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Abstract

Plateaued functions as an extension of bent functions play a significant role in cryptography, coding
theory, sequences and combinatorics. In 2019, HodZi¢ et al. [IEEE TIT 65(9): 5865-5879, 2019] designed
Boolean plateaued functions in spectral domain and provided some efficient construction methods in
spectral domain. However, in their constructions, the Walsh support of Boolean s-plateaued functions in
n variables, when written as a matrix of order 2" ~° x n, contains at least n — s columns corresponding
to affine functions on [F; ™", In this paper, we study generalized s-plateaued functions from V;, to Z,x
where p is an odd prime and £ > 1 or p = 2,k > 2 and n + s is even. Firstly, inspired by the work
of Hodzi¢ et al., we give a complete characterization of generalized plateaued functions with affine
Walsh support and provide some construction methods of generalized plateaued functions with (non)-
affine Walsh support in spectral domain. In our constructions of generalized s-plateaued functions with
non-affine Walsh support, the Walsh support can contain strictly less than n — s columns corresponding
to affine functions and our construction methods are also applicable to Boolean plateaued functions.
Secondly, we provide a generalized indirect sum construction method of generalized plateaued functions,
which can also be used to construct (non)-weakly regular generalized bent functions. In particular, we
show that the canonical way to construct Generalized Maiorana-McFarland bent functions is a special
case of the generalized indirect sum construction method and we illustrate that the generalized indirect
sum construction method can be used to construct bent functions not in the complete Generalized
Maiorana-McFarland class. Furthermore, based on this construction method, we give constructions of
plateaued functions in the subclass WRP of the class of weakly regular plateaued functions and vectorial

plateaued functions.
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I. INTRODUCTION

Boolean bent functions introduced by Rothaus [31] play an important role in cryptography,
coding theory, sequences and combinatorics. In 1985, Kumar ez al. [15] generalized Boolean
bent functions to bent functions over finite fields of odd characteristic. Due to the importance
of bent functions, they have been studied extensively. There is an exhaustive survey [5] and a
book [20] for bent functions and generalized bent functions. Recently, the notion of generalized
bent functions from V,, to Z,: has been generalized to generalized bent functions from V,, to
Z

p

functions from V,, to Z,x, we refer to [10], [11], [17], [18], [19], [21], [28], [32], [33]. Also

» where p is a prime [28]. For more characterizations and constructions of generalized bent

note that by Theorem 16 of [28], one can construct some generalized bent functions by the
constructed infinite families of p-ary weakly regular bent functions in [30].

In 1993, Carlet [4] introduced the definition of Boolean partially bent functions which is an
extension of Boolean bent functions. As an extension of Boolean partially bent functions, Zheng
and Zhang [34] introduced the definition of Boolean plateaued functions. Boolean plateaued
functions have many good cryptographic properties. The notions of Boolean partially bent
functions and Boolean plateaued functions have been extended to partially bent functions and
plateaued functions over finite fields of odd characteristic (see [6], [7]). Apart from the desirable
cryptographic properties, plateaued functions play a significant role in coding theory, sequences
and combinatorics (see e.g. [1], [22], [25], [26], [29] ). In [27], Mesnager et al. extended the
usual notion of plateaued functions to generalized plateaued functions, which includes the notion
of generalized bent functions.

For the generic framework of (generalized) plateaued functions, there has been some progress
[2], [14], [23], [24], [27]. However, there are not many efficient generic constructions. In [13],
Hodzi¢ et al. designed Boolean plateaued functions in spectral domain. Designing plateaued
functions in spectral domain is based on the fact that any function from V;, to Z, where p is

a prime, k is a positive integer and its Walsh spectrum are mutually determined. In this paper,
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we study generalized s-plateaued functions from V;, to Z,x where p is an odd prime and k > 1
or p =2,k > 2 and n + s is even. Firstly, inspired by the work of Hodzi¢ et al., we give
a complete characterization of generalized plateaued functions with affine Walsh support and
provide some construction methods of generalized plateaued functions with (non)-affine Walsh
support in spectral domain. As pointed out in [13], for the constructions in spectral domain
given in [13], the Walsh support of Boolean s-plateaued functions in n variables, when written
as a matrix, contains at least n — s columns corresponding to affine functions on [F5°. And
they proposed an open problem to provide constructions of Boolean s-plateaued functions whose
Walsh support, when written as a matrix, contains strictly less than n — s columns corresponding
to affine functions. In our constructions of generalized s-plateaued functions with non-affine
Walsh support, the Walsh support, when written as a matrix, can contain strictly less than n — s
columns corresponding to affine functions and our construction methods are also applicable
to Boolean plateaued functions. Secondly, we provide a generalized indirect sum construction
method of generalized plateaued functions, which can also be used to construct (non)-weakly
regular generalized bent functions. In particular, we show that the canonical way to construct
Generalized Maiorana-McFarland bent functions is a special case of the generalized indirect sum
construction method and we illustrate that the generalized indirect sum construction method can
be used to construct bent functions not in the complete Generalized Maiorana-McFarland class.
Furthermore, based on this construction method, we give constructions of plateaued functions
in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued
functions.

The rest of the paper is organized as follows. In Section 2, we introduce the needed definitions
and results related to generalized plateaued functions. In Section 3.1, we give a necessary and
sufficient condition of constructing generalized plateaued functions in spectral domain and give
a useful corollary. In Section 3.2, we give a complete characterization of generalized plateaued
functions whose Walsh support is an affine subspace. In Section 3.3, we provide some generic
construction methods of generalized plateaued functions with (non)-affine Walsh support. In
Section 4.1, we give a generalized indirect sum construction method of generalized plateaued
functions. In Section 4.2, we give some applications of the generalized indirect sum construction

method. In Section 5, we make a conclusion.
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II. PRELIMINARIES

For any complex number z = a+by/—1, let |2| = Va2 + b2. For any finite set S, let |S| denote
the size of S. Throughout this paper, let Z,x be the ring of integers modulo P, Gph = e% be
the complex primitive p*-th root of unity, [} be the vector space of the n-tuples over F), Fjn
be the finite field with p™ elements and V;, be an n-dimensional vector space over I, where p is
a prime and k,n are positive integers. The classical representations of V;, are F)) and F,.. For
a,b € V,, let (a,b) denote a (nondegenerate) inner product in V,,. When a = (ay,...,a,),b =
(b1,...,bn) € Fp, let (a,b) = a-b = > 1" ab. When a,b € Fyn, let (a,b) = Tri(ab)
where T'r7(-) is the absolute trace function. When V,, = V,,, X --- x V. (n = >_7_ n), let
(a,b) = >0 {(a;, b;) where a = (ay,...,as),b = (b,...,bs) € V,,. Let GL(n,F,) denote the
group formed by all invertible matrices over IF,, of size n x n.

A function f from V,, to Z,x is called a generalized p-ary function, or simply p-ary function
when k£ = 1. A p-ary function L : V,, — F, is called a linear function if L(azx + by) =
aL(z) + bL(y) for any a,b € F, and z,y € V,,. All linear functions from V,, to F, form an
n-dimensional linear space £, and {{(«a;,z),1 <i < n} is a basis of £,, where {c;,1 <i <n}
is a basis of V,,. If p-ary function A : V,, — [, is the sum of a linear function and a constant,
then A is called an affine function.

The Walsh transform of generalized p-ary function f : V;, — Z, is the function W} from V/,
to Z[Cyr):

Wy(a) = Z Cg,fx)g“;<“’x> where a € V,. (1)

IEVn

And f can be recovered by the inverse transform

= 1
C;ck( ) = o Z I/Vf(a)g,f,a’a‘”> where x € V,,. (2)

a€Vi

The multiset {W¢(a),a € V,,} is called the Walsh spectrum of f. The set Sy = {a € V,, :
Wy(a) # 0} is called the Walsh support of f. Functions fi,..., f,, are called pairwise disjoint
spectra functions if Sy, N Sy, = () for any i # j.

A generalized p-ary function f : V,, — Z, is called a generalized p-ary s-plateaued function,
or simply p-ary s-plateaued function when k& = 1 if |Wy(a)| = p"s" or 0 for any a € V,,. If
s = 0, the generalized p-ary O-plateaued function f is just the generalized p-ary bent function

and Sy = V.
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For generalized s-plateaued functions f : V;, — Z,, there is a basic property: |Sy| = p"~*,
which is obtained by Parseval identity > ., [Wy(z)|> = p**. In [27], Mesnager et al. have
shown the Walsh transform of a generalized p-ary s-plateaued function f : V,, — Z,. satisfies

n+s

that for any a € Sy, when p = 2 and n + s is even, Wy(a) = 22

Cg,:(a) and when p is an odd
prime,
ipnTﬂC;;:(a) if n+sis even or p=1(mod 4),

Wi(a) = nts f*(a) . ,
v—lp 2 O if n+sis odd and p = 3(mod 4)

where f* is a function from Sy to Z,». We call f* the dual function of f.
In the sequel, if f : V, — Z, is a generalized s-plateaued function with dual function f*,

define function jiy as
nt

ppla) =p 2

¢ OW(a),a € Sy 3)

If p = 1(mod 4) or p = 3(mod 4) and n + s is even, then y is a function from Sy to {£1}.
If p = 3(mod 4) and n + s is odd, then p; is a function from S; to {+/—1}. If p = 2
and n + s is even, then py(x) = 1,2 € Sy. For generalized bent function f : V,, — Z,
that is, generalized O-plateaued function, if s is a constant function, then f is called weakly
regular, otherwise f is called non-weakly regular. In particular, if puf(z) = 1,2 € V,, f is
called regular. In [22], Mesnager et al. introduced the notion of (non)-weakly regular plateaued
functions in odd characteristic. For an s-plateaued function f : V, — F,, if uy is a constant
function, then f is called weakly regular, otherwise f is called non-weakly regular. In particular,
if ps(z) =1,z € Sy, f is called regular.

If f:V, — Z, is a generalized n-plateaued function, then |S¢| =1 and it is easy to obtain
f(z) = p*a,z) + b for some a € V,,b € Z,+ by the inverse transform (2). In this paper, we
study generalized s-plateaued functions f : V,, — Z,x where 0 < s < n, p is an odd prime and

k>1lorp=2,k>2andn+ s is even.

