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Some Generic Constructions of Generalized Plateaued Functions†
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Abstract

Plateaued functions as an extension of bent functions play a significant role in cryptography, coding

theory, sequences and combinatorics. In 2019, Hodžić et al. [IEEE TIT 65(9): 5865-5879, 2019] designed

Boolean plateaued functions in spectral domain and provided some efficient construction methods in

spectral domain. However, in their constructions, the Walsh support of Boolean s-plateaued functions in

n variables, when written as a matrix of order 2n−s×n, contains at least n− s columns corresponding

to affine functions on Fn−s
2 . In this paper, we study generalized s-plateaued functions from Vn to Zpk

where p is an odd prime and k ≥ 1 or p = 2, k ≥ 2 and n + s is even. Firstly, inspired by the work

of Hodžić et al., we give a complete characterization of generalized plateaued functions with affine

Walsh support and provide some construction methods of generalized plateaued functions with (non)-

affine Walsh support in spectral domain. In our constructions of generalized s-plateaued functions with

non-affine Walsh support, the Walsh support can contain strictly less than n− s columns corresponding

to affine functions and our construction methods are also applicable to Boolean plateaued functions.

Secondly, we provide a generalized indirect sum construction method of generalized plateaued functions,

which can also be used to construct (non)-weakly regular generalized bent functions. In particular, we

show that the canonical way to construct Generalized Maiorana-McFarland bent functions is a special

case of the generalized indirect sum construction method and we illustrate that the generalized indirect

sum construction method can be used to construct bent functions not in the complete Generalized

Maiorana-McFarland class. Furthermore, based on this construction method, we give constructions of

plateaued functions in the subclass WRP of the class of weakly regular plateaued functions and vectorial

plateaued functions.
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I. INTRODUCTION

Boolean bent functions introduced by Rothaus [31] play an important role in cryptography,

coding theory, sequences and combinatorics. In 1985, Kumar et al. [15] generalized Boolean

bent functions to bent functions over finite fields of odd characteristic. Due to the importance

of bent functions, they have been studied extensively. There is an exhaustive survey [5] and a

book [20] for bent functions and generalized bent functions. Recently, the notion of generalized

bent functions from Vn to Z2k has been generalized to generalized bent functions from Vn to

Zpk where p is a prime [28]. For more characterizations and constructions of generalized bent

functions from Vn to Zpk , we refer to [10], [11], [17], [18], [19], [21], [28], [32], [33]. Also

note that by Theorem 16 of [28], one can construct some generalized bent functions by the

constructed infinite families of p-ary weakly regular bent functions in [30].

In 1993, Carlet [4] introduced the definition of Boolean partially bent functions which is an

extension of Boolean bent functions. As an extension of Boolean partially bent functions, Zheng

and Zhang [34] introduced the definition of Boolean plateaued functions. Boolean plateaued

functions have many good cryptographic properties. The notions of Boolean partially bent

functions and Boolean plateaued functions have been extended to partially bent functions and

plateaued functions over finite fields of odd characteristic (see [6], [7]). Apart from the desirable

cryptographic properties, plateaued functions play a significant role in coding theory, sequences

and combinatorics (see e.g. [1], [22], [25], [26], [29] ). In [27], Mesnager et al. extended the

usual notion of plateaued functions to generalized plateaued functions, which includes the notion

of generalized bent functions.

For the generic framework of (generalized) plateaued functions, there has been some progress

[2], [14], [23], [24], [27]. However, there are not many efficient generic constructions. In [13],

Hodžić et al. designed Boolean plateaued functions in spectral domain. Designing plateaued

functions in spectral domain is based on the fact that any function from Vn to Zpk where p is

a prime, k is a positive integer and its Walsh spectrum are mutually determined. In this paper,
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we study generalized s-plateaued functions from Vn to Zpk where p is an odd prime and k ≥ 1

or p = 2, k ≥ 2 and n + s is even. Firstly, inspired by the work of Hodžić et al., we give

a complete characterization of generalized plateaued functions with affine Walsh support and

provide some construction methods of generalized plateaued functions with (non)-affine Walsh

support in spectral domain. As pointed out in [13], for the constructions in spectral domain

given in [13], the Walsh support of Boolean s-plateaued functions in n variables, when written

as a matrix, contains at least n − s columns corresponding to affine functions on Fn−s2 . And

they proposed an open problem to provide constructions of Boolean s-plateaued functions whose

Walsh support, when written as a matrix, contains strictly less than n−s columns corresponding

to affine functions. In our constructions of generalized s-plateaued functions with non-affine

Walsh support, the Walsh support, when written as a matrix, can contain strictly less than n− s

columns corresponding to affine functions and our construction methods are also applicable

to Boolean plateaued functions. Secondly, we provide a generalized indirect sum construction

method of generalized plateaued functions, which can also be used to construct (non)-weakly

regular generalized bent functions. In particular, we show that the canonical way to construct

Generalized Maiorana-McFarland bent functions is a special case of the generalized indirect sum

construction method and we illustrate that the generalized indirect sum construction method can

be used to construct bent functions not in the complete Generalized Maiorana-McFarland class.

Furthermore, based on this construction method, we give constructions of plateaued functions

in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued

functions.

The rest of the paper is organized as follows. In Section 2, we introduce the needed definitions

and results related to generalized plateaued functions. In Section 3.1, we give a necessary and

sufficient condition of constructing generalized plateaued functions in spectral domain and give

a useful corollary. In Section 3.2, we give a complete characterization of generalized plateaued

functions whose Walsh support is an affine subspace. In Section 3.3, we provide some generic

construction methods of generalized plateaued functions with (non)-affine Walsh support. In

Section 4.1, we give a generalized indirect sum construction method of generalized plateaued

functions. In Section 4.2, we give some applications of the generalized indirect sum construction

method. In Section 5, we make a conclusion.
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II. PRELIMINARIES

For any complex number z = a+b
√
−1, let |z| =

√
a2 + b2. For any finite set S, let |S| denote

the size of S. Throughout this paper, let Zpk be the ring of integers modulo pk, ζpk = e
2π
√
−1

pk be

the complex primitive pk-th root of unity, Fnp be the vector space of the n-tuples over Fp, Fpn

be the finite field with pn elements and Vn be an n-dimensional vector space over Fp where p is

a prime and k, n are positive integers. The classical representations of Vn are Fnp and Fpn . For

a, b ∈ Vn, let 〈a, b〉 denote a (nondegenerate) inner product in Vn. When a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ Fnp , let 〈a, b〉 = a · b =
∑n

i=1 aibi. When a, b ∈ Fpn , let 〈a, b〉 = Trn1 (ab)

where Trn1 (·) is the absolute trace function. When Vn = Vn1 × · · · × Vns(n =
∑s

i=1 ni), let

〈a, b〉 =
∑s

i=1〈ai, bi〉 where a = (a1, . . . , as), b = (b1, . . . , bs) ∈ Vn. Let GL(n,Fp) denote the

group formed by all invertible matrices over Fp of size n× n.

A function f from Vn to Zpk is called a generalized p-ary function, or simply p-ary function

when k = 1. A p-ary function L : Vn → Fp is called a linear function if L(ax + by) =

aL(x) + bL(y) for any a, b ∈ Fp and x, y ∈ Vn. All linear functions from Vn to Fp form an

n-dimensional linear space Ln and {〈αi, x〉, 1 ≤ i ≤ n} is a basis of Ln where {αi, 1 ≤ i ≤ n}

is a basis of Vn. If p-ary function A : Vn → Fp is the sum of a linear function and a constant,

then A is called an affine function.

The Walsh transform of generalized p-ary function f : Vn → Zpk is the function Wf from Vn

to Z[ζpk ]:

Wf (a) =
∑
x∈Vn

ζ
f(x)

pk
ζ−〈a,x〉p where a ∈ Vn. (1)

And f can be recovered by the inverse transform

ζ
f(x)

pk
=

1

pn

∑
a∈Vn

Wf (a)ζ〈a,x〉p where x ∈ Vn. (2)

The multiset {Wf (a), a ∈ Vn} is called the Walsh spectrum of f . The set Sf = {a ∈ Vn :

Wf (a) 6= 0} is called the Walsh support of f . Functions f1, . . . , fm are called pairwise disjoint

spectra functions if Sfi ∩ Sfj = ∅ for any i 6= j.

A generalized p-ary function f : Vn → Zpk is called a generalized p-ary s-plateaued function,

or simply p-ary s-plateaued function when k = 1 if |Wf (a)| = p
n+s
2 or 0 for any a ∈ Vn. If

s = 0, the generalized p-ary 0-plateaued function f is just the generalized p-ary bent function

and Sf = Vn.

March 18, 2021 DRAFT



5

For generalized s-plateaued functions f : Vn → Zpk , there is a basic property: |Sf | = pn−s,

which is obtained by Parseval identity
∑

x∈Vn |Wf (x)|2 = p2n. In [27], Mesnager et al. have

shown the Walsh transform of a generalized p-ary s-plateaued function f : Vn → Zpk satisfies

that for any a ∈ Sf , when p = 2 and n+ s is even, Wf (a) = 2
n+s
2 ζ

f∗(a)

2k
and when p is an odd

prime,

Wf (a) =

 ±pn+s2 ζ
f∗(a)

pk
if n+ s is even or p ≡ 1(mod 4),

±
√
−1p

n+s
2 ζ

f∗(a)

pk
if n+ s is odd and p ≡ 3(mod 4)

where f ∗ is a function from Sf to Zpk . We call f ∗ the dual function of f .

In the sequel, if f : Vn → Zpk is a generalized s-plateaued function with dual function f ∗,

define function µf as

µf (a) = p−
n+s
2 ζ
−f∗(a)

pk
Wf (a), a ∈ Sf . (3)

If p ≡ 1(mod 4) or p ≡ 3(mod 4) and n + s is even, then µf is a function from Sf to {±1}.

If p ≡ 3(mod 4) and n + s is odd, then µf is a function from Sf to {±
√
−1}. If p = 2

and n + s is even, then µf (x) = 1, x ∈ Sf . For generalized bent function f : Vn → Zpk ,

that is, generalized 0-plateaued function, if µf is a constant function, then f is called weakly

regular, otherwise f is called non-weakly regular. In particular, if µf (x) = 1, x ∈ Vn, f is

called regular. In [22], Mesnager et al. introduced the notion of (non)-weakly regular plateaued

functions in odd characteristic. For an s-plateaued function f : Vn → Fp, if µf is a constant

function, then f is called weakly regular, otherwise f is called non-weakly regular. In particular,

if µf (x) = 1, x ∈ Sf , f is called regular.

If f : Vn → Zpk is a generalized n-plateaued function, then |Sf | = 1 and it is easy to obtain

f(x) = pk−1〈a, x〉+ b for some a ∈ Vn, b ∈ Zpk by the inverse transform (2). In this paper, we

study generalized s-plateaued functions f : Vn → Zpk where 0 ≤ s < n, p is an odd prime and

k ≥ 1 or p = 2, k ≥ 2 and n+ s is even.

III. CONSTRUCTING GENERALIZED PLATEAUED FUNCTIONS IN SPECTRAL DOMAIN

In this section, we provide some generic construction methods of generalized s-plateaued

functions in spectral domain where s ≥ 1.

