​/2​-1,​n​) are factors 
of ​n​. 



 

vectors. A variant of the shortest vector problem SVP​𝛾         
uses 𝛾 as an approximation factor that can be adjusted to           
make the problem easier or harder. It is defined as: when           
given any arbitrary lattice basis (usually bad) as input,         
find a vector in the lattice generated whose length is equal           
to or less than . The larger 𝛾 is, the easier the            
problem is to solve as there are more vectors existing as           
valid solutions in the given circular area of a lattice. 

4.2 Short Integer Solution Problem 
Another known hard problem in lattices is the short         
integer solution problem [23], [24]. The SIS problem is         
shown to be secure in average case, which is needed in           
cryptographic constructions for randomised instances.     
SIS​n,q,m,𝛽 is defined as: given an ​m​×​n matrix ​A that          
contains random entries from ​Z​q ​, find a vector ​x whose          
norm is bounded by 𝛽 and which results in a zero vector            
when taking the matrix-vector product of ​A​ and ​x​.  

 

 
Fig. 4: Short Integer Solution Problem 

 
Denoted as where , ,      

 and matrix-vector mulitplication [25] is: 
 

 
 

Ax is essentially a system of linear equations where the           
vector (​x​1​, x​2 ​, ..., x​n ​) ​are values that satisfy all the           
equations in the system. This problem is able to be solved           
using Gaussian elimination [26] which can find a solution         
for any arbitrary vector ​x​, but will give a relatively large           
value. But for a 'short' solution for vector ​x​, meaning the           
entries are -1, 0, 1, etc, this problem is difficult. If the            
parameters are large enough, then the SIS problem makes         
a one-way function. It is easy to compute the result of           

, but it is difficult to do the        
inverse operation where given A and y, find a 'short'          
vector ​x​. 

Relating the short integer solution problem back to         
lattices, the matrix can be used to construct a          
'q-ary' or modulo lattice. The modulo lattice can then          
be used in a tiled or block-like manner to generate a full            
unbounded lattice. Because of this, generating a random        
lattice can be reduced to randomly generating a matrix         

where denotes random uniform     
sampling, ​n is the dimension of the lattice and ​m is the            
number of equations. Using the matrix ​A with the SIS          
problem: , results in a system of linear equation(s)         
that all pass through the origin on a cartesian plane of           
n​-dimension. Below is a 2-dimensional example for a        
matrix  which is modulo 7: 
 

 
Fig. 5a: Linear Equation from Matrix A 

 
The matrix is which corresponds to the         

linear equation (plotted above). Taking the       
modulus q of all integer points that reside on the line and            
plotting them on the plane will give you the q-ary lattice           
base  (not to be confused with lattice basis).  
 

 
Fig. 5b: Q-ary Lattice Base 

 
Using the q-ary lattice base as a repeating tile, the rest of             

the lattice can be generated [27]. 
 

 
Fig. 5c: Q-ary Lattice from Base 

 
It should be mentioned that there needs to be some           

constraints on the ​m​×​n variables of matrix ​A for this to           
work. Particularly that ​m < ​n​: ​there should not be more           
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equations ​m than the dimension ​n​. Another similar        
constraint also seen is: ​n​ > ​m​ log ​q​ [28]. 

4.3 Learning With Errors Problem 
Adding on from the short integer solution problem leads         
to the learning with errors (LWE) problem [29], [30].         
This problem is used to construct a public key         
cryptosystem. Let be the quotient group where        
mod 1 of any real number will result with a value in the             
segment [0, 1). Let be a fixed 'secret' vector and           

be a public matrix that represents a system of         
linear equations. Let be a probability distribution        
(typically a Gaussian-like distribution) over . Some       
noise or error is denoted by from . Calculate          

. LWE​q, χ is defined as when given access         
to many samples of , find that        
satisfies the system of equations. This problem is hard in          
average case like with the short integer solution problem.         
To visualise how the problem looks like: 
 