III. CONSTRUCTING GENERALIZED PLATEAUED FUNCTIONS IN SPECTRAL DOMAIN

In this section, we provide some generic construction methods of generalized s-plateaued
functions in spectral domain where s > 1.
To this end, we fix some notation unless otherwise stated. Let m be an arbitrary positive

integer. Define the notation of lexicographic order <: a < b if Y /" p™ la; < >0 p™ b
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where a = (ay,...,a,),b= (b1,...,by) € F}'. Define

m
v = Z%’,j%’ﬂ <i<p"-—1, 4)
j=1
where {aq,...,a,,} is some fixed basis of V,,, over F,, and {(vo1,...,%m), s (Vpm_11,...,

Upm_1,m)} is the lexicographic order of . When V,,, = F)', we let a; = (1,0,...,0,0) €

p b
F, ..., am =(0,0,...,0,1) € F?, that is, {vo,...,vm_1} denotes the lexicographic order of

[F,'. For a p-ary function [ :V,, — [, define its true table

Ty = (f(vo), -, f(Upmfl))T &)
where M7 denotes the transpose of matrix M. For two matrices A = (ay, ..., a,,) and B =
(by,...,bn,) Where my,ny are positive integers and a;(1 < i < ny), b;(1 < j < ny) are

column vectors of the same size, let { denotes column concatenations of A and B, that is,

AZB: (al,...,am,bl,...,bn2).

A. A Necessary and Sufficient Condition

In this subsection, inspired by [13], we provide a necessary and sufficient condition of
constructing generalized plateaued functions in spectral domain and provide a corollary which
plays an important role in generic constructions.

Suppose S C ) with size p™ is ordered as S = {wo, wy, ..., wym_1}. For any a € 7, define
1, from V,, to I,

Ya(vi) = a-w;,0 <7 <p™ -1, (6)

where v; is defined by (4).

Under notation as above we have the following proposition:

Proposition 1. Let p be a prime. Let n, k, s(< n) be positive integers and k > 2, n+ s be even
for p = 2. Let S be a subset of ¥}, with size p"~* and be ordered as S = {wo, w1, ..., wyn—s_1 }.
Let d be a function from V,_, to Z,. Let ;i be a function from V,,_, to {£1} if p = 1(mod 4)
or p = 3(mod 4) and n+ s is even, i be a function from V,,_, to {4+/—1} if p = 3(mod 4) and
n+sis odd and ji(z) = 1,2 € V,,_, if p= 2 and n+ s is even. Define function W : F — Z[Cpr]

as
n+s

Mo FED 302 iEp stz

W(a) = (7)

0 otherwise.
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Then W : ) — Z[Cyr ] is the Walsh transform of a generalized s-plateaued function f Fy — Zy
: : =n d(z)+p*Ma () PP _ n ;

if and only if (p2 > ..y . ,u(x)(pk )P" =1 for any a € F}, where 1), is defined by
(6).

Proof: First by the well-known fact that \/p € Z[(,] if p = 1(mod 4) and v/—1,/p € Z[(,]
if p = 3(mod 4), it is easy to see that the function W defined by (7) is a function from F} to
Z[G).

If W : ) — Z[(,] is the Walsh transform of a generalized s-plateaued function f : )} — Z»
by the inverse transform (2) we have

ZW Cax

z€FY

:_ZW Ca:c
zes

n S 1

_ = Z vz)Ca w;

n—s__1

p

s-n d(v;)+p* e (vs
=p"2 Z 1(v;) plg )+p" " M pa (vi)
=0

s=n d(z)+pF 1 (z
—p T YD ulg e,
€V s

s—n d(z k=Lapq (z
hence (p 2 Zweans w(z) ng )+ Lpa ))

P =1 for any a € FJ.

Conversely, suppose (p 7 D aev,_, 1(T) Z/Emek_l%(w))p "= 1foranyae [F}. Since all roots
of 27" =1 are Cgk, C;,C, e Cp "1 there is a unique generalized function f : F) — Z,x such that

P e M(z)fgk 1% C /(%) Then function 1 is the Walsh transform of f. Indeed,

=Y ¢

z€F}

=n d k=lapy, —a-x
= Z p 2 Z M<y)<*p]£y)ﬂo (4 (y)Cp

II?GFS yEVn—s

n—s_1

p

s—n d(v; E=lgw; r—qa
=) pe Z p(v) ¢

:psgn d(vz Z sz—a T

=0 a:EIF"
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8

If a ¢ S = {wo,wy,...,wym-s_1}, then We(a) = 0 since Zmem QS“”‘“)'“” = 0 for any 0 <

i < p*—11If a = w; for some 0 < ¢ < p"° — 1, then Wy(a) = pnTHu(Ui)C;l,gvi) since

> ewn ,ng'*W = p" and for any other j # i we have ) _p. ngwj T _ ), Hence, Wy(a) =
P P

W(a) for any a € F} and Sy = S, [Wy(a)| = p"s for any a € Sy, that is, W is the Walsh

transform of f and f is a generalized s-plateaued function. [ ]

Remark 1. Proposition 1 provides a necessary and sufficient condition of constructing general-
ized plateaued functions in spectral domain. If the condition of Proposition 1 is satisfied, then

one can obtain function f by the inverse transform (2).

By Proposition 1 (with the same notation), if the function W : F}) — Z[Cpk] defined by (7) is
the Walsh transform of a generalized s-plateaued function [ : F) — Z,, then obviously
|37 ) = p" for any a € F. 8)
2€Vi_s
We show that the inverse is true when p = 2 and n+s is even and is not necessarily true when p is
an odd prime. We give an analysis by using Lemma 24 of [27]. Suppose (8) holds. For any a € F,
let ha =3 e . u(x)C;l,SQEHp @ Let O = Z[(,) denote the ring of integers in cyclotomic
field K = Q((,). Let Wi denote the group of unity of K, then Wy = {C;k 0<i<2Fk-1}
if p=2and Wi = {0 < i <p — 1} if p is an odd prime. Let p* = (%)pifpis an
odd prime where <’71> = (—1)% denotes the Legendre symbol and p* = 2 if p = 2.

(1) When p = 2 and n + s is even or p = 1(mod 4) or p = 3(mod 4) and n + s is even,
we have h, € O since p(z) € {£1} for any = € V,,_,. Then by Lemma 24 of [27], we have
\/FE‘JL,S € Wk, hence \/gs,s € Wy since /p*" " € {£,/p"°} if p =2 and n + s is even or
p = 1(mod 4) or p = 3(mod 4) and n + s is even.

(2) When p = 3(mod 4) and n + s is odd, we have /—1h, € Ok since u(z) € {£v/—1}
for any x € V,,_s. Then by Lemma 24 of [27], we have V-olhe o W, hence Tha o Wi

\/fnfs \/jl\/ﬁnfs
since \/p*" € {+v/—1,/p"°} if p = 3(mod 4) and n + s is odd, that is, \/g;i_s € Wk.

Hence, one can see that |h,| = p"2" is equivalent to (p*2"ho)?" = 1if p = 2 and n + s
is even and |h,| = p"2 is equivalent to (p“= h,)*" = 1 if p is an odd prime. When p is
an odd prime, there is still a gap with the condition of Proposition 1. For example, let p =
3,k =2mn=3,s=1,ordered S = {0} x F2 = {(0,0,0),(0,0,1),(0,0,2),...,(0,2,2)} and

p(zy, xe) = —1, (x1,72) € FZ, d(x1,22) = 37129, (71, 22) € F2. Then one can verify that for
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any a € F3, |h,| = 3 and (37'h,)? = —1.

From the above analysis, we can obtain the following result:

Proposition 2. With the same notation as Proposition 1.
(1) When p = 2 and n + s is even, the function W : Fp — Z[(| defined by (7) is
the Walsh transform of a generalized s-plateaued function [ : F) — Zy if and only if
x k=1 a(® n—s n
|erVTH Z;g I+ e )| =p 2 foranyaé€ ]Fp.
(2) When p is an odd prime, the function W : ) — Z[(,x) defined by (7) is the Walsh transform

d@)+p* (@) _
)Gy | =

of a generalized s-plateaued function [ : F, — Z if and only if | ervnis pu(x )

n—s s=n d(x)+pF~Taha () pk n
P and (P Y0y p(x) GO L 1 for any a € F.
Now we provide a corollary which plays an important role in generic constructions.

Corollary 1. With the same notation as Proposition 1. For any a € F, define g,(z) = d(x) +
pk_lwa(x), x € Vs If for any a € IFZ, 9a @ Vs — Z,x is a generalized bent function
and there exists a constant u independent of a such that i, (v) = w,x € V,,_s where p,, is
defined by (3), let p(x) = u™',x € Vo_,. Then the function W : F! — Z[C,] defined by
(7) is the Walsh transform of a generalized s-plateaued function f : F, — Z,.. Furthermore,

f(a) = g;(0),a € F} where g, is the dual function of ga.

Proof: 1f for any a € IFZ, 9a i Va—s — Z,x is a generalized bent function and there exists
a constant u independent of a such that i, (v) = u,x € V,,_; where p,, is defined by (3) and
wu(z) =ut z € V,_,, then function y satisfy the condition of Proposition 1 and

d(x k=1abo(x —1 ~d(x k=1abo(x
S ()¢l @ S et )

T€EVn_s T€EVn—s

_ d(x k=1 (x
D DS CAA

2EVn—s

= uilea (O)

n—s

— (0]

n

—s *(0
=p 2 Cj,’z( ),

where g; is the dual function of g,. So (p™2 > N(x)gzk(z“”)*pk*lw“(x))z”“ — 1. Hence by

Proposition 1, the function W : Fy — Z[(,] defined by (7) is the Walsh transform of a
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generalized s-plateaued function f : F)) — Z,. and furthermore, from the proof of Proposition

1, we have f(a) = g;(0) for any a € . u

B. Characterization of Generalized Plateaued Functions with Affine Walsh Support in Spectral

Domain

In this subsection, we give a complete characterization of generalized plateaued functions
whose Walsh support is an affine subspace in spectral domain, which generalizes the case of
Boolean plateaued functions [13].

To get the theorem of this subsection, we need a lemma, which is a generalization of the

results in the proof of Lemma 3.1 of [12].

