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Abstract 

Proxy signature (PS) is a kind of digital signature, in which an entity called original signer can delegate his 

signing rights to another entity called proxy signer. Designated verifier signature (DVS) is a kind of digital 

signature where the authenticity of any signature can be verified by only one verifier who is designated by the 

signer when generating it. Designated verifier proxy signature (DVPS) combines the idea of DVS with the 

concept of proxy signature (PS) and is suitable for being applied in many scenarios from e-tender, e-voting, e-

auction, e-health and e-commerce, etc. Many DVPS schemes have been proposed and Identity-based DVPS 

(IBDVPS) schemes have also been discussed. Certificateless public-key cryptography (CL-PKC) is acknowledged 

as an appealing paradigm because there exists neither the certificate management issue as in traditional PKI nor 

private key escrow problem as in Identity-based setting. A number of certificateless designated verifier signature 

(CLDVS) schemes and many certificateless proxy signature (CLPS) schemes have been proposed. However, to 

the best of our knowledge, the concept of Certificateless Designated Verifier Proxy Signature (CLDVPS) has not 

been appeared in the literature. 

In this paper, we formalize the definition and the security model of CLDVPS schemes. We then construct the 

first CLDVPS scheme and prove its security.  

 

Keywords: certificateless public-key cryptography; designated verifier proxy signature; certificateless 

designated verifier proxy signature; random oracle model; provable security; bilinear pairings.  

1. Introduction 

Digital signature is one of the most important primitives in cryptography and serves as a powerful tool in 

information security, including authentication, data integrity and non-repudiation in a public channel. It falls into 



 

2 

the category of public-key cryptography (PKC), where each user has two keys, i.e., a public key and a 

corresponding private key, and it is an important issue to guarantee the authenticity of public keys which match 

with private keys. Digital signature schemes allow any signer to sign a message using its private key in such a 

way that any other (i.e., verifier) who has an authentic copy of the public key associated with the signer can verify 

the origin and the integrity of the message. In traditional public key setting such as PKI, certificates generated by 

a trusted third party (TTP) are used to distribute authentic public keys, but it is costly to use and manage them, 

and brings about new problems. In order to bypass those problems, Shamir [51] introduced the concept of 

Identity-based Signature (IBS) along with Identity-based encryption (IBE). In IBS, the public key of a user is its 

identity information (e.g., name, email address, IP address, or social security number) which is approved publicly 

and doesn’t need to be certified by any TTP, but all private keys are only generated by a TTP called private key 

generator (PKG). Therefore, the PKG can freely generate any user’s signature on any message and this results in 

the private key escrow problem which is inherent in the identity-based setting. In 2003, Al-Riyami and Paterson 

[1] introduced certificateless public-key cryptography (CL-PKC) and the first certificateless signature (CLS) 

scheme to solve the private key escrow problem in the identity-based setting and eliminate the need of certificates 

in the conventional PKI. In the certificateless setting, a TTP named a key generation center (KGC) is also required 

for a user to generate its private key, but unlike a PKG in IBS schemes, the KGC only produces a partial private 

key for any user by using the user’s identity and a master secret key, and transfers it to the user securely. Then the 

user generates its own full private key by combining the partial private key generated by KGC with a secret value 

chosen by itself. As a result, the KGC cannot know the full private key of any user and the key escrow problem in 

the identity-based setting can be solved. Meanwhile, the public key for each user in the CLS schemes is no longer 

its identity, but it can be certified by the structure of the CL-PKC without any certificate. 

Proxy signature, introduced by Mambo et al. [44] in 1996, is a kind of digital signature, in which a user 

called original signer can delegate his signing right to another user called proxy signer and the proxy signer can 

sign messages on behalf of the original signer, in case of temporal absence of him, lack of his time, etc. Proxy 

signature schemes are widely used in distributed systems where delegation of signing rights is quite common, 

including cloud computing, global distribution networks and electronic commerce. On the basis of the delegation 

mode, proxy signature schemes can be classified three types [44]: full delegation, partial delegation and 

delegation by warrant. In the full delegation, the original signer entirely grants his private key (signing key) to the 

proxy signer. Therefore, the proxy signer has all signing right of the original signer and such schemes have no 
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non-repudiation. In the partial delegation, a proxy signer obtains a new key, called proxy signing key, which is 

derived from the private key (signing key) of the original signer and the public or private key of the proxy signer. 

Obviously, proxy signatures which is generated with proxy signing key are distinguished from the original 

signer’s signatures, but the proxy signature with partial delegation still suffers from the problem that the proxy 

signer has no limit on which messages and when he can sign. In the delegation by warrant, this problem can be 

solved. Warrants are usually written by the original signers and can include identities of the original signer and the 

proxy signer, the delegation period, the associated public keys, and other information. Actually, it is possible to 

contain any types of security policies that specify the restrictions under which the delegation is valid, such as the 

formats of messages to be signed, the number of signatures to be generated by proxy signer, etc. The original 

signers prepare the warrants at their will and sign them to certify the legitimacy of the proxy signers and be able to 

delegate the limited signing right to the proxy signers. Therefore, most of works in the literature focus on the 

proxy signature schemes with the delegation by warrant. The warrant signed by the original signer is called the 

delegation.  

In general, a secure proxy signature scheme should satisfy the following security requirements [44]: (1) 

Strong Unforgeability: Only the designated proxy signer can create a valid proxy signature and even the original 

signer cannot. (2) Verifiability: Anyone can verify the proxy signature and its conformance to the original signer’s 

agreement or delegation. (3) Strong Identifiability: From the proxy signature, anyone can determine the identity of 

corresponding proxy signer. (4) Strong Undeniability: A proxy signer cannot deny his or her signature ever 

generated against anyone. (5) Distinguishability: Anyone can distinguish the proxy signature from the original 

signer’s normal signature. (6) Prevention of misuse: The proxy signer cannot sign messages that have not been 

authorized by the original signer.  

In typical digital signature schemes, signatures generated by any signer are publicly verifiable and 

transferable, and have the non-repudiation property. In other words, anyone who gets a signature and has the 

signer’s public key can verify the authenticity of the signature, and transfer his conviction to anyone else by 

presenting the signature. Furthermore, no signer can deny the signature generated by him. However, the public 

verifiability and non-repudiation property of signatures is not always desirable in some scenarios where the 

privacy of the signer must be protected, such as e-tender, e-voting, e-auction, e-health and e-commerce 

applications. In 1996, Jakobsson et al. [28] suggested the notion of designated verifier signature (or proof) (DVS) 

as a solution for resolving the conflict between authenticity and privacy of signatures. In DVS, the authenticity of 
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any signature can be verified by only one verifier who is designated by the signer when generating it, in a non-

interactive way. That is, for any signature in DVS schemes, no one else than the designated verifier of the 

signature can get the conviction on the identity of the signer who generated it, while the designated verifier cannot 

transfer his conviction to anyone else since he can always simulate the signature indistinguishably. Anyone can 

verify the validity of any signature (i.e., the fact that the signature is generated by one of the signer and the 

designated verifier), but no one except the designated verifier can confirm the identity of the true signer due to the 

indistinguishability between the original signature and the fake signature (transcript) simulated by the designated 

verifier even if the private keys of the signer and the designated verifier are revealed. Jakobsson et al. [28] also 

proposed the idea of a strong DVS (SDVS), where the designated verifier’s private key is required in the 

verification algorithm so that no one can even verify the validity of signatures except the designated verifier. 

Steinfeld et al. [54] extended the concept of DVS to the one of universal DVS (UDVS), in which anyone who 

holds the standard signature on a message can transform it to a DVS to protect the privacy of the signature holder 

from dissemination of signatures by verifiers. In 2004, Laguillaumie and Vergnaud [34] proposed the new 

primitive called multi-designated verifiers signatures (MDVS) where the signer can designate multiple verifiers 

for one signature and each verifier can verify the signature individually. 