 
Fig. 6: Learning with Errors 

 
The dotted lines represent what a sample from         

corresponds to in the system of linear        
equations shown above. Using the LWE problem to        
construct PKE, the public key will be (​A​, ​B​) and the secret            
key will be ​s​. To encrypt: 
 

 
 
where is a single bit and is the          
ciphertext pair which encrypts the bit. To decrypt: 
 

 
 

where , or if . This      
encryption works bit-by-bit giving "1-bit security". An       
adversary can't distinguish between a bit that was        
encrypted in comparison with a randomly chosen one by         
more than a negligible probability. By having a 1-bit         
secure PKE, you can then construct an IND-CPA secure         
public key encryption scheme [31]. For the       
implementation of the post-quantum end-to-end     
encryption scheme in this paper, the NIST PQC finalist         
CRYSTALS-KYBER is used.  

5. CRYSTALS-KYBER 
CRYSTALS-KYBER (version 3) is an IND-CCA2      
post-quantum key exchange protocol. This protocol is       
used to securely establish symmetric keys between two        
parties using a key-encapsulation mechanism (KEM)      
[32]. It is based on the learning with errors problem in           
module lattices (M-LWE). Kyber's original design comes       
in 512, 768, 1024 security strengths. Kyber-768 will        
distribute a 256-bit symmetric key between two parties        
which is a sufficient key size to be used with symmetric           
key encryption (eg. AES).  

5.1 Key Encapsulation Mechanism 
Starting with the high-level functionality of Kyber is the         
Key Encapsulation Mechanism (KEM) which contains      
three core functions: 
 

 
These represent the typical functionality of public key         

encryption. A party wanting to receive an encrypted        
message, will generate a public and private key pair, the          
private key is kept secret. The public key is known and           
used by senders to encrypt their message into a ciphertext.          
The ciphertext is then sent to the receiver where only they           
can decrypt it with their private key. The high-level         
description of this protocol is more specific to the context          
of key exchanging and is described as a KEM. The          
intended symmetric key is 'encapsulated' by encrypting       
with the public key. Corresponding with decrypting a        
ciphertext in PKE, the key is then 'decapsulated' by         
decryption with the private key. 
 

 

Fig. 7: Key Encapsulation Mechanism 

The exchange between the client and the server is shown           
above. In web based applications or server-client type        
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communication, the server typically generates the initial       
public/private key pair and sends the public key ​pk to the           
client. The client then generates a symmetric key ​ss (for          
'shared secret') and an encrypted version of this key ​c (for           
'cipher') with the public key from the server. The         
encrypted symmetric key is sent to the server. The server          
then decrypts this with the initial private key and obtains          
the same symmetric key as client. It can also work          
vice-versa depending on which party generates the initial        
public/private key pair. After the client and server both         
have the symmetric key, data can be securely sent over          
the channel using the encryption standard AES-256. AES        
with a key length of 256 bits is secure against future           
anticipated quantum computer attacks [33]. For the rest of         
this document, the Kyber-768 parameter set is analysed        
and detailed. 

5.2 Key Generation 
The first step in generating a new public and private key           
pair is generating random seeds for the public matrix ​A​,          
the secret ​s and the noise ​e​. This is done by reading            
random byte values {0, ..., 255} into an array 32 in length.            
The 32 random byte array is then hashed using SHA3-512          
to produce a 64 byte output digest. This output is then           
spilt into the public seed 𝜌 (bytes 0-31) and the noise seed            
𝜎 (bytes 32-63). 
 

I. SEED GENERATION 

 
Fig. 8a: Generating Random Seeds 

 
The public seed is now used to generate public matrix ​A​.            