Lemma 1. Ler p be a prime. Suppose E C K is an m-dimensional linear subspace over F),
and E = {eg,e1,...,epm_1} is the lexicographic order of E. Then {ey,e,,... eym-1} is a

basis of I/ and e; = v;R for any 0 <1 < p™ — 1 where R is the matrix whose row vectors are

pm—1, Eym—2, ..., epo and {vo, ..., vym_1} is the lexicographic order of ;.
Proof: Let {ay, s, ..., o} be a basis of E over IF,,. For the matrix whose row vectors are
a1, Qa, ..., 0, Dy using elementary row operations, we can get the row echelon matrix
e(mfl)
e(m_2)
R=| ..
e
e(0)
0 0 1 = x 0 x * 0 = x 0 * *
0 0 00 0 1 = * 0 x* x* 0 x *
o ....0o000 ... 000 ... 0 ...01 % ... x 0 % ...
o....oo0o0 ...000 ... 0....00....01 % ... «

where * denotes some elements in [F), the first nonzero element in each row is one from left to
right and these ones belong to different columns and the other elements in the same column are
zero. Furthermore, if the first nonzero element of ¢-th row is in the k;-th column (0 < ¢ < m—1),

then0§k0<---<km_1§n—1.
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If (io,il, c. aim—l) € F;n, (7,6, le, c. 7i{m—1) € ]F;n with (’io, T, ... 7im—1> < (1672/1, ce ’Z.;n—l)’
that is, there exists 0 < jo < m — 1 such that i; = i} for any j < jo and ij, < 4} . Let s =
(S05- -y 8n_1) = Z;”;Ol ijem=1=0) ¢ = (sh,...,s ) = Z;”;Ol iem=17J)_ By the properties
of €?(0 < i < m — 1), one can get s; = s; for any j < kj, and sp, < S;%’ that is,
s < s'. Hence, the lexicographic order of (i, ...,i,-1) € F}' determines the lexicographic
order of Y7 Mije™ 1), So for i = Y7 ip™ 71, we have e; = 37 ije™ 1) where
{eo,...,em—s_1} is the lexicographic order of E. For any 0 < j < m — 1, let i = p/, then
e; = e\, Hence, {€,0,€,1,...,e,m-1} is a basis of E and ¢; = v;R for any 0 < i < p™ — 1
where {vp, ..., v,m_1} is the lexicographic order of F}". u

Now we give a complete characterization of generalized plateaued functions with affine Walsh

support in spectral domain by using Lemma 1.

Theorem 1. With the same notation as Proposition 1. Let ordered S = {wq, wy, ..., Wyn—s_1}
where w; =t+e;M forany 0 <i <p"*—1,t € F}, M € GL(n,F,) and {ep,e1,...,epm-—s_1}
is the lexicographic order of an (n— s)-dimensional linear subspace FE C . Let d be a function
from 2= to 7. Then the function W : Fy — Z[(,] defined by (7) is the Walsh transform of
a generalized s-plateaued function f : Fy — Zyx if and only if d is the dual function of some
generalized bent function g and |1 = |1, where [i, is defined by (3). Furthermore, if d is the dual
function of some generalized bent function g and p = p,, then f(z) = g(xMTRT) + p*~lz - ¢,

x € F)) where R is the matrix whose row vectors are epn—s-1, €pn—s-2, ..., €.

Proof: Since E is a linear subspace, then by Lemma I, for any a € F) and any 0 < <
p"* — 1, we have ¢, (v;) =a-w; =a-(t+eM)=a-t+aM? -e; =a-t+aM? - (;R) =
a-t+aMTRT v,

If d is the dual function of some generalized bent function g and p = p,, that is, Wy(b) =
u(b)p%g’gﬁb) for any b € F;~*, then we have
Z e ;llgx)er’“‘lwa(x) _ Z u(m)czlgm)cg-tJraMTRT-z

zeFy™* z€Fy~°

at, =2 +g(aMTRT
= (tprr gt

where the second equation is obtained by the inverse transform. So for any a € F, (pz ZIGF;H

u(x)(}flgw)ﬂ kilw“(w))pk = 1. By Proposition 1 and its proof, the function W : F}' — Z[(]
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defined by (7) is the Walsh transform of a generalized s-plateaued function f : F) — Z,. and
f(x) = g(aM"RT) +pF'w - t,x € FL.
Conversely, if the function W : F) — Z[(,] defined by (7) is the Walsh transform of a

generalized s-plateaued function f : ) — Z,x, by the proof of Proposition 1 we have

s=n d(x k71a$ a
P Y W) -

p
z€Fy ~°
Then
s—n d(z) raMTRT .1 a)—pF~la-
P D ()M = (et ©)
z€Fy;~°

For any y € IF)~°, since R is row full rank and M is invertible, we have Rank(RM) =
Rank((RM,y")) = n—s. Hence, for any y € F}~*, there exists a,, € Fy such that a,M"R" = y.
When a, M"RT = b, MTR" =y, by (9) we have f(a,) —p"'a, -t = f(b,) — p"~'b, - t. Define
g F 7,
a(y) = flay) —p"ay - t,
where a, € F} satisfies a, M"R" = y.

Then for any b € F)~%,

Wo(b) = > ¢

IS
ay)—pFtay -t ~—p.
_ Z Cg{}fy)ﬁ prby
yelfp™°
s—n d(x a T T~af,’ —0b-
_ Z P2 Z M(w)Cpk( )prM R Cpby
yeFi=*  peRp=e
5—n d(z (x—
S D DRTC S D
zelf, ~° yeFp~*°
= p T u(b)¢,

P

that is, g : F)™* — Z, is a generalized bent function and d is the dual function of g and y, = p.

Remark 2. It is known that plateaued functions with affine Walsh support correspond to partially
bent functions. A function f : V,, — F, is called a partially bent function if for any a €

Vo, flx 4+ a) — f(x),x € V, is either balanced or constant. When p is an odd prime and
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k = 1, Theorem 1 gives a completely characterization of p-ary partially bent functions, which

generalizes the case of Boolean partially bent functions [13].

We give two examples of generalized plateaued functions with affine Walsh support by using

Theorem 1.

Example 1. Letp =3,k =1,n=4,5s = 1. Let d : F — F3 be defined as d(z,xs,13) = 1703+
222+2x3, then d is the dual function of weakly regular bent function (1, o, 13) = 203 +2x1 13+
x3 with py(x1, 22, 13) = V=1, (21, 12,23) € F3. Let p(zy, 19, 23) = /—1, (11,22, 73) € F3.
Let S = {wo,...,we} where w; = (2,0,0,0) + e;,M, E = {eq,...,e6} =< (0,0,1,1),

0011
010
(0,1,0,0),(1,0,0,0) >, M = . Then the constructed weakly regular 1-plateaued
0 0 01
1 0 0 2
function f : T3 — Fs by Theorem I is f(x1,T2,73,74) = g(x3 + T4, T2, 71) + 271 = 22173 +

2r11y + 23 + 222 + w374 + 227 + 271

Example 2. Let p = 2,k = 3,n = 4,5 = 2. Let d : F3 — Zg be defined as d(z,,xs) =
4x1x9 + 9, then d is the dual function of generalized bent function g(xy,x5) = dx 19 + 11 With
pg(T1,x0) = 1, (21, 29) € F3. Let p(xy,x9) = 1, (x1,22) € Fa Let S = {wo,..., w3} where
w; = (0,1,1,0) +e; and E = {ep,...,e3} =< (0,0,1,1),(1,1,0,1) >. Then the constructed
generalized 2-plateaued function f : F3 — Zg by Theorem 1 is f(x1, %o, 73, 24) = g(x1 + 25 +

Ty, T3txy)+4(rot+x3) = ((214+22+14) Mmod 2)+4(x1 23+ 21 T4+ Tox3+ToT 4+ T34+ Lo+ T3+2y).

One can construct pairwise disjoint spectra generalized p-ary s-plateaued functions fy, f1, ...,
fps—1 by Theorem 1. When F is an (n—s)-dimensional subspace of I}, we have ) = U cpr (€;+
E) where ' @ E = F} (& denotes direct sum) and e; € £’ for 0 <i <p°—1. Let S; = ¢+ F
forany 0 < i < p* — 1, then S;NS; = 0 if i # j and one can construct generalized p-ary
s-plateaued functions f;(0 < i < p® — 1) with S; as Walsh support by using Theorem 1 and
some known generalized bent functions as building blocks. By using pairwise disjoint spectra
generalized plateaued functions as building blocks, one can get the following construction method

of generalized bent functions which is an extension of Theorem 2 of [7].
Proposition 3. Let p be a prime, n,s(< n), k be positive integers. Let f,(y € Fy) : F) — Z

March 18, 2021 DRAFT



14

be pairwise disjoint spectra generalized s-plateaued functions. Let W and U be n-dimensional

and s-dimensional subspaces of IFZJ“S respectively and satisfy FZ“ =W & U. Define
FazM +7(y)) = fy(x),r € F,y € F,,

where M is a matrix whose row vectors form a basis of W and  is a bijection from F} to U.

. . . +
Then F is a generalized bent function from ™ to Z.

Proof: For any z € IF;“LS, there exist unique w, € W,u, € U such that z = w, + u, since
Fp™ = W @ U. It is easy to see that the function L defined by L(z) = M,z € F} is a
bijection from F} to W. As L : ) — W and 7 : F; — U are both bijections, there exist unique
v, € F),y. € F; such that 2 = .M + 7(y.). Hence F is a function from ]Fg*s to Z,. For any

a € IFZ*S, we have

WF(G): Z C;(Z)Cp—a-z

z€Fpte
F(xeM+m —a-(z T
_ Z Z Cpk( + (y))Cp (zM+m(y))
z€Fp yels
z) r—aMT -z—a-m
=2 D g
z€lFp yels
=2 G ) Wy (aM"),
yeFs zEFD

Since f,,y € I, are pairwise disjoint spectra generalized s-plateaued functions, we have |Sy, | =
p"~* and S, NSy, = 0 for any y # y', which yields that Sy ,y € 7 is a partition of [y.
Hence for any a € F™*, there exists a unique y, € F§ such that aM” € Sy, and |[Wp(a)| =
¢ @) Wy, (aMT)| = p*=°, that is, F is a generalized bent function.

