
Multiparty Computation with Covert Security
and Public Verifiability

Peter Scholl, Mark Simkin, and Luisa Siniscalchi

Aarhus University, Denmark

Abstract. Multiparty computation protocols (MPC) are said to be se-
cure against covert adversaries if the honest parties are guaranteed to
detect any misbehavior by the malicious parties with a constant prob-
ability. Protocols that, upon detecting a cheating attempt, additionally
allow the honest parties to compute certificates, which enable third par-
ties to be convinced of the malicious behavior of the accused parties, are
called publicly verifiable. In this work, we make several contributions to
the domain of MPC with security against covert adversaries.
We identify a subtle flaw in a protocol of Goyal, Mohassel, and Smith
(Eurocrypt 2008) and show how to modify their original construction to
obtain security against covert adversaries.
We present generic compilers that transform arbitrary passively secure
preprocessing protocols, i.e. protocols where the parties have no private
inputs, into protocols that are secure against covert adversaries and pub-
licly verifiable. Using our compiler, we construct the first efficient variants
of the BMR and the SPDZ protocols that are secure and publicly verifi-
able against a covert adversary that corrupts all but one party, and also
construct variants with covert security and identifiable abort.
We observe that an existing impossibility result by Ishai, Ostrovsky,
and Seyalioglu (TCC 2012) can be used to show that there exist certain
functionalities that cannot be realized by parties, that have oracle-access
to broadcast and arbitrary two-party functionalities, with information-
theoretic security against a covert adversary.

1 Introduction

Secure multiparty computation (MPC) protocols allow collections of parties,
where each party holds some private input, to compute arbitrary functions of
those inputs in a way that reveals the result of the computation, but nothing else
beyond that. Ideally, we would like our MPC protocols to be as fast and as secure
as possible, but in reality we often have to chose one over the other. Protocols
that are secure against passive adversaries who follow the protocol specification
honestly, but try to learn more about the other parties’ inputs from what they
see, are typically quite fast, whereas protocols that are secure against actively
misbehaving adversaries tend to be significantly slower.

To overcome the dilemma of needing to choose between good efficiency and
good security, Aumann and Lindell [3] introduced an intermediate security no-

tion which they call security against covert adversaries1. A protocol is said to
satisfy this notion, if it ensures that the honest parties detect any misbehav-
ior by the adversarial parties with some constant probability ε, known as the
deterrence factor, and allows them to agree on at least one misbehaving party.
Formally, it should be noted that even though cheating is now possible with some
non-negligible probability, the security notion is not strictly weaker than active
security abort, since we require the protocol to identify the misbehaving party
even if it just aborts the execution. The authors motivated their new security
notion by arguing that, in certain scenarios, the repercussions of being caught
misbehaving, outweigh the gains that come from successfully cheating and thus
an adversary would be incentivized to behave honestly.

Subsequently, Asharov and Orlandi [2] proposed a strengthening of this se-
curity notion, which requires the honest parties to not only be able to detect
misbehavior with a constant probability, but to also be able to prove it to third
parties in a publicly verifiable manner. That is, the honest parties, upon detecting
misbehavior during a protocol execution, should be able to compute a certifi-
cate that provably shows that at least one of the corrupted parties attempted to
cheat.

Goyal, Mohassel, and Smith [22] showed how to construct efficient two- and
multiparty computation protocols with security against covert adversaries based
on Yao’s Garbled Circuits and its multiparty equivalent the BMR protocol [7].
Damg̊ard et al. [15] present a protocol in the preprocessing model, i.e. where the
overall execution is split into a input-independent preprocessing and a input-
dependent online phase, with a weaker notion of security against covert adver-
saries, where the misbehaving party is not necessarily identified, based on the
SPDZ framework [18]. Damg̊ard, Geisler, and Nielsen [14] present a compiler
that transforms certain passively secure protocols based on secret sharing into
protocols with security against covert adversaries. Their compiler only applies to
protocols that assume an honest majority among the parties. None of the works
above provide public verifiability.

The first two-party protocol with public verifiability was presented in the
work of Asharov and Orlandi [2]. More efficient publicly two-party protocols with
the same security guarantees have subsequently been proposed by Kolesnikov
and Malozemoff [28] and Hong et al. [24]. In a recent work by Damg̊ard, Orlandi,
Simkin [17], the authors propose a generic compiler that transforms arbitrary
two-party protocols with passive security into protocols with security against
covert adversaries and public verifiability. The authors also sketch how to extend
their compiler to the multiparty setting in the presence of an adversary that
corrupts a constant fraction of the parties. Their multiparty protocols, however,
have a deterrence factor that is inversely proportional to the fraction of corrupted
parties and the resulting protocols are unlikely to be faster, in terms of concrete
efficiency, than existing multiparty computation protocols with active security.

1 In the remainder of this paper, we will use “security against covert adversaries” and
“covertly secure protocols” interchangeably.

2

Given this state of the art, it is natural to ask whether we can construct MPC
protocols, which provide security and public verifiability against an adversary
that can corrupt all but one party, and are concretely more efficient than the
fastest actively secure protocols.

1.1 Our Contribution

In this work, we make several contributions to the domain of MPC with security
against covert adversaries with and without public verifiability.

On the Relation Between Covert and Active Adversaries. Firstly, we
observe that in the multi-party setting (in contrast with two parties) there is a
subtle but important difference between the standard definitions of covert secu-
rity and active security used in the literature. The standard definition of covert
security [3] explicitly requires that the honest parties agree upon the identity of
a party who is caught cheating, a property we call identifiable cheating. More-
over, they require identifiable abort, meaning that a corrupt party who aborts
the computation (without trying to learn additional information) is also iden-
tified. On the other hand, actively secure protocols typically settle for security
with abort, without identifiability. Hence, a covert secure protocol with identifi-
able abort is not necessarily weaker than a standard actively secure protocol. A
more appropriate point of comparison is with an actively secure protocol with
identifiable abort, which typically has a much higher cost [27].

MPC with Security Against Covert Adversaries and Identifiable Abort.
We identify a subtle flaw in the work of Goyal, Mohassel, and Smith [22], which
renders their multiparty protocol potentially insecure. More concretely, we show
that while their solution correctly detects misbehavior with a constant probabil-
ity, it does not necessarily allow the honest parties to unanimously agree on one of
the misbehaving parties, so does not satisfy the basic requirement of identifiable
cheating. To fix their construction, we present a generic compiler for upgrading
any passively secure preprocessing protocol, i.e. where the parties have no pri-
vate inputs, into one with covert security and identifiable abort. This suffices to
obtain a modified version of their construction with the desired security guar-
antees, namely, both identifiable cheating and identifiable abort. Our compiler
can also be used to obtain a covertly secure variant of the SPDZ protocol with
identifiable abort, which a previous construction with covert security [15] does
not satisfy.

Preprocessing with Security and Public Verifiability Against Covert
Adversaries. We present a second compiler, which transforms arbitrary pas-
sively secure preprocessing protocols into protocols with security and public
verifiability against a covert adversary (with the same corruption threshold).
Towards this goal, our compiler leverages time-lock puzzles [29] in a novel fash-
ion, to force a corrupt party to ‘commit’ to opening some protocol executions

3

before it learns whether or not a cheating attempt was successful. Importantly,
the parties generate the puzzles locally, rather than inside MPC, and further-
more, the puzzles only have to be solved in case of a dispute, which allows us to
construct concretely efficient protocols.

Applications. Our compilers are fully general, but we consider a few concrete
applications, including the BMR [7], SPDZ [18] and TinyTable [16] families of
protocols. These all perform MPC with up to n − 1 out of n corruptions, for
the settings of binary circuits, arithmetic circuits, and circuits augmented with
“truth-table” gates, respectively. By applying our compiler, we can obtain the
first preprocessing protocols for these, which achieve covert security with public
verifiability. Since the actively secure variants of these are all significantly more
expensive than covert, we obtain improved performance when switching to covert
security. For example, to obtain a deterrence factor of ε = 2/3, i.e. any misbe-
havior will be detected with probability 2/3, our compiled covert protocol will,
roughly, be only three times slower than its passively secure counterpart. Also,
as a contribution of independent interest, we present an optimized preprocessing
phase for the passively secure BMR protocol, which reduces bandwidth in the
preprocessing phase by around 20%, compared with previous methods [8, 12].

As already mentioned above, a particularly interesting use-case is the setting
of identifiable abort. Here, existing actively secure protocols based on SPDZ [5]
and BMR [6] have a lot more overhead compared with the non-identifiable case,
in particular because they require a secure broadcast channel. Our compiler are
much simpler, and only need broadcast in case cheating occurs, so we expect
them to be much more efficient in typical usage.

Impossibility. Finally, we also show that there exist certain functionalities that
cannot be realized with information-theoretic security against a covert adversary
by parties that have oracle-access to a broadcast and arbitrary two-party func-
tionalities. Our proof strategy for proving this impossibility is essentially iden-
tical to a previous proof by Ishai, Ostrovsky, and Seyalioglu [26], which shows
that the same result holds if one aims for active security with identifiable abort.
Similary to the actively secure identifiable abort compiler of [27], this motivates
our approach of obtaining covert security using black-box access to the next-
message function of a passively secure protocol, instead of general two-party
functionalities. We do not claim any particular technical novelty here, but we
provide the full proof in Appendix A for the sake of completeness.

Concurrent work. Recently and concurrently2 to our work, Faust et al. [20]
presented a compiler for covert security with public verifiability. Their compiler is
similar to our second compiler, although there are some key differences. Firstly,
our compiler is more efficient than [20], since (1) we do not need to evaluate
time-lock puzzles inside actively secure MPC (instead, we only use active MPC

2 Both papers were submitted to Eurocrypt 2021.

4

for a much simpler building block), and (2) unlike [20], we do not require every
message in the underlying passively secure protocol to be broadcast, which can
increase costs by a factor ≈ n. Secondly, the security notions are slightly dif-
ferent, since [20] realizes a relaxed form of covert security, where the adversary
may choose to cheat after learning its output of the preprocessing functionality;
on the other hand, we use the standard definition of covert security, but only
consider relaxed preprocessing functionalities where corrupt parties may choose
their own outputs. We also note that [20] does not consider convert security
with identifiable abort, which our first compiler achieves. Finally, we show how
to efficiently instantiate all of our protocols, which they do not.

1.2 Technical Overview

Covert Security via Cut-and-Choose. All of the existing protocols [3, 22,
14, 2, 15, 28, 24, 17] for secure computation with covert security follow the same
general blueprint. They all start by considering some passively secure protocol
that is run k times in parallel, where k − 1 randomly chosen executions will
eventually be opened and used for checking the behaviour of the involved parties
and the last remaining execution will be used for computing the desired output.
From a technical point of view, the main challenge is to find the right moment
for revealing which executions are checked and opening them. If the executions
are opened too early, then cheating may be possible in subsequent phases of
these protocols. If they are opened too late, then there is a risk of revealing
information about the private inputs of the honest parties.

A well-suited class of protocols, that implement some function f , to consider
in this setting, are those that can be split into two phases: (1) a passively secure,
but input-independent, preprocessing phase which realizes a correlated random-
ness functionality; (2) an actively secure online phase which takes as input the
correlated randomness from the preprocessing phase in order to implement f .
For technical reasons, we focus on passively secure preprocessing protocols which
realise a mildly relaxed form of functionality called a corruptible correlated ran-
domness functionality [11]. Here, the functionality is parameterized by some
distribution D, and gives the adversary the power to choose the outputs from
D that are given to the malicious parties; the functionality then reverse samples
the output for the honest parties based on the malicious parties’ output and the
distribution D. This class of functionalities encompasses those in popular MPC
protocols like the BMR protocol [7] or the SPDZ framework [18]. Given such
a protocol, we can run the preprocessing phase k times in parallel and check
k − 1 executions at the very end of that phase. If the check passes, the protocol
proceeds to the actively secure online phase, where misbehavior is no longer a
concern.

Given this high-level blueprint, the remaining task is to design an appropriate
check protocol that enables the honest parties to agree on a misbehaving party.
To see whether some party Pi has sent the correct message at round r during the
protocol execution, one needs to know Pi’s private random tape and all messages
Pi has received so far.

5

Based on these observations, a first attempt towards designing a check pro-
tocol could be as follows: Initially all parties commit to k random tapes each, i.e.
each Pi for i ∈ [n] commits to random tapes r(i,1), . . . , r(i,k). The parties run the
preprocessing protocol k times, where Pi uses random tape r(i,j) in execution j.
Once all k executions terminate, the parties jointly flip a coin c ∈ [k] and open
all commitments via broadcast belonging to executions j ∈ [k] with j 6= c. If
any party aborts at this stage, we accuse it of cheating. If none of the parties
abort, then everybody will know the vectors (r(1,j), . . . , r(n,j)) of random tapes
used in executions j 6= c. Each party Pi can use the vectors of random tapes to
generate a full honest transcript for each execution and use it to check whether
it received messages that were consistent with the honest transcript during the
protocol execution. Unfortunately, this approach has several problems.

The first one is that two honest parties, who may receive malformed messages
from different adversarially corrupt parties during the protocol executions, have
no obvious way of agreeing on which party to accuse unanimously. Even worse, a
malicious party could falsely accuse some honest party to further make everyone’s
life more difficult.

The second, problem is that Pi receiving a message from Pj that is incon-
sistent with the honest transcript does not mean that Pj misbehaved. Consider
the example in Figure 1.2, where all parties behave honestly (indicated by solid
black lines) except for some corrupt party A, which sends a malformed messages
to P2 (red dashed line).

P1 P2 A

Given that P2’s messages to P1 may be a function of the messages it receives
from A, we potentially end up in a situation, where P2 subsequently sends an in-
correct, but honestly generated, message to P1 (dashed black line). The takeaway
from this discussion is that P1 cannot simply compare the messages it received
from other parties with the messages in an honest transcript to deduce who
misbehaved in the protocol execution. This is exactly what goes wrong in the
compiler of Goyal et al. [22], which tries to recover from cheating by opening the
randomness for the underlying semi-honest protocol π. When π is instantiated
using the GMW protocol based on pairwise OT channels, as suggested in [22],
although cheating may be detected, it is not possible to identify the cheating
party.

6

If the semi-honest protocol in their approach was adjusted to send every
message over a broadcast channel (using public-key encryption), then their ap-
proach would be sound. This, however, would introduce an overhead of O(n)
broadcasts; even when all parties behave honestly. Looking ahead, our protocol
will only make use of broadcasts, when malicious parties actively misbehave and
even in the presence of an adversary that tries to trigger as many broadcasts as
possible, our protocol will remain more efficient that the approach of Goyal et
al.

Achieving Identifiable Abort. To get around the issue described above, we
define a new property for MPC protocols that we call identifiable cheating from
random tapes (IDC). We say that a protocol has the given property, if there exist
two protocols Certify and Identify associated with the given protocol. Certify takes
the random tapes of all parties in an execution and the local view of some party
Pi as input and outputs a partial certificate certi. The algorithm Identify takes
n partial certificates as input and either outputs the index a malicious party
that misbehaved in the protocol execution or outputs ⊥ to indicate that nobody
misbehaved. Importantly, we require Identify to function correctly, even if the
corrupted parties output false partial certificates or do not send anything. We
show how to transform any passively secure protocol into one that supports
IDC. The formal details and results regarding this property can be found in
Section 3.1. We remark that the notion of P-verifiability from [27] achieves a
similar goal, but this transformation (and the variant from [6]) uses broadcast
so is less efficient.

Now, we can follow the blueprint for constructing covertly secure protocols
outlined before, but instead of each party comparing its view to the messages
in an honest execution, we use Certify and Identify to check whether any party
misbehaved and if so which index to output. The details of this construction can
be found in Section 4.

Public Verifiability. To obtain not only covert security, but also public ver-
ifiability, we have to overcome several additional challenges. The first problem
is that the IDC property sketched above is not sufficient for producing pub-
licly verifiable certificates. More concretely, the IDC property does not provide
any guarantees about the output of Identify, when the adversary is additionally
allowed to replace some of the honest parties’ partial certificates with some ma-
liciously chosen values. This could potentially enable the adversary to produce
a collection of false partial certificate, which accuse an honest party of misbe-
having. Hence, we need a stronger flavor of this building block, which we call
publicly verifiable cheating from random tapes (PVC), where Identify correctly
identifies a malicious party or outputs ⊥, even if the adversary is allowed to
tamper with the honest parties’ partial certificates. Here again, we show how
to transform arbitrary passively secure protocols into ones that support PVC.
Our transformation for obtaining PVC is slightly less efficient than the trans-
formation for just IDC, but still significantly more efficient than running a fully

7

actively secure protocol. The formal definition of this property can be found in
Section 3.4.

The second problem is, that upon revealing which executions should be
checked, the adversary can simply stop responding and thereby prevent the hon-
est parties from checking the executions and obtaining a certificate of the ad-
versary’s misbehavior. In contrast to covert security without public verifiability,
here we cannot simply accuse the aborting party of cheating, because the honest
parties have no corresponding publicly verifiable evidence. At first glance, our
goals at this step may even seem contradictory. On one hand, during the check-
ing phase, we would like to ensure that the adversary cannot tell whether the
information it is about to reveal is useful for incriminating it. On the other hand,
we would like to ensure that any other party can use the revealed information
for determining whether cheating has happened or not and who the cheating
party was.

To get out of this predicament, we make use of a tool that called time-lock
puzzles [29]. Such puzzles allow a sender to publish a message that cannot be
read before a certain time has passed, e.g. in our case before at least some
number of rounds in a synchronized network have passed. Crucially, the message
becomes visible eventually, without any interaction from the sender. Time-lock
puzzles can be built from RSA-based timing assumptions, without any trusted
setup and generating a puzzle requires just a single exponentiation. Recently,
time-lock puzzles have also been used to build 2-PC with output-independent
abort [4], with a construction using similar ideas to ours (except that we are in
the multi-party setting, and also achieve public verifiablity).

On an intuitive level, we use time-lock puzzles as follows:3 At the beginning of
the checking phase, all parties jointly execute an actively secure MPC protocol,
where each party Pi inputs all k commitment openings that belong to the random
tapes the party used. The MPC protocol picks k − 1 executions at random and
outputs time-lock puzzles of all random tapes belonging to those. Additionally,
the parties obtain a secret sharing of the index c of the execution that is not being
checked. All parties sign the time-lock puzzles, the commitments and broadcast
the computed signatures. Because the puzzles cannot be solved fast enough, the
adversary needs to decide whether to abort this phase of the execution without
seeing the contents of the puzzles and thus without knowing which executions
are being checked. Once the honest parties have signatures of the corrupted
parties on the time-lock puzzles, they are, roughly speaking, guaranteed to have
some useful information that can be shown to an external party in case cheating
will be detected. Once all parties signed the time-lock puzzles, they all publish
their share of c and then publish the openings of the random tapes used in
the executions j 6= c. Now if the adversary decides to abort, because it doesn’t
like which executions are being checked, then the honest parties can obtain its
necessary random tapes from the signed time-lock puzzles.

3 We are omitting several important details here that can be found in the technical
parts, e.g. Section 5, of the paper.

8

In our final protocol, the time-lock puzzles are generated locally by the par-
ties, outside of MPC, and incur an overhead that is independent of the size of
the circuit to be evaluated. Considering the evaluation of larger circuits, these
additional costs from using time-lock puzzles become minor and in executions,
where all parties behave honestly, no time-lock puzzles need to be solved by any
party. The details of this protocol can be found in Section 5.

Instantiating the Compilers (Section 6). Our compilers can be instantiated
with any MPC protocol in the preprocessing model, as long as its preprocessing
functionality implements the corruptible correlated randomness functionality ex-
plained above. For most MPC protocols based on secret-sharing, this requirement
is already satisfied out-of-the-box. This includes protocols such as SPDZ [18, 15],
TinyTable [16] and a version of SPDZ with identifiable abort [5]. We therefore
easily obtain covertly secure variants of these protocols (with public verifiability
or identifiable abort) by plugging in a semi-honest version of the preprocess-
ing, which improves efficiency by avoiding e.g. expensive zero-knowledge proofs
typically used in SPDZ.

