
Another Algebraic Decomposition Method for
Masked Implementation

Shoichi Hirose

University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

Abstract. Side channel attacks are serious concern for implementation
of cryptosystems. Masking is an effective countermeasure against them
and masked implementation of block ciphers has been attracting active
research. It is an obstacle to efficient masked implementation that the
complexity of an evaluation of multiplication is quadratic in the order
of masking. A direct approach to this problem is to explore methods to
reduce the number of multiplications required to represent an S-box. An
alternative approach proposed by Carlet et al. in 2015 is to represent
an S-box as composition of polynomials with low algebraic degrees. We
follow the latter approach and propose to use a special type of polynomi-
als with a low algebraic degree as components, which we call generalized
multiplication (GM) polynomials. The masking scheme for multiplica-
tion can be applied to a GM polynomial, which is more efficient than the
masking scheme for a polynomial with a low algebraic degree. Our ex-
perimental results show that, for 4-/6-/8-bit permutations, the proposed
decomposition method is more efficient than the method by Carlet et
al. in most cases in terms of the number of evaluations of low-algebraic-
degree polynomials required by masking.

Keywords: Algebraic decomposition · Boolean function · masking · S-
box

1 Introduction

Background. Side channel attacks introduced by Kocher [11] are serious concern
for implementation of cryptosystems. Chari et al. [5] proposed a sound approach
based on secret sharing [2, 15] against a class of side-channel attacks analyzing
power consumption [12]. It is usually called masking [13] in this context. The
d-th order masking splits each internal variable into (d+1) shares so that any in-
formation of the internal variable cannot be recovered from at most d shares. The
complexity of a successful side channel attack against a masked implementation
was shown to be exponential in the masking order d [5].

Masked implementation has often been discussed for block ciphers. A block
cipher can be manipulated as a function over the finite field F2 or its extension.
For a scalar multiplication or an addition, the number of operations to compute
shares of the result from the shares of an input is O(d). For a square, it is also

O(d). For a multiplication, on the other hand, it is O(d2). Thus, a multiplication
is especially called a nonlinear multiplication to refer to the difference from a
square.

For efficient masked implementation of block ciphers, it has been actively
studied to reduce the number of nonlinear multiplications required to compute
an S-box. A similar but different approach is to represent an S-box as composition
of polynomials with low algebraic degrees [4].

Our Contribution. We present a method for algebraic decomposition inspired
by the method of Carlet et al. [4] and the method to reduce the number of
nonlinear multiplications of Goudarzi et al. [8]. The proposed method can be
applied to any function from {0, 1}n to {0, 1}n for even n. It regards a given
function h(x) as a pair of bivariate polynomials (h0(x0, x1), h1(x0, x1)), where
hb : F2n/2 ×F2n/2 → F2n/2 for b ∈ {0, 1}. Then, it represents h as composition of

pairs of linear combinations of x2
i0

0 x2
i1

1 , where 0 ≤ ib ≤ n/2 − 1 for b ∈ {0, 1}.
We call such a pair of linear combinations a generalized multiplication (GM)
polynomial. The difference of our proposed method from the method of Carlet
et al. [4] is that the former uses GM polynomials instead of polynomials of low
algebraic degrees such as 2 or 3. To a GM polynomial, the masking scheme for a
multiplication can be applied, which is more efficient than the masking scheme
for a polynomial of low algebraic degree presented by Carlet et al. [4]. Due to
this property, for masked implementation, in terms of the number of evaluations
of nonlinear functions (GM polynomials, polynomials of low algebraic degree or
multiplications), the proposed decomposition method is more efficient than the
method by Goudarzi et al. [8] for n = 4, 6, 8 and than the method by Carlet et
al. [4] for n = 4, 6 and for n = 8 if the masking order is higher than 1.