There are some security requirements for secure DVS schemes. The correctness and the unforgeability are 

the de facto standard requirements for digital signatures. The correctness requires that any signature properly 

produced by a legitimate signer must be accepted by the designated verifier. The unforgeability means that it is 

infeasible to produce a valid signature without the knowledge of the private key of either the signer or the 

designated verifier. The natural requirement derived from the essence of the DVS is the non-transferability which 

is identified by Steinfeld et al. [54]. The non-transferability means that a designated verifier for any signature 

cannot use the signature to produce the evidence which convinces any third party that the signature was generated 

by the signer. As the requirement for anonymity of signatures, Laguillaumie and Vergnaud [35] suggested a 

weaker notion for ordinary DVS, source hiding and a stronger notion for strong DVS, privacy of signer’s identity 

(PSI). Source hiding means that given a message and a signature on it, it is infeasible to decide who from the 

signer or the designated verifier generated the signature, even if the private keys of the signer and designated 

verifier are known. Privacy of signer’s identity means that given a signature and the public keys of two potential 

signers for the signature, it is infeasible to determine under which of the two corresponding private keys the 

signature was generated, without the knowledge of the private key of the designated verifier. Lipmaa et.al [40] 
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identified a new security requirement for secure DVS schemes, called the non-delegatability. The non-

delegatability requires that if a third party can produce a valid signature with respect to a designated verifier or 

identify the identity of the signer from the signature, it must ‘know’ the private key of either the original signer or 

the designated verifier. It is a critical property in applications where responsibilities of signers and designated 

verifiers are so important that they cannot be delegated to third parties. 

In 2003, Dai et al. [8] proposed a primitive called a designated verifier proxy signature (DVPS) by 

combining the idea of DVS with the concept of proxy signature (PS) to capture the security requirements from e-

commerce applications, such as sale of digital products (softwares, games, digital music, e-books, etc.) In the 

definition of DVPS proposed by Dai et al. [8], the verifiers of proxy signatures are designated by original signers 

in advance and this point makes their DVPS slightly inflexible. In 2004, Wang [61] suggested an improved DVPS 

scheme where verifiers of proxy signatures are designated by proxy signers instead of the original signers. Then 

vaious DVPS schemes have been discussed in many literatures [18,17,24,26,30,36,37,41,59,65,68,69]. 

1.1 Motivation 

In 2005, Cao et al. [2] introduced the idea of DVPS into the identity-based setting to propose the first 

identity-based DVPS (IBDVPS) scheme. Along their research line, Lal and Verma [36, 37], Kang et al. [31], Yang 

[65], Islam and Biswas [24, 26], Hu et al. [18], etc., successively proposed various IBDVPS schemes. On the 

other hand, in 2006, the first DVS scheme in the certificateless setting, namely a certificateless DVS (CLDVS) 

scheme, proposed by Huang et al. [23]. Since then, Du and Wen [10], Yang et al. [64], He and Chen [14], Islam 

and Biswas [25], Chen et al. [5], Pakniat [46], Rastegari et al. [48] etc., also proposed CLDVS schemes. In 2005, 

Li et al. [38] combined the concept of proxy signature with CL-PKC to propose the notion of certificateless proxy 

signature (CLPS). Then the CLPS and its some extensions (e.g. certificateless multi-proxy signature, 

certificateless proxy multi-signature, etc) have been discussed in many literatures 

[3,4,11,29,43,45,58,60,62,63,70]. 

It is natural to combine the concept of DVPS with CL-PKC which is more flexible public-key setting than 

the identity-based setting. However, to the best of our knowledge, there are no researches in this direction up to 

now.  

Generally, the security of any cryptographic primitive is ensured by a formal proof, neither by a heuristic 

proof nor by a claim without any proof, and formal proofs of the security are based on formal definitions and 

precise assumptions. The power of adversaries and the security of the primitive are defined within the security 
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model of the primitive. A lot of previously proposed primitives without a formal security proof turned out to be 

insecure subsequently to their release, then fixed, but they would be proved to be insecure again. We can see this 

phenomenon on IBDVPS schemes and CLDVS schemes in the literature. For example, Kang et al. [31] showed 

that Lal and Verma’s scheme in [36] is not secure. Later, the insecurity of Kang et al.’s IBDVPS scheme in [31] 

was proved. The first IBDVPS scheme proposed by Cao et al. in [2], and Yang’s scheme in [65] have not a formal 

proof of their security. Islam and Biswas [24] proposed an IBDVPS scheme with only heuristic security proof. 

Islam and Biswas [26] again proposed an IBDVPS scheme and presented a formal security proof, but did not give 

a formal definition of the security model. Meanwhile, Huang et al.’s CLDVS scheme in [23] is insecure against 

malicious KGC attacks [46]. Lin et al. [39] showed that Islam and Biswas’s CLDVS scheme in [25] is vulnerable 

to key-compromise and malicious KGC attacks. Pakniat [46] disproved Chen et al.’s claim that their 

certificateless strong DVS scheme in [5] satisfies all the security requirements, and showed that it is forgeable. Li 

et al. [38] proposed the first scheme of the CLPS without any formal security proof. Later, Yap et al. [66] and Lu 

et al. [42] found that Li et al.’s scheme is insecure. Furthermore, Lu et al. [42] improved Li et al.’s CLPS scheme, 

but they, just as Li et al. [38], did not present any formal security proof for the scheme. Padhye et al. [45] 

proposed an elliptic curve discrete log problem (ECDLP)-based CLPS scheme without pairings. They presented a 

formal security proof, but Shi et al. [53] showed their scheme is not secure for practical applications. This 

illustrates the necessity of well-defined security models and a rigorous security analysis. 

Hu et al. [18] presented the formal definition of an IBDVPS scheme and a formal security model for it, 

focusing on only the unforgeability. Hu et al. [17] proposed a well-defined security model for DVPS schemes. 

Huang et al. [22], Huang et al. [20], Tian et al. [57], Yoneyama et al. [67], Sharma et al. [52], Islam and Biswas 

[27], Hu et al. [19], Steinfeld et al. [54], Huang et al. [21], Laguillaumie et al. [33], Rastegari et al. [49], 

Laguillaumie et al. [34], Damgård et al. [9], Rastegari and Berenjkoub [47], etc. proposed a formal security model 

for identity-based DVS (IBDVS), SDVS, UDVS, or MDVS schemes, respectively. A number of security models 

for the CLPS schemes were proposed by Wan et al. [60], Chen et al. [3], Chen et al. [4], Jin et al. [29], Zhang et al. 

[70], Xu et al. [63], Du et al. [11], Padhye et al. [45], etc. However, we cannot find a formal security model for 

CLDVS schemes in the literature.  

Motivated by the above discussion, we propose the notion of certificateless designated verifier proxy 

signature (CLDVPS), the security model for CLDVPS schemes and the concrete CLDVPS scheme in this paper. 
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1.2 Our contribution 

For the first time in the literature, we introduce the notion of certificateless (strong) designated verifier proxy 

signature (CLDVPS) as a kind of strong DVS, formalize the security model for CLDVPS schemes and propose 

the first CLDVPS scheme in this paper. 

The main contributions of this paper can be summarized as follows: 

(1) Firstly, we formalize the definition of a CLDVPS scheme and propose the formal security model for 

CLDVPS schemes. Referring to Hu et al.’s security model [18] for IBDVPS schemes, we propose a formal 

definition of a CLDVPS scheme, then improve the security models for CLPS schemes from [4, 63, 70, 11, 45] and 

combine them with Hu et al.’s security model [17] for DVPS schemes and other models for DVS to construct the 

first security model for CLDVPS schemes. 

(2) Secondly, we propose a concrete CLDVPS scheme. This is the first CLDVPS scheme in the literature. 

Our scheme is inspired by Hu et al.’s DVPS scheme [17], Islam and Biswas’s IBDVPS scheme [26], and CLPS 

schemes from [70, 45].  

(3) Finally, based on our new security model for CLDVPS schemes, we prove that our scheme is secure in 

the random oracle model under the assumption that the computational Diffie–Hellman (CDH) problem and Gap 

Bilinear Diffie–Hellman (GBDH) problem are intractable. 

1.3 Organization 

The remainder of this paper is organized as follows. In Section 2, some preliminaries are given. In Section 3, 

we present the definition of a CLDVPS scheme and formalize the security model for CLDVPS schemes. Then a 

concrete CLDVPS scheme is proposed in Section 4. We prove the security of the proposed scheme in Section 5. 

Finally, we conclude the paper in Section 6. 

2. Notations and Preliminaries 

Throughout this paper, we will use following notations: 

  : the security parameter; 

 1 : the string consisting of   ones; 

 Ss R : the operation of picking an element s  uniformly at random from a finite set S ; 

 r  ⟻ ),,( 1 mii  : the operation of running a probabilistic (randomized) algorithm   with input 

mii ,,1   and assigning the result to r ; 
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 r  ⟵ ),,( 1 mii  : the operation of running a deterministic algorithm   with input mii ,,1   and 

assigning the result to r ; 

 1V  / 2V : one of two values 1V  and 2V ; 

 1V ∥ 2V : the concatenation of the (binary) string representations of two values 1V  and 2V ; 

 L   R : the assignment of the value of R  to L . 

