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Abstract. We introduce folding schemes for NP, an interactive protocol
between a prover and a verifier to combine two N-sized NP instances over
a finite field F into a single N-sized instance such that the folded instance
is satisfiable only if the original instances are satisfiable. In particular, we
devise a folding scheme for relazed R1CS, a characterization of NP that is
especially amenable to folding. The verifier’s cost and the communication
in the folding scheme are both Oy(1), where A is the security parameter,
assuming any additively-homomorphic commitment scheme that provides
O (1)-sized commitments to N-sized vectors over F. Additionally, the
protocol is honest-verifier zero-knowledge and public coin, so it can be
made non-interactive in the ROM using the Fiat-Shamir transform.

We then construct incrementally verifiable computation (IVC) from
folding schemes by using a “verifier circuit” that at each recursive step
folds an entire R1CS instance representing computation (including a
copy of the verifier circuit) at its prior step into a running relaxed R1CS
instance. A distinctive aspect of our approach to IVC is that it achieves
the smallest verifier circuit (a key metric to minimize in IVC) in the
literature: the circuit is constant-sized and its size is dominated by two
group scalar multiplications. We then show that the running relaxed R1CS
instance can be proven in zero-knowledge with a succinct proof using a
variant of an existing zkSNARK.

Putting these together, we obtain Nova, a new zero-knowledge proof
system for incremental computations, where for an N-sized computation
with C-sized steps, the prover runs in Oy () time to produce O (log C)-
sized proofs that can be verified in Ox(C) time. Nova does not require a
trusted setup nor performs FFTs, so it can be efficiently instantiated with
any cycles of elliptic curves where DLOG is hard. Furthermore, at each
step, the prover time is dominated by two ~C-sized multiexponentiations.
Finally, Nova can achieve Ox(logC) verification time at the cost of
employing a pairing-friendly elliptic curve where SXDH is hard.

1 Introduction

This paper introduces a new cryptographic primitive called folding schemes. A
folding scheme is defined with respect to an NP relation, and it is an interactive
protocol between an untrusted prover and a wverifier. Both entities hold two
N-sized NP instances, and the prover in addition holds purported witnesses for
both instances. The protocol enables the prover and the verifier to output a



single N-sized NP instance, which we refer to as a folded instance. Furthermore,
the prover privately outputs a purported witness to the folded instance using
purported witnesses for the original instances. Informally, a folding scheme
guarantees that the folded instance is satisfiable only if the original instances are
satisfiable. A folding scheme is said to be non-trivial if the verifier’s costs and
the communication are lower in the case the verifier participates in the folding
scheme and then verifies an NP witness (provided by the prover) for the folded
instance than the case where the verifier verifies NP witnesses (provided by the
prover) for each of the original instances.

For a concrete instantiation of folding schemes, we first introduce a new
characterization of NP, called relaxed R1CS, a small variant of R1CS, which is
itself an NP-complete language that generalizes arithmetic circuit satisfiability.
We then show that there exists a constant-round folding scheme for relaxed R1CS,
where for N-sized relaxed R1CS instances over a finite field F with the same
“structure” (i.e., R1CS coeflicient matrices), the prover’s work is O (N), and the
verifier time and the communication are both O,(1), assuming the existence
of any additively-homomorphic commitment scheme that provides O, (1)-sized
commitments to N-sized vectors over F (e.g., Pedersen’s commitments), where
A is the security parameter. In addition, the folding scheme for relaxed R1CS
satisfies honest-verifier zero-knowledge. Furthermore, it is public-coin, so it can
be made non-interactive in the random oracle model using the Fiat-Shamir
transform [FS86], and be instantiated (heuristically) in the plain model using a
concrete hash function.

Relationship with Existing Techniques. A folding scheme is reminiscent of
the folding technique used in protocols such as Bulletproofs [BBB*18], where
the prover splits an N-sized inner product instance into two N/2-sized inner
product instances, and then the prover and the verifier interactively combine
the two N/2-sized instances into a single N/2-sized instance. A folding scheme
differs from this technique in that it is defined with respect to an NP relation.
Furthermore, our folding scheme for relaxed R1CS folds arbitrary NP instances.

A folding scheme is also reminiscent of the sum-check protocol [LFKN90]
applied to layered data-parallel circuits [WJBT17, WTS*18], where the prover
and the verifier interactively combine—using the sum-check protocol—f > 2
instances of depth-1 circuit satisfiability into a single depth-1 circuit satisfiability
instance, and the combined instance is proven using additional invocations of the
sum-check protocol. Once the protocol combines 8 instances of depth-1 circuit
satisfiability instances into a single depth-1 circuit satisfiability instance, it is not
entirely clear how to fold additional circuit satisfiability instances into a single
running instance. Whereas, with a folding scheme, the prover and the verifier
can continually fold N-sized NP instances into a single running N-sized instance.

1.1 Recursive Zero-Knowledge Arguments from Folding Schemes

A primary application of folding schemes is to construct recursive zero-knowledge
argument systems for NP. In particular, we show how our folding scheme



for relaxed R1CS can be used to construct incrementally-verifiable compu-
tation (IVC) [Val08].! We refer to our construction as Nova. Such recursive
argument systems have a wide variety of applications such as constructing
VDFs [Wesl19, BBF18], succinct blockchains [BGH20, Lab20], incrementally-
verifiable versions of verifiable state machines [SAGL18,LNS20], etc.

Recall that an IVC is an argument system [Kil92, Mic94]? for incremental
computations of the form y = F)(x), where F is a (possibly non-deterministic)
computation, £ > 0, x is a public input, and y is the public output. At each
incremental step, the IVC prover produces a proof that the step was computed
correctly and it has verified a proof for the prior step. In other words, at
each incremental step, the IVC prover produces a proof of satisfiability for
an augmented circuit that augments the circuit for F' with a “verifier circuit”
that verifies the proof of the prior step. Recursively, the final proof proves the
correctness of the entire incremental computation. A key aspect of IVC is that
the IVC verifier’s work nor the IVC proof size depend on the number of steps
in the incremental computation. In particular, the IVC verifier only verifies the
proof produced at the last step of the incremental computation.

In Nova, we consider incremental computations, where each step of the in-
cremental computation is expressed with R1CS (all the steps in the incremental
computation share the same R1CS coefficient matrices). At step ¢ of the incre-
mental computation, as in other approaches to IVC, Nova’s prover proves that
the step 7 was computed correctly. Furthermore, at step ¢, instead of verifying a
proof for step ¢ — 1 (as in traditional approaches to IVC), Nova’s approach treats
the computation at step ¢ — 1 as an R1CS instance and folds that into a running
relaxed R1CS instance. Specifically, at each step, Nova’s prover proves that it has
performed the step’s computation and has folded its prior step represented as an
R1CS instance into a running relaxed R1CS instance. In other words, the circuit
satisfiability instance that the prover proves at each incremental step computes a
step of the incremental computation and includes a circuit for the computation of
the verifier in the non-interactive folding scheme for relaxed R1CS. After the last
step of the incremental computation, Nova’s prover proves the running relaxed
R1CS instance in zero-knowledge and with an O, (log |F|)-sized succinct proof
using Spartan [Set20] adapted to prove relaxed R1CS instances.

A distinctive aspect of Nova’s approach to IVC is that it achieves the smallest
“verifier circuit” in the literature. Since the verifier’s costs in the folding scheme
for relaxed R1CS is O,(1), the size of the computation that Nova’s prover proves
at each incremental step is ~|F|, assuming N-sized vectors are committed with
an Oy (1)-sized commitments (e.g., Pedersen’s commitments in a cryptographic
group where DLOG is hard). In particular, the verifier circuit in Nova is constant-
sized and its size is dominated by two group scalar multiplications. Furthermore,

! Folding schemes can also be used to construct a generalization of IVC called proof-
carrying data (PCD) [AC10], but we focus on IVC for simplicity.

2 An argument system of knowledge for circuit satisfiability enables an untrusted
polynomial-time prover to prove to a verifier the knowledge of a witness w such that
C(w, z) =y, where C is a circuit, z is some public input, and y is some public output.



Nova’s prover’s work at each step is dominated by two multiexponentiations of
size ~|F'|. Nova’s prover does not perform any FFTs either at each incremental
step or when using the Spartan variant, so it can be instantiated efficiently using
any cycles of elliptic curves where DLOG is hard.

Comparison with existing approaches to IVC and PCD. Figure 1 depicts
Nova’s costs and compares it with prior approaches. We now elaborate.

A well-known approach to construct IVC is to use SNARKSs for NP [BCCT13,
BCTV14]: at each incremental step i, the prover produces a SNARK that it
applied F' to the output of step i — 1 and it has verified a SNARK from step 7 — 1.
Although earlier SNARKs [GGPR13,PGHR13] require a trusted setup, recent
work [Set20, BFS20, COS20] eliminates the need for a trusted setup. Thus, one
can construct IVC or PCD without trusted setup by relying on such SNARKSs.
Unfortunately, SNARK-based IVC requires representing an entire SNARK verifier
as a circuit at each step of the incremental computation.