To this end, we fix some notation unless otherwise stated. Let m be an arbitrary positive

integer. Define the notation of lexicographic order ≺: a ≺ b if
∑m

i=1 p
m−iai <

∑m
i=1 p

m−ibi
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where a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Fmp . Define

vi =
m∑
j=1

vi,jαj, 0 ≤ i ≤ pm − 1, (4)

where {α1, . . . , αm} is some fixed basis of Vm over Fp and {(v0,1, . . . , v0,m), . . . , (vpm−1,1, . . . ,

vpm−1,m)} is the lexicographic order of Fmp . When Vm = Fmp , we let α1 = (1, 0, . . . , 0, 0) ∈

Fmp , . . . , αm = (0, 0, . . . , 0, 1) ∈ Fmp , that is, {v0, . . . , vpm−1} denotes the lexicographic order of

Fmp . For a p-ary function f : Vm → Fp, define its true table

Tf = (f(v0), . . . , f(vpm−1))T (5)

where MT denotes the transpose of matrix M . For two matrices A = (a1, . . . , an1) and B =

(b1, . . . , bn2) where n1, n2 are positive integers and ai(1 ≤ i ≤ n1), bj(1 ≤ j ≤ n2) are

column vectors of the same size, let o denotes column concatenations of A and B, that is,

A oB = (a1, . . . , an1 , b1, . . . , bn2).

A. A Necessary and Sufficient Condition

In this subsection, inspired by [13], we provide a necessary and sufficient condition of

constructing generalized plateaued functions in spectral domain and provide a corollary which

plays an important role in generic constructions.

Suppose S ⊆ Fnp with size pm is ordered as S = {w0, w1, . . . , wpm−1}. For any a ∈ Fnp , define

ψa from Vm to Fp:

ψa(vi) = a · wi, 0 ≤ i ≤ pm − 1, (6)

where vi is defined by (4).

Under notation as above we have the following proposition:

Proposition 1. Let p be a prime. Let n, k, s(< n) be positive integers and k ≥ 2, n+ s be even

for p = 2. Let S be a subset of Fnp with size pn−s and be ordered as S = {w0, w1, . . . , wpn−s−1}.

Let d be a function from Vn−s to Zpk . Let µ be a function from Vn−s to {±1} if p ≡ 1(mod 4)

or p ≡ 3(mod 4) and n+s is even, µ be a function from Vn−s to {±
√
−1} if p ≡ 3(mod 4) and

n+s is odd and µ(x) = 1, x ∈ Vn−s if p = 2 and n+s is even. Define function W : Fnp → Z[ζpk ]

as

W (a) =

 µ(vi)p
n+s
2 ζ

d(vi)

pk
if ∃ 0 ≤ i ≤ pn−s − 1 s.t. a = wi,

0 otherwise.
(7)
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Then W : Fnp → Z[ζpk ] is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk

if and only if (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp , where ψa is defined by

(6).

Proof: First by the well-known fact that
√
p ∈ Z[ζp] if p ≡ 1(mod 4) and

√
−1
√
p ∈ Z[ζp]

if p ≡ 3(mod 4), it is easy to see that the function W defined by (7) is a function from Fnp to

Z[ζpk ].

If W : Fnp → Z[ζpk ] is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk ,

by the inverse transform (2) we have

ζ
f(a)

pk
=

1

pn

∑
x∈Fnp

W (x)ζa·xp

=
1

pn

∑
x∈S

W (x)ζa·xp

=
1

pn

pn−s−1∑
i=0

µ(vi)p
n+s
2 ζ

d(vi)

pk
ζa·wip

= p
s−n
2

pn−s−1∑
i=0

µ(vi)ζ
d(vi)+p

k−1ψa(vi)

pk

= p
s−n
2

∑
x∈Vn−s

µ(x)ζ
d(x)+pk−1ψa(x)

pk
,

hence (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp .

Conversely, suppose (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp . Since all roots

of xpk = 1 are ζ0
pk
, ζ1
pk
, . . . , ζp

k−1
pk

, there is a unique generalized function f : Fnp → Zpk such that

p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
= ζ

f(a)

pk
. Then function W is the Walsh transform of f . Indeed,

Wf (a) =
∑
x∈Fnp

ζ
f(x)

pk
ζ−a·xp

=
∑
x∈Fnp

p
s−n
2

∑
y∈Vn−s

µ(y)ζ
d(y)+pk−1ψx(y)

pk
ζ−a·xp

=
∑
x∈Fnp

p
s−n
2

pn−s−1∑
i=0

µ(vi)ζ
d(vi)+p

k−1x·wi
pk

ζ−a·xp

= p
s−n
2

pn−s−1∑
i=0

µ(vi)ζ
d(vi)

pk

∑
x∈Fnp

ζ(wi−a)·x
p .
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If a /∈ S = {w0, w1, . . . , wpn−s−1}, then Wf (a) = 0 since
∑

x∈Fnp
ζ

(wi−a)·x
p = 0 for any 0 ≤

i ≤ pn−s − 1. If a = wi for some 0 ≤ i ≤ pn−s − 1, then Wf (a) = p
n+s
2 µ(vi)ζ

d(vi)

pk
since∑

x∈Fnp
ζ

(wi−a)·x
p = pn and for any other j 6= i we have

∑
x∈Fnp

ζ
(wj−a)·x
p = 0. Hence, Wf (a) =

W (a) for any a ∈ Fnp and Sf = S, |Wf (a)| = p
n+s
2 for any a ∈ Sf , that is, W is the Walsh

transform of f and f is a generalized s-plateaued function.

Remark 1. Proposition 1 provides a necessary and sufficient condition of constructing general-

ized plateaued functions in spectral domain. If the condition of Proposition 1 is satisfied, then

one can obtain function f by the inverse transform (2).

By Proposition 1 (with the same notation), if the function W : Fnp → Z[ζpk ] defined by (7) is

the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk , then obviously

|
∑

x∈Vn−s

µ(x)ζ
d(x)+pk−1ψa(x)

pk
| = p

n−s
2 for any a ∈ Fnp . (8)

We show that the inverse is true when p = 2 and n+s is even and is not necessarily true when p is

an odd prime. We give an analysis by using Lemma 24 of [27]. Suppose (8) holds. For any a ∈ Fnp ,

let ha =
∑

x∈Vn−s µ(x)ζ
d(x)+pk−1ψa(x)

pk
. Let OK = Z[ζpk ] denote the ring of integers in cyclotomic

field K = Q(ζpk). Let WK denote the group of unity of K, then WK = {ζ i
2k

: 0 ≤ i ≤ 2k − 1}

if p = 2 and WK = {±ζ i
pk

: 0 ≤ i ≤ pk − 1} if p is an odd prime. Let p∗ =
(
−1
p

)
p if p is an

odd prime where
(
−1
p

)
= (−1)

p−1
2 denotes the Legendre symbol and p∗ = 2 if p = 2.

(1) When p = 2 and n + s is even or p ≡ 1(mod 4) or p ≡ 3(mod 4) and n + s is even,

we have ha ∈ OK since µ(x) ∈ {±1} for any x ∈ Vn−s. Then by Lemma 24 of [27], we have
ha√
p∗n−s

∈ WK , hence ha√
pn−s

∈ WK since
√
p∗
n−s ∈ {±√pn−s} if p = 2 and n + s is even or

p ≡ 1(mod 4) or p ≡ 3(mod 4) and n+ s is even.

(2) When p ≡ 3(mod 4) and n + s is odd, we have
√
−1ha ∈ OK since µ(x) ∈ {±

√
−1}

for any x ∈ Vn−s. Then by Lemma 24 of [27], we have
√
−1ha√
p∗n−s

∈ WK , hence
√
−1ha√
−1
√
pn−s
∈ WK

since
√
p∗
n−s ∈ {±

√
−1
√
pn−s} if p ≡ 3(mod 4) and n+ s is odd, that is, ha√

pn−s
∈ WK .

Hence, one can see that |ha| = p
n−s
2 is equivalent to (p

s−n
2 ha)

pk = 1 if p = 2 and n + s

is even and |ha| = p
n−s
2 is equivalent to (p

s−n
2 ha)

2pk = 1 if p is an odd prime. When p is

an odd prime, there is still a gap with the condition of Proposition 1. For example, let p =

3, k = 2, n = 3, s = 1, ordered S = {0} × F2
3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 2, 2)} and

µ(x1, x2) = −1, (x1, x2) ∈ F2
3, d(x1, x2) = 3x1x2, (x1, x2) ∈ F2

3. Then one can verify that for
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any a ∈ F3
3, |ha| = 3 and (3−1ha)

9 = −1.

From the above analysis, we can obtain the following result:

Proposition 2. With the same notation as Proposition 1.

(1) When p = 2 and n + s is even, the function W : Fnp → Z[ζpk ] defined by (7) is

the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk if and only if

|
∑

x∈Vn−s ζ
d(x)+pk−1ψa(x)

pk
| = p

n−s
2 for any a ∈ Fnp .

(2) When p is an odd prime, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform

of a generalized s-plateaued function f : Fnp → Zpk if and only if |
∑

x∈Vn−s µ(x)ζ
d(x)+pk−1ψa(x)

pk
| =

p
n−s
2 and (p

s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k 6= −1 for any a ∈ Fnp .

Now we provide a corollary which plays an important role in generic constructions.

Corollary 1. With the same notation as Proposition 1. For any a ∈ Fnp , define ga(x) = d(x) +

pk−1ψa(x), x ∈ Vn−s. If for any a ∈ Fnp , ga : Vn−s → Zpk is a generalized bent function

and there exists a constant u independent of a such that µga(x) = u, x ∈ Vn−s where µga is

defined by (3), let µ(x) = u−1, x ∈ Vn−s. Then the function W : Fnp → Z[ζpk ] defined by

(7) is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk . Furthermore,

f(a) = g∗a(0), a ∈ Fnp where g∗a is the dual function of ga.

Proof: If for any a ∈ Fnp , ga : Vn−s → Zpk is a generalized bent function and there exists

a constant u independent of a such that µga(x) = u, x ∈ Vn−s where µga is defined by (3) and

µ(x) = u−1, x ∈ Vn−s, then function µ satisfy the condition of Proposition 1 and∑
x∈Vn−s

µ(x)ζ
d(x)+pk−1ψa(x)

pk
=
∑

x∈Vn−s

u−1ζ
d(x)+pk−1ψa(x)

pk

= u−1
∑

x∈Vn−s

ζ
d(x)+pk−1ψa(x)

pk

= u−1Wga(0)

= u−1 · up
n−s
2 ζ

g∗a(0)

pk

= p
n−s
2 ζ

g∗a(0)

pk
,

where g∗a is the dual function of ga. So (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1. Hence by

Proposition 1, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a
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generalized s-plateaued function f : Fnp → Zpk and furthermore, from the proof of Proposition

1, we have f(a) = g∗a(0) for any a ∈ Fnp .

B. Characterization of Generalized Plateaued Functions with Affine Walsh Support in Spectral

Domain

In this subsection, we give a complete characterization of generalized plateaued functions

whose Walsh support is an affine subspace in spectral domain, which generalizes the case of

Boolean plateaued functions [13].

To get the theorem of this subsection, we need a lemma, which is a generalization of the

results in the proof of Lemma 3.1 of [12].

Lemma 1. Let p be a prime. Suppose E ⊆ Fnp is an m-dimensional linear subspace over Fp
and E = {e0, e1, . . . , epm−1} is the lexicographic order of E. Then {ep0 , ep1 , . . . , epm−1} is a

basis of E and ei = viR for any 0 ≤ i ≤ pm − 1 where R is the matrix whose row vectors are

epm−1 , epm−2 , . . . , ep0 and {v0, . . . , vpm−1} is the lexicographic order of Fmp .

Proof: Let {α1, α2, . . . , αm} be a basis of E over Fp. For the matrix whose row vectors are

α1, α2, . . . , αm, by using elementary row operations, we can get the row echelon matrix

R =



e(m−1)

e(m−2)

. . .

e(1)

e(0)



=



0 . . . 0 1 ∗ . . . ∗ 0 ∗ . . . ∗ . . . 0 ∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 0 0 . . . 0 1 ∗ . . . ∗ . . . 0 ∗ . . . ∗ 0 ∗ . . . ∗

. . . . . .