The case of constant-round MPC, based on garbled circuits, is slightly more
challenging. Here, if we want public verifiability, we can again directly apply our
compiler to a semi-honest version of the BMR protocol similar to [8, 23], since
we observe this works with a corruptible preprocessing functionality (we in fact
give an optimized semi-honest preprocessing protocol, which reduces the number
of OTs by 25%).

For identifiable abort, however, we need to modify the BMR functionality so
that (1) we get a secure online phase with identifiable abort, and (2) the BMR
functionality should be a corruptible preprocessing functionality. We observe
that (1) is straightforward to achieve, by having each party send a commitment
to its share of the garbled circuit in the preprocessing protocol; this ensures that
any party who sends an incorrect share in the online phase can by identified,
and is also cheap to implement, since our compiler only needs this to be done
with passive security.

However, this is not compatible with the definition of a corruptible prepro-
cessing functionality, indeed we would have to reverse-sample an honest party’s
message and decommitment information, after the corresponding commitment
is provided by the adversary. This strong form of equivocation is not possible
with standard commitments. Instead, we use unanimously identifiable commit-
ments [26], which can be built information-theoretically in such a way that allows
this. Setting up these commitments involves a little more work in the prepro-
cessing, but this overhead is independent of the circuit size, since the parties
only commit to a hash of their garbled circuit shares.

2 Preliminaries

Notation. Let λ be the computational and δ be the statistical security param-
eter. We write [n] to denote the set {1, . . . , n}. For all algorithms that follow,

9

we will regularly omit the security parameter input and it is understood that
this input is provided implicitly. We define the view of a parties in the execu-
tion of the protocol Π as the messages she received during an execution of Π
along with his input and random tapes. In this paper we are assuming broad-
cast and public-key infrastructure (PKI) which is implied by broadcast. For a
functionality F , we write [F]ida to denote the corresponding ideal functionality
with identifiable abort.

Secure Multiparty Computation. All of our security definitions follow the
ideal/real simulation paradigm in the standalone model. Throughout this paper
we will consider protocols that are executed over a synchronous network with
static, rushing adversaries and we assume the existence of secure authenticated
point-to-point channels between the parties.

Covert adversaries [3]. The security notion we consider here is the strongest
one of several and is known as the Strong Explicit Cheat Formulation (SECF).
Covert adversaries are modeled by considering active adversaries, but relaxing
the ideal functionality we aim to implement. The relaxed ideal functionality
FSECF allows the ideal-world adversary S to perform a limited amount of cheat-
ing. That is, the ideal-world adversary, can attempt to cheat by sending cheat
to the ideal functionality, which randomly decides whether the attempt was suc-
cessful or not. With probability ε, known as the deterrence factor, FSECF will
send back detected and all parties will be informed of at least one corrupt party
that attempted to cheat. With probability 1 − ε, the simulator S will receive
undetected. In this case S learns all parties’ inputs and can decide what the
output of the ideal functionality is. The ideal execution proceeds as follows:

Inputs: Every honest party Pi sends its inputs xi to FSECF. The ideal world
adversary S gets auxiliary input z and sends inputs on behalf of all cor-
rupted parties. Let x̄ = (x1, . . . , xn) be the vector of inputs that the ideal
functionality receives.
Abort options: If a corrupted party sends (abort, i) (where party i is cor-
rupted) as its input to the FSECF, then the ideal functionality sends (abort, i)
to all honest parties and halts. If a corrupted party sends (corrupted, i) as
its input, then the functionality sends (corrupted, i) to all honest parties and
halts. If multiple corrupted parties send (abort, i), respectively (corrupted, i),
then the ideal functionality only relates to one of them. If both (corrupted, i)
and (abort, i) messages are sent, then the ideal functionality ignores the
(corrupted, i) messages.
Attempted cheat: If S sends (cheat, i) as the input of a corrupted Pi, then
FSECF decides randomly whether cheating was detected or not:

- Detected: With probability ε, FSECF sends (corrupted, i) to the adversary
and all honest parties.

- Undetected: With probability 1− ε, FSECF sends undetected to the adver-
sary. In this case S obtains the inputs (x1, . . . , xn) of all honest parties
from FSECF. It specifies an output yi for each honest Pi and FSECF out-
puts yi to Pi.

10

The ideal execution ends at this point. If no corrupted party sent (abort, i),
(corrupted, i) or (cheat, i), then the ideal execution continues below.
Ideal functionality answers adversary: The ideal functionality computes
(y1, . . . , yn) = f(x1, . . . , xn) and sends it to S.
Ideal functionality answers honest parties: The adversary S either
sends back continue or (abort, i) for a corrupted Pi. If the adversary sends
continue, then the ideal functionality returns yi to each honest parties Pi. If
the adversary sends (abort, i) for some i, then the ideal functionality sends
back (abort, i) to all honest parties.
Output generation: An honest party always outputs the message it ob-
tained from FSECF. The corrupted parties output nothing. The adversary
outputs an arbitrary probabilistic polynomial-time computable function of
the initial inputs of the corrupted parties, the auxiliary input z, and the
messages received from the ideal functionality.

The outputs of the honest parties and S in an ideal execution is denoted
by IDEALελ[S(z), I,FSECF, x̄]. Note that the definition requires the adversary to
either cheat or send the corrupted parties’ inputs to the ideal functionality, but
not both.

Definition 1. Protocol Π is said to securely compute F with security against
covert adversaries with ε-deterrent in the G-hybrid model if for every non-uniform
probabilistic polynomial time adversary A in the real world, there exists a prob-
abilistic polynomial time adversary S in the ideal world such that for all λ ∈ N{

IDEALελ[S(z), I,FSECF, x̄]
}
x̄,z∈{0,1}∗

≡c
{

REALλ[A(z), I,Π,G, x̄]
}
x̄,z∈{0,1}∗

Remark 1. The notion of covert security, as defined above, explicitly requires
identifiable abort, meaning that the honest parties agree upon the identity of the
party who caused an abort. We also consider a weaker definition where in case of
abort, the adversary just sends the abort command without specifying any index,
i.e., covert security with abort.

Security against covert adversaries with public verifiability. This
notion was first introduced by [2] and was later simplified by [24]. In covert
security with public verifiability, each protocol Π is extended with an additional
algorithm Judge. We assume that whenever a party detects cheating during an
execution of Π, it outputs a special message cert. The verification algorithm,
Judge, takes as input a certificate cert and outputs the identity, which is defined
by the corresponding public key, of the party to blame or ⊥ in the case of an
invalid certificate.

With public verifiability, we relax the abort option to have standard abort
instead of identifiable abort. This relaxation makes sense because it does not
seem possible to prove to a judge that a party aborted a computation, unless
the judge has access to the entire transcript of the protocol (so it can tell, e.g.,
that some party stopped responding), and we do not wish to require this.

11

Definition 2 (Covert security with ε-deterrent and public verifiabil-
ity). Let pk1, . . . , pkn be the keys of the parties and f be a public function. We
say that (Π, Judge) securely computes f in the presence of a covert adversary
with ε-deterrent and public verifiability if the following conditions hold:

Covert Security: The protocol Π (which now might output cert if an honest
party detects cheating) is secure against a covert adversary with ε-deterrent
factor according to the strong explicit cheat formulation described above, but
with a difference in the abort options which is as follow: if a corrupted party
sends abort to FSECF the functionalities sends abort to the honest parties and
halts.
Public Verifiability: If the honest party P ∈ [n] outputs cert in an execu-
tion of the protocol, then Judge(pk1, . . . , pkn, f, cert) = pk{1,...,n}\P

4 except
with negligible probability.
Defamation-Freeness: If the set of honest party P runs the protocol with
corrupt parties A controlled by A, then the probability that A outputs cert∗

such that Judge(pk1, . . . , pkn, f, cert∗) = pki with i ∈ P is negligible.

The additional MPC definitions can be found in Appendix B.

2.1 Time-Lock Puzzles

Definition 3. Let B : N ← N and ∈ (0, 1). Let TLP = (pGen, pSol) be a B-
secure time-lock puzzle with the following syntax:

z ← pGen(1λ, t, s) : A PPT algorithm that on input a security parameter α ∈ N,
a difficulty parameter t ∈ N, and a solution s ∈ {0, 1}λ, outputs a puzzle
z ∈ {0, 1}λ.

s = pSol(1λ, t, z) : A deterministic algorithm that on input a security parameter
α ∈ N, a difficulty parameter t ∈ N, and a puzzle z ∈ {0, 1}λ outputs a
solution s ∈ ({0, 1}λ ∪ {⊥}).

We require (pGen, pSol) to satisfy the following properties.

Correctness: For every λ, t ∈ N, solution s ∈ {0, 1}λ, and z ∈ SupppGen(1, t, s),
it holds that pSol(1λ, t, z) = s.

Efficiency: There exist a polynomial p such that for all λ, t ∈ N, pSol(1λ, t, ·)
is computable in time t · p(λ, log t).

B-Hardness: For sufficiently large λ, any pair of solutions s0, s1 ← {0, 1}λ,
for a uniformly random bit b ← {0, 1}, any PPT adversary A that gets
z ← pGen(1λ, B(λ), sb) as input in round i and outputs b′ in round i+ ` for
1 ≤ ` ≤ B(λ), it holds that Pr[b = b′] ≤ 1

2 + negl(λ).

Remark 2. Note that in the usual definitions for time-lock puzzles [19, 9], the
hardness property is defined with respect to the depth of a circuit that attempts
to solve the puzzle. Hardness in that definition states that circuits of a certain

4 In the rest of the paper we are assuming that the Judge is already equipped with f .

12

bounded depth cannot solve the puzzle. Our definition is equivalent to saying that,
in a synchronised network, all parties can only execute computations of a certain
depth in one round.

The other useful definitions can be found in Appendix C.

2.2 Corruptible Correlated Randomness Functionality

For our work we will consider a mild relaxation of correlated randomness func-
tionality FDcorr called a corruptible correlated randomness functionality [11]. FDcorr

allows the parties in the corrupted set C to chose their correlated randomness
{R′i}i∈C and then FDcorr has to reverse sample based on {R′i}i∈C the correlated
randomness for the honest parties consistently with the distributionD. We model
this equipping the functionality FDcorr with an efficient reverse sample algorithm
RS. We note that FDcorr is nonetheless sufficient for all major overall protocols in
the preprocessing model as described in Section 6.

Figure 2.1: Functionality FDcorr

The functionality interacts with parties P1, . . . , Pn. Let C ⊂ [n] be the
set of parties corrupted by the ideal world adversary S.

Upon receiving message (CorrRand, {R′i}i∈C) from S, the functionality
samples {Ri}i∈[n]\C ← RS({R′i}i∈C ,D) and sends Ri to each Pi with
i ∈ [n] \ C.

Remark 3. We note that our ideal functionality implicitly requires the adversary
S to provide adversarial correlated randomness that can be part of a valid output
of the functionality. This is not a restriction, since we will later on prove that any
real-world adversarial attack can be translated into such a restricted ideal-world
adversary.

3 Public Verifiable Cheating and Identifiable Cheating
from Random Tapes

In this section, we define two important properties on top of a passively secure
protocol, which are: identifiable cheating from random tapes and publicly verifi-
able cheating from random tapes. Intuitively, these allow a party (or third party)
to identify someone who misbehaved in the protocol, when they are given all par-
ties’ random tapes, and an additional, short certificate from the other parties.
We give simple transformations for obtaining these given any passively secure
protocol for a preprocessing functionality. Later, in Sections 4 and 5, we use
these transformed protocols to build our covert secure preprocessing protocols
with identifiable abort, and public verifiability, respectively.

13

3.1 Identifiable Cheating from Random Tapes

Below we define a notion of consistent identifiability for a protocol. This is similar
to the standard definition of identifiable abort, where we require that in case of
abort, the honest parties agree upon the identity of a corrupted party; however,
consistent identifiability does not require any further security properties, so is
independent of the protocol being passive or active secure.

Definition 4 (Consistent identifiability). Protocol Π has consistent identi-
fiability, if for any active, p.p.t. adversary corrupting a set of parties A ⊂ [n]
in an execution of Π, with overwhelming probability it holds that if any honest
party outputs aborti, then all honest parties output aborti, and also i ∈ A.

Before presenting our notion of verifiability, we need to specify what it means
for a party to cheat in an execution of a protocol. We do not care about the case
where malicious parties send incorrect messages to each other, so we say that
cheating happens whenever a corrupted party sends a message to an honest party
that is inconsistent with its random tape.

Definition 5 (Dishonest execution). Consider a non-aborting execution of
protocol Π between parties P1, . . . , Pn with random tapes (r1, . . . , rn), and a set
A of corrupted parties. We say that the execution was dishonest with respect to
A, if there exists at least one honest party whose view in the execution is different
to the view of the same party in an honest execution of Π on (r1, . . . , rn).

We consider protocols with a simple kind of public-key infrastructure setup,
where each party has a signing key ski, and access to the public verification keys
vkj of all other parties.

Definition 6 (Identifiable cheating from random tapes). Let Π be a pro-
tocol between parties P1, . . . , Pn in the PKI model, that takes no inputs. Suppose
there are two deterministic polynomial-time algorithms:

– Certify(vk1, . . . , vkn, r1, . . . , rn, viewi, ski): On input all the public keys vkj
and random tapes rj, plus a view viewi and secret key ski of some party Pi
from an execution of Π, this outputs a partial certificate certi ∈ {0, 1}∗.

– Identify(vk1, r1, cert1, . . . , vkn, rn, certn): On input all parties’ public keys, ran-
dom tapes and partial certificates, this outputs either the identity of a cor-
rupted party, Pj, or an honest execution symbol ⊥.

Π supports identifiable cheating from random tapes (IDC) if for any p.p.t.
adversary A it holds that:

Pr[Expidc
A,Π(λ) = 1] ≤ ν(λ)

where λ ∈ N, ν is a negligible function and Expidc
A,Π(λ) is defined as follows:

14

Figure 3.1: Experiment Expidc
A,Π(λ, x)

1. A corrupts a set of parties A ⊂ [n].
2. For each i ∈ [n], sample a random tape ri and a signing key pair

vki, ski
3. The parties run Π, where party Pi is given ri, ski and (vk1, . . . , vkn)

as input. Let viewi denote the list of messages received by Pi.
4. If there is an honest party with output abortj for some j, output 0.

Otherwise, continue.
5. Give to A the partial certificates certi =

Certify(vk1, . . . , vkn, r1, . . . , rn, viewi) and ri, for i ∈ [n] \A.
6. A outputs certj, for all j ∈ A.
7. Output 1 if one of the following holds:

(a) The execution of Π is dishonest with respect to A, and
Identify((vki, ri, certi)

n
i=1) = ⊥; or

(b) Identify((vki, ri, certi)
n
i=1) ∈ {Pi}i/∈A

Otherwise, output 0.

3.2 Compiler for Identifiable Cheating

To construct a protocol with identifiable cheating from random tapes, we require
the following basic property of the underlying passive protocol, which says that
even if some parties misbehave in the protocol, the honest parties will always
output some valid string. Note that this does not give any guarantee on the
correctness of the outputs, we simply require they all output something, rather
than for instance, a special abort symbol.

Definition 7. We say that protocol Π is well-defined with respect to malicious
behaviour, if in an execution with an actively corrupted set of parties, the protocol
is guaranteed to terminate and every honest party outputs some value in {0, 1}∗.

Observe that it is easy to transform any passive protocol to be well-defined
with respect to malicious behaviour, by just having the parties output a default
value if another party either stops responding or sends an invalid message (such
as of the wrong length).

Compiler. Our compiler takes any passive preprocessing protocol that is
well-defined with respect to malicious behaviour, and converts it into a protocol
in the PKI model that has passive security with consistent identifiability and
supports identifiable cheating from random tapes.

We assume that we start with a protocol Π, in which the parties use pairwise
communication channels to securely compute some preprocessing functionality
FDcorr. Let NMF be the next message function for Π, that on input a party index
i, round number ρ, random tape ri and history of previously received messages
H, outputs the list of messages that Pi sends to every other party in the next

15

round. The compiled protocol is given in Figure 3.2, while the algorithms for
cheater identification are in Figure 3.3.

In the compiled protocol (Figure 3.2), the parties additionally send a sig-
nature on the hash of each message. Signing the hash instead of the message
itself allows our certificates for proving cheating to be succinct. If any signature
is invalid, the receiving party broadcasts a complaint message, after which the
sender must broadcast a valid message and signature to all parties, otherwise
they are identified as a cheater. Note that if a malicious party tries to falsely
complain about an honest sender, they merely force the sender to broadcast the
correct message to all other parties; this does not cause a privacy issue, since
the adversary had already received this message anyway.

In Figure 3.3, we give the algorithms for computing certificates and identify a
corrupt party in case of cheating. The Certify algorithm takes as input the view
of one party, and all parties’ random tapes, and outputs a partial certificate,
containing the signed hashes of any received messages that were inconsistent
with the random tapes. Note that on its own, this does not prove cheating,
because the inconsistency could be due to cheating in an earlier round from
another party, which was not detected in this view. However, given all partial
certificates, the Identify algorithm can then pinpoint a corrupt party by looking
for the first inconsistency that was detected across all parties’ views.

Figure 3.2: Protocol Π idc

Let Π be the underlying passive protocol to be compiled, let H : {0, 1}∗ →
{0, 1}2λ be a collision-resistant hash function and (Gen,Sig,Ver) a signa-
ture scheme.

1. Each party Pi receives a signing key ski and verification keys
vk1, . . . , vkn from the PKI

2. For each round ρ of protocol Π
(a) For every pair i, j ∈ [n], i 6= j:

– Let mρ
i,j be the message which Pi should send to Pj according

to NMFΠ
– Pi sends (mρ

i,j , σ
ρ
i,j) to Pj , where σρi,j =

Sigski
(ρ‖Pi‖Pj‖H(mi,j))

– Pj checks that Ver(vki, σ
ρ
i,j ,m

ρ
i,j) = 1. If this fails, or if Pi

did not send a message, Pj broadcasts (complain, Pi). Pi then
broadcasts (mρ

i,j , σ
ρ
i,j); if Pi fails to do this (or the signature

is invalid) then all parties output (aborti)
3. If the parties did not abort, they output the same as they would

according to Π

16

Figure 3.3: Verification algorithms for Π idc

Certify(vk1, . . . , vkn, r1, . . . , rn, viewi):
1. If viewi shows that Pi aborts, then output ⊥.
2. Let R be the total number of rounds, and {mρ

j,i, σ
ρ
j,i}j 6=i,ρ∈[R] be

the valid message/signature pairs contained in viewi.
3. Initialize sets H1, . . . ,Hn := ∅.
4. For ρ = 1, . . . , R:

(a) For each i′ ∈ [n], compute the honest messages (m̃ρ
i′,j)j 6=i′ =

NMF(i′, ρ, ri′ ,Hi′) and append m̃ρ
i′,j to the message history

Hj .
(b) If H(mρ

j,i) 6= H(m̃ρ
j,i) for some j 6= i then output certi :=

(ρ, Pj , Pi,H(mρ
j,i), σ

ρ
j,i).

5. If no certificate was obtained, output certi := ⊥.

Identify(vk1, . . . , vkn, r1, . . . , rn, cert1, . . . , certn):
1. Using r1, . . . , rn and NMF, compute the set of honest messages
{m̃ρ

i,j}j 6=i for i ∈ [n], ρ ∈ [R] (as in Certify).
2. Discard any certificate which is not of the form certi =

(ρi, Pji , Pi, hi, σi), for some ρi ∈ [R], ji ∈ [n], hi ∈ {0, 1}2λ and
signature σi, satisfying

Ver(vkji , σi, (ρi‖Pji‖Pi‖hi)) = 1 and hi 6= H(m̃ρi
ji,i

)

3. If no certificates remain, output ⊥.
4. Otherwise, let certi be the remaining certificate with the smallest
ρi (to break ties, pick the smallest i). Output Pji as a cheater.

