
Time- and Space-Efficient Arguments from Groups of Unknown

Order

Alexander R. Block∗ Justin Holmgren† Alon Rosen‡ Ron D. Rothblum§

Pratik Soni¶

March 17, 2021

Abstract

We construct public-coin time- and space-efficient zero-knowledge arguments for NP. For every
time T and space S non-deterministic RAM computation, the prover runs in time T · polylog(T ) and
space S · polylog(T ), and the verifier runs in time n · polylog(T ), where n is the input length. Our
protocol relies on hidden order groups, which can be instantiated, assuming a trusted setup, from the
hardness of factoring (products of safe primes), or, without a trusted setup, using class groups. The
argument-system can heuristically be made non-interactive using the Fiat-Shamir transform.

Our proof builds on DARK (Bünz et al., Eurocrypt 2020), a recent succinct and efficiently verifiable
polynomial commitment scheme. We show how to implement a variant of DARK in a time- and space-
efficient way. Along the way we:

1. Identify a significant gap in the proof of security of DARK.
2. Give a non-trivial modification of the DARK scheme that overcomes the aforementioned gap. The

modified version also relies on significantly weaker cryptographic assumptions than those in the
original DARK scheme. Our proof utilizes ideas from the theory of integer lattices in a novel way.

3. Generalize Pietrzak’s (ITCS 2019) proof of exponentiation (PoE) protocol to work with general
groups of unknown order (without relying on any cryptographic assumption).

In proving these results, we develop general-purpose techniques for working with (hidden order)
groups, which may be of independent interest.

1 Introduction

Significant overhead in prover efficiency is the main roadblock standing between zero-knowledge proofs
and widespread deployment. While there has been extensive work on optimizing the running time of the
prover, much less attention has been drawn to the space (or memory) usage. In particular, most protocols
in the literature suffer from the drawback that memory consumption by the prover is exceedingly large:
computations that take time T and space S to compute directly, require the prover to invest Ω(T ) space in
order to prove correctness (with some notable exceptions [Val08,BC12,BCCT13,BTVW14,HR18,BHR+20]
to be discussed shortly). Moreover, due to the way that modern memory architectures work, large memory
usage also inevitably leads to more cache misses and slower runtime. Thus, space efficiency of the prover is
a severe bottleneck to enabling zero-knowledge proofs for large-scale complex computations.

∗Purdue University. Email: block9@purdue.edu.
†NTT Research. Email: justin.holmgren@ntt-research.com .
‡IDC Herzliya. Email: alon.rosen@idc.ac.il .
§Technion. Email: rothblum@cs.technion.ac.il .
¶Carnegie Mellon University. Email: psoni@andrew.cmu.edu.

1

mailto:block9@purdue.edu
mailto:justin.holmgren@ntt-research.com
mailto:alon.rosen@idc.ac.il
mailto:rothblum@cs.technion.ac.il
mailto:psoni@andrew.cmu.edu


The recent work of Block et al. [BHR+20] constructed the first publicly verifiable1 zero-knowledge proofs
(under standard cryptographic assumptions) in which the prover is efficient both in terms of time and space.
In more detail, for every NP relation R, for which membership can be computed in time T and space S, the
prover (given as input the instance and corresponding witness) can be implemented in time T ·poly(λ, log T )
and space S · poly(λ, log T ) and the verifier can be implemented in time roughly T · poly(λ, log T ), where
here and throughout this work λ denotes the security parameter. The fact that verification takes Ω(T ) time
is a significant drawback of this protocol and precludes applications like delegation of computation.

1.1 Our Results

In this work we overcome the main disadvantage of the work of Block et al. by constructing zero-knowledge
proofs with a time- and space-efficient prover and poly-logarithmic verification. For this result we rely on
groups of unknown order, which are discussed immediately after the statement of Theorem 1.1.

Theorem 1.1 (Informally Stated, see Theorem 4.1). Assume that there exists a group for which the hidden
order assumption holds. Then, every NP relation that can be verified by a time T and space S RAM
machine has a public-coin zero-knowledge argument-system in which the prover, given as input the instance
x and witness w, runs in time T · poly(λ, log T ) and uses space S · poly(λ, log T ). The verifier runs in time
|x| · poly(λ, log T ), the communication complexity is poly(λ, log T ) and the number of rounds is O(log T ).

The argument-system uses a common reference string, which is simply a description of the hidden-order
group G and a random element g ∈ G.

As usual, the protocol can heuristically be made non-interactive by applying the Fiat-Shamir [FS87]
transform. It is also worth noting that a result similar to Theorem 1.1 was not known even without the
zero-knowledge requirement.

As for the assumption that we use, the hidden order assumption for a group G states that given a random
group element g ∈ G it is computationally infeasible to find (any multiple of) the order of g. For example,
assuming the hardness of factoring N which is a product of two safe primes, the group Z∗N , is a hidden
order group. Therefore, our scheme can be instantiated assuming the hardness of factoring (products of safe
primes).

Lately there has been much interest in public-coin hidden order groups which means that the description
of the group can be generated without a trusted party (aka a transparent setup). This is not known for the
factoring based group (since one needs to be able to generate a hard instance for factoring without using
private coins). However, as pointed out in [DF02, BFS20], class groups of an imaginary quadratic field are
a candidate public-coin hidden order group. Since our common reference string only includes a description
of the group and a random element, using class groups we obtain a protocol that does not require a trusted
setup.

Time- and Space-efficient Polynomial Commitments. Theorem 1.1 is derived from a new polynomial-
commitment scheme that we construct, based on a prior scheme due to Bünz et al. [BFS20]. Roughly
speaking, a polynomial-commitment scheme allows Alice to commit to a low degree polynomial P so that later
Bob can ask her for evaluations P (x) along with proofs that the supplied values are indeed consistent with
her commitment (see Section 3.5 for the formal definition). Polynomial commitments have drawn significant
attention recently (see Section 1.2), especially due to their use in compiling ideal model information-theoretic
proof-systems into real-world protocols. Most works use polynomial commitments in order to obtain shorter
proof sizes. In contrast, following [BHR+20], we use polynomial commitments to enable a small space (and
time) implementation of the prover. We believe that this aspect of polynomial commitments will be a key
enabler of large-scale zero-knowledge proofs.

1Public verifiability has emerged as a central requirement for proof-systems. In a nutshell it means that anyone who possesses
the proof-string can verify its correctness (while possibly also requiring access to a common reference string). We mention that
time- and space-efficient protocols that are either privately-verifiable or based on non-standard computational assumptions were
previously known. See Section 1.2 for details.

2



For simplicity, and since it suffices for proving Theorem 1.1, we focus on polynomial commitments for
multilinear2 polynomials P : Fn → F, where F is a prime order field. Following [BHR+20], we consider
polynomial commitments in a streaming model, in which the committer are given (multi-pass) streaming
access to the representation of the polynomial - in our case, the restriction of the multilinear polynomial to
the Boolean hypercube. This streaming model is motivated by the fact that when using the commitment
scheme to construct an efficient argument-system, the prover commits to a transcript of the computation -
which can indeed be generated in a streaming manner in small space.

In order to construct their time- and space-efficient arguments, [BHR+20] first construct a polynomial
commitment scheme for multilinear polynomials in which the prover runs in quasi-linear time (in the de-
scription of the polynomial, which is of size 2n · log(|F|)) and logarithmic space. However, the verifier for
their evaluation proof also runs in time that is linear in the size of the polynomial. This is the core reason
that the argument-system constructed in [BHR+20] does not achieve sub-linear verification. In contrast, we
give a polynomial commitment scheme in which the prover is time- and space-efficient and verification is
poly-logarithmic .

Theorem 1.2 (Informally Stated, see Theorem 4.2). Assume that there exists a group for which the hidden
order assumption holds. Then, there exists a polynomial commitment scheme for multilinear polynomials
P : Fn → F over a prime order field F (of size |F| 6 2poly(n)) with the following efficiency properties:

1. Commitment and evaluation proofs can be computed in time 2n ·poly(n, λ) and space n ·poly(λ), given
multi-pass streaming access to the evaluations of P on the Boolean hypercube.

2. The communication complexity and verification time are both poly(n, λ).

Similarly to Theorem 1.1, the commitment scheme is defined relative to a reference string containing the
description of the hidden order group and a random group element.

Theorem 1.1 follows from Theorem 1.2 using techniques from the work of Block et al. [BHR+20]. Namely,
we use a time- and space-efficient polynomial interactive oracle proof 3 (polynomial IOP), constructed in
[BHR+20] (based on the 2-prover MIP of [BTVW14]). We then compile this polynomial IOP into an
argument-system using the polynomial commitment of Theorem 1.2 in the natural way: namely, rather
than sending polynomials in the clear, the prover simply commits to them and later proves correctness of
evaluations queries. This compilation results in a succinct argument, which can be made zero-knowledge
(while preserving time- and space-efficiency) using standard techniques [BGG+90] (see Section 9 for details).

Our proof of Theorem 1.2 builds on a recent remarkable polynomial-commitment scheme called DARK
(for Diophantine Argument of Knowledge), due to Bünz et al. [BFS20]. This polynomial commitment scheme
was the first such scheme to achieve logarithmic size proofs and verification time.

We make several significant improvements to the DARK scheme:

1. Identifying and Bypassing a Gap in DARK: We identify a gap in the security proof of [BFS20].
We elaborate on this gap in Section 2.2. We emphasize that we do not know whether this gap can lead
to an attack on the DARK scheme. Nevertheless, we find this gap to be significant and in particular
we do not know how to fix their security proof. We mention that we have been informed [BFS21] that
the same gap was discovered independently by the authors of [BFS20].

To obtain our polynomial commitment scheme, we therefore make a non-trivial modification of the
DARK scheme and show that this modification suffices to prove security. Our security proof relies on
a new lemma on the existence of integral inverses for uniformly random rectangular binary matrices,
which we prove. Our proof is based on ideas from the mathematical theory of integer lattices which,

2Recall that a multi-variate polynomial is multilinear if its degree in each variable is at most 1.
3A polynomial IOP is defined similarly to a (public-coin) interactive proof, except that in every round the prover is allowed

to send the truth table of a large polynomial, and the verifier can query a few points from each polynomial. The notion was
proposed concurrently in [BFS20] and [CHM+20]. Essentially the same notion appears also in [RRR16] (called Probabilistically

Checkable Interactive Proof w.r.t. Encoded Provers therein).

3



to the best of our knowledge, have not been used before in this context.4 See Section 2.3 for details.

2. Improved Assumptions and Simplicity: Setting aside the gap in the security proof, we also signif-
icantly improve the assumptions that the DARK scheme relies on. The improvement in assumptions
stems from a simpler (and conceptually more appealing) extraction procedure that we describe. This
improvement applies to the two main variants of the DARK scheme. In more detail:

(a) The first variant of the original DARK scheme uses RSA groups, while relying on the strong
RSA assumption and the adaptive root assumption. The former assumption, while not new, is
relatively strong, whereas the latter is a new assumption, due to Wesolowski [Wes19], which is not
yet well understood (note that both assumptions are known to hold in the generic group model
[DK02,BBF19]).

In contrast, when instantiating our scheme in this setting, we only need to rely on the hardness
of factoring (products of safe primes).

(b) In order to obtain an unstructured common random string, Bünz et al. also give a construction
that uses class groups of an imaginary quadratic field. This construction relies on both the
aforementioned adaptive root assumption (for class groups) and a new assumption that they
introduce on class groups called the 2-strong RSA assumption. The class-group based construction
is also more complex than their construction using RSA groups.

In contrast, our construction works equally well for both groups and we can instantiate it using
class groups while assuming only the hidden order assumption (which is weaker than the adap-
tive root assumption [BBF18]). See also [RSA,Tom] for a comparison between these assumptions.

3. Small Space Polynomial Commitments: We show that the commitment and evaluation protocols
in (our variant of) the DARK scheme can be implemented in time roughly Õ(2n) (i.e., quasi-linear in
the description of the polynomial) and space poly(n) (i.e., poly-logarithmic in the description), given
(multi-pass) streaming access to the evaluations of the polynomial on the Boolean hypercube. Crucially,
(and in contrast to the scheme of [BHR+20]) the verifier in our evaluation proofs runs in time poly(n).
See Section 2.4 for the ideas underlying our space-efficient implementation.

4. Statistical Proof of Exponentiation over General Groups: We improve and generalize a recent
elegant proof-of-exponentiation protocol due to Pietrzak [Pie19]. In a proof of exponentiation protocol,
the goal is for the prover to convince the verifier that the triplet (g, h, T ) ∈ G × G × N satisfies the

relation h = g2T

, where G is a group of unknown order.5 Pietrzak constructs such a protocol in which
the prover runs in time roughly T and the verifier runs in time roughly log(T ) (which is exponentially
faster than the direct computation via repeated squaring). Pietrzak uses his protocol to construct
a simple verifiable delay function [BBBF18], based on the Time-Lock puzzles of Rivest, Shamir and
Wagner [RSW96].

Pietrzak’s protocol is designed specifically for the group QR+
N of (signed) quadratic residues modulo

an integer N , which is the product of two safe primes. Pietrzak [Pie19, Section 6.1] points out that
the protocol can also be extended to class groups, but with two caveats. First, this extension is only
computationally sound and second, it requires an additional assumption from the class group (namely,
that it is hard to find elements of small order). This is in contrast to Pietrzak’s protocol for QR+

N

which provides statistical security and without relying on any assumption. We note that a different
protocol, due to Wesolowski [Wes19], gives a proof of exponentiation over groups in which the adaptive
root assumption holds (which plausibly includes class groups), but also only achieves computational
soundness and requires a (strong) hardness assumption. Wesolowski’s protocol is used as sub-routine

4We emphasize that we use lattice theory to show that our group based construction is secure. In particular all of our
hardness assumptions are group based.

5Since the order of G is not known, one cannot simply compute 2T modulo the group order and then exponentiate.

4



within the DARK scheme.

As an additional contribution, which we find to be of independent interest, we show a modification
of Pietrzak’s protocol that works over general groups of unknown order (including class groups) while
preserving statistical security and without relying on any assumption. By replacing Wesolowski’s
protocol within the DARK scheme with our new extension, we obtain that the evaluation proofs for
our polynomial commitment are proofs (rather than arguments) of knowledge.

1.2 Additional Related Works

Polynomial Commitments. Polynomial commitment schemes were introduced by Kate et al. [KZG10].
As discussed above, such commitments allow one to commit to a polynomial and later answer evaluation
queries while proving consistency with the commitment.

There are several variants of polynomial commitments include privately verifiable schemes [KZG10,
PST13], publicly-verifiable schemes with trusted setup [BFS20], and zero-knowledge schemes [WBT+17].
More recently, much focus has been on obtaining publicly-verifiable schemes without a trusted setup [BBHR18,
BGKS19,BFS20,WBT+17,KPV19,ZXZS20,Lee20,SL20,WTs+18,BCC+16]. In all but one prior work, the
space complexity of the committer is proportional to the description size of the polynomial. The only excep-
tion is the aforementioned work of Block et al. [BHR+20] who build a commitment scheme for multilinear
polynomials (based on [BCC+16, BBB+18]), where the committer’s space complexity is poly-logarithmic in
the description of the polynomial, assuming that the committer is given multi-pass streaming access to its
description. As mentioned above, a key drawback of their work is that the verification is linear in the size
of the polynomial.

Lastly, we mention that classical works on low degree testing (à la [RS96]) as well as more recent works
[BBHR18,BGKS20,BCI+20] can be used to construct polynomial-commitments by Merkle hashing the entire
truth table of the polynomial (and using a self-correction procedure or protocol).

Privately Verifiable Proofs. The question of constructing proof systems in which the prover is efficient
both in terms of time and space was first raised by Bitansky and Chiesa [BC12], who constructed a time-
and space-efficient (or in their terminology complexity preserving) interactive argument for any problem in
NP based on fully homomorphic encryption. Holmgren and Rothblum [HR18] constructed non-interactive
time- and space-efficient arguments for P based on the (sub-exponential) learning with errors assumption.
The protocols of [BC12, HR18] are privately verifiable, meaning that only a designated verifier (who knows
the randomness used to sampled the verifier messages) is able to verify the proof.

Proofs by Recursive Composition. An alternative approach to publicly verifiable time- and space-
efficient arguments is by recursively composing SNARKs for NP [Val08, BCCT13]. Recursive composition
requires both the prover and verifier to make non-black-box usage of an “inner” verifier for a different SNARK,
leading to large computational overhead. Several recent works [BGH19, BCMS20, COS20] attempt to solve
the inefficiency problems with recursive composition, but at additional expense to the underlying crypto-
graphic assumptions. In particular, these works rely on hash functions that are modeled as random oracles
in the security proof, despite being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random oracle model. Moreover, the
practicality of the schemes crucially requires usage of a novel hash function (e.g., Rescue [AAB+19]) with al-
gebraic structure designed to maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic structure could potentially
lead to a security vulnerability.

We also mention a recent work of Ephraim et al. [EFKP20] which uses recursive composition to address
the related question of implementing the prover in small depth (i.e., parallel time).

5



Multi-Prover Proofs. Block et al. [BHR+20] gave the first publicly-verifiable time- and space-efficient
arguments for NP but as noted above (and in contrast to Theorem 1.1), the verification time is linear in the
computation. Bitansky and Chiesa [BC12], as well as Blumberg et al. [BTVW14], construct time- and space-
efficient multi-prover interactive proof, that is, soundness only holds under the assumption that the provers
do not collude. Justifying this assumption in practice seems difficult and indeed multi-prover interactive
proofs are usually only used as building blocks toward more complex systems.

1.3 Organization

We give overviews of our proof techniques in Section 2. Preliminaries are in Section 3. In Section 4 we
formally state our results and in Section 5 we describe our polynomial commitment scheme. The rest of the
technical sections are deferred to the appendix.

2 Technical Overview

We start, in Section 2.1 with an exposition of (a variant of) the DARK polynomial commitment scheme of
[BFS20]. Then, in Section 2.2 we describe a gap in their security proof. In Section 2.3 we show how to
modify their protocol in order to resolve this gap (and simultaneously simplify the extraction procedure and
relax the cryptographic assumptions). Then, in Section 2.4 we describe our small space implementation and
lastly, in Section 2.5 we describe our improved proof of exponentiation protocol.

2.1 Overview of the DARK Scheme

We start with an overview of the DARK polynomial commitment scheme. The main scheme constructed
in [BFS20] was for univariate polynomials. However, for our applications it will be more useful to consider
a variant of their scheme for (multi-variate) multilinear polynomials.6 We emphasize that the gap in the
security proof (to be discussed shortly) also applies to the original DARK scheme.

DARK Commitments: Encoding Polynomials by Large Integers. Let F = Fp be a finite field of
prime order p. Recall that a multilinear polynomial P : Fn → F can be specified by its evaluations on
the Boolean hypercube. Thus, in order to commit to the polynomial P , we will look at the sequence of
values (P (b))b∈{0,1}n . In order to commit to this sequence Bünz et al. construct a large integer Z(P ) that
encodes it, by looking at this sequence as a base q representation of an integer, for some q ≫ p. That is,
Z(P ) =

∑
b∈{0,1}n qb · P (b), where b is interpreted as an integer in the natural way.

The commitment to the polynomial P is simply c = gZ(P ), where g is a random element of the hidden-
order group G specified as part of the CRS. We say that the integer Z is consistent with the multilinear
polynomial P if, looking at the base q representation of Z, and reducing each digit modulo p, we get the
sequence (P (b))b∈{0,1}n . Observe that since q ≫ p, there are many integers Z that are consistent with a
given polynomial P (where one of these integers is Z(P )). Nevertheless, the commitment is binding since
finding two different integers that are consistent with the same commitment reveals a multiple of the order
of g, which we assumed is computationally infeasible.

We will rely on the fact that this commitment scheme is homomorphic, in the following sense: given
integers Z1 and Z2 that are consistent with the polynomial P1 and P2, and have sufficiently small digits in
their base q representation, it holds that Z1 + Z2 is consistent with the polynomial P1 + P2 (mod p). This
is also true for scalar multiplication: if α is sufficiently small then αZ1 is consistent with α · P1 (mod p).
However, the assumption that the digits are small is crucial for the homomorphisms to work, and jumping
ahead, this will be the source of the gap in the proof.

6It is worth mentioning that [BFS20] also present a variant of their scheme for multi-variate polynomials. This variant is
somewhat different from the one described here and is obtained via a reduction to the univariate case.

6



Evaluation Proofs. Suppose that the committer wants to prove that P (ζ) = γ, for some ζ = (ζ1, . . . , ζn) ∈
Fn and γ ∈ F. More precisely, we will show an interactive protocol that is a proof of knowledge of an integer
Z that is consistent with a polynomial P such that that C = gZ and P (ζ) = γ.

Let P0, P1 : Fn−1 → F be the (n − 1)-variate polynomials defined as P0(·) = P (0, ·) and P1(·) = P (1, ·).
The prover first generates these two polynomials, and the corresponding commitments c0 = gZ(P0) and
c1 = gZ(P1). Also, let γ0 = P0(ζ2, . . . , ζn) and γ1 = P1(ζ2, . . . , ζn). As its first message, the prover sends
(c0, c1, γ0, γ1). The verifier now checks that:

1. γ = ζ1 · γ1 + (1− ζ1) · γ0. This equation should indeed hold since P (ζ) = ζ1 ·P1(ζ2, . . . , ζn) + (1− ζ1) ·
P0(ζ2, . . . , ζn).

2. The verifier also checks that c0 · (c1)qN/2

= c, where N := 2n. This should hold since

c0 · (c1)qN/2

= gZ(P0) · gqN/2·Z(P1) = gZ(P0)+qN/2·Z(P1) = gZ(P ),

where the last equality follows from the fact that

Z(P0) + qN/2 · Z(P1) =
∑

b∈{0,1}n−1

qb · P0(b) + qN/2 ·
∑

b∈{0,1}n−1

qb · P1(b)

=
∑

b∈{0,1}n

qb · P (b)

= Z(P ),

where the arithmetic is over the integers and we leverage the homomorphic properties of the commit-

ment. Note that actually computing the value (c1)qN/2

is too expensive for the verifier.7 Thus, rather
than computing it directly, this value is supplied by the prover who then proves its correctness using
Wesolowski’s [Wes19] proof of exponentiation protocol.

Observe that we have replaced the single claim that we had about the tuple (c, ζ, γ) with two separate
claims (c0, ζ

′, γ0) and (c1, ζ
′, γ1), where ζ

′ = (ζ2, . . . , ζn), on (n−1)-variate polynomials so that if the original
claim were true then the two resulting claims are true, whereas if the original claim is false then intuitively,
at least one of the new claims is false.

Since we cannot afford to recurse on both claims, the next idea is to combine them into a single claim,
using a random linear combination. In more detail, the verifier chooses a random coefficient8 α ∈ F and
sends this coefficient to the prover. Consider now a new commitment

c′ = c0 · (c1)α = gZ(P0)+α·Z(P1). (1)

At first glance, c′ looks like a commitment to the (multilinear) polynomial P ′(·) = P0(·) + α · P1(·). This is
not exactly true since the operations in the exponent in Eq. (1) are over the integers rather than over the
field Fp. Nevertheless, it is indeed the case that when interacting with the honest prover, c′ = gZ , for an
integer Z that is consistent with P ′. The verifier would therefore like to check that c′ = gZ such that Z is
consistent with a polynomial P ′ such that P ′(ζ ′) = γ′, where γ′ ≡ γ0 + α · γ1 (mod p).

The parties have therefore reduced the instance (c, ζ, γ) to (c′, ζ ′, γ′), of smaller dimension (since the new
instance corresponds to a polynomial on n − 1 variables). At the bottom of the recursion (i.e., when the
number of variables is 0), the parties are in the following situation - both hold a commitment C0 ∈ G and
a value γ0 ∈ Fp and the claim is that C0 = gZ0 such that Z0 = γ0 (mod p). This can be checked by having
the prover send Z0 and the verifier explicitly checking that this value is consistent with γ0 (and with C0).

7Computing this value directly by exponentiation takes time roughly N = 2n (using the standard repeated squaring trick)
whereas we seek poly(n) time verification. Note that since the group’s order is not known, one cannot first compute qN/2

modulo the group order, and only then exponentiate.
8Looking ahead, it actually makes more sense to choose α from {0, . . . , 2λ − 1} where λ is a statistical security parameter

(independent of the field size). We ignore this here and simply follow the presentation in [BFS20].

7



Bounding the Blowup in Coefficients. Note that as the protocol progresses, the magnitude of the
digits in the base q representation of the integers grows. However, this growth is bounded - in every iteration
the main source of growth is multiplication by α and so the growth is bounded by roughly a factor of p per
iteration. Thus, by setting q ≫ pn we ensure the growth of the coefficients does not break the homomorphism
as the protocol progresses. This suffices for completeness. For soundness (or rather knowledge soundness),
we actually need a larger bound on q and have the the verifier check in the base of the recursion that Z0 6 pn.
Loosely speaking, this is done so that a cheating prover cannot use integers with large digits to violate the
homomorphism.

2.2 A Gap in the Proof

We need to show that the above scheme is an argument-of-knowledge.9 Loosely speaking this means that for
every polynomial-time prover strategy P there exists a polynomial-time extractor E so that for every input
(c, ζ, γ), if P convinces V to accept with non-negligible probability, then EP outputs an integer Z such that
g = cZ and Z is consistent with a polynomial P such that P (ζ) = γ.

The extractor works recursively. Let us therefore assume that we have an extractor for the (n−1)-variate
case and attempt to construct an extractor for the n-variate case. Thus, we are given a commitment c, a
point ζ ∈ Fn a value γ ∈ F and a prover that convinces the verifier to accept with non-negligible probability.
For sake of this overview however, let us pretend that the prover succeeds with probability close to 1.

The high-level idea for extraction is as follows. First, let the prover send its first message which is
(c0, c1, γ0, γ1). At this point our extractor continues the interaction with two uniformly random choices of α
for the verifier, which we denote by α̂ and α̃. This defines two claim triplets: (ĉ, ζ ′, γ̂) and (c̃, ζ′, γ̃), where:

ĉ = c0 · (c1)α̂,

c̃ = c0 · (c1)α̃

and

γ̂ ≡ γ0 + α̂ · γ1 (mod p),

γ̃ ≡ γ0 + α̃ · γ1 (mod p).