For Kyber-768, ​A is a 3×3 matrix that contains 256 length           
mod ​q array of coefficients, one for each entry (9 total).           
To generate each entry of the matrix, the public seed is           
hashed with SHAKE-128 along with its index in the         
matrix (​i, j​) concatenated together. SHAKE-128 is an        
XOF or extendable-output function [34]. An XOF works        
similar to a usual hash function but allows the output to           
be of a varying length. The output in this implementation          
is a 504 byte array. The array from the XOF is then put             
through a sampling function that accepts or rejections        
values calculated based on parsing the given byte array.         
The sampling function is designed to take any length         
input byte array and output a polynomial mod ​q of length           
256. This is now entry (​i, j​) of matrix ​A​. The generation of             
matrix ​A is deterministic, so when given the public seed 𝜌,           
the matrix from this should always be the same upon each           
generation with the same code. 

II. MATRIX ​A​ GENERATION 

 

For each : 
 

 
Fig. 8b: Generating Public Matrix A Entries 

 
Now that matrix ​A has entries , it is done           

initialising. Secret vectors ​s ​and noise vectors ​e​, need to          
be sampled. This is first done by using a pseudo-random          
function (PRF) which takes the noise seed 𝜎 and a nonce           
value ​N​, which is a integer value that is simply          
incremented each time. The output is a byte array         

where 𝜂 = 2, giving a       
length of 128. This byte array is then input to a function            
which generates a polynomial sampled from a centered        
binomial distribution (CBD). First the byte array is        
converted to an array of bits, which results in a 1024           
length bit array. Each 4 bits in the array is then reduced to             
a single value to give a 256 length         
output array. This is done by computing ,        

where and . Secret ​s      
and noise ​e​ are both sampled in the same way. 
 

III. SECRET AND NOISE SAMPLING 

 
Fig. 8c: Generating Secret and Noise 
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Now the secret ​s and noise ​e vectors go through a            
number theoretic transform (NTT) [35]. NTT      
significantly speeds up the multiplication of large       
polynomial rings of which is needed when doing key         
computations. Each entry in the matrix ​A and the vectors ​s           
and ​e is made of a polynomial ring denoted by          

where ​q = 3329 and ​n = 256. The initial           
polynomial ring is able to be reduced to smaller ones.          
Efficient multiplications are then possible using these       
smaller degree polynomials. In Kyber, you first start with         
the reduction polynomial (X​256 + 1) and reduce it into two           
by finding: 
 

(X​256​ + 1) = (X​128​ + 𝛼)(X​128​ - 𝛼) 
 

this results in 𝛼​2 = -1, squared to get 𝛼​4 = 1, which then              
gives . Reducing further: 
 

(X​128​ + 𝛼) = (X​64​ + 𝛽​1​)(X​64​ - 𝛽​1​) 
 

results in rearranging to get and        
since 𝛼​2 = -1, substitution gives . Doing the         
same for (X​128 - 𝛼) will result in . A pattern           
emerges where for every subsequent reduction      
polynomial, the values will generally be and        

of the previous reduction polynomial. For a        
more succinct definition, the symbol zeta is introduced to         
represent the ​k​-th primitive root of 1 denoted as:         

. The k-th primitive root of unity is some         
number 𝜁 which holds: where      

. Following this, the previous     

values turn into and     
. Reducing the factors will be: 

 
 

↓ 

 
 

This reduction is typically continued until small degree        
polynomials are reached. When starting with a       
polynomial of (X​256 + 1), the last zeta value will be the            
512-th primitive root of 1, denoted . In Kyber with          
q = 3329, there doesn't exist a primitive 512th root of           
unity, so the 256th one is taken, giving 𝜁 = 17. This            
reduction can then be represented by: 
 

(X )X256 + 1 = ∏
127

i=0

2 − ζ2i+1  

 
X )(X )(X ) . . . (X )(X )( 2 − ζ 2 − ζ3 2 − ζ5 2 − ζ253 2 − ζ255  

 
After reduction we now have a vector of polynomials that          
are ready to be multiplied in a point-wise fashion using          
modular reductions such as Barrett and Montgomery       
reductions for efficient modular arithmetic calculations.      

After multiplication is complete, an inverse NTT is        
applied to bring the polynomials back to the standard         
form to continue the rest of the computations. 

