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Abstract. Given 2n-to-n compression functions h1, h2, h3, we build a
new 5n-to-n compression function T5, using only 3 compression calls:

T5(m1,m2,m3,m4,m5) := h3(h1(m1,m2)⊕m5, h2(m3,m4)⊕m5)⊕m5

We prove that this construction matches Stam’s bound, by providing
Õ(q2/2n) collision security and O(q3/22n + nq/2n) preimage security
(the latter term dominates in the region of interest, when q < 2n/2). In
particular, it provides birthday security for hashing 5 inputs using three
2n-to-n compression calls, instead of only 4 inputs in prior constructions.

Thus, we get a sequential variant of the Merkle-Damg̊ard (MD) hash-
ing, where t message blocks are hashed using only 3t/4 calls to the 2n-
to-n compression functions; a 25% saving over traditional hash function
constructions. This time reduces to t/4 (resp. t/2) sequential calls using
3 (resp. 2) parallel execution units; saving a factor of 4 (resp. 2) over the
traditional MD-hashing, where parallelism does not help to process one
message.

We also get a novel variant of a Merkle tree, where t message blocks
can be processed using 0.75(t− 1) compression function calls and depth
0.86 log2 t, thereby saving 25% in the number of calls and 14% in the
update time over Merkle trees. We provide two modes for a local opening
of a particular message block: conservative and aggressive. The former
retains the birthday security, but provides longer proofs and local verifi-
cation time than the traditional Merkle tree.

For the aggressive variant, we reduce the proof length to a 29% over-
head compared to Merkle trees (1.29 log2 t vs log2 t), but the verification
time is now 14% faster (0.86 log2 t vs log2 t). However, birthday security
is only shown under a plausible conjecture related to the 3-XOR prob-
lem, and only for the (common, but not universal) setting where the root
of the Merkle tree is known to correspond to a valid t-block message.

1 Introduction

A fundamental problem in cryptography is the construction of a hash func-
tion using idealized building blocks. A natural way to approach this problem is



to use λn-to-n-bit compression functions. Two well-known and widely-deployed
constructions follow this approach:

– the Merkle-Damg̊ard construction [10, 18], a sequential construction that is
used in hash functions such as MD5, SHA-1 and SHA-2, and

– the Merkle tree [17], a parallel construction used in hash-based signatures (of
interest due to their post-quantum security), version control systems such as
git, and cryptocurrencies such as Ethereum.

The collision resistance of the Merkle-Damg̊ard construction and the Merkle
tree can be proven, based on the collision-resistance of the compression functions.
The number of compression function calls is (essentially) the same for both
constructions. For example, setting λ = 2, which is the focus of this work,5 they
both process t message blocks using t and (t − 1) compression function calls,
respectively.

m1 m2 m3 m4

h1 h2

h3

m5

Fig. 1. The T5 construction with five message blocks m1,m2,m3,m4,m5 and three
compression function calls.

New Compression Function T5. In this paper, we introduce the T5 con-
struction (see Fig. 1) that processes five message blocks using three 2n-to-n-bit
compression function calls, thereby improving over the state-of-the-art of Merkle-
Damg̊ard (with IV counted as message block) and Merkle trees by processing
an additional message block with the same number of compression function calls
and essentially the same level of collision security.

Although T5 is of independent theoretical interest to the construction of a
compression function, we will also investigate Merkle-Damg̊ard and Merkle trees
when instantiated with T5.

5 Without loss of generality, all our results easily generalize to any λ ≥ 2.
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T5 with Merkle-Damg̊ard. Our variant of the Merkle-Damg̊ard construc-
tion, depicted in Figure 4, processes t message blocks using 3t/4 calls to the
2n-to-n compression functions. If the chaining value is provided as m5 in T5,
then h1 and h2 can not only be computed in parallel, but independently of the
chaining value. This allows a fully parallel implementation of h1, h2, and h3

(with h3 “one-round behind”), which is four times faster than MD which re-
quires four sequential compression function calls to process a single input of the
same length.

T5 with Merkle Trees. For our variant of Merkle trees, depicted in Figure 5,
we will consider how they are often used in practice: for proof-of-inclusion of data
in a larger set.

A full opening of a Merkle tree corresponds to the list of all message blocks,
which can be used to verify that the message corresponds to a given hash value.
An advantage of Merkle trees is it is possible to provide a local opening : to
verify that one message block belongs to the tree, it suffices to provide a list of
compression function outputs that is proportional to the depth of the tree.

These two types of openings give rise to three different notions of collision
resistance for trees:

– full-full collision resistance, the “traditional” notion that requires finding
two distinct messages that result in the same hash value,

– local-local collision resistance, where the goal is to find two local openings
with the same hash value,

– full-local collision resistance, the setting of finding a collision between a full
tree and a local opening.

The full-local setting is relevant in the common scenario where a hash value
is honestly computed, but the proof is composed by an untrusted party. This
happens, for example, when a user sends a message to a cloud server after hashing
it, and then later wants to retrieve some message block from the server. Another
natural application is the Merkle accumulator, where a protocol accumulates
message blocks using a Merkle tree, and later parties provide proofs that a
message block is in the tree.

Standard Merkle trees provide the same level of security under all three
notions of collision resistance, and the same holds for our Merkle tree variant
using T5 if all four siblings are opened. In this case, our variant of the Merkle
tree will process t message blocks using 0.75(t− 1) instead of t− 1 compression
function calls, and depth 0.86 log2 t instead of log2 t. Due to the need to open
four siblings, the opening proof will increase from log2 t to 1.72 log2 t, and the
verification time increases as well from log2 t to 1.29 log2 t

However, we also propose aggressive variant of our construction that only
opens three siblings. See Figure 3. When this saving of one element for T5 is
translated to the whole Merkle tree, one gets a smaller local opening proof of
1.29 log2 t, and a shorter verification time of 0.86 log2 t. We prove that this more
aggressive variant nevertheless provides the same full-local collision resistance,
under a conjecture related to the 3-XOR problem. For local-local collision resis-
tance, we prove security up to 2n/3 under a conjecture related to the 4-XOR
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problem. The k-XOR problem is the subject of the well-studied generalized
birthday problem by Wagner [31], and used in proof-of work algorithms such
as Equihash. A full comparison of these three constructions will be given in
Table 1 of Section 7.2.

Our Results for T5. We prove the following security results for T5 in terms
of adversarial advantage after q queries to the inner compression functions, and
provide matching attacks in Section 8:6

– q2/2n collision resistance, i.e., full-full collision resistance (CR) security (The-
orem 1);

– q3/22n + q/2n preimage resistance (Theorem 2).
– q2/2n full-local CR security under a conjecture related to the 3-XOR problem

(Proposition 1);
– q3/2n full-local CR security unconditionally, i.e., 128-bit security for n = 384

(Theorem 3);
– q3/2n local-local CR security under a conjecture related to the 4-XOR prob-

lem (Proposition 2);
– q4/2n local-local CR security unconditionally, i.e., 128-bit security for n =

512 (Theorem 3).

These results almost immediately imply corresponding security claims for our
Merkle-Damg̊ard variant (see Section 6) and our Merkle tree variant (see Sec-
tion 7 and Table 1).

2 Related Work

The design of a hash function is usually based on one or more primitives with
fixed-length inputs and outputs. Historically, the most common choice for these
primitives were block ciphers. This gives rise to the following question: how can
we construct a hash function with the minimum number of block cipher calls?

This question motivated a significant research effort into efficient block-
cipher-based hash function constructions. Block ciphers such as Triple-DES and
AES have a block size of 64 and 128 bits respectively, which may not pro-
vide sufficient collision security when used in the Merkle-Damg̊ard construction.
Therefore, one line of work focuses on combining smaller primitives to produce
a wider hash function. Results of interest include the Knudsen-Preneel construc-
tion based on linear error correcting codes [15], and a double-length construction
by Nandi et al. [20] that was generalized by Peyrin et al. [24], and by Seurin and
Peyrin [26], which interestingly also links the security to a conjecture related to
the 3-sum problem.

A related line of research attempted to improve upon the Merkle-Damg̊ard
construction to process additional message blocks. A brief overview of some
constructions and an impossibility result was given by Black et al. [6, 7]. More

6 For simplicity of reading, we only list dominant terms, and ignore constant and even
small poly(n) factors; i.e., omit Õ notation below.
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specifically, they considered hash functions that make one block cipher call (un-
der a small set of keys) for each message block to be hashed, and showed that
all such constructions are vulnerable to a simple attack.

This work was later generalized by Rogaway and Steinberger [25], and refined
in subsequent papers by Stam [27], and by Steinberger et al. [28,29]. This result,
commonly known as “Stam’s bound,” puts a limit on the efficiency (in terms of
primitive calls) of any secure hash function construction.

Stam’s bound states that there always exists a collision attack and a preimage
attack with at most 2n(λ−(t−0.5)/r) and 2n(λ−(t−1)/r) queries respectively on a
tn-to-n-bit hash function making r calls to λn-to-n-bit compression functions.
We have t = 5, λ = 2, and r = 3 in the case of T5, thereby showing that we
cannot hope to do better than 2n/2 collision and 22n/3 preimage security.

As explained by Stam [27], the bound applies to hash functions that satisfy
the uniformity assumption, and applies to cryptographic permutations (λ = 1)
as well as compressing primitives (λ ≥ 1). However, the main focus of this line
of work had been on combining smaller non-compressing primitives (see e.g.,
Mennink and Preneel [16]).

Lastly, we recall that a series of papers have investigated optimal trade-offs
between time and space for Merkle tree traversal, e.g., Jakobsson et al. [14],
Szydlo [30], and Berman et al. [4]. Given that we propose T5 inside a standard
Merkle tree, these trade-offs can also be directly applied to the constructions
in this paper. We would also like to mention Haitner et al. [12]’s construction
which only has depth one, at the cost of making significantly more calls than
the standard Merkle tree.

3 Preliminaries

3.1 Notation

If S is a set, x
$← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of

a deterministic and randomized algorithm A(x), respectively.
For positive integers m,n, we let Func(m,n) denote the set of all functions

mapping {0, 1}m into {0, 1}n. We write h
$← Func(m,n) to denote random sam-

pling from the set Func(m,n) and assignment to h, and say that h is modeled as
an ideal hash function. For fixedm and n, such modeling is attempting to approx-
imate the security of real-world, keyless, fixed-input-size compression functions,
such as the compression function of SHA-2.

3.2 Security Definitions of Hash Functions

An adversary A is a probabilistic algorithm, possibly with access to oracles
O1, . . . ,O� denoted by AO1,...,O� . Our definitions of collision (Coll), and preimage
(Pre) security are given for any general fixed-input length hash function H built
upon the compression functions hi for i = 1, . . . , � where hi are modeled as

5



ideal functions. Namely, for a fixed adversary A and for all i = 1 to � with

hi
$← Func(2n, n), we define the following advantage functions:

AdvColl
H (A) = Pr

�
Hh1,...,h�(M) = Hh1,...,h�(M �) and M �= M �

| (M,M �)
$← Ah1,...,h�()

�

and

AdvPre
H (A) = Pr

�
Hh1,...,h�(M) = Hh1,...,h�(M �)

| M $← MH ,M � $← Ah1,...,h�(Hh1,...,h�(M))
�

We define the Advatk
H (q) against the atk = {Coll,Pre}-security of H as the

maximum advantage over all adversaries making at most q total queries to its
oracles.

3.3 Local Opening Security

We define local opening security of a hash function output (viewed as a com-
mitment of a message). Given a function H built upon compression functions
h1, h2, . . . where hi are all modeled as ideal functions, a local opening Openh1,...(·, ·)
for Hh1,... maps a pair (M, i) to π (called proof) where M = (m1,m2, . . . ,mc)
is a message (a tuple of blocks) and 1 ≤ i ≤ c is an index.

Correctness of Local Opening. There is an efficient function Verh1,... such
that for all message M , all index i,

Verh1,...(i,mi,Open
h1,...(M, i), H(M)) = 1.

Security of Local Opening. We provide two notions of local opening se-
curity. For the stronger variant, which we call “local-local,” the adversary wins
if it produces an output f corresponding to two contradicting local openings for
some position i. For the weaker variant, which we call “full-local,” the adversary
wins if it produces an output f corresponding to a local opening contradicting
a full opening.