When k = 1, W = Fp x {0,}, U = {0,} x F5, M is the matrix whose row vectors are
(1,0,...,0,0,...,0),(0,1,...,0,0,...,0),...,(0,0,...,1,0,...,0) and 7(y) = (0,, %),y € F}
where 0,, denotes the zero vector of [, Proposition 3 reduces to Theorem 2 of [7]. We give an

example to illustrate Proposition 3.

Example 3. Let p = 2,n = 5,5 = 1,k = 3. Let fo, f1 : F5 — Zos be defined as fo(x1,...,x5) =
A(w123 + ToT4) + 273 + 1374, f1(T1, ..., 75) = 42173 + T2Wg + T5) + 23175 + 1. Then fo, fi
are disjoint spectra generalized 1-plateaued functions. Let W = T3 x {0}, U = {05} x

Fy, M is the matrix whose row vectors are (1,0,...,0,0),...,(0,0,...,1,0) and ©(y) =

March 18, 2021 DRAFT



15

(0,...,0,v),y € Fo. Then the constructed generalized bent function F' : T — Zys by Proposition
3is F(xy,...,26) = fog(x1,...,25) = d(m123+ 2204+ 2506) +2((212276 +23(1+26)) mod 2)+
((x3x4(1 + x6) + x126) MOd 2).

C. Some Generic Construction Methods of Generalized Plateaued Functions with (Non)-Affine

Walsh Support in Spectral Domain

In this subsection, we provide some generic construction methods of generalized plateaued
functions with (non)-affine Walsh support in spectral domain.

With the same notation as Proposition 1. If f : F}) — Z, is a generalized s-plateaued function
constructed in spectral domain, by the proof of Proposition 1, we have S; = S where ordered
S = {wo,...,wyn-s_1}. It is easy to see that the matrix form of Sy whose row vectors are

Wo, . . ., Wpyn—s_1 can be written as
Sy =Ty, -+ 1Ty,, (10)

where {ay, ..., a,} is the canonical basis of F7, that is, a; = (1,0,0,...,0,0),a2 = (0,1,0,...,
0,0),...,a, = (0,0,0,...,0,1), ¥y, : V;_s — [, is defined by (6) and T, defined by (5) is
the true table of 1),,. If v,, is an affine function, we say that the i-th column of (ordered) S
corresponds to an affine function. Note that if f is constructed by Theorem 1, then every column
of Sy corresponds to an affine function by Lemma 1.

In [13], Hodzi¢ et al. designed Boolean plateaued functions with (non)-affine Walsh support
in spectral domain. As pointed out in [13], for the constructions in spectral domain given in
[13], the Walsh support of Boolean s-plateaued functions in n variables, when written as a
matrix of form (10), contains at least n — s columns corresponding to affine functions on F;™*.
They proposed an open problem to provide constructions of Boolean plateaued functions whose
Walsh support, when written as a matrix of form (10), contains strictly less than n — s columns
corresponding to affine functions. In our constructions of generalized s-plateaued functions with
non-affine Walsh support, the Walsh support, when written as a matrix of form (10), can contain
strictly less than n — s columns corresponding to affine functions and our construction methods
are also applicable to Boolean plateaued functions.

In the first generic construction method, we will utilize an important class of generalized bent
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functions f : Fpn X Fpn — Z,x defined as
[z, 29) = P 1T (amym(za)) + g(22), (21, 72) € Fpn X Fpr

where o € ., 7 is a permutation over [F» and g is an arbitrary function from F» to Z,x, which
is a generalization of the well-known Maiorana-McFarland bent functions. It is easy to obtain
its dual function f*(zy,72) = —p" 'Tr(zer o zy)) + g(r (™ ay)) and pp(zy,20) =
1, (z1,22) € Fpn X Fpn.

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)
be positive integers with n—s = 2m, {a, ..., o, } be a basis of F,m over F,, 7 be a permutation
over F,m and Ly,..., L, : Fym X Fpm — [F, be linearly independent linear functions. Define

d . Fpm X Fpm — Zpk as
d(xy,x2) = p" T (umiw(22)) + g(@s), (1)
where g is an arbitrary function from Fj,» to Z,s. Define ¢; : Fpm X Fym — ), 1 <1 < s as

TT?ln(BixﬂT(xQ)) + gz’(-TQ) + Ai($1, xz) if m>2,
t’i(‘rlax2) = (12)
gi(z2) + Ai(z1,22) if m=1

where 3; = Z;"ZQ c;jo; with ¢;; € IF,, g; is an arbitrary function from F,~ to [F, and A, is an

arbitrary affine function from F,» X F,n to IF,,. Define h; : Fpm X Fpm — ), 1 < j <n—sas

D djiti+ L+ by if T=0,
hy = i=1 (13)
> djiti+ Filty, o tiy) + L+ b5 if T#0
il
where [ = {1 <i < s:t;(x1,22) only depends on variable x5} and denote I by {i1,... 4}
if I #0,d;;,b; €F, and F} is an arbitrary function from F}j' to F,.

Theorem 2. With the same notation as Proposition 1. Let n — s = 2m be an even positive
integer. Let d : Fpm X Fym — Z,i be defined by (11). Let ji(x1,22) = 1, (21, 22) € Fpm X Fym.
Let the matrix form of S = {wy, ..., Wyn-s_1} C F} be defined by

Wo

w1
S = =Ty - XL 0T 0T,

n—s?
wpn—s,1
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where t;(1 < i < s) are defined by (12) and h;(1 < j < n — s) are defined by (13). Then the
function W : Fp — Z[(,x] defined by (7) is the Walsh transform of a generalized s-plateaued

Junction [} — Z.

Proof: First we show that the size of S is equal to p"~*, that is to prove
(t1(x), .. s hps(2) = (t2(2), ..o hs(2) if and only if x =2

where © = (21, 22), 2" = (@), 2}) € Fpm X Fpm. If (t1(2),. .., ho—s(2)) = (t1(2), ..., hn_s(2')),
then by the definitions of h;(1 < j < n — s), it is easy to see that L;(z) = L;(«') for any
1<j3<n-—s. Since Ly,...,L, s are linearly independent linear functions, it is easy to see
that = = 2/. Hence we have |S| = p"~*.

Forany a € Fj and 0 <@ < p"™* — 1, ¥o(v5) = a-wi = a- (t1(v), ..., ts(vi), ha(vi), ...,
hyn—s(v;)). When m > 2, by the constructions of ¢;,h;(1 < i < 5,1 < 57 < n—s), we
have ¥, (z1,22) = Tri*(agz1m(22)) + ga(x2) + Aa(x1,22) where a, € Fym is some linear
combination of aw,...,a,,, g, is some function from F,~ to F, and A, : Fym X Fym — F, is
some affine function. Then d(x1, zo) +p* 1), (21, 2) = pF 1T ((ag + ) 217 (12)) + (g(22) +
P* 1 ga(z2)) + pF 1AL (1, 22). Since vy, ..., ay, are linearly independent and o, € F,m is some
linear combination of ay, ..., ay,, we have a; + a, # 0. Note that if i : V,, — Z, is a weakly
regular generalized bent function and A : V,, — T, is an arbitrary affine function, then h+p*~1A
is also a weakly regular generalized bent function and (i, ,»-14 = 5. Hence, d + p* 1, is a
weakly regular generalized bent function and 4 ,6-1y, (21, 22) = 1, (21, 22) € Fpm X Fpm for
any a € 3. By Corollary 1, the function W : F}; — Z[(,+] defined by (7) is the Walsh transform
of a generalized s-plateaued function f : ) — Z,.. When m = 1, by similar arguments, we
have the same conclusion. [ ]

We give an example of generalized plateaued function by using Theorem 2.

Example 4. Let p = 3,k = 2,n = 7,5 = 3. Let z be the primitive element of Fs2 with
22+ 2242 = 0. Let d(z1,m9) = 3Tr3(zm120) + 2(Tri(22))?, w(zy,z2) = 1, ti(z1,79) =
Tr2(x12s), to(x1, 20) = Tri(xd), ts(wy, 22) = Tri(z2d), hy = ti+Tr?(xy), he = t3+Tr?(21y),
hy = 12 + Tri(xy), hy =ty + t3 + Tr?(2x3), (21, 22) € Fy2 X Fso. Then by the Walsh inverse
transform or by computing (d + 31,)*(0), we can obtain generalized 3-plateaued function

f(bl7 C. ,bg, at, ... ,CL4) = 2(((61 +a1)2a2+(2(b1+a1)+1)(a1 —i—ag))mod 3)2+3((b1 +a1)2((b2+
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ag)(2a2 +2ayas) + (bs+ay) (a2 +a3) +2a2ay + 2a103 + ayay + asas + asay + as) + (by +ay ) (by +
ag)(2a3 + ayas +a3) + (bs + aq) (2a? + 2a1a2) + 2atas + 2a1a3 + 2a1a3 + 2a1a4 + 2a2a3 + asay +
as) +2a2a3as + (by +ay)(aras + 2a2) + (bs + aq) (203 + a1as + a3) + a?ay + a2as + aya3 + asaz +
araz + ajay + azaz + 2asay + ag) from F5 to L. Since t;(1 < i < 3),h;(1 < j < 4) are all
non-affine functions and the matrix form of Sy defined by (10) is Sy = T, U-- VT, Uy, - - VT,

every column of Sy corresponds to a non-affine function.

When k£ = 1, Theorem 2 can be seen as an extension of Theorem 4.1 of [13] in the sense
of equivalence. And it can also be applied to construct Boolean plateaued functions whose
Walsh support, when written as a matrix of form (10), contains strictly less than n — s columns
corresponding to affine functions. We give an example of Boolean plateaued function which
satisfies that every column of the matrix form of Sy defined by (10) corresponds to a non-affine
function and the function has no nonzero linear structure. For a Boolean function f : V,, — Fy,

if f(z)+ f(x + a) is a constant function, then a is called a linear structure of f.