Theorem 1. Suppose that Π securely computes FDcorr with passive security, and
is well-defined with respect to malicious behaviour. Let H be randomly sampled
from a family of collision-resistant hash functions, and (Gen,Sig,Ver) be an
EUF-CMA secure signature scheme. Then the compiled protocol Π idc securely
computes FDcorr with passive security, and has both (a) identifiable cheating from
random tapes, and (b) consistent identifiability abort.

The proof of Theorem 1 can be found in Appendix F.

3.3 Simplified Compiler Without Identifiable Abort

We can define a simple version of the compiler defined in Section 3.2 where the
compiled protocol does not satisfies consistent identifiability abort but only the
identifiable cheating from random tapes property. In this case for the compiled
protocol there is no need to identify the misbehaving party. Therefore, if any
party receives an invalid signature, instead of broadcasting a complaint, they
simply output abort. We modify the compiled protocol as described above and
we denote it with Πw-idc.

17

Theorem 2. Suppose that Π securely computes FDcorr with passive security, and
is well-defined with respect to malicious behaviour. Let H be randomly sam-
pled from a family of collision-resistant hash functions, and (Gen,Sig,Ver) be
an EUF-CMA secure signature scheme. Then the compiled protocol Πw-idc se-
curely computes FDcorr with passive security, and has identifiable cheating from
random tapes.

3.4 Publicly Verifiable Cheating

In the setting of public verifiability, the parties need to able to produce a certifi-
cate that is verifiable by any third party, which is also defamation-free, meaning
that no corrupt party can frame an honest party by maliciously generating a
certificate. Note that identifiable cheating from random tapes does not necessar-
ily enforce this, since in the security experiment, the honest parties’ certificates
cannot be tampered with by the adversary.5

Definition 8 (Publicly verifiable cheating from random tapes). Let Π
be a protocol between parties P1, . . . , Pn in the PKI model, that takes no inputs.
Suppose there are three deterministic polynomial-time algorithms:

– GatherEvidence(viewi): On input a view viewi of some party Pi from an exe-
cution of Π, this outputs a partial certificate certi ∈ {0, 1}∗.

– Accuse(vk1, . . . , vkn, r1, . . . , rn, cert1, . . . , certn): On input all parties’ partial
certificates and random tapes, this generates a global certificate cert ∈ {0, 1}∗.

– Sentence(vk1, . . . , vkn, r1, . . . , rn, cert): On input a global certificate and all
parties’ public keys and random tapes, this either outputs the identity of a
corrupted party, Pj, or an honest execution symbol ⊥.

Π supports publicly verifiable cheating from random tapes if for any p.p.t.
adversary A it holds that:

Pr[Exppvc
A,Π(λ) = 1] ≤ ν(λ)

where λ ∈ N, ν is a negligible function and Exp
pvc
A,Π(λ) is defined as follows:

Figure 3.4: Experiment Exppvc
A,Π(λ, x)

1. A corrupts a set of parties A ⊂ [n].
2. For each i ∈ [n], sample a random tape ri and a signing key pair

vki, ski
3. The parties run Π, where party Pi is given ri, ski and (vk1, . . . , vkn)

as input. Let viewi denote the list of messages received by Pi.
4. If any honest party outputs abort during the execution, output 0. Oth-

erwise, continue.

5 In fact, if an adversary can modify the honest parties’ certificates then an honest
party can be framed when using our compiler from the previous section.

18

5. Generate the honest parties’ partial certificates certi =
GatherEvidence(viewi), for i ∈ [n] \ A, and send these and the
honest random tapes to A.

6. A outputs the partial certificates certj, for j ∈ A, and a global certifi-
cate cert∗.

7. Generate an honest certificate cert =
Accuse(vk1, . . . , vkn, r1, . . . , rn, cert1, . . . , certn).

8. Output 1 if one of the following holds:
(a) (public verifiability) The execution of Π is dishonest with respect

to A, and Sentence(vk1, . . . , vkn, r1, . . . , rn, cert) = ⊥; or
(b) (defamation freeness) Sentence(vk1, . . . , vkn, r1, . . . , rn, cert∗) ∈
{Pi}i/∈A

Otherwise, output 0.

Compiler for Publicly Verifiable Cheating. To obtain publicly verifiable
cheating, we use the same protocol transformation as for identifiable cheating
without identifiable abort (Section 3.3), which simply adds a signature to the
hash of every message. We then use the algorithms in Figure 3.5 to produce the
publicly verifiable certificate of cheating. We will now briefly discuss them.

The algorithm GatherEvidence on input the view viewi of Pi outputs the set
of hashed message/signature pairs contained in viewi.

The Accuse algorithm takes as inputs, public keys vk1, . . . , vkn, random tapes
r1, . . . , rn and partial certificates cert1, . . . , certn. First of all Accuse validates the
signature obtained in the certificate certi and sets certi = ⊥ if some signature
is not valid. Note that the honest parties sends valid signature, otherwise certi
would contain ⊥. The Accuse algorithm using r1, . . . , rn and NMF will recon-
struct the honest execution of Πw-idc until some round ρ∗ where the hash of the
message in the honest execution does not corresponds to the hash h∗ contained
in certj , for j ∈ [n]. In this case Accuse produces a certificate which contains (1)
the aggregate signatures (which is computed using the signature in the partial
certificate) on the hash of the messages computed until round ρ∗ (2) the hash
and the signature of the malformed message (3) the indexs of the parties that
sent/received that message and ρ∗. If there is no inconsistent message Accuse
outputs ⊥. We observe that Accuse algorithm is expecting as input honest
generated random tapes r1, . . . , rn. If an outer algorithm is invoking Accuse,
then the outer algorithm has to ensure that this condition is satisfied.

Finally the Sentence algorithm (that can be run from any third part) takes
as inputs a certificate cert = (σAgg, σ

∗, h∗, i∗, j, ρ∗), public keys vk1, . . . , vkn and
honestly generated random tapes r1, . . . , rn; moreover we are assuming that she
is equipped with NMF. The Sentence algorithm using r1, . . . , rn and NMF will
reconstruct the honest execution of Πw-idc until the round ρ∗ verifying that the
corresponding aggregate signature σAgg is valid. Then Sentence verifies that σ∗

is a valid signature on h∗ and computes the honest message in round ρ∗ that

19

parties Pi∗ should have sent to party Pj if his hash does not match with h∗ the
Sentence algorithm outputs vki∗ and ⊥ otherwise.

Figure 3.5: Verification algorithms for Πw-idc

GatherEvidence(viewi):
1. If viewi shows that Pi aborts, then output ⊥.
2. Let R be the total number of rounds, and {H(mρ

j,i), σ
ρ
j,i}j 6=i,ρ∈[R]

be the set of hashed message/signature pairs contained in viewi.
3. Output the partial certificate certi = {H(mρ

j,i), σ
ρ
j,i}j 6=i,ρ∈[R].

Accuse(vk1, . . . , vkn, r1, . . . , rn, cert1, . . . , certn):
1. Parse each certi as {h̄ρj,i, σ̄

ρ
j,i}j 6=i,ρ∈[R].

2. If for some i, j, ρ there exists Ver(vki, σ̄
ρ
i,j , (ρ‖Pi‖Pj‖h̄

ρ
i,j)) 6= 1,

then set certi = ⊥.
3. Initialize ordered lists G,H1, . . . ,Hn := ∅.
4. For ρ = 1, . . . , R:

(a) For each i ∈ [n], compute the honest messages (m̃ρ
i,j)j 6=i =

NMF(i, ρ, ri,Hi) and append m̃ρ
i,j to the message history Hj .

(b) If for all i, j (with certj 6= ⊥) it holds that H(m̃ρ
i,j) = h̄ρi,j , then

append each pair (h̄ρi,j , σ̄
ρ
i,j) to the list of good signatures, G.

Otherwise, let (h̄ρi∗,j , σ̄
ρ
i∗,j) be the smallest i∗ for witch the

above check fails. Output cert = (Agg(G), h̄ρi∗,j , σ̄
ρ
i∗,j , i

∗, j, ρ)
and halt.

5. If no cheating was detected, output cert = ⊥.

Sentence(vk1, . . . , vkn, r1, . . . , rn, cert):
1. If cert = ⊥ then output ⊥. Otherwise, parse cert =

(σAgg, h
∗, σ∗, i∗, j, ρ∗).

2. Using r1, . . . , rn and NMF, compute the set of honest mes-
sages (as in Accuse) for rounds ρ < ρ∗, given by M =
{H(m̃ρ

i,j)}i∈[n],j 6=i,ρ∈[ρ∗−1].
3. Check that AggVer(vk1, . . . , vkn, σAgg,M) = 1. If this fails then

output ⊥.

4. Compute the honest message, m̃ρ∗

i∗,j , using the previously com-

puted messages and ri∗ , and let h = H(m̃ρ∗

i∗,j).
5. Check that Ver(vki∗ , σ

∗, (ρ∗‖Pi∗‖Pj‖h∗)) = 1 and h 6= h∗. If so,
output vki∗ as a cheater. Otherwise, output ⊥.

Theorem 3. Suppose that Π securely computes FDcorr with passive security, and
is well-defined with respect to malicious behaviour. Let H be randomly sampled
from a family of collision-resistant hash functions, and (Gen,Sig,AggVer) be a
secure aggregate signature scheme. Then the compiled protocol Πw-idc securely
computes FDcorr with passive security and supports publicly verifiable cheating from
random tapes (as described in Figure 3.5).

20

We remark that if instead of using aggregate signatures, we use a standard
signature scheme (and just concatenate all the signatures), our theorem still
holds at a price of having less succinct certificates. The proof of Theorem 3 can
be found in Appendix G.

4 Preprocessing with Identifiable Abort

In this section we are presenting a protocol [Πcorr]
cov which implements FDcorr with

security against covert adversaries, who corrupts n − 1 parties, and deterrence
factor ε = 1− 1

k .
[Πcorr]

cov makes use of a preprocessing protocol Πcorr that has identifiable
cheating from random tapes (IDC), and consistent identifiability abort. Roughly
speaking, [Πcorr]

cov proceeds as follow. Initially each party commits to k random
tapes that are a result of a coin-flip, i.e. each Pi for i ∈ [n] commits to random
tapes ri,1, . . . , ri,k. The parties run the preprocessing protocol Πcorr k times,
where Pi uses random tape ri,j in execution j. Once all k executions terminate,
the parties jointly flip a coin c ∈ [k] and open all commitments via broadcast
belonging to executions j ∈ [k] with j 6= c. If any party aborts at this stage,
we accuse it of cheating. If none of the parties abort, then everybody will know
the vectors (r1,j , . . . , rn,j) of random tapes used in executions j 6= c. Once each
party Pi received vectors of random tapes she runs algorithms Certify and Ver
of Πcorr in order to identify if a malicious party misbehaved. If no cheating is
detected Pi outputs the output of the c-th execution of Πcorr.

The formal description of the protocol can be found in Figure 4.1.

Figure 4.1: Protocol [Πcorr]
cov

Let Πcorr be a protocol that computes FDcorr with passive security and
has identifiable cheating from random tapes and consistent identifiability
abort.

1. Each party Pi receives a signing key ski and verification keys
vk1, . . . , vkn from the PKI.

2. For i, j ∈ [n], each Pj sends (comFlip, (i, 1)), . . . , (comFlip, (i, k)) to
[FFLIP]ida.

3. For i, j ∈ [n], each Pj sends (openOne, (i, 1), i), . . . , (openOne, (i, k), i)
to [FFLIP]ida.

4. For i, j ∈ [n], each Pi receives ri,1, . . . , ri,k from the ideal functionality.
5. All parties jointly execute Πcorr in parallel k times, where party Pi

uses random tape ri,j in the j-th execution of the protocol. Let Ri,j
be the output of party Pi in execution j.

6. All parties send (coinFlip, 0) to [FFLIP]ida and obtain a uniformly ran-
dom value j∗ ∈ [k].

7. For j ∈ [k] \ {j∗} each party Pi
(a) sends (openAll, (i, j)) to [FFLIP]ida.

21

(b) receives back rj := (r1,j , . . . , rn,j) corresponding to the random
tapes used in execution j from [FFLIP]ida.

(c) computes certi,j ← Certify(vk1, . . . , vkn, rj , viewi,j), where viewi,j
is Pi’s view in the j-th execution of Πcorr.

(d) sends cert(i,j) to FBC.
8. Each party Pi receives certificates (cert1,j , . . . , certn,j)

for each execution j 6= j∗ and computes vj ←
Ver(vk1, . . . , vkn, rj , cert1,j , . . . , certn,j). Let J be the set of in-
dices with vj 6= ⊥. If J 6= ∅, then Pi broadcast (corrupted, vj) with
the smallest j from J .

9. Each party Pi outputs Ri,j∗ .

Theorem 4. Suppose protocol Πcorr securely implements FDcorr with passive se-
curity, has identifiable cheating from random tapes, and consistent identifiability
abort. Let [FFLIP]ida be the ideal committed coin flip and [FCOM]ida be the ideal
commitment functionality with identifiable abort. Let FBC be the broadcast func-
tionality. Then [Πcorr]

cov implements FDcorr with security against covert adver-
saries, who corrupts n− 1 parties, and deterrence factor ε = 1− 1

k .
The proof of Theorem 4 can be found in Appendix H.

5 Publicly Verifiable Preprocessing

In this section, we show how to compile any passively secure protocol Πcorr that
has no private inputs into one that is secure against covert adversaries and that
provides public verifiability. In contrast to covert security without public verifia-
bility, here we do not require identifiable abort and are satisfied with unanimous
abort, but in exchange we want to ensure that the honest parties obtain publicly
verifiable certificates whenever a cheating attempt by the adversary is detected.
The main challenge that needs to be overcome when constructing such proto-
cols, is to obtain the certificates even if the adversary attempts to hide a failed
cheating attempt by aborting the protocol execution.

As already mentioned in the technical overview in Section 1.2, we will employ
time-lock puzzles for solving this problem. Recall that, for some parameter t, such
puzzles allow a sender to encrypt a message in a manner that keeps it hidden for
t rounds, but also allows the receiver to obtain the message after t + 1 rounds
without any further interaction with the sender.

On an intuitive level, we would like to follow the blueprint of our protocol
for covert security without public verifiability, but instead of directly revealing
which executions are being checked, we would like to reveal a time-lock puzzle
that contains all the necessary information that is needed for checking k − 1
random executions. Once the time-lock puzzle is revealed, all parties will sign
the puzzle and broadcast the signatures to each other in the subsequent round.
Since the adversary can not see the contents of the puzzle, it can either decide to
abort independently of which executions are being checked or to sign the puzzle

22

and thereby potentially provide publicly verifiable evidence that can be used to
incriminate its cheating attempt.

Puzzle generation. A naive approach for generating the puzzles would be
the run an actively secure n-party protocol, which computes the desired puzzles
inside the secure computation. Unfortunately this would incur a large practical
overhead, since performing public-key operations, which are required for known
instantiations of the puzzles, inside MPC protocols is expensive. Therefore, we
would like to avoid the use of generic MPC as much as possible for the sake
of concrete efficiency. Our protocol starts by letting all parties jointly generate
n × k matrix Crnd of commitments comi,j to random tapes ri,j for i ∈ [n] and
j ∈ [k], where party Pi knows the corresponding decommitments for all ri,j with
j ∈ [k]. After all parties have executed k instances of Πcorr with the appropriate
random tapes, each party Pi (with view viewi,j of the j-th execution) for each
of the k executions runs certi,j ← GatherEvidence(viewi,j) to generate a partial
certificate. Then, the parties jointly run an actively secure protocol Πcheck, where
each party inputs all of its decommitments from Crnd and all partial certificates.
The protocol produces an authenticated secret sharing (s1, . . . , sn) of all decom-
mitments and partial certificates belonging to k − 1 random executions, where
party Pi obtains si. Each party commits to its share si and broadcasts the com-
mitment comshare

i to everybody. Finally, each party Pi broadcasts a time-lock
puzzle puzi containing the decommitment decshare

i of comshare
i and all parties sign

the puzzles.

In terms of efficiency, it is important to note that the computation of Πcheck

only depends on the number of parties and only performs fast symmetric-key
operations inside of the protocol.

In terms of security, the intuition is as follows: A cheating adversary, can pro-
vide one or more incorrect decommitments for Crnd as its input to Πcheck. If the
adversary guesses incorrectly which execution is not being checked, then it will
eventually have to sign a time-lock puzzle that contains an incriminating decom-
mitment for some commitment in Crnd. Alternatively, the adversary can provide
honest inputs to Πcheck, but then decide to produce a commitment comshare

i ,
which contains a modified secret share. In this case, the protocol will always
abort, since the reconstruction of the checked executions will always fail and
thus we do not need to produce a publicly verifiable certificate. If the adversary
produces the commitment comshare

i correctly, but puts the incorrect decommit-
ment information into the corresponding puzzle, then it will again incriminate
itself by signing the puzzle.

The remainder of the protocol. Once the puzzles and the corresponding
signatures have been sent around, the parties broadcast the decommitments
decshare

i that are stored inside the puzzles. Given the shares of all parties, each
individual party can check k − 1 of the executions. If, and only if, some party
stops responding at this stage of the protocol, then the honest parties need to
solve one or more puzzles and either obtain the necessary information that was
not sent from them or produce a certificate, which shows that some malicious
party tampered with its puzzle in a malicious manner. Equipped with this high-

23

level intuition we are not ready to present our protocol which is described in
Figure 5.1 and the corresponding Judge algorithm is described in Figure 5.2.

Figure 5.1: Protocol [Πcorr]
pvcov

1. Each party Pi receives a signing key ski and verification keys

vk1, . . . , vkn from the PKI. Let
−→
pk = (pk1, . . . , pkn).

Committed Coin Flip:

2. All parties jointly and repeatedly execute the committed coin flip
protocol Πflip, such that each party Pi receives an output

Crnd =

com1,1, . . . , com1,k

...
comn,1, . . . , comn,k

 and Di =
(
deci,1, . . . , deci,k

)
,

where comi,j is a commitment to ri,j with decommitment deci,j .

Protocol Execution:

3. All parties jointly execute Πcorr in parallel k times, where party Pi
uses random tape ri,j in the j-th execution of the protocol. Let Ri,j
be the output of party Pi in execution j. Let viewi,j be the view of Pi
in the j-th execution of Πcorr. After the executions, for j ∈ [k], each
Pi runs certi,j ← GatherEvidence(viewi,j).

Puzzle Generation:

4. Each party Pi picks a uniformly random encryption
keys Ki,1, . . . ,Ki,k and broadcasts encryptions ci,j ←
sEncKi,j

(deci,j , certi,j) for j ∈ [k]. Let CT be the set of all
n× k ciphertexts.

5. All parties jointly execute Πcheck where party Pi uses (Ki,1, . . . ,Ki,k)
as input. Each party Pi obtains output si, which is the i-th share of

s =

 K1,γ(1), . . . ,Kn,γ(1)

...
K1,γ(k−1), . . . ,Kn,γ(k−1)

 , γ

where γ is a uniformly random permutation on [k].

6. Each Pi computes decshare
i and comshare

i by using Πcom to commit to
si and broadcasts comshare

i . Let Cshare =
(
comshare

1 , . . . , comshare
n

)
.

7. Each Pi generates a puzzle puzi ← pGen
(
t,
(

decshare
i

))
, where t = 5,

commits to puzi using Πcom obtaining compuz
i , decpuz

i , and broadcasts
compuz

i . Let −→puz be the vector of all puzzles puz1, . . . , puzn.
8. After receiving compuz

j for all j 6= i, each Pi broadcasts puzi and decpuz
i .

Each party checks whether all the puzzle commitments it receives are
valid decommitments and aborts if this is not the case.

24

9. Each party Pi computes signature σi ← Sigski

(
Crnd, Cshare, CT,−→puz

)
and broadcasts it to every other party. If any party obtains an invalid
signature or obtains a signature in the incorrect round, then the party
aborts.