 : the null symbol indicating a failure or a false value; 

 ∅: the empty set or the empty string.  

 Let   be a cyclic additive group of prime order q with the addition “+”. If P  and qk  , we denote 

 
tim esk

PP    as Pk][ .  

 PPT stands for probabilistic polynomial-time.  

 Pr[E] stands for the probability of the event E. 

A function :f  is said to be negligible if, for all polynomial p , there exists an integer pk  such that 

|)(|/1|)(| npnf   for all n > pk , or equivalently, if for all c  there exists an integer ck  such that 

cnnf |)(|  for all n > ck .  

Definition 1. Let 
 A  be a cyclic additive group of prime order q  and 

 M  be a cyclic multiplicative group 

of the same order with the identity element M1 . A map MAA:ˆ  e  is called a bilinear pairing if it has the 

following properties: 

(1) Bilinearity:      RPeQPeRQPe ,ˆ,ˆ,ˆ   and      RQeRPeRQPe ,ˆ,ˆ,ˆ   for all P , Q , R A . 

(2) Non-degeneracy: There exists P A  such that   M1,ˆ PPe . 

(3) Efficient Computability: There is an efficient algorithm to compute  QPe ,ˆ  for all P , Q A . 

( 
 A , 

 M ) is called a bilinear group pair. 

Numerous computational problems on bilinear pairings have been defined. 

Definition 2. Let 
 A  be a cyclic additive group of prime order q , G  be a generator of 

 A , 
 M  be a cyclic 

multiplicative group of prime order q , MAA:ˆ  e  be a bilinear pairing.  
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Computational Diffie–Hellman (CDH) Problem in 
 A : Given G , and Gu][ , Gv][ A  for some unknown 

*, qvu  , compute Guv][ A . 

Decisional Bilinear Diffie–Hellman (DBDH) Problem in ( 
 A , 

 M ): Given Mh , G , and Gu][ , Gv][ , 

Gw][ A  for some unknown 
*,, qwvu  , decide whether uvwGGeh ),(ˆ  or not. 

A DBDH oracle DBDH  is an algorithm that on input G , Gu][ , Gv][ , Gw][ A  and Mh , output 1 if 

uvwGGeh ),(ˆ , or 0 otherwise. 

Gap Bilinear Diffie–Hellman (GBDH) Problem in ( 
 A , 

 M ): Given G , Gu][ , Gv][ , Gw][ A , compute 

uvwGGe ),(ˆ M  with the help of DBDH oracle DBDH . 

In CL-PKC, two types of adversaries with different capabilities‒type I adversaries and type II adversaries, 

are considered [1]; 

 A type I adversary I  acts as a dishonest user, and can replace the public key of any user with his choice 

but cannot access to the master secret key. 

 A type II adversary II  acts as a malicious-but-passive KGC, and knows the master secret key and partia

l private keys of all user but cannot replace any user’s public key. 

3. Certificateless designated verifier proxy signature: formal definitions and security model 

In this section, we describe the formal definition of certificateless designated verifier proxy signature 

(CLDVPS) schemes within the category of the strong designated verifier signature (SDVS) and propose security 

model for CLDVPS schemes. In SDVS schemes, the generation of any signature involves the public key of the 

designated verifier and the verification of the signature needs the private key of the designated verifier. That is, a 

strong DVS (SDVS) scheme is more suitable to the main goal of the DVS, i.e., the guarantee of the restrictive 

verifiability or the anonymity of signatures, and practical applications than any ordinary DVS scheme where 

anyone can decide whether any signature has been generated by one of the signer and the designated verifier or 

not, but cannot determine who the true signer is, excepting the designated verifier. In fact, the notion of the 

ordinary DVS corresponds to the one of the ring signature [50] in the particular case where the set U of possible 

signers contains two users, U  {S, D}, i.e., the signer S and the designated verifier D. If S generates a ring 
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signature for the set U, then anyone can verify that either S or D has created the signature. User D, of course, 

knows that he has not computed this signature, so he concludes that the actual author of the signature is S [15]. 

3.1 Definition of a CLDVPS scheme 

We first define the CLDVPS scheme formally, and then emphasize some features of the new definition. 

Definition 3. A certificateless (strong) designated verifier proxy signature (CLDVPS) (with appendix) 

scheme )(Σ  comprises legitimate entities of four types: the KGC, the original signer, the proxy signer and the 

designated verifier. It consists of the following eight polynomial-time algorithms:  

(1) ( Params, s ) ⟻ Setup( 1 ): This is a probabilistic (randomized) algorithm run by the KGC, takes as 

input 1 , and returns a list of public system parameters Params and a master secret key s .  

(2) ( UP , Us ) ⟻ GenerateUserKeys( Params, UID ): This is a probabilistic algorithm run by any entity 

except the KGC. When a user U  run, it takes as input Params and his identity UID , and outputs a public/secret 

key pair ( UP , Us ) for the user U . 

(3) ( UK , Uc )⟻ GeneratePartialKeys( Params, s , UID , UP ): This is a probabilistic algorithm run by the 

KGC, takes as input Params, the master secret key s , the identity UID  of a user U  and his public key UP , and 

outputs a pair of partial public / private keys ( UK , Uc ) for the user U . ( UP , UK )/( Us , Uc ) is the pair of full 

public / private keys for the user U .  

(4) Oδ ⟻ GenerateDelegation( Params, OID , OP , OK , Os , Oc , Ow ): This is a probabilistic algorithm run 

by original signers. When an original signer O  run, it takes as input Params, the identity OID  of O , his full 

public/private key pair ( OP , OK )/( Os , Oc ), and a warrant Ow  issued by O , and then outputs the delegation Oδ  

certified by O . Oδ  includes Ow . 

(5) True/False ⟵ VerifyDelegation( Params, OID , OP , OK , Oδ ): This is a deterministic algorithm run by 

any user. It takes as input Params, the identity OID  of an original signer O , his full public key ( OP , OK ) and 

the delegation Oδ  issued by O , and outputs True if the delegation Oδ  is valid, or False otherwise. 

(6) m ⟻ GenerateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , Ps , Pc , DID , DP , DK , m ): This 

is a probabilistic algorithm run by proxy signers. It takes as input Params, the identity OID  and the full public 
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key ( OP , OK ) of an original signer O , the delegation Oδ  issued by O , the identity PID  and the full 

public/private key pair ( PP , PK )/( Ps , Pc ) of the proxy signer P  specified by the delegation Oδ , the identity 

DID  and the full public key ( DP , DK ) of the verifier D  designated by the proxy signer P , and a message m . It 

outputs a signature m  of P  on the message m . 

(7) True/False ⟵ VerifyDVPSign( Params , OID , OP , OK , Oδ , PID , PP , PK , DID , DP , 

DK , Ds , Dc , m , m ): This is a deterministic algorithm run by designated verifiers. It takes as input Params, the 

identity OID  and the full public key ( OP , OK ) of an original signer O , and the delegation Oδ  issued by O , the 

identity PID  and the full public key ( PP , PK ) of a proxy signer P , the identity DID  and the full public/private 

key pair ( DP , DK )/( Ds , Dc ) of a designated verifier D , a message m , and a proxy signature m . It outputs True 

if the delegation Oδ  is valid, the proxy signer P  is specified in the delegation Oδ , the message m  conforms to 

the delegation Oδ  and the proxy signature m  is valid, or False otherwise.  

(8) 
S
m ⟻ SimulateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc , m ): This is 

a probabilistic algorithm run by any user (a potential designated verifier). It takes as input Params, the identity 

OID  and the full public key ( OP , OK ) of an original signer O , the delegation Oδ  issued by O , the identity PID  

and the full public key ( PP , PK ) of a proxy signer P , the identity DID  and the full public/private key pair 

( DP , DK )/( Ds , Dc ) of a designated verifier D , and a message m . It outputs a simulated proxy signature 
S
m  on 

the message m  in behalf of the proxy signer P . 