Example 5. Let p = 2, k = 1, n = 10, s = 4. Let z be the primitive element of Fys with
224241 =0. Let d(z1, x2) = Tr}(22z122), (1, 29) = 1, t1(1, 22) = Tr3(z170), t2(T1,70) =
Tr3(za1xs), ts(x1, w0) = Tr3(ad), ta(wy, mo) = Tri(2a3), hy = t1+Tr3(x1), he = t1+T73(211),
hs =ty + Tr3(2%xy), hy = to +Tr3(x3), hs = t3ty + Tri(zzs), he = taty + Tr3(2%xs). Then by
the Walsh inverse transform or by computing (d + 1,)*(0), we can obtain Boolean 4-plateaued
function f(by,... by, a1,...,a6) = (by + a1 + ag + 1)(bs(aras + agas + aq) + by(aras + aras +
asas + ay + az) + (a1a2 + ayas)(as + ag) + araq + asae + asas) + ((by + a1 + az)(ba +as +ay) +
1)(a1a5 + asas + agay + agas) + (b 4+ ba + ag + as + as + ag + 1) (bs(a1a3 + az + as) + by(aras +
asas + ai) + ayaz(as + ag) + ajas + agsay + asas + agas + agag) + bs(ajas + asaz + ay + az) +
by(aras + as + as) + (agsas + a; + az + as)(as + ag). Since t;(1 < i <4),h;(1 <35 <6) are all
non-affine functions and the matrix form of Sy defined by (10) is Sy = T, U-- 0Ty, UTh, - - VT,
every column of Sy corresponds to a non-affine function. And one can verify that Sy contains
a basis of F3 and (0,...,0) € Sy, hence by Corollary 3.1 of [13], f has no nonzero linear

Structure.

In the second generic construction method, we take advantage of the good properties of

general generalized bent functions. Let ¢ > 2 be an integer. Let f(z) = >.\_, p~'~" fi(x) with
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fi Vo, —TF,,0<¢<t—1be a generalized bent function from V,, to Z, where p is an odd
prime or p = 2 and n is even. Let k be a positive integer. Then by Corollary 7 of [27], for any
function G : F;"! — Z,, the function p*~' fo 4+ G(f1,..., fi-1) is a generalized bent function
from V,, to Zyx with ppe—1 g 1. pf1) = Ky

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)
be positive integers with n —s even if p = 2, Ly,..., L, : V,,_s — [, be linearly independent
linear functions and g = S"!_) p'~'~ig; with g; : V,,_, — F,,0 <i <t — 1 be a weakly regular

generalized bent function from V,,_, to Z,: where ¢t > 2. Define d : V,,_s — Zx as
d(z) = p" ' go(x) + Glg1(2), ..., g1 (), (14)
where (G is an arbitrary function from IE‘;‘I to Z,x. Define
ux) = pg(x) ™ @ € Vs (15)

where 11, 1s defined by (3). Note that p, is a constant function since g is weakly regular. Define

ti i Voes = IFp, 1 <i<sas
ti(z) = Fi(g1(x),...,q-1(x)), (16)
where F; is an arbitrary function from IFthl to IF,. Define h; : V,,_y = F,,1 <j<n-—sas
hi(x) = Hj(t1(x), ..., ts(x)) + Lj(x) + b;, (17)
where H; is an arbitrary function from F) to [, and b; € F),

Theorem 3. With the same notation as Proposition 1. Let d : V,,_; — Z,x be defined by (14).
Let ji be defined by (15). Let the matrix form of S = {w, ..., wyn-s_1} C F be defined by

Wo
s=| " | =mamana,,
Wyn—s_1
where t;(1 < i < s) are defined by (16) and h;(1 < j < n — s) are defined by (17). Then the
Junction W : F) — Z[(,r) defined by (7) is the Walsh transform of a generalized s-plateaued

Junction [ : ) — Zyk.
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Proof: First we show that the size of S is equal to p"~*, that is to prove
(t1(x)y .o hs(x)) = (t1(2)), .. hs(2) if and only if = =1’

If (t1(x),..., hps(x)) = (t1(2'), ..., hn_s(2’)), then by the definitions of h;(1 < j <n —s),
it is easy to see that L;(x) = L;(«’) for any 1 < j < mn —s. Since Ly,...,L,_, are linearly
independent linear functions, it is easy to see that x = 2’. Hence we have |S| = p"~*.

Forany a € Fj and 0 < i < p"™* — 1, ¥o(v5) = a-wy = a- (t1(vs), ..., ts(vi), ha(vi), ...,
hyn—s(v;)). By the constructions of ¢;,h;(1 < i < 5,1 < j < n —s), we have ,(z) =
Ga(91(2), ..., g1—1()) + Aa(z) where G, is some function from F,~! to IF,, and A, : V,,_, —
[F, is some affine function. Then d(z) + p* 1, (z) = p*tgo(z) + (G(g1(2), ..., g1(x)) +
P Go(g1(2), ... gi-1(x))) + p" LA, (x). Note that if h : V,, — Z, is a weakly regular
generalized bent function and A : V,, — F, is an arbitrary affine function, then h + p"'A is
also a weakly regular generalized bent function and fi,,»-14 = pp,. Hence, d + P, is a
weakly regular generalized bent function and iy k14, = py for any a € Fj. By Corollary 1,
the function W : F — ZC,x| defined by (7) is the Walsh transform of a generalized s-plateaued
function f: F) — Zx. [ ]

We give an example of generalized plateaued function by using Theorem 3.

Example 6. Let p =5,k =3,n =4,s = 1,t = 2. Let z be the primitive element of Fxs with
2243243 =0. Let g(x) = 5g0(x)+g1(z), x € Fss where go(x) = Tr3(22?), g1(z) = Tri(2'%2).
Then by Theorem 16 of [28] and Corollary 3 of [30], g is a weakly regular generalized bent
function with p,(z) = —1,x € Fgs. Let d(x) = 25g0(z) + gi(x), plz) = =1, t1(x) = gi(x),
hi(x) = t2(x) + Tri(z), he(z) = ti(x) + Tri(zz), hs(z) = ti(x) + Tr}(2%x), © € Fss. Then
by the Walsh inverse transform or by computing (d + 25¢,)*(0), we can obtain generalized
1-plateaued function f(by,ay,as,a3) = ((a; — az) mod 5)* + 25(as(a; — az)* + (by + az)(a; —
az)® + ay(a; — az)? — a? — ayaz + 243 + asaz — a) from ¥ to Zss. Since t1,h;(1 < j < 3) are
all non-affine functions and the matrix form of Sy defined by (10) is Sy = Ty, VT, -+ - VT,

every column of Sy corresponds to a non-affine function.

Theorem 3 is also applicable to Boolean plateaued functions. We give an example of Boolean
plateaued function which satisfies that every column of the matrix form of S; defined by (10)

corresponds to a non-affine function and the function has no nonzero linear structure.
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Example 7. Let p = 2,k = 1,n = 8,s = 2,t = 3. Let g(xy,...,26) = 4go(x1,... ,x6) +
2g1(21, ... w6) + ga@1, ..., x6), (T1, ..., 26) € FS where go(z1,...,76) = 2173 + Toy + T5Ts,
g1(zy, ..., x6) = mwaxe + x3(x6 + 1), go2(x1,...,26) = x324(x6 + 1) + x126. Then g is the
generalized Boolean bent function constructed in Example 3. Let d = go, p = 1, t; = ¢y,
ty = go, h1 = tito+x1, ho =ty + 9, hy = t1 +x3, hy = to+ x4, hs = to+ x5, hg = t1 + 12+ x6.
Then by the Walsh inverse transform or by computing (d + 1,)*(0), we can obtain Boolean
2-plateaued function f(by, by, aq,...,as) = ajaz+ asay + asag + a1 (as + 1) (boas + asay + asag +
bi+as+ag)+azas(bras+aras+azas+asa6+ba+as+1). Since t;(1 <i < 2),h;j(1 < j <6) are
all non-affine functions and the matrix form of Sy defined by (10) is Sy = T}, V11, VT, U - - Uy,
every column of Sy corresponds to a non-daffine function. And one can verify that Sy contains
a basis of FS and (0,...,0) € Sy, hence by Corollary 3.1 of [13], f has no nonzero linear

Structure.

The third generic construction method is used to construct p-ary plateaued functions, that is,
k = 1. In the following theorem, we utilize vectorial bent functions. Let m > 2 be an integer.
A function f = (fi,..., fm) : Vo — T} is called a vectorial bent function if for any nonzero
vector (ay,...,an) € B, 37" a;fi(x),x € V, is a bent function. The following theorem can
be seen as a generalization of Theorem 4.3 of [13] in the sense of equivalence. And it can also
be applied to construct Boolean plateaued functions whose Walsh support, when written as a
matrix of form (10), contains strictly less than n — s columns corresponding to affine functions.

For the sake of simplicity, we give the functions needed in the following theorem. Let g =
(g1, - - -, 9m) be a vectorial bent function from V,,_ to IF;” where m > 2 and there exists a constant

u such that g, s~

=

Leg () = uw,x € V,_ for any (ca, ..., ¢n) € FP~' where jig,  5om .00 is
defined by (3). Let Ly,...,L,_5 : V,,_s — I, be linearly independent linear functions. Define
d:V,_s —F,as

d(z) = g1(z). (18)
Define 1 as
pla) =u 'z eV, .. (19)
Define t; : V,,_s = F,,1 <i¢<s as
ti(x) =Y cijgi(e) + Ai(w), (20)
j=2

March 18, 2021 DRAFT



22

where ¢; ; € IF,,, A; is an arbitrary affine function from V,,_; to IF,. Define h; : V,,_s = F,,1 <

7<n—sas
i=1
where d;;,0; € F),.

Theorem 4. With the same notation as Proposition 1. Let d : V,,_; — ), be defined by (18).
Let ji be defined by (19). Let the matrix form of S = {w, ..., wyn-s_1} C F be defined by

Wo
s=| " | =maman, T,
Wpn—s_1
where t;(1 < i < s) are defined by (20) and h;(1 < j < n — s) are defined by (21). Then
the function W . F) — Z[Cy) defined by (7) is the Walsh transform of an s-plateaued function
[y =T,

Proof: First we show that the size of S is equal to p"~*, that is to prove

(t1(2), .. hs(2)) = (t1(2"), ..., hp_s(2) if and only if =2’

If (t1(x),..., hns(x)) = (t1(2'), ..., hn_s(2’)), then by the definitions of h;(1 < j <n —s),
it is easy to see that L;(x) = L;(«’) for any 1 < j < n —s. Since Ly,...,L,_, are linearly
independent linear functions, it is easy to see that x = 2’. Hence we have |S| = p"~*.