Since these two claims correspond to the (n−1)-variate case, we can now recursively run our extractor (twice)
to obtain integers Ẑ and Z̃ that are consistent with the respective claims. Namely, Ẑ (resp., Z̃) is consistent

with a polynomial P̂ (resp., P̃ ) such that P̂ (ζ ′) = γ̂ (resp., P̃ (ζ ′) = γ̃), and gẐ = ĉ (resp., gZ̃ = c̃).

Consider the following linear-system, over the rationals, with unknowns Z0 and Z1.

Ẑ = Z0 + α̂ · Z1

Z̃ = Z0 + α̃ · Z1

Note that since α̂ and α̃ are random, with overwhelming probability this system has a (unique) solution over
the rationals:

Z0 =
α̂ · Z̃ − α̃ · Ẑ

α̂− α̃

Z1 =
Ẑ − Z̃

α̂− α̃
(2)

An immediate difficulty that arises is that this solution may not be integral (i.e., Z0 and Z1 are not integers).
However, Bünz et al. show that finding a fractional solution violates their hardness assumptions. Thus,
(under the foregoing assumptions) we can safely assume that Z0 and Z1 are integers.

9We note that [BFS20] only aim to show that the protocol is an argument of knowledge (and this is inherent to their
approach). Jumping ahead we mention that the evaluation proof in our variant of DARK will actually be a proof of knowledge
(i.e., extraction is guaranteed even wrt computationally unbounded provers).

8



At this point we would like to combine Z0 and Z1 into Z = Z0 + q2n−1

Z1, which serves as a valid output
for the extractor. A question that arises however is whether Z0 and Z1 have bounded digits in their base q
representation. This is crucial since, as discussed above, if the digits are large the homomorphism breaks.
Bünz et al. claim that it is indeed the case that Z0 and Z1 have small coefficients by observing that both the
numerators and denominators in Eq. (2) consist of relatively small integers and so their quotient is small.
While the claim that the quotient itself is small is indeed valid, it does not necessarily mean that the base
q representation of the quotient has small digits. Indeed, as demonstrated by the following example, this is
not necessarily true and is the source of the gap in the DARK extraction procedure.

Example 2.1. Suppose that q is odd and consider the integers a = q + 1 and b = 2 (in case q is even a
similar example with a = q and b = 2 works). Note that the base q representation of both only has small
digits. However, a/b has a digit of magnitude (q + 1)/2. Using such large digits breaks the homomorphism
within a couple of steps.

We refer the reader to Lemma 8 in the full version of DARK [BFSTC] for the exact location of the gap
in the proof. Specifically, in the third paragraph in that proof, it is claimed that fL(X) has small entries by
the triangle inequality, but this does not account for the division by ∆α in the definition of fL. This division
can entirely break the claimed bounds on the base q representation of fL.

2.3 Resolving the Gap

Unfortunately, we do not know how to resolve the gap in the extraction procedure of [BFS20]. Rather, we
show how to modify the scheme and construct an extractor for our modified scheme.

As our first step, for a reason that will be made clear momentarily, rather than handling a single claim
(c, ζ, γ), we construct an interactive proof that handles a bundle of λ claims {(ci, ζ, γi)}i∈[λ], using the same
evaluation point ζ ∈ Fn, and where λ is an auxiliary statistical security parameter. These λ claims do not
have to be distinct, so to solve the original problem (c, ζ, γ) we can simply consider λ copies of it. Thus,
our goal is to construct a proof-of-knowledge of integers Z1, . . . , Zλ that are consistent, respectively, with
polynomials P1, . . . , Pλ so that Pi(ζ) = γi, for every i ∈ [λ].

We follow the divide and conquer approach of [BFS20]. Namely, using a similar type of interaction we
split each one of the λ claims (ci, ζ, γi) into two claims each on an (n− 1)-variate polynomial. At this point,
we have, overall, 2λ claims on (n− 1)-variate polynomials and we would like to reduce these to just λ claims
so that we can recurse. Denote this set of claims by {(c′i, ζ′, γ′i)}i∈[2λ] (note that the indexing intentionally
ignores the source for each one of these claims).

Let us first describe how we generate a single claim from these 2λ claims. The verifier chooses a random
subset S ⊆ [2λ] and sends S to the prover. Consider now the new claim (c̄, ζ′, γ̄), where c̄ =

∏
i∈S c′i and

γ̄ ≡
∑

i∈S γ′i (mod p). If the original claims were true then with probability 1 the new claim is true, whereas,
intuitively, if at least one of the original claims was false then with probability 1/2 the new claim is false10.
We therefore repeat this process λ times to derive λ claims so that if one of the original claims was false,
then, with all but 2−λ probability, one of the new claims will be false.

To actually make this argument work, we need to construct an extractor. As suggested above, the
extractor can rewind the computation a constant r number of times to deduce a linear-system, analogous to
that of Section 2.2, but now with r ·λ equations and λ variables, where the coefficients are uniformly random
0/1 values.

Similarly to the situation in Section 2.2, it is clear that this linear-system is full rank (over the rationals)
but it is not a priori clear that the solution is integral, nor that its base q representation has small digits.
Nevertheless, we show that for random Boolean matrices this is indeed the case. This fact, which turns out
to be non-trivial to prove, is summarized in the following lemma:

Lemma 2.2 (Informally Stated, see Lemma A.1). If A is uniformly random in {0, 1}λ×r·λ for r ≥ 5, then

10This is not actually precise since there are many polynomials that are consistent with the c′

i’s and so the claim could be true
wrt some of these polynomials. This is dealt with formally by showing knowledge soundness (i.e., constructing an extractor).

9



with all but 2−Ω(λ) probability A has a right-inverse B ∈ Zr·λ×λ.

Moreover, the inverse matrix B can be found in poly(λ) time and its entries have bit length at most
poly(λ).

Note that the fact that the inverse matrix B of our linear-system has relatively small integral coefficients
(independent of q) is crucial since it means that our solution is integral and has small digits in base q.

Our proof of Lemma 2.2 leverages ideas from the theory of integer lattices, see Appendix A for details.

Having found the desired solution to the specified linear-system, our extractor can proceed in the extrac-
tion similarly to the extraction in DARK. This concludes the high-level description of our resolution of the
gap in the DARK scheme.

Remark 2.3. Note that our approach not only resolved the gap in the DARK extraction, but also uncon-
ditionally avoided the possibility of the linear-system having a non-integral solution. This simultaneously
simplifies the definitions and proofs and lets us avoid an undesirable reliance on additional, poorly understood,
cryptographic assumptions.

Remark 2.4. For sake of convenience, we used λ repetitions in our analysis. We remark however that the
number of repetitions here is a statistical security parameter. Namely, it bounds even a computationaly
unbounded adversary’s success probability by 2−Ω(λ). Thus, in practice it may be best to differentiate
between this parameter and the cryptographic parameter that corresponds to the size of the group.

2.4 Small Space Implementation

Having resolved the gap in the security proof, we now turn out attention to implementing the polynomial
commitment in small space.

When considering sublinear space algorithms it is important to specify how the input is given (since
the algorithm cannot simply copy the input to its work tape, see [Gol08] for a comprehensive discussion).
For our context, the most natural choice is for our small space algorithms to be given multi-pass streaming
access to the description of the multilinear polynomial. That is, the evaluations of the polynomial on the
Boolean hypercube are written on the read-only input tape. The algorithm can process the input tape from
left-to-right, or choose to reset the machine head to the beginning of the tape. The reason that this choice
is natural is that when constructing our argument-system, we will need to apply this commitment to a
transcript of a computation. Such a transcript can indeed be generated in a (resettable) streaming manner
by simply executing the computation.

With that in mind, let us first consider our commitment algorithm. Recall that we are given as input
the stream of values {P (b)}b∈{0,1}n , where P : Fn → F is a multilinear polynomial and we need to produce

the commitment gZ(P ) = gV , where

V =
∑

b∈{0,1}n

qb · P (b).

Note that we cannot compute V directly and then exponentiate. This is because even storing V requires 2n

bits. Rather, we will leverage the fact that V appears only in the exponent and compute gV directly.

We do so by iterating through b in lexicographic order while maintaining, as we go along, two variables

C and D. We will maintain the invariant that at the start of the b-th iteration D = gqb

and C = gV<b , where
V<b =

∑
b′<b qb′

· P (b′). To do so we:

• Initialize C as the group’s identity element and D = g.

• To update C and D from b to b + 1, we set C ← C ·DP (b) and D ← Dq (using repeated squaring).

It is not hard to see that the invariant is indeed maintained. Given the value of D in the last iteration, it is
easy to generate the commitment gV .

Implementing the evaluation proofs is more subtle. The key challenge here is that throughout the
recursion, the prover needs to deal with the intermediate polynomials that are defined throughout the

10



recursion, but only has streaming access to the original base polynomial. Needless to say, we cannot afford
to explicitly store the intermediate polynomials since this would introduce 2Ω(n) space usage.

Thus, we need, for sake of space efficiency, to open up the recursion and work directly with our original
stream P . At first glance, one would hope that using the polynomial P we can emulate streaming access to
the intermediate polynomials that we encounter. Unfortunately, we do not know how to do that. Rather,
in order to commit or evaluate some intermediate polynomial Q, we show that as we process the base
polynomial P , each value that we encounter, has some partial contribution to Q (with coefficients that
depend on the verifier’s random challenges). The crucial observation is that both the commitment to Q
and evaluation are linear and therefore commute. This means that we do not have to process the partial
contributions of each entry of Q in sequence. Furthermore, we show that the coefficients of these entries in
the linear combination can either be produced individually in small space (when evaluating the intermediate
polynomials) or generated as a stream in small space (when producing commitments). See Section 7 for
details.

2.5 Generalizing Pietrzak’s Proof of Exponentiation Protocol

Our Proof of Exponentiaion (PoE) protocol builds on Pietrzak’s PoE protocol [Pie19]. We therefore start by
recalling his protocol and then proceed to describe our improvement.

Pietrzak’s PoE protocol. Let G be a group and q ∈ Z. Recall that the prover wishes to prove that

y = xq2t

for some x, y ∈ G and t ∈ N. As a shorthand, we will use T = 2t and denote the claim y = xqT

by the tuple (x, y, T ) and refer to this as a claim of size T (because its validity can be easily checked by
performing T repeated squarings). To proceed with the proof, the prover first sends a single group element

µ = xqT /2

, which implicitly defines two sub-claims (x, µ, T/2) and (µ, y, T/2) of size T/2 each. Note that

if (x, y, T ) is true then both claims (x, µ, T/2) and (µ, y, T/2) must also be true: y = xqT

and µ = xqT /2

implies that y = µqT /2

. However, intuitively, if (x, y, T ) is false then for any (even maliciously generated) µ,
at least one of the sub-claims must be false. Instead of recursing on both subclaims, the prover combines the
two subclaims into a single claim of size T/2. The new claim (x′, y′, T/2) is computed by taking a, verifier
specified, random linear combination of the two claims. That is,

x′ = xr · µ and y′ = µr · y,

where r ← Z2λ is sampled by the verifier. It is easy to see that if (x, µ, T/2) and (µ, y, T/2) are true then
(x′, y′, T/2) is also true, and Pietrzak (relying on QR+

N not having small order subgroups) shows that if
one of (x, µ, T/2) or (µ, y, T/2) is false, then with overwhelming probability, over the choice of r, the claim
(x′, y′, T/2) is false. Now, the prover and verifier recurse on the T/2-sized claim, halving the size every time
and eventually ending up in the base case (T = 1) where the verifier just needs to check whether y = xq

(which can be done in poly(λ) time).

Our New PoE protocol. As mentioned above the main downside of Pietrzak’s protocol is that statistical
soundness can only be proved for groups where small order subgroups do not exist. This difficulty arises
since we are taking random linear combinations of group elements rather than field elements. In particular,
if one of the group elements has small order, then the random linear combination does not have the desired
effect.

Our approach for resolving this difficulty is inspired by our resolution for the gap in the DARK scheme
(see Sections 2.2 and 2.3). We will maintain more instances throughout the interaction and take random
subset sums of all of these instances rather than random linear combinations of two instances. Interestingly,
this simple idea gets us quite a bit of mileage - simplifying the analysis, improving the assumptions (e.g., in
the case of class groups) and generalizing the result to general groups.

11



In more detail, rather than handling a single claim (x, y, T ), we will show a protocol for checking λ claims
{(xi, yi, T )}[i∈[λ] all sharing the same exponent parameter T . Note that the single claim case can be easily
reduced to this more general setting by simply setting x1 = · · · = xλ = x and y1 = · · · = yλ = y.

Analogous to Pietrzak’s protocol, our prover sends the sequence of values µ = (µ1, . . . , µλ) ∈ Gλ as its

first message, where µi = xqT /2

i , for every i ∈ [λ]. This decomposes the λ claims {(xi, yi, T )}i∈[λ] into two
sets of λ claims each {(xi, µi, T/2)}i∈[λ] and {(µi, yi, T/2)}i∈[λ]. It will be convenient however to think of
these as a single set of claims {(zi, wi, T/2)}i∈[2λ]. Note that if the original set of claims was not true, then
no matter what values {µi}i∈[λ] the prover sends, at least one of the claims in {(zi, wi, T/2)}i∈[2λ] must be
false.

Reducing Claims via Subset Products. We show a simple and general method for reducing the number
of claims. Let us first see how to produce a single new claim from these 2λ claims. The verifier chooses at
random a set S ⊆ [2λ] and sends S to the prover. Consider the claim (z′, w′, T/2) where:

z′ =
∏

i∈S

zi and w′ =
∏

i∈S

wi.

Observe that if all the original claims were true (i.e., wi = zqT /2

i , for every i ∈ [λ]) then (z′)qT /2

=
∏

i∈S zqT /2

i =
∏

i∈S wi = w′ and so the resulting claim holds. On the other hand, if even just one of
the original claims is false then:

Pr
S

[
(z′)qT /2

= w′
]

= Pr
S

[
∏

i∈S

zqT /2

i =
∏

i∈S

wi

]
= Pr

S

[
∏

i∈S

ui = 1G

]
6 1/2

where ui = zqT /2

i · w−1
i for every i ∈ [2λ], the group’s identity element is denoted by 1 and the inequality

follows from the simple principle that a random subset product of a sequence of group elements, not all of
which are equal to 1, is equal to 1 with probability at most 1/2. (See Fact 8.1 for the precise statement and
proof of this fact.)

To get 2−λ error probability, we simply repeat this process λ times to get a new sequence of λ claims,
each of size T/2. We have thus reduced our λ size T claims to λ size T/2 claims. We can continue recursing
as in Pietrzak’s protocol until T = 1 in which case the verifier can solve the problem by itself.

Remark 2.5. We remark that our technique introduces a factor of λ overhead in the communication complex-
ity as compared to Pietrzak’s protocol. This is due to the fact that the prover has to send λ group elements
per round (rather than just 1).

Similarly to Remark 2.4, λ is a statistical (rather than computational) security parameter and relatively
small values of λ may suffice. Moreover, we believe that it is possible to “interpolate” between our approach
and that of [Pie19] by considering the minimal sub-group size of G and using coefficients of suitably larger
magnitude in our choice of the random matrix.

3 Preliminaries

3.1 Notation

We let “◦” denote the string concatenation operator and let ǫ denote the empty string; that is, for any string
s it holds that s = s ◦ ǫ = ǫ ◦ s.

Let S be a finite, non-empty set. We let x← S denote sampling an element x uniformly at random from
S. For any N ∈ N, we let SN denote the set of all sequences of length N containing elements of S, and note
that S0 := {ǫ}. As usual, we make the convention that if j > k then

∑k
i=j ai = 0 and

∏k
i=j ai = 1.

12



We let Fp denote a finite field of prime cardinality p, and often use lower-case Greek letters to denote
elements of F, e.g., α ∈ F. We use boldface lowercase letters to denote binary vectors, e.g. b ∈ {0, 1}

n
. For

bit strings b ∈ {0, 1}n, we naturally associate b with integers in the set {0, 1, . . . , 2n−1}; i.e., b ≡
∑n

i=1 bi·2
i−1.

We assume that b = (bn, . . . , b1), where bn is the most significant bit and b1 is the least significant bit. For

bit string b ∈ {0, 1}
n

and σ ∈ {0, 1} we let σb (resp., bσ) denote the string (σ ◦ b) ∈ {0, 1}
n+1

(resp.,

(b◦σ) ∈ {0, 1}n+1). We use boldface lowercase to denote F vectors, e.g., α ∈ Fn. For (αn, . . . , α1) = α ∈ Fn,
we refer to αn as the most significant field element and α1 as the least significant field element. For two
equal length vectors u, v, we let u ⊙ v denote the coordinate-wise product of u and v. We let uppercase
calligraphic letters denote sequences and let corresponding lowercase letters to denote its elements, e.g.,
Y = (yb)b∈{0,1}n ∈ FN is a sequence of N elements in F. Often, for b ∈ {0, 1}

n
, we let Yb denote the value

yb.

We use upper case letters to denote matrices, e.g., M ∈ Zm×n. For a matrix M of dimension m× n, we
let M(i, ∗) and M(∗, j) denote the ith row and jth column of M , respectively. For row vector u of length m
and column vector v of length n, we let u ·M and M · v denote the standard matrix-vector product.

Non-standard Notation. We are also interested in matrix-vector “exponents”. Let G be some group,
M ∈ Zm×n, u = (u1, . . . , um) ∈ G1×m, and v = (v1, . . . , vn)⊤ ∈ Gn×1. We let u ⋆ M and M ⋆ v denote a
matrix-vector exponent, defined as

(u ⋆ M)j =

m∏

i=1

u
M(i,j)
i (M ⋆ v)i′ =

n∏

j′=1

v
M(i′,j′)
j′ ,

for every j ∈ [n] and every i′ ∈ [m]. Note that u ⋆ M ∈ G1×n and M ⋆ v ∈ Gm×1.

For vector x ∈ Zn and group element g ∈ G, we abuse notation and define gx := (gx1 , . . . , gxn). Finally,
for k ∈ Z and vector u ∈ Gn, we let uk denote the vector (uk

1 , . . . , uk
n) ∈ Gn.

3.2 Multilinear Polynomials

An n-variate polynomial f : Fn → F is multilinear if the individual degree of each variable in f is at most 1.

Fact 3.1. An multilinear polynomial f : Fn → F (over a finite field F) is uniquely defined by its evaluations
over the Boolean hypercube. Moreover, for every ζ ∈ Fn it holds that

f(ζ) =
∑

b∈{0,1}n

f(b) ·

n∏

i=1

χ(bi, ζi),

where χ(b, ζ) = b · ζ + (1− b) · (1− ζ).

As a short hand, we will often denote
n∏

i=1

χ(bi, ζi) by χ(b, ζ) for n = |b| = |ζ|.

Notation for Multilinear Polynomials. Throughout this work, we represent n-variate, multilinear
polynomials f by the N -sized sequence Y containing evaluations of f over the Boolean hypercube. That
is, Y := (f(b))b∈{0,1}n , and denote the evaluation of the mutlilinear polynomial defined by Y on ζ as

ML(Y, ζ) :=
∑

b Yb ·χ(b, ζ). Furthermore, we also consider the evaluation of a multilinear polynomial defined
by some integer sequence Z ∈ ZN . For any ζ ∈ Fp for prime p, we define ML(Z, ζ) :=

∑
b(Zb mod p) ·χ(b, ζ).

3.3 Groups of Hidden Order

We start by defining the notion of a group sampler.

13



Definition 3.2 (Group Sampler). A PPT algorithm G is a group sampler if for every λ ∈ N, G on input 1λ

samples a description11 G of a group of size at most 2λ. As a shorthand, we denote this random process by
G← G(1λ), and by g ← G denote the process of sampling a random group element from G and assigning it
to g.

Furthermore, we say that G is public-coin if the output of G (i.e., the group description) is a uniformly
random string.

In this work, we will focus only on group samplers G for which the Hidden Order Assumption holds.
Informally, the Hidden Order Assumption requires that it be computationally hard to find (a multiple of)
the order of a random group element of G← G(1λ).

Assumption 3.3 (Hidden Order Assumption). The Hidden Order Assumption holds for G if for every
polynomial-size family of circuits A = {Aλ}λ∈N the following holds:

Pr



ga = 1 ∧ a 6= 0 :
G← G(1λ),

g ← G,
a← Aλ(G, g)



 ≤ negl(λ) . (3)

Candidates for G. In this work we consider two main candidates for G where the Hidden Order Assump-
tion is believed to hold:

1. RSA group: the multiplicative group Z∗N of integers modulo a product N = P · Q for large random
primes P and Q. Here, the Hidden Order Assumption holds assuming the hardness of factoring N when
it is a product of safe primes. This group can be sampled by choosing random primes and specifying
their product. However, this type of generation is of the private-coin type and it is not clear how to
generate the group in a public way (this corresponds to the well-studied problem of generating hard
factoring instances N = P ·Q using only public-coins).

2. Class group: the class group of an of imaginary quadratic order. Here, the Hidden Order Assumption
(in fact, even much stronger assumptions) are believed to hold (see, e.g., [BFS20, Wes19]). The main
feature of such class groups is that there is a way to sample the group description using only public-
coins. These are, to the best of our knowledge, the only known public-coin hidden order groups. We
refer the reader to [BFS20] for details.

3.4 Interactive Games and Proof Systems

Definition 3.4 (Merlin-Arthur Games). Let r be a positive integer.

An MA[2r] game (or just an MA game12 if r is unspecified) is a tuple G = (1r, 1ℓ, W ), where ℓ ∈ Z+ and
W ⊆ {0, 1}∗ is a set, called the win predicate, that is represented as a boolean circuit. The integer r is called
the number of rounds of G and {0, 1}ℓ is called the challenge space.

If G = (1r, 1ℓ, W ) is an MA[2r] game and P : {0, 1}∗ → {0, 1}∗ is a function, then the value of G with
respect to P is denoted and defined as

v[P ](G)
def
= Pr

β1,...,βr←{0,1}ℓ

[
(α1, β1, . . . , αr, βr

)
∈ W

]
,

where each αi denotes P (β1, . . . , βi−1). The value of G, denoted v(G), is supP

{
v[P ](G)

}
.

Definition 3.5 (Game Transcripts). If G =
(
1r, 1ℓ, W ) is an MA[2r] game, then a transcript for G is a tuple

τ = (α1, β1, . . . , αr, βr) with each βi ∈ {0, 1}ℓ and αi ∈ {0, 1}∗. If τ is contained in W , then it is said to be
an accepting transcript for G. If for a function P : {0, 1}∗ → {0, 1}∗, αi = P (β1, . . . , βi−1) for each i ∈ [r],

11The group description includes a poly(λ) description of the identity element, and poly(λ) size circuits checking membership
in the group, equality, performing the group operation and generating a random element in the group.

12MA stands for Merlin-Arthur proofs [BM88] (differing from Arthur-Merlin proofs in that the prover (Merlin) sends the first
message).

14



then τ is said to be consistent with P . If τ is both an accepting transcript for G and consistent with P , we
say simply that τ is an accepting transcript for (P,G).

Definition 3.6 (MA Verifiers). For a function r : Z+ → Z+ and a language L, an MA[2r] verifier for L is a
polynomial-time algorithm V , where:

• V maps any string x ∈ {0, 1}∗ to an MA
[
2r(|x|)

]
game.13

• The completeness of V is a function c : Z+ → [0, 1], defined as

c(n)
def
= min

x∈L∩{0,1}n
v
(
V (x)

)
.

• The soundness error of V is a function s : Z+ → [0, 1], defined as

s(n)
def
= max

x∈{0,1}n\L
v
(
V (x)

)
.

Definition 3.7 (Witness-Extended Emulation (cf. [Lin03])). An MA verifier V has (statistical) witness-
extended ǫ(·)-emulation with respect to a relation R if there exists an expected polynomial-time oracle algorithm
E such that for all P : {0, 1}∗ → {0, 1}∗ and all x ∈ {0, 1}∗, if we sample (τ, w)← EP (x), then:

• τ is distributed uniformly at random on the set of all possible transcripts between V (x) and P .

• With all but ǫ(|x|) probability, if τ is an accepting transcript for V (x) then (x, w) ∈ R.

Definition 3.8. An MA verifier V has statistical witness-extended emulation with respect to a relation R if
it has statistical witness-extended ǫ-emulation (as per Definition 3.7) for some negligible function ǫ.

3.5 Multilinear Polynomial Commitment

Polynomial commitment schemes, introduced by Kate et al. [KZG10] and generalized in [BFS20, Set20,
WTs+18, BBB+18], are a cryptographic primitive that allows one to commit to a polynomial of bounded
degree and later provably reveal evaluations of the committed polynomial. Since we consider only multilinear
polynomials, we tailor our definition to them.

Convention. In defining the syntax of various protocols, we use the following convention for any list of
arguments or returned tuple (a, b, c; d, e) – variables listed before semicolon are known both to the prover
and verifier whereas the ones after are only known to the prover. In this case, a, b, c are public whereas d, e
are secret. In the absence of secret information the semicolon is omitted.

Definition 3.9 (Multilinear Polynomial Commitment Scheme). A multilinear polynomial commitment scheme
is a tuple of protocols (Setup, Com, isValid, Eval) such that

1. pp ← Setup(1λ, p, 1n): takes as input the security parameter λ ∈ N and outputs public parameter pp
that allows to support n-variate multilinear polynomials over F = Fp for some prime p.

2. (C; d)← Com(pp,Y): takes as input public parameters pp and a description of a multilinear polynomial
Y = (yb)b∈{0,1}n and outputs a commitment C and a (secret) decommitment d.

3. b← isValid(pp, C,Y, d): takes as input pp, a commitment C, a description of the multilinear polynomial
Y and a decommitment d, and returns a decision bit b ∈ {0, 1}.

4. Eval(pp, C, ζ, γ;Y, d): is a public-coin interactive proof system (P, V ) for the relation:

Rml =
{

(pp, C, ζ, γ;Y, d) : isValid(pp, C,Y, d) = 1 ∧ γ = ML(Y, ζ)
}

, (4)

where V is an MA verifier (as per Definition 3.6) where P is the honest strategy for V .

