
AISY - Deep Learning-based Framework for
Side-channel Analysis

Guilherme Perin, Lichao Wu, Stjepan Picek

Cyber Security Research Group, Delft University of Technology,
Mekelweg 2, Delft, The Netherlands

g.perin, l.wu-4, s.picek@tudelft.nl

Abstract. The deep learning-based side-channel analysis represents an
active research domain. While it is clear that deep learning enables pow-
erful side-channel attacks, the variety of research scenarios often makes
the results difficult to reproduce.
In this paper, we present AISY - a deep learning-based framework for
profiling side-channel analysis. Our framework enables the users to run
the analyses and report the results efficiently while maintaining the re-
sults’ reproducible nature. The framework implements numerous features
allowing state-of-the-art deep learning-based analysis. At the same time,
the AISY framework allows easy add-ons of user-custom functionalities.

1 Introduction

In recent years, deep learning-based side-channel analysis (SCA) became a stan-
dard for the research community. Simultaneously, the industry is also becoming
more interested that such techniques become a standard in the design and cer-
tification process. Unfortunately, many research results can be challenging to
reproduce and also time-consuming to be implemented.

Reproducibility must be a cornerstone of science: if an experiment is not
reproducible, we cannot be sure of the paper’s conclusions. While the scientific
community puts ever more emphasis on reproducability 1, this is not always easy
to achieve. Indeed, the level of the details reported in a publication can signif-
icantly vary (for instance, only a few years ago, it was often seen in SCA that
research works do not report on precise machine learning architectures used
in the experiments). Additionally, issues can arise from different user experi-
ence levels and differences in the implementation processes or frameworks used.
What is more, security experts do not necessarily have a background in artifi-
cial intelligence, making various results and settings more open for a subjective
interpretation.

While it is evident that the SCA community is improving in both the quality
of the results and their reproducibility, there is still room for progress. In this
paper, we introduce the AISY framework intended for the deep learning-based
side-channel analysis. AISY offers all commonly used settings and allows users

1 See, e.g., https://ches.iacr.org/2021/artifacts.php.

2

to extend the framework according to their needs easily. More precisely, AISY
was developed to be:

1. Easy to use. AISY framework allows very easy execution of deep learning
in profiling side-channel attacks. The framework is built on top of Keras
library (integrated in TensorFlow library) and users that familiar to basic
Keras’s functionalities can easily extent the framework.

2. Integrated Database. AISY framework comes with the option to store all
analysis results in an SQLite database. Standard libraries are implemented in
the framework, and users can easily add custom tables to the framework. The
creation of custom tables does not require any specific background knowledge
on databases.

3. Web application. AISY framework is also integrated with Flask python-
based web framework. A web application is integrated with a web-based
user interface. The web application provides a user-friendly way to visualize
analysis, plots, results, and tables.

4. One-click Script Generation. A user can generate the full script used to
produce results stored in the web application database. This is particularly
important when the user wishes to reproduce results after he changed the
script. Another advantage of this feature can be seen when a user shares
the database with a second user. The latter generate all the scripts from the
database.

5. State-of-the-art side-channel analysis. AISY framework brings state-
of-the-art deep learning-based side-channel attacks. We follow recent pub-
lications and keep the framework updated accordingly. Version 0.1 already
provides state-of-the-art features like ensembles, hyperparameter search, vi-
sualization, data augmentation, and special SCA metrics.

6. Teamwork. AISY framework allows easy and efficient teamwork. The struc-
ture is done so that multiple users can easily share results and contribute
together to analysis. By sharing the database, users in different locations
can visualize results without sending multiple emails with files, figures, and
code.

Since the framework offers a simple way of generating scripts used to obtain spe-
cific results, we believe it will significantly increase future work reproducibility.
AISY framework is open-source and planned to receive regular updates to offer
state-of-the-art functionalities in the deep learning-based SCA.

The rest of this paper is organized as follows. Section 2 provides background
theory of deep learning-based SCA. Related works are described in Section 3.
Section 4 describes the AISY framework, including general design, installation
aspects, and main features. In Section 5, we provide an experimental evaluation
of the framework and how a user can add custom-based functionalities to the
framework. Finally, conclusions and future works are discussed in Section 6.

3

2 Background

Let calligraphic letters like X denote sets, and the corresponding upper-case
letters X denote random variables and random vectors X over X . The corre-
sponding lower-case letters x and x denote realizations of X and X, respectively.
Let k be a key candidate that takes its value from the keyspace K, and k∗ the
correct key.

We define a dataset as a collection of traces (measurements) T, where each
trace ti is associated with an input value (plaintext or ciphertext) di and a
key ki. The dataset size equals S, representing the sum of the training set size
N , validation set size V , and test set size Q. If we consider only a specific key
byte, we denote the key byte as ki,j , and input byte as di,j . Finally, θ denotes
the vector of parameters to be learned in a profiling model (e.g., the weights
in neural networks), and H denotes the set of hyperparameters defining the
profiling model.

2.1 Supervised Learning and Profiling SCA

Supervised machine (deep) learning represents the machine learning task of
learning a function f that maps an input to the output (f : X → Y)) based
on examples of input-output pairs. The function f is parameterized by θ ∈ Rn,
where n denotes the number of trainable parameters.

While supervised learning can be used for different tasks (e.g., binary clas-
sification, multi-class classification, regression), we consider only the multi-class
classification task in the rest of this paper. As such, we consider the c-classification
task, where c denotes the number of classes. More precisely, the classifier is a
function that maps input samples to label space (f : X → Rc)2.

Supervised classification happens in two phases: training and test.