Remark. In fact, the last algorithm SimulateDVPSign is neither an essential one, nor a component of the 

definition for a CLDVPS scheme. It is only used to describe and prove a security requirement for SDVS schemes, 

namely, non-transferability. We can get the definition of the certificateless ordinary designated verifier proxy 

signature scheme by eliminating the parameters Ds  and Dc , i.e., the full private key of the designated verifier D  

from the input parameters of the algorithm VerifyDVPSign. 

We obtained the above definition of a CLDVPS scheme by improving and modifying the definitions of a 

CLPS scheme in such a way that it can capture the functions of a DVS scheme. When comparing our definition 

with the previous definitions of a CLPS scheme (e.g., in [4, 11, 45, 60, 63, 70]), we can find some differences. 
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Main difference is in the 3rd algorithm, GeneratePartialKeys, generating partial keys of any user. In other 

definitions, it is usually named as Partial-Private-Key-Extract. It takes system parameters, the master secret key 

and the identity of a user as input, and outputs only a partial private key of the user. However, in our definition, fo

llowing what Cheng and Chen [6] has done for the definition of CL-PKC, the public key UP  of the user U  is 

added to its input parameters, and the public value UK  is also outputted from it. It is possible that the input 

parameter UP  are ignored within the algorithm and the public value UK  of the output is the empty string. Hence, 

any partial key generation algorithms following the other definitions can be covered by our definition. On the 

other hand, by adding the public key UP  selected by a user as input of GeneratePartialKeys, our definition can 

capture the schemes achieving Girault’s trust level 3 [13]. This technique has been already discussed in [1]. By 

including the partial public key UK  into output of GeneratePartialKeys, our definition can explicitly depict the 

schemes in which a user’s partial private key has a public part, e.g., Padhye and Tiwari’s CLPS scheme [45].  

Another difference is that some algorithms in the traditional definitions of CL-PKC are eliminated in our 

definition. Firstly, in the same approach as taken by Wan et al. [60], Xu et al. [63], Zhang et al. [70], Du and Wen 

[11], etc., we eliminate the algorithm Set-Secret-Value generating a user secret value, the algorithm Set-

Private-Key generating a user private key, and the algorithm Set-Public-Key generating a user public key, by 

including the function of Set-Private-Key into other algorithms and combining the functions of Set-Secret-

Value and Set-Public-Key with GenerateUserKeys. The detailed advantages of this approach can be referred 

to [16]. Secondly, we eliminate the algorithm generating a proxy signing key and include the function of the 

algorithm into the proxy signing algorithm GenerateDVPSign. This makes the our definition more versatile 

since it is possible that the partial private key Pc  and the secret key Ps  of the proxy signer, the delegation Oδ , 

and the others are ‘mixed’ together in some randomized way during proxy signing. 

Final difference is in specifying the input/output of algorithms according to the above modifications on the 

old definitions. At least, in our definition, partial public keys and identities of users are explicitly added to input 

parameters of such algorithms as GenerateDelegation, VerifyDelegation, GenerateDVPSign, 

VerifyDVPSign, etc.  

Definition 4. (Correctness) For a CLDVPS scheme )(Σ , any ( Params, s ) ⟻ Setup( 1 ), any 

OID , PID , DID *}1,0{  and any m , Ow *}1,0{ , let  
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( OP , Os ) ⟻ GenerateUserKeys( Params, OID ),  

( PP , Ps ) ⟻ GenerateUserKeys( Params, PID ),  

( DP , Ds ) ⟻ GenerateUserKeys( Params, DID ),  

( OK , Oc )⟻ GeneratePartialKeys( Params, s , OID , OP ), 

( PK , Pc )⟻ GeneratePartialKeys( Params, s , PID , PP ), 

( DK , Dc )⟻ GeneratePartialKeys( Params, s , DID , DP ), 

Oδ ⟻ GenerateDelegation( Params, OID , OP , OK , Os , Oc , Ow ), 

m ⟻ GenerateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , Ps , Pc , DID , DP , DK , m ),  

S
m ⟻ SimulateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc , m ). 

If the differences of the following values  

Pr[VerifyDelegation( Params, OID , OP , OK , Oδ )=True] 

Pr[VerifyDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc , m , m ) = True],  

Pr[VerifyDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc , m , 
S
m ) = True]  

from 1 are all negligible, the CLDVPS scheme )(Σ  is said to be correct or to satisfy the 

correctness(completeness). 

3.2 Security Model 

We first define adversaries against CLDVPS schemes and then specify security requirements for them. 

As described in Section 2, there are two types of adversaries, types I and II, against a CLDVPS scheme as a 

cryptographic primitive of CL-PKC. The adversary against a CLDVPS scheme of Definition 3 is defined as 

follows:  

Definition 5. An adversary )(  against a CLDVPS scheme )(Σ  is a probabilistic algorithm which takes 

as input 1  and can access to some of the following oracles (as well as the random oracles if there exists):  

(1) ( UP , UK )⟻ CreateUser ( UID ): On input an identity UID , it creates a new user U  whose identity is UID  

if the user has not yet been created. At the same time, a partial key pair and a pair of public/secret keys of the user 

U  are generated or updated and the new full public key ( UP , UK ) is returned. 
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(2) Us /⟵ eyGetSecretK ( UID , UP ): On input the identity UID  and the public key UP  of a user U , it stores 

( UID , UP ) in the query list S  and outputs the user’s secret key Us  pairing with UP , if the user U  has been 

created. It outputs  otherwise. 

(3) Uc /⟵ Key sGetPartial ( UID , UK ): On input the identity UID  and the partial public key UK  of a user U , 

it stores ( UID , UK ) in the query list P  and outputs the user’s partial private key Uc  pairing with UK , if there 

exists the user U . It outputs  otherwise. When UK  is the empty string, Uc  is the current partial private key of 

the user U . 

(4) ( UP , UK )/⟵ eyGetPublicK ( UID ): On input the identity UID  of a user U , it stores ( UID , UK ) in the 

query list P  and outputs the full public key ( UP , UK ) currently associated with UID , if there exists the user U . 

It outputs  otherwise. 

(5) “OK”/⟵ rKey sReplaceUse ( UID , UP , Us ): On input the identity UID , a new public key UP  and a new 

secret key Us  of a user U , it stores ( UID , UP ) in the query list R , raplaces the current pair of partial public / 

private keys of the user U  with the new pair ( UP , Us ) and outputs “OK”, if there exists the user U . It outputs  

otherwise. Us  may be the empty string. 

(6) Oδ /⟻ ionGetDelegat ( OID , OP , OK , Ow ): On input the identity OID  of an original signer O , a full 

public key ( OP , OK ) and a warrant Ow , it outputs the valid delegation Oδ  (created newly if there does not exist) 

on the warrant Ow  and stores the tuple ( OID , OP , OK , Ow , Oδ ) in the query-answer list D , if there exists the 

user O  and ( OP , OK ) is the (current or past) full public key of O . It outputs  otherwise. 

(7) m /⟵ GetDVPSign ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m ): On input the identity OID  and 

a full public key ( OP , OK ) of an original signer O , a delegation Oδ , the identity PID  and a full public key 

( PP , PK ) of a proxy signer P , the identity DID  and a full public key ( DP , DK ) of a designed verifier D , and a 

message m , it outputs the valid proxy signature m  on the message m . If there does not exist one of O , P  and 

D , Oδ  is not valid, or PID  and m  do not conform to Oδ , it returns . 

(8) True/False/⟵ ignVerify DVPS ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m , m ): On input the 
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identity OID  and a full public key ( OP , OK ) of an original signer O , a delegation Oδ , the identity PID  and a 

full public key ( PP , PK ) of a proxy signer P , the identity DID  and a full public key ( DP , DK ) of a designed veri

fier D , and a message m , it returns  if there does not exist one of O , P  and D . Otherwise, it outputs True or 

False depending on whether the delegation Oδ  is valid, the proxy signer P  is specified in the delegation Oδ , the 

message m  conforms to the delegation Oδ  and the proxy signature m  is a valid signature on m  for D , or not, 

and stores ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m , m ) in the query list V . 

An adversary is called a type I adversary and denoted by )(I   if it can access all the above oracles but 

cannot access to the master secret key. An adversary is called a type II adversary and denoted by )(II   if it 

knows the master secret key and partial private keys of all users but can access only 6 oracles of the above oracles 

except Key sGetPartial  and rKey sReplaceUse . An adversary is called a trusted adversary and denoted by )(t  if it 

can access all the above oracles and all secret information including the master secret key. 