13In particular, this definition implies there is a polynomial in n that bounds the length of any accepting transcript for V (x)
when x ∈ {0, 1}n.

15



Note that the verifier in this proof-system gets as input the public parameters pp, commitment C,
evaluation point ζ ∈ Fn and claimed evaluation γ ∈ F, and the prover additionally receives the full
description of the polynomial Y and the decommitment d.

We require the following three properties from the scheme (Setup, Com, isValid, Eval):

1. Perfect Correctness: for all primes p, λ ∈ N, n ∈ N and all Y ∈ F2n

p and ζ ∈ Fn
p ,

Pr

[
1 = Eval(pp, C,Z, γ;Y, d) :

pp← Setup(1λ, p, 1n),
(C; d)← Com(pp,Y), γ = ML(Y, ζ)

]
= 1 .

2. Computational Binding: for every polynomial-sized family of circuits A = {Aλ}λ∈N the following
holds

Pr



(
b0 = 1

)
∧
(
b1 = 1

)
∧
(
Y0 6= Y1

)
:

pp← Setup(1λ, p, 1N)
(C,Y0,Y1, d0, d1)← Aλ(pp)
b0 ← isValid(pp, C,Y0, d0)
b1 ← isValid(pp, C,Y1, d1)


 ≤ negl(λ) .

3. Witness-Extended Emulation: For Eval = (P, V ), V has (statistical) witness-extended emulation
for the relation Rml (defined in Equation (4)).

Remark 3.10. We note that our definition of polynomial commitment scheme is stronger than the ones
used in the literature (see, e.g., [BFS20,Lee20,SL20,WTs+18,BBHR18,BGKS19,WBT+17,KPV19,ZXZS20,
BHR+20]), in that we require Eval to have statistical soundness (rather than computational). As a result we
show soundness for every pair (x, pp).

A key ingredient in our efficient argument-systems is polynomial commitments that can be generated in
a time and space efficient way. We call such polynomial commitments streamable.

Definition 3.11 (Streamable Multilinear Polynomial Commitment Scheme). A streamable multilinear poly-
nomial commitment scheme is a multilinear polynomial commitment scheme (as per Definition 3.9) with the
following efficiency properties for n-variate multilinear polynomials over Fp for some prime p ≤ 2λ:

1. The commitment output by Com is of size n · poly(λ), and assuming multi-pass streaming access to the
description of the polynomial, the commitment can be implemented in time 2n · poly(n, λ) and space
poly(n, λ).

2. The communication complexity of the Eval protocol is n · poly(λ) and the receiver of Eval runs in time
poly(n, λ). Assuming multi-pass streaming access to the description of the polynomial, the committer
of Eval can be implemented in time 2n · poly(n, λ) and space poly(n, λ).

4 Our Results

In this section we formally state our main results. The proofs are deferred to the subsequent sections.

Time- and Space-efficient Arguments. Our first main result is a time- and space-efficient public-coin
zero-knowledge argument-system.

Theorem 4.1. Assume the existence of a group sampler for which the hidden order assumptions holds (see
Assumption 3.3). Then, there exists a public-coin zero-knowledge argument-system for any NP relation
verifiable by a time T space S random access machine with the following complexity.

1. The protocol has perfect completeness and neligible soundness error.

2. The number of rounds is O(log T ).

3. The communication complexity is poly(λ, log T ).

16



4. The prover runs in time T · poly(λ, log T ) and space S · poly(λ, log T ).

5. The verifier runs in time |x| · poly(λ, log T ), for a given input |x|.

The proof of Theorem 4.1 relies on a new polynomial commitment scheme discussed next. Given this
scheme, we prove Theorem 4.1 in Section 9.

Streamable Polynomial Commitments. The core component of our time- and space-efficient argu-
ments is a new polynomial commitment scheme for multilinear polynomials where the committer can be
implemented in small space and verification is only poly-logarithmic.

Theorem 4.2. Assume the existence of a group sampler for which the hidden order assumptions holds.
Then, there exists a streamable multilinear polynomial commitment scheme (Setup, Com, isValid, Eval) (as
per Definition 3.11) over finite field F of prime-order p with the following efficiency guarantees:

1. Com outputs a commitment of size poly(λ) bits, runs in time 2n · poly(n, λ, log(p)) and space n +
O(log(p)) + poly(λ), and uses a single pass over the stream;

2. Eval has O(n) rounds and communcation complexity poly(n, λ, log(p));

3. The committer of Eval runs in time 2n · poly(n, λ, log(p)) and space n · poly(λ, log(p)), and uses O(n)
passes over the stream; and

4. The receiver of Eval runs in time poly(n, λ, log(p)).

We present our scheme in Section 5, analyze its efficiency in Section 7 and argue its security in Section 6.

Proof-of-Exponentiation. Our polynomial commitment scheme relies on a new Proof-of-Exponentiation
(PoE) protocol, which may be of independent interest.

For some group G and base q ∈ Z consider the language

LG,q =
{

(x, y, t) ∈ G×G× N : xq2t

= y
}

. (5)

Note that this problem can be solved in time roughly 2t (by repeated squaring), but for some groups it
is conjectured to not be solvable in significantly less time (even when leveraging parallelization). Indeed,
an instantiation of this language using RSA groups underlies the original time-lock puzzle construction by
Rivest, Shamir and Wagner [RSW96]. This problem has also been used recently for constructing verifiable
delay functions (VDFs). We show a extension of a recent protocol due to Pietrzak [Pie19] that works for
general groups.

Theorem 4.3. Let G be a group whose elements have O(log(|G|))-bit descriptions, and whose group oper-
ations take time polylog(|G|), and let q ∈ N. There exists a perfectly correct, statistically sound public-coin
interactive-proof for LG,q with the following efficiency properties for exponent parameter t:

1. The communication complexity is O(tλ2 + tλ log(|G|)) and there are t rounds.

2. The prover runs in time 2t ·poly(log(q), log(|G|), λ) and uses space O(λ · log(|G|)) + log(t) + log(q) + λ2

3. The verifier runs in time t · poly(log(|G|), log(q), λ).

We present our new PoE protocol and the proof of Theorem 4.3 in Section 8.

5 Multilinear Polynomial Commitment Scheme in Hidden Order

Groups

We describe our commitment scheme (Setup, Com, isValid, Eval) for multilinear polynomials f : Fn → F over
some field F of prime-order p which is specified as an input to Setup. Throughout the section, we work with
the description Y := (f(b))b∈{0,1}n ∈ F2n

of the multilinear polynomial f .

17



First, in Section 5.1 we describe how to encode Y as an integer. Then, in Section 5.2 we describe our
polynomial commitment scheme.

5.1 Encoding Multilinear Polynomials as an Integer

One key portion of our polynomial commitment scheme is encoding the sequence Y, which defines our
multilinear polynomial, as an integer. We do so by using a technique first introduced by [BFS20]. Towards
this, we first describe an encoding scheme for integer sequences. For any N = 2n and an odd integer q ∈ N,
let Encq : ZN → Z be the function that encodes a sequence of integers Z ∈ ZN as14

Encq(Z) :=
∑

b∈{0,1}n

qb · Zb,

where qb interprets b (an n-bit string) as the naturally corresponding integer in the set {0, 1, . . . , N − 1}. To
decode an integer v ∈ Z, we output its base-q representation where, for convenience, the base-q digits of v
are integers in the range [−q/2, q/2). We refer to the decoding function as Decq (see Fig. 2 of Appendix B
for a formal description).

Our Encq scheme has two homomorphic properties which we leverage to design our polynomial commit-
ment. First, Encq(·) is a linear homomorphism over Z; that is, for any Z,Z ′ ∈ ZN and α, β ∈ Z, it holds that
α · Encq(Z) + β · Encq(Z ′) = Encq(α · Z + β · Z ′). Second, Encq(·) satisfies a restricted form of multiplicative
homomorphism; that is, for any d ∈ N, we have qd · Encq(Z) = Encq((0d,Z)).

Encoding Bounded Integer Sequences. In fact, looking ahead, we are interested in encoding only
sequences of bounded integers. For some B ∈ R>1, we let Z(B) := {z ∈ Z : − B 6 z < B} be the set of
integers whose absolute value is bounded by B. Then, to encode integer sequences in Z(B)N , we consider
the restriction of Encq to the set Z(B)N . Notice that by definition, for any Z ∈ Z(B)N , we have that
Encq(Z) ∈ Z(B · (qN − 1)/(q− 1)). We remark that while Encq is not injective over all integer sequences (as
integer sequences (1 + q, 0) and (1, 1) both encode to the integer 1 + q), the restriction of Encq to the set
Z(q/2)N is injective. We capture this in the following fact:

Fact 5.1 ([BFS20, Fact 1]). Let q be any odd integer and let N ∈ N. For any v ∈ Z(qN /2), there exists a
unique sequence Z ∈ Z(q/2)N such that v = Encq(Z). Furthermore, Z = Decq(v).

Proof. For any sequence Z ∈ Z(q/2)N , by definition of Decq we observe that Decq(Encq(Z)) = Z. This
implies that (restriction of) Encq (to Z(q/2)N ) is injective. Furthermore, the cardinality of sets Z(qN /2)
and Z(q/2)N are equal. Therefore, for every v ∈ Z(qN /2), Decq(v) is the unique sequence in Z(q/2)N that
encodes to v.

Similar to Encq, the function Decq also satisfies some homomorphic properties: for integers z1, z2, we have
that Decq(z1 + z2) = Decq(z1) + Decq(z2) as long as z1, z2 encode sequences whose elements are bounded by
q/4. For our security proof, it will be more convenient to use the following more general statement.

Claim 5.2. Let ℓ, q, N ∈ N such that q is odd, and let B1, B2 ≥ 1 be such that B1 · B2 ≤ q/(2ℓ). Then, for
every α1, . . . , αℓ ∈ Z(B1), and integers z1, . . . , zℓ ∈ Z(qN /2) such that Decq(zi) ∈ Z(B2)N ,

Decq

(∑

i∈[ℓ]

αi · zi

)
=
∑

i∈[ℓ]

αi ·Decq(zi). (6)

The proof of Claim 5.2 is deferred to Appendix B.

Remark 5.3. Looking ahead, the correctness of our extractor (to show security for our polynomial commit-
ment scheme) relies crucially on Claim 5.2. We give a high level overview of our extractor in Section 6.2

14This encoding is valid for sequences of arbitrary length, but we restrict to powers of two for convenience.

18



(formally described in Appendix E.4). The main issue with [BFS20]’s extractor is that their extractor relies
on a variant of Claim 5.2 (formulated below) which is false. Lemma 8 in the full version [BFSTC] of [BFS20]
uses the following claim to argue correctness of the extracted integer decommitments fL and fR.

Claim 5.4 (False claim implicit in [BFSTC, Lemma 8]). For p, q, N ∈ N such that 2 ≤ p ≤ q where q is odd.
For every α ∈ Z(p) and z ∈ Z(qN /2) such that α | z,

Decq(z/α) = Decq(z)/α . (7)

We note that z, z/α ∈ Z(qN /2), by Fact 5.1 Decq(z), Decq(z/α) ∈ Z(q/2)N . But, Decq(z)/α may not be
an integer sequence. Counter-example: for z = 1 + q, α = 2, we have Decq(z) = (1, 1) but Decq(z)/2 is not
an integer sequence even though α | z.

Encoding Y. Given the integer encoding function Encq, we now describe how to encode the sequence of
evaluations Y ∈ FN . Recall that F is a field of prime-order p. To encode Y, we first define a lifting function
J·K : F→ Z(p/2) in the natural way. That is, for any α ∈ F, we define JαK to be the unique integer in Z(p/2)
such that JαK ≡ α mod p. We then define Encq(Y) as

Encq(Y) :=
∑

b∈{0,1}n

qb · JYbK. (8)

5.2 Scheme

Our polynomial commitment scheme is parameterized by three components: (a) the encoding scheme
(Encq, Decq) defined in Section 5.1, (b) A group sampler G for which the Hidden Order Assumption holds
(see Section 3.3 for a discussion on candidates), and (c) a perfectly correct, statistically sound PoE pro-
tocol (we present one such protocol over arbitrary groups in Section 8). We now present all algorithms
(Setup, Com, isValid, Eval) for the polynomial commitment scheme.

Setup(1λ, p, 1n): On input security parameter 1λ, a prime p, and the number of polynomial variables 1n,

expressed in unary, the algorithm Setup samples group description G ← G(1λ), samples g ← G, sets
q := q(n, p, λ) ∈ N, and outputs public parameters pp = (q, g,G). We require that q be odd such that
q > p · 2n·poly(λ) (and elaborate on this choice of q in Section 6).

Com(pp,Y): On input pp = (q, g,G) output by Setup and sequence Y, the algorithm Com computes a

commitment to the sequence Y as C = gEncq(Y). The output of Com is the commitment C and secret
decommitment Z = (JYbK)b∈{0,1}n ∈ Z(p/2)N .

isValid(pp, C,Y,Z): On inputs pp = (q, g,G), C output by Com, committed sequence Y ∈ FN and decom-

mitment Z ∈ ZN for N = 2n, the algorithm isValid outputs a decision bit. isValid outputs 1 if and only if
(1) Z ⊆ Z(q/2)N ; (2) Y ≡ Z mod p; and (3) C = gEncq(Z). Otherwise, isValid outputs 0.

Eval(pp, C, ζ, γ;Y,Z): On input pp = (q, g,G), C ∈ G, ζ ∈ Fn, γ ∈ F, Y ∈ FN and Z ∈ ZN for N = 2n,
the Eval algorithm is an interactive protocol (P, V ) for the relation,

Rml =
{

(pp, C, ζ, γ;Y,Z) : isValid(pp, C,Y,Z) = 1 ∧ γ = ML(Y, ζ)
}

, (9)

where on common input (pp, C, ζ, γ), P tries to convince V that it knows a committed sequence Y ∈ FN

and an integer sequence Z ∈ ZN such that isValid(pp, C,Y,Z) = 1 and γ is the evaluation of the multilinear

polynomial defined by Y at evaluation point ζ = (ζn, . . . , ζ1); that is, γ
?
= ML(Y, ζ). More specifically, both

19



Algorithm 1: MultiEval(C, k, ζ, γ; Z)

Input : C ∈ Gλ, k ∈ N, ζ ∈ Fn, γ ∈ Fλ, and Z ∈ Zλ×2n−k

.
Output : Accept or reject.

1 if k = n then

2 P sends Z ∈ Zλ to V .

3 V outputs accept if and only if ‖Z‖∞ ≤ p(2λ)n, γ ≡ Z mod p, and C = gZ .

4 else

5 P computes

γL =
∑

b∈{0,1}n−k−1

(Z(∗, 0b) mod p) ·

n−k−1∏

j=1

χ(bj , ζj+k+1)

γR =
∑

b∈{0,1}n−k−1

(Z(∗, 1b) mod p) ·

n−k−1∏

j=1

χ(bj , ζj+k+1)

6 P computes

CL = gℓ where ℓ =
∑

b∈{0,1}n−k−1

qb · Z(∗, 0b)

CR = gr where r =
∑

b∈{0,1}n−k−1

qb · Z(∗, 1b)

7 P sends (γL, γR) and (CL, CR) to V .

8 V checks γ
?
= γL · (1 − ζk+1) + γR · ζk+1.

9 P and V run PoE(CR, C/CL, q, n− k − 1, λ) which is a proof showing CR(i)q2n−k−1

= C(i)/CL(i)
for every i ∈ [λ] (see Section 8). Here, C/CL denotes coordinate-wise division of the elements of
C by the elements of CL.

10 V samples U = [UL‖UR]← {0, 1}
λ×2λ

and sends U to P , where UL, UR ∈ {0, 1}
λ×λ

.
11 P and V compute

γ′ = UL · γL + UR · γR C′ = (UL ⋆ CL)⊙ (UR ⋆ CR)

12 For ZL, ZR ∈ {0, 1}
λ×2n−k−1

such that Z = [ZL‖ZR], P computes

Z ′ = UL · ZL + UR · ZR.

13 return MultiEval(C′, k + 1, ζ, γ′; Z ′)

20



the committer and receiver in Eval first make λ many copies of the statement (C, ζ, γ;Z) as (C, ζ, γ; Z),
where C = (C, . . . , C) ∈ Gλ, γ = (γ, . . . , γ) ∈ Fλ, and Z ∈ Zλ×N is a matrix such that Z(i, b) := Zb for
every i ∈ [λ] and b ∈ {0, 1}n. The committer and receiver then run the subroutine MultiEval, presented in
Algorithm 1.

MultiEval is a recursive protocol which given the statement (C, ζ, γ; Z) proves that γi = ML(Z(i, ∗), ζ)
and Ci = Com(Z(i, ∗)) for every i ∈ [λ], where Z(i, ∗) ∈ Z1×N is the ith row of Z. This is done via a
divide and conquer approach. Let Pi : Fn → F be the multilinear polynomial defined by row i of matrix
Z for every i ∈ [λ]. For presentation, we focus on the polynomial P1. To prove that γ1 = P1(ζ) and
C1 = Com(P1) = gEncq(P1), the committer first splits P1 into it’s “left” and “right” halves, defined by P1,L(·) =
P1(·, 0) and P1,R(·, 1). Then it computes evaluations of these polynomials at the point ζ′ = (ζn, . . . , ζ2) to
obtain γ1,L = P1,L(ζ ′) and γ1,R = P1,R(ζ ′) (Line 5). Similarly, the committer also computes commitments
C1,L = gEncq(P1,L) and C1,R = gEncq(P1,R) (Line 6). The claims (γ1,L, γ1,R) and (C1,L, C1,R) are then sent to
the receiver. If indeed the committer defined P1,L and P1,R correctly, then γ1 = γ1,L · (1 − ζ1) + γ1,R · ζ1

(Line 8) and C1,L · C
qT

1,R = C1 for T = 2n−1. Since checking C1,L · C
qT

1,R = C1 directly is too costly to the
receiver, the committer and prover run a proof of exponent protocol PoE to prove that equality holds (Line 9).
The committer does simultaneously this for all polynomials Pi. The receiver then specifies random linear
combinations U ← {0, 1}

λ×2λ
(Line 10). The committer and receiver then obtain a set of λ new evaluations

γ′i =
∑

j∈[λ] U(i, j) · γj,L + U(i, 2j) · γj,R and λ new committments C′i =
∏

j∈[λ](Cj,L)U(i,j) · (Cj,R)U(i,2j)

(Line 11). This also defines new matrix Z ′ = UL · ZL + UR · ZR (Line 12) for U = [UL‖UR] and Z = [ZL‖ZR].
If the committer is honest, then the polynomial P ′1 defined by the row Z ′(1, ∗) satisfies γ′1 = P ′1(ζ ′) and
C′1 = gEncq(P ′

1) (and similarly for all other polynomials P ′i defined by row Z ′(i, ∗)). The committer and
recevier recurse via the above λ-to-2λ-to-λ reduction until the matrix Z is a single column; at this point, Z
is sent to the receiver. The receiver checks if the entries of Z are appropriately bounded, if the final vector
γ ≡ Z(mod p), and if C = gZ = (gZ1 , . . . , gZλ) (Line 3).

Remark 5.5. For simplicity of presentation, we let the (computational) security parameter λc given as input to
Setup to be equal to the statistical security parameter λs given to Eval. However, they may be set differently:
λc needs to be set so that 2λǫ

c is larger than the running time of the adversary (generally, λc = 2048 for
RSA groups to have security against 280 time adversaries). However, λs needs to set so that the success
probability of the adversary (we want to tolerate) is upperbounded by 2−Ω(λs), in fact, even relatively small
values of λs would be sufficient for security, and offer qualitatively more efficient implementations.

We prove the correctness and security of our polynomial commitment scheme in Section 6, and discuss
its efficiency in Section 7. We note that these sections can be read independently of each other.

6 Correctness and Security Proofs

For the rest of this section we fix n ∈ N and prime p. Furthermore, recall from Section 5.2 that q output by
Setup(1λ, 1n, p) is set to be a sufficiently large integer, that is, q > p · 2n·poly(λ). Furthermore, let us assume
that PoE is a perfectly correct, statistically sound scheme (we present such a scheme in Section 8).

Correctness. To show perfect correctness, it is sufficient to argue that all verifier checks performed in
Lines 3, 8 and 9 of MultiEval (described in Algorithm 1) pass. This follows from the homomorphic properties
of our commitment (and encoding) scheme (discussed in Section 5.1), and a careful analysis of the growth
of integers across recursive calls to MultiEval. We give a formal proof in Appendix E.1.

Proposition 6.1 (Perfect Correctness). The polynomial commitment scheme described in Section 5 has
perfect correctness.

Computational Binding. Next, we argue the computational binding of our polynomial commitment
scheme from the Hidden Order Assumption (defined in Assumption 3.3). We detail the formal proof
in Appendix E.2. At a high level, any adversary that breaks binding necessarily computes integers z1 6= z2

21



and some commitment C, such that gz1 = C = gz2 , thereby finding (a multiple of) the order of the random
group element g sampled by Setup.

Proposition 6.2 (Computational Binding). The multilinear polynomial commitment scheme described
in Section 5 instantiated with G is computationally binding if the Hidden Order Assumption (Assumption 3.3)
holds for G.

Witness-Extended Emulation of Eval. We show that Eval has witness-extended emulation (WEE) as
defined in Definition 3.7.

Proposition 6.3 (Witness-Extended Emulation). The polynomial commitment scheme described in Section 5
has statistical witness-extended ǫ-emulation for Rml as defined in Equation (9), for some negligible function
ǫ.

We prove Proposition 6.3 in two parts. First we consider a simpler variant of the Eval protocol and show
in Lemma 6.4 that witness-extended-emulation for the simpler variant suffices to show witness-extended-

emulation for Eval. Next, in Lemma 6.5 we show that the simpler variant of Eval has average-case
(

10, 2−Ω(λ)
)

-

special-soundness (as per Definition D.3). Then, Proposition 6.3 follows from Corollary D.13 with r = n
(number of rounds in our Eval).

In the rest of this section, we describe the simpler variant of Eval protocol and provide an overview of
the proof of its average-case special soundness.

6.1 A variant of Eval with no PoE proofs

Consider the following variant of Eval protocol where in the subroutine MultiEval the verifier performs the

check C/CL
?
= C

q2n−k−1

R (described in Line 9 of Algorithm 1) locally, instead of engaging with the prover to
verify this check via a Proof-of-Exponentiation (PoE) protocol. Let us refer to this variant of Eval by Eval′.
We next show that if Eval′ has statistical witness-extended emulation then so does Eval, and this follows
from the statistical soundness of the PoE protocol. We give a formal proof in Appendix E.3.

Lemma 6.4. If Eval′ has (statistical) witness-extended emulation for Rml as defined in Equation (9), then
Eval also has (statistical) witness-extended emulation for Rml.

6.2 Average-Case Special Soundness of Eval
′

Lemma 6.5. For c = 10 and ǫ = 2−Ω(λ), Eval′ has (c, ǫ)-special soundness for relation Rml as defined
in Equation (9).

We detail a formal proof in Appendix E.4 and give a proof overview next.

Proof Overview. Informally, to show average-case special-soundness, we need to build an extractor, that
given a statement x = (C, ζ, γ) ∈ G × Fn × F of size N = 2n, and a (good) tree of accepting transcripts
for Eval(x), outputs an integer z such that Z = Decq(z) is a integer sequence of size N containing only
elements bounded by q/2, and ML(Z(mod p), ζ) = γ, and C = gz. In the following, we will refer to z as a
decommitment for (C, ζ, γ).

To highlight ideas behind our extraction, let us assume for simplicity that we have two transcripts for
MultiEval on input (C, ζ, γ) ∈ Gλ × Fn × Fλ where C = (C, . . . , C), γ = (γ, . . . , γ) and ζ = (ζ1, . . . , ζn).

More specifically, let (CL, CR, γL, γR) be the prover first message in each transcript. Let Û , Ũ ∈ {0, 1}λ×2λ

be the verifier first messages, and suppose that they are “good” in the sense that the matrix U obtained by
stacking Û on top of Ũ ,

U =

[
Û
Ũ

]
, (10)

22



has a left inverse over the integers. In our real extractor, we use a larger constant number of verifier challenges
to ensure that this left inverse exists with overwhelming probability (Lemma A.1).

Finally, let (Ĉ, ζ′ = (ζ2, . . . , ζn), γ̂) and (C̃, ζ′, γ̃) be the new (smaller) claims produced at the end of
(this first level of recursion of) MultiEval, i.e.

[
Ĉ

C̃

]
= U

[
CL

CR

]
;

[
γ̂

γ̃

]
= U

[
γL

γR

]
(11)

Now, after recursively obtaining decommitments ẑ, z̃ ∈ Zλ of (Ĉ, ζ′, γ̂) and (C̃, ζ′, γ̃) respectively, we want

to compute a decommitment for (C, ζ, γ). By decommitment we mean that ẑ (resp.., z̃) is such that gẑ = Ĉ

(resp., gz̃ = C̃), and Ẑ = Decq(ẑ) (resp., Z̃ = Decq(z̃)) is a sequence of size 2n−1 such that ML(Ẑ, ζ′) = γ̂

(resp., ML(Ẑ, ζ ′) = γ̂).

The extractor does this in two steps: (a) compute decommitments zL and zR for (CL, ζ′, γL) and
(CR, ζ′, γR), respectively; and (b) stitch together zL and zR to get a decommitment z of (C, ζ, γ).

Extracting decommitments zL and zR. The extractor proceeds to define zL and zR as follows:

[
zL

zR

]
= U−1

[
ẑ

z̃

]
(12)

We want to show that zL (resp., zR) is a decommitment of (CL, ζ′, γ) (resp., (CL, ζ′, γ)). We note that if
z̃, ẑ encode sequences whose elements are bounded, and if ‖U−1‖∞ is small, then the relation between zL, zR

and z̃, ẑ (as defined in Equation (12)) transfers onto the underlying integer sequences ZL = Decq(zL), ZR =

Decq(zR) and Z̃ = Decq(z̃), Ẑ = Decq(ẑ) respectively. This is captured in the following claim:

Claim 6.6. Let B, ‖U−1‖∞ ≥ 1. If Ẑ, Z̃ ∈ Z(B)N−1 such that 2λB · ‖U−1‖∞ < q/2 then,

[
ZL

ZR

]
= U−1

[
Ẑ

Z̃

]
. (13)

Proof. Follows directly by applying Claim 5.2 to Equation (12) with parameters ℓ = 2λ, B1 = ‖U−1‖∞,
B2 = B.