1. The goal of the training phase is to learn the parameters θ′ that minimize
the empirical risk represented by a loss function L on a dataset T of size N
(T = {(xi, yi)}Ni=1):

θ′ = argmin
θ

1

N

N∑
i

L(fθ(xi), yi). (1)

In the rest of this paper, the function f is a deep neural network with the
Softmax output layer. Additionally, we encode classes in one-hot encoding,
where each class is represented as a vector of c values that has zero on all
the places, except one place, denoting the membership of that class, i.e.,
yi = eyi ∈ {0, 1}

c
such that 1Tyi = 1 ∀i. The common loss function for deep

learning is the categorical cross-entropy:

CCE = −
c∑
i

yij log(fj(xi,θ), (2)

2 (Is more common to use the notion of features than samples in SCA, but in the rest
of the paper, we use sample to differentiate from the AISY framework features)

4

where yij corresponds to the j element of one-hot encoded class for input
xi, and fj denotes the j element of f .
To monitor the performance of the model f , it is common to evaluate the
model on a separate validation set and stop the training process once there
is a discrepancy between the metrics for the training and validation sets (to
prevent the overfitting). Overfitting happens when a model learns the detail
and noise in the training data, negatively impacting the model’s performance
on unseen data. Common metrics to observe are training/validation accuracy
and loss.

2. In the test phase, the goal is to make predictions about classes y based on
the previously unseen examples x (where the number of examples is Q), and
the trained model f . A common metric in machine learning to evaluate a
classifier’s performance is accuracy (but others like precision, recall, or F1
score are often used).

When considering profiling SCA, the profiling phase is the same as the train-
ing. On the other hand, there are slight differences in SCA’s attack phase com-
pared to the testing phase in machine learning. In the attack phase, the goal is
to make predictions about the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the device under the attack.
The outcome of predicting with a model f on the attack set is a two-dimensional
matrix P with dimensions equal to Q × c. Every element pi,v of matrix P is a
vector of all class probabilities for a specific trace xi (note that

∑c
v pi,v = 1,∀i.

The probability S(k) for any key byte candidate k is a valid SCA distinguisher,
where it is common to use the maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (3)

The value pi,v denotes the probability that for a key k and input di, we obtain
the class v. The class v is derived from the key and input through a cryptographic
function CF and a leakage model l.

In SCA, an adversary is commonly not interested in predicting the classes in
the attack phase but aims to reveal the secret key k∗. For this, common mea-
sures are the success rate (SR) and the guessing entropy (GE) of a side-channel
attack [32]. In particular, let us assume, given Q amount of traces in the attack
phase, an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing
order of probability. So, g1 is the most likely and g|K| the least likely key candi-
date. Guessing entropy is the average position of k∗ in g. Commonly, averaging
is done over 100 independent experiments to obtain statistically significant re-
sults. Note that while defined here as guessing entropy for the whole key, it can
also be observed for separate key bytes, in which case it is called partial guessing
entropy. In this work, we calculate partial guessing entropy (i.e., one key byte
only), but we denote it as guessing entropy for simplicity.

5

3 Related Works

Template Attack

The first profiling attack is the template attack, where the authors showed
it could break implementations secure against other forms of side-channel at-
tacks [4]. This attack is the most powerful one from the information-theoretic
perspective, and at the same time, it has no hyperparameters to tune. The
main drawbacks of this attack are unrealistic assumptions (unlimited number
of traces, noise following the Gaussian distribution [17]), which makes this at-
tack less powerful than, e.g., deep learning-based attacks for many realistic set-
tings. Researchers suggested using one pooled covariance matrix averaged over
all labels to cope with statistical difficulties arising in template attack when the
number of samples is larger than the number of traces per class [5].

Machine Learning-based SCA

From the “classical” machine learning techniques, there are extensive works con-
sidering techniques like random forest [16, 19], support vector machines [12, 13,
29], and Naive Bayes [11, 27]. Additionally, in previous years researchers of-
ten used multilayer perceptron, but either the architectures that are not deep
learning 3 or settings where the sample selection is conducted to reduce the
computational complexity [6, 20,21,42].

Supervised Learning and the Attack Performance

Considering the deep learning approaches, the last five years showed a plethora of
papers using various techniques (mostly, multilayer perceptron and convolutional
neural networks). As such, the next paragraphs are not intended to serve as an
exhaustive list of deep learning-based SCAs. For more details on deep learning-
based SCA, we refer interested readers to the survey by Hettwer et al. [9].

Maghrebi et al. made a significant step forward in the profiling SCA research
as they showed that convolutional neural networks could efficiently break tar-
gets [19]. What is more, they also showed how deep learning could work with
raw traces, removing the need for various sample selection techniques [26]. Cagli
et al. showed how deep learning breaks implementations protected with coun-
termeasures [3]. Additionally, they introduced the concept of data augmentation
in the profiling SCA. Picek et al. evaluated a number of machine learning met-
rics showing a discrepancy from the side-channel metrics [28]. Additionally, the
authors showed that the metrics issue happens not only for “classical” machine
learning techniques but also deep learning. Kim et al. took inspiration from
convolutional neural networks developed for the speech domain and showed top
results on various SCA datasets [14]. To further improve the attack performance,

3 Or, at least, not clear if deep learning architectures since the number of hidden layers
is not reported.

6

they showed how Gaussian noise could be added to the input to serve as a reg-
ularization factor. Hettwer et al. introduced the concept of domain knowledge
to the deep learning-based SCA [8]. More precisely, the authors encode addi-
tional information (plaintext or ciphertext) as an additional input to the neural
network. Perin et al. investigated the performance of a random search-based hy-
perparameter tuning to build ensembles of deep learning-based classifiers [23].
Bhasin et al. investigated the deep learning performance when considering the
differences between the training and test device (different key and/or different
device) [2]. Their results indicate that deep learning can easily overfit, so proper
training is of utmost importance. The authors also suggested the MDM model
where multiple devices are used for training/validation.