Definition 1 (local-local and full-local opening advantage). Let H be a
hash function and Open is a correct local opening for H with Ver is the verifica-
tion function. For any adversary A, we define the local-local opening advantage
as

Advlocal-local
H (A) = Pr

�
Ver(i,m,π, f) = Ver(i,m�,π�, f) = 1,m �= m�

| (i,m,m�,π,π�, f)
$← Ah1,...

�
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We define full-local opening advantage (a weaker variant of the above) of A as

Advfull-local
H (A) = Pr

�
Ver(i,m�,π�, H(M)) = 1,m� �= mi

| (i,M,m�,π�)
$← Ah1,...

�

Finally, for a function H with local opening algorithms (Open,Ver) and attack
z ∈ {local-local, full-local}, we define Advz

H(q) = maxA Advz
H(A) as the maxi-

mum advantage over all adversaries making at most q total queries to its oracles.

Intuitively, the weaker definition protects against situations where the ini-
tial commitment f was honestly produced, using some long message M . Thus,
a contradictory local opening will result in finding a collision between a local
opening and a full opening. In contrast, the (traditional) stronger definition is
directly concerned with somebody producing two contradictory local openings.

By-pass Hash Computation. We say that H has a by-pass computation Hi

corresponding to a local opening Open for a fixed index 1 ≤ i ≤ c, if for all M ,

Hh1,...
i (mi,Open

h1,...(M, i)) = Hh1,...(M).

In other words, given a proof (output of the Open) and the message block for
the index (for which the proof is produced), we can compute the hash output of
the message (without knowing the other blocks of the message).

The presence of by-pass computationsH = {Hi} for all indices lead to a natu-

ral verification algorithm as follows: Ver(i,m,π, f) = 1 whenever Hh1,...
i (m,π) =

f . For a fixed index i, we define the cross-collision advantage between the hash
function H and a by-pass computation Hi as

AdvColl
H,Hi

(A) = Pr
�
H(M) = Hi(m

�,π) and Mi �= m� | (M,m�,π)
$← Ah1...

�

Similarly, we define the inter-collision advantage for by-pass computation Hi as

AdvColl
Hi

(A) = Pr
�
Hi(m,π) = Hi(m

�,π�) and m �= m� | (m,π,m�,π)
$← Ah1...

�

Let H = {Hi} be the family of by-pass computations for all indices i. We define

AdvColl
H,H(q) = max

A
max

i
AdvColl

H,Hi
(A) and AdvColl

H (q) = max
A

max
i

AdvColl
Hi

(A)

as the maximum advantage over all by-pass computations for all adversaries
making at most q total queries to its oracles.

Now we make a simple observation when by-pass computations H = {Hi}
for all indices exist for a hash function H, the induced verification procedure Ver
satisfies

Advfull-local
H (q) ≤ AdvColl

H,H(q) and Advlocal-local
H (q) ≤ AdvColl

H (q) (1)

The above observation helps us to reduce the local opening security to cross-
collision or inter-collision security problem for the family H. As all the function
Hi in this family are often symmetric, a proof for a fixed function Hi implies the
one for the entire family H.
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4 Construction T5

We define T5 : {0, 1}5n → {0, 1}n based on the 2n-to-n-bit compression functions
h1, h2, h3 as follows:

T5(m1,m2,m3,m4,m5) := h3(h1(m1,m2)⊕m5, h2(m3,m4)⊕m5)⊕m5

For the purposes of all our proof we will assume that the compression func-
tions hi for i = 1 to 3 are ideal functions.

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

Fig. 2. Modified 2-level Merkle tree T5(m1,m2,m3,m4,m5) with an extra input m5

for the same 3 hash calls.

Notation. As shown in Figure 2, we use the variables

– m1 and m2 (resp. m3 and m4) to denote the left and right halves of various
inputs to h1 (resp. h2);

– a (resp. b) to denote various outputs of h1 (resp. h2);
– c and d to denote the left and right halves of various inputs to h3;
– e to denote various outputs of h3;
– M = (m1,m2,m3,m4,m5) to denote various inputs to T5;
– f to denote various outputs of T5.

Hence, a valid computation of T5(M) = T5(m1, . . . ,m5) proceeds as follows:

1. Set a = h1(m1,m2), b = h2(m3,m4).
2. Set c = a⊕m5, d = b⊕m5.
3. Set e = h3(c, d), and output f = e⊕m5.
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We say that a triple of queries ((m1,m2), a) to h1, ((m3,m4), b) to h2, and
((c, d), e) to h3 is consistent if

a⊕ b = c⊕ d, (2)

in which case we define m5 = a ⊕ c = b ⊕ d, and say that this consistent
triple of queries (uniquely) defines a valid T5 evaluation (M, f), where M =
(m1,m2,m3,m4,m5) and f = e⊕ a⊕ c = e⊕ b⊕ d.

Main results of the section. The main result of this paper is to provide the
collision and preimage security of the T5 hash function. The following theorem
shows that T5 achieves nearly birthday collision security, despite hashing one
more input than the traditional Merkle-Damg̊ard function of depth 2.

Theorem 1. The T5 construction achieves nearly birthday-bound collision se-
curity:

AdvColl
T5

(q) ≤ (n2 + 10)q2

2n
(3)

The full formal proof of this result is somewhat subtle, and will be given in
the Appendix (see App. A). But an informal proof intuition for a representative
special case will be given in Section 4.1.

As our second main result, we also show that T5 maintains nearly optimal
preimage security Õ(q/2n) for q < 2n/2, which means it offers optimal preimage
and collision-resistance security in the common range of q < 2n/2.

However, even when q grows above 2n/2, T5 still offers non-trivial security
O(q3/22n) for values of q < 22n/3−1, which is likely sufficient for most appli-
cations. As we show in Section 8.2, T5 is indeed not preimage resistant when
q > 22n/3, so our result is tight.

Theorem 2. Assuming q ≤ 22n/3−1, the T5 construction achieves the following
preimage security:

AdvPre
T5

(q) ≤ 2q3

22n
+O

�qn
2n

�
(4)

We give a formal proof in the Appendix (see App. B), but present some proof
intuition (for an important special case) in Section 4.2, similar to what was done
in Section 4.1.

4.1 Proof Intuition for Collision Resistance of T5

Below we give the proof intuition for the simple, but natural special case where
the adversary A makes all of its queries to h1 and h2 before any query to h3

is made. As we explain in the formal proof in the Appendix (see App. A), this
assumption is with a significant loss of generality, and several special arguments
are needed to cover the fully general case. However, this simplified case will
already demonstrate some of the main arguments of our analysis.

The proof will roughly consist in arguing that A, making q total hash queries,
is unlikely — up to birthday advantage — to succeed in the following four tasks.
(These tasks are formalized later in Propositions 3,4,5,6.)
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1. Task 1: finding any simple collision in h1 or h2.
7

2. Task 2: finding some value z for which more than n distinct pairs of queries
((m1,m2), (m3,m4)) to h1 and h2 result in8

h1(m1,m2)⊕ h2(m3,m4) = z

3. Task 3: generate more than nq valid evaluations of T5.
4. Task 4: generate a non-trivial collision of T5.

The argument of each subsequent task will inductively assume that the adversary
indeed failed in the previous task.

For Task 1, this is the trivial birthday bound on h1 or h2.
For Task 2, we will formally define the set C12(z) to consist of pairs of queries

((m1,m2), a) to h1 and ((m3,m4), b) satisfying a ⊕ b = z. Using the fact that
no simple collisions in h1 and h2 are found, it is easy to see that each of the
n queries to h1 and h2 inside C12(z) must be distinct. Moreover, the latter of
the two queries ((∗, a), (∗, b)) ∈ C12(z) must collide with a fixed value z plus
the former of the two queries. E.g., if the query (∗, a) to h1 was made before
(∗, b) to h2, this tuple will fall inside C12(z) only if b = z ⊕ a, which happens
with probability 2−n. Taking the union bound over all values z and all possible
choices of 2n out of q queries to be included inside C12(z), we see that

Pr [ ∃z s.t. |C12(z)| ≥ n ] ≤ 2n · q2n ·
�

1

2n

�n

≤
�
2q2

2n

�n

� O

�
q2

2n

�

For Task 3, we will use our simplifying assumption that A makes all of its
queries to h1 and h2 before any query to h3 is made. In this case, all consistent
triples of queries to h1, h2 and h3 defining a valid input-output (M, f) to T5

get created by making a call to h3. For each of at most q such queries to h3 on
some input (c, d), we claim that this query will “match up” with a pair of earlier
queries (∗, a) to h1 and (∗, b) to h2 only if m5 = a⊕c = b⊕d, which is equivalent
to a⊕ b = c⊕ d, which means that

((∗, a), (∗, b)) ∈ C12(c⊕ d)

But we already assumed that |C12(z)| ≤ n for all z, meaning that each query
(c, d) can form a consistent tuple with at most n pairs of queries to h1 and h2.
Summing over all (up to) q queries to h3, the total number of evaluations will
be at most nq.9

Finally, for Task 4 that we care about, we will once again use our simplifying
assumption. In particular, under our assumption, such a collision can only be

7 For the general case, we will also need no collisions in a slightly modified variant of
h3.

8 For the general case, we will also need similar guarantees for the combinations of
h1 + h3 and h2 + h3.

9 As we will see, in the general case a very different proof strategy will be needed to
extend this argument to valid evaluations of T5 completed by calls to h1 and h2.
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caused by a call to h3 on some input (c, d). From the previous argument, we
already know that this query will “match up” with a pair of earlier queries
(∗, a) to h1 and (∗, b) to h2 only if ((∗, a), (∗b)) ∈ C12(c ⊕ d), meaning there
are at most n new evaluations of T5 caused by this query. Also, any two of
these n new evaluations cannot collide among themselves, as they have two
different values a �= a� (remember, no collisions in h1), so the final outputs
f = h3(c, d)⊕ c⊕a �= h3(c, d)⊕ c⊕a� = f �. Thus, the only chance the adversary
has is if one of these n new evaluations of T5 (call the output f) collides with
one of at most nq already defined previous evaluations f � of T5.

But each of the n new output values f will be individually random, as it is
equal to random e = h3(c, d) plus m5 = a⊕ c. Hence, this individually random
f can collide with the previously defined output f � of T5 with probability at
most nq/2n, because from failing Task 3 we know there at most nq previous
evaluations of T5 completed so far. Taking the union bound over n values of f ,
and q queries to h3, the final bound O(n2q2/2n) follows.

General case. We will not fully detail the general case (see full argument in the
Appendix (see App. A)), but briefly demonstrate that making queries to h1 or
h2 after some queries to h3 could be potentially helpful to the adversary, and
will require adjustments to out proof strategy above.

For example, our proof sketch above showed that, modulo very rare events,
the number of valid evaluations of T5 can increase by at most n for each new
query to h3. However, imagine that A first makes a query to h2 with output
b. Then A can make Ω(q) queries (ci, di) all satisfying ci ⊕ di = z (for some
z). Now, a query to h1 (made after these Ω(q) queries to h3) has a chance
to simultaneously match with Ω(q) � n tuples ((∗, b), ((ci, di), ∗). Of course,
in order for this to happen, the random answer a must match b ⊕ z, which
happens with tiny probability. In fact, we could apply Markov’s equality to
argue that the probability a query to h1 will produce more than n new evaluation
points is at most (what turns out to be by an easy calculation) O(q2/2n). By
itself, this is good enough, but it will not “survive” a union bound over up to q
potential queries to h1. Instead, we will use linearity of expectation to make a
global, “stochastic” argument that all such (up to) q queries to h1 and h2 will
define more than nq new evaluations with at most “birthday” probability. See
Proposition 5 for the details.

Overall, the full proof in the general case will be noticeably more subtle than
the proof intuition given above, but will still follow the same high-level structure.