Then, Claim 6.6 is sufficient to show that ZL and ZR are sequences of size N/2 that satisfy

γL = ML(ZL, ζ ′) =
∑

b∈{0,1}n−1

ZL(b) · χ̄(b, ζ ′)

γR = ML(ZR, ζ′) =
∑

b∈{0,1}n−1

ZR(b) · χ̄(b, ζ′)
(14)

To see this, multiply both sides of Claim 6.6 by the 2n−1-sized column vector whose b-th entry is χ̄(b, ζ′).

[
ZL

ZR

]
·




...
χ(b, ζ′)

...


 = U−1

[
Ẑ

Z̃

]
·




...
χ(b, ζ ′)

...


 = U−1

[
ML(Ẑ , ζ ′)

ML(Z̃ , ζ ′)

]
= U−1

[
γ̂

γ̃

]
, (15)

where the second equality follows by the definition of ML, and the third one follows from the fact that ẑ and
z̃ are decommitments of (Ĉ, ζ′, γ̂) and (C̃, ζ′, γ̃) respectively.

23



But notice from Equation (11), [
γ̂

γ̃

]
= U ·

[
γL

γR

]
. (16)

Then combining Equation (15) and Equation (16) we have,

[
ML(ZL, ζ′)
ML(ZR, ζ ′)

]
=

[
ZL

ZR

]
·




...
χ(b, ζ ′)

...


 =

[
γL

γR

]
. (17)

Similarly, one can show that CL = gzL and CR = gzR . Finally note that ZL, ZR have elements bounded by
B′ = ‖U−1‖∞ · 2λ ·B. This follows from Claim 6.6 and the fact that Ẑ , Z̃ have elements bounded by B.

Combining zL and zR to get z. The extractor defines z as

z = zL + q2n−1

· zR. (18)

The hope is to show that z is a decommitment of (C, ζ, γ), for which we need to show that gz = C, and that
Z = Decq(z) is a sequence of size N such that γ = ML(Z , ζ). As long as ẑ and z̃ are suitably bounded, then
so is zL; thus Z = (ZL, ZR).

Specifically, we need that the bound B on elements in Ẑ , Z̃ satisfies

B · ‖U−1‖∞ · 2λ ≤ q/2. (19)

Ensuring all intermediate decommitments are bounded. At a high level, in the above step of the
extraction, we started with decommitments that encode B-bounded sequences, and arrived at a decommit-
ment that encodes B′-bounded sequences for B′ ≤ B · (2λ‖U−1‖∞). Our extractor is recursive and incurs
such a blow-up in every step of the extraction: More specifically, if decommitments at leaf-nodes encode
integers bounded by Bn, then decommitment at depth n − k are bounded by Bn−k ≤ Bn(2λ‖U−1‖∞)k.
Therefore, the decommitment at the root encodes integers bounded by B0 ≤ Bn(2λ‖U−1‖∞)n which we
want to be at most q/2. Note that at the leaf nodes, the verifier checks that the decommitment are bounded
by Bn = p · (2λ)n (see Line 3 of Algorithm 1). Then, B0 ≤ q/2 follows by setting q > p · 2poly(λ)·n for a
sufficiently large polynomial which depends on the size of ‖U−1‖∞.

This concludes the overview of the special soundness proof. For the full proof, we will need to consider a
c-ary transcript tree where 10 ≥ c > 2 is a constant depending on Lemma A.1.15 The above analysis extends
in a straightforward way to the general case of c-ary transcript tree for a sufficiently large q = O(p ·2poly(λ)n).
We refer the reader to Appendix E.4 for a full analysis.

7 Space-Efficient Multilinear Polynomial Commitment Scheme in
the Streaming Model

In this section, we show that given streaming access to the sequence Y ∈ FN of evaluations of a multilinear
polynomial on the Boolean hypercube, our multilinear polynomial committment scheme of Section 5.2 is a
streamable multilinear polynomial committment scheme.

Proposition 7.1. The multilinear polynomial commitment scheme of Section 5.2 has the following efficien-
cies.

15 Lemma A.1 says that a uniform binary matrix of dimension m × n has a left inverse over the integers when m ≥ 5n and
n is sufficiently big. For our purposes, we want the cλ × 2λ matrix that stacks c’s many verifier challenges to have an integral
inverse. Setting n = 2λ, implies c = 10.

24



• Com outputs a commitment that is a single group element of size poly(λ) bits, runs in time N ·
poly(log(N), log(p), λ) and space n+poly(λ) bits, and uses a single pass over the sequence of evaluations
Y.

• The commiter in the Eval protocol runs in time N ·poly(log(N), log(p), λ), space log(N) ·poly(log(p), λ)
bits, and uses O(log(N)) passes over Y.

• The receiver in the Eval protocol runs in time poly(log(N), log(p), λ) and space log(N) · poly(log(p), λ)
bits.

• The communication complexity of Eval is poly(log(N) · log(p), λ) bits and has O(log(N)) rounds of
communication.

7.1 Space-Efficient Implementation Overview

Our goal is to implement the committer algorithm of our polynomial commitment scheme in small-space.
The committer is assumed to have multi-pass streaming access to the evaulations Y ∈ FN of a multilinear
polynomial over the Boolean hypercube. Given this streaming access, we need to implement the following
computations in small-space: (1) computation of Com(Y); (2) computation of ML(Y, ζ) for ζ ∈ Fn specified
by the receiver; and (3) computation of all committer messages in the Eval protocol. The main technical
challenge is implementing the committer algorithm of Eval in small-space. Recall that Eval is an interactive
protocol where on common input (C, ζ, γ) the committer tries to convince a receiver that it knows Y ∈ FN

and Z ∈ ZN such that To do so, the committer and receiver construct the statement (C, ζ, γ) where
C = (C, . . . , C) ∈ Gλ, γ = (γ, . . . , γ) ∈ Fλ. The committer then defines matrix Z ∈ Zλ×N where Z(i, b) = Zb

for every i ∈ [λ] and b ∈ {0, 1}
n
. The committer and receiver then run the protocol MultiEval(C, 0, ζ, γ; Z).

MultiEval is a recursive protocol between the committer and receiver which for input (C, k, ζ, γ; Z) proves
the statement

“γi = ML(Z(i, ∗), ζ) ∧ Ci = Com(Z(i, ∗)) for every i ∈ [λ],” (20)

where C ∈ Gλ, ζ ∈ Fn, γ ∈ Fλ, and Z ∈ Zλ×2n

. To prove Equation (20), the protocol reduces the above

λ claims to λ new claims about some matrix Z ′ ∈ Zλ×2n−1

. This reduction is performed as follows. Let
Z = [ZL‖ZR] for ZL, ZR ∈ Zλ×2n−1

. First the prover constructs “left-and-right” evaluations γL, γR ∈ Fλ and
“left-and-right” commitments CL, CR ∈ Gλ defined as

(γL)i = ML(ZL(i, ∗), (ζn, . . . , ζ2)) (γR)i = ML(ZR(i, ∗), (ζn, . . . , ζ2)) (21)

(CL)i = Com(ZL(i, ∗)) (CR)i = Com(ZR(i, ∗)), (22)

for every i ∈ [λ]. The verifier then sends challenge matrix U = [UL‖UR] ← {0, 1}
λ×2λ

, and the committer
and receiver define values γ ′ ∈ Fλ and C′ ∈ Gλ as16

γ′ = UL · γL + UR · γR C′ = (UL ⋆ CL)⊙ (UR ⋆ CR).

The committer then defines matrix Z ′ = UL ·ZL + UR ·ZR ∈ Zλ∈2n−1

, and the committer and receiver recurse
on the statement (C′, k +1, ζ, γ′; Z ′). The recursion continues for n rounds: at the end, the committer sends
over the matrix Z, which has been reduced to a single column of λ integers, and the receiver performs a
variety of checks and accepts or rejects.

Fixing notation, for any k ∈ {0, 1, . . . , n}, let (C(k), ζ, γ(k); Z(k)) be the input to the kth round of MultiEval,

where Z(k) = [Z
(k)
L ‖Z

(k)
R ] ∈ Zλ×2n−k

. Further let γ
(k)
L and γ

(k)
R denote the left-and-right evaluations and

let C
(k)
L and C

(k)
R denote the left-and-right commitments computed by the committer in round k, and let

U
(k)
L and U

(k)
R denote the receiver challenges. Our goal is to compute the left-and-right evaluations and

16Recall that for M ∈ Zm×n and vector g ∈ Gn, (M ⋆ g)i =
∏

j
g

M(i,j)
j .

25



commitments in small-space, for any round k. Observe that by Equations (21) and (22) the values γ
(k)
L , γ

(k)
R ,

C
(k)
L , and C

(k)
R are linear combinations of the columns of the matrix Z(k).

For space-efficiency, the committer cannot store the matrix Z(k), as this would use Ω(N) bits (for most
k ∈ {0, 1, . . . , n}), so the committer does not have direct access to Z(k). Instead, the committer has multi-
pass streaming access to the integer sequence Z, which implies that it has the same streaming access to
the columns of the matrix Z(0) = Z in lexicographic (i.e., left-to-right) order. Further by construction we

have that Z(k) = U
(k−1)
L · Z

(k−1)
L + U

(k−1)
R · Z

(k−1)
R for every k ∈ [n]. This implies that the columns of Z(k)

are linear combinations of the columns of Z(0). Leveraging this observation, we have that the left-and-right
evaluations and commitments are linear combinations of the columns of Z(0), where the weights of these

combinations depend on the receiver challenges U
(j)
L , U

(j)
R for j ∈ {0, 1, . . . , k−1} and the evaluation point ζ.

Thus so long as these weights time- and space-efficient to compute, we can construct streaming algorithms
for the committer messages time- and space-efficiently.

The remainder of this section is dedicated to proving Proposition 7.1. In Section 7.2 we discuss imple-
menting the algorithm Com in small-space; in Section 7.3 we discuss the efficiency of computing a multilinear
extension in the streaming model; in Section 7.4 we discuss in detail implementing the committer of Eval
in small-space; in Section 7.5 we discuss the efficiency of the receiver of Eval; and finally in Section 7.6 we
prove Proposition 7.1.

7.2 Space-Efficient Implementation of Com

We begin by showing Com(Y) is computable in small space.

Lemma 7.2. The algorithm Com of the polynomial commitment scheme of Section 5.2 is implementable in
time N · (log(q) + log(p)) · poly(λ) and space n + poly(λ) bits, using a single pass over the sequence Y.

Proof. Recall that Com(Y) = gEncq(Y), where Encq(Y) =
∑

b∈{0,1}n

qb · JYbK. Let v := Encq(Y). Then

gv = g
∑

b
qb·JYbK =

∏

b∈{0,1}n

(gqb

)JYbK.

We can implement Com(pp,Y) in a streaming manner by iterating through b in lexicographic order as
follows. First, set two values C = 1G and D = g; at the start of the bth iteration, C will be the value gv′

for

v′ =
∑

b′<b qb′

· JYb′K, and D will be the value gqb

. Now to update C and D from their bth values to their

(b + 1)th values, we set C = C ·DJYbK, followed by D = Dq. Once iteration over b is complete, we output C.

Note that the above algorithm makes a single pass over the stream Y. In the bth iteration, observe that

DJYbK = gqb·JYbK. By the homomorphism v 7→ gv, it holds that C ·DJYbK = gv′+qb·JYbK for v′ =
∑

b′<b qb′

·JYb′K.

Further, v′ + qb · JYbK =
∑

b′6b qb′

· JYb′K. This implies that the value C output by the above algorithm

satisfies C = gEncq(Y). The described algorithm uses O(1) group elements of storage, which is poly(λ) bits of
storage, and we use an additional n bits of storage for the counter b. Further, the algorithm is dominated
by O(N) group exponents of size O(q), O(N) exponents of size O(p), and O(N) group multiplications. This
gives an overall runtime of N · (log(q) + log(p)) · poly(λ).

7.3 Computing ML(Y , ζ)

Next we show that ML(Y, ζ) is computable in small space.

Lemma 7.3. For ζ ∈ Fn and Y ∈ FN for N = 2n, the value ML(Y, ζ) is computable in N ·log(N)·polylog(p)
time and O(log(N) · log(p)) bits of space, using a single pass over Y.

26



Proof. By definition

ML(Y, ζ) =
∑

b∈{0,1}n

Yb · χ(b, ζ),

where χ(b, ζ) =
∏n

i=1 χ(bi, ζi). We can compute ML(Y, ζ) in a streaming manner as follows. First, store an
accumulator γ = 0 ∈ F. Then, iterating over b ∈ {0, 1}n in lexicographic order, compute γ = γ +Yb ·χ, and
output γ. Thus we compute ML(Y, ζ) using a single pass over Y. The main complexity of this algorithm is
computing χ for every b, which is computable in O(n) = O(log(N)) field multiplications and thus log(N) ·
polylog(p) time. So the overall time complexity of computing ML(Y, ζ) is N · log(N) · polylog(p). For space,
χ(b, ζ) is computable using O(log(N)) field elements, and the algorithm above uses an additional O(1) field
elements of stoarage. This gives space complexity O(log(N) · log(p)) bits.

7.4 Space-Efficient Implementation of Eval

We begin with a lemma which relates the matrix Z(k) to the matrix Z(0) in MultiEval.

Lemma 7.4. Let k ∈ {0, 1, . . . , n} denote the kth depth of recursion of algorithm MultiEval, let Z(k) ∈

Zλ×2n−k

be the integer matrix given as input to MultiEval during depth k, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be

the receiver challenges in each recursion level j ∈ {0, 1, . . . , k− 1}. Then for any b ∈ {0, 1}
n−k

, it holds that

Z(k)(∗, b) =
∑

c∈{0,1}k




k−1∏

j=0

U
(j)
L · (1 − ck−j) + U

(j)
R · ck−j



 · Z(0)(∗, c ◦ b), (23)

where Z(k)(∗, b) denotes the bth column of the matrix Z(k) and

k−1∏

j=0

U
(j)
L · (1− ck−j) + U

(i)
R · ck−j =

(U
(0)
L · (1 − ck) + U

(0)
R · ck) · · · (U

(k−1)
L · (1 − c1) + U

(k−1)
R · c1).

The above lemma holds by induction on k, which we formally prove in Appendix C. Given Lemma 7.4,

we show that γ
(k)
L and γ

(k)
R are computable in small space.

Lemma 7.5. Let γ
(k)
L , γ

(k)
R ∈ Fλ

p be the left and right evaluations computed by the committer in recursion

level k ∈ {0, 1, . . . , n − 1}, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be the receiver challenges. Then γ

(k)
L and γ

(k)
R

are computable in time N · poly(log(N), log(p), λ), space poly(log(N), log(p), λ) bits, and using a single pass
over the columns of Z(0).

Sketch. In Appendix C, we prove that the algorithm gammaStreamGen presented in Algorithm 2 realizes

Lemma 7.5. At a high level, we leverage linearity and the additive homomorphism of F to compute γ
(k)
L and

γ
(k)
R in small space. Notice that the values γ

(k)
L , γ

(k)
R are linear combinations of the stream Z(k), given by

γ
(k)
L =

∑

b∈{0,1}n−k−1

(Z(k)(∗, 0b) mod p) ·
n−k−1∏

j=1

χ(bj , ζj+k+1),

γ
(k)
R =

∑

b∈{0,1}n−k−1

(Z(k)(∗, 1b) mod p) ·

n−k−1∏

j=1

χ(bj , ζj+k+1).

27



Algorithm 2: gammaStreamGen(k, ζ, (U (i))i∈{0,1,...,k−1})

Input : Recurion level k ∈ {0, 1, . . . , n− 1}, evaluation point ζ ∈ Fn, and receiver challenges

U (i) = [U
(i)
L ‖U

(i)
R ] ∈ {0, 1}λ×2λ for every i ∈ {0, 1, . . . , k − 1}.

Given : Streaming access to the columns of Z(0) in lexicographic order.
Output : A tuple (γ ′L, γ′R) ∈ Fλ × Fλ.

1 Set γ′L = γ ′R = 0λ ∈ Fλ.

2 foreach c ∈ {0, 1}
k

(in lexicographic order) do

3 Set γ ′′L = γ′′R = 0λ ∈ Fλ.

4 foreach (a ◦ b) ∈ {0, 1} × {0, 1}
n−k−1

(in lexicographic order) do

5 Compute χ =
n−k−1∏

j=1

χ(bj , ζj+k+1).

6 Set ĉ = c ◦ a ◦ b ∈ {0, 1}
n
.

7 if a = 0 then

8 Compute γ′′L = γ′′L + (Z(0)(∗, ĉ) mod p) · χ.
9 else

10 Compute γ′′R = γ′′R + (Z(0)(∗, ĉ) mod p) · χ.

11 Compute

γ′L = γ′L + Mc · γ
′′
L γ′R = γ′R + Mc · γ

′′
R,

where Mc =
k−1∏
i=0

(
U

(i)
L · (1− ck−i) + U

(i)
R · ck−i

)
.

12 return (γ ′L, γ ′R)

By Lemma 7.4, the columns of Z(k) are linear combinations of the columns of Z(0). Thus both γ
(k)
L and γ

(k)
R

are linear combinations of the columns of Z(0). Focusing on γ
(k)
L , we have

γ
(k)
L =

∑

b∈{0,1}n−k−1




∑

c∈{0,1}k

Mc · Z
(0)(∗, c ◦ 0b)



mod p ·
n−k−1∏

j=1

χ(bj , ζj+k+1)

=
∑

c∈{0,1}k

Mc ·




∑

b∈{0,1}n−k−1

Z(0)(∗, c ◦ 0b) mod p ·

n−k−1∏

j=1

χ(bj, ζj+k+1)



 ,

and by symmetry, for γ
(k)
R we have

γ
(k)
R =

∑

c∈{0,1}k

Mc ·




∑

b∈{0,1}n−k−1

Z(0)(∗, c ◦ 1b) mod p ·

n−k−1∏

j=1

χ(bj, ζj+k+1)



 .

Notice that by iterating over c ∈ {0, 1}
k

in lexicographic order, then over (a ◦ b) ∈ {0, 1} × {0, 1}
n−k−1

in
lexicographic order per iteration of c, the string ĉ = (c◦a◦b) ∈ {0, 1}

n
iterates over {0, 1}

n
in lexicographic

order. Thus the above equations access the columns of Z(0) in lexicographic order, and we can compute γ
(k)
L

and γ
(k)
R in a single pass over the columns of Z(0). The algorithm gammaStreamGen exactly computes γ

(k)
L

and γ
(k)
R as in the above equations.

Given the above equations, we observe that: (1) computing the product χ =
∏

i χ(bj, ζj+k+1) takes
log(N) · polylog(p) time and O(log(N) · log(p)) bits of space; (2) computing the inner summation takes time

28



Algorithm 3: comStreamGen(k, q, g, (U (i))i∈{0,1,...,k−1})

Input : Recurion level k ∈ {0, 1, . . . , n− 1}, integer q ∈ N, group element g ∈ G, and receiver

challenges U (i) = [U
(i)
L ‖U

(i)
R ] ∈ {0, 1}λ×2λ for every i ∈ {0, 1, . . . , k − 1}.

Given : Streaming access to the columns of Z(0) in lexicographic order.
Output : A tuple (C′L, C′R) ∈ Gλ ×Gλ.

1 Set C′L = C′R = 1λ ∈ Gλ.

2 foreach c ∈ {0, 1}k (in lexicographic order) do

3 Set C′′L = C′′R = 1λ ∈ Gλ.
4 foreach a ∈ {0, 1} (in lexicographic order) do

5 Set C = g.

6 foreach b ∈ {0, 1}n−k−1 (in lexicographic order) do

7 Set ĉ = c ◦ a ◦ b ∈ {0, 1}
n
.

8 if a = 0 then

9 Compute C′′L = C′′L ⊙ CZ(0)(∗,ĉ).
10 else

11 Compute C′′R = C′′R ⊙ CZ(0)(∗,ĉ).

12 Compute C = Cq.

13 Compute

C′L = C′L ⊙
(
Mc ⋆ C′′L

)
C′R = C′R ⊙

(
Mc ⋆ C′′R

)
,

where Mc =
k−1∏
i=0

(
U

(i)
L · (1− ck−i) + U

(i)
R · ck−i

)
.

14 return (C′L, C′R)

2n−k−1 · λ · log(N) · polylog(p) and O(λ · log(N) · log(p)) bits of space; and (3) computing Mc times the
inner summation takes time poly(log(p), λ) and poly(λ) bits of space. So the overall complexity of the entire
summation is N · poly(log(N), log(p), λ) time and poly(log(N), log(p), λ) bits of space.

Next we show that C
(k)
L , C

(k)
R are computable in small space.

Lemma 7.6. Let C
(k)
L , C

(k)
R ∈ Gλ be the left and right commitments computed by the committer in recursion

level k ∈ {0, 1, . . . , n − 1}, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be the receiver challenges. Then C

(k)
L and C

(k)
R

are computable in time N · poly(log(N), log(q), λ), space poly(log(N), log(q), λ) bits, and using a single pass
over the columns of Z(0).

Sketch. In Appendix C, we prove that the algorithm comStreamGen presented in Algorithm 3 realizes Lemma 7.6.

At a high level, we leverage the linear homomorphic properties of the group G to compute the values of C
(k)
L

and C
(k)
R in small space. The values C

(k)
L and C

(k)
R are computed via gℓ

(k)

and gr(k)

, where ℓ(k) and r(k) are
linear combinations of the columns of Z(k), given by the equations

ℓ(k) =
∑

b∈{0,1}n−k−1

qb · Z(k)(∗, 0b) r(k) =
∑

b∈{0,1}n−k−1

qb · Z(k)(∗, 1b).

By Lemma 7.4, the columns of Z(k) are linear combinations of the columns of Z(0), so the powers ℓ(k) and

29



r(k) are linear combinations of the columns of Z(0). Focusing on ℓ(k), we have

ℓ(k) =
∑

b∈{0,1}n−k−1

qb
∑

c∈{0,1}k

Mc · Z
(0)(∗, c ◦ 0b)

=
∑

c∈{0,1}k

Mc ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 0b),

and by symmetry, for r(k) we have

r(k) =
∑

c∈{0,1}k

Mc ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 1b).

Note again that the string ĉ = (c ◦ a ◦ b) ∈ {0, 1}n iterates over {0, 1}n in lexicographic order. Thus we can

compute the powers ℓ(k) and r(k) using a single pass over the stream of columns of Z(0), which allows us

to compute C
(k)
L and C

(k)
R in a single pass over the columns of Z(0). The algorithm comStreamGen exactly

computes C
(k)
L and C

(k)
R .

Given comStreamGen, we observe that: (1) Lines 9 and 11 take time and space poly(λ) to compute; (2)
Line 12 takes time log(q)·poly(λ) and poly(λ) space to compute; and (3) Line 13 takes time and space log(N)·
poly(λ) space to compute. Thus the complexity is N ·poly(log(N), log(p), λ) time and poly(log(N), log(q), λ)
space.

7.4.1 Efficiency of PoE.

During any recursive round k ∈ {0, 1, . . . , n− 1} of the algorithm MultiEval, the commiter P and receiver V

additionally engage in a proof of exponent protocol PoE, with inputs (C
(k)
R , C(k)/C

(k)
L , q, n− k − 1, λ), which

is an interactive proof of the statement

∀i ∈ [λ] : (C
(k)
R )q2n−k−1

i = (C(k)/C
(k)
L )i,

where C(k) ∈ Gλ is the current commitment given as input to MultiEval. Section 8 discusses the protocol
PoE in detail. For the purposes of MultiEval, we are interested in the time and space overhead incurred
by the commiter P during any exectuion of PoE. By Theorem 4.3, setting t = n − k − 1 = O(log(N))
and recalling that |G| 6 2λ, we have that the committer P runs in time N · poly(log(q), loglog(N), λ) and
space poly(log(q), loglog(N), λ) bits during any execution of PoE in any recursive round k ∈ {0, 1, . . . , n− 1}
of MultiEval. Further, PoE in any recursive round k has round complexity O(log N) and communication
complexity log(N) · poly(λ).

7.4.2 Computing the Final Committer Message Efficiently.

We now show that the final committer message Z(n) is computable in small space.

Lemma 7.7. Let (U
(j)
L , U

(j)
R )j∈{0,1,...,n−1} be all receiver challenges. Then Z(n) ∈ Zλ is computable in time

N · poly(log(N), log(p), λ) and space O(λ2 · log(N) · log(p)) bits using a single pass over the stream Z(0).

Proof. Let (U
(j)
L , U

(j)
R )j∈{0,1,...,n−1} be all receiver challenges. By Equation (23) of Lemma 7.4, we have that

Z(n) =
∑

c∈{0,1}n

(
n−1∏

i=0

U
(i)
L · (1− ck−i) + U

(i)
R · ck−i

)
· Z(0)(∗, c).

Notice that per iteration of c ∈ {0, 1}n, the column Z(0)(∗, c) is multiplied on the left by n = log(N)
binary matrices. Computing this product is dominated by O(log(N) ·λ2) integer additions, and this product
is computed N times. Thus computing Z(n) takes N · poly(log(N), log(p), λ) time. For space, note that
‖Z(n)‖∞ = O(N · p · λn), Z(n) is a vector of length λ, and that the committer stores all recevier challenges.
Thus the space complexity is O(λ2 · log(N) · log p) bits.

30



7.5 Receiver Efficiency

We have so far only discussed the efficiency of the committer algorithm P . We now argue that the receiver
of Eval is efficient.

Lemma 7.8. The receiver of MultiEval runs in time poly(log(N), log(q), log(p), λ) and space log(N)·poly(log(q), log(p), λ).

Proof. In the Eval protocol, the receiver only performs computation in the sub-protocol MultiEval. First
consider round k = n: the receiver checks if a vector Z ∈ Zλ is properly bounded, checks if γ ≡ Z mod p,
and checks if C = gZ . The receiver complexity at this step is dominated by computing gZ . In an honest
exectuion, Z is a vector such that ‖Z‖∞ = O(N · p ·λn), so computing gZ takes time poly(log(N), log(p), λ).