0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . 1 ∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 1 ∗ . . . ∗


,

where ∗ denotes some elements in Fp, the first nonzero element in each row is one from left to

right and these ones belong to different columns and the other elements in the same column are

zero. Furthermore, if the first nonzero element of i-th row is in the ki-th column (0 ≤ i ≤ m−1),

then 0 ≤ k0 < · · · < km−1 ≤ n− 1.
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If (i0, i1, . . . , im−1) ∈ Fmp , (i′0, i′1, . . . , i′m−1) ∈ Fmp with (i0, i1, . . . , im−1) ≺ (i′0, i
′
1, . . . , i

′
m−1),

that is, there exists 0 ≤ j0 ≤ m − 1 such that ij = i′j for any j < j0 and ij0 < i′j0 . Let s =

(s0, . . . , sn−1) =
∑m−1

j=0 ije
(m−1−j), s′ = (s′0, . . . , s

′
n−1) =

∑m−1
j=0 i′je

(m−1−j). By the properties

of e(i)(0 ≤ i ≤ m − 1), one can get sj = s′j for any j < kj0 and skj0 < s′kj0
, that is,

s ≺ s′. Hence, the lexicographic order of (i0, . . . , im−1) ∈ Fmp determines the lexicographic

order of
∑m−1

j=0 ije
(m−1−j). So for i =

∑m−1
j=0 ijp

m−1−j , we have ei =
∑m−1

j=0 ije
(m−1−j) where

{e0, . . . , epn−s−1} is the lexicographic order of E. For any 0 ≤ j ≤ m − 1, let i = pj , then

ei = e(j). Hence, {ep0 , ep1 , . . . , epm−1} is a basis of E and ei = viR for any 0 ≤ i ≤ pm − 1

where {v0, . . . , vpm−1} is the lexicographic order of Fmp .

Now we give a complete characterization of generalized plateaued functions with affine Walsh

support in spectral domain by using Lemma 1.

Theorem 1. With the same notation as Proposition 1. Let ordered S = {w0, w1, . . . , wpn−s−1}

where wi = t+eiM for any 0 ≤ i ≤ pn−s−1, t ∈ Fnp , M ∈ GL(n,Fp) and {e0, e1, . . . , epn−s−1}

is the lexicographic order of an (n−s)-dimensional linear subspace E ⊆ Fnp . Let d be a function

from Fn−sp to Zpk . Then the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of

a generalized s-plateaued function f : Fnp → Zpk if and only if d is the dual function of some

generalized bent function g and µ = µg where µg is defined by (3). Furthermore, if d is the dual

function of some generalized bent function g and µ = µg, then f(x) = g(xMTRT ) + pk−1x · t,

x ∈ Fnp where R is the matrix whose row vectors are epn−s−1 , epn−s−2 , . . . , ep0 .

Proof: Since E is a linear subspace, then by Lemma 1, for any a ∈ Fnp and any 0 ≤ i ≤

pn−s − 1, we have ψa(vi) = a · wi = a · (t + eiM) = a · t + aMT · ei = a · t + aMT · (viR) =

a · t+ aMTRT · vi.

If d is the dual function of some generalized bent function g and µ = µg, that is, Wg(b) =

µ(b)p
n−s
2 ζ

d(b)

pk
for any b ∈ Fn−sp , then we have∑

x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
=
∑

x∈Fn−sp

µ(x)ζ
d(x)

pk
ζa·t+aM

TRT ·x
p

= ζa·tp p
n−s
2 ζ

g(aMTRT )

pk

where the second equation is obtained by the inverse transform. So for any a ∈ Fnp , (p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
)p
k

= 1. By Proposition 1 and its proof, the function W : Fnp → Z[ζpk ]
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defined by (7) is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk and

f(x) = g(xMTRT ) + pk−1x · t, x ∈ Fnp .

Conversely, if the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a

generalized s-plateaued function f : Fnp → Zpk , by the proof of Proposition 1 we have

p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
= ζ

f(a)

pk
.

Then

p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk
ζaM

TRT ·x
p = ζ

f(a)−pk−1a·t
pk

. (9)

For any y ∈ Fn−sp , since R is row full rank and M is invertible, we have Rank(RM) =

Rank((RM, yT )) = n−s. Hence, for any y ∈ Fn−sp , there exists ay ∈ Fnp such that ayMTRT = y.

When ayMTRT = byM
TRT = y, by (9) we have f(ay)− pk−1ay · t = f(by)− pk−1by · t. Define

g : Fn−sp → Zpk

g(y) = f(ay)− pk−1ay · t,

where ay ∈ Fnp satisfies ayMTRT = y.

Then for any b ∈ Fn−sp ,

Wg(b) =
∑

y∈Fn−sp

ζ
g(y)

pk
ζ−b·yp

=
∑

y∈Fn−sp

ζ
f(ay)−pk−1ay ·t
pk

ζ−b·yp

=
∑

y∈Fn−sp

p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk
ζayM

TRT ·x
p ζ−b·yp

= p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk

∑
y∈Fn−sp

ζy·(x−b)p

= p
n−s
2 µ(b)ζ

d(b)

pk
,

that is, g : Fn−sp → Zpk is a generalized bent function and d is the dual function of g and µg = µ.

Remark 2. It is known that plateaued functions with affine Walsh support correspond to partially

bent functions. A function f : Vn → Fp is called a partially bent function if for any a ∈

Vn, f(x + a) − f(x), x ∈ Vn is either balanced or constant. When p is an odd prime and
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k = 1, Theorem 1 gives a completely characterization of p-ary partially bent functions, which

generalizes the case of Boolean partially bent functions [13].

We give two examples of generalized plateaued functions with affine Walsh support by using

Theorem 1.

Example 1. Let p = 3, k = 1, n = 4, s = 1. Let d : F3
3 → F3 be defined as d(x1, x2, x3) = x1x3+

2x2
2+2x2

3, then d is the dual function of weakly regular bent function g(x1, x2, x3) = 2x2
1+2x1x3+

x2
2 with µg(x1, x2, x3) =

√
−1, (x1, x2, x3) ∈ F3

3. Let µ(x1, x2, x3) =
√
−1, (x1, x2, x3) ∈ F3

3.

Let S = {w0, . . . , w26} where wi = (2, 0, 0, 0) + eiM , E = {e0, . . . , e26} =< (0, 0, 1, 1),

(0, 1, 0, 0), (1, 0, 0, 0) >, M =


0 0 1 1

0 1 0 0

0 0 0 1

1 0 0 2

. Then the constructed weakly regular 1-plateaued

function f : F4
3 → F3 by Theorem 1 is f(x1, x2, x3, x4) = g(x3 + x4, x2, x1) + 2x1 = 2x1x3 +

2x1x4 + x2
2 + 2x2

3 + x3x4 + 2x2
4 + 2x1.

Example 2. Let p = 2, k = 3, n = 4, s = 2. Let d : F2
2 → Z8 be defined as d(x1, x2) =

4x1x2 +x2, then d is the dual function of generalized bent function g(x1, x2) = 4x1x2 +x1 with

µg(x1, x2) = 1, (x1, x2) ∈ F2
2. Let µ(x1, x2) = 1, (x1, x2) ∈ F2

2. Let S = {w0, . . . , w3} where

wi = (0, 1, 1, 0) + ei and E = {e0, . . . , e3} =< (0, 0, 1, 1), (1, 1, 0, 1) >. Then the constructed

generalized 2-plateaued function f : F4
2 → Z8 by Theorem 1 is f(x1, x2, x3, x4) = g(x1 + x2 +

x4, x3+x4)+4(x2+x3) = ((x1+x2+x4) mod 2)+4(x1x3+x1x4+x2x3+x2x4+x3x4+x2+x3+x4).

One can construct pairwise disjoint spectra generalized p-ary s-plateaued functions f0, f1, . . . ,

fps−1 by Theorem 1. When E is an (n−s)-dimensional subspace of Fnp , we have Fnp = ∪e′i∈E′(e
′
i+

E) where E ′⊕E = Fnp (⊕ denotes direct sum) and e′i ∈ E ′ for 0 ≤ i ≤ ps− 1. Let Si = e′i +E

for any 0 ≤ i ≤ ps − 1, then Si ∩ Sj = ∅ if i 6= j and one can construct generalized p-ary

s-plateaued functions fi(0 ≤ i ≤ ps − 1) with Si as Walsh support by using Theorem 1 and

some known generalized bent functions as building blocks. By using pairwise disjoint spectra

generalized plateaued functions as building blocks, one can get the following construction method

of generalized bent functions which is an extension of Theorem 2 of [7].

Proposition 3. Let p be a prime, n, s(≤ n), k be positive integers. Let fy(y ∈ Fsp) : Fnp → Zpk
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be pairwise disjoint spectra generalized s-plateaued functions. Let W and U be n-dimensional

and s-dimensional subspaces of Fn+s
p respectively and satisfy Fn+s

p = W ⊕ U . Define

F (xM + π(y)) = fy(x), x ∈ Fnp , y ∈ Fsp,

where M is a matrix whose row vectors form a basis of W and π is a bijection from Fsp to U .

Then F is a generalized bent function from Fn+s
p to Zpk .

Proof: For any z ∈ Fn+s
p , there exist unique wz ∈ W,uz ∈ U such that z = wz + uz since

Fn+s
p = W ⊕ U . It is easy to see that the function L defined by L(x) = xM, x ∈ Fnp is a

bijection from Fnp to W . As L : Fnp → W and π : Fsp → U are both bijections, there exist unique

xz ∈ Fnp , yz ∈ Fsp such that z = xzM + π(yz). Hence F is a function from Fn+s
p to Zpk . For any

a ∈ Fn+s
p , we have

WF (a) =
∑

z∈Fn+sp

ζ
F (z)

pk
ζ−a·zp

=
∑
x∈Fnp

∑
y∈Fsp

ζ
F (xM+π(y))

pk
ζ−a·(xM+π(y))
p

=
∑
x∈Fnp

∑
y∈Fsp

ζ
fy(x)

pk
ζ−aM

T ·x−a·π(y)
p

=
∑
y∈Fsp

ζ−a·π(y)
p

∑
x∈Fnp

Wfy(aM
T ).

Since fy, y ∈ Fsp are pairwise disjoint spectra generalized s-plateaued functions, we have |Sfy | =

pn−s and Sfy ∩ Sfy′ = ∅ for any y 6= y′, which yields that Sfy , y ∈ Fsp is a partition of Fnp .

Hence for any a ∈ Fn+s
p , there exists a unique ya ∈ Fsp such that aMT ∈ Sfya and |WF (a)| =

|ζ−a·π(ya)
p Wfya (aMT )| = p

n+s
2 , that is, F is a generalized bent function.

When k = 1, W = Fnp × {0s}, U = {0n} × Fsp, M is the matrix whose row vectors are

(1, 0, . . . , 0, 0, . . . , 0), (0, 1, . . . , 0, 0, . . . , 0), . . . , (0, 0, . . . , 1, 0, . . . , 0) and π(y) = (0n, y), y ∈ Fsp
where 0n denotes the zero vector of Fnp , Proposition 3 reduces to Theorem 2 of [7]. We give an

example to illustrate Proposition 3.