Our definition of oracles for adversaries has some differences from other security models for CLPS, e.g., in 

[4, 11, 45, 63, 70]. Firstly, the oracle CreateUser  can not only create a new user but also update all keys for any 

existing user. By querying to this oracle, adversaries can trigger the legitimate renewal of all keys for any user. 

This makes our definition of adversary more practical. Secondly, a user’s public key UP  and partial public key 

UK  are explicitly added to input of eyGetSecretK  and Key sGetPartial , respectively. By this, our definition can 

capture the actions of adversaries trying to find something from the system’s history in the certificateless settings 

with freely revocable keys. Thirdly, as a consequence of our definition of CLDVPS scheme excluding the 

algorithm generating a proxy signing key, we eliminate the oracle returning a proxy signing key unlike other 

models. Actually, it is not necessary for adversaries with having access to eyGetSecretK  and Key sGetPartial . Finally, 

the specifications of the input/output of oracles are updated and the oracle ignVerify DVPS  is added to capture the 

requirement of DVS. 

We consider that a secure CLDVPS scheme, as a strong DVS scheme and a proxy signature scheme, should 

satisfy the strong unforgeability, the non-transferability, the privacy of signer’s identity, non-delegatability and the 

prevention of misuse property besides the correctness and the strongness. Since the verifiability, the strong 

identifiability, the strong undeniability and the distinguishability are conflict with the non-transferability, they are 



 

16 

excluded from the security requirements for a secure CLDVPS scheme. Next, we present the formal definitions of 

strong unforgeability, the non-transferability, the privacy of signer’s identity and non-delegatability in turn.  

Definition 6 (Strong Unforgeability). Let us consider the following interactive game between an adversary 

)(  { )(I  , )(II  } against a CLDVPS scheme )(Σ  and a challenger  . 

sEUF Game: 

Setup:   runs Setup( 1 ) to obtain the system parameter list Params and the master secret key s . Then   

sends Params to the adversary )( . If )(  is )(II  ,   also passes s  to the adversary )( . Otherwise, 

keeps the master secret key s  secret. Finally,   initializes the lists P , S , R  and D  with empty list (∅) 

respectively. 

Attack: )(  gathers information by querying oracles allowed to him adaptively.   correctly simulates the 

oracles called by )(  and returns proper values.  

Forgery: Eventually, )(  outputs a tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ). 

We say that )(  wins the game or succeeds in the game if the following conditions are all satisfied: 

(1) VerifyDVPSign( Params, *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *sD , *cD , *m , *m
 )=True, where 

*sD  and *cD  are the secret key and the partial private key of the designated verifier with identity *IDD , respectively. 

(2) The tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m ) has not been submitted to the oracle 

GetDVPSign  in the Attack stage. 

(3) When )(  is )(I  , ( *IDD , *KD )P  or ( *IDD , *PD )S ∪ R . When )(  is )(II  , ( *IDD , *PD )S . 

(4) When )(  is )(I  , the following boolean expression is true: 

((( *IDO , *KO )P  ∨ ( *IDO , *PO )S ∪ R ) ∧ ( *IDO , *PO , *KO , *wO ,*)D ) ∨  

(( *IDP , *KP )P  ∨ ( *IDP , *PP )S ∪ R ), 

where *wO  is the warrant in the delegation *δO  and * stands for an arbitrary value. 

When )(  is )(II  , the following boolean expression is true: 

(( *IDO , *PO )S  ∧ ( *IDO , *PO , *KO , *wO ,*)D ) ∨ (( *IDP , *PP )S ). 
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A CLDVPS scheme )(Σ  is said to be strong existentially unforgeable against an adaptively chosen-

message attack and an adaptively chosen-warrant attack or to satisfy Strong Unforgeability if the probability of 

success of any PPT adversary )(  against the scheme in the above game is negligible in  . 

An adversary against a CLDVPS scheme can win the above game by forging a valid proxy signature or a 

valid delegation. A valid proxy signature cannot be generated by anyone including the original signer, except for 

the proxy signer and the designated verifier. According to the success condition (2) of an adversary in the above 

game, he can request a proxy signature on the challenge message *m  to the oracle GetDVPSign  as long as one of 

the original signer, the proxy signer and the designated signer of the signature is not a target user (i.e., *IDO , *IDP , 

or *IDD , correspondingly) or the delegation is not equal to *δO . This is just the reason that the unforgeabililty of 

the above definition is strong. 

Next, we define the non-transferability for CLDVPS, inspired from the works of Emura et al. [12], Huang et 

al. [20], Yoneyama et al. [67], Hu et al. [17], Rastegari et al. [49].  

Definition 7 (Non-transferability). Let us consider the following interactive game between a trusted 

adversary (distinguisher) )(t  against a CLDVPS scheme )(Σ  and a challenger  . 

NT Game: 

Setup:   runs Setup( 1 ) to obtain the system parameter list Params and the master secret key s . Then   

sends Params and s  to the adversary )(t . 

Challenge: )(t  gathers information by querying oracles adaptively.   correctly simulates the oracles 

called by )(t  and returns proper values. Eventually, )(t  submits to   a challenge message *m  and the 

identities { *IDO , *IDP , *IDD } of an original singer, a proxy signer and a designated verifier selected as targets 

along with a valid delegation *δO and the public keys *PO , *KO , *PP , *KP , *PD , *KD . Then   flips a fair coin 

Rb {0,1}, produces a signature 
* =GenerateDVPSign( Params, *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *sP , *cP ,

*IDD , *PD , *KD , *m ) if b =0 or 
* = SimulateDVPSign( Params, *IDO , *PO , *KO , *δO , *IDP , *PP , *KP ,

*IDD , *PD , *KD , *sD , *cD , *m ) if b =1 and replies to )(t  with 
* . 

Guess: After receiving 
* , )(t  can continue to issue oracle queries. In the end, )(t  returns his guess 
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b {0,1}. 

We say that )(t  wins the game or succeeds in the game if b = b , and define the advantage of )(t  in 

the game as |Pr[ )(t wins the NT game] – 1/2|. 

A CLDVPS scheme )(Σ  is said to be non-transferable or to satisfy Non-transferability if the advantage of 

any PPT trusted adversary )(t  against the scheme in the above game is negligible in  . 

The following definition of the privacy of signer’s identity (PSI) for CLDVPS are inspired from the works of 

Tian et al. [57] and Damgård et al. [9].  

Definition 8 (Privacy of signer’s identity, PSI). Let us consider the following interactive game between a 

trusted adversary (distinguisher) )(t  against a CLDVPS scheme )(Σ  and a challenger  .  

PSI Game: 

Setup:   runs Setup( 1 ) to obtain the system parameter list Params and the master secret key s . Then   

sends Params and s  to the adversary )(t .   initializes the lists P , S , R , D  and V  with empty list (∅) 

respectively. 

Challenge: )(t  gathers information by querying oracles adaptively.   correctly simulates the oracles 

called by )(t  and returns proper values. Eventually, )(t  submits to   a challenge message *m  and the 

identities { *

1
IDO , *

1
IDP , *

2
IDO , *

2
IDP , *IDD } of two original singer, two proxy signer and a designated verifier selecte

d as targets along with the corresponding delegations *

1
δO , *

2
δO  and public keys *

1
PO , *

1
KO , *

1
PP , *

1
KP , *

2
PO , *

2
KO ,

*

2
PP , *

2
KP , *PD , *KD . Then   flips a fair coin Rb  {0,1}, produces a signature 

*  = Generate D V P

Sign( Params, *ID
bO , *P

bO , *K
bO , *δ

bO , *ID
bP , *P

bP , *K
bP , *s

bP , *c
bP , *IDD , *PD , *KD , *m ) and replies to )(t  with 

* . 

Guess: After receiving 
* , )(t  can continue to issue oracle queries. In the end, )(t  returns his guess 

b {0,1}. 

We say that )(t  wins the game or succeeds in the game if b= b  and the following boolean expressions 

are all true: 

(1) (( *IDD , *KD )P  ∨ ( *IDD , *PD )S ∪ R ), 
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(2) ( *

1
IDO , *

1
PO , *

1
KO , *

1
δO , *

1
IDP , *

1
PP , *

1
KP , *IDD , *PD , *KD , *m ,

* )V  ∧  

( *

2
IDO , *

2
PO , *

2
KO , *

2
δO , *

2
IDP , *

2
KO , *

2
PP , *IDD , *PD , *KD , *m ,

* )V . 