Halo [BGH19] provides an innovative approach to construct IVC without
trusted setup (this approach was later formalized by Biinz et al. [BCMS20]).
In Halo, the “verifier circuit” postpones certain expensive computations (i.e.,
verifying polynomial evaluation proofs) in its SNARK verifier.® As a result, Halo
provides a verifier circuit size that is concretely smaller than what one can obtain
from an approach based on SNARKSs without trusted setup. Nova’s approach
can be viewed as taking the approach in Halo to the extreme. Specifically:

— At each incremental step, Halo’s verifier circuit verifies a “partial” SNARK.
This still requires Halo’s prover to perform |F|-sized FFTs and O(|F|) expo-
nentiations (i.e., not an |F|-sized multiexponentiation). Whereas, in Nova,
the verifier circuit folds an entire NP instance representing computation at the
prior step into a running relaxed R1CS instance. This only requires the Nova’s
prover to commit to a satisfying assignment of an ~|F|-sized circuit (which
computes F' and performs the verifier’'s computation in a folding scheme for
relaxed R1CS), so at each step, Nova’s prover only computes an O(|F|)-sized
multiexponentiation and does not compute any FFTs. So, Nova’s prover
incurs lower costs than Halo’s prover, both asymptotically and concretely.

— The verifier circuit in Halo is of size O (log|F|) whereas in Nova, it is Ox(1).
Concretely, the dominant operations in Halo’s circuit is O(log|F|) group
scalar multiplications, whereas in Nova, it is two group scalar multiplications.

— Halo and Nova have the same proof sizes O, (log |F|) and verifier time O, (| F|).

Halo Infinite [BDFG20] generalizes Halo [BGH19] to other polynomial commit-
ment schemes by defining certain abstract properties of polynomial commitments.
Biinz et al. [BCL'20] propose a variant of the approach in Halo, where they
realize PCD (and hence IVC) without relying on succinct arguments. Specifically,
they first devise a non-interactive argument of knowledge (NARK) for R1CS with

3 In Halo, verifying a polynomial evaluation proof takes Oy (N) time, where in the
context of IVC, N = O(]F|). In other words, Halo does not provide a SNARK with
sub-linear verification, so without postponement, it does not lead to IVC.



Prover Proof size Verifier “Verifier circuit” assumption

(each step) (dominant ops)
[BCTV14] with [Grol6]' O(C) FFT Ox(1)  Ox(1) 3P q-type
O(C) MSM
[Set20] O(C) MSM 0, (v/C) 0A(/C) OKC)G DLOG
[COS20] O(C) FFT 0O (log® C) Oz (log?® C) Ox(log® C) F
O(C) MHT Ox(log?C)H  CRHF
[BGH19] O(C) FFT Ox(logC) 0Ox(C) O(logC) G DLOG
O(C) EXP
[BCL*20]* O(C) FFT 0\ (C) 0, (0) 8G DLOG
O(C) MSM
Nova (this work) O(C) MSM Ox(log C) 0OA(C) 26 DLOG
Nova (this work) O(C) MSM Ox(logC) Ox(logC) 2 Gr SXDH

¥ Requires per-circuit trusted setup

* In an update concurrent with our work, they avoid FFTs and improve

the verifier circuit’s size by ~2x

O(C) FFT: FFT over an O(C)-sized vector costing O(C'log C') operations over F
O(C) MHT: Merkle tree over an O(C)-sized vector costing O(C) hash computations
O(C) EXP: O(C) exponentiations in a cryptographic group

O(C) MSM: O(C')-sized multi-exponentiation in a cryptographic group

Fig. 1. Asymptotic costs of Nova and its baselines to produce and verify a proof for an
incremental computation where each incremental step applies a function F. C denotes
the size of the computation at each incremental step i.e., |F| + |Cy|, where Cy is the
“verifier circuit” in IVC. For the “verifier circuit” column, we depict the number of
dominant operations in a circuit that verifies a proof produced by a prior step in an
incremental computation. P denotes a pairing in a pairing-friendly group, F denotes
the number of finite field operations, H denotes a hash computation, and G denotes a
scalar multiplication in a cryptographic group.

Oy (N)-sized proofs and Oy (N) verification times for N-sized R1CS instances.
Then, they show that most of the NARK’s verifier’s computation can be postponed
by performing O, (1) work in the verifier circuit. Nova is inspired by their work,
but instead of devising a NARK for R1CS and then postpone the NARK’s
verifier’s work, we introduce folding schemes for NP and devise a folding scheme
for relaxed R1CS, which directly leads to IVC. For zero-knowledge, Nova relies on
zero-knowledge arguments with succinct proofs, whereas their approach does not
rely on succinct arguments. However, Nova’s approach has several advantages.

— At each step, their prover performs an O(|F|)-sized FFT (which costs
O(|F|log |F|) operations over ). Whereas, Nova does not perform any FFTs.

— Their prover’s work for multiexponentitions at each step and the size of their
verifier circuit are both higher than in Nova by ~4x.

— Proof sizes are O (|F|) in their work, whereas in Nova, they are Oy (log |F|).



In an update concurrent with this work, Biinz et al. [BCL*20] provide an
improved construction of their NARK for R1CS, which leads to an IVC that,
like Nova, avoids FFTs. Furthermore, they improve the size of the verifier circuit
by a2x, which is still larger than Nova’s verifier circuit by ~2x. The per-step
computation of the prover remains concretely higher than Nova.

2 Preliminaries

Let F denote a finite field with |F| = 29" where X is the security parameter.

2.1 A Constraint System to Capture NP

To define folding schemes and incrementally verifiable computation for any
instance in NP, we need an NP-complete language. Our starting point is R1CS, a
linear algebraic formulation of quadratic arithmetic programs (QAPs) [GGPR13,
PGHR13] that is known to capture any instance in NP. R1CS is used with and
without QAPs in subsequent works [SBVT13, BCR 119, Set20, COS20]. Later, in
Section 4, we show how to extend R1CS so that it can be “folded”.

Definition 1 (R1CS). An RI1CS instance is a tuple ((F, A, B,C,m,n,{),x),
where x € F* is the public input and output of the instance, A, B,C &€ F™*™,
m > |x| + 1, and there are at most n = 2(m) non-zero entries in each matriz. A
witness vector W € F 1 satisfies an R1CS instance ((F, A, B,C,m,n,),x)
if(A-Z)o(B-2Z)=C"-Z, where Z = (W,x,1).

WLOG, we assume that m and n are powers of 2 and that m = ¢ + 1.

2.2 A Commitment Scheme for Vectors over F

We require an additively homomorphic and succinct commitment scheme for
vectors over F. We define commitment schemes and required properties below:

Definition 2 (Commitment Scheme). A commitment scheme for F™ is a
tuple of three protocols with the following syntazx that satisfy the two properties
listed below:

— pp + Gen(1*,m): produces public parameters pp.

— C + Com(pp,z,r): takes as input x € F™ and r € F; produces a public
commitment C.

— b+ Open(pp, C,x,r): verifies the opening of commitment C to x € F™ and
r € F; outputs b € {0,1}.

(1) Binding. For any PPT adversary A,

pp < Gen(1*,m),
bo = b1 = 1, (C, g € [Fm,l’l S [Fm,’r‘o c [F,Tl S [F) “— A(pp),
To # 1 bo < Open(pp, C, zo,70),

by + Open(pp, C, z1,71)

Pr < negl(\).



(2) Hiding. For all PPT adversaries A = (Ag, A1):

(o, x1,st) < Ao(pp),
) _ |bp{0,1},r < F,
5 —Pr|b=0 Q — COm(ppaxlﬂr)’
b(—Al(Stvc)

< negl(A).

If hiding holds for all adversaries, then the commitment is statistically hiding.

Definition 3 (Additively Homomorphic). A commitment scheme (Gen, Com, Open)
for vectors over F™ is additively homomorphic if for all public parameters pp
produced from Gen(1*,m), and for any 1,20 € F™ and for any r1,7o € F,
Com(pp, z1,71) + Com(pp, z2,72) = Com(pp, 1 + 2,71 + 72).

Definition 4 (Succinctness). A commitment scheme (Gen,Com,Open) for
vectors over F™ provides succinct commitments if for all public parameters pp
produced from Gen(1*,m), and any x € F™ and r € F, |Com(pp,z,7)| = Ox(1).

Construction 1 (Pedersen Commitment). For group G such that |G| > 2*
with scalar field F and where the discrete logarithm problem is hard, the Pedersen
commitment scheme for vectors over F is defined as follows:

— pp + Gen(1*,m): Sample g +—r G™, h +—r G. Output (g, h).
— C + Com(pp,z € F™,r € F): Output h" - HiE{O ____ m} git.

Lemma 1 (Pedersen Commitment). The Pedersen commitment scheme is
hiding, binding, additively homomorphic, and succinct.

2.3 Incrementally Verifiable Computation

Incrementally verifiable computation (IVC) [Val08] enables efficient verifiable
computation for repeated function application. Intuitively, for function F that
takes non-deterministic input and initial input zg, an IVC scheme allows a prover
to demonstrate that z, = F(™)(z) (i.e. n repeated applications of F on input z)
for some final output z, and application count n. We define IVC using notational
conventions of modern argument systems.