Example 3. Let p = 2, n = 5, s = 1, k = 3. Let f0, f1 : F5
2 → Z23 be defined as f0(x1, . . . , x5) =

4(x1x3 + x2x4) + 2x3 + x3x4, f1(x1, . . . , x5) = 4(x1x3 + x2x4 + x5) + 2x1x2 + x1. Then f0, f1

are disjoint spectra generalized 1-plateaued functions. Let W = F5
2 × {0}, U = {05} ×

F2, M is the matrix whose row vectors are (1, 0, . . . , 0, 0), . . . , (0, 0, . . . , 1, 0) and π(y) =
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(0, . . . , 0, y), y ∈ F2. Then the constructed generalized bent function F : F6
2 → Z23 by Proposition

3 is F (x1, . . . , x6) = fx6(x1, . . . , x5) = 4(x1x3+x2x4+x5x6)+2((x1x2x6+x3(1+x6)) mod 2)+

((x3x4(1 + x6) + x1x6) mod 2).

C. Some Generic Construction Methods of Generalized Plateaued Functions with (Non)-Affine

Walsh Support in Spectral Domain

In this subsection, we provide some generic construction methods of generalized plateaued

functions with (non)-affine Walsh support in spectral domain.

With the same notation as Proposition 1. If f : Fnp → Zpk is a generalized s-plateaued function

constructed in spectral domain, by the proof of Proposition 1, we have Sf = S where ordered

S = {w0, . . . , wpn−s−1}. It is easy to see that the matrix form of Sf whose row vectors are

w0, . . . , wpn−s−1 can be written as

Sf = Tψa1 o · · · o Tψan (10)

where {a1, . . . , an} is the canonical basis of Fnp , that is, a1 = (1, 0, 0, . . . , 0, 0), a2 = (0, 1, 0, . . . ,

0, 0), . . . , an = (0, 0, 0, . . . , 0, 1), ψai : Vn−s → Fp is defined by (6) and Tψai defined by (5) is

the true table of ψai . If ψai is an affine function, we say that the i-th column of (ordered) Sf

corresponds to an affine function. Note that if f is constructed by Theorem 1, then every column

of Sf corresponds to an affine function by Lemma 1.

In [13], Hodžić et al. designed Boolean plateaued functions with (non)-affine Walsh support

in spectral domain. As pointed out in [13], for the constructions in spectral domain given in

[13], the Walsh support of Boolean s-plateaued functions in n variables, when written as a

matrix of form (10), contains at least n− s columns corresponding to affine functions on Fn−s2 .

They proposed an open problem to provide constructions of Boolean plateaued functions whose

Walsh support, when written as a matrix of form (10), contains strictly less than n− s columns

corresponding to affine functions. In our constructions of generalized s-plateaued functions with

non-affine Walsh support, the Walsh support, when written as a matrix of form (10), can contain

strictly less than n− s columns corresponding to affine functions and our construction methods

are also applicable to Boolean plateaued functions.

In the first generic construction method, we will utilize an important class of generalized bent
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functions f : Fpn × Fpn → Zpk defined as

f(x1, x2) = pk−1Trn1 (αx1π(x2)) + g(x2), (x1, x2) ∈ Fpn × Fpn

where α ∈ F∗pn , π is a permutation over Fpn and g is an arbitrary function from Fpn to Zpk , which

is a generalization of the well-known Maiorana-McFarland bent functions. It is easy to obtain

its dual function f ∗(x1, x2) = −pk−1Trn1 (x2π
−1(α−1x1)) + g(π−1(α−1x1)) and µf (x1, x2) =

1, (x1, x2) ∈ Fpn × Fpn .

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)

be positive integers with n−s = 2m, {α1, . . . , αm} be a basis of Fpm over Fp, π be a permutation

over Fpm and L1, . . . , Ln−s : Fpm × Fpm → Fp be linearly independent linear functions. Define

d : Fpm × Fpm → Zpk as

d(x1, x2) = pk−1Trm1 (α1x1π(x2)) + g(x2), (11)

where g is an arbitrary function from Fpm to Zpk . Define ti : Fpm × Fpm → Fp, 1 ≤ i ≤ s as

ti(x1, x2) =

Trm1 (βix1π(x2)) + gi(x2) + Ai(x1, x2) if m ≥ 2,

gi(x2) + Ai(x1, x2) if m = 1
(12)

where βi =
∑m

j=2 ci,jαj with ci,j ∈ Fp, gi is an arbitrary function from Fpm to Fp and Ai is an

arbitrary affine function from Fpm × Fpm to Fp. Define hj : Fpm × Fpm → Fp, 1 ≤ j ≤ n− s as

hj =



s∑
i=1

dj,iti + Lj + bj if I = ∅,

∑
i/∈I

dj,iti + Fj(ti1 , . . . , ti|I|) + Lj + bj if I 6= ∅
(13)

where I = {1 ≤ i ≤ s : ti(x1, x2) only depends on variable x2} and denote I by {i1, . . . , i|I|}

if I 6= ∅, dj,i, bj ∈ Fp and Fj is an arbitrary function from F|I|p to Fp.

Theorem 2. With the same notation as Proposition 1. Let n − s = 2m be an even positive

integer. Let d : Fpm × Fpm → Zpk be defined by (11). Let µ(x1, x2) = 1, (x1, x2) ∈ Fpm × Fpm .

Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

w1

. . .

wpn−s−1

 = Tt1 o · · · o Tts o Th1 o · · · o Thn−s ,
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where ti(1 ≤ i ≤ s) are defined by (12) and hj(1 ≤ j ≤ n − s) are defined by (13). Then the

function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized s-plateaued

function f : Fnp → Zpk .

Proof: First we show that the size of S is equal to pn−s, that is to prove

(t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)) if and only if x = x′

where x = (x1, x2), x′ = (x′1, x
′
2) ∈ Fpm ×Fpm . If (t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x

′)),

then by the definitions of hj(1 ≤ j ≤ n − s), it is easy to see that Lj(x) = Lj(x
′) for any

1 ≤ j ≤ n − s. Since L1, . . . , Ln−s are linearly independent linear functions, it is easy to see

that x = x′. Hence we have |S| = pn−s.

For any a ∈ Fnp and 0 ≤ i ≤ pn−s − 1, ψa(vi) = a · wi = a · (t1(vi), . . . , ts(vi), h1(vi), . . . ,

hn−s(vi)). When m ≥ 2, by the constructions of ti, hj(1 ≤ i ≤ s, 1 ≤ j ≤ n − s), we

have ψa(x1, x2) = Trm1 (αax1π(x2)) + ga(x2) + Aa(x1, x2) where αa ∈ Fpm is some linear

combination of α2, . . . , αm, ga is some function from Fpm to Fp and Aa : Fpm × Fpm → Fp is

some affine function. Then d(x1, x2)+pk−1ψa(x1, x2) = pk−1Trm1 ((α1 +αa)x1π(x2))+(g(x2)+

pk−1ga(x2)) + pk−1Aa(x1, x2). Since α1, . . . , αm are linearly independent and αa ∈ Fpm is some

linear combination of α2, . . . , αm, we have α1 + αa 6= 0. Note that if h : Vn → Zpk is a weakly

regular generalized bent function and A : Vn → Fp is an arbitrary affine function, then h+pk−1A

is also a weakly regular generalized bent function and µh+pk−1A = µh. Hence, d + pk−1ψa is a

weakly regular generalized bent function and µd+pk−1ψa(x1, x2) = 1, (x1, x2) ∈ Fpm × Fpm for

any a ∈ Fnp . By Corollary 1, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform

of a generalized s-plateaued function f : Fnp → Zpk . When m = 1, by similar arguments, we

have the same conclusion.

We give an example of generalized plateaued function by using Theorem 2.

Example 4. Let p = 3, k = 2, n = 7, s = 3. Let z be the primitive element of F32 with

z2 + 2z + 2 = 0. Let d(x1, x2) = 3Tr2
1(zx1x2) + 2(Tr2

1(x2))2, µ(x1, x2) = 1, t1(x1, x2) =

Tr2
1(x1x2), t2(x1, x2) = Tr2

1(x2
2), t3(x1, x2) = Tr2

1(zx2
2), h1 = t1 +Tr2

1(x1), h2 = t22 +Tr2
1(zx1),

h3 = t23 + Tr2
1(x2), h4 = t2 + t3 + Tr2

1(zx2), (x1, x2) ∈ F32 × F32 . Then by the Walsh inverse

transform or by computing (d + 3ψa)
∗(0), we can obtain generalized 3-plateaued function

f(b1, . . . , b3, a1, . . . , a4) = 2(((b1 +a1)2a2 +(2(b1 +a1)+1)(a1 +a2))mod 3)2 +3((b1 +a1)2((b2 +
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a4)(2a2
1 +2a1a2)+(b3 +a4)(a2

1 +a2
2)+2a2

1a2 +2a1a
2
2 +a1a4 +a2a3 +a2a4 +a2)+(b1 +a1)((b2 +

a4)(2a2
1 +a1a2 +a2

2) + (b3 +a4)(2a2
1 + 2a1a2) + 2a2

1a2 + 2a1a
2
2 + 2a1a3 + 2a1a4 + 2a2a3 +a2a4 +

a2) + 2a2
1a

2
2a3 + (b2 +a4)(a1a2 + 2a2

2) + (b3 +a4)(2a2
1 +a1a2 +a2

2) +a2
1a2 +a2

1a3 +a1a
2
2 +a2

2a3 +

a1a3 + a1a4 + a2a3 + 2a2a4 + a2) from F7
3 to Z32 . Since ti(1 ≤ i ≤ 3), hj(1 ≤ j ≤ 4) are all

non-affine functions and the matrix form of Sf defined by (10) is Sf = Tt1 o · · · oTt3 oTh1 o · · · oTh4 ,

every column of Sf corresponds to a non-affine function.

When k = 1, Theorem 2 can be seen as an extension of Theorem 4.1 of [13] in the sense

of equivalence. And it can also be applied to construct Boolean plateaued functions whose

Walsh support, when written as a matrix of form (10), contains strictly less than n− s columns

corresponding to affine functions. We give an example of Boolean plateaued function which

satisfies that every column of the matrix form of Sf defined by (10) corresponds to a non-affine

function and the function has no nonzero linear structure. For a Boolean function f : Vn → F2,

if f(x) + f(x+ a) is a constant function, then a is called a linear structure of f .

Example 5. Let p = 2, k = 1, n = 10, s = 4. Let z be the primitive element of F23 with

z3 +z+1 = 0. Let d(x1, x2) = Tr3
1(z2x1x2), µ(x1, x2) = 1, t1(x1, x2) = Tr3

1(x1x2), t2(x1, x2) =

Tr3
1(zx1x2), t3(x1, x2) = Tr3

1(x3
2), t4(x1, x2) = Tr3

1(zx3
2), h1 = t1+Tr3

1(x1), h2 = t1+Tr3
1(zx1),

h3 = t2 + Tr3
1(z2x1), h4 = t2 + Tr3

1(x2), h5 = t3t4 + Tr3
1(zx2), h6 = t3t4 + Tr3

1(z2x2). Then by

the Walsh inverse transform or by computing (d+ ψa)
∗(0), we can obtain Boolean 4-plateaued

function f(b1, . . . , b4, a1, . . . , a6) = (b1 + a1 + a2 + 1)(b3(a1a3 + a2a3 + a1) + b4(a1a2 + a1a3 +

a2a3 + a1 + a3) + (a1a2 + a1a3)(a5 + a6) + a1a4 + a2a6 + a3a5) + ((b1 + a1 + a2)(b2 + a3 + a4) +

1)(a1a5 + a2a5 + a3a4 + a3a5) + (b1 + b2 + a1 + a2 + a3 + a4 + 1)(b3(a1a3 + a2 + a3) + b4(a1a3 +

a2a3 + a1) + a1a2(a5 + a6) + a1a5 + a2a4 + a2a5 + a3a5 + a3a6) + b3(a1a2 + a2a3 + a1 + a2) +

b4(a1a3 + a2 + a3) + (a2a3 + a1 + a2 + a3)(a5 + a6). Since ti(1 ≤ i ≤ 4), hj(1 ≤ j ≤ 6) are all

non-affine functions and the matrix form of Sf defined by (10) is Sf = Tt1 o · · · oTt4 oTh1 o · · · oTh6 ,

every column of Sf corresponds to a non-affine function. And one can verify that Sf contains

a basis of F10
2 and (0, . . . , 0) ∈ Sf , hence by Corollary 3.1 of [13], f has no nonzero linear

structure.