Checking Phase:

10. Each Pi broadcasts decshare
i . Let J ⊂ [n] be the set indices be-

longing to parties that did not broadcast this message. If J 6= ∅,
then each party Pi solves all puzzles puzj with j ∈ J . If one or
more puzzles are not solvable in time t, then Pi outputs certificate
cert = (1, j∗, σj∗ , C

rnd, Cshare, CT,−→puz), where j∗ is the smallest index
belonging to a not solvable puzzle, and aborts. If all relevant puzzles
solvable, then replace missing decommitments with the ones from the
solved puzzles.

11. Let S be the set of invalid decommitments for Cshare. Solve correspond-
ing puzzles to see whether they contain the valid decommitment. If
yes, then continue as below using the valid decommitment, otherwise
output cert = (2, j∗, σj∗ , C

rnd, Cshare, CT,−→puz), where j∗ is the small-
est index belonging to a not valid decommitment, and terminate.

12. If any of the decommitted shares is invalid, then abort.
13. Each party uses the shares to reconstruct K1,γ(j), . . . ,Kn,γ(j) for j ∈

[k − 1].
14. Each party Pi

– checks whether any of the decryptions fail and if it does then we
set the corresponding plaintext to be ⊥.

– checks whether the reconstructed random tapes and decommit-
ments for each execution j ∈ [k − 1] match the corresponding
commitments in matrix Crnd. If not, let j∗ be the smallest exe-
cution index with a mismatch and let i∗ be the smallest index of
a party within that execution that produces a mismatch. Every
party outputs certificate cert = (3, i∗, σi∗ , C

rnd, Cshare, CT,−→puz).
– Let

−−→
certγ(j) be the vector of partial certificate belonging to ex-

ecution γ(j). Let −→r γ(j) = (r1,γ(j), . . . , rn,γ(j)) be the vector of
random tapes belonging to execution γ(j).
Each Pi, for each j ∈ [k − 1] computes

cert′γ(j) ← Accuse(
−→
pk,−→r γ(j),

−−→
certγ(j)).

Let J be the set of indices j with Sentence(
−→
pk,−→r γ(j), cert′γ(j)) 6= ⊥.

If J 6= ∅, then let j∗ be the smallest index, and let

i∗ ← Sentence(
−→
pk,−→r γ(j∗), cert′γ(j∗))

and output cert =(
4, i∗, σi∗ , C

rnd, Cshare, CT,−→puz,
{deci,γ(j∗))}i∈[n], cert′γ(j∗), j

∗

)

25

Output Phase:

15. If no misbehavior was detected, then each party Pi outputs Ri,γ(k).

Figure 5.2: Judge has input vk1, . . . , vkn and cert

1. The judge parses cert as (c, aux)
– If c ∈ {1, 2, 3}, then parse aux as (i∗, σi∗ , C

rnd, Cshare, CT,−→puz).
– If c = 4, then parse aux as(

i∗, σi∗ , C
rnd, Cshare, CT,−→puz, {deci,γ(j∗)}i∈[n], cert′γ(j∗), j

∗
)
.

– If certificate not well-formed, then judge outputs ⊥.
– The judge checks whether Ver

(
pki∗ , σi∗ , (C

rnd, Cshare, CT,−→puz)
)

=
1 and otherwise output ⊥.

2. Depending on the error index c do the following:
c = 1:

– The judge attempts to solve puzi∗ ∈
−→puz in time t = 5. If the puzzle

is not solvable within the given time, output pki∗ and otherwise
output ⊥.
c = 2:

– Judge solves puzi∗ to obtain decommitments corresponding to
commitments of Pi∗ in Cshare. If any of the decommitments is
invalid, then the judge outputs pki∗ .
c ∈ {3,4}:

– The judge solves puzzles puz1, . . . , puzn to obtain decommitments
corresponding to commitments in Cshare. If any decommitment
invalid, then output ⊥.

– The judge obtains the shares of k− 1 keys. If any share is invalid,
then output ⊥. Otherwise the judge reconstructs the permutation
γ and the keys Ki,γ(1), . . . ,Ki,γ(k−1) for each i ∈ [n].

– It decrypts the ciphertexts in CT corresponding to the available
keys. For all decryptions that fail, we set the corresponding plain-
text to be ⊥. If there exists a j such that the ciphertext ci∗,j
contains a decommitment that does not match the corresponding
committed random tape in Crnd, then output pki∗ .

c = 3: If nothing bad happened till now, then the judge out-
puts ⊥.
c = 4: Let −→r γ(j∗) be the vector of random tapes belonging

to execution j∗. Output Sentence(
−→
pk,−→r γ(j∗), cert′γ(j∗)).

Theorem 5. Suppose protocol Πcorr securely implements FDcorr with passive se-
curity, has public verifiability cheating from random tapes. Let Πcom, Πcheck

and Πflip be protocols that securely implement FCOM, FCHECK and FFLIP re-
spectively with UC-security. Let (pGen, pSol) be a B-secure time-lock puzzle for

26

B = 5. Let (sEnc, sDec) be a CPA-secure symmetric encryption scheme and let
(Gen,Sig,Ver) be an EUF-CMA secure signature scheme. Furthermore, assume
all parties have access to a broadcast channel. Then [Πcorr]

pvcov implements FDcorr

with covert security and public verifiability against an adversary, who corrupts
n− 1 parties, and deterrence factor ε = 1− 1

k .

The ideal functionalities used in the theorem statement can be found in
Section C.4 and the proof of the theorem can be found in Appendix I.

6 Instantiating the Preprocessing and Online Phases

We now show how to instantiate the passively secure preprocessing phase we
need, as well as an online phase, filling in the missing pieces for our construc-
tions with covert security. We focus on instantiating using the BMR protocol
for constant-round MPC of binary circuits, achieving covert security with either
identifiable abort or public verifiability. However, we also discuss other use-cases,
such as variants of the SPDZ protocol, and efficient preprocessing of one-time
truth tables.

Combining the Online and Preprocessing Phases. In our instantia-
tions, we will take a covertly secure preprocessing protocol output by one of our
compilers, and combine it with an actively secure online phase. In Appendix D.4,
we show that this general approach of combining two such protocols is sound,
that is, it leads to a protocol with covert security overall. Furthermore, if the
original protocols also have identifiable abort, then so does the combined proto-
col.

Instantiating with BMR and Public Verifiability. In the BMR paradigm,
the parties jointly construct a secret-sharing of a garbled circuit in the prepro-
cessing phase, such that no single party knows all of the secret randomness.
Then, in the online phase, the garbled circuit is reconstructed, and all parties
locally evaluate it. Note that the garbled circuit shares are not authenticated,
so corrupt parties may send incorrect shares in the online phase; nevertheless,
as long as the preprocessing was done correctly, this still gives an actively secure
online phase [23] with abort.

By defining the preprocessing to only output shares of the garbled circuit,
rather than the garbled circuit itself, we save efficiency with our covert secu-
rity compiler. The parties only ever compute a single garbled circuit, regardless
of the repetition factor k, which reduces computation and communication. The
passively secure protocol which we compile is a variant of the semi-honest prepro-
cessing from [8] (incorporating some later optimizations [23]). For completeness,
we describe the full protocol and functionality in Appendix D, and also show
that the functionality can be naturally described to fit the “reverse-sampleable”
requirement.

In Appendix D, we also describe an optimization to the BMR preprocessing,
which reduces the number of oblivious transfers by 25% compared with previous
passively secure works [8, 12]. The high-level idea is to garble the circuit from

27

the input layer, in a top-down manner, instead of garbling each AND gate inde-
pendently. By exploiting information from the previous gates, we show that this
allows one set of OTs per AND gate to be removed.

Instantiating with BMR and Identifiable Abort. To achieve identifi-
able abort with covert preprocessing, we need an online phase that is secure in
this model, with active security. A previous BMR-based protocol satisfies active
security and identifiable abort [6], however, this requires a more complex pre-
processing phase involving homomorphic commitments. We show that this can
be avoided for the case of covert security, which greatly simplifies the protocol.

We propose to modify the previous preprocessing so that each party is com-
mitted to its garbled circuit share, as well as its keys for the input wires, with
commitments given to all other parties. This ensures that in the online phase,
there is no way to cheat when opening the garbled circuit. Since the preprocess-
ing protocol itself only needs to be passively secure, it is very easy to achieve
this functionality by just having the parties broadcasts their commitments.

One technical challenge of this approach, however, is that we need the pre-
processing functionality to be reverse-sampleable. To satisfy this, the function-
ality would have to allow a corrupt party to choose the commitments it receives
from honest parties, and then the functionality would sample the honest parties’
outputs (i.e. decommitment information) consistently with these commitments.
Unfortunately, this strong form of equivocation is not possible with standard
commitments. Instead, we rely on unanimously identifiable commitments [26],
which can be built information-theoretically in such a way that a commitment
and message can be sampled before the corresponding decommitment. A slight
downside is that we now need an interactive protocol to generate the commit-
ments, however, we only need to perform a small number of commitments, and
this overhead is independent of the circuit size. See Appendix D.3 for details.

Other Instantiations: SPDZ with Identifiable Abort and TinyTable.
Since our compilers are general, they can be applied to any number of preprocessing-
based MPC protocols. Here, we mention just a couple of examples where we
expect to see a large improvement compared with active security.

SPDZ [18, 15] is a non-constant-round protocol for evaluating arithmetic cir-
cuits, with an expensive preprocessing phase based on homomorphic encryption.
In [15], a covertly secure preprocessing was given, however, it neither achieved
public verifiability nor identifiable abort. We can easily fix this by applying our
compilers to a passively secure version of the SPDZ preprocessing. For covert
security with public verifiability (without identifiable abort), we can use the
standard online phase of SPDZ, combined with a simplified passive preprocess-
ing protocol which we compile. If we want covert security with identifiable abort,
then we instead use a variant of the online phase with identifiable abort [5], and
can also simplify the preprocessing from that protocol to have passive security.
Since the preprocessing is by far the bottleneck (and much more expensive than
in regular SPDZ), this should be a more practical approach to achieving identi-
fiable abort in SPDZ than protocols with full active security [5, 13, 31].

28

Another example is preprocessed, authenticated one-time truth tables, as
used in the TinyTable protocol [16]. These allow an online phase with very
efficient “table lookup” operations, where the table is public but the index is
secret, and can for example be applied to AES S-boxes. Unfortunately, generating
the secret tables with active security is very expensive. Boyle et al. [11] proposed
to use distributed point functions for improved efficiency, since these allow the
communication and storage costs to be logarithmic in the table size, instead of
linear. However, no efficient, actively secure protocols for setting up distributed
point functions are known. Instead, applying our covert compiler can lead to a
covertly secure preprocessing for TinyTable, with much smaller costs than active
security. We leave a detailed analysis of this to future work.

7 Efficiency Analysis

We now take a look at the concrete efficiency of our compilers for covert security,
when applied to our passively secure BMR protocol from the previous section.

Metrics. We consider n = 5 parties, securely computing a Boolean circuit
with 100000 AND gates, 128 bits of input per party and 128 output bits. We
measure the bandwidth costs, per party, and also count the total number of OTs
that are needed, since for the preprocessing phase in BMR, this gives a rough
idea of the main computational costs. When measuring the communication cost
of a (correlated) OT, we consider two different methods: in regular OT (R-OT),
we use standard OT extension techniques [25, 1] to create the OT on random
strings, which costs ≈ λ = 128 bits of communication. In silent OT (S-OT),
we use the recent, silent OT extension method based on a variant of the LPN
assumption [11]; this can cost as little as 0.1 bits (on average) per random OT
or Fcot [10, 34], but has a higher computational cost.

In both cases, we ignore the cost of the setup phase for generating a small
number of seed OTs. Our covert protocols have some additional costs such as
coin-tossing and adding a signature to every message. Note that coin-tossing
can easily be implemented with hash functions in the random oracle model, and
since our protocols are constant-round, the number of signatures is very small,
so for large circuits these costs will be insignificant.

Passive Security and Covert Security Without Identifiability (Table 1). As a
baseline, we take the passive secure BMR protocol by [8], with an optimization
to the way the OTs are generated (as described in [12]). We can see that our
optimized passive protocol reduces bandwidth in the circuit-independent pre-
processing by around 25%. When also factoring in sending the garbled circuit,
for the regular-OT case this translates to a total saving of around 10%.

With regular OT extension, our covertly secure protocol with k = 3 repeti-
tions (deterrrence factor 2

3) has around 3x the preprocessing cost of the passive
protocol, but the online cost remains the same. For the overall cost, the over-
head is around 40%. Meanwhile, state-of-the-art actively secure protocols based
on [23, 32, 33] have a total bandwidth around twice that of the covert protocol,
and need 3x as many OTs. When using silent OT (S-OT) based on LPN, since

29

Protocol Preprocessing Online Total
OTs R-OT S-OT R-OT S-OT

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88
Covert (non-id) 18.00 290.42 2.03 256.21 546.62 258.23
Active 54.00 576.30 9.05 256.21 832.51 265.26

Table 1. Bandwidth costs (in MB) and OT costs (millions of OTs) for passive, covert
and actively secure protocols without identifiable abort, in a Boolean circuit with 100
thousand ANDs, with covert deterrence factor 2

3

OTs are so cheap, the bandwidth costs of adding active security are dwarfed by
just the cost of sending the garbled circuit. However, the actively secure proto-
cols still require a large number of OTs, which will add to the local computation
costs.

In Table 2 in Appendix E, we also compare costs as the number of repetitions
k is increased. Depending on the setting, our covert protocol continues to have
smaller bandwidth and OT costs than an actively secure protocol up to around
k = 8, while beyond that it is seems preferable to go for active security.

Public Verifiability. Our construction with public verifiability has similar
costs to our covertly secure protocol without identifiable abort, the main dif-
ferences being (1) The parties run a small, actively secure protocol Πcheck to
select which execution to open, and (2) Each party needs to construct a time-
lock puzzle. The protocol Πcheck can be done with around nkλ AND gates, so
when evaluating large circuits we do not expect this to be a bottleneck. Gen-
erating a single time-lock puzzle is also relatively cheap, and we note that the
parties only have to work to solve the puzzles when there is a dishonest party.
Note that when using aggregate signatures, the size of a certificate that is given
to the judge is constant.

Identifiable Abort. For covert security with identifiable abort, the main dif-
ference in our compiled protocol is that the parties need to generate UIC com-
mitments of their garbled circuit shares in the preprocessing. As argued in Ap-
pendix D, this can be done with passive security relatively efficiently, and we note
that the number (and size) of commitments is independent of the circuit size.
Compared with an actively secure protocol with identifiable abort [6], our covert
protocol is much simpler, since we avoid the need to generate and broadcast ho-
momorphic commitments to every wire key in the circuit, as well as additional
commitments and checks in the preprocessing phase (on top of the standard ac-
tive secure protocol) from [6]. Since broadcast is the dominating factor, and our
preprocessing stage does not need any broadcasts (except in a dishonest execu-
tion) we expect our protocol to be highly competitive when identifiable abort is
desired.

Finally, we can also compare our protocol with that of Goyal et al [22], if
it was fixed to prevent the bug we pointed out. Since fixing this requires every

30

message of the underlying GMW protocol that is compiled to be broadcast, while
our compiler avoids all broadcasts, we clearly improve efficiency by at least a
factor n, for n parties.

Acknowledgements

This work has been supported by a DFF Sapere Aude Grant 9064-00068B, the
Concordium Blockhain Research Center, Aarhus University, and a starting grant
from Aarhus University Research Foundation.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In ACM CCS 2013: 20th
Conference on Computer and Communications Security. ACM Press, Nov. 2013.

2. G. Asharov and C. Orlandi. Calling out cheaters: Covert security with public
verifiability. In Advances in Cryptology – ASIACRYPT 2012, Lecture Notes in
Computer Science. Springer, Heidelberg, Dec. 2012.

3. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In TCC 2007: 4th Theory of Cryptography Conference,
Lecture Notes in Computer Science. Springer, Heidelberg, Feb. 2007.

4. C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. TARDIS: A
foundation of time-lock puzzles in UC. In EUROCRYPT 2021, 2021. https:

//eprint.iacr.org/2020/537.
5. C. Baum, E. Orsini, and P. Scholl. Efficient secure multiparty computation with

identifiable abort. In TCC 2016-B: 14th Theory of Cryptography Conference,
Part I, Lecture Notes in Computer Science. Springer, Heidelberg, Oct. / Nov.
2016.

6. C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez. Efficient constant-round
MPC with identifiable abort and public verifiability. In Advances in Cryptology –
CRYPTO 2020, Part II, Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2020.

7. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing.
ACM Press, May 1990.

8. A. Ben-Efraim, Y. Lindell, and E. Omri. Optimizing semi-honest secure multiparty
computation for the internet. In ACM CCS 2016: 23rd Conference on Computer
and Communications Security. ACM Press, Oct. 2016.

9. N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Wa-
ters. Time-lock puzzles from randomized encodings. In ITCS 2016: 7th Conference
on Innovations in Theoretical Computer Science. Association for Computing Ma-
chinery, Jan. 2016.

10. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
Efficient two-round OT extension and silent non-interactive secure computation.
In ACM CCS 2019: 26th Conference on Computer and Communications Security.
ACM Press, Nov. 2019.

11. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In Advances
in Cryptology – CRYPTO 2019, Part III, Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2019.

31

https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2020/537

12. L. Braun, D. Demmler, T. Schneider, and O. Tkachenko. Motion - a framework
for mixed-protocol multi-party computation. Cryptology ePrint Archive, Report
2020/1137, 2020. https://eprint.iacr.org/2020/1137.

13. R. K. Cunningham, B. Fuller, and S. Yakoubov. Catching MPC cheaters: Identi-
fication and openability. In ICITS 17: 10th International Conference on Informa-
tion Theoretic Security, Lecture Notes in Computer Science. Springer, Heidelberg,
Nov. / Dec. 2017.

14. I. Damg̊ard, M. Geisler, and J. B. Nielsen. From passive to covert security at
low cost. In TCC 2010: 7th Theory of Cryptography Conference, Lecture Notes in
Computer Science. Springer, Heidelberg, Feb. 2010.

15. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
ESORICS 2013: 18th European Symposium on Research in Computer Security,
Lecture Notes in Computer Science. Springer, Heidelberg, Sept. 2013.

16. I. Damg̊ard, J. B. Nielsen, M. Nielsen, and S. Ranellucci. The TinyTable protocol
for 2-party secure computation, or: Gate-scrambling revisited. In Advances in
Cryptology – CRYPTO 2017, Part I, Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2017.

17. I. Damg̊ard, C. Orlandi, and M. Simkin. Black-box transformations from pas-
sive to covert security with public verifiability. In Advances in Cryptology –
CRYPTO 2020, Part II, Lecture Notes in Computer Science. Springer, Heidel-
berg, Aug. 2020.

18. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology – CRYPTO 2012,
Lecture Notes in Computer Science. Springer, Heidelberg, Aug. 2012.

19. N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Non-malleable time-lock
puzzles and applications. Cryptology ePrint Archive, Report 2020/779, 2020.
https://eprint.iacr.org/2020/779.

20. S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. Generic compiler for publicly
verifiable covert multi-party computation. In EUROCRYPT 2021, 2021. https:

//eprint.iacr.org/2021/251.

21. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, (3), June 1996.

22. V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party computa-
tion against covert adversaries. In Advances in Cryptology – EUROCRYPT 2008,
Lecture Notes in Computer Science. Springer, Heidelberg, Apr. 2008.

23. C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC combin-
ing BMR and oblivious transfer. In Advances in Cryptology – ASIACRYPT 2017,
Part I, Lecture Notes in Computer Science. Springer, Heidelberg, Dec. 2017.

24. C. Hong, J. Katz, V. Kolesnikov, W. Lu, and X. Wang. Covert security with pub-
lic verifiability: Faster, leaner, and simpler. In Advances in Cryptology – EURO-
CRYPT 2019, Part III, Lecture Notes in Computer Science. Springer, Heidelberg,
May 2019.

25. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology – CRYPTO 2003, Lecture Notes in Computer
Science. Springer, Heidelberg, Aug. 2003.

26. Y. Ishai, R. Ostrovsky, and H. Seyalioglu. Identifying cheaters without an honest
majority. In TCC 2012: 9th Theory of Cryptography Conference, Lecture Notes in
Computer Science. Springer, Heidelberg, Mar. 2012.

32

https://eprint.iacr.org/2020/1137
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2021/251
https://eprint.iacr.org/2021/251

27. Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with identi-
fiable abort. In Advances in Cryptology – CRYPTO 2014, Part II, Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2014.

28. V. Kolesnikov and A. J. Malozemoff. Public verifiability in the covert model (al-
most) for free. In Advances in Cryptology – ASIACRYPT 2015, Part II, Lecture
Notes in Computer Science. Springer, Heidelberg, Nov. / Dec. 2015.

29. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

30. H. A.-J. Seyalioglu. Reducing trust when trust is essential. PhD thesis, UCLA,
2012.

31. G. Spini and S. Fehr. Cheater detection in SPDZ multiparty computation. In ICITS
16: 9th International Conference on Information Theoretic Security, Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2016.

32. X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation.
In ACM CCS 2017: 24th Conference on Computer and Communications Security.
ACM Press, Oct. / Nov. 2017.

33. K. Yang, X. Wang, and J. Zhang. More efficient MPC from improved triple gener-
ation and authenticated garbling. In ACM CCS 20: 27th Conference on Computer
and Communications Security. ACM Press, 2020.

34. K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for corre-
lated ot with small communication. Cryptology ePrint Archive, Report 2020/924,
2020. https://eprint.iacr.org/2020/924.

33

https://eprint.iacr.org/2020/924

A Impossibility Results for Security Against Covert
Adversaries

We show that there exists an n-party functionality which can not be correctly
computed by parties, who have oracle access to arbitrary two-party computations
and broadcast, in the presence of a covert adversary, who corrupts two thirds of
the parties. The proof strategy is essentially identical to a previous proof by Ishai,
Ostrovsky, and Seyalioglu [26]6, which shows the same impossibility holds if one
aims for active security with identifiable abort. For the sake of completeness, we
provide a full write-up of our proof here. The second half of our proof is a little
bit more concise and arguably simpler than the original proof, but we do not
claim any particular novelty in terms of ideas when compared to the previous
impossibility result.

A.1 Probability Theory Basics

Here we just recall some basics about probability theory, which will be used in
the following impossibility result.

Lemma 6 (Chain Rule). Let A,B ⊆ Ω, where Ω is a sample space, then

Pr[A,B] = Pr[B | A] · Pr[A].

Lemma 7 (Bayes’ Theorem). Let A,B ⊆ Ω, where Ω is a sample space, then

Pr[A | B] =
Pr[A,B]

Pr[B]
.

Corollary 8. Let A,B,C ⊆ Ω, where Ω is a sample space, then

Pr[A | B,C] =
Pr[A,B | C]

Pr[B | C]
.

Proof.

Pr[A | B,C] =
Pr[A,B,C]

Pr[B,C]
=

Pr[A,B | C] · Pr[C]

Pr[B | C] · Pr[C]
=

Pr[A,B | C]

Pr[B | C]
.

Lemma 9 (Law of Total Probability). Let B1, . . . , Bn be a partitioning of
the sample space Ω and let A ⊆ Ω, then

Pr[A] =

n∑
i=1

Pr[A,B] =

n∑
i=1

Pr[A | B] · Pr[B].

6 The actual proof of their impossibility result can be found in Seyalioglu’s thesis [30].

34

A.2 Impossibility Result

Theorem 10. Let F2PC be an arbitrary two-party ideal functionality and let
FBC be the ideal broadcast functionality. There exists a three-party functionality
F , which cannot be implemented with unconditional security against a covert
adversary, who corrupts two of the parties, in the (F2PC,FBC)-hybrid model.

Proof. Let 〈·, ·〉 denote the inner product over F2. Consider the following three-
party functionality

F

b0, b1

c
d

 =

 ⊥
〈b0, c〉, 〈b1, c〉

bd

 ,

where b0, b1, c ∈ {0, 1}2 and d ∈ {0, 1}.
Assume towards contradiction that there exists a protocol Π that implements

F with unconditional security against a covert adversary, who can corrupt up
to two parties, in the (F2PC,FBC)-hybrid model. Let us start by considering
two different possible adversaries A1 and A3, who corrupt P1 or P3 respectively.
Adversary Ai for i ∈ {1, 3} behaves honestly and follows the protocol description
towards P2, but fully ignores Pj for j ∈ {1, 3}\{i}. A bit more concretely, in every
round Ai calls the next-message functionality honestly using his current view,
the latest message it receives from P2, and instead of Pj ’s message it always
inputs ⊥, which we interpret as the “no message received special symbol”. It
sends the computed message to P2, but drops whatever it is supposed to send
to Pj . If Pj accuses Pi of not sending any messages, then Pi does the same and
accuses Pj .

We observe that the view of P2 is distributed identically in both an execution
of Π in the presence of A1 and an execution of Π in the presence of A3, since
it has no way of telling who of the two parties is lying. In the following we will
call this modified execution Π ′.

Claim 11. For any set of inputs (x1, x2, x3) to Π ′ and any i, j ∈ [3], it holds
that

Pr[Pi outputs {(corrupted, j), (abort, j)}] ≤ negl(δ),

where the probability is taken over the random coins of the parties and δ is the
statistical security parameter.

Proof. We first observe that either none of the honest parties abort (or send the
corrupted command) or all of them abort by outputting the same index. Since
P2 does not know who to accuse, it can not abort the protocol execution.

Claim 12. For any set of inputs (x1, x2, x3), let (y1, y2, y3) be the output of F
and (z1, z2, z3) be the output of Π ′ on those inputs. It holds that

Pr[yi 6= zi] ≤ negl(δ),

where the probability is taken over the random coins of the parties and δ is the
statistical security parameter.

35

Proof. From the assumed security of Π, it follows that there exists an ideal
world adversary, corrupting P3, corresponding to the real world adversary A3.
We observe that the input of this ideal world adversary to the ideal functionality
F has no influence on the outputs of the other parties. In particular, this means
that P2 has to receive output y2 in the real world execution in the presence
of A3 with an overwhelming (in δ) probability. Since P2’s view is identically
distributed in the presence of A3 and A1, it follows that P2’s output in a real
world execution of Π in the presence of A1 is also y3.

It remains to show that P3 obtains the correct output in an execution of Π in
the presence of A1. From the definition of security against covert adversaries we
know that the distribution of honest parties’ outputs has to be statistically close
in the real and ideal world for all possible inputs and thus this has to also be
true when P2’s input x2 = c is chosen uniformly at random. For corrupted party
P1 with input x1 = (b0, b1), let x̃1 = (b̃0, b̃1) be the input that the corresponding
ideal world adversary sends to the ideal functionality F . We observe that either
b0 = b̃0 and b1 = b̃1 in which case P3 obtains the right output for any input x3

or
Pr
c

[〈b0, c〉 = 〈b̃0, c〉 ∧ 〈b1, c〉 = 〈b̃1, c〉] ≤ 1/2,

which would contradict our previous conclusion that P3 obtains the correct out-
put with an overwhelming probability.

Claim 13. Fix any b0, b1, b̂1, c← {0, 1}2 with 〈b1, c〉 = 〈b̂1, c〉, let x = ((b0, b1), c, 0),

and let x̂ =
(

(b0, b̂1), c, 0
)

. Let viewx
2 denote distribution of the view of party

P2 in executions of Π ′ with inputs x and let viewx̂
2 be distribution of views cor-

responding to inputs x̂. Then

viewx
2 ≈ε viewx̂

2 ,

where ε = negl(δ).

Proof. Let us consider real world adversary A3, who this time also corrupts
P2, but instructs this party follow the protocol completely honestly. Since Π is
secure against two corruptions, it follows that there exists a corresponding ideal
world adversary S{2,3} that corrupts P2 and P3 in the ideal world and for all
inputs produces views that are indistinguishable from a real execution with an
overwhelming probability in δ. From the previous claims we also know that the
honest parties do not abort and that all parties obtain the correct outputs. Let
c̃ and d̃ be the inputs that the ideal world adversary S{2,3} sends to F .

We observe that for any correctly functioning S{2,3} it has to hold that c̃ = c

and d̃ = d with overwhelming probability. Assume this was not the case. Let
b0, b1 ∈ {0, 1}2 be a uniformly random input of P1. In the real world P2 obtains
〈b0, c〉 and 〈b1, c〉 and P3 obtains bd, which S{2,3} needs to simulate in the ideal

world from knowing 〈b0, c̃〉, 〈b1, c̃〉 and bd̃. Now if d 6= d̃, then S{2,3} can simulate
P3’s correct output with at best some constant probability smaller one and if c 6=

36

c̃, then it can only correctly simulate P3’s output with some constant probability
smaller one. Let us now consider some arbitrary, but fixed b0, b1, b̂1, c ∈ {0, 1}2
with 〈b1, c〉 = 〈b̂1, c〉 and d = 0 as in the claim statement. From the discussion
above we can conclude that the ideal world adversary will see 〈b0, c〉, 〈b1, c〉 and
bd. This means that S{2,3}’s simulation for inputs x and x̂ will be identical and
thus the corresponding real-world executions will be statistically close.

Claim 14. Fix any b0, b̂0, b1, c← {0, 1}2 with 〈b0, c〉 = 〈b̂0, c〉. For x = ((b0, b1), c, 1)

and x̂ =
(

(b̂0, b1), c, 1
)

it holds that

viewx
2 ≈ε viewx̂

2 ,

where ε = negl(δ).

Proof. Claim can be proven completely symmetrically to the previous claim.

Claim 15. Fix any b0, b1, c← {0, 1}2 For x = ((b0, b1), c, 0) and x̂ = ((b0, b1), c, 1)
it holds that

viewx
2 ≈ε viewx̂

2 ,

Proof. Claim can be proven symmetrically to the previous claim by just cor-
rupting P1 and P2 instead of P2 and P3.

Claim 16. Fix any b0, b̂0, b1, b̂1, c← {0, 1}2 with 〈b0, c〉 = 〈b̂0, c〉 and 〈b1, c〉 =

〈b̂1, c〉. For x = ((b0, b1), c, 0) and x̂ =
(

(b̂0, b̂1), c, 1
)

we have that

viewx
2 ≈ε′ viewx̂

2 ,

where ε′ = 3ε is negligible in the statistical security parameter δ.

Proof. From the previous three claims we get the following sequence of hybrids,
which proves the statement:

viewx
2 = view

((b0,b1),c,0)
2

≈εview
((b0,b̂1),c,0)
2

≈εview
((b0,b̂1),c,1)
2

≈εview
((b̂0,b̂1),c,1)
2 = viewx̂

2 .

37

At this point it will help our understanding to take stock of what we have
shown so far. We have first shown that even if we cut the communication channel
between P1 and P3, the protocol will not abort and correctly compute the desired
functionality, which roughly corresponds to an oblivious transfer between P1

and P3. Moreover, we have shown that for any two inputs (b0, b1) and (b̂0, b̂1)
of P1, the view of P2 remains the basically the same7. The fact that P2’s view
is independent of P1’s input means that the view does not contain information
about the input. Lastly, recall that we are considering information-theoretic
protocols with oracle access two arbitrary two-party functionalities, which means
that apart from the two-party functionalities, we are only given information-
theoretic tools. In the last step of this proof, we will show that P1 and P3 cannot
perform the desired oblivious transfer or, in other words, P3’s output cannot
contain any information about either of P1’s inputs.

Claim 17. Let b0, b̂0, b1, b̂1 ← {0, 1}2 be uniformly random and let c← {0, 1}2
and d ← {0, 1} be chosen arbitrary with 〈b0, c〉 = 〈b̂0, c〉 and 〈b1, c〉 = 〈b̂1, c〉.
Let x = ((b0, b1), c, d) and x̂ =

(
(b̂0, b̂1), c, d

)
. Let Zx

3 be the distribution of

outputs of P3 in an execution of Π ′ on input vector x induced by random tapes
chosen uniformly at random. Then it holds that

Pr[Zx
3 = bd] ≤ Pr[Zx̂

3 = bd] + negl(δ).

Proof. Let us consider executions of Π ′, where the input vector is chosen uni-
formly at random to be either x or x̂ and the random tapes are chosen uniformly
at random. Let V2 be the distribution of P2’s view and let Z3 be the distribution
of P3’s output in such executions.

By Claim 16, we know that there exists an ε = negl(δ) such that

1

2

∑
v

|Pr[V2 = v | X = x]− Pr[V2 = v | X = x̂]| = ε.

For each possible view v of P2, we define εv = Pr[V2 = v | X = x]− Pr[V2 =
v | X = x̂]. We observe that ∑

v

εv ≤
∑
v

|εv| = 2ε

and

Pr[V2 = v | X = x] = Pr[V2 = v | X = x̂] + εv.

Furthermore, since

Pr[P3(d) = bd | V2 = v]

and

Pr[X = x | V2 = v]

7 View may contain negligible traces of nuts information.

38

are conditionally independent for any view v of P2, we observe that for the set
V∗2 of views v∗ of P2 with

Pr[X = x | V2 = v∗] 6= 0

and
Pr[X = x̂ | V2 = v∗] 6= 0

it holds that

Pr[P3(d) = bd | V2 = v∗, X = x] =
Pr[P3(d) = bd, X = x | V2 = v∗]

Pr[X = x | V2 = v∗]

=
Pr[P3(d) = bd | V2 = v∗] · Pr[X = x | V2 = v∗]

Pr[X = x | V2 = v∗]

=
Pr[P3(d) = bd | V2 = v∗] · Pr[X = x̂ | V2 = v∗]

Pr[X = x̂ | V2 = v∗]

= Pr[P3(d) = bd | V2 = v∗, X = x̂].

Let us now analyze the probability of P3 outputting the correct result on
input vector x by combining our observations above and repeatedly applying
Lemma 6, 7, 9 and Corollary 8.

Pr[P3(d) = bd | X = x] = Pr[V2 ∈ V∗2 | X = x] · Pr[P3(d) = bd | V2 ∈ V∗2, X = x]

+ Pr[V2 6∈ V∗2 | X = x] · Pr[P3(d) = bd | V2 6∈ V∗2, X = x]

≤ Pr[P3(d) = bd | V2 ∈ V∗2, X = x] + negl(δ)

=
∑
v

Pr[P3(d) = bd, V2 = v | V2 ∈ V∗2, X = x] + negl(δ)

=
∑
v∈V ∗2

Pr[P3(d) = bd, V2 = v | V2 ∈ V∗2, X = x] + negl(δ)

=
∑
v∈V ∗2

Pr[P3(d) = bd, V2 = v | X = x]

Pr[V2 ∈ V∗2 | X = x]
+ negl(δ)

≤
∑
v∈V ∗2

Pr[P3(d) = bd, V2 = v | X = x]

99/100
+ negl(δ)

=
100

99

∑
v∈V ∗2

Pr[P3(d) = bd, V2 = v | X = x] + negl(δ)

=
100

99

∑
v∈V ∗2

Pr[V2 = v | X = x] · Pr[P3(d) = bd | V2 = v,X = x] + negl(δ)

=
100

99

∑
v∈V ∗2

(Pr[V2 = v | X = x̂] + εv) · Pr[P3(d) = bd | V2 = v,X = x̂] + negl(δ)

=
100

99

∑
v∈V ∗2

Pr[V2 = v | X = x̂] · Pr[P3(d) = bd | V2 = v,X = x̂]

39

+
∑
v∈V ∗2

εv · Pr[P3(d) = bd | V2 = v,X = x̂]

+ negl(δ)

≤ 100

99

Pr[P3(d) = bd | X = x̂] +
∑
v∈V ∗2

εv

+ negl(δ)

≤ 100

99
Pr[P3(d) = bd | X = x̂] + 2ε+ negl(δ)

≤ Pr[P3(d) = bd | X = x̂] + 2ε+ negl(δ) + 1/99,

which means that

Pr[P3(d) = bd | X = x]− Pr[P3(d) = bd | X = x̂] ≤ 2ε+ negl(δ) + 1/99

This means that the probability of P3 returning bd is effectively “indepen-
dent” of the actual input that was used, which contradicts Claim 12. Therefore,
the desired protocol with security a covert adversary who corrupts two parties
cannot exists.

The following corollary immediately follows.

Corollary 18. Let F2PC be an arbitrary two-party ideal functionality and let
FBC be the ideal broadcast functionality. There exists a n-party functionality
F , which cannot be implemented with unconditional security against a covert
adversary, who corrupts t = 2n

3 parties, in the (F2PC,FBC)-hybrid model.

B Secure Multiparty Computation

Passive adversaries. Security against passive adversaries is modeled by con-
sidering an environment Z that, in the real and ideal execution, picks the inputs
of all parties. An adversary A gets access to views of the corrupted parties,
but follows the protocol specification honestly. We consider the following ideal
execution:

Inputs: Environment Z gets as input auxiliary information z and sends the
vector of inputs x̄ = (x1, . . . , xn) to the ideal functionality F .

Ideal functionality reveals inputs: If the ideal world adversary S sends
get inputs to F , then it gets back the inputs of all corrupted parties, i.e. all
xi, where i ∈ I.

40

Output generation: The ideal functionality computes (y1, . . . , yn) = f(x1,
. . . , xn) and returns back yi to each Pi. All honest parties output what-
ever they receive from F . The ideal world adversary S outputs an arbitrary
probabilistic polynomial-time computable function of the initial inputs of
the corrupted parties, the auxiliary input z, and the messages received from
the ideal functionality.

The joint distribution of the outputs of the honest parties and S in an ideal
execution is denoted by IDEALλ[S(z), I,F , x̄].

Definition 9. Protocol Π is said to securely compute F with security against
passive adversaries in the G-hybrid model if for every non-uniform probabilis-
tic polynomial time adversary A in the real world, there exists a probabilistic
polynomial time adversary S in the ideal world such that for all λ ∈ N{

IDEALλ[S(z), I,F , x̄]
}
x̄,z∈{0,1}∗

≡c
{

REALλ[A(z), I,Π,G, x̄]
}
x̄,z∈{0,1}∗

B.1 Active Adversaries

Security with abort against active adversaries considers adversaries that may
behave in an arbitrarily malicious fashion. We consider the following ideal exe-
cution:

Inputs: The honest parties send their inputs to the ideal functionality F . All
corrupted parties may either abort, send its prescribed input or an arbitrary
different input to the ideal functionality.

Early Abort: If F receives abort from a corrupt party Pi instead of an
input, then it sends abort to all the honest parties and terminates.

Ideal functionality answers adversary: The ideal functionality computes
(y1, . . . , yn) = f(x1, . . . , xn) and sends it to S.

Ideal functionality answers honest parties: The adversary S either
sends back continue or abort for a corrupted Pi. If the adversary sends
continue, then the ideal functionality returns yi to each honest parties Pi. If
the adversary sends abort, then the ideal functionality sends back abort to
all honest parties.

Output generation: An honest party always outputs the message it ob-
tained from F . The corrupted parties output nothing. The adversary outputs
an arbitrary probabilistic polynomial-time computable function of the ini-
tial inputs of the corrupted parties, the auxiliary input z, and the messages
received from the ideal functionality.

41

The joint distribution of the outputs of the honest parties and S in an ideal
execution is denoted by IDEALλ[S(z), I,F , x̄].