Definition 5 (Incrementally Verifiable Computation). An incrementally
verifiable computation (IVC) scheme is defined by PPT algorithms P,V denoted
the prover and verifier. An IVC scheme (P,V) satisfies perfect completeness if
for any polynomial-time computable function F, application count i, initial input
20, output z;, and for any intermediate values z;_1,w;_1, and proof II; 4

zi = F(zi—1,wi—1),
PI’ V(F,i,ZO,Zi,Hi) =1 V(F,Z — 1,20,21'_17112'_1) = 1, =1.
II; < P(F, i, 20, 2i; zi—1,wi—1, 1I;_1)



Likewise, an IVC scheme satisfies knowledge-soundness if for all PPT adver-
saries P*, there exists PPT extractor € such that for all (F,n, 20, 2,), and input
randommness p

(2’1, .. .,Zn_l)

(WO,...,wnfl)
Pr [V(F,zo,zn,n,ﬂ) = 1’]] — P*(F,n,zo,zn;p)] — negl(A).

Pr|z; =F(zi—1,wi—1) Vie{l,...,n} — E(F,n,z0,2n;p0) | >

Definition 6 (Zero-Knowledge). An IVC scheme (P, V) satisfies zero-knowledge
if there exists PPT simulator S such that for any polynomial-time computable
function F, application count i, initial input zo, output z;, and for any intermedi-
ate values z;_1,w;_1, and proof II;_1, and for all PPT adversaries A

2 = F(zi—1,wi—1),
Pl" A(U) =1 V(F,Z — 1,2’0,2’1‘_1,]71‘_1) = 17 —
IT < P(F,i, 20, 253 zi-1, wi—1, I 1) < negl(\).
zi = F(zi—1,wi—1),

Pr |:A(H) =1 1T + S(F,i,ZO,Zi)

3 Folding Schemes

This section formally introduces folding schemes. Intuitively, a folding scheme is
an interactive protocol that reduces a verifier’s task of checking two NP instances
into the task of checking a single NP instance.

Definition 7 (Folding Scheme). Consider binary relation R over instance-
witness tuples. A folding scheme for R consists of a pair of interactive algorithms
P and V, denoted the prover and verifier respectively, with the following structure

— P((u1,wn), (ug, ws2)) = (u,w): On input instance-witness tuples (uy,wy) and
(ug,ws) where each instance is N-sized, outputs a new instance-witness tuple
(u,w) where the instance is N -sized.

— V(u1,uz) — u: On input two N -sized instances uy and ug, outputs a new
N -sized instance u.

Let
(u, w) + (P(wy,ws), V) (uy,us)

denote the the verifier’s output instance u and the prover’s output witness w from
the interaction of P and V on witness input w1, ws and instance input uy, us.
Likewise, let

tr = (P(w1,w2), V)(u1, uz)

denote the corresponding interaction transcript. A folding scheme satisfies perfect
completeness if for all valid instance-witness tuples (u1, w1) € R and (uz, w2) € R

Pr [(u,w) S R| (u, w) « <’P(w1,w2),V>(u1,u2)} =1.



We call a transcript accepting if P outputs a satisfying folded witness w for the
folded instance u. We consider a folding scheme non-trivial if the communication
costs and the verifier’s computation are lower in the case the verifier participates
in the folding scheme and then verifies an NP witness (provided by the prover) for
the folded instance (using an NP checker) than the case where the verifier verifies
NP witnesses (provided by the prover) for each of the original instances (using
an NP checker).

Definition 8 (Knowledge Soundness). A folding scheme satisfies knowledge
soundness if for each PPT adversary P* there exists a PPT extractor £ such
that for all instances uy, us

Pr [(ul,wl) € R A (ug,wq) € R‘ (w1, ws) 5(u1,uQ,p)] >
Pr [ (u,w) € R|(u,w) < (P*(p),V)(u1,uz) | — negl(})

where p denotes the input randomness for P*.

Definition 9 (Zero-Knowledge). A folding scheme satisfies zero-knowledge
for relation R if there exists PPT simulator S such that for all valid instance-
witness tuples (u1,w1), (uz, wz) € R, PPT adversaries V*, PPT adversaries A,
and input randommness p

Pr [.A(tr) =1 |tr = ('P(wl,wg),v*(p))(ul,u2)] —

Pr [A(tr) = 1]tr < S(u1, uz, p) ] < negl(A).

A folding scheme is considered to be honest-verifier zero-knowledge if V* is
constrained to be the honest verifier.

Definition 10 (Public Coin). A folding scheme (P,V) is called public coin
if all the messages sent from V to P are chosen uniformly at random and
independently of the prover’s messages.

Typically, knowledge soundness is difficult to prove directly. To assist our
proofs, we introduce a variant of the forking lemma [BCC*16] which abstracts
away much of the probabilistic reasoning.

Theorem 1 (Forking Lemma for Folding Schemes). Consider (2p + 1)-
move folding scheme (P, V). (P,V) satisfies knowledge soundness if there exists
PPT X such that for all input instance pairs w1, us, outputs satisfying witnesses
wy, wy with probability 1 — negl(X\), given an (ni,...,n,)-tree of accepting tran-
scripts and corresponding folded instance-witness pairs (u,w). This tree comprises
ny transcripts (and corresponding instance-witness pairs) with fresh randomness
in V’s first message; and for each such transcript, no transcripts (and correspond-
ing instance-witness pairs) with fresh randomness in V’s second message; etc.,
for a total of T15_, ni leaves bounded by poly(X).

Proof. A proof for our variant of the forking lemma is similar to that of Boo-
tle et al. [BCCT16]. For completeness, we present a formal proof in Appendix A.
O



4 (Committed) Relaxed R1CS

In this work, we consider a variant of R1CS that we refer to as relazed R1CS. As
we show in section 5, relaxed R1CS (more specifically its committed variant) is
designed to be a characterization of NP that can be easily folded.

Definition 11 (Relaxed R1CS). A relazed R1CS instance is a tuple
((F, A, B,C,E,u,m,n,t),x), where x € F* is the public input and output of the
instance, E € F™, v € F, A,B,C € F™*™ m > |x| + 1, and there are at
most n = £2(m) non-zero entries in each matriz. A witness vector W € Fm—¢=1
satisfies a relazed R1CS instance ((F, A, B,C, E,u,m,n,£),x) if (A-Z)o(B-Z) =
u-(C-Z)+ E, where Z = (W,x,1).

We observe that an R1CS instance can be expressed as a relaxed R1CS
instance and vice versa. This not only shows that relaxed R1CS characterizes

NP, but also that we can (almost) generically repurpose an argument system for
R1CS [Set20, CHM*20] to be an argument system for relaxed R1CS (Section 7).

Reduction 1 (From R1CS to Relaxed R1CS). Consider an R1CS instance
¢ =((F,A,B,C,m,n,t),x). We can create a relaxed R1CS instance ¢’ such that
witness W € F™~‘~1 satisfies ¢’ if and only if it satisfies ¢. In particular, we set

scalar © = 1 and error vector ¥ to be the zero vector with dimension m. We set
the relaxed R1CS instance to be: ¢' = ((F, A, B,C, E,u, m,n, £),x).

Reduction 2 (From Relaxed R1CS back to R1CS). Consider a relaxed
RICS instance ¢ = ((F, A, B,C, E,u, m,n,f),x), we can create R1CS instance ¢’
such that a witness W satisfies ¢’ if and only if it satisfies ¢. In particular, let 0
be the zero matrix with dimensions m x (m —1). We first set C' =u-C + (0, E),
and then set ¢’ = ((F, 4, B,C’,m,n, {),x).

Proof. Let 0 be the zero matrix with dimensions m x (m — 1). Because the last
element in Z is 1 we have that

(0,E)-Z=F
Next we observe that

uw-CZ+E=u-C-Z+(0,E)-Z
=(u-C+(0,K))-Z
=C'Z

Thus
C'Z=AZoBZ
holds if and only if
u-CZ+FE=AZoBZ.
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We design a variant of relaxed R1CS, called committed relaxed R1CS, which
represents a part of the instance with (succinct) commitments rather than in
plaintext. This enables us to devise a folding scheme with O (1) communication
and O, (1) work for the verifier. We will later show how this helps achieve a
zero-knowledge folding scheme.

Definition 12 (Committed Relaxed R1CS). A committed relaxzed R1CS
instance is a tuple ((F, A, B,C,m,n,t),(E,u,W,x)), defined with respect to
two sets of public parameters (ppg, PPy ) produced from a commitment scheme
(Gen, Com, Open) for vectors over F of lengths (m,m — £ — 1), where x € F*
is the public input and output of the instance, E € Com(ppg,-), u € F, W €
Com(ppw,-), A,B,C € F™*™ m > |x| + 1, and there are at most n = 2(m)
non-zero entries in each matrix.

A tuple (E,rg, W,rw), where E € F™, W € F™"~*~! andrg,rw € F satisfies
a committed relazed R1CS instance ((F, A, B,C,m,n,t),(E,u,W,x)) if:

- (A-Z)o(B-Z)=u-(C-Z)+ E, where Z = (W,x,1); and

— E = Com(ppg, E,r5) AW = Com(ppy,, W, rw)

We refer to the first part of the instance (i.e. (F, A, B,C,m,n,()) as the structure,
and the second part of the instance (i.e. (E,u, W x))) as the partial instance.

In our IVC construction (Section 6), it is sometimes useful to fold an accepting
committed relaxed R1CS instance into another “trivial” instance with the same
structure that is also accepting. We prove below that for any structure, it is
possible to efficiently compute a satisfying partial instance-witness pair.