In the second generic construction method, we take advantage of the good properties of

general generalized bent functions. Let t ≥ 2 be an integer. Let f(x) =
∑t−1

i=0 p
t−1−ifi(x) with
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fi : Vn → Fp, 0 ≤ i ≤ t − 1 be a generalized bent function from Vn to Zpt where p is an odd

prime or p = 2 and n is even. Let k be a positive integer. Then by Corollary 7 of [27], for any

function G : Ft−1
p → Zpk , the function pk−1f0 + G(f1, . . . , ft−1) is a generalized bent function

from Vn to Zpk with µpk−1f0+G(f1,...,ft−1) = µf .

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)

be positive integers with n− s even if p = 2, L1, . . . , Ln−s : Vn−s → Fp be linearly independent

linear functions and g =
∑t−1

i=0 p
t−1−igi with gi : Vn−s → Fp, 0 ≤ i ≤ t− 1 be a weakly regular

generalized bent function from Vn−s to Zpt where t ≥ 2. Define d : Vn−s → Zpk as

d(x) = pk−1g0(x) +G(g1(x), . . . , gt−1(x)), (14)

where G is an arbitrary function from Ft−1
p to Zpk . Define

µ(x) = µg(x)−1, x ∈ Vn−s (15)

where µg is defined by (3). Note that µg is a constant function since g is weakly regular. Define

ti : Vn−s → Fp, 1 ≤ i ≤ s as

ti(x) = Fi(g1(x), . . . , gt−1(x)), (16)

where Fi is an arbitrary function from Ft−1
p to Fp. Define hj : Vn−s → Fp, 1 ≤ j ≤ n− s as

hj(x) = Hj(t1(x), . . . , ts(x)) + Lj(x) + bj, (17)

where Hj is an arbitrary function from Fsp to Fp and bj ∈ Fp.

Theorem 3. With the same notation as Proposition 1. Let d : Vn−s → Zpk be defined by (14).

Let µ be defined by (15). Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

w1

. . .

wpn−s−1

 = Tt1 o · · · o Tts o Th1 o · · · o Thn−s ,

where ti(1 ≤ i ≤ s) are defined by (16) and hj(1 ≤ j ≤ n − s) are defined by (17). Then the

function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized s-plateaued

function f : Fnp → Zpk .
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Proof: First we show that the size of S is equal to pn−s, that is to prove

(t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)) if and only if x = x′.

If (t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)), then by the definitions of hj(1 ≤ j ≤ n − s),

it is easy to see that Lj(x) = Lj(x
′) for any 1 ≤ j ≤ n − s. Since L1, . . . , Ln−s are linearly

independent linear functions, it is easy to see that x = x′. Hence we have |S| = pn−s.

For any a ∈ Fnp and 0 ≤ i ≤ pn−s − 1, ψa(vi) = a · wi = a · (t1(vi), . . . , ts(vi), h1(vi), . . . ,

hn−s(vi)). By the constructions of ti, hj(1 ≤ i ≤ s, 1 ≤ j ≤ n − s), we have ψa(x) =

Ga(g1(x), . . . , gt−1(x)) + Aa(x) where Ga is some function from Ft−1
p to Fp and Aa : Vn−s →

Fp is some affine function. Then d(x) + pk−1ψa(x) = pk−1g0(x) + (G(g1(x), . . . , gt−1(x)) +

pk−1Ga(g1(x), . . . , gt−1(x))) + pk−1Aa(x). Note that if h : Vn → Zpk is a weakly regular

generalized bent function and A : Vn → Fp is an arbitrary affine function, then h + pk−1A is

also a weakly regular generalized bent function and µh+pk−1A = µh. Hence, d + pk−1ψa is a

weakly regular generalized bent function and µd+pk−1ψa = µg for any a ∈ Fnp . By Corollary 1,

the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized s-plateaued

function f : Fnp → Zpk .

We give an example of generalized plateaued function by using Theorem 3.

Example 6. Let p = 5, k = 3, n = 4, s = 1, t = 2. Let z be the primitive element of F53 with

z3+3z+3 = 0. Let g(x) = 5g0(x)+g1(x), x ∈ F53 where g0(x) = Tr3
1(2x2), g1(x) = Tr3

1(z16x).

Then by Theorem 16 of [28] and Corollary 3 of [30], g is a weakly regular generalized bent

function with µg(x) = −1, x ∈ F53 . Let d(x) = 25g0(x) + g4
1(x), µ(x) = −1, t1(x) = g3

1(x),

h1(x) = t21(x) + Tr3
1(x), h2(x) = t41(x) + Tr3

1(zx), h3(x) = t1(x) + Tr3
1(z2x), x ∈ F53 . Then

by the Walsh inverse transform or by computing (d + 25ψa)
∗(0), we can obtain generalized

1-plateaued function f(b1, a1, a2, a3) = ((a1 − a3) mod 5)4 + 25(a2(a1 − a3)4 + (b1 + a3)(a1 −

a3)3 + a1(a1 − a3)2 − a2
1 − a1a3 + 2a2

2 + a2a3 − a2
3) from F4

5 to Z53 . Since t1, hj(1 ≤ j ≤ 3) are

all non-affine functions and the matrix form of Sf defined by (10) is Sf = Tt1 o Th1 o · · · o Th3 ,

every column of Sf corresponds to a non-affine function.

Theorem 3 is also applicable to Boolean plateaued functions. We give an example of Boolean

plateaued function which satisfies that every column of the matrix form of Sf defined by (10)

corresponds to a non-affine function and the function has no nonzero linear structure.
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Example 7. Let p = 2, k = 1, n = 8, s = 2, t = 3. Let g(x1, . . . , x6) = 4g0(x1, . . . , x6) +

2g1(x1, . . . , x6) + g2(x1, . . . , x6), (x1, . . . , x6) ∈ F6
2 where g0(x1, . . . , x6) = x1x3 + x2x4 + x5x6,

g1(x1, . . . , x6) = x1x2x6 + x3(x6 + 1), g2(x1, . . . , x6) = x3x4(x6 + 1) + x1x6. Then g is the

generalized Boolean bent function constructed in Example 3. Let d = g0, µ = 1, t1 = g1,

t2 = g2, h1 = t1t2 +x1, h2 = t1 +x2, h3 = t1 +x3, h4 = t2 +x4, h5 = t2 +x5, h6 = t1 + t2 +x6.

Then by the Walsh inverse transform or by computing (d + ψa)
∗(0), we can obtain Boolean

2-plateaued function f(b1, b2, a1, . . . , a6) = a1a3 +a2a4 +a5a6 +a1(a5 +1)(b2a2 +a2a4 +a2a6 +

b1+a3+a6)+a3a5(b1a4+a1a4+a2a4+a4a6+b2+a6+1). Since ti(1 ≤ i ≤ 2), hj(1 ≤ j ≤ 6) are

all non-affine functions and the matrix form of Sf defined by (10) is Sf = Tt1 oTt2 oTh1 o · · · oTh6 ,

every column of Sf corresponds to a non-affine function. And one can verify that Sf contains

a basis of F8
2 and (0, . . . , 0) ∈ Sf , hence by Corollary 3.1 of [13], f has no nonzero linear

structure.

The third generic construction method is used to construct p-ary plateaued functions, that is,

k = 1. In the following theorem, we utilize vectorial bent functions. Let m ≥ 2 be an integer.

A function f = (f1, . . . , fm) : Vn → Fmp is called a vectorial bent function if for any nonzero

vector (a1, . . . , am) ∈ Fmp ,
∑m

i=1 aifi(x), x ∈ Vn is a bent function. The following theorem can

be seen as a generalization of Theorem 4.3 of [13] in the sense of equivalence. And it can also

be applied to construct Boolean plateaued functions whose Walsh support, when written as a

matrix of form (10), contains strictly less than n− s columns corresponding to affine functions.

For the sake of simplicity, we give the functions needed in the following theorem. Let g =

(g1, . . . , gm) be a vectorial bent function from Vn−s to Fmp where m ≥ 2 and there exists a constant

u such that µg1+
∑m
i=2 cigi

(x) = u, x ∈ Vn−s for any (c2, . . . , cm) ∈ Fm−1
p where µg1+

∑m
i=2 cigi

is

defined by (3). Let L1, . . . , Ln−s : Vn−s → Fp be linearly independent linear functions. Define

d : Vn−s → Fp as

d(x) = g1(x). (18)

Define µ as

µ(x) = u−1, x ∈ Vn−s. (19)

Define ti : Vn−s → Fp, 1 ≤ i ≤ s as

ti(x) =
m∑
j=2

ci,jgj(x) + Ai(x), (20)
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where ci,j ∈ Fp, Ai is an arbitrary affine function from Vn−s to Fp. Define hj : Vn−s → Fp, 1 ≤

j ≤ n− s as

hj(x) =
s∑
i=1

dj,iti(x) + Lj(x) + bj, (21)

where dj,i, bj ∈ Fp.

Theorem 4. With the same notation as Proposition 1. Let d : Vn−s → Fp be defined by (18).

Let µ be defined by (19). Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

w1

. . .

wpn−s−1

 = Tt1 o · · · o Tts o Th1 o · · · o Thn−s ,

where ti(1 ≤ i ≤ s) are defined by (20) and hj(1 ≤ j ≤ n − s) are defined by (21). Then

the function W : Fnp → Z[ζp] defined by (7) is the Walsh transform of an s-plateaued function

f : Fnp → Fp.

Proof: First we show that the size of S is equal to pn−s, that is to prove

(t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)) if and only if x = x′.

If (t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)), then by the definitions of hj(1 ≤ j ≤ n − s),

it is easy to see that Lj(x) = Lj(x
′) for any 1 ≤ j ≤ n − s. Since L1, . . . , Ln−s are linearly

independent linear functions, it is easy to see that x = x′. Hence we have |S| = pn−s.

For any a ∈ Fnp and 0 ≤ i ≤ pn−s − 1, ψa(vi) = a · wi = a · (t1(vi), . . . , ts(vi), h1(vi), . . . ,

hn−s(vi)). By the constructions of ti, hj(1 ≤ i ≤ s, 1 ≤ j ≤ n − s), we have ψa(x) =

La(g2(x), . . . , gm(x)) + Aa(x) where La is some linear function from Fm−1
p to Fp and Aa :

Vn−s → Fp is some affine function. Then d(x) +ψa(x) = g1(x) +La(g2(x), . . . , gm(x)) +Aa(x)

is a weakly regular bent function and µd+ψa(x) = u, x ∈ Vn−s for any a ∈ Fnp . By Corollary 1,

the function W : Fnp → Z[ζp] defined by (7) is the Walsh transform of an s-plateaued function

f : Fnp → Fp.
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IV. GENERALIZED INDIRECT SUM CONSTRUCTION METHOD OF GENERALIZED PLATEAUED

FUNCTIONS AND ITS APPLICATIONS

In this section, we provide a generalized indirect sum construction method of generalized

s-plateaued functions where s ≥ 0. In particular, we show that the canonical way to construct

Generalized Maiorana-McFarland bent functions is a special case of the generalized indirect sum

construction method and we illustrate that the generalized indirect sum construction method can

be used to construct bent functions not in the complete Generalized Maiorana-McFarland class.