Hyperparameter Tuning

Benadjila et al. introduced the ASCAD database for the experimentation with
profiling attacks [1]. Today, this dataset represents a common choice for evalu-
ating deep learning-based attacks. Additionally, the authors provided an inves-
tigation on the importance of hyperparameter tuning. Zaid et al. proposed a
methodology to select hyperparameters related to the size (number of learnable
parameters, i.e., weights and biases) of layers in CNNs [43]. The hyperparameters
include the number of filters, kernel sizes, strides, and neurons in fully-connected
layers. Wouters et al. [38] improved upon the work from Zaid et al. [43] and dis-
cussed several misconceptions in the first work. Additionally, they showed how
to reach similar attack performance with significantly smaller neural network
architectures.

L. Weissbart investigated hyperparameter tuning for multilayer perceptrons
and showed that MLP with proper hyperparameter tuning could break imple-
mentations with different countermeasures [37]. Li et al. investigated the weight
initialization role for MLP and CNN architectures and showed that depending
on the choice of the weight initialization method, SCA attack performance could
vary significantly [18]. Perin and Picek explored the influence of the optimizer
choice for deep learning-based side-channel analysis [24]. Their results indicated
that commonly used optimizers easily overfit, requiring more care during the
training process. Van der Valk et al. considered a setup where a small neural
network is learned to mimic the behavior of a larger neural network, showing that
small neural networks can indeed reach top attack performance [36]. Perin et al.
showed how pruning could help to obtain significantly smaller neural networks
that outperform larger neural networks [25]. Additionally, they demonstrated
how pruning a neural network helps break the targets even when larger neural
networks cannot break them.

Wu et al. introduced Bayesian optimization for hyperparameter tuning [39].
There, the authors managed to find small neural network architectures that per-
form well (surpassing the architectures’ performance obtained by the method-
ologies mentioned above). Rijsdijk et al. investigated how reinforcement learning
can be used to find small convolutional neural networks that perform well, sur-
passing the previous state-of-the-art [31]. Knezevic et al. used evolutionary algo-

7

rithms to evolve custom activation functions for SCA [15]. The authors showed
that activation functions significantly different from those commonly used could
bring excellent attack performance.

Unsupervised Paradigm

Wu and Picek used denoising autoencoders to remove the influence of side-
channel countermeasures from the measurements [40]. Ramezanpour et al. used
autoencoders to conduct unsupervised sample selection [30]. B. Timon consid-
ered non-profiling deep learning SCA where an attacker can only collect a limited
number of side-channel traces for a fixed unknown key value from a closed de-
vice [33].

Toward Explainable Deep Learning-based SCA

Hettwer et al. considered the selection of points of interest for deep learning by
using three deep neural network attribution methods [10]. Masure et al. used
gradient visualization to discover where the sensitive information leaks [22]. Van
der Valk and Picek extended guessing entropy to guessing entropy bias-variance
decomposition to improve the interpretability of results from machine learning-
based attacks [34]. Van der Valk et al. explored the information obtained from
the activation functions in neural networks to interpret what neural networks
learn while training on different SCA datasets [35]. Wu et al. investigated the
differences in the deep learning-based SCA stemming from the different guessing
entropy estimations [41].

4 AISY Framework

4.1 General Design

The AISY framework is a (Keras/TensorFlow) deep learning-based framework
for profiling side-channel analysis. This project was implemented as a result of
several years of research on deep learning and side-channel analysis by AISyLab
at TU Delft, The Netherlands. The current framework version is 1.0.

The project is open-source and available at https://github.com/AISyLab/
AISY_Framework. The documentation about the project is available at https:

//aisylab.github.io/AISY_docs/. Currently, the AISY framework supports
deep learning-based SCA for the AES cipher with 128-bit key 4.

In Figure 1, we depict the AISY framework flow. The figure illustrates the
main framework flow. In blue color, we depict the basic operations of the frame-
work (those that always execute). In light orange color, we depict the optional
features. Note that the AISY framework provides a web application to visualize
results when stored in the database files.

4 New releases will support several cryptographic algorithms.

8

Fig. 1: The AISY framework flow. In blue color, we depict the basic operations
of the framework (those that always execute). In light orange color, we depict
the optional features.

9

4.2 Installation

The AISY framework can be installed from the AISyLab github page:

git clone https://github.com/AISyLab/AISY_Framework.git

cd AISY_framework

pip install -r requirements.txt

Finally, to open the web application, one needs to run the following command:

flask run

The framework has the following layout:

custom/ # folder containing customized definitions
custom_callbacks/callbacks.py # file with user callbacks
custom_metrics/ # each .py file contain a custom metric
custom_models/neural_networks.py # file to insert user neural networks (keras models)
custom_datasets/datasets.py # file with dataset details
custom_data_augmentation/ # file containing data augmentation method
custom_tables/tables.py # file containing custom sqlite tables

resources/ # folder to store user resources (created when first analysis executed)
databases/ # .sqlite database files with project information and analysis results
figures/ # .png figure generated from user
models/ # .h5 models
npz/ # .npz files with project information and analysis results

scripts/ # folder to store main user scripts
webapp/ # flask web application files (html, js, css)
app.py # main flask application

4.3 Datasets

Currently, there are five datasets supported in the AISY framework:

– ASCAD Fixed Key. The first target platform is an 8-bit AVR microcon-
troller running a masked AES-128 implementation, where the side-channel is
electromagnetic emanation [1]. This dataset consists of 50 000 traces for pro-
filing and 10 000 for testing. Commonly, researchers attack the first masked
byte, which is key byte three, and for it, the authors provided the pre-selected
window of 700 samples. This dataset is available at https://github.com/

ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key.
– ASCAD Random Keys. This dataset is obtained from the same target as

the ASCAD Fixed Key dataset. This dataset has random keys in the profiling
set, which has 200 000 traces, and a fixed key in the test set that has 100 000
traces. The pre-selected window to attack the first masked key byte (key byte
three) has 1 400 samples. This dataset is available at https://github.com/
ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key.

– CHES CTF 2018. The traces consist of masked AES-128 encryption run-
ning on a 32-bit STM microcontroller. There are 45 000 traces for the training
set, which contains a fixed key. The attack set consists of 5 000 traces. The
key used in the training and validation set is different from the key config-
ured for the test set. Each trace consists of 2 200 samples. This dataset is
available at https://chesctf.riscure.com/2018/news.