Now consider any round k ∈ {0, 1, . . . , n − 1} of the MultiEval protocol. In round k, the input to

MultiEval includes vectors C(k) ∈ Gλ and γ(k) ∈ Fλ. The receiver receives values (γ
(k)
L , γ

(k)
R ) ∈ Fλ × Fλ and

(C
(k)
L , C

(k)
R ) ∈ Gλ × Gλ from the committer. The receiver first checks of the claimed vector of evaluations

γ(k) is equal to γ
(k)
L · (1− ζk+1) + γ

(k)
R ·ζk+1; this check takes time λ ·polylog(p). Next, the committer P and

receiver V run PoE(CR, C/CR, q, n− k − 1, λ). By Theorem 4.3, for t = n − k − 1 = O(log N), the receiver

runs in time log(N) · poly(log(q), λ). Finally, the receiver samples U
(k)
L , U

(k)
R ← {0, 1}λ×λ and computes

γ(k+1) = U
(k)
L · γ

(k)
L + U

(k)
R · γ

(k)
R and C(k+1) = (U

(k)
L ⋆ C

(k)
L ) ⊙ (U

(k)
R ⋆ C

(k)
R ). Since U

(k)
L , U

(k)
R are binary

matrices, the computation of γ(k+1) is dominated by O(λ2) field additions and the computation of C(k+1) is
dominated by O(λ2) group multiplications. Thus this step takes poly(log(p), λ) time. Therefore the receiver
in Eval runs in poly(log(N), log(q), log(p), λ) time.

During any recursive round k ∈ {0, 1, . . . , n− 1}, outside of the PoE protocol, the receiver stores O(λ +
log(N)) field elements, O(λ) group elements, and a single binary matrix with O(λ2) entries. So outside
of the PoE protocol, the receiver stores poly(log(N), log(p), λ) bits. Within the PoE protocol, the receiver
only stores q, O(λ) group elements, and O(λ2) bits for its challenge matrices. Thus in the PoE protocol,
the receiver stores poly(log(q), λ) bits. In the final recursion round k = n, in addition to O(λ) field and
group elements, the receiver also obtains the integer vector Z, where ‖Z‖∞ = O(N · p · λn), which uses
log(N) · poly(, log(p), λ) bits. Finally note that the receiver only stores λ field and group elements between
rounds. Therefore the receiver space complexity is log(N) · poly(log(q), log(p), λ) bits.

7.6 Proof of Proposition 7.1

We first note that to obtain O(log(N)) round complexity, we push all PoE instances to the final round of
MultiEval and run all instances in parallel. Then by Section 5.2, for q = Θ(p · 2log(N)·poly(λ)) we have that
Proposition 7.1 follows from Lemmas 7.2, 7.3, 7.5, 7.6 and 7.8 and Theorem 4.3.

8 Proof-of-Exponentiation in Arbitrary Groups

Recall that we defined (in Eq. (5)) the language LG,q as the language containing all tuples (x, y, t) ∈ G×G×N

such that xq2t

= y, where G is some group and q ∈ N

Pietrzak [Pie19] gave an elegant interactive protocol for verifying membership in this group in time
roughly t, for groups G where subgroups of small order do not exist (or are hard to find). When such small
order subgroups do not exist, as is the case for RSA groups,17 his protocol is statistically sound. The main
downside of RSA groups however is that they require a trusted setup (i.e., in the terminology of Definition 3.2
they are private-coin). As an alternative, Pietrzak’s protocol can be instantiated with class groups which
are public-coin but the resulting protocol only achieves computational soundness under the assumption
that small-order subgroups for class groups are computationally hard to find [BBF18]. We mention that

17To be more precise, the group of signed quadratic residues modulo an RSA integer N which is a product of safe primes
(where a prime p is safe if (p − 1)/2 is also a prime).

31



Wesolowski [Wes19] also presented a computationally sound protocol for class groups which is concretely
efficient at the cost of making very strong assumptions (i.e., the Adaptive Root Assumption).

We overcome the limitations of both works and give a Proof of Exponentiation (PoE) proof-system for
LG,q which: (1) works for arbitrary groups (without any assumptions) and (2) achieves statistical soundness.
We emphasize that our protocol and the security proof are oblivious to the structure of the group, and
our proof of soundness is (arguably) simpler than Pietrzak’s. In particular, we only rely on the following
elementary fact about random subset products in groups.

Fact 8.1 (Random Subset Product Principle). Let G be a group, let 1G be its identity element and let
g1, . . . , gn ∈ G, so that at least one of them is not the identity element. Then:

Pr
S⊆[n]

[∏

i∈S

gi = 1G

]
6 1/2.

Proof. Let i ∈ [n] be such that gi 6= 1G. Note that:

Pr
S⊆[n]

[∏

j∈S

gj = 1G

]
= Pr

b1...,bn∈{0,1}

[ ∏

j∈[n]

g
bj

j = 1G

]

= Pr
b1...,bn∈{0,1}

[
gbi

i = g
−bi−1

i−1 · . . . · g−b1
1 · g−bn

n · . . . · g
−bi+1

i+1

]
(24)

Fix b1, . . . , bi−1, bi+1, . . . , bλ and let h = g
−bi−1

i−1 · . . . · g−b1
1 · g−bn

n · . . . · g
−bi+1

i+1 . Note that g1
i = gi 6= 1G = g0

i .

Since g1
i and g0

i differ, it holds that gbi is equal to the fixed value h with probability at most 1/2. Hence,
the RHS of Eq. (24) is also at most 1/2.

Getting back to our PoE protocol, in order to facilitate the recursive step, we actually present an
interactive-proof for the λ-fold repetition Lλ

G,q of LG,q, where we use the same exponent q2t

across all λ
repetitions and where λ is the statistical security parameter. More specifically, consider the language

Lλ
G,q =




(x, y, t) ∈ Gλ ×Gλ × N :
∀i ∈ [λ] we have (xi, yi, t) ∈ LG,q,

where x = (x1, . . . , xλ),
y = (y1, . . . , yλ)




 .

Note that LG,q can be easily reduced to Lλ
G,q with only a poly(λ) overhead in complexity: to get a proof

for (x, y, t) simply invoke the protocol for Lλ
G,q on (x, y, t) where x = (x, . . . , x) and y = (y, . . . , y). Thus,

Theorem 4.3 follows immediately from the following lemma.

Lemma 8.2. The language Lλ
G,q has a perfectly correct, statistically sound public-coin interactive-proof with

efficiency parameters that are exactly as stated in Theorem 4.3.

8.1 Our PoE Protocol

Throughout this section, we will be working with λ-sized vectors. Recall that (in Section 3.1), for g =
(g1, . . . , gλ) and h = (h1, . . . , hλ) ∈ Gλ, we denoted their co-ordinate wise product by g⊙h = (g1h1, . . . , gλhλ).

For g = (g1, . . . , gn) ∈ Gλ and u = (u1, . . . , un) ∈ {0, 1}
λ

we denoted by u ⋆ g the subset product of elements
in g corresponding to u (i.e., u ⋆ g =

∏
i∈[λ] gui

i ).

The PoE protocol establishing Lemma 8.2 is described in Figure 1 (see Section 2.5 for an overview).

The bounds on communication complexity, running times and space usage specified in Lemma 8.2 follow
immediately from the description (note that the prover can re-use its space across different rounds). We

32



PoE(x, y, q, t, λ) :

Input: x, y ∈ Gλ, q ∈ N, t ∈ N and statistical security parameter λ ∈ N.

Claim: y = xq2t

.
1. If t = 0 then output accept if and only if y = xq.
2. Else

(a) P computes µ = xq2t−1

∈ Gλ and sends µ to V .

(b) V samples U = [UL‖UR]← {0, 1}
λ×2λ

for UL, UR ∈ {0, 1}
λ×λ

and sends U to P .
(c) P and V compute x′ ∈ Gλ, y′ ∈ Gλ where

x′ = (UL ⋆ µ)⊙ (UR ⋆ x)

y′ = (UL ⋆ y)⊙ (UR ⋆ µ).

(d) P and V recursively call PoE(x′, y′, q, t− 1, λ).

Figure 1: Proof-of-Exponentiation Protocol

next show that completeness and soundness hold, which completes the proof of Lemma 8.2 (and hence also
Theorem 4.3).

Proposition 8.3. The PoE protocol of Figure 1 has perfect completeness.

Proof. We prove by induction on t. The base case t = 0 is immediate. For larger t, suppose that (x, y, t) ∈
Lλ
G,q). We show that with probability 1 it holds that (x′, y′, t− 1) ∈ Lλ

G,q.

Indeed, using the fact that xq2t

j = yj and µj = xq2t−1

j for every j ∈ [λ], we have that for every i ∈ [λ]:

(x′i)
q2t−1

=
∏

j∈[λ]

µ
UL[i,j]·q2t−1

j · x
UR[i,j]·q2t−1

j

=
∏

j∈[λ]

x
UL[i,j]·q2t

j · x
UR[i,j]·q2t−1

j

=
∏

j∈[λ]

y
UL[i,j]
j · µ

UR[i,j]
j

= y′i.

Proposition 8.4. For any (x, y, t) /∈ Lλ
G,q and any (computationally unbounded) malicious prover P ∗, the

probability that the verifier in Figure 1 accepts when interacting with P ∗ is at most t/2λ.

Proposition 8.4 follows from the following claim and the union bound (over the t rounds).

Claim 8.5. For any (x, y, t) /∈ Lλ
G,q and prover message µ, it holds that (x′, y′, t− 1) /∈ Lλ

G,q with all but 2−λ

probability (over the choice of verifier message U).

Proof. Fix (x, y, t) /∈ Lλ
G,q where x = (x1, . . . , xλ) ∈ Gλ, y = (y1, . . . , yλ) ∈ Gλ. Let µ = (µ1, . . . , µλ) ∈ Gλ

be the prover message and let the verifier message be U ∈ {0, 1}λ×2λ. Recall that x′ = (x′1, . . . , x′λ) and
y′ = (y′1, . . . , y′λ) are defined as follows:

x′ = (UL ⋆ µ)⊙ (UR ⋆ x)

y′ = (UL ⋆ y)⊙ (UR ⋆ µ).
(25)

33



To show the claim, we first show that the probability that (x′1)q2t/2

= y′1 is at most 1/2. Since each (x′i, y′i)
is defined using independent randomness, it follows that the probability that (x′, y′, 2t/2) ∈ Lλ

G,q is at most

2−λ.

Bounding the probability that (x′1)q2t/2

= y′1. For every i ∈ [λ], let ei = xq2t−1

i ·µ−1
i and fi = µq2t−1

i ·y−1
i .

Since (x, y, t) /∈ Lλ
G,q, there exists some i∗ ∈ [λ] such that either ei∗ 6= 1 or fi∗ 6= 1. Thus,

Pr
[
(x′1)qT /2

= y′1

]
= Pr

u,v



∏

i∈[λ]

eui

i fvi

i = 1


 6 1/2, (26)

where u = (u1, . . . , uλ), v = (v1, . . . , vλ) ∈ {0, 1}
λ

are sampled uniformly at random, and the inequality
follows from Fact 8.1.

9 From Polynomial Commitments to ZK Arguments

In this section we show how to use the time- and space-efficient polynomial commitment scheme described
in Section 5 to construct a time- and space-efficient zero-knowledge argument.

Similarly to [BFS20, CHM+20, BHR+20], we do so by compiling a polynomial interactive oracle proofs
(IOP) with the polynomial commitments. Actually, we will use a restrictive form of IOP called IPCP, due to
Kalai and Raz [KR09]. In this model, the prover first sends a long message (like a PCP proof string) and
then prover and verifier are allowed to interact as in a (public-coin) interactive proof. At the end of the
interaction, the verifier is allowed to make queries to the PCP proof string.

In order to obtain the desired efficiency, we will need both the IPCP and the commitment to be streamable,
which loosely means that they can be generated in a space-efficient way. Using such streamable IOPs and
commitments, we obtain an argument with (roughly) the same time and space efficiency.

High-Level Overview. Our starting point is the time- and space-efficient IPCP from [BHR+20]. The
first (long) message from the verifier in this IPCP is the multlinear extension of the input. We compile this
IPCP into a succinct time- and space-efficient argument in the natural way: rather than having the prover
actually send the long message it uses our multilinear commitment. At the end of the protocol, when the
verifier needs to make its queries, the prover simply provides the values and then proofs their correctness
using the evaluation proofs.

Lastly, to make the protocol zero-knowledge we use the common commit-and-prove technique. Namely,
rather than sending its messages in the clear, the prover only commits to the messages. At the end of the
protocol the prover uses a generic zero-knowledge proof (of knowledge) to prove that it knows corresponding
decommitments that would make the verifier accept. To save on round complexity, we use the constant-round
public-coin zero-knowledge protocol of Barak [Bar01].

The only somewhat tricky aspect that we have to deal with is that if implemented naively, this approach
introduces a poly(|x|) factor into the communication complexity and verifier runtime that we would like to
avoid. This is due to the fact that the predicate for which we are proving correctness in zero-knowledge
depends also on the input x. We observe however, that the IPCP verifier actually does very little with the
input - it only needs to query it at a constant number of points (i.e., the IPCP is holographic), and these
points only depend on the verifier’s randomness. Thus, our zero-knowledge verifier first reads the relevant
points and then is left with a truly small predicate to check.

34



9.1 Interactive PCP (IPCP)

We start by defining interactive PCPs.

Definition 9.1 (Interactive PCPs [KR09]). An interactive PCP (IPCP) for an NP relation R, is a protocol
that consists of a prover P and a verifier V . The prover, given as input x and a witness w first produces a
message π. The verifier is given as input x and has oracle access to π. The prover and verifier are allowed
to interact in a (public-coin) interactive proof at the end of which the verifier either accepts or rejects. We
provide both parties with a security parameter that controls the soundness error. We require the following to
hold

• (Perfect) Completeness: for all (x, w) ∈ R and λ ∈ N,

Pr[
〈
P (x, w, 1λ), V π(x, λ)

〉
= 1] = 1,

where for every prover strategy P ′, we denote by
〈
P ′(x, w, 1λ), V π(x, 1λ)

〉
= 1 the output of V after

interacting with P , where π is produced by P ′ prior to the beginning of the interaction.

• (Soundness:) ε-soundness-error if for all cheating prover algorithms P ∗ and (x, w) ∈ R,

Pr[
〈

P ∗(x, w, 1λ), V π∗

(x, 1λ)
〉

= 1] = neg(λ).

Parameters of interest to us are prover’s runtime and space complexity, the verifier’s runtime, the length
of the first message and the number of queries that the verifier makes to it.

For our purposes, we are interested in IPCPs in which both the honest and cheating provers are only
allowed to send multilinear polynomials as their first message. Moreover, due to our later compilation with
polynomial commitments, we do not want to account for the cost of encoding the first message via the
multilinear extension code. We measure the time and space complexity of the prover accordingly.

Definition 9.2 (Interactive Multilinear PCP (IMPCP)). A multilinear IOP, relative to a finite field F, is
defined similarly to an IPCP except that the message that both honest and cheating provers send in the first
round is automatically encoded using the multilinear extension over F.

We measure running time and space usage based on sending the unencoded message, where the prover
needs to generate this message as a stream of bits (i.e., write it on a write-only unidirectional tape).

We remark that the notion of IMPCP is closely related to that of polynomial IOPs [RRR16, BFS20,
CHM+20].

We will also consider a variant of IMPCP in which the verifier is given oracle access to the multilinear
extension of its input, and the locations of the queries that it makes depend only on its random coins.
Following [CHM+20] we refer to this variant as a holographic IMPCP and emphasize that when measuring
the verifier’s running time we assume oracle access to the multilinear extension of the input at unit cost.

9.2 Compiling IMPCPs into Arguments using Polynomial Commitments

Bünz et al. [BFS20, CHM+20] proposed a natural way to compile a polynomial IOP into an interactive
argument, using a polynomial commitment scheme. This extends very naturally also to IPCPs. We show
that if both the IPCP and polynomial commitment are streamable, then the resulting argument-scheme has
a time- and space-efficient prover. (A similar approach is taken in [BHR+20].)

Theorem 9.3. Let F be a finite field. Suppose that the relation R has an IMPCP wrt to F and that there
exists a polynomial commitment scheme wrt F, where:

• (IMPCP Parameters:) rIMPCP is the round complexity, cIMPCP is the communication complexity (of
the interactive part), qIMPCP is the query complexity, TIMPCP is the prover running time, SIMPCP is the
prover space complexity and VIMPCP is the verifier running time.

35



• (Commitment Parameters, wrt 6 log(TIMPCP) variate multilinear polynomial:) kCom is an upper bound
on the number of passes on the stream needed for the Com and Eval protocols, TCom and SCom are upper
bounds on the commiter’s time and space complexity in the Com and Eval protocols, rCom is the round
complexity, VCom is the verifier’s running time in Eval, cCom is an upper bound on the commitment
length and communication complexity in Eval.

Then, R has a public-coin argument-system with the following efficiency guarantees:

• Round complexity: 1 + rIMPCP + rCom.

• Communication complexity: cIMPCP + (qIMPCP + 1) · cCom.

• Prover runtime: (qIMPCP + 1) ·
(
kCom · TIMPCP + cCom

)
.

• Prover space usage: SIMPCP + qIMPCP · SCom.

• Verifier runtime: VIMPCP +qIMPCP ·VCom (in case the IMPCP is holographic then the running time bound
still holds with the argument’s verifier also being holographic).

Other than the bound on the prover’s space complexity, Theorem 9.3 follows directly from [BFS20,
Theorem 4]. Therefore, we provide only a proof sketch to argue the bound on space.

Proof Sketch. The construction is natural. The parties emulate the IMPCP except that rather than having
the prover send the (multilinear extension) of the first message in the clear, it commits to it using a polynomial
commitment. At the end of the interaction, when the verifier needs to perform its queries, the prover provides
the values and proofs their consistency using the evaluation proofs.

To see that the space complexity bound holds, observe that since the IMPCP prover generates the first
message as a stream of values, we can compose it together with the streamable polynomial commitment
to produce the commitment and evaluation proofs using only SCom additional space per query. To save on
rounds, all of the evaluation proofs are run in parallel.

9.3 The Succinct Argument-System

We obtain public-coin interactive arguments via Theorem 9.3. We compile our streaming multilinear poly-
nomial commitment scheme (Section 5.2) with the follwoing multilinear IPCP from [BHR+20] (based on the
2-prover MIP of Blumberg et al. [BTVW14]).

Lemma 9.4 ([BTVW14,BHR+20]). For any NP relation R verifiable by a time-T space-S random access
machine M , there exists a holographic IMPCP for R, over a finite field of size polylog(T ), where

• The IOP has perfect completeness and negligible soundness error.

• The first prover message has length O(T ), the communication complexity of the interactive part is
poly(λ, log(T )) and the round complexity is O(log T ).

• The prover runs in time T ·poly(λ, log(T )) and space S ·poly(λ, log(T )) when given as input (x, w) ∈ R.

• The verifier is holographic and runs in time poly(λ, log(T )).

Remark 9.5. The fact that the verifier in [BTVW14,BHR+20] is holographic (and run in time poly(λ, log T )
given access to the multilinear extension of the input is not stated explicitly in [BTVW14, BHR+20] but
follows by inspection of their protocols (see in particular [BTVW14, Section 4.5.2]).

Combining Lemma 9.4 and Theorem 4.2, we obtain our argument scheme.

Theorem 9.6 (Small-Space Arguments for RAMs). Assume the existence of a group sampler for which the
hidden order assumptions holds (see Assumption 3.3). Then, there exists a public-coin interactive argument-
system for any NP relation verifiable by a time T space S random access machine with the following com-
plexity.

1. The protocol has perfect completeness and neligible soundness error.

36



2. The number of rounds is O(log(T )).

3. The communication complexity is poly(λ, log(T )).

4. The prover runs in time T · poly(λ, log(T )).and space S · poly(λ, log(T )).

5. The verifier is holographic and runs in time poly(λ, log(T )).

9.4 Obtaining Zero-Knowledge

In order to make the time- and space-efficient pubic-coin argument of Theorem 9.6 also be zero-knowledge,
we will employ the standard technique (due to Ben-Or et al. [BGG+90]) of having the prover commit to its
messages and then, at the end, prove that it knows valid openings. Since this is a small NP statement, we
can afford to use basically any zero-knowledge protocol from the literature. However, since we do not want
the round complexity to grow by a poly(λ) factor, we use the constant-round public-coin zero-knowledge
argument of Barak [Bar01].

Lemma 9.7. Assume that collision-resistant hash functions exist. Suppose that the relation R ∈ NP has a
public-coin holographic argument-system with a time TV verifier. Then it also has a zero-knowledge public-
coin (holographic) argument-system with only a poly(λ, TV ) multiplicative overhead in prover time, prover
space, communication complexity and verifier time. The round complexity increases additively by O(1).

Proof Sketch. Following [BGG+90] we modify the protocol so that in every round, rather than having the
prover send it’s message in the clear, it commits to it using a cryptographic commitment scheme (which can
be constructed assuming one-way functions). At the end of the protocol the verifier makes its queries to the
input (which, importantly, depend only on its random coin tosses). At this point all that is left to check is an
NP statement of the form: do there exist openings for the commitment that would make the verifier accept.
Note that this NP statement has instances of size 6 TV , witnesses of size 6 TV and can be decided in time
poly(TV ). Thus, we can use a generic zero-knowledge argument (of knowledge) for NP of [Bar01].

Remark 9.8. Note that if one is planning to apply the Fiat-Shamir transform on the resulting protocol, then
it suffices to prove honest-verifier zero-knowledge, and so a more basic approach should suffice.

We further remark, that it is likely that there are far more practical ways to make our protocol zero-
knowledge. For example, by ensuring that the polynomial commitment is hiding. We leave the exploration
of this possibility to future work.

Theorem 4.1 follows immediately from Theorem 9.6 and Lemma 9.7, while observing that the existence
of a hidden order group implies18 collision-resistant hash functions, and using the fact that the multilinear
extension can be computed in quasi-linear time.

10 Acknowledgments

Alexander R. Block was supported in part by NSF grant CCF-1910659. Pratik Soni was supported in
part by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP
Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding
award. Ron Rothblum was supported in part by a Milgrom family grant, by the Israeli Science Foundation
(Grants No. 1262/18 and 2137/19), and grants from the Technion Hiroshi Fujiwara cyber security research
center and Israel cyber directorate. Alon Rosen is supported in part by ISF grant No. 1399/17 and Project
PROMETHEUS (Grant 780701).

18If G is a hidden order group, then the mapping g, x 7→ gx is collision-resistant.

37



References

[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design
of symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint Archive,
Report 2019/426, 2019. https://eprint.iacr.org/2019/426.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115.
IEEE Computer Society Press, October 2001.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with ap-
plications to IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 561–586. Springer, Heidelberg,
August 2019.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interac-
tive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages
14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 255–272. Springer, Heidelberg, August 2012.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,
2016.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for reed-solomon codes. In FOCS, 2020.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof
composition from accumulation schemes. In TCC (2), volume 12551 of Lecture Notes in Com-
puter Science, pages 1–18. Springer, 2020.

[BFSTC] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers.
IACR Cryptol. ePrint Arch., 2019:1229, 20200226:080105 (posted 26-Feb-2020 08:01:05 UTC).

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, Heidelberg, May 2020.

[BFS21] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Personal Communication, 2021.

[BGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali, and
Phillip Rogaway. Everything provable is provable in zero-knowledge. In Shafi Goldwasser, editor,

38

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/712


CRYPTO’88, volume 403 of LNCS, pages 37–56. Springer, Heidelberg, August 1990.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composi-
tion without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

[BGKS19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sam-
pling outside the box improves soundness. Cryptology ePrint Archive, Report 2019/336, 2019.
https://eprint.iacr.org/2019/336.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sampling
outside the box improves soundness. In Thomas Vidick, editor, ITCS, 2020.

[BHR+20] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Public-
coin zero-knowledge arguments with (almost) minimal time and space overheads. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 168–197.
Springer, Heidelberg, November 2020.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. JCSS, 36(2):254–276, 1988.

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable com-
putation using multiple provers. Cryptology ePrint Archive, Report 2014/846, 2014.
http://eprint.iacr.org/2014/846.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent re-
cursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

[DF02] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on
groups with hidden order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS,
pages 125–142. Springer, Heidelberg, December 2002.

[DK02] Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 256–271. Springer, Heidelberg, April / May 2002.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. SPARKs: Succinct paralleliz-
able arguments of knowledge. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 707–737. Springer, Heidelberg, May 2020.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time and
space overhead. In Mikkel Thorup, editor, 59th FOCS, pages 124–135. IEEE Computer Society
Press, October 2018.

[KB79] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent SNARKs
from list polynomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400, 2019.

39

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/336
http://eprint.iacr.org/2014/846


https://eprint.iacr.org/2019/1400.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 143–159. Springer, Heidelberg, August 2009.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to poly-
nomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[Lee20] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. Cryptology ePrint Archive, Report 2020/1274, 2020.
https://eprint.iacr.org/2020/1274.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. J.
Cryptol., 16(3):143–184, 2003.

[Mic16] Daniele Micciancio. Lattices algorithms and applications, 2016.
http://cseweb.ucsd.edu/classes/wi16/cse206A-a/.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019, volume
124, pages 60:1–60:15. LIPIcs, January 2019.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct compu-
tation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 222–242. Springer,
Heidelberg, March 2013.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC,
pages 49–62. ACM Press, June 2016.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RSA] Cash for rsa assumptions. https://rsa.cash/rsa-assumptions/.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Tech-
nical report, USA, 1996.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptol-
ogy ePrint Archive, Report 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[Tom] Alin Tomescu. Cryptographic assumptions in hidden-order groups.
https://alinush.github.io/2020/11/05/cryptographic-assumptions-in-hidden-order-groups.html.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, March 2008.