Furthermore, we give some applications of the generalized indirect sum construction method.

A. Generalized Indirect Sum Construction Method

In this subsection, we give a generalized indirect sum construction method of generalized

plateaued functions, which is an extension of indirect sum construction method of Boolean case

[3].

Theorem 5. Let p be a prime. Let k, t, r,m be positive integers, s(≤ r) be a non-negative

integer and m be even for p = 2, r + s be even for p = 2, k = 1. Let fi(i ∈ Ftp) : Vr → Zpk be

generalized s-plateaued functions. Let gi(0 ≤ i ≤ t) : Vm → Fp be bent functions which satisfy

that for any j = (j1, . . . , jt) ∈ Ftp, Gj , (1− j1−· · ·− jt)g0 + j1g1 + · · ·+ jtgt is a bent function

and G∗j = (1− j1− · · · − jt)g∗0 + j1g
∗
1 + · · ·+ jtg

∗
t and µGj = u where µGj is defined by (3) and

u is a function from Vm to {±1,±
√
−1} independent of j. Let g : Ftp → Zpk be an arbitrary

function. Then h(x, y) = f(g0(y)−g1(y),...,g0(y)−gt(y))(x) + pk−1g0(y) + g(g0(y)− g1(y), . . . , g0(y)−

gt(y)), (x, y) ∈ Vr × Vm is a generalized s-plateaued function from Vr × Vm to Zpk .

Proof: For any (a, b) ∈ Vr × Vm, we have

Wh(a, b)

=
∑

x∈Vr,y∈Vm

ζ
f(g0(y)−g1(y),...,g0(y)−gt(y))(x)+g(g0(y)−g1(y),...,g0(y)−gt(y))

pk
ζg0(y)−〈a,x〉−〈b,y〉
p

=
∑

i1,...,it∈Fp

∑
y:g0(y)−gj(y)=ij ,1≤j≤t

∑
x∈Vr

ζ
f(i1,...,it)(x)+g(i1,...,it)

pk
ζg0(y)−〈a,x〉−〈b,y〉
p

= p−t
∑

i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑
y∈Vm

ζg0(y)−〈b,y〉
p

∑
j1∈Fp

ζ(i1−(g0−g1)(y))j1
p · · ·

∑
jt∈Fp

ζ(it−(g0−gt)(y))jt
p
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= p−t
∑

i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑

j1,...,jt∈Fp

ζ i1j1+···+itjt
p WG(j1,...,jt)

(b)

= u(b)p
m
2 p−t

∑
i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑

j1,...,jt∈Fp

ζ i1j1+···+itjt
p ζ(1−j1−···−jt)g∗0(b)+j1g∗1(b)+···+jtg∗t (b)

p

= u(b)p
m
2 p−tζg

∗
0(b)
p

∑
i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑
j1∈Fp

ζ(g∗1(b)−g∗0(b)+i1)j1
p · · ·

∑
jt∈Fp

ζ(g∗t (b)−g∗0(b)+it)jt
p

= u(b)p
m
2 ζg

∗
0(b)
p ζ

g(g∗0(b)−g∗1(b),...,g∗0(b)−g∗t (b))

pk
Wf(g∗0(b)−g∗1(b),...,g∗0(b)−g∗t (b))

(a),

(22)

where the fifth equation is obtained by the properties of bent functions gi(0 ≤ i ≤ t), which

satisfy that for any j1, . . . , jt ∈ Fp, G(j1,...,jt) , (1− j1− · · · − jt)g0 + j1g1 + · · ·+ jtgt is a bent

function and G∗(j1,...,jt) = (1− j1 − · · · − jt)g∗0 + j1g
∗
1 + · · ·+ jtg

∗
t and µG(j1,...,jt)

= u where u is

a function from Vm to {±1,±
√
−1} independent of (j1, . . . , jt).

Hence, by (22), it is easy to see that h : Vr×Vm → Zpk is a generalized s-plateaued function

if fi, i ∈ Ftp are generalized s-plateaued functions from Vr to Zpk .

If s = 0, then Theorem 5 can be used to construct (non)-weakly regular generalized bent func-

tions and the dual function can be given. The following corollary is an immediate consequence

of Theorem 5 and its proof.

Corollary 2. If s = 0, then the function h : Vr × Vm → Zpk constructed by Theorem 5

is a generalized bent function and its dual function h∗(x, y) = f ∗(g∗0(y)−g∗1(y),...,g∗0(y)−g∗t (y))(x) +

pk−1g∗0(y) + g(g∗0(y) − g∗1(y), . . . , g∗0(y) − g∗t (y)). Furthermore, h is non-weakly regular if any

one of the following conditions holds:

(1) There exists i ∈ Ftp such that fi is non-weakly regular and |{b ∈ Vm : (g∗0(b)− g∗1(b), . . . ,

g∗0(b)− g∗t (b)) = i}| ≥ 1;

(2) u is a constant function and there exist i1 6= i2 ∈ Ftp such that fi1 , fi2 are weakly regular

with µfi1 6= µfi2 and |{b ∈ Vm : (g∗0(b)− g∗1(b), . . . , g∗0(b)− g∗t (b)) = ij}| ≥ 1 for j = 1, 2;

(3) u is not a constant function and µfi = c, i ∈ Ftp where c is a constant function independent

of i.

Now we illustrate that why we call Theorem 5 generalized indirect sum construction method.

Note that when p = 2 and t = 1, it is easy to verify that any Boolean bent functions g0, g1

satisfy the condition of Theorem 5. Let p = 2, k = t = 1, f0, f1 : Vr → F2 be Boolean plateaued

functions, g0, g1 : Vm → F2 be Boolean bent functions and g = 0, the plateaued function
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constructed by Theorem 5 is h(x, y) = fg0(y)+g1(y)(x) + g0(y) = g0(y) + f0(x) + (f0(x) +

f1(x))(g0(y) +g1(y)). It is just the famous indirect sum construction [3]. Hence, Theorem 5 can

be seen as an extension of indirect sum construction of Boolean case. If gi(0 ≤ i ≤ t) are bent

functions satisfying gi = g0− ci, 1 ≤ i ≤ t where ci(1 ≤ i ≤ t) are constants, then gi(0 ≤ i ≤ t)

satisfy the condition of Theorem 5. In this case h(x, y) = f(c1,...,ct)(x)+pk−1g0(y)+g(c1, . . . , ct),

which belongs to direct sum construction. We call it a trivial case. When p is an odd prime or

t ≥ 2, except the trivial case, the condition of Theorem 5 for gi(0 ≤ i ≤ t) is not trivial.

In [8], the authors defined a class of bent functions

F (x, y) = fy(x), (x, y) ∈ Fmp × Fsp

where p is an odd prime, m, s are positive integers with s ≤ m and fy, y ∈ Fsp are pairwise

disjoint spectra partially bent functions with s-dimensional linear kernel, which are called Gen-

eralized Maiorana-McFarland bent functions. We will show that the canonical way to construct

Generalized Maiorana-McFarland bent functions given in (6) of [8] can be obtained by Theorem

5. Let gi(0 ≤ i ≤ t) be Maiorana-McFarland bent functions from Fmp × Fmp to Fp defined as

g0(y1, y2) = y1 · π(y2), gi(y1, y2) = g0(y1, y2) + hi(y2), 1 ≤ i ≤ t where π is a permutation

over Fmp and for any 1 ≤ i ≤ t, hi is an arbitrary function from Fmp to Fp. Then it is easy

to verify that gi(0 ≤ i ≤ t) satisfy the condition of Theorem 5. When p is an odd prime,

k = 1,m = t, s = 0, g = 0, hi(y2) = −y2,i, 1 ≤ i ≤ t where y2 = (y2,1, . . . , y2,t) ∈ Ftp
and fi(i ∈ Ftp) are bent functions, the bent function constructed by Theorem 5 is h(x, y1, y2) =

fy2(x)+y1 ·π(y2), (x, y1, y2) ∈ Frp×Ftp×Ftp. It is just the canonical way to construct Generalized

Maiorana-McFarland bent functions given in (6) of [8]. By Theorem 2 and its proof of [8], any

bent function in the complete Generalized Maiorana-McFarland class (that is, equivalent to a

Generalized Maiorana-McFarland bent function) is equivalent to a Maiorana-McFarland bent

function or a bent function of the form (6) of [8]. Hence, any bent function in the complete

Generalized Maiorana-McFarland class and not in the Maiorana-McFarland class is equivalent

to a bent function which can be constructed by the generalized indirect sum construction.

Now we provide another construction for gi(0 ≤ i ≤ t) to satisfy the condition of Theorem

5.

For any 0 ≤ i ≤ t, let

gi(y1, y2) = Trm1 (αiG(y1y
pm−2
2 )), (y1, y2) ∈ Fpm × Fpm
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where m ≥ t + 1, G is a permutation over Fpm with G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are

linearly independent over Fp. Then gi(0 ≤ i ≤ t) are in bent function class PSap which is

a subclass of the famous class of partial spread bent functions (see [9], [16]) and satisfy the

condition of Theorem 5.

Indeed, if a PSap bent function g(y1, y2) = Trm1 (αG(y1y
pm−2
2 )), (y1, y2) ∈ Fpm×Fpm where m

is a positive integer, α ∈ F∗pm and G is a permutation over Fpm with G(0) = 0, then g∗(y1, y2) =

Trm1 (αG(−yp
m−2

1 y2)) and µg(y1, y2) = 1, (y1, y2) ∈ Fpm × Fpm . Since m ≥ t + 1, there exist

linearly independent elements α0, . . . , αt ∈ Fpm . As α0, . . . , αt ∈ Fpm are linearly independent

over Fp, αj , (1−j1−· · ·−jt)α0+j1α1+· · ·+jtαt 6= 0 for any j = (j1, . . . , jt) ∈ Ftp. Then for any

j = (j1, . . . , jt) ∈ Ftp, Gj(y1, y2) , (1−j1−· · ·−jt)g0(y1, y2)+j1g1(y1, y2)+ · · ·+jtgt(y1, y2) =

Trm1 (αjG(y1y
pm−2
2 )) is a bent function with µGj(y1, y2) = 1 and (1− j1 − · · · − jt)g∗0(y1, y2) +

j1g
∗
1(y1, y2) + jtg

∗
t (y1, y2) = (1− j1− · · ·− jt)Trm1 (α0G(−yp

m−2
1 y2)) + j1Tr

m
1 (α1G(−yp

m−2
1 y2))

+ · · · + jtTr
m
1 (αtG(−yp

m−2
1 y2)) = Trm1 (αjG(−yp

m−2
1 y2)) = G∗j(y1, y2), that is, gi(0 ≤ i ≤ t)

satisfy the condition of Theorem 5.

As the above gi(0 ≤ i ≤ t) satisfy the condition of Theorem 5, we obtain the following

corollary from Theorem 5.

Corollary 3. Let p be a prime. Let k, t, r,m be positive integers with m ≥ t + 1, s(≤ r)

be a non-negative integer and r + s be even for p = 2, k = 1. Let fi(i ∈ Ftp) : Vr → Zpk

be generalized s-plateaued functions. Let gi(0 ≤ i ≤ t) : Fpm × Fpm → Fp be defined as

gi(y) = Trm1 (αiG(y1y
pm−2
2 )), y = (y1, y2) ∈ Fpm × Fpm where G is a permutation over Fpm

with G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are linearly independent over Fp. Let g : Ftp → Zpk

be an arbitrary function. Then h(x, y) = f(g0(y)−g1(y),...,g0(y)−gt(y))(x) + pk−1g0(y) + g(g0(y) −

g1(y), . . . , g0(y) − gt(y)), (x, y) = (x, y1, y2) ∈ Vr × Fpm × Fpm is a generalized s-plateaued

function from Vr × Fpm × Fpm to Zpk .