10

– AES HD. AES HD is an unprotected hardware implementation of AES-
128 implemented on Xilinx Virtex-5 FPGA of a SASEBO GII evaluation
board. This dataset contains 50 000 traces corresponding to 50 000 random
plaintexts where each trace has 1 250 samples. This dataset is available at
https://github.com/AISyLab/AES_HD.

– AES HD ext. The final dataset is the AES HD extended dataset that con-
tains 500 000 traces (corresponding to 500 000 random plaintexts) where each
trace has 1 250 samples. This dataset is available at https://github.com/

AISyLab/AES_HD_Ext.

The only format currently supported is .h5, where datasets need to be generated
according to the ASCAD database description [1]. Note that the datasets are
not included in the framework but can be easily downloaded and used with the
framework due to compatible data formats. In Appendix A, we provide a code
example of how to generate .h5 datasets using code provided by the ASCAD
codebase repository.

4.4 Databases

AISY framework makes use of SQLite database to store the results of the side-
channel analysis. In the main script, the user enters the name of the SQLite
database file. If the file already exists, then a new entry is stored for the deployed
analysis. The database is based on the SQLAlchemy Python package.

4.5 Standard Metrics

AISY framework provides four standard metrics: guessing entropy, success rate,
accuracy, and loss. To compute guessing entropy, a user must define the key rank
calculation definition, as in the example below:

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

aisy.set_epochs(20)

aisy.set_neural_network(mlp)

aisy.set_number_of_attack_traces(20000)

aisy.run(

key_rank_executions=100,

key_rank_report_interval=10,

11

key_rank_attack_traces=1000

)

Inside run method, we define the parameters for the guessing entropy calcu-
lation: the number of key rank executions, the number of attack traces, and the
trace report (plotting) interval. The key rank attack traces defines the number of
attack traces used to compute each key rank execution. These attack traces are
randomly selected out of 20 000 attack traces for each key rank execution (this
is an important procedure in guessing entropy calculation for the generalization
estimation of the trained model, as explained in a recent research paper [41]).
Together with guessing entropy, the framework also automatically computes the
success rate. Accuracy and loss are estimated for each epoch during training.

4.6 Neural Network Models

Currently, the AISY framework allows deep learning analysis with multilayer
perceptron and convolution neural networks. The user can add any neural net-
work configuration for one of these two neural network types. Below, we describe
these two neural network types and give simple examples for each of them. Note
that the architectures are implemented in Keras (i.e., one does not need to use
any special code in the AISY framework, making the framework easy to extend).

Multilayer Perceptron The multilayer perceptron (MLP) is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs. MLP
consists of multiple layers (at least three) of nodes in a directed graph, where
each layer is fully connected to the next one, and training of the network is done
with the backpropagation algorithm [7].

The listing below shows an MLP architecture consisting of four hidden layers
where each hidden layer has 200 neurons and the selu activation function. Ad-
ditionally, we use the Adam optimizer with a 0.001 learning rate and categorical
cross-entropy as the loss function.

from tensorflow.keras.optimizers import *

from tensorflow.keras.layers import *

from tensorflow.keras.models import *

def mlp(classes, number_of_samples):

model = Sequential()

model.add(Dense(200, activation='selu',

input_shape=(number_of_samples,)))

model.add(Dense(200, activation='selu'))

model.add(Dense(200, activation='selu'))

model.add(Dense(200, activation='selu'))

model.add(Dense(classes, activation='softmax'))

model.summary()

optimizer = Adam(lr=0.001)

model.compile(loss='categorical_crossentropy',

12

optimizer=optimizer, metrics=['accuracy'])

return model

Convolutional Neural Networks Convolutional neural networks (CNNs)
commonly consist of three types of layers: convolutional layers, pooling layers,
and fully-connected layers. The convolution layer computes the output of neurons
connected to local regions in the input, each computing a dot product between
their weights and a small region they are connected to in the input volume. Pool-
ing decrease the number of extracted samples by performing a down-sampling
operation along the spatial dimensions. The fully-connected layer (the same as
in MLP) computes either the hidden activations or the class scores.

In the listing below, we depict a definition of a CNN consisting of one con-
volution layer and two fully-connected layers. All the layers use the ReLU acti-
vation function, and the fully-connected layers have 128 neurons each. As in the
previous example, we use the Adam optimizer with a 0.001 learning rate and
categorical cross-entropy as the loss function.

from tensorflow.keras.optimizers import *

from tensorflow.keras.layers import *

from tensorflow.keras.models import *

def cnn(classes, number_of_samples):

model = Sequential()

model.add(Conv1D(filters=8, kernel_size=20, strides=1,

activation='relu', padding='valid', input_shape=(number_of_samples, 1)))

model.add(Flatten())

model.add(Dense(128, activation='relu',

kernel_initializer='random_uniform', bias_initializer='zeros'))

model.add(Dense(128, activation='relu',

kernel_initializer='random_uniform', bias_initializer='zeros'))

model.add(Dense(classes, activation='softmax'))

model.summary()

optimizer = Adam(lr=0.001)

model.compile(loss='categorical_crossentropy',

optimizer=optimizer, metrics=['accuracy'])

return model

To allow easier usage of the AISY framework, we also implemented several state-
of-the-art architectures (the models are defined in custom/custom models/neural networks.py):
1. ASCAD mlp [1]
2. ASCAD cnn [1]
3. methodology cnn ascad [43]
4. methodology cnn aeshd [43]
5. methodology cnn aesrd [43]
6. methodology cnn dpav4 [43]

4.7 Leakage Models

AISY framework supports four different leakage models:

13

Fig. 2: Supported AES states for leakage model definitions.

1. Bit. This leakage model results in two classes as every bit can be either value
0 or value 1.

2. Hamming weight (HW). This leakage model results in nine classes for
the AES key byte (from the Hamming weight 0 to the Hamming weight 8).