Definition 10. Protocol Π is said to securely compute F with active security in
the G-hybrid model if for every non-uniform probabilistic polynomial time adver-
sary A in the real world, there exists a probabilistic polynomial time adversary
S in the ideal world such that for all λ ∈ N{

IDEALελ[S(z), I,F , x̄]
}
x̄,z∈{0,1}∗

≡c
{

REALλ[A(z), I,Π,G, x̄]
}
x̄,z∈{0,1}∗

Identifiable abort. Apart from security against covert or active adversaries
with abort, we will also consider security against covert or active adversaries
with identifiable abort. Here, upon a protocol aborting, the honest parties unan-
imously agree and output an index i, which refers to one of the corrupt parties
that caused the protocol to abort. A bit more formally, in the security notions
above, the ideal functionality would return an additional index i whenever it
sends abort to the honest parties, where Pi is a corrupted party. For a func-
tionality F , we write [F]ida to denote the corresponding ideal functionality with
identifiable abort.

C Additional Definitions

C.1 Authenticated Secret-Sharing

A authenticated (threshold) secret sharing scheme (share, rec) is a standard secret
sharing scheme with the following additional property:

Definition 11. A secret sharing scheme (share, rec) for access structure A is
said to be authenticated if the following holds for all possible secrets s, for all
n ∈ N, for any C ⊂ [n] with C 6∈ A, and any B ∈ A

Pr

(s1, . . . , sn)← share(s)

SC = {si | i ∈ C}
SB = {si | i ∈ B \ C}

S′C ← A(SC)

:
S′C 6= SC

rec(S′C ∪ SB) = s

 ≤ negl(λ),

where probability is taken over the random coins of the sharing algorithm share
and coins of the adversary A.

Such secret sharing schemes can easily be constructed from standard secret
sharing schemes in combination with MACs or signatures.

C.2 Aggregate Signatures

An aggregate signature scheme is a tuple (Gen,Sig,Ver,Agg,AggVer), where
(Gen,Sig,Ver) constitutes a standard existentially signature scheme, which is
equipped with the following additional algorithms:

42

Agg: The aggregation algorithm takes a list of message/signature pairs ((m1, σ1), . . . , (mn, σn))
as input and outputs an aggregate signature σ.

AggVer: The aggregate verification algorithm takes a list of public keys vk1, . . . , vkn,
a signature σ, and a list of messages m1, . . . ,mn.

Definition 12 (Existential Unforgeability in the Chosen-Key Model).
An aggregate signature scheme (Gen,Sig,Ver,Agg,AggVer) is said to be secure
in the aggregate chosen-key model if for any PPT adversary A it holds that

Pr

[
vk1 ← Gen(λ)

(vk2, . . . , vkn, σ,m)← AO(·)(vk1)
:

AggVer(vk1, . . . , vkn, σ,m) = 1

m 6∈ Q

]
≤ negl(λ),

where O(·) is the oracle that takes messages as input and outputs signatures
under key sk1 and Q is the set of messages that were queried to this oracle.

C.3 Correlation robust hash function

Definition 13 (Correlation robust hash function). We say that a hash
function Hcr : {0, 1}λ → {0, 1} is (strongly) correlation robust if for all t1, . . . , tm ∈
{0, 1}λ chosen by an adversary, it holds that the distribution{

(Hcr(t1 ⊕R), . . . ,Hcr(tm ⊕R)) | R← {0, 1}λ
}

is computationally indistinguishable from the uniform distribution.

C.4 Useful Ideal Functionalities

Figure C.1: FFLIP

The functionality interacts with parties P1, . . . , Pn.

– Coin Flip: If party Pi sends (coinFlip, id) to the ideal functionality,
it stores (id, coinFlip, Pi) in memory. If (id, coinFlip, Pi) was already
stored, then ignore the command. Once, for an identifier id, one such
entry from every party exists. The functionality picks a random value
rid and sends (coinFlip, id, rid) to all parties

– Commit Phase: If party Pi sends (comFlip, id) to the ideal func-
tionality, it stores (id, comFlip, Pi) in memory. If (id, comFlip, Pi) was
already stored, then ignore the command. Once, for an identifier id,
one such entry from every party exists. The functionality picks a ran-
dom value rid, stores (id, rid) in memory, and sends (com, id) to all
parties

– Open to all: If party Pi sends (openAll, id), store (openAll, id, i) in
memory. If one such entry from every party exists and if there exists
a corresponding entry (id, rid), then send (openAll, rid) to all parties.

– Open to one: If party Pi sends (openOne, id, j), store
(openOne, id, i, j) in memory. If one such entry from every party

43

exists and if there exists a corresponding entry (id, rid), then send
(openOne, rid) to Pj .

Figure C.2: FCOM

The functionality interacts with parties P1, . . . , Pn.

– Commit Phase: If party Pi sends (commit, id,m) to the ideal func-
tionality, it checks whether a tuple (id, ∗, ∗) was already stored in
memory. If yes, then the ideal functionality ignores the command.
Otherwise it stores (id, i,m) in memory and sends (receipt, id) to all
other parties.

– Open: If party Pi sends (open, id), the functionality checks, whether
there is a corresponding entry (id, i,m) stored in memory. If this is
the case, the functionality returns (open, id,m) to all other parties.

Figure C.3: FCHECK

The functionality interacts with parties P1, . . . , Pn.

– Input Phase: If party Pi sends (check, id,Ki,1, . . . ,Ki,k), it checks
whether a tuple (id, ∗, ∗) was already stored in memory. If yes, then
the ideal functionality ignores the command. Otherwise it stores
(id, i,Ki,1, . . . ,Ki,k) in memory and sends (receipt, id) to all other par-
ties.

– Output Phase: Once every party Pi provided input to the func-
tionality, it picks a uniformly random permutation γ over [k]. It uses
authenticated secret sharing to share

s =

 K1,γ(1), . . . ,Kn,γ(1)

...
K1,γ(k−1), . . . ,Kn,γ(k−1)

 , γ

into shares (s1, . . . , sn) and sends back share si to party Pi.

D Additional BMR Section

D.1 Preprocessing for BMR with Public Verifiability

Here we describe the preprocessing functionality, and our protocol for realising it
with passive security. The functionality, shown in Figure D.1, essentially follows
the standard description of BMR preprocessing with the free-XOR technique, as

44

used in previous works [8, 23]. For each wire w, party Pi obtains a random key
Ki
w, where the ‘zero key’ for that wire is defined to be (K1

w, . . . ,K
n
w). Each party

also has a fixed offset Ri to allow free-XOR, so that the ‘one key’ for each wire
is (K1

w ⊕ R1, . . . ,Kn
w ⊕ Rn). We also use the point-and-permute technique [7],

so that each wire is additionally associated with a mask λw ∈ {0, 1}, which is
XOR shared between the parties.

The functionality then outputs random shares of the garbled circuit generated
with those keys, where the corrupt parties can choose their own shares and keys
(and honest outputs are reverse-sampled accordingly).

Figure D.1: The Preprocessing Functionality Fbmr

Let H be a hash functions and com a commitment scheme.
C is a boolean circuit with set of wires W , Wout its set of output wires,
Win its set of input wires, of which W i

in are those for inputs from Pi, and G
its set of gates. Each gate is indexed by a unique identifier g, of which we
denote the subsets of XOR and AND gates by XOR and AND respectively.

1. Sample a global difference Ri ← {0, 1}λ, for each i ∈ [n]
2. For each wire w ∈ Win, sample the keys Ki

w ← {0, 1}λ, for i ∈ [n],
and the mask λw ← {0, 1}.

3. For each g ∈ G with input wires u, v and output wire w, in topological
order:
– If g ∈ XOR, let λw = λu ⊕ λv and Ki

w = Ki
u ⊕Ki

v, for i ∈ [n].
– If g ∈ AND:

(a) Sample Ki
w ← {0, 1}λ, for i ∈ [n], and λw ← {0, 1}.

(b) For a, b ∈ {0, 1}, let c = c(a, b) = (a ⊕ λu) · (b ⊕ λv) ⊕ λw.
Compute the four entries of the garbled gate as:

g̃a,b =

n⊕
i=1

H(g, i,Ki
u ⊕ aRi,Ki

v ⊕ bRi)⊕

(K1
w ⊕ cR1, . . . ,Kn

w ⊕ cRn)

4. Let GC be the concatenation of g̃a,b, for each g ∈ G and a, b ∈ (0, 1)2.
Sample random shares GCi such that GC =

⊕
i GCi.

Output: Send to each party Pi the GC share GCi, keys Ri and {Ki
w}w∈W ,

and the wire masks {λw}w∈W i
in∪Wout

.
Corrupt Parties: If any Pi is corrupt, instead letA choose all its outputs
above. Recompute GC and re-sample the honest parties’ shares to be
consistent with this.

Secret-sharing notation. Before describing our protocol, we introduce some
notation for additive secret sharing. We write

[xiRj]ij := ((xi, si), (Rj , sj))

45

to denote that parties Pi and Pj respectively hold xi ∈ {0, 1}, si ∈ {0, 1}λ and
Rj , sj ∈ {0, 1}λ, such that si ⊕ sj = xiRj . Given two such sharings [xiRj]ij
and [yiRj]ij , the parties can locally XOR their shares to obtain [ziRj]ij , where
zi = xi ⊕ yi.

We also sometimes use n-party secret sharing, where we simply write

[x] := (x1, . . . , xn)

to mean that each Pi holds xi, and x =
⊕

i x
i. We overload the ⊕ operator on

[·]-shared values to mean local XOR of shares.8

Given a set of two-party sharings [xiRj]ij , for every i 6= j, where Pj also
holds a share xj , the parties can locally convert this to a valid n-party sharing
of xRj , where x =

⊕
i x

i, as follows:

– Let Pi and Pj ’s shares of xiRj be si and tj,i, respectively.
– Pi, for i 6= j, outputs zi = si.
– Pj outputs zj = xjRj ⊕

⊕
i 6=j t

j,i.

We have
⊕n

i=1 z
i = xjRj ⊕

⊕
i 6=j(s

i ⊕ tj,i) = xRj , as required.

Basic functionalities. As building blocks, the BMR preprocessing protocol
uses a correlated oblivious transfer functionality Fcot (Figure D.2), which we use
to produce the [xiRj]ij sharings securely. We also use Fzero, and random zero-
sharing functionality, which can easily be instantiated non-interactively after
distributing PRF keys to the parties. Finally, we use a secret-shared multiplica-
tion functionality in F2, given by Fmult (Figure D.4). This can be instantiated
using pairwise oblivious transfer in a standard way, where the cost is n(n − 1)
random OTs and 2n(n− 1) bits of communication per multiplication.

Figure D.2: Functionality Fcot

The functionality operates between a sender, PS and a receiver, PR.

Initialize: Upon receiving (init,∆), where ∆ ∈ {0, 1}λ from PS and
(init) from PR, store ∆.

OT: Upon receiving (OT, x1, . . . , xm) from PR, where xi ∈ {0, 1}, and
(OT) from PS , do the following:
– Sample ti ∈ {0, 1}λ, for i ∈ [m]. If PR is corrupted then wait for
A to input ti.

– Compute qi = ti + xi ·∆, for i ∈ [m].
– If PS is corrupted then wait for A to input qi ∈ {0, 1}λ and

recompute ti = qi + xi ·∆.
– Output ti to PR and qi to PS , for i ∈ [m].

8 The parties can also perform addition by a constant, i.e. [x] ⊕ c, by having a fixed
party, say P1, add the constant c to its share of x.

46

Figure D.3: Functionality Fzero

On input ` ∈ N from each party, the functionality samples z1, . . . , zn−1 ∈
{0, 1}`, lets zn =

⊕n−1
i=1 z

i, and outputs zi to party Pi.

Figure D.4: Functionality Fmult

On input xi, yi ∈ {0, 1} from each party Pi, the functionality computes
x =

⊕
i xi, y =

⊕
yi, z = x ·y and samples random zi such that z =

⊕
zi.

Output zi to party Pi.

Optimized BMR preprocessing. We now describe our optimized passively
secure preprocessing protocol.

Our protocol uses correlated OT to allow parties to generate additive (XOR)
shares of the garbled circuit. This functionality receives as input a string Rj ∈
{0, 1}λ from one party Pj , a bit xi ∈ {0, 1} from another party Pi, and outputs
the random two-party XOR sharing of xiRj , denoted [xiRj]ij . This can be seen
as an OT on the sender’s messages (q, q ⊕ Rj), where q is the share output to
Pj . Note that the string Rj is the same for every invocation of Fcot, and will
correspond to Pj ’s offset for the free-XOR technique.

Previous passively secure protocols [8, 12] used 4n(n − 1) OTs per AND
gate, whereas we show how to reduce this to 3n(n−1). We first briefly recap the
protocol of [8]. At each AND gate with input wires u, v and output wire w, the
parties have random shared wire masks λu, λv, λw ∈ {0, 1}, and need to obtain
shares of the values

((λu ⊕ a) · (λv ⊕ b)⊕ λw) ·Rj

for each (a, b) ∈ (0, 1)2 and j ∈ [n], where Rj is the secret free-XOR offset known
to Pj .

[8] observed that given n-party shares of λuR
j , λvR

j and (λuv⊕λw)Rj , where
λuv := λuλv, all 4n shares above can be computed locally. This requires 4 sets
of OTs between every pair of parties, first to obtain shares of λuv, and then the
3 products with Rj .

We take a different approach, where instead of garbling each AND gate sepa-
rately, we start at the input wires. We will first ensure that for each wire w that
is either an input wire, or the output wire of an AND gate, the parties get the
sharings [λwR

j]; this costs n(n − 1) · (|Win| + |AND|) calls to Fcot (on random
inputs). By passing these sharings through all XOR gates and adding them ac-
cordingly, the parties can now locally obtain sharings of λuR

j , λvR
j , λwR

j for
each AND gate with wires u, v, w.

Next, the parties need two more sets of n(n− 1) OTs for each gate: first, to
multiply the sharings of λu with λv, to obtain [λuv], the parties call Fmult, which
costs n(n− 1) random OTs and 2n(n− 1) bits of communication. Secondly, we

47

need a further n(n − 1) calls to Fcot (on chosen inputs) to multiply these with
each Rj , allowing the correct shares to be computed.

In all, this gives a cost of 3n(n−1) OTs and 3n(n−1) bits of interaction per
AND gate, plus n(n − 1) OTs for each input wire, where we have counted the
number random OTs, and add an extra bit of communication in case this needs
to be converted to a chosen-input OT.

Figure D.5: Protocol Πbmr

Let H be a hash function.
C is a boolean circuit with set of wires W , Wout its set of output wires,
Win its set of input wires, of which W i

in are those for inputs from Pi, and
G its set of gates, of which we denote the subsets of XOR and AND gates
by XOR and AND respectively. Each gate is indexed by a unique identifier
g.

1. Each party Pi samples a global difference Ri ← {0, 1}λ. For each (i, j)
with i 6= j, Pi and Pj call Fcot, where Pi inputs (init, Ri).

2. For each input wire w ∈Win, and each wire w that is an output of an
AND gate:
(a) Each party Pi samples a wire mask share λiw ← {0, 1} and a key

Ki
w ← {0, 1}λ.

(b) For each i ∈ [n], j 6= i, Pi and Pj call Fcot, where Pi inputs λiw,
to obtain the sharing [λiwR

j]ij .
3. For each gate g ∈ XOR with input wires {u, v} and output wire w:

(a) Each party Pi computes Ki
w = Ki

u ⊕Ki
v.

(b) All parties compute the shares [λw] = [λu] ⊕ [λv], and each pair
(Pi, Pj) computes

[λiwR
j]ij = [λiuR

j]ij ⊕ [λivR
j]ij

4. For each gate g ∈ AND with input wires {u, v} and output wire w:
(a) The parties call Fmult with input [λu], and [λv] to obtain shares

[λuv] := [λu · λv].
(b) Each pair (Pi, Pj) calls Fcot, where Pi inputs λiuv, to obtain a

sharing [λiuvR
j]ij .

(c) The parties locally convert their pairwise sharings to n-party shar-
ings [λuv ·Rj], and do the same for λu, λv, λw, obtaining [λu ·Rj],
[λv ·Rj] and [λw ·Rj].

(d) Using these sharings, the parties compute the sharings:

[Zg,j,a,b] := [((λu ⊕ a) · (λv ⊕ b)⊕ λw)·Rj] for j ∈ [n], (a, b) ∈ (0, 1)2

(e) Denote by Zig,j,a,b party Pi’s share of the above. Pi computes

g̃ia,b =H(i, g,Ki
u ⊕ aRi,Ki

v ⊕ bRi)⊕
(Zig,1,a,b, . . . , Z

i
g,n,a,b)⊕

(0, . . . ,Ki
w, . . . , 0), for a, b ∈ {0, 1}2

48

(f) The parties call Fzero on input ` = 4nλ|AND|, so each Pi obtains

Zi ∈ {0, 1}`. Let G̃C
i

be the concatenation of all g̃ia,b, for a, b ∈
{0, 1}2 and g ∈ AND.

(g) Pi defines GCi = G̃C
i
⊕ Zi.

5. For each w ∈ Wout, each party Pi broadcasts λiw, and the parties
reconstruct λw =

⊕
i λ

i
w.

6. For each w ∈W j
in, for j ∈ [n], each Pi sends λiw to Pj . Pj reconstructs

λw =
⊕

i λ
i
w.

7. Party Pi outputs the garbled circuit share GCi, the keys Ri and
{Ki

w}w∈W , and the input/output wire masks {λw}w∈W i
in∪Wout

.

Lemma 19. The protocol Πbmr securely realizes functionality Fbmr with passive
security, in the (Fcot,Fzero,Fmult)-hybrid model.

Proof. (sketch.) Note that the parties only ever interact with the ideal function-
alities Fcot,Fzero,Fmult, until the very last step when they reconstruct the wire
masks λw. Security therefore follows from the correctness of the computations,
which can be seen by inspection, or following the same analysis from previous
works such as [8].

D.2 Preprocessing for BMR with Identifiable Abort

To achieve identifiable abort, we modify the preprocessing functionality as dis-
cussed in Section 6, by having each party be committed to its shares of the
garbled circuit and wire keys. For this, we use a unanimously identifiable com-
mitment scheme, from [26], given by the following two algorithms.

UIC.com(x, n): On input x ∈ F and n ∈ N:

– Sample a random, degree-(n+1) polynomial p(X) over F such that P (0) = x.
– For each i ∈ [n], sample random xi ∈ F and let yi = P (xi).
– Output ci := (xi, yi) to party Pi, and p(X) to the committer.

UIC.dec(ci = (xi, yi), p(X)): If P (xi) 6= yi, reject. Otherwise, output the message
x = P (0).

The above scheme assumes the messages lie in the finite field F. In our pro-
tocol, we instead use a collision-resistant hash function, so we can support large
messages whilst still having compact commitments. This means the scheme is
no longer information-theoretically binding, but still satisfies the properties we
need.

As long as F is large enough, the scheme UIC is binding, and also guaran-
tees agreement among all n receivers, i.e. if one receiver does not accept the
decomittment then all other receivers will do the same. We note that UIC also
satisfies the following equivocation property. Given an arbitrary set of commit-
ments {(xi, yi)}I⊂[n], and a target message (or message hash) m, we can find

49

a valid decommitment polynomial p(X) such that UIC.dec((xi, yi), p(X)) = m.
This is true because we are given up to n+ 1 points, so can easily sample a ran-
dom degree-n+ 1 polynomial with these evaluations. We finally note that given
the decomitment and the message, it is possible to sample a valid commitment,
which follows from the description of UIC.com.

The BMR preprocessing functionality is then modified to output UIC com-
mitments, with the extra step shown in Figure D.6. Notice that the functionality
allows corrupt parties to choose their own outputs, and then reverse-samples the
honest parties’ outputs accordingly, from the conditional distribution. This is
possible thanks to the equivocability of the information-theoretic UIC scheme,
and ensures that the functionality fits the requirements of our covert compiler.