Lemma 2 (Trivial Committed Relaxed R1CS Instance). Given commit-
ted relaxed R1CS structure

S=(F,A, B,C,m,n,/l)

there exists a trivial, and efficiently computable, partial instance-witness pair,
1y, Lw, such that Ly satisfies (S, Lr).

Proof. Arbitrarily fix W and x, and let u = 1. Then compute £ = AZ o BZ —
u-CZ where Z = (W, x,1). Produce commitments F and W accordingly with
randomness g, rw g F. Let

1= (E7U7Wa X)
LVV = (E,’I"E,W,TW)-

By observation, Ly satisfies (S, Lp). O

5 A Folding Scheme for Committed Relaxed R1CS

This section describes a folding scheme for committed relaxed R1CS. The protocol
is public-coin, so it can be made non-interactive in the random oracle model, and
instantiated in the plain model using a concrete hash function.
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Construction 2 (A Folding Scheme for Committed Relaxed R1CS).
Assume that committed relaxed R1CS instances are defined with respect to a
hiding, binding, and additively homomorphic commitment scheme. The verifier
V holds two committed relaxed R1CS instances with the same structure, and
defined with respect to the same public parameters (ppg, ppyw):

¢1 = (([F7AaB7Cam7na €)7 (El,Ul,Wl,Xl))

¢2 = (([F7Aa B7 Camana €)7 (E27u2aW2;X2)>

The prover P, in addition to the two instances, holds witnesses to both instances:
(E17 TEq, W17 rwl)u (E27 TEs» WZa rWQ) S (IFm, ”:7 ﬂ:m—€—17 IF) Let Zl = (Wl7 X1, 1)
and Zy = (Wa,x2,1). The prover and the verifier proceed as follows.

1. P: T + Com(ppg, T, rr), where rp <~ F and T is the cross-term:
T=AZ,0BZy+AZyoBZ; —u; -CZy —ug-CZ;

2. P>V T.
3. V—o>P:r«ngkF. L
4. V,P: Output a new instance with the same structure ¢ = ((F, A, B,C, m, n, ), (E,u, W,x)),
where:
X4 X1+ 17Xy
E(—El +T-T+T2'E2
U4 U+ 7 U
W Wi+r W,
5. P: Outputs a new witness (E,rg, W, ry ), where
E« E +7r-TH+1r? Ey
TE < TR, —|—r~rT—|—r2~rE2
W« W1 +7r- W2

WA Tw, T T,

Lemma 3 (Completeness). Construction 2 is a folding scheme for committed
relaxed R1CS with perfect completeness.

Proof. Consider two committed relaxed R1CS instances with the same structure
and defined with respect to the same public parameters (ppg, ppy ):

¢1 = (([F,A,B,C',m,n, é)a (Ehthl;Xl))

¢2 = ((|F7A7 Ba Caman7 é)a (E27u27W2;X2))

Suppose that the prover P, in addition to the two instances, holds satisfying
witnesses to both instances: (Ei, Wy), (B, Wo) € (F™,F™~ 1) Let Z; =
(Wl,Xl, 1) and ZQ = (WQ,XQ, 1).

12



Now suppose that the prover and verifier compute a folded instance ¢ =
((F,A,B,C,m,n,t),(E,u, W,x), and suppose that the prover computes a witness
(E, W), using the procedure described in Construction 2. To prove completeness,
we must show that (E, W) is a satisfying witness for instance ¢. Let Z = (W, z, 1).

For (E,W) to be a satisfying witness, we must have

AZoBZ =u-CZ+E (1)
and

E = Com(ppg, E, i) (2)

W = Com(ppyy,, W,rw) (3)

It is easy to see that Equations (2) and (3) hold from the additive homomorphism
of the commitment scheme.

Thus, we focus on proving that Equation (1) also holds. By construction, for
Equation (1) to hold, we must have for r €g F

A(Zl +’I"'ZQ)OB(Zl —|—7“'Z2) = (Ul +’I"'U2) C(Zl +TZQ)—|—E
Distributing, we must have

AZyoBZ +1(AZy o BZy + AZy o BZy) +1%(AZy 0 AZy) =
uy - CZ; +7’(U1 - CZ, -I-UQCZl) +7‘2 cug - CZy + E.

Aggregating by powers of r, we must have

(AZ1 o BZ1 — U - CZl)+

7(AZ10BZy+ AZyo BZy —uq - CZy — 'LLQCZ1)+
TQ(AZQ (e} AZ2 —Uu - CZQ) =

E.

However, because W; and W5 are satisfying witnesses, we have

AZ1 9 BZl — U - CZl = E1
AZQ o AZ2 —Uus - CZQ = EQ.

Additionally, by construction we have
AZ1oBZy+ AZyoBZy —wuy - CZy —uy-CZy =1T.
Thus, by substitution, for Equation (4) to hold we must have
Ei+r-T+r*> Ey,=E,

which holds by construction.
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Lemma 4 (Knowledge Soundness). Construction 2 is a knowledge sound
folding scheme for committed relaxed R1CS.

Proof. Consider two committed relaxed R1CS instances with the same structure
and defined with respect to the same public parameters (ppg, ppy ):

¢1 = (([F7AaBaC7m7na 6)7 (Fhulanuxl))

¢2 = (([F7Aa Ba C7m7na 6)7 (E27U2,W2,X2))

We prove knowledge soundness via the forking lemma (Theorem 1). That is
we prove that there exists PPT X such that when given a tree of accepting
transcripts and corresponding folded instance-witness pairs outputs a satisfying
witness with probability 1 — negl(X).

Indeed, suppose X is provided three transcripts (71,72, 73), each of which
comes attached with some accepting witness (W, E, rw,rg). Let (11,72, r3) denote
the verifier’s random challenges in each of these transcripts. Interpolating points
(r1,71.W) and (re, 2. W), X retrieves Wi, Wy such that

Wi+r, Wo=1,W (5)

for i € {1,2}. Similarly interpolating points (r1,71.E), (ro, 72.E), (r3,73.E), X
retrieves E1, Fs and a cross-term 1" such that

E1—|—’I"i'T+Ti2'E2=Ti.E (6)

for i € {1,2,3}. Using the same approach X" can interpolate for ry,, rw, and
TRy, T, "'E,. We must argue that (W, By, rw,,rg,) and (Wa, Ea, rw,,TE,) are
indeed satisfying witnesses for ¢; and ¢- respectively.

We pick W, E, ry, rg, and r, from the first accepting transcript. We first
show that the retrieved witness elements are valid openings to the corresponding
commitments in the instance. Because W, ry is part of a satisfying witness, by
construction, we must have

Com(ppyy, Wi, rw, ) + r - Com(ppy, Wa, mw,)
= Com(ppy, W1 + 7 - Wa,rw, + 7 - rw,)

= Com(ppy, W, rw)

:Wl —|—7‘-W2.

Because r was chosen independently after W, and Wy were committed, we must
have that

Com(ppW, Wh TWI) = Wl
Com(ppW7 WQa TWQ) = W2

with probability 1 — negl(A).
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Similarly, because E,rg is part of a satisfying witness, by construction, we
must have
Com(ppg, B1,75,) + 1 - Com(ppg, T, 1) + r* - Com(ppg, B2, 7k,)
= Com(ppg, B1+7-T +7% Ey,rg, +1r-rp +7°-1g,)
= Com(ppg, E,7E)
= El —|— r- EQ.

Because r was chosen independently after Fq, T, and E5 were committed, we
have that

Com(PPE7 Ly, TEl) = E1

Com(ppE7E27rE1) = E2

with probability 1 — negl()).
Next, we must show that (Wi, Eq) and (W2, E3) satisty the relaxed R1CS
relation. Because (W, E) is part of a satisfying witness, we have

AZoBZ=u-CZ+FE
where Z = (W, z,1). However, by Equations (5) and (6) this implies that
A(Zl +7’~ZQ)OB(Z1+7"-Z2) =
(’LL1 +T"LL2) O(Zl +TZ2)+(E1 +’I"'T+T’2 EQ)

where Z; = (W;, z;,1). We observe that r was chosen independently and randomly
after commitments to Wy, Ws, E1, E5, and T were provided. Thus, by expanding
and applying the Schwartz-Zippel lemma, we must have with probability 1 —
negl(\)

AZ1 9 BZl = Uup - CZl +E1
AZ2 e} BZ2 = U - OZ2 + EQ.

Thus (W1, Er,rw,,rE,) and (Wa, Es, rw,, rg,) meet all the requirements to be
satisfying witnesses for ¢; and ¢- respectively. O

Lemma 5 (Honest-Verifier Zero-Knowledge). Construction 2 is an honest-
verifier zero-knowledge folding scheme for committed relaxed R1CS.

Proof. Intuitively, zero-knowledge holds because the prover only sends a single
hiding commitment. More formally, we construct a simulator as follows: Simulator
S samples random t € F™ and r € F and computes

T = Com(ppg,t,7). (7)

Next, S derives the verifier’s challenge, r, using p and outputs tr = (T, r).
(Perfect) zero-knowledge holds from the (perfect) hiding property of the underlying
commitment scheme. O
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As part of our construction of IVC from folding schemes, we require our
folding scheme for committed relaxed R1CS to be non-interactive.

Construction 3 (Non-Interactive Folding Scheme). Because the verifier
in our folding scheme for committed relaxed R1CS is public-coin, we can apply
the Fiat-Shamir transform [FS86]: The non-interactive prover only sends a
commitment to the cross term T to the verifier. Next, both the non-interactive
prover and the verifier hash their public inputs and T to simulate the verifier’s
challenge and complete the folding procedure.