3. Hamming distance (HW). This leakage model results in nine classes for
the AES key byte (from the Hamming distance 0 to the Hamming distance
8). Differing from the Hamming weight leakage model, we need to consider
two states that are XOR-ed to obtain the intermediate value.

4. Identity (ID). This leakage model considers the value of the intermediate
state. For one key byte, it results in 256 possible classes.

These leakage models can be applied to any AES round key byte (or bit in
byte) in both encryption and decryption modes. Additionally, we support the
following target states:

– Input. The input value of the cipher round.
– Sbox/InvSbox. State after the S-box or inverse S-box operation.
– ShiftRows/InvShiftRows. State after the ShiftRows or Inverse ShiftRows

operation.
– MixColumns/InvMixColumns. State after the MixColumns or Inverse

MixColumns operation.
– AddRoundKey. State after XOR operation with the round key.
– Output. The output value of the cipher round.

Figure 2 illustrates all the possible target AES states in encryption and de-
cryption executions.

14

4.8 Visualization

AISY provides an input gradient visualization feature. This feature allows the
visual verification of main input samples learned from the input traces. For
example, we provide the following listing code that would visualize the input
gradients on 4 000 training traces from the ASCAD random keys dataset. Note
that the input gradient can be visualized as:
1. the sum of input gradients, providing the sum of input gradients computed

for all used profiling traces and all the processed epochs,
2. the input gradient computed for all used profiling traces for each epoch in a

heatmap plot.

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

aisy.set_epochs(20)

aisy.set_neural_network(mlp)

aisy.run(visualization=[4000])

The above code produces visualization results (input gradients) similar to
the results shown in Figure 3 (results obtained from the web application).

4.9 Data Augmentation

AISY framework allows easy configuration of data augmentation techniques dur-
ing model training. Data augmentation is a common machine learning technique
to improve model learnability. Data augmentation in the AISY framework al-
lows small modifications in side-channel traces during training, which improves
the model generalization. Currently, AISY implements two data augmentation
techniques:
1. Shifts - every trace is randomly shifted (thus, this changes a trace in the

temporal domain).
2. Gaussian noise - every trace is combined with the Gaussian noise with a

specif mean and standard deviation values (thus, this changes a trace in the
magnitude).

Note that the user can easily change the magnitude of added perturbations, as
seen in the example below for the Gaussian noise where the user adjusts the
mean and standard deviation values:

noise = np.random.normal(0, 1, ns)

15

(a) Sum of input gradients for all processed epochs.

(b) Heatmap of Input gradients for each processed epoch.

Fig. 3: Visualization results.

4.10 Hyperparameter Search

Hyperparameters are configuration variables external to the model f , e.g., the
number of hidden layers in a neural network. There are two options to conduct
hyperparameter tuning in the AISY framework. The first option is to use the
random search, where we need to define the minimal, maximal, and step value
for every hyperparameter. For instance,

'neurons': {"min": 10, "max": 1000, "step": 10},

defines that the number of neurons in a layer can be any number between 10
and 1 000 in steps of 10.

The second option for hyperparameter tuning is the grid search. There, one
defines all hyperparameter values to examine. Note that the grid search results
in the number of settings equal to the Cartesian product of all hyperparameter
dimensions.

4.11 Automatically Generated (Reproducible) Scripts

One of the main features of the AISY framework is one-click script generation.
From the list of the stored database records (analyses), one can automatically

16

generate the script used to produce the results. The advantage of this feature is
the possibility to reproduce results from older analysis when the script is updated
or even modified by accident. Another advantage is that if databases are shared
between the users, this functionality allows different users to reproduce the same
analysis.

In the web-based application interface, the user has access to buttons to
generate python code used to produce the specific results (e.g., those given in
Section 5.1). The user has two options:

1. Generate script: this option generates the code structure to repeat the exper-
iment displayed on the web-application page. The generated script cannot
provide a fully reproducible result (seeds and other random variables are
not provided with the script). However, it is interesting for other types of
investigations (e.g., analysis consistency).

2. Generate reproducible script: this option generates fully reproducible scripts,
including seeds and random numbers generated from the original analysis
and stored in the databaseThese values are created for any method used for
weight initialization in neural networks and guessing entropy (resp. success
rate) calculations. With this option, a user can generate identical results
from an analysis stored in the database.

5 Experimental Evaluation

In this section, we first start by providing an example of the results obtained with
our framework. Afterward, we discuss how difficult it is to extend the framework
with new functionalities.

5.1 ASCAD Random Keys Example

We provide an example of the AISY framework results obtained for the ASCAD
random keys dataset. As detailed in the code below, we consider the HW leak-
age model and attack key byte 3. The experiment uses a multilayer perceptron
architecture (see Section 4.6), runs for 20 epochs, and has a batch size of 400.

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

17

(a) Accuracy vs Epochs. (b) Loss vs Epochs.

(c) Guessing entropy. (d) Success Rate.

Fig. 4: Results on the ASCAD random keys dataset.

aisy.set_epochs(20)

aisy.set_neural_network(mlp)

aisy.run()

By running the above script, the user will obtain results similar to the re-
sults displayed in Figure 4. Here, we depict the results with standard metrics as
discussed in Section 4.5: accuracy, loss, guessing entropy, and success rate.

5.2 Functionality Upgrades

AISY framework allows easy add-ons, including neural network models, datasets,
metrics, database tables, and (Keras) callbacks. To add any of these functional-
ities, the user needs to follow basic guidelines, as explained below.

Adding a Neural Network Architecture. As detailed in the last section, the
basic structure of the framework contains a custom folder with a custom models
sub-folder. This sub-folder contains a neural networks.py file with the description
of custom neural network models. The user can freely rename this file or create

18

new python files with neural network descriptions. The only modification in the
main script is the import line containing the model definition:

from custom.custom_models.neural_networks import *

Adding a Dataset. In Section 4.3, we provide a description of datasets that are
already supported by the AISY framework. The concept of “support” here means
that custom/custom datasets/datasets.py file already contains the definitions of
these datasets, including file name, (fixed) key of attack set, number of profil-
ing traces, number of attack traces, and number of samples. In the documen-
tation page (https://aisylab.github.io/AISY_docs/datasets/), we provide
details on how to download these datasets to a local disk.