4.2 Proof Intuition for Preimage Resistance of T5

As in Section 4.1, we will only consider the special case when the adversary
A makes all of its queries to h1 and h2 before any query to h3 is made, as it
will contain most of the ideas needed in the general proof. Also, we will assume

11



that q = Ω(
√
n · 2n/2), as this is the case where the “unexpected” term q3/22n

appears.10

In this setting, there are several differences from the case of collision-resistance
we considered so far. First, A is given a specific target f to invert. In particu-
lar, we will not care about local collisions in functions h1, h2, and the c- or
d-“shifted” versions of h3, as such collisions will happen, but will not help the
adversary invert f . Instead, we will care that in each new call to h3(c, d), the
number of valid new evaluations of T5 will be not much higher than what we
expect. Recall, in our special case of only h3 queries causing all new evaluations
of T5, this number of new evaluations is bounded by |C12(c⊕ d)|, where C12(z)
to consist of pairs of queries ((m1,m2), a) to h1 and ((m3,m4), b) satisfying
a⊕b = z. And since each such evaluation defines an individually random output
value f � = h3(c, d)⊕ c⊕a, the probability this f � matches f is 2−n, meaning A’s
overall chance to invert f in this query is |C12(c⊕ d)|/2n.

Of course, the adversary can select any value of z = c ⊕ d to make sure it
chooses the largest set C12(z). Thus, if we want to upper bound A probability
of success, we must argue that K = maxz |C12(z)| is not much higher than its
expectation with high probability. In the collision resistance proof, we manage to
upper bound K ≤ n with “good enough” probability (q2/2n)n. Indeed, this was
enough to withstand the union bound over z to give final probability (2q2/2n)n ≤
2q2/2n that K ≥ n in that setting.

We will do a similar union bound in our case as well, except that we have
q � 2n/2, so even in the best case scenario we expect |C12(z)| ≥ q2/2n � n
for any given z, let alone the z chosen by the adversary. Moreover, the final
birthday bound will not be good enough for us in this setting as well. But first
let us optimistically assume that for any fixed z, we managed to get the following
very strong concentration bound:11

Pr

�
|C12(z)| ≥

2q2

2n

�
≤ 1

22n
(5)

Then we will be done, because we can take the union bound over z to conclude
that Pr

�
K ≥ 2q2/2n

�
≤ 2−n. And, finally, there will be at most 2q2/2n new

evaluations f � per each query to h3. Thus, taking the union bound over at most q
such queries, A’s overall inversion probability (ignoring 2−n failure event above)
is upper bounded by:

q · 2q
2

2n
· 1

2n
=

2q3

22n

High concentration bound via tabulation hashing. So it remains to argue the
high concentration bound in (5). This turns out to be much harder than in

10 Our general proof will not treat this case separately, but the calculations are slightly
easier to write for the “beyond-birthday” case.

11 This bound, as stated, is only true if q = Ω(
√
n · 2n/2). In the general case the term

becomes |C12(z)| ≥ Ω(n)+2q2/2n, as we expect Ω(n) multi-collisions already when
q ≈ 2n/2.
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the collision-resistance case, where the bound we needed was the much weaker
O((q2/2n)n), which is meaningless when q > 2n/2.

The next naive attempt is to write |C12(z)| as a sum of q2 indicator variables
Xij , equal to 1 is the i-th output ai of h1 and the j-th output bj of h2 satisfy
ai⊕bj = z. And then try to use Chernoff bound to argue that the probability sum
of these indicator variables is twice as large as its expectation is exponentially
low. Unfortunately, the random variables Xij are not even 4-wise independent;
e.g., (a1 ⊕ b1) ⊕ (a1 ⊕ b2) ⊕ (a2 ⊕ b1) ⊕ (a2 ⊕ b2) = 0. So we cannot apply the
Chernoff bound, and the Chebyshev inequality for pairwise independent random
variables is not strong enough. Indeed, the question of getting our concentration
bound turned out to be quite deep.

Fortunately, the setting we need turns out to be equivalent to the classical
hashing problem, called simple tabulation hashing, introduced in the seminal
paper of Carter and Wegman [9]. Applied to our setting, given two random
“hash tables” T1 and T2 with range of size N = 2n, tabulation hashing would
map a “ball” y = (u, v) into a “bin” z = T1[u] ⊕ T2[v]. The classical question
studied by tabulation hashing is to upper bound occupancy of any such bin z
after some Q balls are thrown using tabulation hashing. We defer the details to
the formal proof in Section 4.2, but point out that in our setting the tables are
implemented using hash functions h1 and h2, and the number of balls Q ≤ q2

corresponds to all pairs of queries to h1 and h2.
Designing strong enough concentration bound for tabulation hashing (which

is exactly what we need!) was an open problem for many years, until the break-
through result of Pǎtraşcu and Thorup [22] showed a Chernoff-type concentra-
tion bound which enables us to show (5), and thus complete the proof.

5 Aggressive Opening for T5

In this section we describe a non-trivial opening for T5. We first note that a
straightforward way to open a block mi in T5 is to provide all four siblings
mj �=i. For a single T5 the full-local and the local-local security (Section 3.3)
definitions are the same and correspond to the collision security of T5 which we
have already studied. The performance of this method in a full tree is somewhat
less attractive and is given in detail in Section 7.2. Thus we call it conservative.

Now we provide another point on the security-performance tradeoff for T5,
which we call aggressive. We see that even though the provable security bounds
decrease, the heuristic security (as the complexity of best attacks) remains the
same under plausible conjectures. Both openings are depicted in Figure 3.

Our (aggressive) local opening Open for T5 is defined as follows. Let m =
(m1,m2,m3,m4,m5).

1. Openh1,h2,h3(1,m) = (m2,m5, h2(m3,m4)⊕m5).
2. Openh1,h2,h3(2,m) = (m1,m5, h2(m3,m4)⊕m5).
3. Openh1,h2,h3(3,m) = (m4,m5, h1(m1,m2)⊕m5).
4. Openh1,h2,h3(4,m) = (m3,m5, h1(m1,m2)⊕m5).
5. Openh1,h2,h3(5,m) = (m1,m2, h2(m3,m4)⊕m5).
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m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

Conservative Aggressive

Fig. 3. Conservative and aggressive openings for T5. Green m1 is opened. Red are
opening elements (4 vs 3) and recomputed compression functions (3 vs 2).

We first show that the above defined opening has a by-pass computation T�
5

for index 1 (one can similarly show for the other indices) and hence it satisfies
the correctness condition of an opening. For the sake of simplicity, we skip the
hash oracles notation h1, h2, h3. We define T�

5 : {0, 1}4n → {0, 1}n based on the
2n-to-n-bit compression functions h1, h3 as follows:

T�
5(m

�
1,m

�
2,m

�
3,m

�
4) := h3(h1(m

�
1,m

�
2)⊕m�

3,m
�
4)⊕m�

3

A straightforward calculation shows that T�
5(m1,Open(1,m)) = T5(m). Hence

T�
5 is a by-pass computation of T5 for the opening function defined above.

Theorem 3.

Advfull-local
T5

(q) ≤ AdvColl
T5,T�

5
(q) ≤ nq3 + 9q2

2n
(6)

and

Advlocal-local
T5

(q) ≤ AdvColl
T�

5
(q) ≤ q4

2n
(7)

We note that the relation between the collision advantage and the opening ad-
vantage is already described in (1). So it only remains to bound the cross-collision
probability and the collision probability for a family of by-pass hash computa-
tions. The full formal proof of the cross-collision bound is somewhat similar
to the collision security analysis of T5, and is provided in the Appendix (see
App. C). But an informal proof intuition for a representative special case will
be given in Section 5.1 below. However, the bound for collision advantage of the
by-pass family is more or less straightforward and described afterwards.

5.1 Proof Intuition for Theorem 3 (Cross-Collision Bound)

Here, we give sketch proof of the cross-collision advantage between T5 and T�
5.

We first note that in the case of T�
5, all queries are consistent. Hence q queries
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each to h1 and h3 can generate a maximum of q2 T�
5 evaluations. And, as we

have already seen before, q oracle queries can generate at most nq evaluations
of T5 if bad events B1 and B2 don’t happen. Now, we approach as in the earlier
theorem. We break the event that a collision between T5 and T�

5 has occurred
into three parts, depending upon which oracle was queried by the i-th query and
give an upper bound to the collision probability. Then, we apply a union bound
to over the q queries to give the intended result. Let Xi be the event that none
of bad events B1, B2 or B3 happened. The three cases are as follows:

– The i-th query is ((m1,m2), a) to h1. As in the earlier proof, a collision can
happen in two ways, either this output a induces a T5 tuple and a T�

5 tuple
which collide, or there is some previous value (∗, f) ∈ Evali−1 such that
the random answer h1(m1,m2) = a caused the collision with this f . The
former case implies only the trivial collision, which we have ruled out. In the
latter case, for a collision to happen, there are two subcases depending on
whether (∗, f) comes from a previous evaluation of T5 or T�

5 evaluation. If
(∗, f) comes from a T5 evaluation, the random answer a can combine with
any of the queries ((c, d), e) of h3 such that f = a⊕ c⊕e. We note that there
are a maximum of nq prior T5 evaluations, and q h3 queries. The probability
that f = a⊕ c⊕ e is 1/2n for each such query. Therefore,

Pr[Xi] ≤ nq · q · 1

2n
=

nq2

2n

If (∗, f) comes from a T�
5 evaluation, we note that there are at most q2 such

evaluations. There exist tuples ((∗, b), ((c, d), e)) ∈ C23(f), which can be at
most n in number, and the random answer a = h1(m1,m2) should be equal
to b⊕ c⊕ d. This again gives

Pr[Xi] ≤ q2 · n · 1

2n
=

nq2

2n

– The i-th query is ((m3,m4), b) to h2. The only way this query can cause
a collision is that there exists some previous value (∗, f) ∈ Evali−1

T�
5

such

that the random answer creates a T5 output equal to f . This case is exactly
similar to the first subcase of Case 1.

– The i-th query is ((c, d), e) to h3. The case generated by this query is the
same as that in the first case. If this query generates a T5 tuple and a T�

5

tuple that collide, we again get only the trivial collision. If there is some
previous T5 evaluation with which this query collides, then again, q such
queries can combine with n evaluations of T5, and the collision probability
for each combination is 1/2n, resulting in the same probability as in the first
case. If this query collides with some previous T�

5 evaluation, which are nq
in number, we note that there exist tuples ((∗, a), (∗, b)) ∈ C12(c⊕ d) which
can be at most n in number. Again, we get the same probability.

Taking union bound over the q queries, we find that

Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ q ·max

i
Pr[Xi] ≤

nq3

2n
.
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5.2 Proof of (7) (Collision Bound of Family of By-Pass Hash)

Now we prove the second part of the result (collision of by-pass hash family).
Here we show the collision probability for T�

5 (i.e., for the index 1). The proof
for the other indices will be very similar and will have same bound. As we
take the maximum collision probability for all indices, the result will follow.
Following a similar notation, let h1(m1,m2) = b, h1(m

�
1,m

�
2) = b�, c = b ⊕ m5

and c� = b�⊕m�
5. So, the hash outputs are T�

5(m1,m2,m5, d) = f = h3(c, d)⊕m5

and T�
5(m

�
1,m

�
2,m

�
5, d

�) = f � = h3(c
�, d)⊕m�

5. If f = f � with (m�
1,m

�
2,m

�
5, d

�) �=
(m1,m2,m5, d) (i.e., collision happens) then we have

h1(m
�
1,m

�
2)⊕ h1(m

�
1,m

�
2)⊕ (c⊕ h3(c, d))⊕ (c� ⊕ h3(c

�, d�)) = 0 (8)

Let us write h3(x, y)⊕ x as h�
3(x, y). It is obvious that h

�
3 behaves exactly like a

random function (independent with h1, h2). Thus, we have shown that collision
problem of T�

5 is reduced to finding ((m1,m2), (c, d)) �= ((m�
1,m

�
2), (c

�, d�)) such
that

h1(m1,m2)⊕ h1(m
�
1,m

�
2)⊕ h�

3(c, d)⊕ h�
3(c

�, d�) = 0 (9)

We call this problem 4-XOR� (a variant of 4-XOR problem described in the
following section). It is also not difficult to construct a collision pair from four
pairs satisfying a 4-XOR� relation. In other words, 4-XOR� is equivalent to finding
collision of T�

5. Now, by applying union bound, the collision probability can be
simply bounded above by q4/2n.

5.3 Reduction of Local Opening Security to 3-XOR/4-XOR
Problem

k-XOR problem. Let F1, F2, . . . , Fk be k oracles that output n-bit strings. Find
x1, x2, . . . , xk such that

F1(x1)⊕ F2(x2)⊕ · · ·Fk(xk) = 0.