Related Work. Ishai, Sahai and Wagner presented a higher-order masking method
for multiplication over F2 in their seminal paper [9]. Rivain and Prouff [14]
generalized the method of Ishai et al. [9] to any finite field multiplication and
applied it to the AES S-box. Carlet et al. [3] extended the method of Rivain
and Prouff [14] and proposed a generic method for masking any S-box based on
cyclotomic classes and the Knuth-Eve polynomial evaluation algorithm [7, 10].
Coron, Roy and Vivek [6] improved the method of Carlet et al. [3] and presented
a heuristic but generic method for masking any S-box. Goudarzi et al. [8] gen-
eralized the approach of Coron, Roy and Vivek [6] and proposed a method to
treat any S-box from {0, 1}wiν to {0, 1}woν as a tuple of polynomials over F2ν .

Inspired by the work of Coron, Roy and Vivek [6], Carlet et al. [4] intro-
duced a new approach to decompose any S-box using polynomials having low
algebraic degrees. They also presented masking methods for polynomials having
low algebraic degrees.

Organization. Section 2 introduces some notations and definitions necessary
for the discussions. Section 3 presents the proposed algebraic decomposition
method using GM polynomials and its experimental results. Section 4 discusses

2

application of the proposed decomposition to masking. Section 5 gives a brief
concluding remark.

2 Preliminaries

Let ν be a positive integer. Let F2ν be the finite field with 2ν elements.

2.1 Functions over Finite Fields

A function h : Fwi
2ν → Fwo

2ν is a tuple of functions (h0, h1, . . . , hwo−1), where
hj : Fwi

2ν → F2ν for 0 ≤ j ≤ wo − 1. hj can be represented as

hj(x0, x1, . . . , xwi−1) =

2ν−1∑
k0=0

· · ·
2ν−1∑

kwi−1=0

αj,k0,...,kwi−1
xk00 · · ·x

kwi−1
wi−1 ,

where αj,k0,...,kwi−1 ∈ F2ν . We only refer to the cases that (wi, wo) ∈ {(1, 1), (2, 1),
(2, 2)} in the remaining parts.

Definition 1 (Algebraic degree). For a function h : F2ν → F2ν such that

h(x) =

2ν−1∑
k=0

αkx
k ,

its algebraic degree is the maximum of HW(k) such that αk 6= 0 for 0 ≤ k ≤
2ν − 1, where HW(k) is the Hamming weight of the binary representation of k.

Definition 2 (Linearized polynomial). A function ` : F2ν → F2ν is called a
linearized polynomial if it can be represented as

`(x) =

ν−1∑
k=0

αkx
2k ,

where αk ∈ F2ν .

For any linearized polynomial `(x), its algebraic degree is 1, and it holds that

`
(d∑
i=0

xi

)
=

d∑
i=0

`(xi) . (1)

We introduce generalized multiplication polynomials, which are used in our
proposed decomposition method:

Definition 3 (Generalized multiplication polynomial). We call a function
m : F2ν × F2ν → F2ν × F2ν a generalized multiplication (GM) polynomial if it

3

can be represented as m(x) = (m0(x),m1(x)) such that, for b ∈ {0, 1}, mb :
F2ν × F2ν → F2ν and

mb(x) =

ν−1∑
k=0

ν−1∑
l=0

αb,k,lx
2k

0 x
2l

1 ,

where x = (x0, x1) ∈ F2ν × F2ν and αb,k,l ∈ F2ν .

For any GM polynomial m(x0, x1), it holds that

m
(d∑
i=0

x0,i,

d∑
j=0

x1,j

)
=

d∑
i=0

d∑
j=0

m(x0,i, x1,j) (2)

since (d∑
i=0

x0,i

)2k(d∑
j=0

x1,j

)2l
=
(d∑
i=0

x2
k

0,i

)(d∑
j=0

x2
l

1,j

)
=

d∑
i=0

d∑
j=0

x2
k

0,ix
2l

1,j . (3)

For Eq. (3), multiplication is the case that k = l = 0.

3 Algebraic Decomposition

In the remaining parts of the paper, ν is a positive integer and n = 2ν.