Forany a € Fj and 0 < i < p"™* — 1, ¥o(v5) = a-wy = a- (t1(v), ..., ts(vi), ha(vi), ...,
hyn—s(v;)). By the constructions of ¢;,h;j(1 < i < 5,1 < j < n —s), we have ¢,(z) =
La(g2(), ..., gm(x)) + Aa(x) where L, is some linear function from F*~' to F, and A, :
Va—s — F, is some affine function. Then d(z) + ¢, () = ¢1(x) + La(g2(z), . . ., gm(x)) + As(2)
is a weakly regular bent function and fi4,y, (z) = u, v € V;,_, for any a € F. By Corollary 1,
the function W' : F} — Z[(,| defined by (7) is the Walsh transform of an s-plateaued function
[ Fy =T, [ |
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IV. GENERALIZED INDIRECT SUM CONSTRUCTION METHOD OF GENERALIZED PLATEAUED

FUNCTIONS AND ITS APPLICATIONS

In this section, we provide a generalized indirect sum construction method of generalized
s-plateaued functions where s > 0. In particular, we show that the canonical way to construct
Generalized Maiorana-McFarland bent functions is a special case of the generalized indirect sum
construction method and we illustrate that the generalized indirect sum construction method can
be used to construct bent functions not in the complete Generalized Maiorana-McFarland class.

Furthermore, we give some applications of the generalized indirect sum construction method.

A. Generalized Indirect Sum Construction Method

In this subsection, we give a generalized indirect sum construction method of generalized

plateaued functions, which is an extension of indirect sum construction method of Boolean case

[3].

Theorem 5. Let p be a prime. Let k,t,r,m be positive integers, s(< r) be a non-negative
integer and m be even for p =2, r + s be even for p =2,k = 1. Let f;(i € JF;) Vi = Zyy be
generalized s-plateaued functions. Let ¢;(0 < i <t):V,, — F, be bent functions which satisfy
that for any j = (ju,...,j:) € F}, G; 2 (1—j1—-—3j)go+JjigL+ -+ 7g: is a bent function
and G = (1 —j1 — - = ji)go + J1gi + -+ jegi and g, = u where g, is defined by (3) and
u is a function from V,, to {41, +£y/—1} independent of j. Let g : IF; — Zyk be an arbitrary
function. Then h(x,y) = f(go(s)—g1@):90@)—g: ) (T) + D" 90(y) + 9(90(y) — g1 (y), - - -, go(y) —
9:(y)), (z,y) € V. x V,, is a generalized s-plateaued function from V, X Vi, to Z.

Proof: For any (a,b) € V, x V,,, we have

Wh(a, b)

= 2. > S i0) @) F9(01.030) g0 (y)~(a,) ~ (b.v)
pk P

=p! Z C]flgil’""it)Wf(il ''''' Z_t)(a) Z sz)lo(y)—<byy> Z Clgil—(go—m)(y))jl o Z C]git—(go—gt)(y))jt

1,9t €Fp YEVm J1€F, Jt€Fp
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Z Cgllﬂ f(il ..... m(a) Z Czélj1+m+itthG(j1 vvvvv jt>(b)

11,...,it €EFp J1se-,5t€Fp
SR Y QW) G At
11,05t EFp Jis--Jt€Fp
_ U(b)p%p—tggé(b) Z Cg(“ f(” ''''' Lt) Z Cgl(b —g5 () +i ) | . Z C(gt (b)—g§ (b)+it) e
11,00t EFp J1€EFp Jt€Fp
_ m g5 (b) ~9(96 (b)—g7 (b),-...95 () —g; (b))
= u(b)p= GO T W s r-ar o, s r-az o (@

(22)
where the fifth equation is obtained by the properties of bent functions ¢;(0 < i < t), which
satisfy that for any ji,...,ji € Fy, G5y gy = (L=J1 — -+ = ji)go + J1gr + - - - + jage is a bent
function and G;, . = (1—j1— =798 + jrgy + -+ + Jrg; and {G, .., = u where u is

a function from V,, to {41, 4+/—1} independent of (ji,...,j:).
Hence, by (22), it is easy to see that i : V. x V,;, — Z,x is a generalized s-plateaued function
if fi,i€ IF; are generalized s-plateaued functions from V. to Z,. [ ]
If s = 0, then Theorem 5 can be used to construct (non)-weakly regular generalized bent func-
tions and the dual function can be given. The following corollary is an immediate consequence

of Theorem 5 and its proof.

Corollary 2. If s = 0, then the function h : V. x V,, — Z, constructed by Theorem 5
is a generalized bent function and its dual function h*(x,y) = f(*gg(y)—gf(y) ._ga(y)_g;‘(y))(x) +

P75 (w) + 995 (y) — 97w, - 95(y) — g; (y)). Furthermore, h is non-weakly regular if any

one of the following conditions holds:

(1) There exists i € I}, such that f; is non-weakly regular and |{b € V;, : (g5(b) — g7 (D), ...,
95(b) — g; (b)) =i} = 1;

(2) u is a constant function and there exist iy # iy € F}, such that f;,, fi, are weakly regular
with 17, # g, and 1{b € Vi = (g5(0) — g (0), ., gi(b) — g () = is}] = 1 for j = 1,2;

(3) u is not a constant function and [y, = c,1 € IF; where c is a constant function independent
of 1.

Now we illustrate that why we call Theorem 5 generalized indirect sum construction method.
Note that when p = 2 and ¢ = 1, it is easy to verify that any Boolean bent functions gg, g1
satisfy the condition of Theorem 5. Let p = 2,k =t =1, fo, f1 : V., — F5 be Boolean plateaued

functions, gp,¢1 : Vi, — 5 be Boolean bent functions and g = 0, the plateaued function
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constructed by Theorem 5 is h(z,y) = foo()+am) () + 90(y) = go(y) + fo(z) + (fo(x) +
f1(x))(g0(y) + g1(y)). It is just the famous indirect sum construction [3]. Hence, Theorem 5 can
be seen as an extension of indirect sum construction of Boolean case. If g;(0 < i < t) are bent
functions satisfying g; = go — ¢;, 1 < <t where ¢;(1 <i < t) are constants, then ¢;(0 < i < t)
satisfy the condition of Theorem 5. In this case h(z,y) = fiey,..co (@) +P" 90 (y) +9(ca, - - -, 1),
which belongs to direct sum construction. We call it a trivial case. When p is an odd prime or
t > 2, except the trivial case, the condition of Theorem 5 for g;(0 < < t) is not trivial.

In [8], the authors defined a class of bent functions

F(z,y) = fy(z), (z,y) € F)' xF;

where p is an odd prime, m, s are positive integers with s < m and f,,y € F, are pairwise
disjoint spectra partially bent functions with s-dimensional linear kernel, which are called Gen-
eralized Maiorana-McFarland bent functions. We will show that the canonical way to construct
Generalized Maiorana-McFarland bent functions given in (6) of [8] can be obtained by Theorem
5. Let g;(0 < i < t) be Maiorana-McFarland bent functions from F}' x [ to I, defined as
9o(y1:y2) = y1 - 7(y2), i(y1,92) = go(y1,y2) + hi(y2), 1 < @ < ¢ where 7 is a permutation
over ]F;” and for any 1 < ¢ < t, h; is an arbitrary function from IFZ1 to IF,. Then it is easy
to verify that ¢;(0 < i < t) satisfy the condition of Theorem 5. When p is an odd prime,
k=1m=ts=0,9 =0, h(y) = 92,1 <1 <t where y» = (y2,1,...,%2:) € F}
and f;(i € IF}) are bent functions, the bent function constructed by Theorem 5 is h(z,y1,y2) =
Sy (@) Fy1-m(y2), (2,91, 92) € Fy xF} x 7. It is just the canonical way to construct Generalized
Maiorana-McFarland bent functions given in (6) of [8]. By Theorem 2 and its proof of [8], any
bent function in the complete Generalized Maiorana-McFarland class (that is, equivalent to a
Generalized Maiorana-McFarland bent function) is equivalent to a Maiorana-McFarland bent
function or a bent function of the form (6) of [8]. Hence, any bent function in the complete
Generalized Maiorana-McFarland class and not in the Maiorana-McFarland class is equivalent
to a bent function which can be constructed by the generalized indirect sum construction.

Now we provide another construction for ¢;(0 < i < t) to satisfy the condition of Theorem

For any 0 < <t let

9i(y1,12) = Tri (G (vt %), (W1,y2) € Fpm x Fym
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where m > ¢t + 1, G is a permutation over F,» with G(0) = 0 and «ap, ovq,..., ¢ € Fpm are
linearly independent over F,. Then ¢;(0 < ¢ < t) are in bent function class PS,, which is
a subclass of the famous class of partial spread bent functions (see [9], [16]) and satisfy the
condition of Theorem 5.

Indeed, if a P:S,, bent function ¢(y1,15) = Tr(aG (1l ), (y1,y2) € Fym X Fym where m
is a positive integer, o € Fy,. and G is a permutation over F» with G(0) = 0, then g*(y1, y2) =
Tri* (@G (=" 2y,)) and pg(y1,y2) = 1, (y1,72) € Fym X Fym. Since m > t + 1, there exist
linearly independent elements ay, ..., € Fpm. As ap,...,0q € Fpm are linearly independent
over Fp, a; = (1—ji—- - -—j;)ag+jion+- - ~+jsay # 0 forany j = (ji,...,5:) € FF}.. Then for any
J=01 ) €FL Gilyr,y2) = (L=ji—- =) go(y1. y2) + 191 (1, y2) +- - -+ 5ege(y1, y2) =
Tr’l””(osz(ylygmﬂ)) is a bent function with g, (y1,92) =1 and (1 —jy — -+ — j1)g5 (Y1, y2) +
3195 W, o) + 5egi (i, o) = (L= 1 — - — G T (oG (=3 2y2)) + 1 Tri(an G(—y 2ye))
o BT Gy ) = Tri(agG(=y2)) = G5y, v2). that is, g:i(0 < i < 1)
satisfy the condition of Theorem 5.

As the above ¢;(0 < i < t) satisfy the condition of Theorem 5, we obtain the following

corollary from Theorem 5.