Figure D.6: Additional Step for Functionality Fbmr-com

After generating the garbled circuit shares GCi as described in Fbmr, run
the following additional step:

– For i ∈ [n] and w ∈ Win, generate commitments and opening infor-
mation

(Di
GC, {C

j,i
GC}j 6=i) = UIC.com(GCi, n− 1)

(Di
w,0, {C

j,i
w,0}j 6=i) = UIC.com(Ki

w, n− 1)

(Di
w,1, {C

j,i
w,1}j 6=i) = UIC.com(Ki

w ⊕Ri, n− 1)

As well as the previous outputs, send to Pi its de-
commitments Di

GC, {Di
w,0, D

i
w,1}w∈Win , and commitments

{Ci,jGC, C
i,j
w,0, C

i,j
w,1}i∈[n],j 6=i,w∈Win

.
Corrupt Parties: For corrupt Pi, as well as allowing A to choose Pi’s
private randomness (as in the previous Fbmr functionality), A may also
choose the decommitments and commitments Di, Ci,j given to Pi. Given
Di, Ci,j from Pi (for each corrupted Pi), reverse-sample the honest parties
outputs consistently as follows: (a) Use Di to generate the correspond-
ing honest parties’ commitments (just following the steps of UIC.com);
(b) Use the the equivocation algorithm for UIC in order to generate a
decommitment for the honest Pj corresponding to Ci,j .

Preprocessing Protocol. In our protocols, we cannot have UIC.com be run
by a single party, since otherwise they would be able to forge openings. Instead,
we use the functionality FF,n

UIC , which receives as input a message x from party
Pj , and outputs commitments to all other parties, and the decommitment to Pj .

In practice, FF,n
UIC can be realised with a passively secure protocol for oblivious

polynomial evaluation, run between Pj and every other party. For instance, we
can use a simple protocol based on additively homomorphic encryption, where
Pj encrypts each coefficient of P (X) and sends this to all other parties, who
homomorphically evaluate P (x) on a random point.

50

Given this, it is straightforward to modify the Πbmr protocol to also output
the UIC commitments, realizing Fbmr-com. Each party simply calls FF,n

UIC on in-

put its share GCi, and keys Ki
w,0,K

i
w,1, so that all parties obtain the correct

commitments.

Figure D.7: Functionality FF,n
UIC

The functionality operates with parties P1, . . . , Pn, and works over a finite
field F, and also uses a collision-resistant hash function Hcr : {0, 1}∗ → F.
On input (com, j, x) from party Pj , where x ∈ F, and (com, i) from all
other parties:

1. Sample a random, degree-n polynomial p(X) over F such that P (0) =
Hcr(x).

2. For each i ∈ [n] \ {j}, sample a random xi ∈ F and let yi = P (xi).
3. Output ci := (xi, yi) to party Pi, for i 6= j, and p(X) to Pj .

D.3 Online Phase for BMR

Figure D.8: Protocol: Πon

Let H be a 2-circular correlation robust hash function. C is a boolean
circuit with set of wires W , Wout its set of output wires, Win its set of
input wires, of which W i

in are those for inputs from Pi, and G its set of
gates. Each gate is indexed by a unique identifier g, of which we denote
the subsets of XOR and AND gates by XOR and AND respectively.
The parties execute the following commands in sequence:

Reconstruct Garbled Circuit:

1. Call FDcorr so that each party Pi receives the share GCi, UIC commit-
ments {Ci,jGC}j 6=[n], {Ci,jw,0, C

i,j
w,1}j 6=[n],w∈Win

, input/output wire masks
{λw}, as well as their wire keys and decommitments.

2. For each input wire w ∈ W i
in, party Pi computes and broadcasts

Λw = xiw ⊕ λw, where xiw is Pi’s input for that wire.
3. For each w ∈ Win, each party Pi then broadcasts the key Ki

w,Λw

associated to Λw, as well as its corresponding decommitment. Every
other Pj verifies this is consistent with the commitment Cj,iw,Λw

.

4. Each party Pi broadcasts GCi and its randomness for the commit-
ment. The parties reconstruct GC =

⊕
GCi.

5. If any opening of a commitment from some Pi above fails, the parties
output (abort, Pi).

Evaluate Garbled Circuit: For each gate g ∈ G, with input wires u, v
and output wire w, in topological order:

1. If g ∈ AND, compute:

51

(K1
w,Λw

, · · · ,Kn
w,Λw

) = g̃Λu,Λv
⊕

n⊕
i=1

(
H(g, i,Ki

u,Λu
,Ki

v,Λv
)
)

and let Λw be the bit such that Ki
w,Λw

= Ki
w ⊕ (Λw · Ri) (for party

Pi, who received Ri,Ki
w in the preprocessing).

2. If g ∈ XOR, compute Λw = Λu ⊕ Λv and Ki
w,Λw

= Ki
u,Λu

⊕Ki
v,Λv

for
i ∈ [n].

In Figure D.8 we present our online phase that use for BMR with identifiable
abort. Note that for the case of public verifiability (without identifiability), we
can just use the same online phase as previous works [8, 23]. The identifiable
protocol, shown in Figure D.8, simply follows the standard online phase of passive
BMR, with the difference that whenever a party broadcasts input wire keys, or
a share of the garbled circuit, it also opens its commitment to ensure this is done
correctly. This leads to an online phase that is actively secure with identifiable
abort, when the preprocessing is realized by an ideal functionality.

Lemma 20. Let H be a 2-circular correlation robust hash function, and suppose
UIC is a secure unanimously identifiable commitment scheme. Then, protocol Πon

securely realizes Fon with active security and identifiable abort in the FDcorr-hybrid
model.

Proof. (sketch) The simulation is identical to the proof of the online phase
from [23], with the only difference that in our case, the parties are also com-
mitted to their shares and keys, so if any corrupt Pi sends an invalid opening,
the simulator can simply send (abort, i) to the ideal functionality. When simu-
lating the honest parties’ garbled circuit shares, we can use the equivocability of
the commitment scheme so that this can be done in a way consistent with the
actual output of the circuit. Because of the security of UIC, we are guaranteed
that in case of abort, all honest parties will unanimously agree upon the same
cheating party, i.e., all the honest parties can detect invalid decommitments
unanimously.

D.4 Combining the Online Phase with Covertly Secure
Preprocessing

Lemma 21. Suppose Πon securely realizes Fon with active security and identifi-
able abort in the FDcorr-hybrid model, and that [Πcorr]

cov securely realizes FDcorr with
covert security and identifiable abort. Then, the combined protocol (Πon, [Πcorr]

cov)
securely realizes Fon with covert security and identifiable abort.

Proof. In order to prove the above statement we would like to exhibit a simulator
S that produces a trasnscript in the ideal world (acting as the adversary) that
is indistinguishable from the one produced form the real world execution of
(Πon, [Πcorr]

cov).

52

We first observe that from the covert security (resp., active security) with
identifiable abort implies that there exists a simulator [Scorr]

cov for [Πcorr]
cov (resp.

Son for Πon).
We will now briefly describing Scorr which interacts with adversary A. Scorr

runs [Scorr]
cov during the execution of [Πcorr]

cov in order to interact with A,
simulating for him the functionality FDcorr. Indeed, Scorr acts as a proxy for the
messages exchanged between Scorr in particular:

1. If [Scorr]
cov sends the message (corrupted, i) to Scorr (simulating FDcorr) the

simulator Scorr forwards it to Fon.
2. If [Scorr]

cov sends the message (cheat, i) to Scorr (simulating FDcorr) the simu-
lator Scorr forwards it to Fon.

(a) If Scorr receives back undetected and the inputs of the honest parties
−→
I

from Fon our simulator behaves as follow: 1) she sends undetected to

[Scorr]
cov receiving the correlated randomesses

−→
R of the honest parties;

2) Scorr engages an execution of Πon with A acting as the honest parties

using
−→
I and

−→
R . In the end of the execution Scorr gets some output for

the honest parties that is forwarded to Fon.
(b) If Scorr receives back detected form Fon our simulator forwards it to

[Scorr]
cov.

3. If Scorr sends the inputs of the malicious party [Scorr]
cov stores them for the

online phase.

If no cheating happened Scorr runs Son during the execution of Πon with A.
Similarly to before when Son invokes Fon our simulator Scorr acts as a proxy
between her and Fon, in particular:

– If Son sends the inputs of the adversaries, Scorr forwards to Πon the output
of the adversary received by Fon.

– If Son sends (abort, i), Scorr forwards (corrupted, i) to Fon.

Observe that if cheating was detected in the preprocessing, then the simu-
lated view is indistinguishable from a real one by assumption on the security of
[Πcorr]

cov. If no cheating happened, then the actively secure and covertly secure
versions of Fon have identical input/output behaviours and thus the simulated
views are also indistinguishable by assumption.

Lemma 22. Suppose Πon securely realizes Fon with active security (and abort)
in the FDcorr-hybrid model, and that [Πcorr]

cov securely realizes FDcorr with covert
security and public verifiability. Then, the combined protocol (Πon, [Πcorr]

cov) se-
curely realizes Fon with covert security and public verifiability.

Proof. The proof of covert security follows similarly to the one for lemma 21 (the
only difference is that the simulator obtains/forwards abort to the functionality
Fon). Regarding the public verifiability, we observe that Πon is active secure,
which implies that the adversary A could only cause an abort in this part of the
protocol. Therefore, the public verifiability of (Πon, [Πcorr]

cov) is implied by the
public verifiability of [Πcorr]

cov.

53

E Further Details on Efficiency Analysis

In Table 2, we present further concrete numbers comparing the costs of differ-
ent passive, covert and active protocols (without identifiable abort), and with
varying choices of the covert replication factor k (which gives deterrence 1−1/k).

F Proof of Theorem 1

Proof. We first prove thatΠ idc has passive security with consistent identifiability.
It is straightforward that Π idc securely computes FDcorr with passive security, from
the simple fact that Π does, and the only additional messages sent in a passive
execution are digital signatures on known messages. These are easily simulated,
since the simulator can choose secret signing keys on behalf of the honest parties.

We now consider the identifiability property (Definition 4). We need to show
that whenever an honest party outputs aborti, all honest parties unanimously
output aborti for the same index i ∈ A. Note that if some honest party aborts, the
parties always output the same index i, since the criteria for aborting in step 2a
is based on public verification of a signature which was broadcast by some party
Pi. Furthermore, by the correctness of the signature scheme, Pi must always be
corrupt, since if Pi were honest then the signature would verify.

For the identifiable cheating property, we consider an adversary A who suc-
ceeds in experiment Expidc

A,Π(λ) with some noticeable probability. If A wins ac-
cording to condition 7a in the experiment, then the execution of Π was dishonest,
yet no party was identified by the Identify procedure. By Definition 5, there must
exist an honest party Pj , corrupt party Pi and round ρ where Pi’s message mρ

i,j

was generated incorrectly, that is, mρ
i,j 6= m̃ρ

i,j . Furthermore, if Identify outputs ⊥
then the honest Pj ’s Certify algorithm did not produce a certificate. This means
we must have H(mρ

i,j) = H(m̃ρ
i,j), therefore A has found a collision in H.

On the other hand, if A wins according to condition 7b, we argue that Amust
have forged a signature under some honest party’s secret key. Let i′ be the index
of the honest party who was identified, and certi the certificate with the smallest
ρi which shows that Pi′ cheated. Since we choose the smallest ρi, it holds that
in all previous rounds every message received by Pi′ was generated correctly.
Therefore, the round ρi messages from Pi′ were also generated correctly, and
would contain signatures on (ρi‖Pi′‖Pi‖H(m̃ρi

i′,i)). To identify Pi′ as a cheater
requires a signature on a different hash value with the same prefix, but since the
round numbers are unique, this can only be done by forging a new signature.
Therefore, A breaks the EUF-CMA security of the signature scheme.

G Proof of Theorem 3

Proof. We first prove that Πw-idc has passive security with consistent identifi-
ability. It is straightforward that Πw-idc securely computes FDcorr with passive
security, from the simple fact that Π does, and the only additional messages
sent in a passive execution are digital signatures on known messages. These are

54

easily simulated, since the simulator can choose secret signing keys on behalf of
the honest parties.

We now argue that Πw-idc supports publicly verifiable cheating from random
tapes (in the rest of the proof, we will use the sentence ”valid certificate” to
indicate a certificate accepted by Sentence):

Defamation-freeness. Suppose by contradiction that theA succeeds with non-
negligible probability in step 8b of Exppvc

A,Π(λ, x). Wlog let us assume the A is
able to produce a valid certificate cert∗ = (σAgg, σ

∗, h∗, i∗, j, ρ∗) that accuses
honest party Pi∗ . If Sentence in step 5 outputs vki∗ , then the adversary managed
to output a valid signature σ∗ w.r.t. vki∗ of an hash that does not correspond to

the honest message m̃ρ∗

i∗,j . In this case since Pi∗ is honest we can give a reduction
to the unforgeability of the signature scheme. Note that we are guaranteed that

the message m̃ρ∗

i∗,j (computed by Sentence) is the same as the message sent
by the honest Pi∗ during the protocol, because of the valid signature on the
previous message hashesM, and the unforgeability of the signature scheme and
the collision resistance of H.

Public verifiability. Suppose by contradiction that the A succeeds with non-
negligible probability in step 8a of Exppvc

A,Π(λ, x). This implies that wlog a cor-

rupted Pi∗ in some round ρ∗ sent for the first time a message mρ∗

i∗,j to an honest
Pj that is inconsistent w.r.t. his random tapes and NMF. We note that A suc-
ceeds in Exp

pvc
A,Π(λ, x) only when the execution of Π did not abort. Therefore in

round ρ∗ Pj has collected (1) {mρ
j,i, σ

ρ
j,i}j 6=i,ρ∈[ρ′] where ρ′ < ρ∗; (2) a signature

from Pi∗ on mρ∗

i∗,j . Looking at the Accuse algorithm we can conclude that (1)
and (2) are sufficient to produce a valid certificate against Pi∗ .

H Proof of Theorem 4

Proof. Let Scorr be the simulator for Πcorr. Let A be the adversary who corrupts
a subset A ⊂ {P1, . . . , Pn} of parties, where |A| ≤ n − 1. Let P be the set of
honest parties, i.e. P = {P1, . . . , Pn} \ A.

We are now ready to describe our simulator S:

1. Generate signature key pair (pki, ski) for each party Pi ∈ P and send pki to
A. For each Pi ∈ A, the adversary outputs a public key pki.

2. For each i ∈ [n] for each Pj ∈ A, the adversary outputs (comFlip, (i, 1)),
. . . , (comFlip, (i, k)). For each i ∈ [n], the simulator picks uniformly random
values ri,1, . . . , ri,k and sends back (com, (i, 1)), . . . , (com, (i, k)) to A.

3. For each i ∈ [n] for each Pj ∈ A, the adversary sends (openOne, (i, 1), i),
. . . , (openOne, (i, k), i).

4. For each Pi ∈ A, the simulator sends (openOne, ri,1), . . . , (openOne, ri,k) to
A.

5. All parties jointly execute Πcorr in parallel k times, where party Pi uses
random tape ri,j in the j-th execution of the protocol where S acts on behalf

55

of parties Pi ∈ P and A acts on behalf of parties Pi ∈ A. Let Ri,j be the
output of party Pi in execution j.

6. For each Pj ∈ A, the adversary outputs (coinFlip, 0).
7. The simulator S checks whether the adversary misbehaved in Step 5. Let X

be the set of executions of Πcorr where A cheated.
(a) If |X| ≥ 2, then the simulator picks a uniformly random j∗ ∈ [k] and

sets flag = blatant cheat.
(b) If |X| = 1, then let ĵ be the execution of Πcorr in which A cheated. Let

î be the smallest index in the set of parties that cheated in execution ĵ.
The simulator sends (cheat, î) to the ideal functionality FDcorr.

i. If FDcorr sends (corrupted, î), the simulator picks a uniformly random

value j∗ ∈ [k] s.t. j∗ 6= ĵ and sets flag = detected.

ii. If FDcorr sends (undetected) the simulator sets j∗ = ĵ and flag =
undetected.

(c) If |X| = 0, then set flag = allgood. The simulator picks uniformly random
value j∗.

8. S sends (coinFlip, 0, j∗) to A.
9. For j ∈ [k]\{j∗} for each i ∈ [n] S sends (openAll, ri,j) toA and the adversary

sends (openAll, i, j) to S.
10. For j ∈ [k] \ {j∗} for each party Pi ∈ P, the simulator computes certi,j ←

Certify(vk1, . . . , vkn, rj , viewi,j), where viewi,j is Pi’s view in the j-th execu-
tion of Πcorr and sends certi,j to A.

11. A sends cert∗i,j for j ∈ [k] \ {j∗} for each party Pi ∈ A.
12. Depending on the flag do:

(a) If flag = blatant cheat or flag = detected, then the simulator broadcasts

(corrupted, î) to A and the ideal functionality. The simulator outputs
whatever A outputs and terminates.

(b) flag = undetected, then for each party Pi ∈ P, the simulator S sends
R(i,̂j) as the output of Pi to the ideal functionality. The simulator outputs
whatever A outputs and terminates.

(c) if flag = allgood S uses {ri,j∗}Pi∈A to extract adversary’s input RA =
{Ri}Pi∈A from the j∗-th execution of Πcorr

9 sends RA to FDcorr. S rewinds
A back to Step 4, running part B, until it terminates. The simulator
outputs whatever A outputs and terminates.

We remark here, to not overburden the description of our simulator S, that
in case A stops responding while executing a functionalities (internally emulated
by the simulator), the functionalities should send to the honest parties abortj ,
where j is the index of the parties that stops responding. In this case, instead,
S sends (corrupted, j) to FDcorr.

We will now proceeds through a series oh hybrid experiments in oder to
prove that the joint distribution of the view of A and the output of the hon-
est parties in the ideal execution is computationally indistinguishable from the

9 Note that since it holds that flag = allgood, then Πcorr was executed honestly by A,
therefore RA are taken from the distribution of valid inputs, i.e. inputs for which is
possible for FD

corr to reverse sample the correlated randomness for the honest parties.

56

joint distribution of the view of A and the output of honest parties in a real
protocol execution. The hybrid experiments are listed below. The output of the
experiments is defined as the view of A and the output of the honest parties.

– Exp0 : In this game, the simulator S0 acts as the simulator S described above,
moreover S0 has access to the internal state of FDcorr, therefore S0 chooses
the output values of the honest parties. Note that towards the honest parties
S0 is acting as FDcorr does without any modifications therefore the output of
Exp0 and the output of ideal world experiment are identically distributed.

– In Exp1 : The experiment Exp0 is modified in the following way: the simulator
S1 choses at random an index j̄ ∈ [k] at the beginning of the Exp1, then in
Step 12 S1 acts as follows:
1. If |X| ≥ 2, then the simulator picks a uniformly random j∗ ∈ [k] and

sets flag = blatant cheat.
2. If |X| = 1, if j̄ ∈ X sets flag = undetected and j∗ = j̄; otherwise sets

flag = detected and picks a uniformly random value j∗ ∈ [k] s.t. j∗ 6= ĵ,

where ĵ is the execution of Πcorr in which A cheated.
3. If |X| = 0, then set flag = allgood. The simulator sets j∗ = j̄.

The output of the experiments Exp1 and Exp0 are identically distribute since
when |X| = 1 with probability ε it happens that j̄ /∈ X.

– In Exp2 : The experiment Exp1 is modified in the following way. The simulator
S2, in case of flag = allgood outputs as the output of the honest parties the
output of j∗-th execution of Πcorr, instead of relying on the output of FDcorr

(which is internally emulated by the simulator after Exp0).
The output of the experiments Exp1 and Exp2 are computationally indistin-
guishable due to the semi-honest security of Πcorr.

– Exp3: We modify the experiment by letting S3 in step 12a behave identi-
cally to step 8 in the real protocol. The simulator S3, acting as the honest
parties, receives certificates (cert(1,j), . . . , cert(n,j)) for each execution j 6= j∗

and computes vj ← Ver(vk1, . . . , vkn, rj , cert(1,j), . . . , cert(n,j)). Let J be the
set of indices with vj 6= ⊥. If J 6= ∅, then S3 acting as Pi ∈ P broadcasts
(corrupted, vj) with the smallest j from J . Note that Exp2′ and Exp3 only
differ when A misbehaves in one or more executions, which are also opened,
and manages to produce partial certificates that do not lead to a corrupted
party being accused by Identify. The indistinguishability of the two experi-
ments thus reduces to the IDC security property of Πcorr.