Reduction for full-local.When k = 3, the k-XOR problem has an information-
theoretical security of n/3-bits, however the best algorithm requires more than
2n/2/

√
n time (ignoring a log n factor) and queries [8, 21]. Bridging this gap

would imply a solution to the long-standing 3-XOR problem, which would be a
substantial breakthrough.

Conjecture 1 (3-XOR hardness) For any algorithm A that makes less than
q < 2n/2 queries to F1, F2, F3 and runs for time q, the probability that for ran-
domly chosen F1, F2, F3 it solves the 3-XOR problem is at most n2q2/2n.

Note that we have kept some margin on the power of n in our conjec-
ture. Till now we have attack with advantage about nq2/2n. Now we pro-
vide a heuristic reduction of full-local security to the 3-XOR problem. Let us
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look at the full-local security definition. To break it, we are required to find
(m1,m2,m3,m4,m5,m

�
1,m

�
2,m

�
5, d

�) such that

T5(m1,m2,m3,m4,m5) = h3(h1(m
�
1,m

�
2)⊕m�

5, d
�)⊕m�

5

or equivalently

T5(m1,m2,m3,m4,m5) = h3(c
�, d�)⊕ h1(m

�
1,m

�
2)⊕ c�. (10)

In our reduction we consider only algorithms which we call valid-aware. Those
(1) make all queries to h1, h2 before h3 and (2) for any query (c, d) they make to
h3 are aware of all valid T5 executions that are created this way. Concretely, with
any query (c, d) they attach (a potentially empty) list of all pairs h1, h2 that are
valid with c, d. This list cannot be long as we had argued for Theorem 1 where
there cannot be more than n of them. We stress that this is a natural assumption
as every valid execution ever considered by an algorithm must be discovered in
some way, and if all h3 queries are made last, it only makes sense to make queries
that yield valid executions. The speculative nature of this argument makes us
claim that the reduction is only heuristic.

Lemma 1. Given any valid-aware algorithm A, which makes at most q queries
to oracles h1, h2, h3, which solves (10) with probability �, there is an algorithm
A� making at most q < 2n/2 queries to oracles F1, F2, F3 (with runtime almost
the same as A) that solves 3-XOR problem with probability at least �/(4n).

Proof. First we note that a solution to (10) must have (c, d) �= (c�, d�), i.e., h3

gets a non-zero difference. Indeed, otherwise the output e of h3 and thus m5

must both have a zero difference, which in turn implies that a and b have a zero
difference, i.e., we have found a collision in h1 or h2 which we are ruling out (or
we can extend our reduction with this outcome).

Now, A works as follows:

– It calls A to find a collision between T5 and T�
5.

– When A queries h1(m1,m2) it is given F1(0||m1||m2).
– When A queries h2(m3,m4) it is given F1(1||m3||m4).
– When A queries h3(c, d) with list L of valid tuples (m1,m2,m3,m4) such that

h1 ⊕ h2 = c⊕ d. If the list is empty, A� returns F2(c||d)⊕ c to A. Otherwise
A� flips a coin:
• For tails A� selects a random entry of L and returns F3(c||d) ⊕ c ⊕
F1(0||m1||m2) to A.

• For heads A� returns F2(c||d)⊕ c to A.

Now suppose A finds a solution to (10). This implies that

h1(m1,m2)⊕ h3(c, d)⊕ c = h1(m
�
1,m

�
2)⊕ h3(c

�, d�)⊕ c�.

Recall that (c, d) �= (c�, d�). Now note that:

– (c, d) yields a valid execution of T5. Note that the validity was known at the
time of query.
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– With probability at least 1/(2n) the value for h3(c, d) is selected as F3(c||d)⊕
c ⊕ F1(0||m1||m2) (i.e., we had selected the same m1,m2 as in h1 of the
solution) since we have at most n pairs (h1, h2) with given difference c⊕ d.

– With probability 1/2 the value for h3(c
�, d�) is selected as F3(c

�||d�)⊕ c�.
– The value for h1(m1,m2) is F1(0||m1||m2) and should cancel out due to our

outcome for h3(c, d).

Therefore with total probability at least 1/(4n) the solution found by A is trans-
lated into

F3(c||d) = F1(0||m�
1||m�

2)⊕ F2(c
�||d�)

which yields a solution for the 3-XOR problem.

Together with the hardness conjecture, we obtain the following proposition.

Proposition 1 Assuming the 3-XOR hardness and that the best algorithm that
breaks full-local aggressive collision security is valid-aware, the adversary that
runs in time q finds a full-local collision with probability at most 4n3q2/2n.

Reduction for local-local. The best known algorithm for solving 4-XOR prob-
lem runs in O(n2n/3) time and O(2n/3) queries [31]. So, we pose a similar con-
jecture for the 4-XOR problem.
Conjecture 2 (4-XOR hardness) For any algorithm A that makes q < 2n/3

queries to random oracles F1, F2, F3, F4, runs for time q, the probability that it
solves the 4-XOR problem is at most q3/2n.

Now we consider a simple variant of 4-XOR problem, called 4-XOR�, which
uses two lists. Let F, F � be oracles that output random n-bit strings. Find
x, y, z, w with (x, y) �= (z, w) such that

F (x)⊕ F (y)⊕ F �(z)⊕ F �(w) = 0.

Lemma 2. Given any algorithm A� making at most q queries to all its oracles
which solves the 4-XOR� problem with probability � there is an algorithm A mak-
ing at most q queries to all its oracles (with run time almost same as A�) which
solves 4-XOR problem with probability at least �/4.

Proof. The reduction from A� to A works as follows. We run A� and it makes
two types of queries, namely F and F �. For each query we choose b randomly
from {1, 2}. If it is an F (x) query, then A returns Fb(x). Similarly, if it is an
F �(z) query, A returns F2+b(z) to A�. Finally, A� returns (x, y, z, w) such that
F (x) ⊕ F (y) ⊕ F �(z) ⊕ F �(w) = 0. Now, A succeeds if F (x) = Fb(x), F (y) =
F3−b(y) and F �(z) = F2+b�(z), F

�(w) = F5−b�(w). We note that the b values are
chosen randomly. As F ’s are independent random functions, the output to A�

is independent with b. In other words, the view of A� remains independent with
the b values chosen by A. Thus, A succeeds with probability 1/4 given that A�

succeeds. ��
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We have already seen that given a collision adversary B of T�
5 we can construct

an algorithm A� for solving the 4-XOR� problem and hence we can construct an
algorithm A solving the 4-XOR problem. Moreover the success probability of
solving the 4-XOR is at least 1

4 ·AdvColl
T�

5
(B). This leads us to conclude with the

following claim.

Proposition 2 Assuming the 4-XOR hardness and that the best algorithm that
breaks full-local aggressive collision security is valid-aware, the adversary that
runs in time q finds a full-local collision with probability at most 4q3/2n.

6 Merkle-Damg̊ard Variant

We can plug in our 5-to-1 compression function to the standard Merkle-Damg̊ard
(MD) mode to get a sequential hash t-to-1 function making only 3t/4 calls to
the underlying 2n-to-n compression functions h1, h2 and h3, and inheriting the
birthday security of T5. This function is depicted in Figure 4.

Parallel Implementation. In addition to providing a 25% speedup when
compared to the traditional MD mode applied to a 2n-to-n-compression function
h, another advantage of our new variant is that it is easily parallelizable for
architectures that support parallel execution.

For example, if we have three execution units P1, P2, P3, the unit Pi can be
responsible for all hi computations. This allows to compute a hash of t = 4k
message blocks using only (k+ 2) = (t/4 + 2) parallel rounds of hashing, saving
a factor (almost) 4 over the traditional MD mode. The execution unit P3 will
be “one-round behind” units P1 and P2 (so that in the first round only P1 and
P2 hash (m1,m2) and (m3,m4), and in the last round only P3 produces the
final hash). Namely, when P3 just completed the computation of the previous
initial value IVj , P1 completed aj = h1(m4j+1,m4j+2), and P2 completed bj =
h2(m4j+3,m4j+4), in the next round P3 will set the next initial value

IVj+1 = h3(IVj ⊕ a, IVj ⊕ b)⊕ IVj ,

while P1 and P2 respectively compute aj+1 = h1(m4j+5,m4j+5) and bj+1 =
h2(m4j+6,m4j+7).

Similarly, two execution units P �
1, P

�
2 can perform the same task in only 2k =

t/2 parallel rounds, saving a factor 2 over the traditional MD mode.

Larger Compression. Although our results are stated for 2n-to-n compres-
sion functions, we can also easily extend them to the λn-to-n case, by simply
adding (λ − 2) “dummy” inputs to each of h1, h2, h3. For example, for λ = 3,
this gives us an 8n-to-n analog of T5, using three calls to some 3n-to-n hash
function. Which gives a new MD mode for t = 7k block messages, using only
3k = 3t/7 compression calls. In contrast, a naive MD mode will use t/2 calls,
saving a factor (1 − (3t/7)/(t/2)) = 1/7 ≈ 14.2%. Similar calculations can be
done for larger λ.
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Fig. 4. Merkle-Damg̊ard Hash based on T5.

7 Merkle Tree Variant

Our 2-level construction extends straightforwardly to a full-blown t-to-1 tree H.
In Section 7.1 we briefly recall how to build Merkle Trees (MT) from smaller
compression functions (such as T5). We then present our faster and shallower
MT variant and its properties in Section 7.2.

7.1 General Merkle Trees and Their Security

The Merkle tree is a data structure to store long lists of t n-bit elements, so that
insertion, deletion, update, or proof of membership for an element need only
O(log t) time and space. It is built on a λn-to-n compression function Hλ (typi-
cally λ = 2 but other values are used too) and retains all its security properties
regarding collision and preimage resistance from the compression function. The
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tree is defined recursively:

MTλ(m1, . . . ,mλ� �� �
m[1:λ]

) = Hλ(m1, . . . ,mλ);

MTλt(m[1:λt]) = Hλ(MTλ(m[1:λ]), . . . ,MTλ(m[λt−t+1:λt]))

where t = λk ≥ 2, with the last hash called a root and mi called leafs.

As for the compression function, we define the terms full opening and local
opening for the entire MT, with the former being all t elements and the latter
for a leaf in a tree is a sequence of logλ t local openings of an element in all
compression functions on the path from the leaf to the root. In the simplest case
λ = 2 an opening is one element per tree layer, whereas for wider compression
functions it is λ − 1 or fewer (in case Hλ has “aggressive” local opening). The
full-local security for the tree is defined analogously to the compression function
and corresponds to the case of a public tree to which an adversary makes a
forged membership proof. The local-local security matches the case when the
adversary provides two valid openings for an alleged tree root but the full tree is
unknown. Both full-local and local-local security for the tree follows from their
compression function counterparts. So overall we have the following parameters:

– Efficiency E(t) as the number of compression function calls is (t−1)/(λ−1).

– Depth D(t) of the tree is logλ t.

– Update/insert/delete complexity as the number of compression function re-
computations equals D(t).

– The total length of conservative opening L(t) is (λ− 1) logλ t.

– In case Hλ might have a more compact (i.e., “aggressive”) local opening of
length � ≤ λ − 1, then the total length of the resulting “aggressive” local
opening for MTλ becomes L(t) = � logλ t.

– Number of calls to F needed to verify the opening: V (t) = logλ t.

– Collision, full-local, and local-local opening security the same as that of Hλ

(ideally 2n/2, if one uses a 2n-to-n hash function as last building block).

– Preimage security the same as that of Hλ (ideally 2n, if one uses 2n-to-n
hash function as last building block).

7.2 Faster and Shallower Merkle Tree based on T5

Our construction extends straightforwardly to a full-blown t-to-1 tree H of any
depth k, as depicted in Figure 5, with optimal t = 5k. Notice, unlike our compres-
sion function T5 for H, which needed domain separation for functions h1, h2, h3

(see Section 8.4), the final tree H can reuse the same h1, h2, h3 across all invo-
cations, which follows from general security properties of standard Merkle trees.