We define the advantage of )(t  in the game as |Pr[ )(t wins the PSI game] – 1/2|. 

A CLDVPS scheme )(Σ  is said to satisfy Privacy of signer’s identity if the advantage of any PPT trusted 

adversary )(t  against the scheme in the above game is negligible in  . 

Inspired from the works of Huang et al. [20], Tian et al. [57] and Hu et al. [17] in which employ some similar 

definitions of the non-delegatability to one proposed by Lipmaa et.al [40], and the work of Rastegari et al. [49] 

using a relaxed version by Tian et al. [55], we define the non-delegatability for CLDVPS as follows.  

Definition 9 (Non-delegatability). Let us consider the following interactive game between an adversary 

)(  { )(I  , )(II  } against a CLDVPS scheme )(Σ  and a challenger  .  

NDS Game: 

Setup:   runs Setup( 1 ) to obtain the system parameter list Params and the master secret key s .   sends 

Params to the adversary )( . If )(  is )(II  ,   also passes s  to the adversary )( . Finally,   

initializes the lists P , S , R , D  and V  with empty list (∅) respectively. 

Select: )(  gathers information by querying oracles allowed to him adaptively.   correctly simulates the 

oracles called by )(  and returns proper values. Eventually, )(  submits to   the identity *IDP  and full 

public key ( *PP , *KP ) (or *IDD , *PD , *KD ) of a proxy signer (or a designated verifier) selected as targets, which 

satisfy that ( *IDP , *KP ) P  or ( *IDP , *PP ) S ∪ R  (or, ( *IDD , *KD ) P  or ( *IDD , *PD ) S ∪ R ) when )(  is 

)(I  , and ( *IDP , *PP )S  (or ( *IDD , *PD )S ) when )(  is )(II  . 

Challenge:   sends to )(  a challenge identity *IDD  and full public key ( *PD , *KD ) (or *IDP , *PP , *KP ) of a 

designated verifier (or a proxy signer), an identity *IDO  and full public key ( *PO , *KO ) of an original signer, a valid 

delegation 
*δO  and a challenge message *m , and asks )(  to submit a valid signature on 

( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m ) to  . )(  can issue queries to the oracles allowed to him 

adaptively, but cannot query the tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m ) to the oracle 
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GetDVPSign  and cannot query to the oracle ignVerify DVPS  on input *IDD , *PD , *KD  if a designated verifier has 

been selected by )(  in the Select stage.   simulates the oracles called by )( . Eventually, )(  submits a 

valid signature (or a valid simulated signature) on ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m ) to   if 

the following boolean expression is true:  

 (( *IDD , *KD )P  ∨  ( *IDD , *PD )S ∪ R ) ∧  (( *IDP , *KP )P  ∨ ( *IDP , *PP )S ∪ R ), 

when )(  is )(I  , and the following boolean expression is true: 

( *IDD , *PD )S  ∧ ( *IDP , *PP )S , 

when )(  is )(II  . 

  can repeat the steps in this stage and gather valid signatures enough for the next stage.  

Extract:   tries to compute correctly the full private key ( *sP , *cP )(or *sD , *cD ) of the proxy signer (or the 

designated verifier) selected by )(  in the Select stage, using only his replies to the queries of )(  in the 

previous stages and the valid signatures returned by )(  in the Challenge stage. 

A CLDVPS scheme )(Σ  is said to satisfy Non-delegatability if there exists a PPT (in  ) algorithm   that 

can succeed in the above game with a non-negligible probability (in  ) against any PPT (in  ) adversary )(  

which can generate a valid signature with a non-negligible probability (in  ) in the Challenge stage. 

As Tian et al. [56] mentioned, although the non-delegatability property has been a subject of many literatures, 

it is a controversial concept as it may be undesirable in some applications, so that we will no longer discuss the 

non-delegatability in this work.  

4. Our CLDVPS scheme 

In this section, we propose a CLDVPS scheme using bilinear pairings in conformity with Definition 3, and 

consider the correctness and the efficiency of it.  

Our scheme consists of the following eight algorithms:  

(1) ( Params, s ) ⟻ Setup( 1 ): KGC takes the security parameter   as input and returns Params and 

a master secret key s  as follows: 

a. Chooses a  -bit prime p , and determines a finite field p  of order p , an elliptic curve pE /  defined 
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by baXXYE  32:  over p , a cyclic additive subgroup   of prime order q  2  on pE / , a 

generator G  of  , a cyclic multiplicative group    of the same order q  (e.g., *
q ) and an admissible 

bilinear map ê :  ×    . 

b. Rs *
q ; KGCP ⟵ Gs][ . 

c. Chooses three cryptographic hash functions 1H : *}1,0{  *
q , 2H : *}1,0{   , 3H : *}1,0{    . 

d. :Param sB a ∥ b ∥ G ∥ KGCP . (We assume that the binary representaions of a , b , G  and KGCP  are 

obtained in a trivial way.) 

e. Publishes :Params { a , b , p , q , G , KGCP , 1H , 2H , 3H } and keeps s  secret 

(2) ( UP , Us ) ⟻ GenerateUserKeys( Params, UID ): The user U  with the identity UID  sets his public key 

UP  and secret key Us  as follows: 

a. Rs U
*

q ; UP ⟵ GU ][s ; return ( UP , Us ). 

(3) ( UK , Uc )⟻ GeneratePartialKeys( Params, s , UID , UP ): On input Params, the master secret key s , 

a user’s identity UID  and public key UP , KGC returns a pair of partial public / private keys ( UK , Uc ) for the 

user U  with the identity UID  as follows: 

a. Uh ⟵ 1H ( ParamsB ∥ UID ).  

b. Rk U
*
q ; UK ⟵ GU ]k[ . 

c. Uc ⟵ )k( UU hs  qmod . 

d. return ( UK , Uc ). (Publishes UK  and sends Uc  to U  via a secure channel.) 

(U  can validate its partial keys ( UK , Uc ) by checking the equation:  

GU ]c[ ≟ UK +[ 1H ( ParamsB ∥ UID )] KGCP .) 

(4) Oδ ⟻ GenerateDelegation( Params, OID , OP , OK , Os , Oc , Ow ): The original signer O  outputs the 

delegation Oδ  on the warrant Ow  as follows: 

a. Ot ⟵( Os + Oc ) qmod . 

b. Or R
*

q ; OR ⟵ GrO ][ . 
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c. 2H ⟵ 2H ( Ow ∥ OID ∥ OP ∥ OK ). (We assume that the binary representaions of OP  and OK  are 

obtained in a trivial way.) 

d. O ⟵[ Or ] KGCP +[ Ot ] 2H . 

e. Oδ  ( Ow , OR , O ); return Oδ . 

(5) True/False ⟵ VerifyDelegation( Params, OID , OP , OK , Oδ ): Any verifier, including the proxy signer 

specified by the delegation Oδ , can verify Oδ  as follows:  

a. Oh ⟵ 1H ( ParamsB ∥ OID ).  

b. OT ⟵ OP + OK +[ Oh ] KGCP . 

c. ( Ow , OR , O )  Oδ .  ( Oδ  is parsed as ( Ow , OR , O ).) 

d. 2H ⟵ 2H ( Ow ∥ OID ∥ OP ∥ OK ). 

e. return ( ê ( O , G )≟ ê ( KGCP , OR ) ê ( 2H , OT )). 

(A verifier accepts Oδ  if VerifyDelegation returns True, or rejects otherwise.) 

(6) m ⟻ GenerateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , Ps , Pc , DID , DP , DK , m ): If the 

proxy signer P  specified by the delegation Oδ  accepts the delegation Oδ , he returns a proxy signature m  on the 

message m  as follows:  

a. Pt ⟵( Ps + Pc ) qmod . 

b: Dh ⟵ 1H ( ParamsB ∥ DID ). 

c: DT ⟵ DP + DK +[ Dh ] KGCP . 

d. Pr R *
q ; PR ⟵[ Pr ] G . 

e. 3H ⟵ 3H ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK ). (We assume that the binary representaions of 

Oδ , PP , PK , DP  and DK  are obtained in a trivial way.) 

f. mv ⟵ ê ([ Pr ] KGCP +[ Pt ] 3H , DT ). 

g. m  ( PR , mv ); return m . 