We give two examples by using Corollary 3. The second example gives a non-weakly regular

bent function which is not in the complete Generalized Maiorana-McFarland class.

Example 8. Let p = 7, k = 2, t = 1, r = 3, m = 2, s = 1. Let f0(x1, x2, x3) = 7(x2
1 +

x2
2), f1(x1, x2, x3) = 7(x2

1 + 3x2
2), f2(x1, x2, x3) = 7(x2

1 + 2x2
3), f3(x1, x2, x3) = 7(x2

1 + 5x2
3),

f4(x1, x2, x3) = 7(x2
2+4x2

3), f5(x1, x2, x3) = 7(x2
2+6x2

3), f6(x1, x2, x3) = 7(x2
1+3x2

2+x3). Then
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f0, . . . , f6 : F3
7 → Z72 are generalized 1-plateaued functions. Let z be the primitive element of F72

with z2 +6z+3 = 0. Let g0(y1, y2) = Tr2
1(y1y

47
2 ), g1(y1, y2) = Tr2

1(zy1y
47
2 ), (y1, y2) ∈ F72×F72 .

Let g : F7 → Z72 be defined as g(x) = x5 + 2x3. Then the function h : F3
7 × F72 × F72 → Z72

constructed by Corollary 3 is a generalized 1-plateaued function and one can verify that the

Walsh support is not an affine subspace.

Example 9. Let p = 3, k = 1, t = 1, r = 4, m = 2, s = 0. Let ξ be the primitive element

of F34 with ξ4 + 2ξ3 + 2 = 0. Let z be the primitive element of F32 with z2 + z + 2 = 0. Let

f0(x) = Tr4
1(x34 + x2), f1(x) = Tr4

1(x2), f2(x) = Tr4
1(ξx2). Then f0, f1, f2 : F34 → F3 are

weakly regular bent functions with µf0(x) = µf1(x) = −1, µf2(x) = 1, x ∈ F34 . Let g0(y1, y2) =

Tr2
1(y1y

7
2), g1(y1, y2) = Tr2

1(zy1y
7
2), (y1, y2) ∈ F32×F32 . Let g(x) = 0, x ∈ F3. Then the function

h : F34 × F32 × F32 → F3 constructed by Corollary 3 is a non-weakly regular bent function.

And we will prove in Appendix that it is not in the complete Generalized Maiorana-McFarland

class.

Remark 3. The generalized indirect sum construction method can also be applied to construct

generalized s-plateaued functions from Vn to Z2k where k ≥ 2 and n + s is odd if using

generalized s-plateaued functions from Vr to Z2k where k ≥ 2 and r + s is odd as building

blocks.

B. Applications

In this subsection, we give some applications of Corollary 3 in constructing plateaued functions

in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued

functions.

In [25], Mesnager et al. introduced the notion of class WRP, which is a subclass of the class

of weakly regular plateaued functions and plays an important role in constructing minimal linear

codes and strong regular graphs (see [25], [26]).

Let p be an odd prime. Let f : Vn → Fp be an unbalanced weakly regular s-plateaued function.

If f(0) = 0 and there exists an even positive integer h with gcd(h − 1, p − 1) = 1 such that

f(ax) = ahf(x), x ∈ Vn for any a ∈ F∗p, then f belongs to the class WRP. Note that all quadratic

functions are plateaued functions. By Theorem 1, it is easy to verify that any quadratic function

without affine term is unbalanced. Therefore, all quadratic functions without affine term are in
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the class WRP and h = 2. We will give a construction of non-quadratic plateaued functions in

the class WRP by using Corollary 3.

Let p be an odd prime and m be an even positive integer. Let f : Fmp → Fp be a partial spread

bent function (see [16]). Then by Theorem 3.3 and Theorem 3.6 of [16], it is easy to see that

for any a ∈ F∗p, f(ax) = f(x). Let t, r be positive integers, s be a non-negative integer and r−s

be an even positive integer. For any i ∈ Ftp, let bi : Fr−sp → Fp be a partial spread bent function,

Mi ∈ GL(r,Fp), Ei ⊆ Frp be an (r − s)-dimensional subspace and Ri be the corresponding

matrix defined by Lemma 1. Define

fi(x) = bi(xM
T
i R

T
i ), x ∈ Frp, i ∈ Ftp. (23)

Then for any i ∈ Ftp, fi is an s-plateaued function with µfi(x) = 1, x ∈ Frp by Theorem 1. And

it is easy to see that fi(ax) = fi(x), x ∈ Frp for any a ∈ F∗p.

Now we give a construction of non-quadratic plateaued functions in the class WRP by using

Corollary 3.

Theorem 6. Let p be an odd prime and k = 1. Let t, r,m be positive integers with m ≥ t+ 1.

Let s(≤ r) be a non-negative integer. Let gj(0 ≤ j ≤ t) : Fpm × Fpm → Fp be defined as

gj(y) = Trm1 (αjG(y1y
pm−2
2 )), y = (y1, y2) ∈ Fpm×Fpm where G is a permutation over Fpm with

G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are linearly independent over Fp.

• Case p = 3: Let fi(i ∈ Ftp) : Vr → Fp be weakly regular s-plateaued functions satisfying

µfi(x) = u, x ∈ Vr, i ∈ Ftp where µfi is defined by (3) and u is some constant independent

of i, fi(ax) = a2fi(x), x ∈ Vr, i ∈ Ftp for any a ∈ F∗p and 0 ∈ Sf(0,...,0) . Let g : Ftp → Fp be

an arbitrary function with g(0, . . . , 0) = −f(0,...,0)(0).

• Case p ≥ 5 : Let r − s be an even positive integer. Let fi, i ∈ Ftp be defined as (23). Let

g : Ftp → Fp be an arbitrary function with g(0, . . . , 0) = −f(0,...,0)(0).

Then the function h : Vr × Fpm × Fpm → Fp constructed by Corollary 3 is a weakly regular

s-plateaued function and in the class WRP.

Proof: By Corollary 3, h is an s-plateaued function. And by the proof of Theorem 5,

it is easy to see that h is weakly regular and the Walsh support of h is Sh = ∪y∈Fpm×Fpm
Sf(g∗0(y)−g∗1(y),...,g∗0(y)−g∗t (y))

× {y}. Since g∗0(0, 0) − g∗j (0, 0) = 0, 1 ≤ j ≤ t and 0 ∈ Sf(0,...,0) ,

we have (0, 0, 0) ∈ Sh, that is, h is unbalanced. By g(0, . . . , 0) = −f(0,...,0)(0), h(0, 0, 0) =
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f(g0(0,0)−g1(0,0),...,g0(0,0)−gt(0,0))(0)+g0(0, 0)+g(g0(0, 0)−g1(0, 0), . . . , g0(0, 0)−gt(0, 0)) = f(0,...,0)

(0)+0+g(0, . . . , 0) = 0. As fi(ax) = fi(x), x ∈ Vr, i ∈ Ftp, gj(ay) = gj(y), y ∈ Fpm×Fpm , 0 ≤

j ≤ t for any a ∈ F∗p, the weakly regular plateaued function h constructed by Corollary 3

satisfies h(ax, ay) = h(x, y) = ap−1h(x, y), (x, y) ∈ Vr × Fpm × Fpm for any a ∈ F∗p. Note that

p− 1 is even and gcd(p− 2, p− 1) = 1. By definition, h is in the WRP class.

We give an example of non-quadratic plateaued function in the WRP class by using Theorem

6.

Example 10. Let p = 3, t = 1, r = 2,m = 2, s = 1. Let z be the primitive element of

F32 with z2 + 2z + 2 = 0. Let g0(y1, y2) = Tr2
1(y1y

7
2), g1(y1, y2) = Tr2

1(zy1y
7
2), (y1, y2) ∈

F32 ×F32 . Let f0(x1, x2) = x2
1, f1(x1, x2) = x2

2, f2(x1, x2) = x2
1 + x1x2 + x2

2, (x1, x2) ∈ F2
3. Then

fi, i ∈ F3 are 1-plateaued functions with µfi(x1, x2) =
√
−1, (x1, x2) ∈ F2

3 and fi(ax1, ax2) =

a2fi(x1, x2), (x1, x2) ∈ F2
3 for any a ∈ F∗3 and (0, 0) ∈ Sf0 . Let g = 0. Then the function h

constructed by Theorem 6 is h(x1, x2, y1, y2) = Tr2
1(y1y

7
2) + x2

1 + (Tr2
1((1 − z)y1y

7
2))2(x2

1 +

2x1x2 + x2
2) + (Tr2

1((1− z)y1y
7
2))(x2

1 + x1x2), (x1, x2, y1, y2) ∈ F2
3 × F32 × F32 , which is a non-

quadratic weakly regular 1-plateaued function and in the WRP class. And one can verify that

the Walsh support of h is not an affine subspace, that is, h is not a partially bent function.

The second application of Corollary 3 is about vectorial plateaued functions. Let f = (f1, . . . ,

fm) be a vectorial function from Vn to Fmp . Then f is said to be a vectorial plateaued function

if for any nonzero vector (c1, . . . , cm) ∈ Fmp ,
∑m

i=1 cifi is a plateaued function from Vn to Fp.

Now we give a construction of vectorial plateaued functions.

Theorem 7. Let p be a prime. Let r ≥ 1,m ≥ 3, 0 ≤ s ≤ r be integers and r + s be even

for p = 2. Let {α0, . . . , αm−1} be a basis of Fpm over Fp. Let f0, . . . , fp−1 : Vr → Fp be

s-plateaued functions. Let G be a permutation over Fpm with G(0) = 0. Let hi(x, y1, y2) =

f
Trm1 (α0G(y1y

pm−2
2 ))

(x) + Trm1 (αiG(y1y
pm−2
2 )), (x, y1, y2) ∈ Vr × Fpm × Fpm , 1 ≤ i ≤ m− 1. Then

vectorial function H = (h1, . . . , hm−1) is a vectorial plateaued function from Vr × Fpm × Fpm

to Fm−1
p .

Proof: First we observe that if α, β ∈ Fpm are linearly independent over Fp, then function

h(x, y1, y2) = f
Trm1 (βG(y1y

pm−2
2 ))

(x) + Trm1 (αG(y1y
pm−2
2 )), (x, y1, y2) ∈ Vr × Fpm × Fpm is an

s-plateaued function where f0, . . . , fp−1 are s-plateaued functions and G is a permutation over
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Fpm with G(0) = 0. Indeed, we have h(x, y1, y2) = fg0(y1,y2)−g1(y1,y2)(x) + g0(y1, y2) where

g0(y1, y2) = Trm1 (αG(y1y
pm−2
2 )), g1(y1, y2) = Trm1 ((α − β)G(y1y

pm−2
2 )). By Corollary 3, h is

an s-plateaued function since α, α− β are linearly independent over Fp.

For any nonzero vector a = (a1, . . . , am−1) ∈ Fm−1
p , if ā ,

∑m−1
i=1 ai 6= 0, then

∑m−1
i=1 aihi(x,

y1, y2) = āf
Trm1 (α0G(y1y

pm−2
2 ))

(x) + Trm1 (αaG(y1y
pm−2
2 )) where αa =

∑m−1
i=1 aiαi. By Theorem 1

of [7], we have āf0, . . . , āfp−1 are s-plateaued functions. Since āf0, . . . , āfp−1 are s-plateaued

functions and α0, αa are linearly independent, we have
∑m−1

i=1 aihi is an s-plateaued function.