The overall trade-offs of our construction are summarized in Table 1, but we
expand on it below.
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m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

T5

m2 m4m3 m5 m7 m9m8 m10m6m1
mt−3 mt−1

mt−2 mtmt−4

H

update: 0.86 log2 t calls

build: 0.75t calls to h

T5 T5

T5T5

T5

opening length:

1.72 log2 t conservative

1.29 log2 t aggressive

calls for verification:

1.29 log2 t conservative

0.86 log2 t aggressive

Fig. 5. Full-blown tree based on T5. Security is 2n/2 (tight) for conservative openings,
2n/3 provable and 2n/2 heuristic for full-local aggressive opening, 2n/4 provable and
2n/3 heuristic for local-local aggressive opening.

Efficiency. Let us summarize the performance of our tree construction:

– Build: In H we compress every 5 inputs using our 5n-to-n compression
function T5, therefore using (t− 1)/4 calls to T5, which is equivalent to

E(t) = 0.75(t− 1)

calls to the hj ’s, thus giving us 25% improvement over the regular Merkle
tree.

– Depth/update: The depth D(t) of the tree, measured in the calls to the
hj ’s, reduces from log2 t to

D(t) = 2 log5 t ≈ 0.86 log2 t

which is a 14% saving compared to standard Merkle trees.

– Opening length (conservative): In the conservative opening we open
all 4 siblings, thus L(t) increases from log2 t of standard Merkle trees to
4 log5 t ≈ 1.72 log2 t (loss of 72%). It is still useful though when bandwidth
is not critical which is sometimes the case.

– Opening length (aggressive): In the aggressive opening we open 3 ele-
ments, thus L(t) increases to only 3 log5 t ≈ 1.29 log2 t (loss of 29%, which
may be tolerated for some applications).

– Verification time (conservative): the number of hi calls needed to verify
the proof increases to V (t) = 3 log5 t ≈ 1.29 log2 t.

– Verification time (aggressive): the number of hi calls needed to verify
the proof decreases to V (t) = 2 log5 t ≈ 0.86 log2 t. This is very handy in ap-
plications when opening verification time is crucial (such as zero-knowledge
membership proofs where proving time linearly depend on the circuit size
needed for the opening verification). However we pay for this with security
(see below).
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Table 1. We compare standard Merkle trees to two variants of Merkle trees with
T5. The conservative variant requires opening four siblings in a local opening proof,
compared to three siblings in the aggressive variant. The boxed formulas are conjectures
based on the 3-XOR and 4-XOR problems. We have 2/ log2 5 ≈ 0.86, 3/ log2 5 ≈
1.29, 4/ log2 5 ≈ 1.72. Note that full-full collision resistance (CR) security is listed
for completeness, this is the “traditional” collision resistance involving two distinct
messages (and the entire corresponding Merkle trees).

Standard Merkle Merkle with T5 Merkle with T5

(conservative) (aggressive)

build calls/t 1 0.75 0.75

update/log2 t 1 0.86 0.86

verify/log2 t 1 1.29 0.86

opening/log2 t 1 1.72 1.29

full-full CR security n/2 n/2 n/2

full-local CR security n/2 n/2 n/3 → n/2

local-local CR security n/2 n/2 n/4 → n/3

Security. Since our construction applies the standard Merkle paradigm to the
5-to-1 compression function T5, the resulting hash function H inherits the same
global (or local opening) collision and preimage security as the compression
function T5:

– Full-local (aggressive) security: provable security up to (taking poly(n)
factors aside) 2n/3 queries (Theorem 3), heuristic security up to 2n/2 running
time (Proposition 1).

– Local-local (aggressive) security: provable security up to 2n/4 queries
(Theorem 3), heuristic security up to 2n/3 running time (Proposition 2).

– Both full-local and local-local (conservative) security: provable secu-
rity up to 2n/2 queries (Theorem 1).

Additionally, non-trivial preimage security holds up to 22n/3 queries (and at
optimal level O(q/2n), in the region of interest where q ≤ 2n/2).

Applications. Merkle trees are used in a number of protocols, but their exhaus-
tive list is beyond the scope of this paper. To name just a few: anonymous cryp-
tocurrencies and mixers [13, 23], interactive oracle proof (IOP) compilers [2, 3],
and post-quantum hash-based signatures [5]. Among them, cryptocurrencies and
mixers are the examples of publicly controlled Merkle trees, i.e., where the full-
local opening makes sense and where the aggressive opening with its improved
verification time is appealing.

From all this diverse range of applications, the ones who benefit also from the
conservative opening strategy are those for which the performance and depth
are more important than the local opening size. Of course, basic hashing by
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itself is a very important example of such an application. The next examples
are zero-knowledge proof systems where circuit depth is a major performance
factor [32, 33]. Finally, a more speculative area where our construction could
help is multiparty computation protocols applied to functionalities involving
hashing, whose complexity depends on the circuit depth (e.g., variants of the
original BGW [1] and GMW [11] protocols).

Summary. Our construction has clear advantage over the regular Merkle tree in
build and update efficiency, but loses in the opening length. For the verification
time and security we have a tradeoff: an aggressive opening needs fewer hi calls
but only heuristic security argument of 2n/2 with provable security reaching 2n/3

only, whereas the conservative opening has the same security properties as in
the regular tree but requires 30% more verification calls. Thus whether or not
our construction outperforms the regular Merkle tree depends on the setting.

8 Matching Attacks and Warnings

In this section we discuss the tightness of our results (by providing matching
attacks), as well as show that certain natural improvement or simplification
ideas do not work.

8.1 Matching Collision Attack on T5

A simple birthday collision search with complexity 2n/2 applies to T5 in the
full-full and full-local collision settings, matching Theorem 1 and Proposition 1.

8.2 Matching Preimage Attack on T5

We provide a brief description of a preimage attack with query complexity 22n/3,
which naturally follows from a bad event we aimed to exclude in the preimage
security proof.

Preimage attack. Given challenge f , let us make 22n/3 queries to both h1 and
h2. There will be about 24n/3−n = 2n/3 collisions between h1 and h2. Let A
denote the 2n/3 outputs of these collisions, so that |A| = 2n/3 and we know a
valid preimage (m1,m2,m3,m4) for the pair (a, a) under h1 and h2, for each
a ∈ A.

Now we make 22n/3 queries to h3 in form (c, c), and for each output e check
if there exists a ∈ A s.t.

a⊕ c = e⊕ f

Each such equation holds with probability 2−n, but we try 2n/3 · 22n/3 = 2n

different choices of a and c, so expect one such equation to hold with constant
probability. When the match happens, we can set m5 = a⊕ c = e⊕ f , and the
tuple (m1,m2,m3,m4,m5) will be a valid preimage of f , where (m1,m2,m3,m4)
is the colliding preimage of (a, a) under h1 and h2.
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Analysis. This attack requires 22n/3 time and memory but can be computed
memoryless using unbalanced meet-in-the-middle attack [19] with time com-
plexity about 23n/4.

8.3 Matching Attack on Aggressive Opening Mode

Here we demonstrate a matching attack on the aggressive opening, which uses
3 (vs. 4) siblings to open a T5 commitment.

Concretely we construct a collision for T�
5. Consider the equation

h3(c, d)⊕ c⊕ h1(m1,m2) = h3(c
�, d�)⊕ c� ⊕ h1(m

�
1,m

�
2)

By making 2n/4 queries to h1 and h3, we expect such colliding tuples will
exist with constant probability, even if we insist on having m1 �= m�

1. Given such
a tuple, let

h3(c, d)⊕ c⊕ h1(m1,m2) = f = h3(c
�, d�)⊕ c� ⊕ h1(m

�
1,m

�
2),

m5 = c ⊕ h1(m1,m2), and m�
5 = c� ⊕ h1(m

�
1,m

�
2). Then it is easy to see that

(m2,m5, d) and (m�
2,m

�
5, d

�) are valid preimages of f to m1 �= m�
1, respectively.

Similar attack works for any other permutation involving opening some mi

using only 3 other values. Note however, that even though theoretically 2n/4

queries suffice, the best complexity of this attack is 2n/3 rather than 2n/4 (cf.
the 4-XOR problem in Section 5).

8.4 Attack on T5 with Identical Compression Functions

Now we show that our requirement that all hi are distinct is crucial: without it,
a subtle attack is possible. Let T1

5 : {0, 1}5n → {0, 1}n based on the identical 2n
to n-bit compression functions h1, h2, h3 = h be defined as follows:

T1
5(m1,m2,m3,m4,m5) := h(h(m1,m2)⊕m5, h(m3,m4)⊕m5)⊕m5

Collision attack on T1
5. Note that the only difference here with T5 is the fact

that the internal compression functions in T1
5 are identical. In the 2n/4 query

attack below, we will only use h1 = h2, though, so we could keep the index h3

intact. However, similar attack will hold if we only use h1 = h3 or h2 = h3,
meaning that domain separation is needed on all three compression functions.

We make 2n/4 queries (m1,m2) to h, and let A be the set of ((m1,m2), a)
input-output pairs obtained. Also, make 2n/4 queries (c, c) to h3 = h, and let C
be the set of ((c, c), e) input-output pairs obtained. Solve the equation

a⊕ (e⊕ c) = a� ⊕ (e� + c�) (11)

for a �= a�, where ((m1,m2), a), ((m
�
1,m

�
2), a

�) ∈ A, ((c, c), e), ((c�, c�), e�) ∈ C. We
expect to find a solution with constant probability. Define

m3 = m1, m4 = m2, m5 = a⊕ c, m�
3 = m�

1, m�
4 = m�

2, m�
5 = a� ⊕ c�
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Then, using (11),

T1
5(m1,m2,m3,m4,m5) = T1

5(m1,m2,m1,m2, a⊕ c)

= h(a⊕ (a⊕ c), a⊕ (a⊕ c))⊕ (a⊕ c)

= e⊕ a⊕ c = e� ⊕ a� ⊕ c�

= h(a� ⊕ (a� ⊕ c�), a� ⊕ (a� ⊕ c�))⊕ (a� ⊕ c�)

= T1
5(m

�
1,m

�
2,m

�
1,m

�
2, a

� ⊕ c�)

= T1
5(m

�
1,m

�
2,m

�
3,m

�
4,m

�
5).

8.5 Attack on T5 Without the Final XOR

The next attack is on the modified T5 construction where the final XOR into
the output of h3 from the T5 construction is omitted; this attack provides more
insight on the rationale behind the main T5 construction, by showing that the
XOR of m5 into the output of h3 is essential.

Let T2
5 : {0, 1}5n → {0, 1}n based on the 2n to n-bit compression functions

h1, h2, h3 be defined as follows:

T2
5(m1,m2,m3,m4,m5) := h3(h1(m1,m2)⊕m5, h2(m3,m4)⊕m5)

Collision attack on T2
5. The attack follows from the generalized birthday attack

which finds a quartet of distinct inputs ((m1,m2), (m3,m4), (m
�
1,m

�
2), (m

�
3,m

�
4))

such that

h1(m1,m2)⊕ h1(m
�
1,m

�
2)⊕ h2(m3,m4)⊕ h2(m

�
3,m

�
4) = 0.

This can be done after 2n/4 queries to each of the hash function with constant
probability. Let h1(m1,m2)⊕h1(m

�
1,m

�
2) = h2(m3,m4)⊕h2(m

�
3,m

�
4) = Δ, then

by setting m�
5 = m5 ⊕Δ we derive

T2
5(m1,m2,m3,m4,m5) = h3(h1(m1,m2)⊕m5, h2(m3,m4)⊕m5)

= h3(h1(m
�
1,m

�
2)⊕Δ⊕m5, h2(m

�
3,m

�
4)⊕Δ⊕m5)

= h3(h1(m
�
1,m

�
2)⊕m�

5, h2(m
�
3,m

�
4)⊕m�

5)

= T2
5(m

�
1,m

�
2,m

�
3,m

�
4,m

�
5)

9 Generalizations and Future Work

Our construction is likely to be extended to wider compression functions. For
example, a natural generalization of our construction can hash T = 3 · 2k − 1
inputs using only E = 2 · 2k − 1 = (2T − 1)/3 evaluations, where standard
2n-to-n hash h corresponds to k = 0, and our T5 corresponds to k = 1. As k
increases, E(k)/T (k) → 2/3, which matches Stam’s bound for building Tn-to-n
hash functions from 2n-to-n compression functions. Unfortunately, as k grows,
the local opening size also grows, so it is unclear if this overall hash saving is
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worthwhile for applications. We leave the security analysis of this, and other
optimized hashing constructions to future work.