6 Nova: IVC from Folding Schemes

In this section we present Nova, a zero-knowledge proof system for incremental
computations, where each incremental step is expressed with C-sized R1CS.

We first show how to achieve IVC from folding schemes for committed
relaxed R1CS (Construction 4), which when instantiated with the any additively-
homomorphic commitment scheme with succinct commitments and a circuit-
friendly hash function, achieves the claimed efficiency results (Lemma 8). At
each incremental step, the prover folds into a running C-sized committed relaxed
R1CS instance. At the end of the incremental computation, the “IVC proof” is
an NP witness to the running committed relaxed R1CS instance produced at the
final step of the incremental computation.

We then show that, at any incremental step or after the final step, Nova’s
prover can prove in zero-knowledge and with a succinct proof—using a variant
of an existing zkSNARK [Set20] adapted to handle committed relaxed R1CS
instances (Section 7)—that it knows a valid NP witness to the running committed
relaxed RICS instance (Construction 5). We note that Nova is not a zero-
knowledge IVC scheme (Definition 6), as that would additionally require that the
IVC proof itself be zero-knowledge. This difference is immaterial in the context
of a single prover, and we leave it to future work to achieve zero-knowledge IVC.

Constructing IVC from Folding. Recall that an incrementally verifiable
computation scheme allows a prover to show that z, = F((z) for some
application count n, initial input zp, and final output z,. We show how to
construct IVC for non-deterministic, polynomial-time computable function F
using our non-interactive folding scheme for committed relaxed R1CS (Construc-
tion 3). However, our folding scheme achieves non-interactivity in the random
oracle model using the Fiat-Shamir transform [FS86]. We must instantiate this
(heuristically) in the plain model using a hash function before we can construct
an IVC scheme. Similar transformations must be made in existing IVC/PCD
schemes [Val08, BGH19, COS20, BCL*20].

We first define polynomial-time function F’ (Figure 2) with private inputs and
public outputs, which, in addition to invoking F, performs additional bookkeeping
to preserve invariants required by IVC. Because F’ can be computed in polynomial-
time, it can be represented as a Relaxed R1CS instance. Under this observation,
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) --—-qd- """ e — o —— 20

u Zi---A----r- Zit1

Hy -1, iy

Ty —----11" F —— Ti+1
Check that NIFS.V: Fold Compute

[(i7Z0azi7Hi)77Ti} Hi+1 -

U -------- P
H; = hash(U) into U to get U’ hash(U’)

Fig. 2. Overview of our IVC recursion function F’. Dotted line indicates private inputs.
Solid line indicates public outputs. Bold line indicates proof of correct execution. Minor
checks and auxiliary inputs w; and T omitted. 7; represents the non-io portion of
instance u (i.e. (E,u, W)).

we achieve IVC by incrementally folding satisfying committed relaxed R1CS
partial instance-witness pairs for invocations of F’.

Construction 4 (IVC for Committed Relaxed R1CS). Let NIFS = (P, V)
be the non-interactive folding scheme for committed relaxed R1CS (Construc-
tion 3). Consider polynomial-time function F that takes non-deterministic input.

At a high level, we construct polynomial-time recursion function F’, repre-
sented as a committed relaxed R1CS instance with structure Sg.. On invocation
i1, F’ takes as input two partial instances u and U. Instance u represents the
correct execution of the last invocation of F/ with respect to Sp: (i.e. invocation
i —1). Instance U is a folded instance representing the correct execution of all
prior invocations of F (i.e. invocations 0,...,7 —2). The first instance contains z;
which F’ uses to output z;41 = F(z;). F’ additionally runs NIFS.V to fold its input
instances and output a new folded instance U’. The IVC prover then generates
a new instance u’ which represents the correct execution of invocation ¢ of F'.
Together (u’,U’) represent the input to the next invocation of F'.

To prevent progressively increasing public io sizes, we modify F’ such that
it only outputs the hash of the new folded instance, which the next invocation
of F' checks. F’ additionally keeps track of the initial input zg and invocation
count . For the base case, we define (L1, Lw) to be the trivially satisfying partial
instance-witness pair for Sp. (which can be computed via Lemma 2).

F(uU,T w) — x:

1. (i, 20, 2;, H;) < u.x, where u.x is the public io of u
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B if i =0
NIFS.V(u,U,T) otherwise

3. If i # 0, check that H; = hash(U) and (u.FE,u.u) = (0,1)
4. Output x + (i + 1, 20, F(24, w;), hash(U"))

Given function F/, we next describe a single incremental step for the IVC prover.
At a high level, in each step, the prover takes as input previous (satisfying)
instance for F/ and a folded instance along with the corresponding witnesses.
The prover then folds its inputs into a new folded instance-witness pair and
additionally outputs a new (satisfying) instance to be folded, which represents
a fresh invocation of F’. Assume, for notational simplicity, that the prover and
verifier globally have access to function F. We define the IVC prover P and
corresponding verifier V:

P(i,ZQ,Hi,wi) — Hi+1:
L. ((U,W), (an)) <~ Hi
2.

_ 11, Lw,0 ifi=20
(U/,W/,T) — I, W, 1117 .
NIFS.P((u,w), (U,W)) otherwise
3. Let (u',w’) be a satisfying committed relaxed R1CS instance-witness pair for
the computation F' on input (u,U,T,w;) with (E,u) = (0,1)
4. Output ;41 + (v, w'), (U, W)

V(n, zo, zn, ) = {0,1}:

((uyw), (U,W)) « IT,,.

If n =0 and (u.i,u.z9) = (0, 29) return 1

Check that u.x = (n, 2o, 2n, hash(U)) and (u.E, u.u) = (0,1)

Check (u,w) and (U, W) are satisfying committed R1CS instance-witness
pairs associated with function F’

Ll

Lemma 6 (Completeness). Construction 4 is an IVC scheme that satisfies
completeness.

Proof. Consider valid (F,i + 1, 29, 2;+1) and corresponding intermediate inputs
(2, w;) such that

Zi+1 — F(zi,wi)
Now consider valid proof II; such that

V(Z, 20, Zi)Hi) =1
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We must show that given

I 1 + P(i, 20, II;,w;)
that

V(@i+1, 20,20, 1) =1
with probability 1. We show this by induction on 1.

Base Case (i = 0): Suppose the prover is provided Iy such that

V(O, 20, 20, HO) =1.

By the verifier’s base case check, Ily can be arbitrary with the exception that
(Ho.u.i, H().U.Zo) = (0, ZQ).
Given that ITy meets these conditions, by the base case of P and F’ we have

I = ((u,w), (L1, Lw))

for some (u,w). By definition, the instance-witness pair (Ly, Lw) satisfies F'.
Moreover, in the base case when ¢ = 0, F performs no checks on its auxiliary
inputs, and thus (u, w) must also be satisfying. Additionally, in the base case we
have

u.x = (1, 20, F(20, wo), hash(0)).
Therefore we have

V(l,ZQ,Zl,Hl) =1.

Inductive Step (i > 0): Assume that for

11 = ((u,w), (U, W))
we have that
V(i, 20, 2z, II;) = 1
and suppose that
P(i, 20, [;,w;) = i1 = ((u', W), (U, W)).
By construction of P, we have that

U, W/, T = NIFS.P((u,w), (U, W)).
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Thus, by the correctness of the underlying folding scheme, and the premise
that (u,w), (U, W) satisfy F’, we have that (U’, W’) satisfies F’. Additionally, by
construction of P and the premise that

u.H; = hash(U)

we have that (u’,w’) satisfies F’ on input (u,U,T,w;). By construction, this
particular input implies that
u'.x = (u.i+ 1, u.20, F(z;,w;), hash(NIFS.V(u, U, T)))

8
= (u.z'—i-1,u.zo,zi+17hash(U’)) ( )

by the correctness of the underlying folding scheme. Thus by Equation (8) we
have

V(i+ 1,20, ziy1, ip1) = 1.
O

Lemma 7 (Knowledge Soundness). Construction 4 is an IVC scheme that
satisfies knowledge soundness.

Proof. Consider arbitrary PPT adversary P*. We must construct an extrac-
tor £ such that for all (F,n, 2q, z,) and input randomness p, can extract valid
(z1,. -+ 2n-1), (Wo, . ..,wn—1) nearly as successfully as P* can produce an accept-
ing proof. Indeed, suppose P* succeeds with probability € in producing II,, such
that

V(n, 20, 2n, ) = 1.

Initially, £ runs P* on input (F,n, 2o, z,,) to retrieve an accepting proof IT,, with
probability € — negl(\). With IT,, on hand, £ inductively proceeds as follows:

Inductive Step (¢ > 1): Suppose that £ has thus far extracted

II; = ((ulvwl)’ (U/7W/>)
such that
V(i,Zo,Zi,Hi) =1. (9)

We will show that £ can extract valid z;_1, w;—1, and IT;_;. Indeed, by the
inductive hypothesis (9), we have that (u’,w’) satisfies F’. Thus, using w’, £ can
retrieve u and w;_1 such that

u.zg = u'.zg (10)
ui=uig—-1 (11)
F(u.zi_l,wi_l) = U/-Zi (12)
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by the construction of F’. Thus, by Equation (12), we have that £ has extracted
valid z;_; and w;_1. Next, by the inductive hypothesis (9), we have

u’.H; = hash(U").