The key defining computation of for the public          
key generation is done. This outputs a 1×3 vector of          
n​-degree polynomials mod ​q​. This is then encoded with a          
function that serializes the polynomials into byte arrays,        
concatenates them and then appends the public seed 𝜌.         
The result is a public key of length 384×3 + 32 = 1184             
bytes. The secret ​s vector is then also encoded to make a            
byte array of length 384×3 = 1152 bytes, which will be           
the private key. 
 

IV. KEY COMPUTATION 
 

 
 

 

 
Fig. 8d: Computing Public and Private Keys 

 
The public and private keys are now ready for IND-CPA           

encryption/decryption. 

5.3 Encapsulation 

Since the main functionality of Kyber is to distribute keys          
securely between two parties, the encryption function is        
more of an encapsulation of a shared secret (symmetric         
key). For this, the public key is taken along with a 32 byte             
message and random 32 byte array referred to as 'coins'          
due to the 0's and 1's being an analogy for tosses of coins             
being random. The output will be a ciphertext byte array          
of length 1088.  

The public key which is in byte array format needs to be             
decoded back into polynomial form along with the public         
seed 𝜌 (kept in byte format). This is just the inverse of the             
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encoding function that converts polynomials to bytes       
shown in ​IV. KEY COMPUTATION​. Then, with the public           
seed 𝜌 the transpose public matrix ​A​T is reconstructed         
similar to ​II. MATRIX ​A GENERATION except ​j and ​i are              
switched around in order to produce the transpose of the          
matrix necessary for inverse calculation. Now a 1×3        
vector of polynomials ​r is sampled according to ​III.         

SECRET AND NOISE SAMPLING. ​Another 1×3 vector of            
polynomials ​e​1 is sampled in the same way. Sampled         
again is one polynomial which is then assigned to ​e​2​.          
Next, the number theoretic transform is applied to        
polynomial vector ​r to prepare it for efficient        
multiplication. Now the ciphertext pair (c​1​, c​2​) are        
calculated and encoded to form the final ciphertext that         
becomes the encapsulated symmetric key.  
 

V. ENCRYPTION 
 

 
 

 

 

 

 
 

 

 
Fig 9: Encrypting Message 

 
The polynomials of ​u and ​v are then compressed by           

taking each coefficient individually and discarding some       
of their low-order bits to make the ciphertext sizes         
smaller. The result is then concatenated together after        
encoding to byte array form and is sent as the ciphertext. 

5.4 Decapsulation 
Decapsulation of the symmetric key is then performed by         
the initiating party (typically the server) by taking their         
private key from their generated key pair and the received          
ciphertext from the client. After decoding and       
decompressing (​u​, ​v​) back from the ciphertext, the        
original message ​m​, is calculated by where m=1         
if is closer to than to 0, and m=0 if            

otherwise. Rounding is denoted by where x is any          
decimal point number and rounding is to the closest         
integer with 0.5 values rounding up (ie: ,        

, ). 
 

VI. DECRYPTION 
 

 
Fig 10: Decrypting Message 

 
The message bit array is then encoded to a byte array by             

taking 8 bits at a time and converting them to byte form            
giving a 32 length byte array message.  

5.5 Fujisaki-Okomoto Transform 
The scheme described above is only an IND-CPA secure         
construction. To make it CCA2 secure, the scheme goes         
through a Fujisaki-Okamoto transform. This requires only       
the addition of some hash functions, and can be proven          
secure in the random oracle model [36]. How the         
transform is implemented in the key exchange algorithm        
is illustrated below. Taking (​pk​, ​sk​) from the IND-CPA         
scheme, the new public and private keys become: 

 
Fig. 11a: CCA2 KeyGen 

 
To then produce a random 32 byte array representing the           

symmetric key and its corrreponding     
encapsulation/ciphertext: 
 

 

Fig. 11b: CCA2 Encryption 
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To decapsulate the ciphertext and retrieve the same 32          
byte symmetric key: 
 

 
Fig. 11c: CCA2 Decryption 

 
The scheme is now providing security in an IND-CCA2          

model. This ends the description of the Kyber-768        
post-quanum key exchange algorithm. Now, specifics of       
the implementation in the application will be covered. 