3.1 Algebraic decomposition using GM polynomials

Let h : {0, 1}n → {0, 1}n. Then, h can be seen as h(x) = (h0(x0, x1), h1(x0, x1)),
where x = (x0, x1) and hb : F2ν × F2ν → F2ν for b ∈ {0, 1}. The decomposition
of h proceeds as follows:

1. For 1 ≤ i ≤ r, let fi : F2ν × F2ν → F2ν × F2ν is a GM polynomial chosen
uniformly at random.

2. For 1 ≤ i ≤ r, gi : F2ν × F2ν → F2ν × F2ν is defined as follows:

g1(x) = f1(x) ,

g2(x) = f2(g1(x) + (`0,0(x0) + `0,1(x1), `1,0(x0) + `1,1(x1))) ,

where `0,0, `0,1, `1,0 and `1,1 are linearized polynomials over F2ν chosen
uniformly at random, and, for 3 ≤ i ≤ r,

gi(x) = fi(gi−1(x)) .

3. For 1 ≤ j ≤ t, qj : F2ν × F2ν → F2ν × F2ν is defined as follows:

qj(x) = (qj,0(x), qj,1(x)) ,

4

where, for b ∈ {0, 1},

qj,b(x) =

r∑
i=1

`j,i,b(gi,b(x)) + `j,0,b,0(x0) + `j,0,b,1(x1) , (4)

and `j,i,b, `j,0,b,0 and `j,0,b,1 are linearized polynomials over F2ν chosen uni-
formly at random.

4. For b ∈ {0, 1}, search GM polynomials µ1, . . . , µt over F2ν × F2ν , linearized
polynomials λ0,b,0, λ0,b,1, . . . , λr,b,0, λr,b,1 over F2ν and a constant δb ∈ F2ν

satisfying

hb(x) =

t∑
j=1

µj,b(qj(x)) +

r∑
i=1

(
λi,b,0(gi,0(x)) + λi,b,1(gi,1(x))

)
+ λ0,b,0(x0) + λ0,b,1(x1) + δb . (5)

If the search fails, then return to the first step.

The amount of computation for an evaluation of h based on the decomposi-
tion is summarized in Table 1.

Table 1. The amount of computation based on the proposed decomposition. Both the
linearized polynomials and the additions are over Fν .

The number of evaluations of GM polynomials r + t

The number of evaluations of linearized polynomials 2(r + 2)(t + 2)

The number of evaluations of additions 2(r + 2)(t + 2)

Similar to the decomposition in [4], the search in the 4th step above can be
done by solving a system of linear equations over F2ν :

A · vb = cb (6)

for b ∈ {0, 1}. cb is a 2n-dimensional vector over F2ν such that

cb = (hb(e1), hb(e2), . . . , hb(e2n))T ,

where ei = (ei,0, ei,1) ∈ F2ν × F2ν and ei1 6= ei2 if i1 6= i2. vb is the vector of un-
knowns representing the coefficients of GM polynomials µ1,b, . . . , µt,b, linearized
polynomials λ0,b,0, λ0,b,1, . . . , λr,b,0, λr,b,1 and δb. The matrix A, which does not
depend on the value of b, is defined as follows:

A = (Aq1 Aq2 · · · Aqt Ag1,0 · · · Agr,0 Ag1,1 · · · Agr,1 Ae∗,0 Ae∗,1 1) .

Aqj =


Q

(0,0)
j,1 · · · Q(0,ν−1)

j,1 Q
(1,0)
j,1 · · · Q(1,ν−1)

j,1 · · · Q(ν−1,0)
j,1 · · · Q(ν−1,ν−1)

j,1

Q
(0,0)
j,2 · · · Q(0,ν−1)

j,2 Q
(1,0)
j,2 · · · Q(1,ν−1)

j,2 · · · Q(ν−1,0)
j,2 · · · Q(ν−1,ν−1)

j,2

· · · · · · · · · · · ·
Q

(0,0)
j,2n · · · Q

(0,ν−1)
j,2n Q

(1,0)
j,2n · · · Q

(1,ν−1)
j,2n · · · Q(ν−1,0)

j,2n · · · Q(ν−1,ν−1)
j,2n


5

is a 2n×ν2 matrix, where Q
(k,l)
j,i = qj,0(ei)

2kqj,1(ei)
2l for 1 ≤ i ≤ 2n, 1 ≤ k ≤ ν−1

and 1 ≤ l ≤ ν − 1.