Finally, it remains to prove the reduction of the full-local aggressive security
to the 3-XOR problem unconditionally, i.e., without restrictions on the adversary.

Acknowledgments. The authors would like to thank the organizers and par-
ticipants of Dagstuhl Seminar 18021 “Symmetric Cryptography,” which was held
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A Formal Proof of Collision Resistance of T5

Consider any collision finding adversary Amaking a total of q queries to h1, h2, h3.
Without loss of generality, we assume that A does not duplicate any of its queries,
and is deterministic. Thus, all the probabilities are computed over the random-
ness of the ideal hash functions h1, h2, h3.

For any index i = 0 . . . q, the run of A defines the following random variables:

– Qi
1, Q

i
2, Q

i
3: set of input-output pairs of h1, h2, h3 known to A after its i-th

query. In particular, ((m1,m2), a) ∈ Qi
1 if and only if one of the first i queries

of A was a query (m1,m2) to h1, and a was the answer to this query. Same
for h2 and h3.

– Evali: the set of input-output pairs for the entire construction T5 known to
A after its i-th query. Formally, we look at all triples of consistent queries
((m1,m2), a) ∈ Qi

1, ((m3,m4), b) ∈ Qi
2 and ((c, d), e) ∈ Qi

3, and for each such
triple we add the resulting input-output pair (M, f) defined by this triple to
the set Evali.

– For any z ∈ {0, 1}n,

Ci
12(z) = { ( ((m1,m2), a) ∈ Qi

1, ((m3,m4), b) ∈ Qi
2 ) | a⊕ b = z } (12)

Jumping ahead, these sets will determine how many fresh consistent triples
of queries can be obtained by A, by making a new query (c, d) to h3.

– For any f ∈ {0, 1}n,

Ci
13(f) = { ( ((m1,m2), a) ∈ Qi

1, ((c, d), e) ∈ Qi
3 ) | a⊕ e = f ⊕ c }

Ci
23(f) = { ( ((m3,m4), b) ∈ Qi

2, ((c, d), e) ∈ Qi
3 ) | b⊕ e = f ⊕ d }

Jumping ahead, for any output value f of T5 (presumably obtained by some
consistent triple of queries), the set Ci

13(f) (resp. Ci
23(f)) will determine

how many tuples of queries to h1 (resp. h2) and h3 have a chance to cause
a collision with f , before a new query to h2 (resp. h1) is made.

We let Q1 = Qq
1, Q2 = Qq

2, Q3 = Qq
3, C12(z) = Cq

12(z), C13(f) = Cq
13(f),

C23(f) = Cq
23(f) and Eval = Evalq be the final values of the corresponding sets

at the end of execution. We can now define the following “bad events” at the
end of A’s execution:

– B1: collision in either Q1, Q2, or “shifted” Q3. Formally:
- ∃((m1,m2), a), ((m

�
1,m

�
2), a) ∈ Q1 with (m1,m2) �= (m�

1,m
�
2), or
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- ∃((m3,m4), b), ((m
�
3,m

�
4), b) ∈ Q2 with (m3,m4) �= (m�

3,m
�
4), or

- ∃((c, d), e), ((c�, d�), e�) ∈ Q3 with (c, d) �= (c�, d�) and either e⊕ c = e� ⊕ c�

or e⊕ d = e� ⊕ d�.
– B2: maxz |C12(z)| ≥ n, or maxf |C13(f)| ≥ n, or maxf |C23(f)| ≥ n.
– B3: |Eval| ≥ qn; i.e., number of valid evaluations of T5 is “too large”.
– B4: collision on T5 found; i.e., (M, f), (M �, f) ∈ Eval with M �= M �.

Our goal is to upper bound the probability of B4. For that, we split this proba-
bility into four disjoint events, as follows:

Pr [B4 ] ≤ Pr [B1 ]+Pr
�
B2 ∩B1

�
+Pr

�
B3 ∩B1 ∩B2

�
+Pr

�
B4 ∩B1 ∩B2 ∩B3

�

In the following propositions (proven in subsequent subsections), we bound
each of these 4 terms separately.

Proposition 3 Pr [B1 ] ≤ 2q2

2n

Proposition 4 Pr
�
B2 ∩B1

�
≤ 3 ·

�
2q2

2n

�n

Proposition 5 Pr
�
B3 ∩B1 ∩B2

�
≤ 2q2

n2n

Proposition 6 Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ n2q2

2n

Combining the results of Propositions 3,4,5,6, we get our final bound in (3):

Pr [B4 ] ≤
2q2

2n
+ 3 ·

�
2q2

2n

�n

+
2q2

n2n
+

n2q2

2n
≤ (n2 + 10)q2

2n
,

assuming that 2q2

2n ≤ 1. Hence, it suffices to prove Propositions 3,4,5,6.

Bounding Simple Collisions (Proof of Proposition 3) For completeness,
we repeat the claimed bound:

Pr [B1 ] ≤
2q2

2n

Each of the 4 events in B1 (collision in h1, h2, and two types of collisions in
h3) correspond to standard birthday bounds in ideal hash functions h1(m1,m2),
h2(m3,m4), h3(c, d) ⊕ c and h3(c, d) ⊕ d. Each such bound is q2/2n+1, so the
final bound is this birthday bound times 4.

Bounding Multi-Collisions (Proof of Proposition 4) For completeness,
we repeat the claimed bound:

Pr
�
B2 ∩B1

�
≤ 3 ·

�
2q2

2n

�n
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Intuitively, each of the sets Cjk(·) corresponds to the fact that “many” pairs
of queries to hj and hk produced outputs whose XOR is equal to a fixed value.
Clearly, this probability gets lower and lower as we increase the value of “many.”
The calculation below shows that setting it to n drives this probability below
the “birthday” bound we are seeking. We use the standard union bound several
times to upper bound the desired probability as follows:

Pr
�
B2 ∩B1

�
≤ Pr

�
(max

z
|C12(z)| ≥ n) ∩B1

�
+

Pr

�
(max

f
|C13(f)| ≥ n) ∩B1

�
+

Pr

�
(max

f
|C23(f)| ≥ n) ∩B1

�

≤ 2n ·max
z

Pr
�
(|C12(z)| ≥ n) ∩B1

�
+

2n ·max
f

Pr
�
|(C13(f)| ≥ n) ∩B1

�
+

2n ·max
f

Pr
�
|(C23(f)| ≥ n) ∩B1

�

We upper bound each of the three probabilities below (see (15), (16), and (17))
by (q2/2n)n, which completes the proof, since then

Pr
�
B2 ∩B1

�
≤ 3 · 2n ·

�
q2

2n

�n

= 3 ·
�
2q2

2n

�n

Let us start with Pr
�
(|C12(z)| ≥ n) ∩B1

�
for any fixed z. First, recall that

C12(z) = { ( (∗, a) ∈ Q1, (∗, b) ∈ Q2 ) | a ⊕ b = z }. Define Δi
12(z) =

|Ci
12(z)\Ci−1

12 (z)|, which is the number of tuples added to Ci
12(z) because a new

evaluation in query i was made. Then |C12(z)| =
�q

i=1 Δ
i
12(z). Now, in order

for the sum of q non-negative integers to be at least n, either one of the terms
is strictly greater than 1, or at least n of the terms are non-zero:

Pr
�
(|C12(z)| ≥ n) ∩B1

�
= Pr

��
q�

i=1

Δi
12(z) ≥ n

�
∩B1

�

≤ Pr
�
(∃i s.t. Δi

12(z) > 1) ∩B1

�
+

Pr
�
∃ ≥ n indices i s.t. Δi

12(z) > 0
�

≤ q ·max
i

(Pr
�
(Δi

12(z) > 1) ∩B1

�
)+ (13)

qn · max
i1...in

(Pr
�
∀i ∈ {i1 . . . in}, Δi

12(z) > 0
�
) (14)

Now, let us look at the i-th query of A. Clearly, a query to h3 does not increase
|Ci

12(z)|, so by symmetry let us assume that query i was a query (m1,m2) to h1.
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Assume the random answer is h1(m1,m2) = a. This new query ((m1,m2), a) will
“match up” with an old query ((m3,m4), b) ∈ Qi

2 only if a = b ⊕ z. Moreover,
the only way it will also match up with another such query ((m�

3,m
�
4), b

�) ∈ Qi
2

is if a = b⊕ z = b� ⊕ z. But this means that b = b� is a collision in Q2, triggering
the bad event B1. Hence, the probability in (13) is 0:

Pr
�
(Δi

12(z) > 1) ∩B1

�
= 0

Moreover, since |Qi
2| ≤ q, there are at most q values {b ⊕ z | (∗, b) ∈ Qi

2}. And
since the answer a to h1(m1,m2) is truly random, the chance it will be equal
one of the values in this set is at most q/2n, which means

Pr
�
Δi

12(z) > 0
�
≤ q

2n

Coming back to (14), we see that the n events corresponding to distinct indices
i1 . . . in are independent, meaning

Pr
�
∀i ∈ {i1 . . . in}, Δi

12(z) > 0
�
≤

� q

2n

�n

Hence, for any z,

Pr
�
(|C12(z)| ≥ n) ∩B1

�
≤ q · 0 + qn ·

� q

2n

�n

≤
�
q2

2n

�n

(15)

Completely analogously, we can argue that for any f ,

Pr
�
(|C13(f)| ≥ n) ∩B1

�
≤

�
q2

2n

�n

(16)

Pr
�
(|C23(f)| ≥ n) ∩B1

�
≤

�
q2

2n

�n

(17)

For example, the only difference between the argument for C13(f) and C12(z)
is that the key equation becomes a⊕ e = f ⊕ c (instead of a = b⊕ z). When the
i-th query is to h3(c, d), the answer e matching up with two values a and a� will
imply a collision in Q1, as before (since a = a� = e⊕ f ⊕ c). However, when the
i-th query is to h1(m1,m2), the answer a matching up with two values e and e�

will imply a collision in “shifted” Q3, because now we have a⊕f = e⊕c = e�⊕c�.
And this is why we defined this as the “h3-collision” when defining the bad event
B1. Similarly, the argument for C23(f) will result in b⊕ f = e⊕ d = e� ⊕ d�.

This completes the proof.

Bounding Evaluation Set of T5 (Proof of Proposition 5) For complete-
ness, we repeat the claimed bound:

Pr
�
B3 ∩B1 ∩B2

�
≤ 2q2

n2n
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Recall, B3 states that |Eval| ≥ qn, meaning A completed at least qn evaluations
of T5 in its q queries. Let us denote by qj , for j = 1, 2, 3, the (random variable
equal to the) number of calls to hj . And by Evalj the number of new evaluations
of T5 resulting from the qj calls to hj ; namely, it was the call to hj that finalized
the consistent triplet which defined this evaluation of T5. Clearly, q1+q2+q3 = q
and |Eval| = |Eval1|+ |Eval2|+ |Eval3|, which means that

Pr
�
(|Eval| ≥ qn) ∩B1 ∩B2

�
≤

3�

j=1

Pr
�
(|Evalj | ≥ qjn) ∩B1 ∩B2

�
(18)

Namely, to complete more than qn total evaluations, at least one of the functions
h1, h2, h3 should have been “responsible” for at least qjn such evaluations. To
complete the proof of the proposition, it thus suffices to show that

Pr
�
(|Eval1| ≥ q1n) ∩B1 ∩B2

�
≤ Pr [ |Eval1| ≥ q1n ] ≤ q2

n2n
(19)

Pr
�
(|Eval2| ≥ q2n) ∩B1 ∩B2

�
≤ Pr [ |Eval2| ≥ q2n ] ≤ q2

n2n
(20)

Pr
�
(|Eval3| ≥ q3n) ∩B1 ∩B2

�
= 0 (21)

We start with the easier (21), showing that queries to h3 simply cannot cause
so many new evaluations without triggering the bad event B2. Recall, the set
Eval3 can grow from 0 to its final value in q3 queries to h3 (somehow dispersed
among A’s q total queries). And to achieve the final value q3n, at least one such
query to h3 must define at least n new evaluations of T5. Namely, for some query
1 ≤ i ≤ q, this query (c, d) was made to h3, and |Evali\Evali−1| ≥ n. But the
only way this query (c, d) could “match up” to two prior queries (∗, a) ∈ Qi

1 and
(∗, b) ∈ Qi

2 is if m5 = a⊕c = b⊕d. This is equivalent to a⊕b = c⊕d, which is in
turn equivalent to saying that the tuple of queries ((∗, a), (∗, b)) ∈ C12(c⊕d). So
in order for such query (c, d) to match up with at least n tuples ((∗, a), (∗, b)) ∈
Qi

1×Qi
2, it must be the case that |C12(c⊕d)| ≥ n. But this immediately triggers

the bad event B2, meaning that the probability in question is 0, completing the
proof of (21).