Thus, by the binding property of hash, and by the construction of F', £ can use
w; to retrieve U, T such that

U’ = NIFS.V(U,u,T) (13)
u.H;_; = hash(U). (14)

Once again, by the inductive hypothesis (9), we have that (U, W’) satisfies F'.
Therefore, by Equation (13), and the knowledge-soundness of the underlying
folding scheme, £ can extract w, W such that (u,w), and (U, W) satisfy F’ with
probability 1 — negl()). Additionally, by the inductive hypothesis, we have that
u.El = 0 which implies that w.E = 0 with overwhelming probability. Thus, by
Equations (10), (11), (12), (14), the extractor has extracted

Hifl = ((U7W)7 (UaW))
such that

V(i —1,20,zi-1,11;-1) = 1

Base Case (i = 1): Suppose that £ has extracted

I, = ((u/,w/), (U/vwl))
such that
V(l,ZO,ZhHl) =1. (15)

£ can retrieve some wy using w’. We must show that this wy is valid. Indeed, by
Equation (15) we have that (u’,w’) satisfies F’. This implies that

ui=1

and thus implies that u’.s — 1 = 0 was provided as input to F’. Therefore, by the
base case of F/, we have

F(zo,wo) = u'.21
with probability 1 — negl(A). Thus, the retrieved wyq is valid.

Therefore, £ can extracted valid (z1,...,2p-1), (wo,...,w,—1) with probabil-
ity € — negl(\). O
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Lemma 8 (Efficiency). Instantiated with a commitment scheme for vectors
over F with succinct commitments, O(|F'|) = O(|F|). Assuming |hash| < G, we
have that

|F'|~|F|+2-G

where G is the number of relaxed rank-1 constraints required to encode a group
scalar multiplication.

Proof. The number of constraints needed to encode the additional work performed
by F’ is dominated by the scalar multiplications performed by NIFS.V. On input
instances u and U, NIFS.V must compute

E«UE+7r-T+7r* uFE
W« UW+r -uW

However, we observe that, by construction, u.E = 0. Thus the verifier’s work is
dominated by 2 scalar multiplications, as it does not need to compute u.E. O

In practice, the prover may not want to send the final IVC proof in plain. We
show how the prover can use a zero-knowledge argument for committed relaxed
R1CS (Section 7) to prove that it possesses a valid IVC proof without revealing
the associated witness.

Construction 5 (Zero-Knowledge Argument of Valid IVC Proof). As-
sume a non-interactive zero-knowledge argument of knowledge (NIZK) for com-
mitted relaxed R1CS, NIZK = (P, V). That is, given a committed relaxed R1CS
instance of size IV, NIZK.P can convince NIZK.V in zero-knowledge and with a
succinet proof (e.g., Oy (log N)-sized proof) that it knows a satisfying witness.

Now suppose at the end of n iterations, the IVC prover outputs proof
II = ((u,w), (U, W)). We construct prover P, that can convince correspond-
ing verifier V that it possesses valid witnesses for instances u and U. At a high
level, we take advantage of the fact that IT is simply two committed relaxed
R1CS instance-witness pairs: P first folds instance-witness pairs (u,w) and (U, W)
to produce folded instance-witness pair (U, W’), using NIFS.P. Next, P runs
NIZK.P to prove that it knows a valid witness for U’. In more detail:

P(I) —m
( 5\
(v, W’) ) <+ NIFS.P((u,w), (U,W)) // fold the two instances in II

my = NIZK.P(U',W’) // run NIZK.P to produce a succinct ZK proof
4. Output (u, U, T, my)

)
L ((u,w), (UW)) < IT
2. ((

3.

V(n, 29, zn,m) — {0,1}:

L (uUT,my) 7
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2. Check that u and U are well-formed:

u.H; = hash(U)

. ?
(u.i,u.20,u.2;) = (n, 20, 2n)

3. U «+ NIFS.V(u,U,T) // fold u and U
4. NIZKV (V' 7y) <1 // check the succinct ZK proof with NIZK.V

7 A zkSNARK for Committed Relaxed R1CS

This section presents a zkSNARK for NP relations expressed with committed
relaxed R1CS. To achieve this, we adapt Spartan [Set20]. We build on techniques
from Spartan [Set20] to avoid FFTs and a trusted setup.

To construct a zkSNARK for committed relaxed R1CS, we first observe
that there is a corresponding indexed relation indexed relaxed R1CS; we then
devise a polynomial IOP for indexed relaxed R1CS; we then then apply existing
transformations to transform it into a zkSNARK for committed relaxed R1CS.

7.1 Background
This subsection is adapted from prior work [Set20, Tha20,LSTW21].

Polynomials. We recall a few basic facts about polynomials.

— A polynomial g over F is an expression consisting of a sum of monomials
where each monomial is the product of a constant and powers of one or more
variables; all arithmetic is performed over F.

— The degree of a monomial is the sum of the exponents of variables in the
monomial; the (total) degree of a polynomial g is the maximum degree of
any monomial in g. Furthermore, the degree of a polynomial g in a particular
variable x; is the maximum exponent that x; takes in any ¢g’s monomials.

— A multivariate polynomial is a polynomial with more than one variable. A
multivariate polynomial is called a multilinear polynomial if the degree of
the polynomial in each variable is at most one.

— A multivariate polynomial g over a finite field F is called low-degree if the
degree of g in each variable is bounded above by a constant.

Definition 13. Suppose f : {0,1}* — F is a function that maps £-bit strings to
an element of F. A polynomial extension of f is a low-degree £-variate polynomial

f() such that f(z) = f(z) for all x € {0,1}*.

Definition 14. A multilinear extension (MLE) of a function f : {0,1}* — F is
a low-degree polynomial extension where the extension is a multilinear polynomial.

It is well-known that every function f : {0,1}* — F has a unique multilinear
extension, and similarly every ¢-variate multilinear polynomial of F extends a
unique function mapping {0,1}* — F . In the rest of the document, for a function
f, we use fto denote the unique MLE of f.

23



The sum-check protocol. The sum-check protocol [LFKN90] is an interactive
proof system for proving claims of the form: T' = 216{071}4 G(zx), where G is
{-variate polynomial over F with the degree in each variable at most u, and
T € F. In the sum-check protocol, the verifier Vg interacts with the prover Pse
over a sequence of £ rounds. At the end of this interaction, Vgc must evaluate
G(r) where r € F is chosen by Vsc over the course of the sum-check protocol.
Other than evaluating G(r), Vsc performs O(¢ - ) field operations. As in prior
work, we view the sum-check protocol as a mechanism to transform claims of the
form }° cio1ym G(@) Z T to the claim G(r) < e, where e € F. This is because
in most cases, the verifier uses an auxiliary protocol to verify the latter claim.

7.2 Indexed relation associated with Committed Relaxed R1CS

Recall that a relation R is a set of tuples (x,w), where x is the instance and
w is the witness. We consider a generalized notion of relations called indezred
relations, which are implicit in [Set20] but formalized in [COS20]. An indexed
relation R is a set of triples (I, x,w), where [ is the index, x is the instance, and
w is the witness.

For a committed relaxed R1CS instance, ¢ = ((F, A, B, C,m,n,{), (E,u, W,x)),
defined with respect to two sets of public parameters (ppg, ppy) produced from
a commitment scheme for vectors over F of lengths (m,m — ¢ — 1), there is a
natural indexed relation that we refer to as indexed relaxed R1CS.

Definition 15 (Indexed Relaxed R1CS). An indexed relaxed R1CS instance
is a tuple (I,x), where | = (Iy,Ip), Iy = (F, A, B,C,m,n,{), lp = (E,W), x € F*
is the public input and output of the instance, E € F™, v € F,W € F {1,
A,B,C € F™*™ m > |x| + 1, and there are at most n = £2(m) non-zero entries
i each matriz.

An indexed relaxed R1CS instance (((F, A, B,C,m,n,¢),(E,W)), (u,x)) is
satisfiable if: (A-Z)o(B-Z)=u-(C-Z)+ E, where Z = (W,x,1).

7.3 A polynomial IOP for Indexed Relaxed R1CS

Our exposition below is based on Spartan [Set20] and its recent recapitula-
tion [LSTW21]. The theorem below and its proof is a verbatim adaptation of
Spartan’s polynomial IOP for indexed R1CS to indexed relaxed R1CS.

Recall that an interactive proof (IP) [GMRS85] for a relation R is an interactive
protocol between a prover and a verifier where the prover proves the knowledge
of a witness w for an instance x such that (x,w) € R. An interactive oracle proof
(IOP) [BCS16,RRR16] generalizes interactive proofs where in each round the
prover sends an oracle (e.g., a string) and the verifier may query the prover’s
oracle. A polynomial IOP [BFS20] is an IOP except for: (1) the prover’s message
in each round ¢ consists of a message that the verifier reads in entirety, followed
optionally by a polynomial g; over F; and (2) a verifier may request an evaluation
of g; at a point in its domain.
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For an indexed relaxed R1CS instance (I, x), where | = ((F, 4, B,C,m,n, (), (E,W))
and x = (u,x), we interpret the matrices A, B,C as functions with signature
{0,1}°8™ x {0,1}!°6™ — F in a natural manner. In other words, an input in
{0, 1} M » {0, 1}1°8™ is interpreted as the binary representation of an index
(i,7) € [m] x [m], where [m] :={1,...,m} and the function outputs the (i, j)’th
entry of the matrix. Furthermore, let g, B , C denote multilinear extensions of
A, B, C interpreted as functions, so they are 2log m-variate sparse multilinear
polynomials of size n.