Agi,b′ =


gi,b′(e1)2

0

gi,b′(e1)2
1 · · · gi,b′(e1)2

ν−1

gi,b′(e2)2
0

gi,b′(e2)2
1 · · · gi,b′(e2)2

ν−1

· · ·
gi,b′(e2n)2

0

gi,b′(e2n)2
1 · · · gi,b′(e2n)2

ν−1


is a 2n × ν matrix for 1 ≤ i ≤ r and b′ ∈ {0, 1}.

Ae∗,b′ =


e2

0

1,b′ e2
1

1,b′ · · · e2
ν−1

1,b′

e2
0

2,b′ e2
1

2,b′ · · · e2
ν−1

2,b′

· · ·
e2

0

2n,b′ e
21

2n,b′ · · · e2
ν−1

2n,b′


is a 2n × ν matrix. 1 is the column vector whose 2n coordinates equal 1.

The matrix A has 2n rows and t · ν2 + 2(r + 1)ν + 1 columns. In order for
the system of linear equations Eq.(6) to have a solution for any cb, the rank of
A must be 2n and it is required that

t · n2/4 + (r + 1)n+ 1 ≥ 2n . (7)

It is also required that the algebraic degree of the polynomial in the right side
of Eq.(5) is n/2 with respect to each of x0 and x1. Thus,

2r ≥ n/2 . (8)

Once we obtain a matrix A with its rank 2n from some g1, . . . , gr and
q1, . . . , qt, we can use it to decompose any function h : {0, 1}n → {0, 1}n.

3.2 Experimental Result

Table 2 shows the values of parameters of successful decomposition minimizing
the number of GM polynomials, that is, r + t. For n = 4, 6, all optimal values
satisfying inequalities (7) and (8) and minimizing r+ t are achieved. For n = 8,
optimal values are also achieved. On the other hand, though (r, t) = (2, 15) are
also optimal, they cannot be achieved with one hundred trials. For n = 10, all
optimal values (r, t) = (3, 40), (4, 39) as well as (r, t) = (3, 41), (4, 40) cannot be
achieved with one hundred trials.

In Table 2, for n = 4 and (r, t) = (1, 2), four linearized polynomials used to
compose g2 is not necessary for the proposed algebraic decomposition algorithm
in Sect. 3.

As an example, a decomposition of the 4-bit S-box of the tweakable block
cipher SKINNY is presented in Appendix B.

Table 3 shows the smallest number of nonlinear functions achieved by our de-
composition and the decomposition methods by Carlet et al. [4] and by Goudarzi

6

Table 2. Achievable parameters minimizing r+t. #GMP represents the number of GM
polynomials. #LinP represents the number of linearized polynomials. #Add represents
the number of additions.

n (r, t) #GMP #LinP #Add

4 (1, 2) 3 20 20
(2, 1) 3 24 24

6 (2, 5) 7 56 56

8 (3, 14) 17 160 160

10 (5, 39) 44 574 574

et al. [8]. For algebraic decomposition by Carlet et al., methods using polynomi-
als of algebraic degrees 2 and/or 3 were presented, and the most efficient method
was shown to be the method using only quadratic polynomials (polynomials of
algebraic degree 2), which is mentioned in Table 3. The decomposition method
to reduce the number of multiplications by Goudarzi et al. [8] is able to process

any function over {0, 1}n by regarding it as a function over Fn/ξξ for any ξ such
that ξ |n. Table 3 mentions only the case that ξ = n/2.

In terms of the number of multiplications or GM polynomials, our decom-
position is slightly more efficient than the decomposition by Goudarzi et al. [8].
On the other hand, if implementaion adopts table lookup for evaluation of mul-
tiplications or GM polynomials, then our decomposition needs a lookup table
for each GM polynomial, while the decomposition by Goudarzi et al. needs just
a single lookup table for multiplication. Thus, the total table size for our de-
composition is 2(r+ t) times as large as that for the decomposition by Goudarzi
et al. For example, for n = 8, the total table size of GM polynomials for our
decomposition is 4352(= 17× 256) Bytes.