To add a new dataset, a user must create an .h5 format dataset (the current
AISY framework version only has support for .h5 formats). The session Creat-
ing datasets for AISY framework in https://aisylab.github.io/AISY_docs/

datasets/ provides a code example (the code was created by ANSSI and origi-
nally released in ASCAD database repository. We made small modifications to
this code in order to adapt to our needs.

As indicated in https://aisylab.github.io/AISY_docs/datasets/, the
user needs to provide the following arrays to generate a custom dataset:

– train samples: 2d-array containing train or profiling trace samples. Every
row in this array is a trace and the number of columns is the trace length
(number of samples).

– test samples: : 2d-array containing test or attack trace samples. Every row
in this array is a trace and the number of columns is the trace length (number
of samples).

– profiling plaintext : if the side-channel attack is implemented from the in-
put of the target algorithm, the user needs to provide plaintext data. The
profiling plaintext is a 2d-array where each row contains plaintext bytes.

– profiling ciphertext : if the side-channel attack is implemented from the
output of the target algorithm, the user needs to provide ciphertext data.
The profiling ciphertext is a 2d-array where each row contains cipheretxt
bytes.

– profiling key : this is 2d-array where each row contains the key bytes for
each profiling trace.

– attack plaintext : 2d-array containing the plaintext bytes for the attacking
dataset.

– attack ciphertext : 2d-array containing the ciphertext bytes for the attack-
ing dataset.

– attack key : his is 2d-array where each row contains the key bytes for each
attacking trace.

Note that the example code has no support to process mask data from pro-
tected targets (as provided by the ASCAD database). The user can add masks to
.h5 dataset files. However, the main framework class (AISY) has no support to
interpret dataset masks. After the .h5 dataset is created, the user can simply add

19

the definitions to the dictionary located in custom/custom datasets/datasets.py
file, as in the example below for the ASCAD random keys dataset:

datasets_dict = {

"ascad-variable.h5": {

"filename": "ascad-variable.h5",

"key": "00112233445566778899AABBCCDDEEFF",

"first_sample": 0,

"number_of_samples": 1400,

"number_of_profiling_traces": 100000,

"number_of_attack_traces": 1000

}

}

In Appendix A, we provide a code example of how to generate .h5 datasets
using the code provided by the ASCAD codebase repository.

Adding a Metric. In Section 4.5, we describe the standard metrics that are
already implemented in the AISY framework: guessing entropy, success rate,
accuracy, and loss. Although these are the most commonly used metrics in deep
learning-based SCA, the research community is often proposing new interesting
metrics to evaluate deep learning models in the context of profiling side-channel
analysis [22,41]. Therefore, our framework allows easy customization of metrics
to be evaluated during neural network training.

The custom metric is immediately evaluated as an early-stopping metric.
This means that for each epoch, the metric is computed, and, at the end of
the training, guessing entropy and success rate are computed for the model
predictions associated with the best epoch according to the custom metric.

The next code snippet is an example script with a custom metric to evalu-
ate the best epoch according to the minimal number of attack traces to reach
guessing entropy equal to 1:

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

aisy.set_epochs(10)

aisy.set_neural_network(mlp)

early_stopping = {

20

"metrics": {

"number_of_traces": {

"direction": "min",

"class": "custom.custom_metrics.number_of_traces",

"parameters": []

}

}

}

aisy.run(

early_stopping=early_stopping,

key_rank_attack_traces=500

)

Note from the code above that the user needs to specify the class location of
custom metrics. For better code organization, we recommend to place the cus-
tom metric file (e.g., number of traces.py) in custom/custom metrics folder. In
https://aisylab.github.io/AISY_docs/custom_metrics, we provide details
on defining the custom metric .py file.

Adding a Callback. Callbacks are classes from the Keras/TensorFlow library
containing methods to evaluate the trained model at the end of the batch,
epoch, or training processes. As different deep learning applications to profiling
side-channel analysis may require the model analysis from different perspectives
(e.g., a user wants to analyze the magnitude of specific weights for each epoch),
the AISY framework provides an easy way to add user-custom callbacks to the
trained model.

The code below provides an example of how to create a custom callback class
for the AISY framework, named as CustomCallback1 :

class CustomCallback1(Callback):

def __init__(self,

x_profiling, y_profiling, plaintexts_profiling,

ciphertext_profiling, key_profiling,

x_validation, y_validation, plaintexts_validation,

ciphertext_validation, key_validaton,

x_attack, y_attack, plaintexts_attack,

ciphertext_attack, key_attack,

param, leakage_model, key_rank_executions,

key_rank_report_interval, key_rank_attack_traces, *args):

my_args = args[0] # this line is mandatory

self.param1 = my_args[0]

self.param2 = my_args[1]

def on_epoch_end(self, epoch, logs=None):

print("Processing epoch {}".format(epoch))

def on_train_end(self, logs=None):

21

pass

def get_param1(self):

return self.param1

def get_param2(self):

return self.param2

Several parameters are passed to the callback, as defined in the init func-
tion from the example above. These parameters are

– profiling/attack/validation traces (x profiling, x attack, x validation);
– profiling/attack/validation categorical labels (y profiling, y attack, y validation)
– profiling/attack/validation plaintexts (plaintexts profiling, plaintexts attack,

plaintexts validation)
– profiling/attack/validation ciphertexts (ciphertext profiling, ciphertext attack,

ciphertext validation)
– profiling/attack/validation keys (key profiling, key attack, key validation)
– target parameters: params;
– leakage model parameters: leakage model ;
– key rank parameters: key rank executions, key rank report interval, key rank attack traces;
– additional arguments: args.