Thus, it remains to show (19), as (20) is symmetric. Assume i1, . . . , iq1 ∈
{1...q} are the indices of the q1 queries to h1, and let Δk = |Evalik\Eval(ik−1)|
be the number of new evaluations of T5 during the k-th query to h1, where
1 ≤ k ≤ q1. Then |Eval1| = Δ1+. . .+Δq1 . Moreover, we claim that the expected
value of Δk is at most q2/2n: E[Δk] ≤ q2/2n. To see this, |Q2|, |Q3| ≤ q, and
each pair ((∗, b), ((c, d), ∗)) ∈ Q2 × Q3 would only match the value a returned
by h1 if a = b⊕ c⊕ d. The probability of this event is 1/2n, and the maximum
number of such pairs is at most |Q2 ×Q3| ≤ q2, giving E[Δk] ≤ q2/2n. But this
means

E[ |Eval1| ] =
q1�

k=1

E[Δk] ≤
q1q

2

2n
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By Markov’s inequality,

Pr [ |Eval1| ≥ q1n ] ≤ Pr

�
|Eval1| ≥ E[|Eval1|] ·

n2n

q2

�
≤ q2

n2n

establishing (19), and completing the proof of proposition.

Final Collision Probability (Proof of Proposition 6) For completeness,
we repeat the claimed bound:

Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ n2q2

2n

Let Xi be the event that none of bad events B1, B2 or B3 happened, and that
the i-th query of A generates a fresh collision to T5, where 1 ≤ i ≤ q. We upper
bound Pr[Xi] separately depending on whether this was the call to h1, h2 or
h3. In each of these case we show Pr[Xi] ≤ n2q/2n, meaning that this bound is
correct irrespective of the identity of the i-th query.

Cases 1-2: query to h1 or h2. Since these cases are symmetric, assume the i-th
query is the query (m1,m2) to h1. In order for this query to cause a collision
to T5, one of two things must happen. First, it could be that this very query
(m1,m2) defined a value a which induced two distinct consistent triples

( ((m1,m2), a), ((m3,m4), b ), ((c , d ), e ) )

�=( ((m1,m2), a), ((m
�
3,m

�
4), b

�), ((c�, d�), e�) )

which collided. But this means that f = a⊕(e⊕c) = a⊕(e�⊕c�), or e⊕c = e�⊕c�.
But since we assumed B1 failed, there are no collisions in “c-shifted” h3, which
means (c, d) = (c�, d�). But then, since both tuples are consistent,

b = a⊕ c⊕ d = a⊕ c� ⊕ d� = b�

which means that there is a collision on h2, which again violates B1.
Hence, in order for the query (m1,m2) to cause a collision in T5, there must

be some previous value (∗, f) ∈ Evali−1 s.t. the random answer h1(m1,m2) = a
caused the collision with this f . In turn, this means that there are two queries
(∗, b) ∈ Qi−1

2 and ((c, d), e) ∈ Qi−1
3 such that the valuesm5 = b⊕d = e⊕f match,

which means that b⊕ e = f ⊕ d, and, hence the tuple ((∗, b), ((c, d), e) ∈ C23(f).
Moreover, for the value a to actually match this tuple, we must have a = b⊕c⊕d,
which happens with probability 1/2n.

To summarize, in order for the i-th query to h1 to cause the collision, the
following events must happen:

– There exists a tuple (∗, f) ∈ Evali−1.
– There exists a tuple ((∗, b), ((c, d), e)) ∈ C23(f).
– The random answer a = h1(m1,m2) should be equal to b⊕ c⊕ d.
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Moreover, since we are only interested in the subcase when neither of the bad
events B1, B2, B3 happen, we can assume that |Evali−1| ≤ |Eval| < nq and
|C23(f)| ≤ n (as otherwise Xi does not happen anyway). This means that

Pr[Xi] ≤ nq · n · 1

2n
=

n2q

2n

Case 3: query to h3. Assume the i-th query is the query (c, d) to h3. In order
for this query to cause a collision to T5, one of two things must happen. First, it
could be that this very query (c, d) defined a value e which induced two distinct
consistent triples

( ((m1,m2), a ), ((m3,m4), b ), ((c, d), e) )

�=( ((m�
1,m

�
2), a

�), ((m�
3,m

�
4), b

�), ((c, d), e) )

which collided. But this means that f = a ⊕ (e ⊕ c) = a� ⊕ (e ⊕ c), or a = a�,
and, similarly, f = b ⊕ (e ⊕ d) = b� ⊕ (e ⊕ d), or b = b�. But since we assumed
there no no collisions on h1 and h2, this means that (m1,m2) = (m�

1,m
�
2),

(m3,m4) = (m�
3,m

�
4), and the two consistent triples above are identical.

Hence, in order for the query (c, d) to cause a collision in T5, there must
be some previous value (∗, f) ∈ Evali−1 s.t. the random answer h3(c, d) = e
caused the collision with this f . In turn, this means that there are two queries
(∗, a) ∈ Qi−1

1 and (∗, b) ∈ Qi−1
2 such that the values m5 = a⊕ c = b⊕ d match,

which means that a⊕ b = c⊕ d, and, hence the tuple ((∗, a), (∗, b) ∈ C12(c⊕ d).
Moreover, for the value e to actually match this tuple, we must have e = f⊕(a⊕c)
(which is then the same as f ⊕ (b⊕ d)), which happens with probability 1/2n.

To summarize, in order for the i-th query to h3 to cause the collision, the
following events must happen:

– There exists a tuple (∗, f) ∈ Evali−1.

– There exists a tuple ((∗, a), (∗, b)) ∈ C12(c⊕ d).

– The random answer e = h3(c, d) should be equal to f ⊕ a⊕ c.

Moreover, since we are only interested in the subcase when neither of the bad
events B1, B2, B3 happen, we can assume that |Evali−1| ≤ |Eval| < nq and
|C12(c⊕ d)| ≤ n (as otherwise Xi does not happen anyway). This means that

Pr[Xi] ≤ nq · n · 1

2n
=

n2q

2n

Having established that Pr[Xi] ≤ n2q/2n for all i (irrespective of what the
i-th query was), we simply take the union bound over i ∈ {1 . . . q} to obtain

Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ q ·max

i
Pr[Xi] ≤

n2q2

2n
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B Formal Proof of Preimage Resistance of T5

Consider any (w.l.o.g., deterministic and not repeating queries) collision finding
adversary A making a total of q queries to h1, h2, h3. Our proof will follow the
same rough strategy as the collision security proof in App. A, but with some
differences.

First, we are given a specific value f = T5(M) for a random (unknown) M ,
and now need to invert this f . Since each evaluation of T5 happened on a truly
random input, and the value of f is truly random, it is statistically unlikely that
A will make any of the 3 queries used to evaluate T5(M): the probability of this
event is at most O(q/2n). Hence, we will assume that f is truly random, and A
starts with fresh (unqueried) hash functions h1, h2, h3.

Next, we will define the same sets Qi
1, Q

i
2, Q

i
3,Evali, Ci

12(z), C
i
13(f), C

i
23(f)

as in the proof of App. A, and will omit superscripts at the end of the execution
(i.e., when i = q). Note that we will only care about the sets C13(f), C23(f) for
our “challenge” value f rather than any f . More significantly, our “bad events”
at the end of A’s execution will be defined differently. Intuitively, we will no
longer care about individual collisions in various hash functions (old event B1),
as such collisions will not help the adversary to find an inversion. Instead, we
will only care about certain sets becoming too large, as this could help A invert
f quicker than expected:

– B5: for a particular constant α > 0 defined later,12

max( max
z

|C12(z)|, |C13(f)|, |C23(f)| ) >
2n

α
+

2q2

2n

– B6: (∗, f) ∈ Eval; i.e., the adversary found a preimage of f .

Notice, event B5 is similar to the “old” event B2, except we increased the “multi-
collision threshold” from n to K = O(n) + 2q2/2n, and the event B6 is the one
we care about. We show the following:

Proposition 7 For some constant α, Pr [B5 ] ≤ 3
2n

Proposition 8 Pr
�
B6 ∩B5

�
≤ 2q3

22n + 2qn
α2n

Combining the results of Propositions 7,8 (proven below), we get our final
bound in (4):

Pr [B6 ] ≤ Pr [B5 ] + Pr
�
B6 ∩B5

�
≤ 3

2n
+

2q3

22n
+

2qn

α2n
=

2q3

22n
+O

�qn
2n

�

12 We did not “dig out” this constant from the complex calculations of [22], whose
result we use, since it will not matter asymptotically for our bound. We assume
α > 0.01, for example.
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Bounding Multi-Collisions (Proof of Proposition 7) Consider C12(z) for
some fixed value z. For simplicity, we will allow the adversary to make exactly
q queries to each function h1 and h2 (rather than at most q total). The random
process defining |C12(z)| is equivalent to the following.

– Two random tables T1 and T2 are selected, each consisting of q random n-bit
strings T1[i] = ai and T2[j] = bj , 1 ≤ i, j ≤ q.

– All Q = q2 “balls” y = (i, j) are mapped to “bins” z(y) = T1[i]⊕ T2[j].
– C12(z) is set to be the number of balls thrown into bin z.

This is a special case of the general process of hashing Q balls into N = 2n

bins using simple 2-tabulated hashing. For this case, we will use the following
result of [22] (Theorem 1, Equation (2) of their paper), who proved very strong
Chernoff-type bounds for simple tabulation hashing.

Theorem 4 ( [22], Theorem 1, Equation (2)). Let T1, T2 be random tables
as above. Consider hashing Q balls into N ≥ Q3/4 bins by simple 2-tabulation,
and let X[z] be the number of balls in bin z. Then for any γ > 0 there exists a
constant α = α(γ) > 0, such that any fixed z and any δ ≥ 1:

Pr

�
X[z] > (1 + δ) · Q

N

�
≤ (1 + δ)−α(1+δ)Q

N +
1

Nγ
(22)

To map this to our setting, we let

γ = 2, α = α(2), Q = q2, N = 2n, X[z] = C12(z)

The constraint N ≥ Q3/4 becomes 2n ≥ q3/2, or q ≤ 22n/3, which is the precon-
dition of Theorem 2. We also write K = (1 + δ)Q/N = (1 + δ)q2/2n, and note
that we can choose any K ≥ 2q2/2n. Then, since 1 + δ ≥ 2, we get that for any
K ≥ 2q2/2n, (22) implies:

Pr [C12(z) > K ] ≤ 1

2αK
+

1

22n

Finally, we set K = 2n/α+ 2q2/2n > 2q2/2n. We get αK > 2n, and thus

Pr

�
C12(z) >

2n

α
+

2q2

2n

�
≤ 2

22n

Taking the union bound over all z implies

Pr

�
max

z
(C12(z)) >

2n

α
+

2q2

2n

�
≤ 2

2n

The same argument as for C12(z) applies to C23(f) and C13(f), except we
don’t even need to take the union bound. This is because the question can be
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also reduced to tabulation hashing where the second table T2 is using a “shifted”
functions h3(c, d)⊕ c and h3(c, d)⊕ d. Thus,

Pr

�
C13(f) >

2n

α
+

2q2

2n

�
≤ 2

22n

Pr

�
C23(f) >

2n

α
+

2q2

2n

�
≤ 2

22n

And overall Pr[B5] ≤ 2/2n + 4/22n ≤ 3/2n, as claimed.