[WBT+17] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David A. Wagner,
and Konstantin Beznosov. The feasibility of dynamically granted permissions: Aligning mobile
privacy with user preferences. In 2017 IEEE Symposium on Security and Privacy, pages 1077–
1093. IEEE Computer Society Press, May 2017.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen, ed-
itors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer, Heidelberg,
May 2019.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages

40

https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/1274
http://cseweb.ucsd.edu/classes/wi16/cse206A-a/
https://rsa.cash/rsa-assumptions/
https://eprint.iacr.org/2020/1275
https://alinush.github.io/2020/11/05/cryptographic-assumptions-in-hidden-order-groups.html


926–943. IEEE Computer Society Press, May 2018.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial dele-
gation and its applications to zero knowledge proof. In 2020 IEEE Symposium on Security and
Privacy, pages 859–876. IEEE Computer Society Press, May 2020.

41



A One-Sided Integral Inverses for Random Binary Matrices

In this section, we show that a random binary matrix A (with “aspect ratio” larger than some constant r)
has an integral one-sided inverse with overwhelming probability (as a function of the smaller dimension of
A). We do not attempt to optimize r, as its precise value does not qualitatively affect our results.

Lemma A.1. Let A be uniformly random in {0, 1}n×m for m ≥ 5n. Then with all but 2−Ω(n) probability
A has a right-inverse B ∈ Zm×n.

(Equivalently, if A is uniformly random in {0, 1}m×n, it has a left-inverse B ∈ Zn×m with all but 2−Ω(n)

probability.)

We remark that by general results on the polynomial-time solvability of systems of linear equations over
Z [KB79], whenever any right- or left-inverse of a matrix A exists, it is possible to compute such an inverse
in polynomial time (in particular with entries that have polynomially bounded bit length). In particular,
finding a right inverse of A is equivalent to solving for B in the system of equations AB = I, where I denotes
the n× n identity matrix. Lemma A.1 establishes the feasibility of this system of equations.

Our proof of Lemma A.1 makes use of the theory of integer lattices. The relevant background is provided
in Appendix A.1 and the proof of Lemma A.1 is in Appendix A.2.

A.1 Lattices Background

We start with relevant background on lattices. We omit proofs of standard facts and refer the reader to
[Mic16] for a comprehensive treatment.

Definition A.2 (Integer Lattices). An integer lattice is any (additive) subgroup L ⊆ Zn. That is, L is a
subset such that:

• 0 ∈ L; and

• if u and v are in L, then so is u− v.

If L ⊆ Zn is a lattice and v ∈ Zn is a vector, we write 〈L, v〉 to denote the lattice L + Z · v. We will
primarily deal with lattices that have full rank. An integer lattice L ⊆ Zn is said to have full rank if L
contains n vectors that are linearly independent (over Q).

Every lattice has a basis, which provide a convenient working representation.

Definition A.3 (Lattice Bases). A basis for a full-rank lattice L ⊆ Zn is a full-rank matrix B ∈ Zn×n such
that L = B · Zn. For y ∈ L, we write B−1(y) to denote the vector x ∈ Zn such that y = B · x.

Every lattice has multiple bases. There is also a canonical basis, known as the Hermite Normal Form
(HNF) basis, which is the unique basis satisfying two additional constraints. We will only define HNF bases
for full-rank lattices.

Definition A.4 ((Column-Style) Hermite Normal Form). A basis H = (hi,j) ∈ Zn×n for a full-rank lattice
L is said to be in Hermite normal form (HNF) if:

• H is lower triangular with non-negative entries; and

• For all i and j, hi,i ≥ hi,j .

Fact A.5. Every full-rank lattice L has a unique basis in Hermite normal form, which we denote by HNF(L).

In considering the HNF basis H of a lattice L, our main focus is the diagonal entries of H, which we will
denote by diag(L) .

One important quantity associated with a lattice L ⊆ Zn is its determinant. Among other things, a
lattice determinant measures how sparse L is in Zn.

Definition A.6. The determinant of a full-rank lattice L, denoted det(L), is defined as
∣∣ det(B)

∣∣, where B

42



is any19 basis for L and det(B) is the standard matrix determinant (over the field Q).

Since HNF bases are (lower) triangular with non-negative entries, a standard formula for determinants
of such matrices implies that for any full-rank lattice L ⊆ Zn with diag(L) = (h1, . . . , hn), we have

det(L) =
∏

i

hi.

Adding vectors to a lattice in general decreases its determinant, but we can say more. Writing a | b to
denote that a divides b, we have:

Fact A.7. If L and L′ are lattices with L ⊆ L′, then det(L′) | det(L).

Fact A.8. A full-rank lattice L ⊆ Zn satisfies det(L) = 1 if and only if L = Zn.

We next partially characterize how adding a vector to a lattice affects its HNF basis.

Proposition A.9. Let L ⊆ Zn = Zn1+n2 be a full-rank lattice with HNF basis

H =

(
H1,1 0

H2,1 H2,2

)
,

where H1,1 ∈ Zn1×n1 , H2,2 ∈ Zn2×n2 , and H2,1 ∈ Zn2×n1 . Let L1 denote H1,1 ·Z
n1 , let L2 denote H2,2 ·Z

n2 ,

and let v =

(
v1

v2

)
be an arbitrary vector in Zn with v1 ∈ Zn1 and v2 ∈ Zn2 . Then

HNF
(
〈L, v〉

)
=

(
H′1,1 0

H′2,1 H′2,2

)

where

H′1,1 = HNF
(
〈L1, v1〉

)
, (27)

H′2,2 = HNF
(〈
L2, dv2 −H2,1 ·H

−1
1,1(dv1)

〉)
, (28)

and d ∈ Z is the minimal20 integer for which dv1 ∈ L1.

Proof. Let L′ denote 〈L, v〉, and let HNF(L′) be denoted by

H′ =

(
H′1,1 0

H′2,1 H′2,2

)
.

The fact that H′ is in Hermite normal form implies that H′1,1 and H′2,2 are as well.

Let π1 : Zn → Zn1 denote projection onto the first n1 coordinates, and let π2 : Zn → Zn2 denote
projection onto the last n2 coordinates.

To prove Eq. (27), we observe that

H′1,1Z
n1 = π1

(
H′Zn

)

= π1(L′)

=
〈
π1(L), π1(v)

〉

= 〈L1, v1〉.

19This is well-defined; that is, all bases for a given (full-rank) lattice have the same determinant except for a possible difference
in sign.

20Some such integer exists because H1,1 is full rank over Q, so the equation H1,1 · x1 = v1 has a solution over the rationals.

43



To prove Eq. (28), we first observe H′1,1 is full rank (over Q), and so

H′2,2Z
n2 = π2

(
L′ ∩ (0n1 × Zn2 )

)
.

A general element of L′ ∩ (0n1 ×Zn2 ) has the form u−a ·v for some u ∈ L and a ∈ Z for which av1 = π1(u).
We now characterize what (u, a) can satisfy this equation.

Since u ∈ L, it must have the form u = H ·

(
x1

x2

)
, for x1 ∈ Zn1 and x2 ∈ Zn2 . For π1(u) to be equal to

av1, it must be that H1,1x1 = av1, which is possible exactly when a ∈ dZ for some d, namely the minimal
integer for which dv1 ∈ H1,1Z

n1 .

Then we have

π2(u− a · v) =
(
H2,1 H2,2

)
·

(
H−1

1,1(av1)
x2

)
− av2

∈ H2,2Z
n2 + d

(
H2,1H−1

1,1v1 − v2

)
Z

= 〈L2, dv2 −H2,1H−1
1,1(dv1)〉,

proving Eq. (28).

By considering the decomposition n1 = 1, n2 = n− 1, we obtain the following corollary.

Corollary A.10. If L ⊆ Zn is a lattice with diag(L) = (h1, . . . , hn), v = (v1, . . . , vn) is a vector in Zn, and
diag(〈L, v〉) = (h′1, . . . , h′n), then h′1 = gcd(h1, v1).

By induction on n, we can prove that all of the new diagonal entries divide their previous values.

Proposition A.11. For any full-rank lattice L ⊆ Zn and any vector v ∈ Zn, if (h1, . . . , hn) denotes diag(L)
and (h′1, . . . , h′n) denotes diag(〈L, v〉), then for each i we have h′i | hi.

Proposition A.12. Let L be a full-rank lattice with diag(L) = (h1, . . . , hn), let p be a prime number, let v

be uniformly random in {0, 1}n, and let (h′1, . . . , h′n) denote diag
(
〈L, v〉

)
.

For any i ∈ [n] such that p does not divide any of h1, . . . , hi, it holds with probability at least 1/2 that p
does not divide h′i+1.

Proof. Let L, h, p, and i be given as above. Write

HNF(L) =

(
H1,1 0

H2,1 H2,2

)
v =

(
v1

v2

)

with H1,1 ∈ Zi×i and H2,2 ∈ Z(n−i)×(n−i) (and similarly v1 ∈ Zi and v2 ∈ Zn−i).

Let x1 = H−1
1,1 · v1 ∈ Qi, where H−1

1,1. By Cramer’s rule, each entry of H−1
1,1 has denominator dividing

det(H1,1), so det(H1,1) · x1 ∈ Zi, and so det(H1,1) · v1 = H1,1(det(H1,1) · x1) ∈ H1,1 · Z
i. But det(H1,1) =∏i

j=1 hj . Since none of h1, . . . , hi is divisible by p, neither is det(H1,1). The minimal d ∈ Z for which dv1 is

in H1,1 · Z
i divides det(H1,1), so this d is not divisible by p either.

By Proposition A.9, h′i+1 is the first diagonal of the lattice
〈
H2,2 · Z

n−i, v′2
〉
, where

v′2 = dv2 −H2,1H−1
2,2(dv1).

Because d is not divisible by p,it holds with probability at least 1/2 that neither is the first coordinate
of v′2 . Thus by Corollary A.10 , with at least the same probability, h′i+1 is not divisible by p either.

The following fact follows easily from the analogous well-known fact over F2 since if a binary matrix is
full rank over F2 then it is full rank over Q.

Fact A.13. If A is uniformly random in {0, 1}n×2n, then A is full rank over Q with all but 2−Ω(n) probability.

44



A.2 Proof of Lemma A.1

Recall we are trying to prove that a uniformly random matrix A ∈ {0, 1}n×5n has an integer right-inverse
with all but 2−Ω(n) probability. Let Ai denote the matrix formed by the first i columns of A, and let Li ⊆ Zn

denote the lattice generated by the columns of Ai. By Fact A.13, A2n is full rank over Q except with 2−Ω(n)

probability, and thus L2n is also full rank with the same probability. For i ≥ 2n, let Hi denote HNF(Li).

The focus of our proof is the diagonal entries of Hi for i ≥ 2n. We denote these diagonal entries by

h
(1)
i , . . . , h

(n)
i .

Starting with i = 2n, we first observe that the determinant of L2n is at most n!. This is because L2n

contains (and thus has smaller determinant than) a lattice whose basis consists of n columns of A2n, whose
entries are in {0, 1}. . In particular, the set of prime factors P of det(L2n) satisfies |P| ≤ log(n!) ≤ n log n,

and by Proposition A.11, P contains all the prime factors of h
(j)
i for each j and each i ≥ 2n. The set P

(and divisibility by the elements of P) provides the lens through which we will analyze the evolution of

(h
(1)
i , . . . , h

(n)
i ) as i increases.

For each p ∈ P , let J
(p)
i denote the smallest j for which h

(j)
i is divisible by p, or ∞ if there is no such

j. It follows from Propositions A.11 and A.12 that conditioned on any value of Ai (which determines J
(p)
i ),

it holds with probability at least 1/2 over the choice of (the rest) of Ai+1 that J
(p)
i+1 ≥ J

(p)
i + 1. Moreover

Proposition A.11 implies that always J
(p)
i+1 ≥ J

(p)
i . Thus with all but 2−Ω(n) probability, J

(p)
5n =∞, meaning

that none of h
(j)
5n is divisible by p.

By a union bound over the element of P , with all but |P| · 2−Ω(n) = 2−Ω(n) probability, it holds simul-

taneously for all p ∈ P and all j ∈ [n] that J
(p)
5n = ∞. But since P contains all prime factors of h

(j)
5n , it

must be that h
(j)
5n = 1. Thus, det(L5n) =

∏n
j=1 h

(j)
5n = 1, which implies by Fact A.8 that L5n = Zn, which is

equivalent to A5n having an integer right-inverse B.

B Formal Integer Decoding Algorithm

Dec(v ∈ Z)

1 : foreach k ∈
[
0,
⌊
logq |v|

⌋]
do :

2 : Sk−1 ← (v mod qk)

3 : if Sk−1 > qk/2 then Sk−1 ← Sk−1 − qk
endif

4 : Sk ← (v mod qk+1)

5 : if Sk > qk+1/2 then Sk ← Sk − qk+1
endif

6 : zk ← (Sk − Sk−1)/qk

7 : return Z =
(
zk : k ∈

[
0,
⌊
logq |v|

⌋])

Figure 2: Decoding algorithm to retrieve integer sequence Z from a large integer v ∈ Z.

B.1 Proof of Claim 5.2

Let Zi = Decq(zi) for all i ∈ [ℓ]. Then, let us denote the right-hand-side expression by Z =
∑

i∈[ℓ] αi · Zi,

and left-hand-side expression by Y = Decq(
∑

i∈[ℓ] αi · zi). We show that Encq(Z) = Encq(Y) and that

Z,Y ∈ Z(q/2)N . Then, the claim follows by the injectivity of Encq over Z(q/2)N (see Fact 5.1).

45



By homomorphism of Encq we have,

Encq(Z) =
∑

i∈[ℓ]

αi · Encq(Zi) =
∑

i∈[ℓ]

αi · zi, (29)

where the last equality follows from Fact 5.1 and that zi ∈ Z(qN /2). Also, note that Z ∈ Z(q/2)N , which
follows from Zi ∈ Z(B2), αi ∈ B1 and ℓB1B2 < q/2.

Note that
∑

i∈[ℓ] αi · zi ∈ Z(qN /2), which follows from zi = Encq(Zi), bounds on αi and entries in Zi,

and ℓB1B2 < q/2. Then, from Fact 5.1 we have that Y = Decq(
∑

i∈[ℓ] αi · zi) is such that Y ∈ Z(q/2)N and

Encq(Y) = Encq

(
Decq

(∑

i∈[ℓ]

αi · zi

))
=
∑

i∈[ℓ]

αi · zi. (30)

From Equations (29) and (30) we have that Enc(Z) = Enc(Y) where Z,Y ∈ Z(q/2)N , the claim follows.

C Efficiency Proofs

We prove Lemmas 7.4 to 7.6 from Section 7. We first recall and prove Lemma 7.4.

Lemma 7.4. Let k ∈ {0, 1, . . . , n} denote the kth depth of recursion of algorithm MultiEval, let Z(k) ∈

Zλ×2n−k

be the integer matrix given as input to MultiEval during depth k, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be

the receiver challenges in each recursion level j ∈ {0, 1, . . . , k− 1}. Then for any b ∈ {0, 1}
n−k

, it holds that

Z(k)(∗, b) =
∑

c∈{0,1}k




k−1∏

j=0

U
(j)
L · (1 − ck−j) + U

(j)
R · ck−j


 · Z(0)(∗, c ◦ b), (23)

where Z(k)(∗, b) denotes the bth column of the matrix Z(k) and

k−1∏

j=0

U
(j)
L · (1− ck−j) + U

(i)
R · ck−j =

(U
(0)
L · (1 − ck) + U

(0)
R · ck) · · · (U

(k−1)
L · (1 − c1) + U

(k−1)
R · c1).

Proof. The k = 0 step is trivial. The k = 1 step follows directly from step (7) of the “Else” clause of
Algorithm 1. Suppose that Eq. (23) holds for step k. We show it also holds for step k + 1. By definition,

we have that Z(k+1) = U
(k)
L · Z

(k)
L + U

(k)
R · Z

(k)
R , where Z(k) = [Z

(k)
L ‖Z

(k)
R ] ∈ Zλ×2n−k

. Then for any

b ∈ {0, 1}n−(k+1) we have that

Z(k+1)(∗, b) = U
(k)
L · Z

(k)
L (∗, b) + U

(k)
R · Z

(k)
R (∗, b).

By definition of Z
(k)
L and Z

(k)
R , we have that

U
(k)
L · Z

(k)
L (∗, b) + U

(k)
R · Z

(k)
R (∗, b) = U

(k)
L · Z(k)(∗, 0b) + U

(k)
R · Z(k)(∗, 1b).

46



By our induction hypothesis we have

U
(k)
L · Z

(k)
L (∗, 0b) + U

(k)
R · Z(k)(∗, 1b)

= U
(k)
L ·

∑

c∈{0,1}k

(
k−1∏

i=0

U
(i)
L · (1 − ck−i) + U

(i)
R · ck−i

)
· Z(0)(∗, c ◦ 0b)

+ U
(k)
R ·

∑

c∈{0,1}k

(
k−1∏

i=0

U
(i)
L · (1− ck−i) + U

(i)
R · ck−i

)
· Z(0)(∗, c ◦ 1b)

=
∑

c′=c0
c∈{0,1}k

(
k∏

i=0

U
(i)
L · (1− c′k−i) + U

(i)
R · c

′
k−i

)
· Z(0)(∗, c0 ◦ b)

+
∑

c′=c1
c∈{0,1}k

(
k∏

i=0

U
(i)
L · (1− c′k−i) + U

(i)
R · c

′
k−i

)
· Z(0)(∗, c1 ◦ b)

=
∑

c′∈{0,1}k

(
k∏

i=0

U
(i)
L · (1 − c′k−i) + U

(i)
R · c

′
k−i

)
· Z(0)(∗, c′ ◦ b).

This proves the induction step.

Next we recall and prove Lemma 7.5.

Lemma 7.5. Let γ
(k)
L , γ

(k)
R ∈ Fλ

p be the left and right evaluations computed by the committer in recursion

level k ∈ {0, 1, . . . , n − 1}, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be the receiver challenges. Then γ

(k)
L and γ

(k)
R

are computable in time N · poly(log(N), log(p), λ), space poly(log(N), log(p), λ) bits, and using a single pass
over the columns of Z(0).

Proof. For the kth level of recursion, the values γ
(k)
L , γ

(k)
R are given by the equation

γ
(k)
L =

∑

b∈{0,1}n−k−1

(Z(k)(∗, 0b) mod p) ·

n−k−1∏

j=1

χ(bj , ζj+k+1)

γ
(k)
R =

∑

b∈{0,1}n−k−1

(Z(k)(∗, 1b) mod p) ·

n−k−1∏

j=1

χ(bj , ζj+k+1),

where by definition Z(k)(∗, 0b) = Z
(k)
L (∗, b) and Z(k)(∗, 1b) = Z

(k)
R (∗, b). By Lemma 7.4, we can rewrite this

in terms of Z(0) as follows. For c ∈ {0, 1}
k
, let Mc :=

k−1∏
i=0

U
(i)
L · (1 − ck−i) + U

(i)
R · ck−i, where the matrix

multiplication expands as a left multiplication. Focusing on γ
(k)
L , we have

γ
(k)
L =

∑

b∈{0,1}n−k−1




∑

c∈{0,1}k

Mc · Z
(0)(∗, c ◦ 0b)



mod p ·

n∏

j=k+2

χ(bj, ζj) =

∑

c∈{0,1}k

Mc ·




∑

b∈{0,1}n−k−1

Z(0)(∗, c ◦ 0b) mod p ·

n−k−1∏

j=1

χ(bj , ζj+k+1)


 , (31)

47



and by symmetry, for γ
(k)
R we have

γ
(k)
R =

∑

c∈{0,1}k

Mc ·




∑

b∈{0,1}n−k−1

Z(0)(∗, c ◦ 1b) mod p ·

n−k−1∏

j=1

χ(bj, ζj+k+1)



 . (32)

This yields the algorithm gammaStreamGen for computing γ
(k)
L , γ

(k)
R , presented in Algorithm 2.

We argue the correctness of gammaStreamGen. Notice that for every iteration of the inner loop (a ◦ b) ∈

{0, 1} × {0, 1}n−k−1, the value χ is exactly computed as in Eqs. (31) and (32). Further, for any fixed

c ∈ {0, 1}k, the column Z(0)(∗, ĉ) for ĉ = c ◦ a ◦ b is accessed by the algorithm. If a = 0 then this column
is multiplied by χ and added to the value γ′′L ; otherwise, it’s added to the value γ′′R . Notice that this is
exactly computing the inner parenthesis of Eqs. (31) and (32). Then, outside the (a ◦ b) loop, both γ′′L and
γ′′R are updated by multiplying by the matrix Mc, then added to the running values γ′L, γ′R. This exactly
corresponds to the outer multiplication by Mc and addition of Eqs. (31) and (32).

We analyze the time and space complexity of gammaStreamGen of Algorithm 2. First note that per
iteration of c ∈ {0, 1}k, the values γ′L, γ′R are updated via computing the products Mc ·γ

′′
L and Mc ·γ

′′
R, where

Mc is a product of binary matrices. Since we are computing a matrix-vector product of k binary matrices of
dimension λ×λ, updating γ′L, γ′R is dominated by O(k ·λ2) field additions (rather than multiplications). Now

per iteration of (a ◦ b) ∈ {0, 1} × {0, 1}
n−k−1

, we compute χ once, which is dominated by O(n) = O(log N)
field multiplications. Further, Z(0)(∗, ĉ) is multiplied with the value χ and added to γ′′L , which is dominated
by O(λ) field additions and multiplications. Thus, the total operations for the inner loop over (a ◦ b) ∈

{0, 1} × {0, 1}
n−k−1

is dominated by O(2n−k−1 · (log N + λ)) field multiplications. Taking the outer loop,
we have that the total number of operations for the algorithm is dominated by O(2k · 2n−k · (log N + λ)) =
O(N · (log N + λ)) field multiplications. Finally, recall that we are given streaming access to the columns
of Z(0) in lexicographic order. For each step of the inner-most loop, we need to access the column Z(0)(∗, ĉ)
where ĉ = c◦a◦b. Since c is the outermost loop, ĉ accesses {0, 1}

n
in lexicographic order, which implies that

we are accessing the columns of Z(0) in lexicographic order. Further, we access each column exactly once.
Thus gammaStreamGen accesses each column of Z(0) in lexicographic order exactly once, which takes O(N)
time overall. Therefore the final computational cost is dominated by O(N · (log N + λ) field multiplications
using a single pass over the columns of Z(0), which gives overall time complexity of N ·poly(log(N), log(p), λ)
be recalling that field operations take polylog(p) time.

For the space complexity, note that all the verifier challenges {U (i) = [U
(i)
L ‖U

(i)
R ]}j∈{0,1,...,k−1} are binary

matrices of dimension λ × 2λ, which take at most O(k · λ2) bits to store, which is at most O(k · λ2) field
elements. Next, the vectors γ′L, γ′R, γ′′L , γ′′R are vectors of λ field elements, which takes at most O(λ) field
elements to store. Next, the matrix Mc is never computed explicitly, so we never store it. Next, χ is a single
field element which consists of a multiplication of at most n = log N field elements, so computing χ uses
at most O(n) field elements of storage. Finally, Z(0)(∗, ĉ) is an integer vector of length λ with entries of
magnitude at most p, and further we compute Z(0)(∗, ĉ) modulo p, so this takes at most O(λ) field elements
of storage to compute. Recalling that the field has description size polylog(p), we have space complexity
log(N) · poly(log(p), λ) bits.

Finally, we recall and prove Lemma 7.6.

Lemma 7.6. Let C
(k)
L , C

(k)
R ∈ Gλ be the left and right commitments computed by the committer in recursion

level k ∈ {0, 1, . . . , n − 1}, and let (U
(j)
L , U

(j)
R )j∈{0,1,...,k−1} be the receiver challenges. Then C

(k)
L and C

(k)
R

are computable in time N · poly(log(N), log(q), λ), space poly(log(N), log(q), λ) bits, and using a single pass
over the columns of Z(0).

48



Proof. For the kth level of recursion, the values C
(k)
L , C

(k)
R are given by the equation

C
(k)
L = gℓ

(k)

= (gℓ1 , gℓ2 , . . . , gℓλ)⊤ C
(k)
R = gr(k)

= (gr1 , gr2 , . . . , grλ)⊤,

where

ℓ(k) =
∑

b∈{0,1}n−k−1

qb · Z(k)(∗, 0b) r(k) =
∑

b∈{0,1}n−k−1

qb · Z(k)(∗, 1b).

For c ∈ {0, 1}
k
, let Mc =

k−1∏
i=0

U
(i)
L · (1 − ck−i) + U

(i)
R · ck−i, where the product is expanded as right matrix

multiplications. Then by Lemma 7.4, for ℓ(k) we have

ℓ(k) =
∑

b∈{0,1}n−k−1

qb
∑

c∈{0,1}k

Mc · Z
(0)(∗, c ◦ 0b)

=
∑

c∈{0,1}k

Mc ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 0b), (33)

and by symmetry

r(k) =
∑

c∈{0,1}k

Mc ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 1b). (34)

This yields the algorithm comStreamGen for computing C
(k)
L , C

(k)
R , presented in Algorithm 3.

We claim that comStreamGen exactly computes C
(k)
L and C

(k)
R by showing it computes the values gℓ

(k)

and gr(k)

for ℓ(k), r(k) defined in Eq. (33) and Eq. (34). First, the middle loop over a ∈ {0, 1} sets C = g,

then for every b ∈ {0, 1}
n−k−1

updates C to Cq. Notice that for any b ∈ {0, 1}
n−k−1

, the value C at the

start of this innermost loop is exactly given by gqb

. Next, in the innermost loop the algorithm computes

C̃ = Z(0)(∗, ĉ)⊙C. For any i ∈ [λ], we have that C̃i = CZ(0)(i,ĉ) = gqb·Z(0)(i,ĉ). Then if a = 0, the value C′′L is

updated as C′′L = C′′L ⊙ C̃, and if a = 1, the value C′′R is updates as C′′R = C′′R ⊙ C̃. Finally, outside the middle
loop, the values C′L and C′R are updated as C′L = C′L ⊙ (Mc ⋆ C′′L) and C′R = C′R ⊙ (Mc ⋆ C′′R).

Let

ℓ(k)
c =

∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 0b) r(k)
c =

∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 1b).