6. Key Storage 

Upon initialisation of the system, the server generates a         
public and private key pair by Kyber's ​KeyGen()​. The         
client-side then has the server's public key hardcoded on         
the frontend code to save the need of the server sending it            
each time. The server keeps it's private key hidden on the           
server in a file. When a client tries to authenticate for the            
first time, a new user is created with the platform. A           
random symmetric key is generated which is then stored         
in user's database entry. This symmetric key remains        
persistent throughout the life of the user's account. To         
send the user this key, the client requests it via the Kyber            
key exchange protocol. A temporary symmetric key is        
generated by the client with ​Encap.(pk). After sending the         
encapsulated key ​c​, to the server for decapsulation, the         
server now has the same temporary symmetric key as the          
client-user. This temporary key is then used to encrypt the          
main symmetric key stored on the server system's        
database using AES-256 as a sort of hybrid encryption         
scheme for secure key distribution. This same       
establishment protocol is initiated again with the main key         
being sent out to the user if: 
 

a) they lose the key on their end-device or, 
b) log in from a new device or browser. 

 
In most cases the main symmetric key stays persistent on           

the end-device. The client will store the symmetric key         

locally in their web browser with      
window.localStorage ​[37]. At this point in      
development, all user symmetric keys will be stored in the          
backend database, this means developers and anyone with        
root-access to the backend server is able to view the user's           
symmetric keys and decrypt stored ciphertexts. Future       
development of the application will look into solutions        
that prevent access to user keys from the internal         
programming team for further security. 

7. Server Implementation 

This implementation is for a backend written in Go         
language. An implemented version of Kyber called       
Kyber-K2SO by Nadim Kobessi [38] is used as a base          
code for the server implementation. The Kyber-768       
security level is used. The code has since been updated to           
version 3 of Kyber and is available here [39]. 
 

https://github.com/antontutoveanu/kyber-k2so 
 

The API is simple to use with just needing to import the            
module and using the functions as: 
 
sk, pk, _ := kyberk2so.KemKeypair768() 

c, ssA, _ := kyberk2so.KemEncrypt768(pk) 

ssB, _ := kyberk2so.KemDecrypt768(c, sk) 

 
AES-256 Go crypto library [40] is also used for the           

symmetric key encryption/decryption for the server-side.      
The block mode used in this AES is CBC mode and the            
padding standard used is PKCS7. Exact use of the         
encrypting code can be seen here as an example [41].  

8. Client Implementation 
All client-side websites are made being compatible with        
JavaScript. Especially a lot of web apps are written in          
JavaScript based frameworks such as React, Vue.js, etc        
[42]. For this application, the frontend is built with React.          
NPM [43] is a supported software registry containing        
many code packages from developers all over the world         
that contribute free, open source code to assist others with          
developing their projects. This registry is utilised to bring         
Kyber-768 easily into the React frontend application. The        
JavaScript code has been setup into an NPM package         
which is able to be imported and used for key exchanging.           
Only the 768 parameter set of Kyber is available in          
JavaScript at this point as it is sufficient enough to          
construct a secure transmission channel with the backend        
server (which is also running Kyber-768). The code can         
be viewed in the first link, while the second link is for the             
NPM package version: 
 

https://github.com/antontutoveanu/crystals-kyber-javascript 
 

https://www.npmjs.com/package/crystals-kyber 
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Using the JavaScript code via NPM in React is simple as            
with the Go implementation API: 
 

var pk_sk = K768_KeyGen(); 

var pk = pk_sk[0]; 

var sk = pk_sk[1]; 

 

var c_ss = K768_Encrypt(pk); 

var c = c_ss[0]; 

var ss1 = c_ss[1]; 

 

var ss2 = K768_Decrypt(c,sk); 

 
After the symmetric key is established, the aes-js npm          

package library [44] is used with CBC block mode and          
the PKCS7 padding scheme [45] to encrypt/decrypt data        
to and from the server. By having key exchange and          
encryption/decryption possible on both the client-side      
(frontend) and the server-side (backend), this leads to an         
end-to-end encryption implementation for online and      
web-based application platforms. 