Bounding Inversion Probability (Proof of Proposition 8) Let us set

K = 2n
α + 2q2

2n , and assume B5 did not happen (else B6 ∩ B5 does happen
anyway), meaning that maxz |C12(z)|, |C13(f)|, |C23(f)| ≤ K.

It suffices to show that in this case Pr[(∗, f) ∈ Eval] ≤ qK/2n, as this is the
bound claimed in Proposition 8. For that it suffices to argue that for every query
i made by A, Pr[(∗, f) ∈ Evali\Evali−1] ≤ K/2n. Consider query i made by A,
and split the argument into two cases.

Case 1-2: query to h1 or h2. Assume the i-th query is the query (m1,m2) to h1

(same proof for h2). The same argument as we made in Proposition 6 implies
that the answer b defines a consistent triple producing an evaluation with output
f only if:

– There exists a tuple ((∗, b), ((c, d), e)) ∈ C23(f).
– The random answer a = h1(m1,m2) should be equal to b⊕ c⊕ d.

Since |C23(f)| ≤ K and a is random, the probability of this happening is at most
K/2n.

Case 3: query to h3. Assume the i-th query is the query (c, d) to h3. The same
argument as we made in Proposition 6 implies that the answer e defines a con-
sistent triple producing an evaluation with output f only if:

– There exists a tuple ((∗, a), (∗, b)) ∈ C12(c⊕ d).
– The random answer e = h3(c, d) should be equal to f ⊕ a⊕ c.

Since |C12(c⊕ d)| ≤ maxz |C12(z)| ≤ K and e is random, the probability of this
happening is at most K/2n.

This completes the proof.

C Proof of Theorem 3 (cross-collision bound)

Proof. As in the case of T5, for T
�
5, we use the variables

– m�
1 and m�

2 to denote the left and right halves of various inputs to h1;
– a� to denote various outputs of h1;
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– c� and m�
4 to denote the left and right halves of various inputs to h3. We

might use d in place of m�
4 while talking about h3 queries in general;

– e� to denote various outputs of h3;
– M = (m�

1,m
�
2,m

�
3,m

�
4) to denote various inputs to T�

5;
– f � to denote various outputs of T�

5.

Hence, a valid computation of T�
5(M) = T�

5(m
�
1, . . . ,m

�
4) proceeds as follows:

1. Set a� = h1(m
�
1,m

�
2).

2. Set c� = a� ⊕m�
3.

3. Set e� = h3(c
�,m�

4), and output f � = e� ⊕m�
3.

However, in case of T�
5, all the queries are consistent. For any two queries

((m�
1,m

�
2), a

�) and ((c�,m�
4), e

�), we define m�
3 = a� ⊕ c�, and say that this

pair of queries (uniquely) defines a valid T�
5 evaluation (M �, f �), where M � =

(m�
1,m

�
2,m

�
3,m

�
4) and f � = e� ⊕ a� ⊕ c�.

Most of the assumptions and definitions are the same as in the T5 collision
proof. We only note the points of difference here.

– Evali now denotes the set of input-output pairs for the entire constructions
T5 and T�

5 known to A after its i-th query. We denote the set of T5 outputs
by EvaliT5

and similarly the set of T�
5 outputs by EvaliT�

5
. Thus, |Evali| =

|EvaliT5
|+ |EvaliT�

5
|.

– Bad event B3: |Eval| ≥ qn+ q2.
– Bad event B4: a non-trivial collision between T5 and T�

5 is found; i.e.,
(M, f), (M �, f) ∈ Eval with M ∈ {0, 1}5n, M � ∈ {0, 1}4n and g(M) �= M �,
where g(m1,m2,m3,m4,m5) = (m1,m2,m5, h2(m3,m4)⊕m5).

Our goal remains the same, to upper bound the probability of B4. We also
note that the four bad events are still disjoint. Therefore, we have

Pr [B4 ] ≤ Pr [B1 ]+Pr
�
B2 ∩B1

�
+Pr

�
B3 ∩B1 ∩B2

�
+Pr

�
B4 ∩B1 ∩B2 ∩B3

�

The first two propositions and their proof are the same as above. However,
for completion, we restate the propositions.

Proposition 9 Pr [B1 ] ≤ 2q2

2n

Proposition 10 Pr
�
B2 ∩B1

�
≤ 3 ·

�
2q2

2n

�n

Proposition 11 Pr
�
B3 ∩B1 ∩B2

�
≤ 2q2

n2n

Proposition 12 Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ nq3

2n

Combining the results of Propositions 3,4,11,12, we get our final bound in (6):

Pr [B4 ] ≤
2q2

2n
+ 3 ·

�
2q2

2n

�n

+
2q2

n2n
+

nq3

2n
≤ nq3 + 9q2

2n

Hence, it suffices to prove Propositions 11,12.
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Bounding Evaluation Set of T5 and T�
5 (Proof of Proposition 11) We

break this into two parts. We note that since |Evali| = |EvaliT5
|+ |EvaliT�

5
|, we

must have |Eval| = |EvalT5
|+ |EvalT�

5
|.

First, we prove that A cannot compute more than q2 evaluations of T�
5 in its

q queries.
Let us denote by qj , for j = 1, 2, 3, the (random variable equal to the) number

of calls to hj . T
�
5 evaluations only depend on q1 calls to h1 and q3 calls to h3.

Also, there is no computability condition for T�
5. Hence, total number of T�

5

evaluations is equal to q1q3, which is less than q2. Therefore, |EvalT�
5
| ≤ q2.

Now, we can follow the exact proof of 5 in the previous section and the proof
is completed.

Final Collision Probability (Proof of Proposition 12) For completeness,
we repeat the claimed bound:

Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ nq3

2n

Let Xi be the event that none of bad events B1, B2 or B3 happened, and that the
i-th query of A generates a fresh collision between T5 and T�

5, where 1 ≤ i ≤ q.
We upper bound Pr[Xi] separately depending on whether this was the call to
h1, h2 or h3. In each of these case we show Pr[Xi] ≤ nq2/2n, meaning that this
bound is correct irrespective of the identity of the i-th query.

Case 1: query to h1. Assume the i-th query is the query (m1,m2) to h1. In order
for this query to cause a collision, one of two things must happen. First, it could
be that this very query (m1,m2) defined a value a which induced two distinct
consistent tuples

( ((m1,m2), a), ((m3,m4), b), ((c, d), e) ) �= ( ((m1,m2), a), ((c
�, d�), e�) )

which collided. Here the first tuple corresponds to a valid T5 evaluation and
the second tuple corresponds to a valid T�

5 evaluation. But this means that
f = a⊕ (e⊕ c) = a⊕ (e�⊕ c�), or e⊕ c = e�⊕ c�. But since we assumed B1 failed,
there are no collisions in “c-shifted” h3, which means (c, d) = (c�, d�). But this
will imply the trivial collision which we have ruled out.

Hence, in order for the query (m1,m2) to cause a collision in T5, there must
be some previous value (∗, f) ∈ Evali−1 s.t. the random answer h1(m1,m2) = a
caused the collision with this f . Now again, there are two subcases:

a) (*,f) comes from an evaluation of T�
5. In turn, this means that there is a query

(∗, b) ∈ Qi−1
2 and ((c, d), e) ∈ Qi−1

3 such that the tuple ((∗, b), ((c, d), e) ∈ C23(f).
Moreover, for the value a to actually match this tuple, we must have a = b⊕c⊕d,
which happens with probability 1/2n.

To summarize, in order for the i-th query to h1 to cause the collision, the
following events must happen:
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– There exists a tuple (∗, f) ∈ Evali−1
T�

5
.

– There exists a tuple ((∗, b), ((c, d), e)) ∈ C23(f).
– The random answer a = h1(m1,m2) should be equal to b⊕ c⊕ d.

Moreover, since we are only interested in the subcase when neither of the bad
events B1, B2, B3 happen, we can assume that |Evali−1

T�
5
| ≤ |EvalT�

5
| < q2 and

|C23(f)| ≤ n (as otherwise Xi does not happen anyway). This means that

Pr[Xi] ≤ q2 · n · 1

2n
=

nq2

2n

b) (*,f) comes from an evaluation of T5. Then, the query (m1,m2) to h1 must
result in an evaluation of T�

5 which causes a collision. For this to happen, the
following conditions must be satisfied:

– There exists a tuple (∗, f) ∈ Evali−1
T5

.
– The random answer a can combine with any of the queries ((c, d), e) of h3

such that f = a⊕ c⊕ e.

Since we are only interested in the subcase when neither of the bad events
B1, B2, B3 happen, we can assume that |Evali−1

T5
| ≤ |EvalT5

| < nq. Also, there
are at most q queries to h3. The probability that f = a⊕ c⊕ e is 1/2n for each
such query. Therefore,

Pr[Xi] ≤ nq · q · 1

2n
=

nq2

2n

Case 2: query to h2. Assume the i-th query is the query (m3,m4) to h2. Now,
this query itself cannot output two values that collide since this query does not
give any new T�

5 outputs. The only way this query can cause a collision is that
there exists some previous value (∗, f) ∈ Evali−1

T�
5

such that the random answer

creates a T5 output equal to f . This case is exactly similar to the first subcase
of Case 1.

Case 3: query to h3. Assume the i-th query is the query (c, d) to h3.
In order for this query to cause a collision, one of two things must happen.

First, it could be that this very query (c, d) defined a value e which induced two
distinct consistent tuples

( ((m1,m2), a), ((m3,m4), b), ((c, d), e) ) �= ( ((m�
1,m

�
2), a

�), ((c, d), e) )

which collided. Here the first tuple corresponds to a valid T5 evaluation and
the second tuple corresponds to a valid T�

5 evaluation. But this means that
f = a ⊕ (e ⊕ c) = a� ⊕ (e ⊕ c), or a = a�. But since we assumed there are no
collisions on h1, this means that (m1,m2) = (m�

1,m
�
2). But this will imply only

the trivial collision, which we have ruled out.
Hence, in order for the query (c, d) to cause a collision, there must be some

previous value (∗, f) ∈ Evali−1 s.t. the random answer h3(c, d) = e caused the
collision with this f . Again, we have two subcases:
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a) (*,f) comes from an evaluation of T�
5. This means that there is a query

(∗, a) ∈ Qi−1
1 and (∗, b) ∈ Qi−1

2 such that the values m5 = a⊕ c = b⊕ d match,
which means that a⊕ b = c⊕ d, and, hence the tuple ((∗, a), (∗, b) ∈ C12(c⊕ d).
Moreover, for the value e to actually match this tuple, we must have e = f⊕(a⊕c)
(which is then the same as f ⊕ (b⊕ d)), which happens with probability 1/2n.

To summarize, in order for the i-th query to h3 to cause the collision, the
following events must happen:

– There exists a tuple (∗, f) ∈ Evali−1
T�

5
.

– There exists a tuple ((∗, a), (∗, b)) ∈ C12(c⊕ d).
– The random answer e = h3(c, d) should be equal to f ⊕ a⊕ c.

Moreover, since we are only interested in the subcase when neither of the bad
events B1, B2, B3 happen, we can assume that |Evali−1

T�
5
| ≤ |EvalT�

5
| < q2 and

|C12(c⊕ d)| ≤ n (as otherwise Xi does not happen anyway). This means that

Pr[Xi] ≤ q2 · n · 1

2n
=

nq2

2n

b) (*,f) comes from an evaluation of T5. Then, the query (c, d) to h3 must result
in an evaluation of T�

5 which causes a collision. For this to happen, the following
conditions must be satisfied:

– There exists a tuple (∗, f) ∈ Evali−1
T5

.
– The random answer e can combine with any of the queries ((m1,m2), a) of

h1 such that f = a⊕ c⊕ e.

Since we are only interested in the subcase when neither of the bad events
B1, B2, B3 happen, we can assume that |Evali−1

T5
| ≤ |EvalT5

| < nq. Also, there
are at most q queries to h1. The probability that f = a⊕ c⊕ e is 1/2n for each
such query. Therefore,

Pr[Xi] ≤ nq · q · 1

2n
=

nq2

2n

Having established that Pr[Xi] ≤ nq2/2n for all i (irrespective of what the
i-th query was), we simply take the union bound over i ∈ {1 . . . q} to obtain

Pr
�
B4 ∩B1 ∩B2 ∩B3

�
≤ q ·max

i
Pr[Xi] ≤

nq3

2n
.
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