In terms of the number of quadratic polynomials or GM polynomials, our
decomposition does not seem so good as decomposition by Carlet et al. [4] ap-
parently. We will see in the next section, however, our decomposition is more
effective than the decomposition by Carlet et al. [4] for masked implementation.

Table 3. Comparison of best achievable parameters

n = 4 n = 6 n = 8

quadratic polynomials [4] 3 5 11

multiplications [8] 4 9 18

GM polynomials (Ours) 3 7 17

7

4 Application to Masking

Algorithm 1 presents an algorithm of d-th order masking for a GM polynomial.
Due to the property of GM polynomials shown by Eq.(3), it is similar to d-
th order masking for multiplication. For reference, the algorithm of d-th order
masking for a quadratic polynomial [4] is shown in Appendix A.

Algorithm 1: d-th order masking for a GM polynomial m : F2ν×F2ν →
F2ν × F2ν , where ν = n/2

input : Shares (a0, a1, . . . , ad) of a and (b0, b1, . . . , bd) of b
output: Shares (c0, c1, . . . , cd) of c = m(a, b)
for i = 0 to d do

for j = i + 1 to d do
ri,j ←← F2ν × F2ν ;
rj,i ← (ri,j + m(ai, bj)) + m(aj , bi);

for i = 0 to d do
ci ← m(ai, bi);
for j = 0 to d do

if j 6= i then
ci ← ci + ri,j ;

return (c0, c1, . . . , cd)

Table 4 shows complexity of d-th order masking for an evaluation of a
quadratic polynomial or a GM polynomial. Roughly, d-th order masking for
a GM polynomial is twice as efficient as that for a quadratic polynomial. From
Tables 3 and 4, in terms of the number of evaluations of nonlinear functions
(quadratic polynomials or GM polynomials), the proposed decomposition yields
more efficient masking for n-bit S-boxes than the decomposition using quadratic
polynomials by Carlet et al. [4] for n = 4, 6, and for n = 8 if d ≥ 2.

Table 4. Complexity of d-th order masking. “# eval,” “# rand” and “# add,” repre-
sent the required number of evaluations of a nonlinear function (a quadratic polynomial
or a GM polynomial), random sequences and additions, respectively.

eval # rand # add

Quadratic poly. eval. (d + 1)(2d + 1) d(d + 1) 9d(d + 1)/2 + 1

GP poly. eval. (Algorithm 1) (d + 1)2 d(d + 1)/2 2d(d + 1)

8

5 Conclusion

We have presented an algebraic decomposition method for masked implementa-
tion of any S-box. Essentially, our proposal is to use GM polynomials instead of
polynomials with low algebraic degrees for decomposition. Future work is per-
formance evaluation of masked implementaion of S-boxes using the proposed
decomposition method.

Acknowledgements

The author was supported in part by JSPS KAKENHI Grant Number JP18H05289.

A Masking for Quadratic Polynomial

Algorithm 2 presents an algorithm of d-th order masking for a quadratic poly-
nomial [4].

Algorithm 2: d-th order masking for a quadratic polynomial f : F2n →
F2n

input : Shares (a0, a1, . . . , ad) of a
output: Shares (b0, b1, . . . , bd) of b = f(a)
for i = 0 to d do

for j = i + 1 to d do
ri,j ←← F2n ; r′i,j ←← F2n ;
rj,i ← ri,j + f(ai + r′i,j) + f(aj + r′i,j) + f((ai + r′i,j) + aj) + f(r′i,j);

for i = 0 to d do
bi ← f(ai);
for j = 0 to d do

if j 6= i then
bi ← bi + ri,j ;

if d is odd then
b1 ← b1 + f(0);

return (b0, b1, . . . , bd)

B Decomposition of SKINNY 4-Bit S-box

A decomposition of the 4-bit S-box of the tweakable block cipher SKINNY [1],
which is given in Table 5, is presented.