In the code example above, the defined CustomCallback1 also parses two
additional parameters (param1 and param2). The code below provides an ex-
ample of how to execute the custom callback in the training process with these
additional parameters (note the “parameters” item in the custom callbacks dic-
tionary):

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

aisy.set_epochs(10)

aisy.set_neural_network(mlp)

param1 = [1, 2, 3]

param2 = "my_string"

custom_callbacks = [

{

22

"class": "custom.custom_callbacks.callbacks.CustomCallback1",

"name": "CustomCallback1",

"parameters": [param1, param2]

}

]

aisy.run(

callbacks=custom_callbacks

)

custom_callbacks = aisy.get_custom_callbacks()

custom_callback1 = custom_callbacks["CustomCallback1"]

print(custom_callback1.get_param1())

print(custom_callback1.get_param2())

As specified in the above code example, the custom callback class is defined
in custom/custom callbacks/callbacks.py python file.

Adding a Table to Database. AISY framework uses a database python pack-
age, aisy database, that implements SQLite-based database. The implementa-
tion uses the SQLAlchemy python package for the database. The aisy database
package contains standard database tables for basic functionalities in the AISY
framework. We provide an example for the user to extend the database by cre-
ating custom tables. The AISY documentation page provides code examples to
create custom tables for the AISY framework.

The code example below shows how to create a custom table easily and how
to insert data into it:

import aisy_sca

from app import *

from custom.custom_models.neural_networks import *

from custom.custom_tables.tables import *

aisy = aisy_sca.Aisy()

aisy.set_resources_root_folder(resources_root_folder)

aisy.set_database_root_folder(databases_root_folder)

aisy.set_datasets_root_folder(datasets_root_folder)

aisy.set_database_name("database_ascad.sqlite")

aisy.set_dataset(datasets_dict["ascad-variable.h5"])

aisy.set_aes_leakage_model(leakage_model="HW", byte=2)

aisy.set_batch_size(400)

aisy.set_epochs(20)

aisy.set_neural_network(mlp)

aisy.run()

start_custom_tables(databases_root_folder + "database_ascad.sqlite")

session = start_custom_tables_session(databases_root_folder +

23

"database_ascad.sqlite")

new_insert = CustomTable(

value1=10, value2=20, value3=30,

analysis_id=aisy.get_analysis_id())

session.add(new_insert)

session.commit()

6 Conclusions and Future Work

This paper presents the main design principles and functionalities for the AISY
framework built to support deep learning-based side-channel analysis. To the
best of our knowledge, there are no other frameworks for deep learning-based
side-channel analysis, and those that also include deep learning options are not
publicly available (see, e.g., the Riscure Inspector tool 5). What is more, the
AISY framework is designed to be easy to use and easy to extend. We plan
to update the AISY framework with state-of-the-art functionalities regularly.
Through the AISY framework website, it is also possible to request new func-
tionalities to be added.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

2. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: A warriors guide through realistic profiled side-channel analy-
sis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet Society
(2020), https://www.ndss-symposium.org/ndss2020/

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68.
Springer International Publishing, Cham (2017)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28.
Springer (2002). https://doi.org/10.1007/3-540-36400-5 3, https://doi.org/10.

1007/3-540-36400-5_3

5. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) Smart Card Research and Advanced Applications. pp. 253–270. Springer
International Publishing, Cham (2014)

5 https://www.riscure.com/security-tools/inspector-sca

24

6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a
masked implementation of AES. In: 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). pp. 106–111 (May 2015).
https://doi.org/10.1109/HST.2015.7140247

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

8. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks us-
ing convolutional neural networks with domain knowledge. In: Cid, C., Jr.,
M.J.J. (eds.) Selected Areas in Cryptography - SAC 2018 - 25th Interna-
tional Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 11349, pp. 479–
498. Springer (2018). https://doi.org/10.1007/978-3-030-10970-7 22, https://

doi.org/10.1007/978-3-030-10970-7_22

9. Hettwer, B., Gehrer, S., Güneysu, T.: Applications of machine learning tech-
niques in side-channel attacks: a survey. J. Cryptogr. Eng. 10(2), 135–162
(2020). https://doi.org/10.1007/s13389-019-00212-8, https://doi.org/10.1007/

s13389-019-00212-8

10. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods for
leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D. (eds.)
Selected Areas in Cryptography – SAC 2019. pp. 645–666. Springer International
Publishing, Cham (2020)

11. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: Does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.)
Radio Frequency Identification and IoT Security - 12th International Workshop,
RFIDSec 2016, Hong Kong, China, November 30 - December 2, 2016, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 10155, pp. 91–104. Springer
(2016). https://doi.org/10.1007/978-3-319-62024-4 7, https://doi.org/10.1007/
978-3-319-62024-4_7

12. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE. LNCS, vol. 7275, pp. 249–264. Springer (2012)

13. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x, https://doi.org/

10.1007/s13389-011-0023-x

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

15. Knezevic, K., Fulir, J., Jakobovic, D., Picek, S.: Neurosca: Evolving activation
functions for side-channel analysis. Cryptology ePrint Archive, Report 2021/249
(2021), https://eprint.iacr.org/2021/249

16. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learning
Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer Sci-
ence, Springer (November 2013), berlin, Germany

17. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 20–33. Springer (2015)

25

18. Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-
based side-channel analysis. In: Zhou, J., Conti, M., Ahmed, C.M., Au, M.H.,
Batina, L., Li, Z., Lin, J., Losiouk, E., Luo, B., Majumdar, S., Meng, W., Ochoa,
M., Picek, S., Portokalidis, G., Wang, C., Zhang, K. (eds.) Applied Cryptography
and Network Security Workshops. pp. 126–143. Springer International Publishing,
Cham (2020)

19. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

20. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2) (2013)

21. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced
Applications. pp. 94–107. Springer International Publishing, Cham (2014)

22. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general char-
acterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) Con-
structive Side-Channel Analysis and Secure Design - 10th International
Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11421, pp. 145–167. Springer
(2019). https://doi.org/10.1007/978-3-030-16350-1 9, https://doi.org/10.1007/
978-3-030-16350-1_9

23. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gener-
alization with ensembles in machine learning-based profiled side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2020(4), 337–364 (Aug 2020). https://doi.org/10.13154/tches.v2020.i4.337-364,
https://tches.iacr.org/index.php/TCHES/article/view/8686

24. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. Cryptology ePrint Archive, Report 2020/977 (2020), https://
eprint.iacr.org/2020/977

25. Perin, G., Wu, L., Picek, S.: Gambling for success: The lottery ticket hypothesis
in deep learning-based sca. Cryptology ePrint Archive, Report 2021/197 (2021),
https://eprint.iacr.org/2021/197

26. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling
through focused feature selection. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 27(12), 2802–2815 (2019)

27. Picek, S., Heuser, A., Guilley, S.: Template attack versus bayes classifier. J.
Cryptogr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7,
https://doi.org/10.1007/s13389-017-0172-7

28. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel evalu-
ations. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 209–237 (Nov 2018). https://doi.org/10.13154/tches.v2019.i1.209-237,
https://tches.iacr.org/index.php/TCHES/article/view/7339

29. Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens,
N.: Side-channel analysis and machine learning: A practical perspective. In: 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017. pp. 4095–4102 (2017)

30. Ramezanpour, K., Ampadu, P., Diehl, W.: Scaul: Power side-channel analysis
with unsupervised learning. IEEE Transactions on Computers 69(11), 1626–1638
(2020). https://doi.org/10.1109/TC.2020.3013196

26

31. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparame-
ter tuning in deep learning-based side-channel analysis. Cryptology ePrint Archive,
Report 2021/071 (2021), https://eprint.iacr.org/2021/071

32. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

33. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensi-
tivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–
131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131, https://doi.org/

10.13154/tches.v2019.i2.107-131
34. van der Valk, D., Picek, S.: Bias-variance decomposition in machine learning-based

side-channel analysis. Cryptology ePrint Archive, Report 2019/570 (2019), https:
//eprint.iacr.org/2019/570

35. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: The first step towards ex-
plainability of neural networks in profiled side-channel analysis. Cryptology ePrint
Archive, Report 2019/1477 (2019), https://eprint.iacr.org/2019/1477

36. van der Valk, D., Krcek, M., Picek, S., Bhasin, S.: Learning from a big
brother - mimicking neural networks in profiled side-channel analysis. In:
2020 57th ACM/IEEE Design Automation Conference (DAC). pp. 1–6 (2020).
https://doi.org/10.1109/DAC18072.2020.9218520

37. Weissbart, L.: Performance analysis of multilayer perceptron in profiling side-
channel analysis. In: Zhou, J., Conti, M., Ahmed, C.M., Au, M.H., Batina, L.,
Li, Z., Lin, J., Losiouk, E., Luo, B., Majumdar, S., Meng, W., Ochoa, M., Picek,
S., Portokalidis, G., Wang, C., Zhang, K. (eds.) Applied Cryptography and Net-
work Security Workshops. pp. 198–216. Springer International Publishing, Cham
(2020)

38. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a method-
ology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(3), 147–
168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168, https://tches.
iacr.org/index.php/TCHES/article/view/8586

39. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning
for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report
2020/1293 (2020), https://eprint.iacr.org/2020/1293

40. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-
channel measurements with autoencoders. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(4), 389–415 (Aug 2020).
https://doi.org/10.13154/tches.v2020.i4.389-415, https://tches.iacr.org/

index.php/TCHES/article/view/8688
41. Wu, L., Weissbart, L., Krček, M., Li, H., Perin, G., Batina, L., Picek, S.: On the

attack evaluation and the generalization ability in profiling side-channel analysis.
Cryptology ePrint Archive, Report 2020/899 (2020), https://eprint.iacr.org/
2020/899

42. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) Information Security and Cryptology - ICISC 2011. pp.
169–185. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

43. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).

27

https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

A Code to Generate .h5 Datasets According to the
ASCAD Codebase

out_file = h5py.File('new_dataset.h5', 'w')

profiling_traces_group = out_file.create_group("Profiling_traces")

attack_traces_group = out_file.create_group("Attack_traces")

profiling_traces_group.create_dataset(

name="traces", data=train_samples, dtype=train_samples.dtype

)

attack_traces_group.create_dataset(

name="traces", data=test_samples, dtype=test_samples.dtype

)

metadata_type_profiling = np.dtype(

[

(

"plaintext", profiling_plaintext.dtype,

(len(profiling_plaintext[0]),)

),

(

"ciphertext", profiling_ciphertext.dtype,

(len(profiling_ciphertext[0]),)

),

(

"key", profiling_key.dtype,

(len(profiling_key[0]),)

)

]

)

metadata_type_attack = np.dtype(

[

(

"plaintext", attack_plaintext.dtype,

(len(attack_plaintext[0]),)

),

(

"ciphertext", attack_ciphertext.dtype,

(len(attack_ciphertext[0]),)

),

(

"key", attack_key.dtype,

(len(attack_key[0]),)

)

]

28

)

profiling_metadata = np.array(

[(

profiling_plaintext[n],

profiling_ciphertext[n],

profiling_key[n]) for n, k in

zip(profiling_index, range(0, len(train_samples)))

],

dtype=metadata_type_profiling

)

profiling_traces_group.create_dataset(

"metadata",

data=profiling_metadata,

dtype=metadata_type_profiling

)

attack_metadata = np.array(

[(

attack_plaintext[n],

attack_ciphertext[n],

attack_key[n]) for n, k in

zip(attack_index, range(0, len(test_samples)))

], dtype=metadata_type_attack)

attack_traces_group.create_dataset(

"metadata",

data=attack_metadata,

dtype=metadata_type_attack

)

out_file.flush()

out_file.close()