For any nonzero vector a = (a1, . . . , am−1) ∈ Fm−1
p , if ā ,

∑m−1
i=1 ai = 0, then

∑m−1
i=1 aihi(x,

y1, y2) = Trm1 (αaG(y1y
pm−2
2 )) where αa =

∑m−1
i=1 aiαi. Since αa 6= 0, it is easy to see that∑m−1

i=1 aihi(x, y1, y2) is an r-plateaued function.

Hence, for any nonzero vector a = (a1, . . . , am−1) ∈ Fm−1
p ,

∑m−1
i=1 aihi is a plateaued function,

that is, H = (h1, . . . , hm−1) is a vectorial plateaued function.

We give an example of vectorial plateaued function by using Theorem 7.

Example 11. Let p = 3, r = 3,m = 4, s = 0. Let f0(x) = Tr3
1(x2), f1(x) = Tr3

1(ξx2), f2(x) =

Tr3
1(ξ2x2), x ∈ F33 where ξ is a primitive element of F33 . Then fi(0 ≤ i ≤ 2) are weakly regular

bent functions with µf0(x) = µf2(x) = −
√
−1, µf1(x) =

√
−1, x ∈ F33 . Let hi(x, y1, y2) =

fTr41(y1y792 )(x) + Tr4
1(ziy1y

79
2 ), (x, y1, y2) ∈ F33 × F34 × F34 , i = 1, 2, 3 where z is a primitive

element of F34 . Then H = (h1, h2, h3) is a vectorial plateaued function. And one can verify that

H contains non-weakly regular plateaued component functions and weakly regular plateaued

component functions.

Remark 4. Let H = (h1, . . . , hm−1) be the constructed vectorial plateaued function by Theorem

7. Define gi = hi+1, 0 ≤ i ≤ m − 2. Then one can verify that gi(0 ≤ i ≤ m − 2) satisfy the

condition of Theorem 5.

V. CONCLUSION

In this paper, we mainly study generalized s-plateaued functions from Vn to Zpk where p is

an odd prime and k ≥ 1 or p = 2, k ≥ 2 and n+ s is even. Firstly, inspired by [13], we give a

complete characterization of generalized plateaued functions with affine Walsh support in spectral

domain (Theorem 1) and provide some generic construction methods of generalized plateaued

functions with (non)-affine Walsh support in spectral domain (Theorem 2, Theorem 3, Theorem
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4). Compared with the constructions in spectral domain in [13], in our constructions of Theorem

2, Theorem 3 and Theorem 4, the Walsh support can contain strictly less than n − s columns

corresponding to affine functions. And we give two examples of Boolean plateaued functions,

which satisfy that every column of Sf corresponds to a non-affine function and the functions

have no nonzero linear structure. Secondly, we give a generalized indirect sum construction

method (Theorem 5), which can also be used to construct (non)-weakly regular generalized bent

functions (Corollary 2). In particular, we show that the canonical way to construct Generalized

Maiorana-McFarland bent functions is a special case of the generalized indirect sum construction

method. And we illustrate that the generalized indirect sum construction method can be used to

construct bent functions not in the complete Generalized Maiorana-McFarland class (Example

9 and Appendix). Furthermore, we give some applications of the generalized indirect sum

construction method (Theorem 6, Theorem 7). In this paper, we do not study generalized s-

plateaued functions from Vn to Zpk where p = 2, k ≥ 2 and n+ s is odd in spectral domain. For

this case, although similar theoretical characterizations can be given, we cannot provide efficient

construction methods in spectral domain for this case. In the following research, we will pay

attention to this case.

APPENDIX

We prove that the bent function constructed in Example 9 is not in the complete Generalized

Maiorana-McFarland class.

Recall that the bent function constructed in Example 9 is h(x, y1, y2) = fg0(y1,y2)−g1(y1,y2)(x)+

g0(y1, y2) = f0(x)+g0(y1, y2)+(g0(y1, y2)−g1(y1, y2))2(−f0(x)−f1(x)−f2(x))+(g0(y1, y2)−

g1(y1, y2))(2f1(x) + f2(x)), (x, y1, y2) ∈ F34 × F32 × F32 where f0(x) = Tr4
1(x34 + x2), f1(x) =

Tr4
1(x2), f2(x) = Tr4

1(ξx2), g0(y1, y2) = Tr2
1(y1y

7
2), g1(y1, y2) = Tr2

1(zy1y
7
2) and ξ is the

primitive element of F34 with ξ4+2ξ3+2 = 0, z is the primitive element of F32 with z2+z+2 = 0.

By Theorem 2 of [8], if h is in the complete Generalized Maiorana-McFarland class, then for

an integer 1 ≤ s ≤ 4 there exists an s-dimensional subspace V of F34 × F32 × F32 such that the

second order derivative

DaDch(x, y1, y2) = 0 (24)

for any a = (a0, a1, a2), c = (c0, c1, c2) ∈ V, (x, y1, y2) ∈ F34 × F32 × F32 . Define ḡi(y) =

gi(y1, y2), i = 0, 1 and h̄(x, y) = fḡ0(y)−ḡ1(y)(x) + ḡ0(y) where y = (y1,1, y1,2, y2,1, y2,2) ∈
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F4
3, (y1, y2) ∈ F32 ×F32 , y1 = y1,1 + y1,2z, y2 = y2,1 + y2,2z. Then h̄ is a non-weakly regular bent

function from F34×F4
3 to F3. By simple calculation we have ḡ0(y)−ḡ1(y) = (y1,1+y1,2)y2

2,1y2,2+

(2y1,1 + y1,2)y2,1y
2
2,2 + 2y1,1y2,2 + 2y1,2y2,1, (ḡ0(y)− ḡ1(y))2 = y2

1,1y
2
2,2 + y2

1,2y
2
2,1 + y1,1y1,2y2,1y2,2

where y = (y1,1, y1,2, y2,1, y2,2) ∈ F4
3.

Suppose (24) holds. Then

DāDc̄h̄(x, y) = 0 (25)

for any a = (a0, a1,1, a1,2, a2,1, a2,2), c = (c0, c1,1, c1,2, c2,1, c2,2) ∈ V̄ , (x, y) ∈ F34×F4
3 where V̄ =

{(a0, a1,1, a1,2, a2,1, a2,2) ∈ F34×F4
3 : (a0, a1,1+a1,2z, a2,1+a2,2z) ∈ V }, y = (y1,1, y1,2, y2,1, y2,2) ∈

F4
3. As {30 · 3i (mod (34 − 1)) : i ≥ 0} = {10, 30} and

 34

10

 ≡ 0 (mod 3),

 34

30

 ≡
2 (mod 3), DāDc̄h̄ contains −y2

1,1y
2
2,2Tr

4
1(2((a0+c0)4−a4

0−c4
0)x30). Then by (25), (a0+c0)4−a4

0−

c4
0 = 0 for any ā = (a0, a1,1, a1,2, a2,1, a2,2), c̄ = (c0, c1,1, c1,2, c2,1, c2,2) ∈ V̄ . If there exists a0 6= 0

such that ā = (a0, a1,1, a1,2, a2,1, a2,2) ∈ V̄ , let c̄ = ā, then c0 = a0 6= 0 and (a0 +c0)4−a4
0−c4

0 =

2a4
0 6= 0, which is a contradiction. Hence V̄ ⊆ {0} × F4

3, that is, V ⊆ {0} × F32 × F32 . For

any fixed (0, a1, a2), (0, c1, c2) ∈ V and (y1, y2) ∈ F32 × F32 , let d0 = D(a1,a2)D(c1,c2)g0(y1, y2),

d1 = D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2)), d2 = D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2))2. By

D(0,a1,a2)D(0,c1,c2)h(x, y1, y2) = D(a1,a2)D(c1,c2)g0(y1, y2)+(−f0(x)−f1(x)−f2(x))D(a1,a2)D(c1,c2)

(g0(y1, y2) − g1(y1, y2))2 + (2f1(x) + f2(x))D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2)) = 0 for any

(0, a1, a2), (0, c1, c2) ∈ V, (x, y1, y2) ∈ F34 × F32 × F32 , for any fixed (0, a1, a2), (0, c1, c2) ∈ V

and (y1, y2) ∈ F32 ×F32 , we have −d2f0(x) + (2d1− d2)f1(x) + (d1− d2)f2(x) = −d0, x ∈ F34 .

By f0(0) = f1(0) = f2(0) = 0, we have d0 = 0. By i + jξ 6= 0 for any i, j ∈ F3 and

the algebraic degree of f0 is 4, the algebraic degree of f1 and f2 is 2, we have f0, f1, f2

are linearly independent, hence d1 = d2 = 0. Therefore, (24) holds if and only if for any

(0, a1, a2), (0, c1, c2) ∈ V, (y1, y2) ∈ F32 × F32 ,

D(a1,a2)D(c1,c2)g0(y1, y2) = 0 (26)

and

D(a1,a2)D(c1,c2)(g0(y1, y2)− g1(y1, y2)) = 0 (27)

and

D(a1,a2)D(c1,c2)(g0(y1, y2)− g1(y1, y2))2 = 0. (28)
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By (26), (27) and the fact that {1, 1 − z} is a basis of F32 over F3, we have for any fixed

(0, a1, a2), (0, c1, c2) ∈ V and (y1, y2) ∈ F32 × F32 , Tr2
1(((y1 + a1 + c1)(y2 + a2 + c2)7 − (y1 +

a1)(y2 + a2)7− (y1 + c1)(y2 + c2)7 + y1y
7
2)x) = 0, x ∈ F32 , which yields (y1 + a1 + c1)(y2 + a2 +

c2)7 − (y1 + a1)(y2 + a2)7 − (y1 + c1)(y2 + c2)7 + y1y
7
2 = 0 for any (0, a1, a2), (0, c1, c2) ∈ V

and (y1, y2) ∈ F32 × F32 . We claim V ⊆ {0} × F32 × {0}. If there exists a2 6= 0 such that

a = (0, a1, a2) ∈ V , let c = a. Then c2 = a2 6= 0 and the coefficient of y1y
3
2 is C3

7((a2 +

c2)4 − a4
2 − c4

2) = a4
2 6= 0, which is a contradiction. Hence V ⊆ {0} × F32 × {0}, that is,

V̄ ⊆ {0}×F2
3×{(0, 0)}. By (28), we have D(a1,1,a1,2,0,0)D(c1,1,c1,2,0,0)(ḡ0(y)− ḡ1(y))2 = 0 for any

(0, a1,1, a1,2, 0, 0), (0, c1,1, c1,2, 0, 0) ∈ V̄ , y = (y1,1, y1,2, y2,1, y2,2) ∈ F4
3. By simple calculation,

we have 2a1,1c1,1y
2
2,2 + 2a1,2c1,2y

2
2,1 + (a1,1c1,2 + a1,2c1,1)y2,1y2,2 = 0, which yields a1,1c1,1 =

a1,2c1,2 = a1,1c1,2 + a1,2c1,1 = 0 for any (0, a1,1, a1,2, 0, 0), (0, c1,1, c1,2, 0, 0) ∈ V̄ . If there exists

(a1,1, a1,2) 6= (0, 0) such that ā = (0, a1,1, a1,2, 0, 0) ∈ V̄ , let c̄ = ā, then a1,1c1,1 = a2
1,1 6=

0 or a1,2c1,2 = a2
1,2 6= 0 since (a1,1, a1,2) 6= (0, 0), which is a contradiction. Hence, V̄ =

{(0, 0, 0, 0, 0)}, that is, V = {(0, 0, 0)}. By Theorem 2 of [8], h is not in the complete Generalized

Maiorana-McFarland class.
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