The proof ends observing that in Exp3 the simulator S3 does not need any-
more to have access to the internal state of the functionalities (i.e. there is no
needing to simulate the functionalities w.r.t. the adversary) therefore Exp3 and
the real world experiment are identically distributed.

I Proof of Theorem 5

Proof. We will now arguing separately that [Πcorr]
pvcov enjoys public verifiability,

covert security with ε-deterrence factor and defamation-freeness.
We start by showing that [Πcorr]

pvcov enjoys covert security with ε-deterrence
factor.

57

Covert security. The simulator. Let Scorr, Sflip, Scheck be the simulator re-
spectively for Πcorr, Πflip, Πcheck. Let A be the adversary who corrupts a subset
A ⊂ {P1, . . . , Pn} of parties, where |A| ≤ n−1. Let P be the set of honest parties,
i.e. P = {P1, . . . , Pn} \ A. Our simulator S works as follows:

Simulation part A:

1. Generate signature key pair (pki, ski) for each party Pi ∈ P and send pki to
A. For each Pi ∈ A, the adversary outputs a public key pki.

2. S activates Sflip and acts as a proxy between A and Sflip in the execution
of Πflip. Moreover S simulates FFLIP to Sflip sending for Pi ∈ A (in case Sflip

does not abort the computation)(
comi,1, . . . , comi,k

)
and

(
deci,1, . . . , deci,k

)
,

In the end of this phase A for Pi ∈ A obtains:

Crnd =

com1,1, . . . , com1,k

...
comn,1, . . . , comn,k

The simulator S runs Sflip with the command openAll in order to get the
decommitments for the honest parties’ random tapes {ri,j}Pi∈P,j∈[k], which
are chosen uniformly at random.

3. All parties jointly execute Πcorr in parallel k times, where party Pi uses
random tape ri,j w.r.t .comi,j in in the j-th execution of the protocol where
S acts on behalf of parties Pi ∈ P and A acts on behalf of parties Pi ∈ A.
Let Ri,j be the output of party Pi in execution j. Let viewi,j be the view of
Pi in the j-th execution of Πcorr. After the executions, for j ∈ [k], on behalf
of each Pi ∈ P, S runs certi,j ← GatherEvidence(viewi,j).

4. For each party Pi ∈ P, S picks a uniformly random encryption keysKi,1, . . . ,Ki,k

and broadcasts encryptions ci,j ← sEncki,j (deci,j , certi,j) for j ∈ [k]. For each
party Pi ∈ A for j ∈ [k], S receives ci,j from A. Let CT be the set of all
n× k ciphertexts.

5. The simulator picks uniformly random permutation γ.
6. S activates Scheck and acts as a proxy between A and Scheck in the execution

of Πcheck. S obtains (Ki,1, . . . ,Ki,k) for i ∈ A from Scheck. Moreover (in case
Scheck does not abort the computation) S simulates Fcheck to Scheck sending
si for Pi ∈ A, which is the i-th share of

s =

 K1,γ(1), . . . ,Kn,γ(1)

...
K1,γ(k−1), . . . ,Kn,γ(k−1)

 , γ

7. For each party Pi ∈ P, S computes decshare

i and comshare
i by using Πcom to

commit to si and broadcasts comshare
i . For each party Pi ∈ A, S receives

comshare
i from A. Let Cshare = (comshare

1 , . . . , comshare
n).

58

8. For each party Pi ∈ P, S generates a puzzle puzi ← pGen
(
t, decshare

i

)
, where

t = 5, commits to puzi using Πcom obtaining compuz
i , decpuz

i , and broadcasts
compuz

i . For each party Pi ∈ A, S receives puzi from A. Let −→puz be the vector
of all puzzles puz1, . . . , puzn.

9. If in one of the previous steps A stops responding S sends abort to FDcorr.
10. After receiving compuz

j for all j 6= i, each Pi broadcasts decpuz
i . Each party

checks whether all the puzzle commitments it receives are valid decommit-
ments and aborts if this is not the case.

11. For each party Pi ∈ P, S computes signature σi ← Sigski

(
Crnd, Cshare, CT,−→puz

)
and broadcasts it to every other party. If S obtains an invalid signature or
no signature at all (in this round) from A, then S sends abort to FDcorr.

12. For each party Pi ∈ P, S broadcasts decshare
i . For each party Pi ∈ A, S

receives decshare
i from A. Let J ⊂ [n] be the set indices belonging to parties

that did not broadcast this message. If J 6= ∅, the each party Pi solves all
puzzles puzj with j ∈ J and if one or more puzzles are not solvable in time
t, then S does the following :
– Send (corrupted, j∗) to FDcorr, where j∗ is the smallest index belonging to

a not solvable puzzle;
– Compute the corresponding certificate as an honest party would do (note

that all the information are available from the previous simulation steps)
and send it to A;

– Terminate giving in output the output of the adversary.
If all relevant puzzles are solvable, then replace missing decommitments with
the ones from the solved puzzles.

13. Let S be the set of invalid decommitments. Solve corresponding puzzles to
see whether they contain the valid decommitment. If yes, then continue as
below using the valid decommitment, otherwise S does the following:
– Send (corrupted, j∗) to FDcorr, where j∗ is the smallest index belonging to

a not valid decommitment;
– Compute the corresponding certificate as an honest party would do (note

that all the information are available from the previous simulation steps)
and send it to A;

– Terminate giving in output the output of the adversary.
14. If any of the decommitted shares is invalid, then S sends abort to FDcorr.
15. Each party uses the shares to reconstruct K1,γ(j), . . . ,Kn,γ(j) for j ∈ [k− 1].
16. S checks whether any of the decryptions fail and if it does then we set the

corresponding plaintext to be ⊥.
17. S checks whether the reconstructed random tapes and decommitments for

each execution j ∈ [k − 1] match the corresponding commitments in matrix
Crnd. If not the simulator does the following:
– Send (corrupted, i∗) to FDcorr, where j∗ is the smallest execution index

with a mismatch and i∗ is the smallest index of a party within that
execution that produces a mismatch.

– Compute the corresponding certificate as an honest party would do (note
that all the information are available from the previous simulation steps)
and send it to A;

59

– Terminate giving in output the output of the adversary.
18. The simulator S checks whether the adversary misbehaved in Step 3. Let X

be the set of executions of Πcorr where A cheated.
(a) If |X| ≥ 2, then a blatant cheat and the simulator already detected this

event in previous step.
(b) If |X| = 1, then let ĵ be the execution of Πcorr in which A cheated. Let î

be the smallest index in the set of parties that cheated in execution j∗.
The simulator sends (cheat, î) to the ideal functionality FDcorr.

i. If FDcorr sends (corrupted, î) sets flag = detected.
ii. If FDcorr sends (undetected) the simulator flag = undetected.

(c) If |X| = 0, then set flag = allgood.
19. Depending on the flag do:

(a) If flag = detected then the simulator broadcasts (corrupted, î) to A and
the ideal functionality.
If γ(k) 6= ĵ:
– S computes the corresponding certificate as an honest party would

do (note that all the information are available from the previous
simulation steps) and send it to A; S outputs whatever A outputs
and terminates.

Otherwise:
– S rewinds A back to step 5 (computing all the other steps as before).
S keeps on rewinding (following the above strategy) until the sim-
ulation reaches step 18, at that point S omputes the corresponding
certificate as an honest party would do (note that all the information
are available from the previous simulation steps) and send it to A;
S outputs whatever A outputs and terminates.

(b) if flag = undetected then for each party Pi ∈ P, the simulator S sends
R(i,̂j) as the output of Pi to the ideal functionality.

If γ(k) = ĵ then S outputs whatever A outputs and terminate, oth-
erwise: S rewinds A back to step 5 (computing all the other steps as
before). S keeps on rewinding (following the above strategy) until the
simulation reaches step 18, at that point S outputs whatever A outputs
and terminate.

(c) if flag = allgood S rewinds A back to Step 3, running part B, until it
terminates10.

Simulator part B:

1. The simulator picks uniformly random value j∗.
2. For every i ∈ P, for execution j∗, the simulator sets comi,j∗ , deci,j∗ s.t. the

message committed in comi,j∗ is 0. The remaining random tapes remain
uniformly random as before in part A. S activates Sflip and acts as a proxy
between A and Sflip in the execution of Πflip. Moreover S simulates FFLIP to
Sflip sending for Pi ∈ A (in case Sflip does not abort the computation).

10 Our simulation can be made to run in expected polynomial time via Goldreich and
Kahan [21].

60

(
comi,1, . . . , comi,k

)
and

(
deci,1, . . . , deci,k

)
,

In the end of this phase A for Pi ∈ A obtains:

Crnd =

com1,1, . . . , com1,k

...
comn,1, . . . , comn,k

3. All parties jointly execute Πcorr in parallel k times:

In all executions the simulator S honestly acts on behalf of the parties in
P as before. After the executions, for j ∈ {1, . . . , k}/{j∗}, on behalf of each
Pi ∈ P, S runs certi,j ← GatherEvidence(viewi,j). In execution j∗ of Πcorr the
simulator will use a fresh random tape and not the one committed in Crnd.

4. For each party Pi ∈ P, S picks a uniformly random encryption keysKi,1, . . . ,Ki,k.
S broadcasts encryptions ci,j ← sEncki,j (deci,j , certi,j) for j ∈ {1, . . . , k}/{j∗}
and S broadcasts encryptions ci,j∗ ← sEncki,j∗ (0l). For each party Pi ∈ A
for j ∈ [k], S receives ci,j from A. Let CT be the set of all n×k ciphertexts.

5. The simulator picks uniformly random permutation γ over [k] such that
γ(k) = j∗.

For the remaining steps simulator in Part B is acting exactly as the simulator
in part A until step 3 with the differences: that if A aborts or misbehaves,
it rewinds back to the start of part B. When the simulation reach step 18, S
uses {ri,j∗}Pi∈A to extract adversary’s input RA = {Ri}Pi∈A

11 from the j∗-th
execution of Πcorr and sends RA to FDcorr, finally S outputs whatever A outputs
and terminate.

We will now proceeds through a series oh hybrid experiments in oder to
prove that the joint distribution of the view of A and the output of the hon-
est parties in the ideal execution is computationally indistinguishable from the
joint distribution of the view of A and the output of honest parties in a real
protocol execution. The hybrid experiments are listed below. The output of the
experiments is defined as the view of A and the output of the honest parties.

– Exp0 : In this game, the simulator S0 acts as the simulator S described above,
moreover S0 has access to the internal state of FDcorr, therefore S0 chooses
the output values of the honest parties. Note that towards the honest parties
S0 is acting as FDcorr does without any modifications therefore the output of
Exp0 and the output of ideal world experiment are identically distributed.

– In Exp1 : The experiment Exp0 is modified in the following way: the simulator
S1 choses at random an index j̄ ∈ [k] and in step 18 in part A S1 acts as
follows:
1. If |X| = 1, if j̄ ∈ X sets flag = undetected otherwise sets flag = detected.
2. If |X| = 0, then set flag = allgood. The simulator sets j∗ = j̄.

11 Note that since it holds that flag = allgood, then Πcorr was executed honestly by A,
therefore RA are taken from the distribution of valid inputs, i.e. inputs for which is
possible for FD

corr to reverse sample the correlated randomness for the honest parties.

61

The output of the experiments Exp1 and Exp0 are identically distribute since
when |X| = 1 with probability ε it happens that j̄ /∈ X.

– In Exp2 : The experiment Exp1 is modified in the following way. The simulator
S2, in case of flag = allgood outputs as the output of the honest parties the
output of j̄-th execution of Πcorr, instead of relying on the output of FDcorr

(which is internally emulated by the simulator after Exp0).
The output of the experiments Exp1 and Exp2 are computationally indistin-
guishable due to the security of Πcorr.

– In Exp3 : The experiment Exp2 is modified in the following way. In step 3 of
part B S3 according to the part A of the simulation (i.e., the random tapes
committed for the j̄-th execution of Πcorr are effectively the one used for
executing Πcorr). The output of the experiments Exp3 and Exp2 are compu-
tationally indistinguishable due to the security of Πflip.

– In Exp4 : The experiment Exp3 is modified in the following way: The cipher-
texts CT are computes as in Part A of the simulation. The output of the
experiments Exp3 and Exp4 are computationally indistinguishable due to the
CPA security of (sEnc, sDec).

– In Exp5 : The experiment Exp4 is modified in the following way: Πcheck is
executing as in part A of the simulation, i.e., on input a uniformly random
permutation γ. The output of the experiments Exp5 and Exp4 are computa-
tionally indistinguishable due to the security of Πcheck.

– In Exp5′ : We observe that in case of no cheating, we do the same thing
in Part A and B. Thus, we can ’collapse’ the two parts of the simulator
given that in both parts everithing correlated to the j̄-th execution of Πcorr

is executed using the procedure of the honest parties. Therefore the output
of the experiments Exp5′ and Exp5 are statistically close12.

– Exp6: We modify the experiment by letting S6 in step 18 if flag = detected
behave identically to step 14 in the real protocol. Note that Exp5′ and Exp6

only differ when A misbehaves in one or more executions, which are also
opened, and manages to produce partial certificates that do not lead to a
corrupted party being accused by Sentence. Thus, we rely on the public veri-
fiability cheating from random tapes of Πcorr to claim the indistinguishability
of the two experiments.

– In Exp7 : The experiment Exp6 is modified in the following way: Πcheck is
executing as in honestly. The output of the experiments Exp7 and Exp6 are
computationally indistinguishable due to the security of Πcheck.

– In Exp8 : The experiment Exp8 is modified in the following way: Πflip is
executing as in honestly. The output of the experiments Exp7 and Exp8 are
computationally indistinguishable due to the security of Πflip.

The proof ends observing that in Exp8 the simulator S8 does not need any-
more to have access to the internal state of the functionalities (i.e. there is no
needing to simulate the functionalities w.r.t. the adversary) therefore Exp6 and
the real world experiment are identically distributed.

12 The statistical difference comes from a differing number in rewinding steps, which
can influence the abort probability by a statistically negligible amount.

62

Defamation-Freeness. In [Πcorr]
pvcov is possible to output a certificate with

respect to four types of different cheating attempts. For each case, we will now
argue that an adversary A is not able to output a valid certificate, which ac-
cuses an honest party. Suppose by contradiction that this is not the case, i.e.
there exists a non-negligible probability that A is able to output an accepting
certificate cert = (c, aux), then we can distinguishes 4 cases:

– c ∈ {1,2,3}:
Let us assume wlog that cert is accusing the honest party Pi. The important
two observations are 1) since Pi is honest she follows the protocol honestly
and therefore she is producing a solvable puzzle (resp. valid decommitments
of Crnd, valid decommitments of Cshare); 2) if A outputs a valid cert, then it
contains a valid signature of Pi. From these two observations we can con-
clude that the adversary would need to break unforgeability of the signature
scheme.

– c = 4:
If A outputs a valid cert with non negligible probability then it is possible
to show a reduction to the public verifiability cheating from random tapes
of Πcorr (in particular to the defamation-freeness property of Πcorr).

Public Verifiability. Suppose by contradiction that wlog party Pi∗ misbehaves
in step 3 and the honest parties are not able to produce a valid certificate against
Pi∗ . Let j∗ be the smallest index among the checked execution of Πcorr where
Pi∗ cheats. If this is the case, then we would like to show a reduction to the
public verifiability cheating from random tapes of the j∗-th execution of Πcorr.
In order to build this reductions we need to argue that 1) in Crnd are committed
the output of Πflip 2) the decommitments of Crnd and the partial certificate are
retrievable from −→puz. We observe that (1) follows from the UC-security of Πflip;
We now argue using a case analysis that also (2) is true. In more details we want
to prove the following invariant I: if Pi∗ cheats in any subsequents steps after step
3 one of this three events must happen: the protocol aborts (independently of
the cheating attempts); the honest parties are able to produce a valid certificate
against Pi∗ ; (2) is true.

Proving invariant I. To prove invariant I we make the following arguments:

1. We first argue that the honest parties retrieve solvable puzzles−→puz = puz1, . . . ,
puzj∗ , . . . puzn. Indeed, if this was not the case the honest parties can pro-
duce a certificate cert = (1, aux) with witch they can accuse Pi∗ because
they receive a signatures of −→puz from Pi∗ . Otherwise Pi∗ aborts before sign-
ing the puzzles. In this case, the abort probability is independent from the
probability of cheating: it follows from the UC-security of Πcheck, the hiding
of commitment scheme, the security of encryptions and the security of time
lock puzzles that Pi∗ does not know which execution will be checked.

2. If the encryptions sent by Pi∗ correspond to malformed messages, then since
the encryption scheme enjoys correctness and the honest parties obtains sig-
nature of Pi∗ on her ciphertexts, the honest parties can produce a certificate

63

cert(3, aux) for accusing Pi∗ . Note that if Pi∗ aborts before signing the ci-
phertexts the probability of abort is independent from the probability of
cheating for the same reasons explained above.

3. If the decommitment of Cshare sent by Pi∗ are not valid then, since the com-
mitment scheme enjoys correctness and the honest parties obtains signature
on Cshare, the honest parties can produce a certificate cert(2, aux) for accus-
ing Pi∗ . Note that if Pi∗ aborts before signing the ciphertexts the probability
of abort is independent from the probability of cheating for the same reasons
explained above.

4. From observations 1, 2 and 3 follow that if the protocol did not terminate
then Pi∗ encrypted valid messages, and valid decommitments of Cshare that
are retrievable from solvable puzzle but it can still be the case that decom-
mitments of Crnd and the partial certificates are not retrievable from −→puz. We
now ague that if the protocols continue until step 14 then decommitments
of Crnd and the partial certificates are retrievable from −→puz. We make the
following arguments:
(a) If Pi∗ commits to invalid shares in Cshare the honest parties abort. Cshare

are computed before it is revealed which executions are been checked.
It follows from the UC-security of Πcheck, the hiding of Cshare and the
security of the puzzle system that the probability of abort is independent
from the probability of cheating.

(b) From the UC-security of Πcheck we can claim that, unless of negligible
probability, the only way that Pi∗ can cheat in this point is using mal-
formed inputs to Πcheck. If this is case by the definition of the function
computed by Πcheck (i.e., authenticate secret sharing) and the binding
of Cshare we are ensured that the honest parties abort. Roughly speaking
this cheating strategy translates to a Pi∗ that commits to invalid shares
in Cshare, so we can follow the same analysis of point 4a.

64

k Protocol Preprocessing Online Total
OTs R-OT S-OT R-OT S-OT

2

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 12.00 193.61 1.35 256.21 449.82 257.56
Active 54.00 576.30 9.05 256.21 832.51 265.26

4

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 24.00 387.22 2.70 256.21 643.43 258.91
Active 54.00 576.30 9.05 256.21 832.51 265.26

6

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 36.00 580.83 4.06 256.21 837.04 260.26
Active 54.00 576.30 9.05 256.21 832.51 265.26

8

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 48.00 774.44 5.41 256.21 1030.65 261.61
Active 54.00 576.30 9.05 256.21 832.51 265.26

10

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 60.00 968.06 6.76 256.21 1224.26 262.96
Active 54.00 576.30 9.05 256.21 832.51 265.26

12

Passive [8] 8.00 128.80 0.90 256.21 385.01 257.11
Passive (ours) 6.01 96.81 0.68 256.21 353.01 256.88

Covert (non-id) 72.00 1161.67 8.11 256.21 1417.87 264.32
Active 54.00 576.30 9.05 256.21 832.51 265.26

Table 2. Bandwidth costs (in MB) and OT costs (millions of OTs) for passive, covert
and actively secure protocols without identifiable abort, in a Boolean circuit with 100
thousand ANDs, with different values of the replication factor k

65

	Multiparty Computation with Covert Security and Public Verifiability