Similarly, we interpret £ and W as functions with respective signatures:
{0,1}°e™ — F and {0,1}°¢™~1 — F. Furthermore, let £ and W denote the
multilinear extensions of E and W interpreted as functions, so they are multilinear
polynomials in logm and logm — 1 variables respectively.

Theorem 2. There exists a polynomial IOP for indexed relaxzed R1CS defined
over a finite field F, with the following parameters, where m denotes the dimension
of the R1CS coefficient matrices, and n denotes the number of non-zero entries
in the matrices:

— soundness error is O(logm)/|F]|

- round complezity is O(logm);

— the verifier has a query access to a (logm) — 1-variate multilinear polynomial
W and a log m-variate multilinear polynomsial E; the verifier also has a query
access to three 21log m-variate multilinear polynomials of size n g, E, QN;
otherwise performs O(logm) operations over F;

— the prover performs O(n) operations over F to compute its messages in the

Proof. Let s = log'm. For an indexed relaxed R1CS instance,
¢ = (((F,A B,C,m,n,{),(E,W)), (u,x)),

let Z = (W, 1,x). Similar to interpreting matrices as functions, we interpret Z
and (1,x) as functions with the following respective signatures: {0,1}* — F and

{0,1}571 — F. Observe that the MLE Z of Z satisfies

~ — —

Z(Xl, . ~;Xlogm) = (]. — Xl) . W(XQ,. . ~;Xlogm) +X1 . (].,X)(XQ, e 7Xlogm)
(16)

Similar to [Set20, Theorem 4.1], checking if ¢ is satisfiable is equivalent, except
for a soundness error of logm/|F| over the choice of 7 € F?, to checking if the
following identity holds:

0= 3 &(ra) Fla), (17)

x€{0,1}*
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where

Fa)y=| Y A@y- 2| -| >, By Zw) |-

ye{0,1}¢ yefo,1}+

y€{0,1}+

and eq is the multilinear extension of eq : {0,1}® x {0,1}* — F:

eq(z,¢) 1 ifz=e¢
T, e) = ]
a 0 otherwise.

That is, if ¢ is satisfiable, then Equation (17) holds with probability 1 over
the choice of 7, and if not, then Equation (17) holds with probability at most
O(logm/|F|) over the random choice of 7.

To compute the RHS in Equation (17), the prover and the verifier can apply
the sum-check protocol to the following polynomial:

g(x) = eq(7,x) - F(z)

From the verifier’s perspective, this reduces the task of computing the right hand
side of Equation (17) to the task of evaluating g at a random input r, € F*. Note
that the verifier can locally evaluate eq(7,r,) in O(logm) field operations via
eq(r,7:) = [[i; (Tirwi + (1 — ) (1 — 74,)). With eq(7,7;) in hand, g(r;) can
be computed in O(1) time given the four quantities: >° o 1y: A(r2,y) - Z(y),

Eye{o,l}s E(T:m y) - Z(y)a Zye{o,1}s 5(Tm7y) : 2(9)7 and E(%)

The last quantity can be computed with a single query to polynomial E.
Furthermore, the first three quantities can be computed by applying the sum-
check protocol three more times in parallel, once to each of the following three
polynomials (using the same random vector of field elements, r, € F*, in each of
the three invocations):

Alrasy) - Z(y),

B(re,y) - Z(y),

Clrasy) - Z(y).

To perform the verifier’s final check in each of these three invocations of the
sum-check protocol, it suffices for the verifier to evaluate each of the above 3
polynomials at the random vector r,, which means it suffices for the verifier to

evaluate ﬁ(rx,ry), E(rz,ry), 5(7"1;,7"9)7 and Z(ry) The first three evaluations
can be obtained via the verifier’s assumed query access to A, B, and C. Z(r)

can be obtained from one query to W and one query to (1,x) via Equation (16).
In summary, we have the following polynomial IOP.
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Construction 6 (Polynomial IOP for Indexed Relaxed R1CS). The
verifier V holds the instance x = (F, A, B,C, m,n, ¢, u, z) and has a query access
to an index | = (E, W). The prover is given as input both (I, x).

LY —=P:rerlF?

2. V 4> P: run the sum-check reduction to reduce the check in Equation (17)
to checking if the following hold, where r,,r, are vectors in F* chosen at
random by the verifier over the course of the sum-check protocol:

— Z(m,ry) Z VA, E(ri,ry) . vg, and 5(rz,ry) z Vo

— E(ry) 2 vp; and
= ?

- Z(ry) =vgz.

3. V: _ . _ ) _ .

— check if A(ry,ry) =va, B(ry,ry) = vp, and C(ry, ry) = ve, with a query
to A, B,C at (rg,1y);

— check if E(r,) < v with an oracle query to E; and

— check if Z(ry) . vz by checking if: vz = (1 — ry[1]) - vw + ry[1] -

—

(x,1)(ry[2..]), where 7, [2..] refers to a slice of r,, without the first element
of ry, and vy < W(ry[2..]) via an oracle query (see Equation (16)).

Completeness. Perfect completeness follows from perfect completeness of the
sum-check protocol and the fact that Equation (17) holds with probability 1 over
the choice of 7 if ¢ is satisfiable.

Soundness. Applying a standard union bound to the soundness error introduced
by probabilistic check in Equation (17) with the soundness error of the sum-
check protocol [LFKN90], we conclude that the soundness error for the depicted
polynomial IOP as at most O(logm)/|F|.

Round and communication complexity. The sum-check protocol is applied
4 times (although 3 of the invocations occur in parallel and in practice combined
into one [Set20]). In each invocation, the polynomial to which the sum-check
protocol is applied has degree at most 3 in each variable, and the number of
variables is s = logm. Hence, the round complexity of the polynomial IOP is
O(logm). Since each polynomial has degree at most 3 in each variable, the total
communication cost is O(log m) field elements.

Verifier time. The asserted bounds on the verifier’s runtime are immediate
from the verifier’s runtime in the sum-check protocol, and the fact that eq can
be evaluated at any input (7,7,) € F2* in O(logm) field operations.

Prover Time. As in Spartan [Set20], the prover’s computation in the poly-
nomial IOP in O(n) operations over F using prior techniques for linear-time
sum-checks [Thal3, XZZ19]. This includes the time required to compute E(r,),
V[N/(ry), A, B, and C. O
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7.4 Compiling polynomial IOPs to zkSNARKs

As in prior works [Set20, BES20, CHM™20], we compile the polynomial IOP into
a zkSNARK using a polynomial commitment scheme.

Interpreting commitments to vectors as polynomial commitments. It is

well known that commitments to m-sized vectors over F are commitments to log m-

variate multilinear polynomials represented with evaluations over {0, 1} [ZGK 17,
WTST18,Set20, Lee20]. Furthermore, there is a polynomial commitment scheme

for log m-variate multilinear polynomials if there exists an argument protocol

to prove an inner product computation between a committed vector and an

m-sized public vector ((r1,1 —7r1) ®...® (Togm, 1 — Tlogm)), where r € Flogm ig

an evaluation point. There are two candidate constructions in the literature.

1. PCgp. If the commitment scheme for vectors over [ is Pedersen’s commit-
ments (Construction 1), as in prior work [WTS*18], Bulletproofs [BBBT18]
provides a suitable inner product argument protocol. The polynomial commit-
ment scheme here achieves the following efficiency characteristics, assuming
the hardness of the discrete logarithm problem. For a log m-variate multi-
linear polynomial, committing takes Oy (m) time to produce an Oy (1)-sized
commitment; the prover incurs Oy (m) costs to produce an evaluation proof
of size O (logm) that can be verified in Oy(m). Note that PCgp is a special
case of Hyrax’s polynomial commitment scheme [WTST18].

2. PCpory. If vectors over F are committed with a two-tiered “matrix” com-
mitment (see for example, [BMMV19, Lee20]), which provides O, (1)-sized
commitments to N-sized vectors under the SXDH assumption. With this
commitment scheme, Dory [Lee20] provides the necessary inner product
argument. The polynomial commitment here achieves the following efficiency
characteristics, assuming the hardness of SXDH. For a log m-variate multi-
linear polynomial, committing takes Ox(m) time to produce an Oy(1)-sized
commitment; the prover incurs Oy (m) costs to produce an evaluation proof
of size Oy (log m) that can be verified in Oy (logm).

Note that the primary difference between two schemes is in the verifier’s time.

Theorem 3. Assuming the hardness of the discrete logarithm problem, there
exists a non-interactive zero-knowledge argument of knowledge for indexed relaxed
R1CS with the following efficiency characteristics, where m denotes the dimen-
sions of the R1CS coefficient matrices and n denotes the number of non-zero
entries in the matrices.

— The verifier’s preprocessing time is Ox(n);
The prover’s preprocessing time is Ox(m);
The prover runs in time Ox(n);

— The proof length is Oy(logn); and

— The verifier runs in time Ox(n).
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Proof. Applying the compiler of [BFS20] to the polynomial IOP from Construc-
tion 6 using PCgp provides a public-coin interactive argument of knowledge
for committed relaxed R1CS. Applying standard transformations to the result-
ing interactive argument provide zero-knowledge [CD98, WTS™ 18, Set20] and
non-interactivity [FS86].