Then at step (d) of the computation, we have

C′′L = gℓ
(k)
c C′′R = gr

(k)
c ,

which in turn gives that for any i ∈ [λ]

(Mc ⋆ C′′L)i =
∏

j∈[λ]

(C′′L)
Mc(i,j)
j =

∏

j∈[λ]

gMc(i,j)·ℓ
(k)
c (j)

= g

∑
j∈[λ]

Mc(i,j)·ℓ
(k)
c (j)

= gMc(i,∗)·ℓ
(k)
c

(Mc ⋆ C′′R)i =
∏

j∈[λ]

(C′′R)
Mc(i,j)
j =

∏

j∈[λ]

gMc(i,j)·r
(k)
c (j)

= g

∑
j∈[λ]

Mc(i,j)·r
(k)
c (j)

= gMc(i,∗)·r
(k)
c .

49



This implies that at step (3) of the computation, for any i ∈ [λ] we have

(C′L)i =
∏

c∈{0,1}k

(Mc ⋆ C′′L)i =
∏

c∈{0,1}k

gMc(i,∗)·ℓ
(k)
c

= g

∑
c∈{0,1}k Mc(i,∗)·ℓ(k)

c

(C′R)i =
∏

c∈{0,1}k

(Mc ⋆ C′′R)i =
∏

c∈{0,1}k

gMc(i,∗)·r
(k)
c

= g

∑
c∈{0,1}k Mc(i,∗)·r(k)

c .

Notice that
∑

c∈{0,1}k

Mc(i, ∗) · ℓ
(k)
c =

∑

c∈{0,1}k

Mc(i, ∗) ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 0b) = ℓ
(k)
i

∑

c∈{0,1}k

Mc(i, ∗) · r
(k)
c =

∑

c∈{0,1}k

Mc(i, ∗) ·
∑

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 1b) = r
(k)
i .

Thus we have C′L = gℓ
(k)

and C′R = gr(k)

, as desired.

We analyze the time and space complexity of comStreamGen of Algorithm 3. Per iteration of c ∈ {0, 1}
k
,

we update the values C′L, C′R are updated via computing the products Mc ⊙ C′′L and Mc ⊙ C′′R. Since Mc

is a product of binary matrices, this computation can be done via O(k · λ2) group multiplications (rather
than exponentiations). Now per iteration of a ∈ {0, 1}, the value C = g is set, which takes constant

time. Then per iteration of b ∈ {0, 1}n−k−1, the algorithm computes C̃ = CZ(0)(∗,ĉ) and either updates
C′′L or C′′R via C′′L = C′′L ⊙ C̃ or C′′R = C′′R ⊙ C̃. Computing C̃ is dominated by O(λ) group exponents of
size O(p), and updating C′′L and C′′R is dominated by O(λ) group multiplications. Finally, the value C
is updated by a singe exponentiation by q. Thus the total number of operations for the inner loop over
b ∈ {0, 1}

n−k−1
is dominated by O(2n−k−1 · λ) group multiplications and O(2n−k−1 · λ) group exponents off

size at most q, which gives O(2n−k · log(q) ·λ) group multiplications for the loop (a◦b) ∈ {0, 1}×{0, 1}
n−k−1

.
Taking the outer loop, we have that the total number of operations for the algorithm is dominated by
O(2k · (k · λ2 + 2n−k · log(q) · λ)) = O(N · log(N) · log(q) · λ2) group multiplications. Further, again we

access Z(0)(∗, ĉ) where ĉ = c ◦ a ◦ b for c ∈ {0, 1}k, a ∈ {0, 1}, and b ∈ {0, 1}n−k−1. Since c, a, b are
iterated in lexicographic order, we have that ĉ iterates over {0, 1}

n
in lexicographic order. Thus we access

the columns of Z(0) in lexicographic order, and access each column exactly once. Therefore the final runtime
is N · poly(log(N), log(q), λ).

For the space complexity, note that all the verifier challenges are λ × 2λ matrices with entries in {0, 1},
which takes O(k · λ2) bits to store. Note that we compute and store the matrix Mc explicitly and simply
use the verifier challenges to compute our updates as necessary. Next, the vectors C′L, C′R, C′′L , C′′R are vectors
of λ group elements, which takes at most O(λ) group elements to store. Next the value C is a single group
element, which uses Θ(1) group elements of storage. Finally, Z(0)(∗, ĉ) is an integer vector with entries
of magnitude at most p. Therefore the space complexity is dominated by O(λ) group elements and O(λ)
integers of magnitude at most O(p), and O(log(q)) bits to store q. This gives the final space complexity of
log(N) · poly(log(q), λ) bits.

50



D Forking Lemma

D.1 Average-Case Special Soundness

Before presenting our “average-case” notion of special soundness, we recall the standard notion of special
soundness. A Σ-protocol Π = (P, V ) for a binary relation R is said to be special sound if for any input x, one
can efficiently extract a witness that x ∈ LR (i.e., a string w such that (x, w) ∈ R) given any two accepting
transcripts τ1, τ2 for V (x) for which:

1. The first message (which is a prover message by the definition of a Σ-protocol) in τ1 is the same as in
τ2.

2. The second message β1 (a verifier message) in τ1 is different than the second message β2 in τ2.

Our notion of average-case special soundness generalizes the second requirement to events other than
{β1 6= β2}, as long as these other events hold with high probability for uniformly random β1, β2. We also
allow for protocols with more rounds of interaction than Σ-protocols, as was also done by [BCC+16].

Definition D.1 (E-goodness). Let G = (1r, 1ℓ, W ) be an MA[2r] game, and let E ⊆
(
{0, 1}ℓ

)B
be an

arbitrary set.

We say that a B-ary transcript tree φ for G is E-good if for every internal node u of TB,r, with e1, . . . , eB

denoting the edges from u to its children, we have
(
φ(e1), . . . , φ(eB)

)
∈ E.

Definition D.2 (Transcript Trees). Let G = (1r, 1ℓ, W ) be an MA[2r] game. A B-ary transcript tree for G is
a labeling φ of the edges and internal vertices of TB,r, the full and complete B-ary tree of depth r, such that
every root-to-leaf path of TB,r is labeled with an accepting transcript for G.

Definition D.3 (Average-Case Special-Soundness). Let V be an MA[2r(·)] verifier, and let R be a binary
relation.

We say that V is
(
B(·), ǫ(·)

)
-special sound for R if there is a polynomial-time algorithm χ such that for

all x ∈ {0, 1}n, if (1r(n), 1ℓ, W ) denotes the game V (x), there is an event E ⊆
(
{0, 1}ℓ

)B(n)
with density

|E|
2ℓ·B(n) ≥ 1 − ǫ(n) such that if φ is any E-good B(n)-ary transcript tree for V (x), then the output of χ(x, φ)
is a string w such that (x, w) ∈ R.

D.2 Transcript Tree Generating Algorithm

Of course, for our notion of average-case special soundness to be useful, we would like to be able to efficiently
construct an E-good transcript tree (with the right choice of E) for a verifier V , given any (potentially
malicious) prover strategy P that convinces V . In fact, we describe a single procedure for generating
transcript trees φ that works for every high-probability event E.

More abstractly, our procedure produces transcript trees in which:

• Every root-to-leaf path is labeled with a uniformly random accepting transcript for (P, V ).

• Although the labelings of different paths may not be independent, the labeling satisfies a limited form
of independence that we call sibling independence.

Definition D.4 (Sibling Independence). Let G be an MA[2r] game, and let φ be a random variable supported
by B-ary transcript trees for G.

We say that φ is sibling independent if for every internal node u of TB,r with child edges e1, . . . , eB and
root-to-u path p, the random variables

{
φ(ei)

}
i∈[B]

are mutually independent given φ’s labeling of p.

Sibling independence is useful because, if a transcript tree φ is sibling independent, and also labels each
root-to-leaf path “nearly” uniformly at random, then φ is likely to be E-good for any given dense event E.

Proposition D.5. Let G = (1r, 1ℓ, W ) be an MA[2r] game, let P be a function with v[P ](G) = ǫ > 0, let
B ≥ 2 be an integer, and let E ⊆ ({0, 1}ℓ)B be an event with density 1− δ.

51



If φ is a sibling-independent B-ary transcript tree(-valued random variable) for an MA[2r] game G in
which φ’s labeling of each (individual) root-to-leaf path of TB,r is uniformly random on the set of accepting

transcripts for (P,G), then it holds with all but 2Br · B+1

√
δ

ǫB probability that φ is E-good.

Proof. Let φ be a sibling-independent B-ary transcript tree for G that labels each root-to-leaf path with a
uniformly random accepting transcript for (P,G).

For an internal node u of TB,r at depth d and a leaf v that is a descendant of TB,r, we consider three
associated random variables:

• Au = (A1
u, . . . , Ad

u) is φ’s labeling of all ancestor edges of u, in increasing order by depth.

• Du,v = (Dd+1
u,v , . . . , Dr

u,v) is φ’s labeling of all descendant edges of u that are also ancestor edges of v,
in increasing order by depth.

• Cu = (C1
u, . . . , CB

u ) is φ’s labeling of all child edges of u, in some canonical order.

Let M1, . . . , Md denote the messages sent by P in response to verifier messages (A1
u, . . . , Ad

u); that is, for
i ∈ [d], we define Mi = P (A1

u, . . . , Ai−1
u ). Let Gu denote the suffix of G following (M1, A1

u, . . . , Md, Ad
u), and

define the function Pu

Pu(βd+1, . . . , βd+j)
def
=P (A1

u, . . . , Ad
u, βd+1, . . . , βd+j)

We first claim that with for any p ∈ [0, 1], it holds with all but p probability that v[Pu](Gu) ≥ pǫ. This
follows from Claim D.6, along with the characterizations that, if WP denotes the set of verifier messages on
which P succeeds, i.e.

WP =
{

(β1, . . . , βr) :
(
P (), β1, . . . , P (β1, . . . , βr−1), βr

)
∈ W

}
,

then
v[P ](G) = Pr

β1,...,βr←{0,1}ℓ

[
(β1, . . . , βr) ∈ WP

]
= ǫ

and similarly
v[Pu](Gu) = Pr

βd+1,...,βr←{0,1}ℓ

[
(A1

u, . . . , Ad
u, βd+1, . . . , βr) ∈WP

]
.

In applying Claim D.6, we consider the probability space where β1, . . . , βr are i.i.d. uniform on {0, 1}ℓ,
X = (β1, . . . , βd), and the event E in the statement of Claim D.6 is the event that (β1, . . . , βr) ∈WP .

Setting p appropriately, we get that with all but
(

δ
ǫB

)1/(B+1)
probability,

v[Pu](Gu) ≥ (ǫδ)1/(B+1). (35)

The event that v[Pu](Gu) ≥ (ǫδ)1/(B+1) is equivalent to the event that, conditioned on Au, the min-entropy
of Du,v is at least ℓ · (r − d) − log2(ǫδ)/(B + 1). Equivalently, the Rényi ∞-divergence of Du,v from the
uniform distribution on ({0, 1}ℓ)r−d is at most log2(ǫδ)/(B + 1).

For some i, we have Ci
u ≡ Dd+1

u,v . The monotonicity of Rényi∞-divergence then implies that (conditioned

on Au) the Rényi∞-divergence of Ci
u from the uniform distribution on {0, 1}ℓ is also at most log2(ǫδ)/(B+1).

Since {Ci
u}i∈[B] are independent given Au, the conditional Rényi ∞-divergence of Cu from the uniform

distribution on ({0, 1}ℓ)B is at most B
B+1 log2(ǫδ), which means that whenever Eq. (35) holds, we have

Pr[Cu ∈ Ē|Au] ≤
1

(ǫδ)
B

B+1

· Pr
U←({0,1}ℓ)B

[U ∈ Ē]

= (ǫδ)−
B

B+1 · δ

=

(
δ

ǫB

)1/(B+1)

,

52



where Ē denotes the complement of the given event E.

By a union bound, we get that Eq. (35) holds and Pr[Cu ∈ E] with all but 2·
(

δ
ǫB

)1/(B+1)
probability. The

proposition follows by union-bounding over all internal nodes of TB,r (there are at most Br such nodes).

Let (β1, . . . , βr) be uniformly random in ({0, 1}ℓ)r, let E denote the event that it lies in WP , and let X
denote (β1, . . . , βi). Applying Claim D.6 below, we see that with all but p probability, we have that

v[P (β1, . . . , βi, · · · )](G(α1,β1,...,αi,βi)) ≥ pǫ.

Claim D.6. Let P be a probability space with an event E and a random variable X. Let P̃ denote the
conditional probability space P |E. Then

Pr
x←P̃X

[
P (E|X = x) ≤ δ

]
≤

δ

P (E)
.

Proof.

Pr
x←P |E

[
P (E|X = x) ≤ δ

]
=

∑

x:P (E|X=x)≤δ

P (X = x|E)

=
∑

x

P (E|X = x) · P (X = x)

P (E)

≤
∑

x

δ · P (X = x)

P (E)

≤
δ

P (E)
.

Lemma D.7 (Forking Lemma). There exists an probabilistic oracle-algorithm TreeGen such that for every
MA[2r] game G, every interactive function P , and every B ∈ Z+:

• TreeGenP (G, B) is a B-ary transcript tree for G with probability v[P ]
(
G
)

and is otherwise ⊥.

• If v[P ]
(
G
)

> 0, then when sampling

φ← TreeGenP (G, B)
∣∣φ 6= ⊥,

φ is sibling-independent and labels each root-to-leaf path of TB,r with a uniformly random accepting
transcript for (P,G).

• The expected running time of TreeGenP on input (G, B) is O(r · Br · |G|)

Proof. TreeGen is defined in Algorithm 4. The statement of the lemma is then implied by Claims D.8, D.9
and D.12 below.

D.3 Output Distribution of TreeGen

Claim D.8. When sampling φ← TreeGenP (G, B),

Pr[φ 6= ⊥] = v[P ](G).

53



Algorithm 4: TreeGenP (G, B)

Input : An MA[2r] game G =
(
1r, 1ℓ, W

)
(with W given as a Boolean circuit),

an integer B ≥ 2,
and a function P : {0, 1}∗ → {0, 1}∗ (given as an oracle).

Output : A labeling of (the edges and internal vertices of) TB,r.
1 α1 := P ();
2 if |α1| > |G| then return ⊥;
3 if r = 1 then

4 Sample β1
1 ← {0, 1}ℓ ;

5 if W (α, β1
1) = 0 then return ⊥;

6 for i = 2, . . . , B do

7 repeat βi
1 ← {0, 1}ℓ until W (α, βi

1) = 1;

8 return a labeling of TB,1 in which the root is labeled with α1 and the edges are labeled with

β1
1 , . . . , βB

1 ;

9 else

10 β1
1 ← {0, 1}ℓ ;

11 φ1 ← TreeGenP (β1
1 ,··· )(G(α1,β1

1), B);

12 if φ1 = ⊥ then return ⊥;
13 for i = 2, . . . , B do

14 repeat

15 βi
1 ← {0, 1}ℓ ;

16 φi ← TreeGenP (βi
1,··· )(G(α1,βi

1), B);

17 until φi 6= ⊥;

18 return a labeling of TB,r such that:
• TB,r’s root is labeled with α1,
• The ith edge out of TB,r’s root is labeled with βi

1,
• The ith child sub-tree of TB,r’s root is labeled by φi;

Proof. Let G = (1ℓ, 1r, W ) be a given MA[2r] game. Let α1 = P (). Examining Algorithm 4, we see that
Pr
[
TreeGenP (G, B) 6= ⊥

]
is





Prβ←{0,1}ℓ

[
W
(
α1, β

)
= 1
]

if r = 1

Eβ1←{0,1}ℓ

[
Pr
[
TreeGenP (β1,··· )(G(α1,β1), B) 6= ⊥

]]
otherwise.

Similarly, by the definition of v[P ](G) and the law of total expectation,

v[P ](G) =





Prβ←{0,1}ℓ

[
W
(
α1, β

)
= 1
]

if r = 1

Eβ1←{0,1}ℓ

[
v
[
P (β1, · · · )

]
(G(α1,β1))

]
otherwise.

Thus it follows easily (by induction on r) that for all r,

Pr
[
TreeGenP (G, B) 6= ⊥

]
= v[P ](G),

which establishes the claim.

Claim D.9. If v[P ](G) > 0, then when sampling φ ← TreeGenP (G, B)
∣∣φ 6= ⊥ (which is well-defined by

Claim D.8), φ is a sibling-independent transcript tree for (P,G).

54



Proof. Let G = (1ℓ, 1r, W ) be an MA[2r] game, let P : {0, 1}∗ → {0, 1} be a function satisfying v[P ](G) > 0,
and let B ≥ 2 be an integer. To establish sibling independence, we need to show that when sampling
φ← TreeGenP (G, B), the variables {βi

1}i∈[B] (sampled in Lines 4 and 7 of the execution of TreeGen if r = 1
and in Lines 10 and 15) are i.i.d. conditioned on φ 6= ⊥. We analyze the cases r = 1 and r > 1 separately.

If r = 1, the distribution of β1
1 conditioned on φ 6= ⊥ is uniform on {β ∈ {0, 1}ℓ : W (α1, β) = 1} (β1

1 is
sampled uniformly at random from {0, 1}ℓ, and then TreeGen outputs ⊥ if and only if W (α1, β1

1) = 0). For
i > 1, the loop at Line 7 rejection samples βi

1 so that it has the same distribution conditioned on any values
for β1

1 , . . . , βi−1
1 ), as claimed.

If r > 1, the argument is similar but the distribution of each βi
1 is slightly more complicated. Lines 11

and 12 and Claim D.8 ensure that Pr
[
β1

1 = β
∣∣φ 6= ⊥

]
is proportional to v[P (β, · · · )](G(α1,β)), where α1 = P ().

The loop at Line 14 similarly rejection samples each βi
1 for i > 1 to have the same distribution conditioned

on any values for β1
1 , . . . , βi−1

1 .

Claim D.10. Fix r, B ∈ Z+ and an MA[2r] game G. Let p be any fixed root-to-leaf path in TB,r. When
sampling

φ← TreeGenP (G, B)
∣∣∣φ 6= ⊥, (36)

the labeling assigned to p by φ is uniformly random on the set of all accepting transcripts for (P,G).

Proof. Let G = (1r, 1ℓ, W ). To sample a uniformly random accepting transcript (α1, β1, . . . , αr, βr) for (P,G),
first note that consistency with P dictates that α1 must be equal to P () (which is indeed how α1 is chosen
in TreeGen). Then, it suffices to:

1. Choose β1 ∈ {0, 1}ℓ with probability proportional to v[P (α1, · · · )](G(α1,β1)).

2. Choose (α2, β2, . . . , αr, βr) uniformly at random from the set of accepting transcripts for (P,G(α1,β1)).

It is easy to see (or formally prove by induction on r) that this is what TreeGen does.

D.4 Efficiency of TreeGen

It remains to analyze the expected running time of TreeGen. We start by bounding the number of oracle
queries made to P when evaluating TreeGenP (G, B).

Claim D.11. If G is any MA[2r] game, then the expected number of queries made to P when evaluating
TreeGenP

(
G, B

)
is at most Br−1

B−1 .

Proof. Our proof is by induction on r. Let QE(r, B) denote the maximum possible expected number of queries
to P made by TreeGenP (G, B), where we are maximizing over all MA[2r] games and provers P : {0, 1}∗ →
{0, 1}∗.

Base case: If r = 1, then TreeGen only makes one query to P as claimed, namely to determine α1, so
QE(1, B) = 1.

Inductive case: If r > 1, then TreeGen also makes recursive calls to TreeGen.

For any fixed inputs G, P , B to TreeGen, let Q1 be a random variable denoting the number of queries to
P (·) induced by the first call to TreeGen (Line 11). Similarly, let Qi,j denote the number of queries to P (·)
induced by the jth recursive call to TreeGen in the ith iteration of the loop at Line 13, or let Qi,j = 0 if fewer
than j recursive calls are made in the ith iteration. The total number of queries made by TreeGen to P as a

random variable is then Q
def
=1 + Q1 +

∑B−1
i=1

∑∞
j=1 Qi,j .

Let α1 denote P () and let p denote the probability when sampling

β1 ← {0, 1}ℓ

φ1 ← TreeGenP (α1,··· )(G(α1,β1), · · · ), B)

55



that φ1 6= ⊥. The inductive hypothesis tells us that

E
[
Q1

]
=

Br−1 − 1

B − 1

and (using the fact that we reach the jth iteration of Line 13 with probability (1− p)j−1)

E
[
Qi,j

]
= p · (1 − p)j−1 ·

Br−1 − 1

B − 1
.

Summing expectations, we get

E[Q] = 1 +
Br−1 − 1

B − 1
+ (B − 1) ·

Br−1 − 1

B − 1

= 1 + B ·
Br−1 − 1

B − 1

=
Br − 1

B − 1
.

Since G, P , and B were arbitrary, we conclude that QE(r, B) ≤ Br−1
B−1 .

Claim D.12. If G is any MA[2r] game, then the expected running time of TreeGenP on input (G, B) is at
most O(r · Br · |G|), where |G| denotes the description length of G.

Proof. Let our bound on the expected running time be denoted by t(r, B, |G|).

We prove the claim by induction on r. First, it is easy to see that t(1, B, |G|) = O(B · |G|) as claimed.

For r > 1, let T be a random variable denoting the total running time of TreeGen. Similarly let T1 denote
the running time of the first recursive call to TreeGen (Line 11), and let Ti,j denote the running time of the
jth recursive call in the ith iteration of the loop on Line 13 (or 0 if the loop has fewer than i iterations). The
rest of the algorithm takes O(Br · |G|) expected time, namely:

• O(ℓ) ≤ O(|G|) time per oracle query made by the recursive calls, of which there are at most Br in
expectation by Claim D.11.

• O(Br · |G|) time for the other lines of the algorithm

Thus we have

E[T ] = O
(
Br · |G|

)
+ E[T1] +

B−1∑

i=1

∞∑

j=1

E[Ti,j ]. (37)

Let α1 denote P () and let p denote the probability when sampling

β1 ← {0, 1}ℓ

φ1 ← TreeGenP (β1,··· )(G(α1,β1), B)

that φ1 6= ⊥.

By the inductive hypothesis, the fact that we reach the jth iteration of the loop at Line 13 with probability
(1 − p)j−1, and the fact that recursive sub-calls are given a game G′ with |G′| ≤ |G|, we have

E[T1] = O(Br−1 · |G|) (38)

and
E[Ti,j ] = p(1− p)j−1 ·O(Br−1 · |G|). (39)

Plugging into Eq. (37),21 we get that E[T ] = O(Br · |G|).

This concludes the proof of Lemma D.7.
21Here we actually require that each Ti,j is uniformly bounded as in Eq. (39)

56



D.5 Witness Extended Emulation for (Average-Case) Special Sound Protocols

Corollary D.13. For any parameters B, r ∈ Z+ and δ ∈ [0, 1], if V is an MA[2r] verifier with (B, δ)-special

soundness for a relation R, then V has statistical witness-extended 2Br · δ
1

2(B+1) -emulation with respect to
R.

Proof. By assumption, there exists an event E ⊆ ({0, 1}∗)B and a polynomial-time computable function χ
such that for any E-good B-ary transcript tree φ for V (x), χ(x, φ) outputs some w such that (x, w) ∈ R.

Define an expected polynomial-time extractor E as follows. Given an input x ∈ {0, 1}∗ and oracle access
to a function P : {0, 1}∗ → {0, 1}∗, E performs the following steps:

1. Sample φ← TreeGenP
(
V (x), B

)
.

2. If φ = ⊥, then rejection sample a uniformly random non-accepting transcript τ for (P, V (x)) and
output (τ,⊥).

3. If φ 6= ⊥, then let τ be φ’s labeling of an arbitrary fixed root-to-leaf path (e.g. the left-most one) in
TB,r, and output

(
τ, χ(x, φ)

)
.

E runs in expected polynomial-time because TreeGen does, and because the number of iterations required
in the rejection sampling step is inversely proportional to the probability with which the rejection sampling
happens.

The first component of E ’s output (τ, w) is a uniformly random transcript for (P, V (x)) because of
Claims D.8 and D.10.

We now bound the probability that τ is an accepting transcript and (x, w) /∈ R. Let ǫ denote v[P ]
(
V (x)

)
.

If ǫ ≥ δ1/2B then by Proposition D.5, conditioned on τ being an accepting transcript, it holds with all but

2Br ·
(

δ
ǫB

)1/(B+1)
≤ 2Brδ1/2(B+1) probability that φ is E-good and thus by the correctness of χ, w satisfies

(x, w) ∈ R.

On the other hand, if ǫ ≤ δ1/2B then the probability that τ is an accepting transcript is ǫ, which is also
less than 2Brδ1/2(B+1).

E Proofs from Section 6

E.1 Proof of Proposition 6.1

Proof. Let Y ∈ F2n

be some multilinear polynomial, and let Z ⊆ Z(p/2)N be the corresponding integer
sequence, that is, Z = (JYbK)b∈{0,1}n . Let pp be a string in the support of Setup(1λ, p, 1n), (C; d) =
Com(pp,Y), and let ζ ∈ Fn be the evaluation point and γ = ML(Y, ζ). To argue perfect correctness, it is
sufficient to argue that at the end of the call to Eval(pp, C, ζ, γ;Y, d), the verifier accepts.

Recall that Eval calls MultiEval (described in Algorithm 1) as a subroutine which is a recursive protocol
that takes as inputs a commitment C ∈ Gλ, parameter k ∈ N (starting from k = 0 in the first call to MultiEval,
and increasing by 1 in every subsequent call to MultiEval until k = n), evaluation point ζ = (ζn, . . . , ζ1),

evaluation claim γ ∈ Fλ and an integer witness sequence Z ∈ Zλ×2n−k

. In every call to MultiEval, the verifier
performs checks involving C, γ and Z (in Line 9, Line 8 and Line 3 of Algorithm 1), and it is easy to see
that verifier accepts if and only if all these checks pass. We next show that this is indeed the case.