9

Table 5. The 4-bit S-box of SKINNY

input 0 1 2 3 4 5 6 7 8 9 a b c d e f

output c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

For the algebraic decomposition algorithm in Sect. 3, let (r, t) = (1, 2). For
f1(x0, x1) = (f1,0(x0, x1), f1,1(x0, x1)),

f1,0(x0, x1) = 0x0x1 + 2x0x
2
1 + 0x20x1 + 3x20x

2
1 ,

f1,1(x0, x1) = 0x0x1 + 1x0x
2
1 + 2x20x1 + 3x20x

2
1 .

For Eq.(4),

q1,b(x0, x1) = `1,1,b(g1,b(x0, x1)) + `1,0,b,0(x0) + `1,0,b,1(x1) ,

q2,b(x0, x1) = `2,1,b(g1,b(x0, x1)) + `2,0,b,0(x0) + `2,0,b,1(x1) ,

where

`1,1,0(z) = 0z + 1z2 `1,0,0,0(x0) = 3x0 + 0x20 `1,0,0,1(x1) = 0x1 + 1x21 ,

`1,1,1(z) = 1z + 1z2 `1,0,1,0(x0) = 0x0 + 2x20 `1,0,1,1(x1) = 0x1 + 1x21 ,

and

`2,1,0(z) = 2z + 2z2 `2,0,0,0(x0) = 1x0 + 3x20 `2,0,0,1(x1) = 3x1 + 3x21 ,

`2,1,1(z) = 2z + 1z2 `2,0,1,0(x0) = 1x0 + 3x20 `2,0,1,1(x1) = 2x1 + 0x21 .

For Eq.(5),

hb(x) = µ1,b(q1(x)) + µ2,b(q2(x)) + λ1,b,0(g1,0(x)) + λ1,b,1(g1,1(x))

+ λ0,b,0(x0) + λ0,b,1(x1) + δb ,

where

µ1,0(x0, x1) = 0x0x1 + 0x0x
2
1 + 1x20x1 + 2x20x

2
1 ,

µ1,1(x0, x1) = 0x0x1 + 0x0x
2
1 + 1x20x1 + 2x20x

2
1 .

µ2,0(x0, x1) = 2x0x1 + 2x0x
2
1 + 3x20x1 + 0x20x

2
1 ,

µ2,1(x0, x1) = 2x0x1 + 1x0x
2
1 + 3x20x1 + 0x20x

2
1 .

λ1,0,0(z) = 3z + 3z2 λ1,1,0(z) = 0z + 0z2

λ1,0,1(z) = 0z + 0z2 λ1,1,1(z) = 1z + 0z2

λ0,0,0(x0) = 0z + 0z2 λ0,1,0(x0) = 3x0 + 2x20

λ0,0,1(x1) = 2z + 3z2 λ0,1,1(x1) = 1x0 + 0x20

δ0 = 3 and δ1 = 0.

10

References

1. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-5 5,

2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference. vol. 48, pp. 313–317 (1979)

3. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer (2012). https://doi.org/10.1007/978-3-642-34047-5 21

4. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 742–763. Springer (2015). https://doi.org/10.1007/978-3-662-47989-6 36

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO ’99. LNCS, vol. 1666,
pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-48405-1 26

6. Coron, J., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary fi-
nite fields and application to side-channel countermeasures. In: Batina, L., Rob-
shaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer (2014).
https://doi.org/10.1007/978-3-662-44709-3 10

7. Eve, J.: The evaluation of polynomials. Numerische Mathematik 6, 17–21 (1964)
8. Goudarzi, D., Rivain, M., Vergnaud, D., Vivek, S.: Generalized polynomial decom-

position for S-boxes with application to side-channel countermeasures. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 154–171. Springer (2017).
https://doi.org/10.1007/978-3-319-66787-4 8

9. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–
481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4 27

10. Knuth, D.E.: Evaluation of polynomials by computer. Commun. ACM 5(12), 595–
599 (1962). https://doi.org/10.1145/355580.369074

11. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO ’96. LNCS, vol. 1109, pp. 104–
113. Springer (1996). https://doi.org/10.1007/3-540-68697-5 9

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,
M.J. (ed.) CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1 25

13. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer (2000).
https://doi.org/10.1007/3-540-44706-7 11

14. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer (2010).
https://doi.org/10.1007/978-3-642-15031-9 28

15. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

11