Corollary 3. Let p be a prime. Let k,t,r,m be positive integers with m > t + 1, s(< r)
be a non-negative integer and r + s be even for p = 2)k = 1. Let f;(i € F;) Ve = Ly
be generalized s-plateaued functions. Let g;(0 < i < t) : Fym X Fym — F, be defined as
9:i(y) = Tri(aGnyy ),y = (y1,42) € Fym X Fym where G is a permutation over Fm
with G(0) = 0 and ag, 1, ..., € Fym are linearly independent over F,,. Let g : FZ — Ly
be an arbitrary function. Then h(x,y) = f(gow)—g1 )0 —aw)) () + D" 90(y) + 9(go(y) —
91(y), -, 90y) — (W), (x,y) = (x,v1,92) € Vi X Fym X Fym is a generalized s-plateaued

function from V. X Fpm X Fpym t0 Zyp.

We give two examples by using Corollary 3. The second example gives a non-weakly regular

bent function which is not in the complete Generalized Maiorana-McFarland class.

Example 8. Let p =7, k =2t =1, r =3, m =2, s = 1. Let fo(x1,79,73) = 7(2? +
[L’%), fl(flfl,QTg,fL'g) = 7(1‘% + 3$%), f2($1,$2,$3) = 7(1’% + 2&7:2)’), fg(l’l,llfg, 1‘3) = 7(%’% + 51’%),
fa(zy, o, 23) = T(23+423), f5(x1, 10, 13) = T(23+622), fo(r1, 72, 23) = T(23+323+13). Then
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fos -5 Jo : B2 — Zz2 are generalized 1-plateaued functions. Let z be the primitive element of Fr2
with 2% +62+3 = 0. Let go(y1, y2) = Tri(y1ya"), 1(y1,y2) = Tri(z11957), (Y1, y2) € Fra x Fra.
Let g : F7 — Zq2 be defined as g(x) = x° + 223. Then the function h : F3 x Fr2 X Fpz — Zpe
constructed by Corollary 3 is a generalized 1-plateaued function and one can verify that the

Walsh support is not an affine subspace.

Example 9. Let p =3, k=1t =1, r =4 m = 2, s = 0. Let £ be the primitive element
of Fga with € + 263 4+ 2 = 0. Let z be the primitive element of Fs2 with 2°> + z + 2 = 0. Let
folx) = Tri(z™ +2?), fi(x) = Tri(2?), folz) = Tri(€a®). Then fo, fi, fo : Fze — Fy are
weakly regular bent functions with py () = py, (x) = =1, up(x) = 1,2 € Fsa. Let go(y1,y2) =
Tri(yiys), g1(y1,y2) = Tri(zy1y3), (y1,y2) € Fse x F32. Let g(x) = 0, x € F3. Then the function
h : Fza X Fz2 X F32 — F3 constructed by Corollary 3 is a non-weakly regular bent function.
And we will prove in Appendix that it is not in the complete Generalized Maiorana-McFarland

class.

Remark 3. The generalized indirect sum construction method can also be applied to construct
generalized s-plateaued functions from V, to Zox where k > 2 and n + s is odd if using
generalized s-plateaued functions from V,. to Zo. where k > 2 and r + s is odd as building
blocks.

B. Applications

In this subsection, we give some applications of Corollary 3 in constructing plateaued functions
in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued
functions.

In [25], Mesnager et al. introduced the notion of class WRP, which is a subclass of the class
of weakly regular plateaued functions and plays an important role in constructing minimal linear
codes and strong regular graphs (see [25], [26]).

Let p be an odd prime. Let f : V,, — I, be an unbalanced weakly regular s-plateaued function.
If f(0) = 0 and there exists an even positive integer h with ged(h — 1,p — 1) = 1 such that
flax) = a"f(x),z € V, for any a € F%, then f belongs to the class WRP. Note that all quadratic
functions are plateaued functions. By Theorem 1, it is easy to verify that any quadratic function

without affine term is unbalanced. Therefore, all quadratic functions without affine term are in
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the class WRP and h = 2. We will give a construction of non-quadratic plateaued functions in
the class WRP by using Corollary 3.

Let p be an odd prime and m be an even positive integer. Let f : F;" — F), be a partial spread
bent function (see [16]). Then by Theorem 3.3 and Theorem 3.6 of [16], it is easy to see that
for any a € Iy, f(ax) = f(x). Let t,7 be positive integers, s be a non-negative integer and r — s
be an even positive integer. For any 7 € IF;, let b; : F,;7* — ), be a partial spread bent function,
M; € GL(r,F,), E; C [, be an (r — s)-dimensional subspace and R; be the corresponding

matrix defined by Lemma 1. Define
fi(z) = bj(x M R]),z € F},i € F,. (23)

Then for any i € F!, f; is an s-plateaued function with py,(z) = 1,2 € I}, by Theorem 1. And
it is easy to see that f;(ax) = fi(r),z € F} for any a € FF;.
Now we give a construction of non-quadratic plateaued functions in the class WRP by using

Corollary 3.

Theorem 6. Let p be an odd prime and k = 1. Let t,r, m be positive integers with m >t + 1.
Let s(< r) be a non-negative integer. Let g;(0 < j < t) : Fym X Fym — F, be defined as
9;(y) = Tri(e; Gy ),y = (11,92) € Fym X Fym where G is a permutation over Fym with
G(0) =0 and ap,ay, . ..,0q € Fym are linearly independent over T,

e Case p=3: Let f;(i € IFZ) : Vi = ¥, be weakly regular s-plateaued functions satisfying

pr(x) =u,x€V,,i € IF; where iy, is defined by (3) and w is some constant independent

.....

.....

-----

Then the function h : V, X Fym X Fpm — I, constructed by Corollary 3 is a weakly regular

s-plateaued function and in the class WRP.

Proof: By Corollary 3, h is an s-plateaued function. And by the proof of Theorem 35,

it is easy to see that /o is weakly regular and the Walsh support of h is Sy = Uyer,mxF,m
Fiag =97 @)g =07 ) {y}. Since ¢5(0,0) — g;(0,0) = 0,1 < j < ¢ and 0 € Sy,
we have (0,0,0) € Sy, that is, h is unbalanced. By ¢(0,...,0) = —f,.0)(0), 2(0,0,0) =

.....
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F(96(0,0)-91(0,0),.-,90(0,0)~4:(0,0)) (0) +90(0, 0) + (g0 (0, 0) — 91 (0, 0), .. ., 90(0, 0) = g:(0, 0)) = fio....0)
(0)+0+49(0,...,0) =0. As fi(ax) = fi(x),z € V,,i €}, g;(ay) = g;(y),y € Fpm xFpm,0 <
J < t for any a € F, the weakly regular plateaued function % constructed by Corollary 3
satisfies h(ax,ay) = h(z,y) = e 'h(z,y), (x,y) € V; X Fym X Fym for any a € . Note that
p— 1is even and ged(p — 2,p — 1) = 1. By definition, A is in the WRP class. [ |

We give an example of non-quadratic plateaued function in the WRP class by using Theorem

Example 10. Let p = 3,t = 1,r = 2,m = 2,5 = 1. Let z be the primitive element of
Fpo with 2% + 2z +2 = 0. Let go(y1,92) = Tri(yiy3), 01(y1,92) = Tri(zunys), (1. y2) €
Fy2 X Fya. Let fo(xy, 20) = 22, f1(x1,12) = 22, folx1, 22) = 23 + 2129 + 22, (21, 75) € F2. Then
fi,i € Fy are 1-plateaued functions with iy, (x1,2) = /=1, (21, 75) € F2 and fi(azxy, axe) =
a? fi(x1, xa), (21, 2) € F3 for any a € F% and (0,0) € Sy,. Let g = 0. Then the function h
constructed by Theorem 6 is h(z1,T2,y1,y2) = Tri(yiys) + 22 + (Tri((1 — 2)y1y3))* (22 +
22129 + 23) + (Tr3((1 — 2)y1ys)) (23 + 2122), (21, T2, Y1, y2) € F2 X F32 x Fy2, which is a non-
quadratic weakly regular 1-plateaued function and in the WRP class. And one can verify that

the Walsh support of h is not an affine subspace, that is, h is not a partially bent function.

The second application of Corollary 3 is about vectorial plateaued functions. Let f = (fi, ...,
fm) be a vectorial function from V,, to [F;". Then f is said to be a vectorial plateaued function
if for any nonzero vector (ci,...,c,) € F}', > cifi is a plateaued function from V,, to F,,.

1=

Now we give a construction of vectorial plateaued functions.

Theorem 7. Let p be a prime. Let r > 1,m > 3,0 < s < r be integers and r + s be even
for p = 2. Let {ap,...,am_1} be a basis of Fym over F,. Let fo,...,fp-1 : V. — F, be
s-plateaued functions. Let G be a permutation over F,m with G(0) = 0. Let hi(z,y1,y2) =
m =2 )
fTr;n(aOG(ylygm‘Q))(x) + Tri (G (nys 7)), (x,y1,y2) € Vi X Fym X Fpm, 1 <@ < m — 1. Then
vectorial function H = (hq, ..., hy_1) is a vectorial plateaued function from V, x Fym x Fym

m—1
to IFp .

Proof: First we observe that if «, 8 € F,» are linearly independent over I, then function

h<x7y1’y2) = fTrT(ﬁG(ylySm_2))(x) + TTT(QG(y1y§m72>>7(x7y17y2> €V, x Fpm X Fpm is an

s-plateaued function where fo, ..., f,—1 are s-plateaued functions and G is a permutation over
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Fpm with G(0) = 0. Indeed, we have h(x,y1,%2) = foot.y2)—g1(wiwe) () + go(y1,y2) where
9oy, 92) = Tri(aG(ngh ), 01(y1,92) = Tri*((« — B)G(yrys ). By Corollary 3, h is
an s-plateaued function since o, « — 3 are linearly independent over IF,,.

For any nonzero vector a = (ai,...,am—1) € FP~, if a £ 37" " ta; # 0, then 7 aihi(x,
Y1, Y2) = afTr;n(aOG(ylygm‘Q))<I) + Tr (oG (nys %)) where a, = 32" a;0;. By Theorem 1
of [7], we have afy,...,af,—; are s-plateaued functions. Since afy,...,af,—; are s-plateaued
functions and «y, o, are linearly independent, we have Zzzl a;h; is an s-plateaued function.