Notation. For this, it will be convenient to augment symbols with superscript (k) to denote inputs for
MultiEval with depth parameter k. For example, we denote the inputs to first call (i.e., when k = 0) to

MultiEval as (C(0), k = 0, ζ, γ(0); Z(0)) where C(0) ∈ Gλ, ζ ∈ Fn, γ ∈ Fλ, Z(0) ∈ Zλ×2n

, and denote the

inputs to the (n + 1)-th call to MultiEval (i.e., when k = n) as (C(n), k = n, ζ, γ(n); Z(n)) where Z(n) ∈

Zλ×1. Similarly, we let C
(k)
L , C

(k)
R , γ

(k)
L , γ

(k)
R be prover’s message in call to MultiEval with parameter k, and

57



let U (k) = [U
(k)
L ‖U

(k)
R ] be the corresponding verifier message using which prover and verifer define inputs

C(k+1), γ(k+1), Z(k+1) to the next call to MultiEval. Finally, recall that Encq is an encoding scheme defined
in Section 5.1 that encodes integer sequences as integers.

First, we show that if Z(k) is a “witness” for (C(k), ζ, γ(k)) then so is Z(k+1) for (C(k+1), ζ, γ(k+1)). This
establishes the correctness of MultiEval (leaving aside verifier checks which we argue below).

Claim E.1 (correctness of Z(k+1)). For every 0 ≤ k ≤ n− 1,

C(k) = gEncq(Z(k))

∧
γ(k) = ML(Z(k), (ζn, . . . , ζk+1))

=⇒
C(k+1) = gEncq(Z(k+1))

∧
γ(k+1) = ML(Z(k+1), (ζn, . . . , ζk+2))

(40)

Proof. γ(k+1) being the evaluation of Z(k+1) on input (ζn, . . . , ζk+2) follows directly from the definition of
γ(k+1) and Z(k+1) detailed in Line 11 and Line 12 of Algorithm 1, and that γ(k) is the evaluation of Z(k) on
input (ζn, . . . , ζk+1).

Recall Z(k+1) = (U
(k)
L · Z

(k)
L ) + (U

(k)
R · Z

(k)
R ). Then, since Encq is linearly homomorphic, we have

Encq(Z(k+1)) = U
(k)
L · Encq(Z

(k)
L ) + U

(k)
R · Encq(Z

(k)
R ), (41)

then raising both sides by g, we have that

gEncq(Z(k+1)) = U
(k)
L · C

(k)
L + U

(k)
R · C

(k)
R , (42)

where the right-hand-side, by definition, is C(k+1) (as defined in Line 11 of Algorithm 1).

Next, we show that the check involving (γ, γL, γR) described in Line 8 of Algorithm 1 pass.

Claim E.2 (γ-correctness). For every 0 ≤ k ≤ n− 1,

γ(k) = γ
(k)
L · (1− ζk+1) + γ

(k)
R · ζk+1. (43)

This immediately follows from the definition of ML and how definition of γL and γR.

Next, relying on perfect correctness of PoE protocol, we show that the check involving (C, CL, CR) de-
scribed in Line 9 of Algorithm 1 also pass.

Claim E.3 (C-correctness). For every 0 ≤ k ≤ n− 1,

C(k) = C
(k)
L ⊙

(
C

(k)
R

)q2n−k−1

. (44)

Proof. Due to the property of our encoding scheme, we have

Enc(Z(k)) = Enc(Z
(k)
L ) + q2n−k−1

· Enc(Z
(k)
R ). (45)

Raising both L.H.S. and R.H.S. by g, we have that C(k) = C
(k)
L ⊙

(
C

(k)
R

)q2n−k−1

.

Next, we focus on the check performed by the verifier in Line 3 of Algorithm 1 concerning the bounds on
entries in Z(n). We show that the entries in Z(k) for every k are bounded, which helps us arrive at a bound
for entries in Z(n).

58



Claim E.4 (Bound on Z(n)).
‖Z(n)‖∞ ≤ p(2λ)n. (46)

Proof. To show this, we analyze how the entries in Z(k) grow in each call to MultiEval. Observe that we
have Z(0) which equals λ-copies of the sequence Z given as input to Eval. This implies that Z(0) ⊆ Z(p/2).
At the end of the call to MultiEval with parameter k, prover defines sequences Z(k+1) from sequences Z(k)

and verifier challenge U (k) ∈ {0, 1}
λ×2λ

. More specifically, each element of sequences Z(k+1) is a linear
combination of a total of 2λ entries from sequences Z(k). Therefore, if elements of Z(k) are bounded by some
B then elements in Z(k+1) are bounded by 2λ ·B. This gives us that for each k ∈ {0} ∪ [n] we have

Z(k) ⊆ Z(p/2 · (2λ)k) . (47)

Therefore, elements of Z(n) are bounded by p/2 · (2λ)n, hence ‖Z(n)‖∞ is as desired by the verifier
in Line 3 of MultiEval (Algorithm 1).

Now, the perfect correctness of Eval follows immediately from Claims E.1 to E.4.

E.2 Proof of Proposition 6.2

Proof. Suppose for contradiction that there exists some family of non-uniform polynomial-size circuits A =
{Aλ} that breaks binding. That is, Aλ(pp) with non-negligible probability over the choice of pp = (q,G, g)
outputs a commitment C, and two openings (Y1,Z1) and (Y2,Z2) such that:

• Y1 6= Y2; and

• for j ∈ [2], (
C = gEncq(Zj)

)
∧
(
Zj ⊆ Z(q/2)

)
∧
(
Yj = Zj(mod p)

)
.

We use such an A to find a non-trivial multiple of the order of g, which contradicts the Hidden Order
Assumption.

Let us define zj as the encoding of the integer sequence Zj , that is, zj = Encq(Zj). Then, since gz1 =
C = gz2 we have that gz1−z2 = 1. The only thing left to prove is that z1 6= z2 which follows from the
injectivity of Encq scheme (Fact 5.1) and the fact that Z1 6= Z2 (the latter follows from Y1 6= Y2).

E.3 Proof of Lemma 6.4

Proof. At a high level given an emulator E ′ for the protocol Eval′, we build an emulator E for the protocol
Eval such that for every P : {0, 1}∗ → {0, 1}∗, EP satisfies the conditions described in Definition 3.7.

EP internally runs E ′ and simulates its oracle (say P ′) by making queries to own oracle P . More
specifically, for every query asked by E ′, E queries its oracle P and forwards the response to E ′ after removing
parts of the transcript that correspond to PoE proofs. When E ′ terminates by outputting some transcript-
witness pair (tr′,Z), E adds PoE proofs to the transcript to obtain tr, and outputs (tr,Z) as its transcript-
witness pair.

First note that since PoE protocol is statistically sound, it follows that all transcripts obtained by E
from its oracle P are equivalent to having the verifier directly perform the check in Line 9 (of Algorithm 1)
locally, except with negligible probability. Next, note that if (tr′,Z) output by E ′ satisfies the conditions
in Definition 3.7 then so does (tr,Z) as adding the PoE proofs to tr′ doesn’t change the validity of the
transcript.

59



E.4 Proof of Lemma 6.5

Recall from Definition D.3 that to show average-case (c, ǫ)-special soundness, it is sufficient to present a
polynomial-time extractor χ such that for every statement x = (pp, C, γ, ζ) there exists some event A ⊆(
{0, 1}λ×2λ

)c
with density 1 − ǫ, such that for every A-good c-ary transcript tree φ, the extractor χ(x, φ)

outputs a witness Z for the statement x.

Towards proving Lemma 6.5, we first define the “dense” event A.

The event A. Let A ⊆
(
{0, 1}λ×2λ

)c
be defined as follows,

A =





(U1, . . . , Uc) ∈

(
{0, 1}λ×2λ

)c
: U =




U1

U2

...
Uc


has left inverse over Z





. (48)

Note that we want A to be dense, and hence set the value of c such that cλ× 2λ matrices U ∈ A have a
left inverse over the integers. From Lemma A.1, we know that a uniform m× n dimension matrix has a left
inverse except with 2−Ω(n) probability, whenever m ≥ 5n. This is the reason we set c = 10. Secondly, the
remark after Lemma A.1 shows that entries in the inverse of elements in A are bounded by 2poly(λ), and the
inverse can be computed in poly(λ) time. Next, we argue that A is dense.

Claim E.5. A has density 1− 2−Ω(λ).

Proof. This follows directly from Lemma A.1.

Next, let us fix some c-ary transcript tree φ which is A-good (as per Definition D.1). At a high level, our
extractor computes a decommitment of every node of the tree when given decommitments of its children (note
that the leaves correspond to statements of size one for which the prover already provides the decommitment).
In this way, starting from the decommitments of the leaves of φ, the extractor computes a decommitment of
the root of φ, which is a witness of x. Before describing our full extractor in detail, we next discuss how to
extract a decommitment of a node from the decommitments of its children.

Extracting decommitments of a node in φ. In Definition E.6 we first formally define what it means to
be a decommitment of a node, then in Lemma E.7 provide an efficient (and more importantly, unconditional)
extractor.

Notation. For ease of presentation, we overload the definitions of Dec and ML, and let them act on
vectors with an understanding that they act individually on each component of the vector. That is, for z =
(z1, z2, . . . , zλ) ∈ Zλ, by Z = Dec(z) we mean Zi = Dec(zi) for all i ∈ [λ]. Similarly, for ζ ∈ Fn, Z ∈ Zλ×2n

,
by γ = ML(Z , ζ) we mean that for every i ∈ [λ], γi = ML(Zi, ζ). Note that the evaluation point ζ is the
same across all i ∈ [λ].

Definition E.6 (Decommitment of a Tree Node). For k ∈ {0}∪[n], B ∈ Z, we say that z = (z1, . . . , zλ) ∈ Zλ

is a (k, B)-decommitment of (C ∈ Gλ, γ ∈ Fλ, ζ ∈ Fn−k) whenever the following holds:

1. z is the discrete-logarithm of C (w.r.t. g), that is, gz = C.

2. For Z = Dec(z), we require that each zi encode an integer sequence of size 2n−k whose entries are

bounded by B. That is, Z ∈ Z(B)λ×2n−k

.

3. ML(Z , ζ) = γ.

Given this, consider the following lemma which describes the core step of our extraction. We empha-
size that [BFS20] also give an extractor with a similar core step, however, seem to require computational
assumptions to argue the correctness of their extraction. Our extraction is unconditional.

60



Lemma E.7. Let k ∈ [n]. Let CL, CR ∈ Gλ, γL, γR ∈ Fλ and ζ ∈ Fn−k, {Uj, Cj , γj}j∈[c] be c transcripts
where for every j ∈ [c], Uj = [ULj || URj ] is the verifier message, and Cj and γj are defined as in Line 11 in
Algorithm 1:

Cj = (ULj ⋆ CL)⊙ (URj ⋆ CR),

γj = (ULj · γL) + (URj · γR),

Also, (U1, . . . , Uc) ∈ A, and let U be the cλ×2λ matrix obtained by stacking U1, . . . , Uc. Finally, for B ∈ R≥1

such that ‖U−1‖∞ · B · c · λ < q/2, let z1, . . . , zc ∈ Zλ be such that each zj is a (k, B)-decommitment of
(Cj , γj , ζ).

Then, there exists an efficient procedure that outputs integer vectors zL, zR ∈ Zλ such that zL (resp., zR)
is a (k, ‖U−1‖∞ ·B · c · λ)-decommitment of (CL, γL, ζ) (resp., (CR, γR, ζ)).

Proof. Recall from the statement of the lemma that U is the following matrix of dimension cλ× 2λ,

U =




U1

U2

...
Uc


 . (49)

Since, (U1, . . . , Uc) ∈ A, U has a left inverse over the integer with bounded entries. Let U−1 be one such
matrix. In particular, U−1 has dimnesions 2λ× cλ and ‖U−1‖∞ ≤ 2poly(λ) (from Lemma A.1).

Next, we define zL, zR ∈ Zλ as follows:

[
zL

zR

]
= U−1




z1

z2

...
zc


 ; ZL = Decq(zL) ; ZR = Decq(zR) . (50)

First, note that zL, zR are efficiently computable as U−1 is, therefore our extraction is efficient. The rest of
the proof shows that zL is a (k, ‖U−1‖∞·Bcλ)-decommitment of (CL, γL, ζ), and that zR is a (k, ‖U−1‖∞·Bcλ)-
decommitment of (CR, γR, ζ). At a high level, proof follows from the homomorphic properties of (Encq, Decq).

We begin by showing that zL and zR are discrete-logarithms of CL and CR respectively, this is captured
in Claim E.8.

Claim E.8.

g

[
zL

zR

]

=

[
CL

CR

]
. (51)

Proof. First, by definition of Cj ’s we know that for all j ∈ [B],

Cj = Uj ⋆

[
CL

CR

]
, (52)

Equivalently, this can be expressed as the following linear system,




C1

C2

...
Cc


 = U ⋆

[
CL

CR

]
. (53)

61



Since gzj = Cj for all j ∈ [c], we have

U−1 ⋆




gz1

gz2

...
gzc


 =

[
CL

CR

]
. (54)

Claim E.8 follows by first pushing U−1 inside the exponent and then observing Equation (50).

To continue with the proof, we need to show that entries in ZL and ZR are bounded, and evaluating
the multilinear polynomial defined by ZL (resp., ZR) on ζ equals γL (resp., γR). Towards proving this, we
make explicit the relation between the elements of ZL, ZR and that of Z1, . . . , Zc, formalized in Claim E.9.

Claim E.9.

[
ZL

ZR

]
= U−1




Z1

Z2

...
ZB


 (55)

Proof. Let B1 = ‖U−1‖∞. Next, since zj ’s are (k, B)-decommitments, we have Zj ∈ Z(B)λ×2n−k

. Let
B2 = B. Then, consider decoding zL and zR,

[
Dec(zL)
Dec(zR)

]
= Dec

(
U−1




z1

z2

...
zB



)

, (56)

where the equality follows from the definition of zL and zR (as defined in Equation (50)).

Then, we apply Claim 5.2 to the right hand side, which allows us to pull U−1 outside of Dec. We recall
that we are applying Claim 5.2 with parameters: ℓ = cλ, B1 and B2 as defined above. Note that we will
need ‖U−1‖∞ · B < q/(2cλ), which we have from the premise of Lemma E.7. So, applying Claim 5.2, we
have

Dec
(

U−1




z1

z2

...
zc




)
= U−1 · Dec

(



z1

z2

...
zc




)
. (57)

But, since Dec(zL) = ZL, Dec(zR) = ZR and Dec(zi) = Z i, we have the claim.

Next, we show that entries of Z = Dec(z) are bounded, and that each Zi is appropriate size, formally
captured in Claim E.10.

Claim E.10. For ZL, ZR as defined in Equation (50), then entries in ZL, ZR are bounded by ‖U−1‖∞ ·Bcλ,

and each ZL, ZR ∈ Zλ×2n−k

.

Proof. In fact, from Claim E.9, we can infer that for every b ∈ {0, 1}n−k we have

[
ZL(b)
ZR(b)

]
= U−1




Z1(b)
Z2(b)

...
Zc(b)


 (58)

62



Now, Claim E.10 immediately follows: every entry in ZL is bounded in magnitude by ‖U−1‖∞ ·B ·cλ.

Finally, we show that evaluating the multilinear polynomial defined by ZL on ζ will give us γL. Similarly,
for ZR and γR.

Claim E.11. For ZL, ZR as defined in Equation (50),

ML(ZL, ζ) = γL ; ML(ZR, ζ) = γR. (59)

Now we begin showing Claim E.11. Observe that by the assumption of zj ’s being decommitments we
have,




γ1

γ2
...

γc


 =




∑
b

Z1(b) · χ(ζ, b)
∑
b

Z2(b) · χ(ζ, b)

...∑
b

Zc(b) · χ(ζ, b)




, (60)

where b ∈ {0, 1}n−k.

Rewritting this, 


γ1

γ2
...

γc


 =




Z1

Z2

...
Zc


 ·




...
χ(ζ, b)

...


 . (61)

By definition of γj as computed in the protocol MultiEval (Algorithm 1),

U

[
γL

γR

]
=




γ1

γ2
...

γc


 . (62)

Finally, combining Equation (61) and Equation (62) we have the following,

[
γL

γR

]
= U−1




Z1

Z2

...
Zc







...
χ(b, ζ)

...


 . (63)

Finally, from Claim E.9 we have

[
γL

γR

]
=

[
ZL

ZR

]



...
χ(b, ζ)

...


 =

[
ML(ZL, ζ)
ML(ZR, ζ)

]
. (64)

This concludes the proof of Claim E.11. Finally, Lemma E.7 follows from Claim E.8, Claim E.10 and
Claim E.11.

63



E.4.1 The Extractor χ

Now, we are all set to describe our extractor χ. But first let us develop some notation for the transcript tree
φ for some statement x = (C ∈ Gλ, ζ = (ζn, . . . , ζ1) ∈ Fn, γ ∈ Fλ).

Attributes of a node in φ. For any nodes u and v in φ connected via edge e, informally, the labels of
nodes u and v and edge e collectively define a transcript for a call to MultiEval. Also recall that we are
working with a c-ary tree so each node u is connected to c many nodes in φ. With this view in mind, we
describe formally the attributes of nodes v of φ.

A non-leaf node v of φ has the following attributes:

1. depth parameter: v.depth ∈ [0, . . . , n].

2. statement: v.stmt ∈ Gλ × Fλ.22

3. prover message: v.pmessage ∈ Gλ ×Gλ × Fλ × Fλ.

4. B-transcripts: for i ∈ [c], v.vmessage(i) ∈ {0, 1}λ×2λ is the verifier message corresponding to the prover
message pmessage, and resulting in the statement v.child(i).stmt.

5. decommitment: v.decom ∈ Zλ such that Z = Dec(v.decom) is supposed to be the decommitment of
v.stmt.

A leaf-node v of φ has the same set of attributes as a non-leaf node except that v.pmessage ∈ Zλ, and
v.vmessage(i) and v.child(i) are set to ⊥ for all i ∈ [c].

We recall that φ is a A-good tree, so for all non-leaf nodes v, the corresponding c verifier messages
{v.vmessage(i)}i∈[c] belong to the set A (defined in Equation (48)).

Extractor χ. Our extractor χ is given a c-ary A-good transcript tree where nodes have attributes defined
above. The extractor proceeds to extract the decommitment from leaves to the root. Recall that for any
leaf-node v, we have v.depth = n and v.stmt is of size 1. From Line 2 in Algorithm 1 we know that v.pmessage
actually is a integer vector Z ∈ Zλ such that verifier checks in Line 3 in Algorithm 1 pass. The extractor
sets v.decom = Z. Now, for every non-leaf node v for which the decommitments of all its c-children is
defined, the extractor runs Lemma E.7 on inputs v.pmessage = (CL, CR, γL, γR), and c-verifier messages
{v.vmessage(i) = Uv,i}i∈[c] and c statements {v.child(i).stmt = (Ci, γi)}i∈[c] along with the decommitments
of each of its c children {v.child(i).decom = zi}i∈[c]. Then, Lemma E.7 outputs two integer vectors zL and
zR which are decommitments (as per Definition E.6) of (CL, CR, γL, γR). Given this, the extractor stitches
zL and zR together to compute a new integer z as follows:

z = zL + q2n−v.depth−1

· zR. (65)

At a high level, the idea is that since zL and zR are decommitments of (CL, γL) and (CR, γR) respectively,
z as defined above is a decommitment of v.stmt = (C, γ). With this expectation, extractor proceeds to set
v.decom = z. At the end of this process (when decom of all nodes are defined), root.decom is defined. The
extractor then outputs Dec(root.decom) as its witness.

Correctness of χ. To argue that extractor succeeds, we need to show that whenever extractor calls Lemma E.7,
we have that the each of the c-decommitments z1, . . . , zc encode integer sequences who elements are appro-
priately bounded. Secondly, we need to show that Z = Dec(root.decom) indeed is a decommitment for
root.stmt.

For any node v, let Uv be the cλ× 2λ matrix obtained by stacking all the c verifier challenges {Uv,i}i∈[c]

corresponding to node v. Let BU be the maximum of ‖U−1
v ‖∞ over all nodes v. Also, let Bv ∈ R such that

Dec(v.decom) ∈ Z(Bv)λ×2n−v.depth

. For k ∈ [0, . . . , n], let Bk be the maximum of all Bv such that v.depth = k.

22We note that v.stmt must also include the evaluation point (ζn, . . . , ζv.depth+1) which is implicit from v.depth and ζ. For
simplicity of notation we ignore writing the evaluation point explicitly in the statement.

64



Claim E.12. At the end of the extraction, for every k ∈ [1, . . . , n] we have BU ·Bkcλ < q/2, and B0 < q/2.

Proof. To argue this, let us first understand how elements of integer sequences extracted by χ grow. Note,
that for a leaf-node v, we have v.decom ∈ Zλ is such that all entries are bounded by p(2λ)n. Otherwise, the
check in Line 3 of Algorithm 1 would not pass. Then, we have that Bn ≤ p(2λ)n.

Now, note that for every non-leaf node v, we define v.decom by stitching together zL and zR as described
in Equation (65), where zL and zR are output of Lemma E.7 called on decommitments of v’s children. So,
for depth k ∈ [0, . . . , n], let Bk represent the (maximum over all nodes at depth k) the bound on entries
in the sequence obtained by decoding their decommitment. From Lemma E.7 and Equation (65), we can
conclude that Bk−1 = BU × Bkcλ. Unfolding the recurrence relation, we have B0 ≤ (BU cλ)n · p(2λ)n.
From Lemma A.1, we know that BU ≤ 2l(λ) for sufficiently large polynomial polynomial l, then B0 < q/2
follows by setting q/2 > p · 2poly(λ)·n for some sufficiently large polynomial poly(λ).

Claim E.13. At the end of extraction, for Z = Decq(root.decom) we have

Z ⊆ Z(q/2) ∧ C = gEncq(Z) ∧ML(Z , ζ) = γ (mod p) , (66)

where root.stmt = (C, ζ, γ) ∈ Gλ × Fn × Fλ.

Proof. Z ⊆ Z(q/2) follows directly from Claim E.12.

We show that Z satisfies the remaining two conditions inductively (see Section 6.2 for an overview of the
ideas behind this proof). That is, let v be some node in φ. Let Zv = Dec(v.decom). Then, we show that
for every node v in φ we have gEncq(Zv) = Cv and γv = ML(Zv, (ζn, . . . , ζv.depth+1)) where v.stmt = (Cv, γv).
When v is a leaf node, the verifier exactly performs these checks in Line 3 of Algorithm 1. Let us assume
that the above is true for all nodes u such that u.depth > k. Then, consider a node v at depth k. To show
that Zv satisfies the above conditions, recall that v.decom is computed from Equation (65) where zL and zR

are computed by calling Lemma E.7 on v’s children which have depth k + 1. Since the induction hypothesis
holds for v’s children, then from Lemma E.7 pwe have that zL and zR satisfy

gzL = CL ; γL = ML(ZL, (ζn, . . . , ζv.depth+2)) mod p

gzR = CR ; γR = ML(ZR, (ζn, . . . , ζv.depth+2)) mod p,
(67)

where CL(CR)q2n−v.depth−1

= Cv and γv = (γL)(1 − ζv.depth+1) + (γR)(ζv.depth+1), and ZL = Dec(zL) and
ZR = Dec(zR).

First we argue that gv.decom = Cv. This follows from the following chain of equalities,

Cv = CL(CR)q2n−v.depth−1

= gzLgzR·q
2n−v.depth−1

= gv.decom , (68)

the final equality follows from Equation (65).

Next, we show that γv = ML(Zv, (ζn, . . . , ζv.depth+1)). Here,

γv = γL(1 − ζn−v.depth+1) + γR(ζn−v.depth+1) mod p

= ML(ZL, (ζn, . . . , ζn−v.depth+2))(1 − ζn−v.depth+1) + ML(ZR, (ζn, . . . , ζn−v.depth+2))ζn−v.depth+1 mod p

ML(Zv, (ζn, . . . , ζn−v.depth+1)),

(69)

where the second inequality follows from Equation (67), and the final equality follows from the fact that
Zv is the sequence which is the concatenation of sequences ZL and ZR, which furthermore follows from
the definition of v.decom. Then combining Equation (68) and Equation (69) we have that Zv satisfies
gEncq(Zv) = Cv and γv = ML(Zv, (ζn, . . . , ζn−v.depth+1)). Then, the claim follows.

65



This concludes the proof of Lemma 6.5, which concludes the proof of Proposition 6.3.

66


	Introduction
	Our Results
	Additional Related Works
	Organization

	Technical Overview
	Overview of the DARK Scheme
	A Gap in the Proof
	Resolving the Gap
	Small Space Implementation
	Generalizing Pietrzak's Proof of Exponentiation Protocol

	Preliminaries
	Notation
	Multilinear Polynomials
	Groups of Hidden Order
	Interactive Games and Proof Systems
	Multilinear Polynomial Commitment

	Our Results
	Multilinear Polynomial Commitment Scheme in Hidden Order Groups
	Encoding Multilinear Polynomials as an Integer
	Scheme

	Correctness and Security Proofs
	A variant of Eval with no PoE proofs
	Average-Case Special Soundness of Eval'

	Space-Efficient Multilinear Polynomial Commitment Scheme in the Streaming Model
	Space-Efficient Implementation Overview
	Space-Efficient Implementation of Com
	Computing ML(Y,z)
	Space-Efficient Implementation of Eval
	Efficiency of PoE.
	Computing the Final Committer Message Efficiently.

	Receiver Efficiency
	Proof of Proposition 6.1

	Proof-of-Exponentiation in Arbitrary Groups
	Our PoE Protocol

	From Polynomial Commitments to ZK Arguments
	Interactive PCP (IPCP)
	Compiling IMPCP s into Arguments using Polynomial Commitments
	The Succinct Argument-System
	Obtaining Zero-Knowledge

	Acknowledgments
	One-Sided Integral Inverses for Random Binary Matrices
	Lattices Background
	Proof of lem:matrixinverse

	Formal Integer Decoding Algorithm
	Proof of fact:enc-security

	Efficiency Proofs
	Forking Lemma
	Average-Case Special Soundness
	Transcript Tree Generating Algorithm
	Output Distribution of TreeGen 
	Efficiency of TreeGen 
	Witness Extended Emulation for (Average-Case) Special Sound Protocols

	Proofs from Section 6
	Proof of prop:correctness
	Proof of prop:binding
	Proof of lem:poesubstitutions
	Proof of lem:spsoundness
	The Extractor 