(7) True/False ⟵ VerifyDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc ,

m , m ): Having all inputs, the designated verifier D  verifies the proxy signature m  on the message m  as 
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follows:  

a. if VerifyDelegation( Params, OID , OP , OK , Oδ )=False then return False. 

b. if (the message m  does not conform to the delegation Oδ ) then return False.  

c. Dt ⟵( Ds + Dc ) qmod . 

d: Ph ⟵ 1H ( ParamsB ∥ PID ). 

e: PT ⟵ PP + PK +[ Ph ] KGCP . 

f. ( PR , mv )  m .   ( m  is parsed as ( PR , mv ).) 

g. 3H ⟵ 3H ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK ). 

h. return ( mv ≟ ê ( PR , KGCP ) Dt
 ê ( 3H , PT ) Dt

). 

(The designated verifier D  accepts m  if VerifyDVPSign returns True, or rejects otherwise. 

(8) 
S
m ⟻ SimulateDVPSign( Params, OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , Ds , Dc ,  m ): 

Having all inputs, the designated verifier D  returns a simulated signature 
S
m  on the message m  as follows:  

a. Dt ⟵( Ds + Dc ) qmod . 

b: Ph ⟵ 1H ( ParamsB ∥ PID ). 

c: PT ⟵ PP + PK +[ Ph ] KGCP . 

d. Dr R *
q ; DR ⟵[ Dr ] G . 

e. 3H ⟵ 3H ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK ). 

f. mv ⟵ ê ( DR , KGCP ) Dt
 ê ( 3H , PT ) Dt

. 

g. 
S
m   ( DR , mv ); return 

S
m . 

Note that using the binding technique in [1], we can easily convert our scheme to the one which achieves 

Girault’s trust level 3 [13], by concatenating UP , OP , DP  or PP  to the inputs of 1H  in the step (a) of 

GeneratePartialKeys, the step (a) of VerifyDelegation, the step (b) of GenerateDVPSign, the step (d) of 

VerifyDVPSign and the step (b) of SimulateDVPSign respectively. 

Now, we consider the correctness of the proposed scheme.  

The correctness of the algorithm VerifyDelegation verifying a delegation is proved as follows: 
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ê ( O , G )= ê  ([ Or ] KGCP +[ Ot ] 2H , G ) 

= ê ([ Or ] KGCP , G ) ê ([ Ot ] 2H , G ) 

= ê ( KGCP ,[ Or ] G ) ê ( 2H ,[ Ot ] G ) 

= ê ( KGCP , OR ) ê ( 2H ,[( Os + Oc ) qmod ] G ) 

= ê ( KGCP , OR ) ê ( 2H ,[ Os ] G +[ Oc ] G ) 

= ê ( KGCP , OR ) ê ( 2H , OP +[ )k( OO hs  qmod ] G ) 

= ê ( KGCP , OR ) ê ( 2H , OP + OK +[ )( Ohs  qmod ] G ) 

= ê ( KGCP , OR ) ê ( 2H , OP + OK +[ Oh ] KGCP ). 

The correctness of the algorithm VerifyDVPSign verifying a proxy signature is proved as follows: 

mv  = ê ([ Pr ] KGCP +[ Pt ] 3H , DT ) 

 = ê ([ Pr ] KGCP ,[ Dt ] G ) ê ([ Pt ] 3H ,[ Dt ] G ) 

 = ê ([ Pr ] KGCP , G ) Dt
 ê ([ Pt ] 3H , G ) Dt

 

 = ê ( KGCP ,[ Pr ] G ) Dt
 ê ( 3H ,[ Pt ] G ) Dt

 

 = ê ( KGCP , PR ) Dt
 ê ( 3H , PT ) Dt

. 

Next, we compare the efficiency of our scheme with some existed DVS schemes in Table 1 where TH , TP ,

TS  and TA  stand for the time of a map-to-point hash operation, a bilinear pairing operation, an elliptic curve 

scalar multiplication and an elliptic curve point addition respectively, G  denotes the bit length of a point in the 

elliptic curve group  , and Z  means the length of the integer q , i.e., qlog . According to [7, 32], TH  is rather l

ogner than TP  by a narrow margin, TP  is several times longer than TS , and TS  is several tens to hundreds times 

longer than TA . We ignore costless operations sush as one-way hash operation and operations on integers and the 

multiplicative group   , which are much cheaper than the point addition. G  is several times longer than Z . 

Table 1 shows that the efficiency of our scheme is not inferior to the schemes in [17, 5]. 
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Table 1. Comparison of the efficiency 

 [18] 

IBDVPS 
[17] 

DVPS 

[5] 

CLDVS 

Our scheme 

CLDVPS 

Generation of 

keys 
TH1 + TS1  TS1  TH1 + TS2  TS2  

Generation of 

delegation 
TH4 + TS1 + TA1  TH1 + TS1  − 

TH1 + TS3 + TA1  

Verification of 

delegation 
TH2 + TP2 + TA1  TH1 + TP2  − 

TH1 + TP3 + TS1 + TA2  

Signing 
TP1  TH1 + TP1 + TS3 + TA1  TH2 + TP1 + TS3 + TA1  TH1 + TP1 + TS4 + TA3  

Verification of 

signature 
TP1  TH2 + TP2 + TS2  TH3 + TP1 + TS3 + TA1  TH1 + TP2 + TS3 + TA2  

Key size 
G1 + Z1  G1 + Z1  G2 + Z1  G2 + Z2  

Delegation size 
G1  G1  − 

G2  

Signature size 
Z1  G2  G1 + Z2  G1 + G 1  

5. Security Analysis of the proposed CLDVPS scheme 

In this section, we discuss only the strong unforgeability and the non-transferability of our CLDVPS scheme. 

We use the notations and symbols in Section 4 as it is.  

Theorem 1. In the random oracle model, if there exists a PPT (in  ) adversary )(  that can impersonates 

a original signer and forge a valid delegation to win sEUF Game against our CLDVPS scheme with a non-

negligible probability of success (in  ), then the CDH problem in the group   can be solved in polynomial time 

(in  ) with a non-negligible probability (in  ). 

Proof. Suppose that )(  succeeds in sEUF Game with a non-negligible probability )(  in time )(t  

which is polynomial in  ,  and in sEUF Game, )(  makes 
1HN ,

2HN ,
3HN  queries to 1H , 2H  and 3H  

modeled as random oracles respectively. Let UN  and UKeyN  be respectively the number of queries to CreateUser  

that )(  makes in sEUF Game and the maximum number of same queries on a fixed user identity among them, 

i.e., the maximum number of key pairs of a fixed user. These are all functions of   and do not exceed )(t . 

Firstly, when )(  is a type I adversary )(I  , we construct an algorithm I  that uses )(I   to solve the 

CDH problem in the group   as follows: 

Algorithm I : 

Input: An instance of the CDH problem, given by q ,  , G , and Gu][ , Gv][   where 
*, qvu   are 

unknown. 
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Output: The solution Guv][   of the above instance. 

1. Select four indices 0< O  UN ,0 O < UKeyN , 0< 
2HN ,0< 

3HN  and a boolean value {0,1} r

andomly. 

2. Simulate a challenger in sEUF Game as follows: 

Setup: Let Rs *
q , KGCP ⟵ Gs][ , :Params { a , b , p , q , G , KGCP }, :ParamsB a ∥ b ∥ G ∥ KGCP  and 

send Params to )(I  . Initialize the lists P , S , R  and D  with empty list (∅) respectively, and prepare 

a list 1H  of 2-tuples, two lists 2H  and 3H  of 3-tuples and a list L  of tuples in form of 

( UID , UP , UK , Us , Uc ). Choose randomly *
Oh *

q  and *
3h *

q . Let OCount 0. 

Attack: Answer )(I  ’s queries to oracles as follows:  

 1H ( x ): If there exists Uh *
q  such that ( x , Uh ) 1H , then return Uh . If | 1H | = O −1, then put 

( x , *
Oh ) in 1H  and return *

Oh . Otherwise, choose Uh *
q  randomly. If Uh = *

Oh , then abort. (This 

case is called Event 1E .) Otherwise, put ( x , Uh ) in 1H  and return Uh . 

 2H ( y ): If there exists 2H   such that ( y , 2H  ,*) 2H  (where * means for an arbitrary value), 

then return 2H . If | 2H | = −1, then put ( y , Gv][ ,) in 2H  and return Gv][ . Otherwise, choose 

2h *
q  randomly, let 2H ⟵[ 2h ] G , put ( y , 2H , 2h ) in 2H  and return 2H . 