For any nonzero vector a = (ay, ..., 0y 1) € F;”_l, ifa = Z:’:ll a; = 0, then Zl L ahi(z,
Y1,Y2) = Tr{”(aaG’(ylygm_Q)) where a, = er:ll a;c;. Since o, # 0, it is easy to see that
S ashi(w,y1, y2) is an r-plateaued function.

Hence, for any nonzero vector a = (ay,...,a,_1) € IFZ””_l, Z:’:ll a;h; is a plateaued function,
that is, H = (hq,...,hy,—1) is a vectorial plateaued function. [ |

We give an example of vectorial plateaued function by using Theorem 7.

Example 11. Let p = 3,7 = 3,m = 4,5 = 0. Let fo(x) = Tr3(x?), fi(z) = Tri(x?), fo(x) =
Tr3(&%2%), x € Fss where £ is a primitive element of Fss. Then f;(0 < i < 2) are weakly regular
bent functions with py,(z) = pp(x) = —v/=1,up(x) = V=1,2 € Fas. Let hi(z,y1,y2) =
fTT%(ylygg)(x) + Tri(2'yya?), (x,y1,y2) € Fss X Faa x Fga,4 = 1,2,3 where z is a primitive
element of Fz1. Then H = (hy, ha, h3) is a vectorial plateaued function. And one can verify that
H contains non-weakly regular plateaued component functions and weakly regular plateaued

component functions.

Remark 4. Let H = (hy, ..., hy,_1) be the constructed vectorial plateaued function by Theorem
7. Define g; = hiy1,0 < i < m — 2. Then one can verify that g;(0 < i < m — 2) satisfy the

condition of Theorem 5.

V. CONCLUSION

In this paper, we mainly study generalized s-plateaued functions from V;, to Z,x where p is
an odd prime and £k > 1 or p =2,k > 2 and n + s is even. Firstly, inspired by [13], we give a
complete characterization of generalized plateaued functions with affine Walsh support in spectral
domain (Theorem 1) and provide some generic construction methods of generalized plateaued

functions with (non)-affine Walsh support in spectral domain (Theorem 2, Theorem 3, Theorem
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4). Compared with the constructions in spectral domain in [13], in our constructions of Theorem
2, Theorem 3 and Theorem 4, the Walsh support can contain strictly less than n — s columns
corresponding to affine functions. And we give two examples of Boolean plateaued functions,
which satisfy that every column of Sy corresponds to a non-affine function and the functions
have no nonzero linear structure. Secondly, we give a generalized indirect sum construction
method (Theorem 5), which can also be used to construct (non)-weakly regular generalized bent
functions (Corollary 2). In particular, we show that the canonical way to construct Generalized
Maiorana-McFarland bent functions is a special case of the generalized indirect sum construction
method. And we illustrate that the generalized indirect sum construction method can be used to
construct bent functions not in the complete Generalized Maiorana-McFarland class (Example
9 and Appendix). Furthermore, we give some applications of the generalized indirect sum
construction method (Theorem 6, Theorem 7). In this paper, we do not study generalized s-
plateaued functions from V), to Z,» where p = 2,k > 2 and n + s is odd in spectral domain. For
this case, although similar theoretical characterizations can be given, we cannot provide efficient
construction methods in spectral domain for this case. In the following research, we will pay

attention to this case.

APPENDIX

We prove that the bent function constructed in Example 9 is not in the complete Generalized
Maiorana-McFarland class.

Recall that the bent function constructed in Example 9 is h(2,y1,¥2) = foo(y1,92)—g1 (y1,2) (%) +
90(y1,y2) = fo(@) +go(y1, y2) + (90 (Y1, y2) — 91.(y1, ¥2))* (= fo(@) — f1(x) — fo()) + (90(y1, y2) —
91(y1,92))(2f1(2) + fa()), (2, Y1, y2) € Fa1 x Fg2 x Fgz where fy(x) = Tri(2* +2°), fi(r) =
Tri(@?), falx) = Tri(€a?), go(yr, v2) = Tri(v1ys)s 91(y1,42) = Tri(zy1ys) and € is the
primitive element of 31 with £4+4+2¢3+2 = 0, 2 is the primitive element of F32 with 22+ 242 = 0.

By Theorem 2 of [8], if & is in the complete Generalized Maiorana-McFarland class, then for
an integer 1 < s < 4 there exists an s-dimensional subspace V' of 31 X 32 x 32 such that the
second order derivative

DoDch(z,y1,y2) =0 (24)

for any a = (ag,a1,az),¢ = (co,c1,¢2) € V, (2, 91,92) € Fzu x Fy2 X Fyo. Define gi(y) =
gi(y1,92),4 = 0,1 and Fl(%.ﬂ) = fg’o(y)fgi(y)(x) + go(y) where y = (yi1,y1.2,¥2,1,%22) €

March 18, 2021 DRAFT



32

F3, (y1,92) € F32 X Fso, 41 = 11+ Y122, Y2 = Y21 + Y2.22. Then h is a non-weakly regular bent
function from F3: x F3 to F5. By simple calculation we have go(y) —g1(y) = (y1.1+v1,2)Y5 12,2+
(2011 4+ v1,2)Y2,1Y5 2 + 2U11Y2.2 + 2y1202.1, (Go(y) — 1 (y))* = yil?/%,z + ?/%,29%,1 + Y1,1Y1,2Y2,1Y2,2
where y = (y1.1, Y12, Y21, Y2.2) € F3.
Suppose (24) holds. Then
DyD:h(z,y) =0 (25)

_ _ v 4 7
for any a = (ag, a11,a19, 021, 022),¢ = (co,C11,C12,C21,Co2) €V, (2,y) € Fsa X3 where V' =

{(ag,a11,a12,a21,a22) € Faa ><]F§ t(ap, a11+a122, a21+a222) € VI y = (Y11, Y12, Y21, Yo2) €

\ | \ | 34 34
F3. As {30 - 3" (mod (3* — 1)) : i« > 0} = {10,30} and " = 0 (mod 3), % =

2 (mod 3), DgDzh contains —y3 1 y3 , T (2((ag+co)* —ag—cg)x*). Then by (25), (ag+co)*—ag—
cy = 0 forany @ = (ag,ay,1,a12,a2,1,022),¢ = (o, C1.1,C12,C21,C22) € V. If there exists ag # 0
such that @ = (ag, ay.1,a12,a91,a22) € V, let ¢ = a, then ¢y = ag # 0 and (ag+cp)* —ag—cg =
2a3 # 0, which is a contradiction. Hence V' C {0} x T3, that is, V' C {0} x Fs2 x Fs.. For
any fixed (0, a1, a2), (0,c1,¢2) € V and (y1,y2) € Fa2 x Faz, let dy = D(a;,a0)D(c1,e0)90 (Y1, Y2),
di = Diay,a2)Dcr.en)(90(W1,92) — 91(y1,92))s d2 = D(aya2)Dier.e2) (90(Y15 ¥2) — 91(y1,42))*. By
D(0,a1.02) D (0.c1,e2) (T, Y1, Y2) = Diayan) Dierre) 90 (Y1, y2) +(=fo(z) = f1(7) = f2(2)) D(ay az) Dier o)
(90(y1,92) = 91 (y1,%2))* + (2f2(2) + fo(2)) Diayaz) Dier en) (90 (41, ¥2) — 91(y1,42)) = 0 for any
(0,a1,a2),(0,¢1,¢2) € V,(x,y1,y2) € Fza X F32 x F32, for any fixed (0, a1, a2),(0,c¢1,¢9) € V
and (y1,y2) € F32 X F32, we have —ds fo(x) + (2dy — d) f1(x) + (dy — da) fa(x) = —dg, x € Faa.
By fo(0) = f1(0) = f2(0) = 0, we have dy = 0. By i + j§ # 0 for any i,j € Fs and
the algebraic degree of f, is 4, the algebraic degree of f; and f5 is 2, we have fy, f1, fo
are linearly independent, hence d; = dy = 0. Therefore, (24) holds if and only if for any
(0,a1,az),(0,¢1,¢c2) €V, (y1,y2) € Fz2 x Faz,

D(ay,2)Dicr,e2)90(y1,42) = 0 (26)

and
Diara2)Dierre2) (90 (Y1, 2) — 91(y1,42)) = 0 27

and
D(ay,a2) Der.ea) (90 (41, y2) — g1(y1,92))* = 0. (28)
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By (26), (27) and the fact that {1,1 — z} is a basis of F32 over F3, we have for any fixed
(0,a1,as),(0,c1,c2) €V and (y1, 1) € Fyo x Faz, Tr2(((y1 + a1 + 1) (y2 + az + )" — (y1 +
a1)(y2 +az)” — (y1 +¢1) (Y2 +c2)" +y195)x) = 0, 2 € Fy2, which yields (y; + a1+ c1)(yo +ag +
c2)" = (y1 + ar)(y2 + a2)” — (y1 + 1) (92 + 2)" + y1ys = 0 for any (0,a1,a2), (0,c1,¢2) € V
and (y1,v2) € Fs2 x Fz2. We claim V' C {0} x Fs2 x {0}. If there exists ax # 0 such that
a = (0,a;,a3) € V, let ¢ = a. Then ¢y = ay # 0 and the coefficient of y,y3 is C3((ay +
co)t — ad — c3) = aj # 0, which is a contradiction. Hence V' C {0} x Fs2 x {0}, that is,
V C {0} xF3x {(0,0)}. By (28), we have Dia, , a,.2,0,0)Dcr.1,01.00,0)(90(y) — g1 (y))* = 0 for any
(0,a1.1,a12,0,0),(0,¢1.1,¢12,0,0) € V,y = (y1.1,Y1.2,Y21,Y22) € Fs. By simple calculation,
we have 2a11c11955 + 2a12¢1205, + (a1,1¢12 + a12¢11)Y21%22 = 0, which yields ayc11 =
a12C19 = ay1¢12 + ajaciy = 0 for any (0,a;1,a12,0,0),(0,¢11,c¢12,0,0) € V. If there exists
(a11,a12) # (0,0) such that @ = (0,a1,1,a12,0,0) € V, let ¢ = a, then ayc1y = af; #
0 or ajacio = aiQ # 0 since (a11,a12) # (0,0), which is a contradiction. Hence, V =
{(0,0,0,0,0)}, thatis, V' = {(0,0,0)}. By Theorem 2 of [8], A is not in the complete Generalized

Maiorana-McFarland class.
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