The claimed efficiency follows from the efficiency of the polynomial IOP and
PCgp. In more detail:

Preprocessing costs. In an indexed relaxed R1CS instance, the index [ =
(Iy,0p). The verifier runs the indexer on [, and the prover runs the indexer
on Ip. Ip consists of two O(log m)-variate multilinear polynomials, so creating
commitments to using PCgp incurs Oy(m) costs. I, consists of three 2logm-
variate sparse multilinear polynomials of size n. Using the SPARK compiler [Set20]
(and its optimization [SL20]) applied to PCgp, creating commitments to three
polynomials in its index requires Ox(n) costs to the verifier.

Online costs. The prover’s costs to participate in the polynomial IOP is O(n).
To prove evaluations of two O(logm)-variate multilinear polynomials, it takes
Ox(m) time, and to prove evaluations of three 2log m-variate sparse multilinear
polynomials of size n, using the SPARK compiler (and its optimization [SL20])
applied to PCgp, it takes Oy(n) time. In total, the prover time is Oy(n).

The proof length in the polynomial IOP is O(logm), and the proof sizes in
the polynomial evaluation proofs is Oy (logn), so the proof length is Oy (logn).

The verifier’s time in the polynomial IOP is O(logm). In addition, it verifies
five polynomial evaluations, which costs Ox(n) (the two polynomial in the prover’s
index take Oy (m) and the two polynomials in the verifier’s index takes Oy(n)
using the SPARK compiler along with its optimization [SL20] applied to PCgp).
So, in total, the verifier time is Oy(n). O

Optimization. In Theorem 3, the verifier preprocesses three sparse multilinear
polynomials of size n. In PCgp, given that the verifier’s runtime to verify an
evaluation is at least linear in the polynomial size, the verifier does not gain from
preprocessing [y,. Avoiding this preprocessing step not only simplifies the protocol
(since one does not need a polynomial commitment scheme for sparse multilinear
polynomials), it also improves costs, both asymptotically and concretely.
Furthermore, when transforming a polynomial IOP for indexed relaxed R1CS
to an interactive argument using a polynomial commitment scheme (as we
do so later in the section), we obtain an interactive argument for committed
relaxed R1CS since the polynomials in Ip appear in the instance as (polynomial)
commitments and the polynomials in Iy, appear in the instance as polynomials.

Corollary 1. Assuming the hardness of the discrete logarithm problem, there
exists a mon-interactive zero-knowledge argument of knowledge for committed
relaxed R1CS with the following efficiency characteristics, where m denotes the
dimensions of the R1CS coefficient matrices and n denotes the number of non-zero
entries in the matrices.
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The prover’s preprocessing time is Ox(m);
The prover runs in time O(n) + Ox(m);
The proof length is Ox(logm); and

The verifier runs in time n + Ox(m).

The proof of the following theorem is identical to the proof of Theorem 3,
with analysis adjusted to use PCpgr, instead of PCgp.

Theorem 4. Assuming the hardness of the SXDH problem, there exists a non-
interactive zero-knowledge argument of knowledge for indexed relaxed R1CS with
the following efficiency characteristics, where m denotes the dimensions of the
R1CS coefficient matrices and n denotes the number of non-zero entries in the
matrices.

— The verifier’s preprocessing time is Ox(n);
— The prover’s preprocessing time is Ox(m);
— The prover runs in time Ox(n);

— The proof length is Ox(logn); and

— The verifier runs in time Oy (logn);

Proof. Applying the compiler of [BFS20] to the polynomial IOP from Construc-
tion 6 using PCper, provides a public-coin interactive argument of knowledge
for committed relaxed R1CS. Applying standard transformations to the result-
ing interactive argument provide zero-knowledge [CD98, WTS™ 18, Set20] and
non-interactivity [FS86].

The claimed efficiency follows from the efficiency of the polynomial IOP and
PCpory. In more detail:

Preprocessing costs. In an indexed relaxed R1CS instance, the index [ =
(Iy,0p). The verifier runs the indexer on [, and the prover runs the indexer
on Ip. Ip consists of two O(log m)-variate multilinear polynomials, so creating
commitments to using PCpory incurs Oy (m) costs. Iy, consists of three 2logm-
variate sparse multilinear polynomials of size n. Using the SPARK compiler [Set20]
(and its optimization [SL20]) applied to PCpey, creating commitments to three
polynomials in its index requires Ox(n) costs to the verifier.

Online costs. The prover’s costs to participate in the polynomial IOP is O(n).
To prove evaluations of two O(logm)-variate multilinear polynomials, it takes
Ox(m) time, and to prove evaluations of three 2log m-variate sparse multilinear
polynomials of size n, using the SPARK compiler (and its optimization [SL20])
applied to PCpery, it takes Ox(n) time. In total, the prover time is Ox(n).

The proof length in the polynomial IOP is O(logm), and the proof sizes in
the polynomial evaluation proofs is Oy (logn), so the proof length is Oy (logn).

The verifier’s time in the polynomial IOP is O(logm). In addition, it verifies
five polynomial evaluations, which costs O (logn) (the two polynomial in the
prover’s index take Oy (logm) and the two polynomials in the verifier’s index
takes Oy (logn) using the SPARK compiler along with its optimization [SL20]
applied to PCpery). So, in total, the verifier time is O (logn). O
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Supplementary Materials

A Proof of Theorem 1 (Forking Lemma for Folding
Schemes)

The proof for our variant of the forking lemma closely follows that of Bootle et
al. [BCCT16]. We present a simplified version of the proof below adapted for
folding schemes.

Proof. Consider (21 4 1)-move folding scheme (P, V) for relation R with ran-
domness sampled uniformly from F where |F| > 2*. Suppose there exists PPT
X such that for arbitrary inputs wy, us, outputs satisfying witness wq, wo with
probability 1 — negl(\), given an (n1,...,n,)-tree of accepting transcripts and
corresponding folded instance-witness pairs where []%_ | n;. Consider arbitrary
prover P* and let € be the probability that, on inputs wy, us, P* succeeds in
producing a valid witness w for folded instance u. To prove that (P, V) satisfies
knowledge-soundness we will show that there exists extractor £ that outputs
valid witness wy,ws given input instance ug, us and prover randomness p with
probability € — negl(X).
We first construct extractor £ as follows:

g(ulau27p) — (w17w2):

1. Compute tree + T'(1).

2. If tree is not a valid (n1,...,n,)-tree (i.e. there are collisions in the verifier’s
randomness) return L.

3. Output (wy,ws) < X (uq,uz, tree).

where the function 7" is defined as follows:
T (i) — tree:

1. Sample the verifier’'s randomness for round i, ;.
2. If i = p+ 1, compute

(u7 w) — <P* (), V> (u1,us2)

and let tr be the corresponding transcript. If (u, w) € R, output {(tr, (u,w))}.
Otherwise output L.

3. With fixed verifier randomness (r1,...,r;), compute tree < 7 (i + 1) once. If
tree = | output L.

4. With fixed verifier randomness (ry,...,r;), repeatedly run T(i 4+ 1) until
n; — 1 additional lists of accepting transcripts are acquired. Append all the
results to tree.

5. Output tree.
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Let E; denote the event that 7 (1) outputs tree # L in less than T time steps
(we will specify T later). Given E1, let E5 denote the event that the resulting tree
is a valid (n1,...,n,)-tree (i.e. there are no collisions in the verifier’s randomness).
Given Fp and Es, let F3 denote the event that X' succeeds with tree as input.
Then, we have that £ succeeds with probability

Pg =Pr [Eg] - Pr [EQ} - Pr [El]

We will compute each of these probabilities. To compute Pr[E;], we start by
observing that T'(1) fails (i.e. returns L) only when its first call to T'(2) fails.
Likewise T'(2) fails only when its first call to T'(3) fails. Chaining these assertions,
we have that T'(1) fails with probability (1 — €), which, by assumption, is the
probability that T'(p 4+ 1) fails Thus, the expected number of times T'(¢) calls
T(i+1) is

. . (ni —1)
1+ Pr[First call to T(i + 1 ds] -

+ Pr[First call to T(i + 1) succeeds| Pr[T(i + 1) returns tree # 1]
(ni —1)

€

=1+4e€-
= Ny.

Hence, the total runtime is expected to be ¢ = O(]]/_; n;) which is bounded
above by poly(A) by assumption. Moreover, by Markov’s inequality, we have that
T runs for time longer than T' > t with probability % Thus we have that

Pr[Ey] = (1 — %) e

Given E7 we have that 7 runs in at most T time-steps. This ensures that there are

at most T" random challenges produced for the verifier, and that the probability
2

of collision is at most ‘%. Thus we have that

T2

PI"[EQ] =1—-—
IF|
Finally, given F; and E,, we have that Pr[E3] = (1 — negl()\)) by assumption.
Consolidating our calculations we have that £ succeeds with probability
1?2 t
Pe = (1 — negl(\ -(1ff).(1ff).
& ( neg( )) |[F| T €

Setting T' = {/|F| (and assuming that T' > ¢) we have that

1 t
Pg:(l—negl()\))-(1—ﬁ)-(1—ﬁ)-6

= ¢ —negl()\)
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