9. Verification of Code 
Since these are all new implementations based off the         
original submitted C code to NIST PQC standardisation.        
To check these against each other to show they produce          
the same results is important. The original Kyber code         
(written in C) comes with test run case files with          
determinstically generated executions of itself. These can       
then be used to ensure compatibility across other        
implementations. Testing the Go implementation is      
already confirmed using ​go test -v. This was done by          
taking the ​ss​, ​sk​, ​c values of each test run from the            
original code and then passing it to the Go code to           
perform: 
 
ssB, _ := kyberk2so.KemDecrypt768(c, sk) 

 

Then, a simple check whether the produced ​ssB ​is the           
same as the ​ss ​value from the original implementation is          
enough to confirm a successful test case run. This is run           
100 times to test all cases in the provided         
PQCkemKAT_2400.rsp file. The JavaScript test function      
is written in a similar way testing the Kyber-768 outputs.          
The test is run for all 100 runs same as in           
PQCkemKAT_2400.rsp ​for the Go code. All tests are        
successful and are available in the GitHub repositories to         
replicate the same results. Additionally, in the application,        
the decryption seems to work consistently on the        
client-side showing that the whole key exchange and        
encryption process is working as should. 

10. Performance 
The application currently only needs to encrypt relatively        
low amounts of data. A typical user account will have          
150,000 bytes (0.15mb) of data that needs to be         
decrypted. Since the server's public key is already        

hardcoded on the frontend, there is no need to send it out            
which reduces some performance time. The performance       
test carried out will include the client requesting the main          
symmetric key (the key re-establishment protocol) and the        
time taken to decrypt all data being sent from the server           
onto the frontend. The data recorded is the isolated         
running time for the specific key exchange and decryption         
code executed on a local device. This factors out the          
varying internet speeds and connection lag from a        
live-online performance for more consistent and accurate       
run-time results. Simple benchmarks were taken with       
performance.now()​for JavaScript and ​time.Now()    
for Go. 

 
Fig. 12: Benchmarks 

 
The results obtained show that there is no significant          

increase in run-time of the cryptographic processes of the         
end-to-end encryption. The post-quantum setup will only       
add an extra 23% of the time the pre-quantum counterpart          
will take. This is quite quick in the context of web           
applications and can be considered negligible. Key       
establishment is performed with RSA-2048 [46][47]      
(resp. KYBER-768) for pre-quantum (resp.     
post-quantum) setup. Pre-quantum symmetric    
encryption/decryption is performed with AES-128 while      
AES-256 is used for post-quantum setup. This is just one          
comparison between implemented codes of a pre-quantum       
and post-quantum schemes. Specifics of host device,       
hardware and variations in code can alter run-time on         
different platforms. The device used is an iMac (27-inch,         
Mid 2011) model with 2.7 GHz Intel Core i5 processor          
and AMD Radeon HD 6770M 512 MB graphics. The         
codes used are the ones mentioned in this paper. 

11. Conclusion/Future Work 
Based of the work done in this paper, the shift to a            
quantum-resistant cryptographic era is looking promising.      
There's definitely room for continuation: a better       
understanding of the mysterious inner workings of       
CRYSTALS-KYBER, further analysis for    
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implementation vulnerabilities, enhancing security of key      
storage, testing for larger data sizes, code optimisations...        
to name a few. The main purpose of this paper was to            
document a current implementation to provide future       
developers with a starting point for making the transition         
to post-quantum security for their web applications. 
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