 3H ( z ): If there exists 3H   such that ( z , 3H ,*) 3H  (where * means for an arbitrary value), then 

return 3H . If | 3H |= −1 then put ( z ,[ *
3h ] G ,

*
3h ) in 3H  and return [ *

3h ] G . Otherwise, choose 

3h *
q  randomly. If 3h = *

3h , then abort. (This case is called Event 3E .) Otherwise, put 

( z ,[ 3h ] G , 3h ) in 3H  and return [ 3h ] G .  

 CreateUser ( UID ): Let Uh ⟻ 1H ( ParamsB ∥ UID ) and respond differently in the following cases:  

a. If there exists ( UID ,*,*,*,*) L  (where * means for an arbitrary value), then search L  for the 

latest item ( UID ,*, UK ,*, Uc ) indexed by UID  to get UK  and Uc . Otherwise, consider the 

following cases: 

– If =0 and Uh =
*
Oh , then let UK ⟵ Gu][  and Uc  .  
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– Else, choose Uk *
q  randomly, let UK ⟵ GU ]k[  and Uc ⟵( Uk + s  Uh ) qmod .  

b. If =1 and Uh = *
Oh , then let OCount ⟵ OCount +1. If OCount = O , then let UP ⟵ Gu][ , put 

( UID , UP , UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

c. Choose Us *
q  randomly, let UP ⟵[ Us ] G , put ( UID , UP , UK , Us , Uc ) in L , and return ( UP ,

UK ). 

 eyGetSecretK ( UID , UP ): Search L  for the item ( UID , UP ,*, Us ,*) indexed by ( UID , UP ) to get Us . 

If the search succeeds, put ( UID , UP ) in S  and return Us . Otherwise, return .  

 KeyGetPartial ( UID , UK ): Search L  for the item ( UID ,*, UK ,*, Uc ) indexed by ( UID , UK ) to get Uc . 

If the search succeeds, put ( UID , UK ) in P  and return Uc . Otherwise, return .  

 eyGetPublicK ( UID ): Search L  for the latest item ( UID , UP , UK ,*,*) indexed by UID  to get UP  and 

UK . If the search succeeds, return ( UP , UK ). Otherwise, return .  

 rKey sReplaceUse ( UID , UP , Us ): Search L  for the latest item ( UID ,*, UK ,*, Uc ) indexed by UID  to 

get UK  and Uc . If the search succeeds, put ( UID , UP , UK , Us , Uc ) in L , put ( UID , UP ) in R  and 

return “OK”. Otherwise, return .  

 ionGetDelegat ( OID , OP , OK , Ow ): Search D  for the item ( OID , OP , OK , Ow , Oδ ) indexed by ( OID ,

OP , OK , Ow ) to get Oδ . If the search succeeds, return Oδ . Otherwise, follow the next steps:  

a. let 2H ⟻ 2H ( Ow ∥ OID ∥ OP ∥ OK ).  

b. Search 2H  for the item ( Ow ∥ OID ∥ OP ∥ OK , 2H , 2h ) indexed by ( Ow ∥ OID ∥ OP ∥ OK , 2H ) to 

get 2h . If 2h =, then abort. (This case is called Event D .) Otherwise, go forward. 

c. Search 1H  for the item ( ParamsB ∥ OID , Oh ) indexed by ParamsB ∥ OID  to get Oh .  If the search do

es not succeed, return . 

d. Search L  for the latest item ( OID , OP , OK ,*,*) indexed by OID  to get OP , OK   . If the searc

h does not succeed, return . 

e. Choose Or
*
q  randomly, let OR ⟵ GrO ][ . 
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f. Let O ⟵ [ Or ] KGCP +[ 2h ]( OP + OK +[ Oh ] KGCP ). 

g. Let Oδ   ( Ow , OR , O ), put ( OID , OP , OK , Ow , Oδ ) in D  and return Oδ . 

 GetDVPSign ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m ): Parse Oδ  as ( Ow , OR , O ) and 

check whether all input parameters comform to Ow . If not, return . If the check is passed, follow the 

next steps:  

a. Search 1H  for the item ( ParamsB ∥ OID , Oh ) indexed by ParamsB ∥ OID  to get Oh .  If the search do

es not succeed, return . 

b. Let 2H ⟻ 2H ( Ow ∥ OID ∥ OP ∥ OK ) and OT ⟵ OP + OK +[ Oh ] KGCP . If ê ( O , G ) 

 ê ( KGCP , OR ) ê ( 2H , OT ), then return .  

c. Search 1H  for the item ( ParamsB ∥ PID , Ph ) indexed by ParamsB ∥ PID  to get Ph . If the search doe

s not succeed, return . 

d. If there does not exist ( PID , PP , PK ,*,*)L  (where * means for an arbitrary value) such that 

OP    and OK   , then return .  

e. Let 3H ⟻ 3H ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK ). 

f. Search 3H  for the item ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK , 3H , 3h ) indexed by 

( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK , 3H ) to get 3h .  

g. If 3h = *
3h , then abort. (This case is called Event S .) 

h. Search 1H  for the item ( ParamsB ∥ DID , Dh ) indexed by ParamsB ∥ DID  to get Dh . If the search do

es not succeed, return . 

i. Let PT ⟵ PP + PK +[ Ph ] KGCP  and DT ⟵ DP + DK +[ Dh ] KGCP . 

j. Choose Pr
*
q  randomly, let PR ⟵ GrP ][  and mv ⟵ ê ([ Pr ] KGCP +[ 3h ] PT , DT ).  

k. Let m  ( PR , mv ) and return m . 

 ignVerify DVPS ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m , m ): Parse Oδ  as ( Ow , OR , O ) 

and check whether all input parameters comform to Ow . If not, return False. If the check is passed, 

follow the next steps:  
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a. Search 1H  for the item ( ParamsB ∥ OID , Oh ) indexed by ParamsB ∥ OID  to get Oh .  If the search do

es not succeed, return False. 

b. Let 2H ⟻ 2H ( Ow ∥ OID ∥ OP ∥ OK ) and OT ⟵ OP + OK +[ Oh ] KGCP . If ê ( O , G ) 

 ê ( KGCP , OR ) ê ( 2H , OT ) then return False.  

c. Parse m  as ( PR , mv ) and let 3H ⟻ 3H ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK ).  

d. Search 3H  for the item ( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK , 3H , 3h ) indexed by 

( m ∥ Oδ ∥ PID ∥ PP ∥ PK ∥ DID ∥ DP ∥ DK , 3H ) to get 3h .  

e. Search 1H  for the item ( ParamsB ∥ PID , Ph ) indexed by ParamsB ∥ PID  to get Ph . If the search doe

s not succeed, return False. 

f. Search 1H  for the item ( ParamsB ∥ DID , Dh ) indexed by ParamsB ∥ DID  to get Dh .  If the search do

es not succeed, return False. 

g. Let PT ⟵ PP + PK +[ Ph ] KGCP  and DT ⟵ DP + DK +[ Dh ] KGCP . 

h. If mv = ê ( PRs][ +[ 3h ] PT , DT ), then return True. Otherwise, return False. 

Forgery: Wait until )(I   outputs a tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) as the 

final result of the game.  

3. Check )(I  ’s final result and output the solution of the above instance (i.e., the input) as follows: 

(1) If the following boolean expression is true, then abort. (This case is called Event 1R .). 

*
Oh  1H ( ParamsB ∥ *IDO ) ∨ Gv][  2H ( *wO ∥ *IDO ∥ *PO ∥ *KO ) ∨  

[ *
3h ] G  3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ). 

(2) Parse *δO  as ( *wO , *
OR , *

O ). If the following boolean expression is true, then abort since *δO  must be fo

rged by )(I   from the assumption of the theorem. (This case is called Event 2R .) 

((( *IDO , *KO )P  ∧ ( *IDO , *PO )S ∪ R ) ∨ ( *IDO , *PO , *KO , *wO , *δO )D ). 

(3) If ignVerify DVPS ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 )=False, then then abort. 

(This case is called Event 3R .)  

(4) Search L  for the item (
*IDO ,

*PO ,
*KO ,

*sO ,
*cO ) indexed by (

*IDO ,
*PO ,

*KO ) to get 
*sO  and 

*cO . If the sear
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ch does not succeed, then abort. (This case is called Event 4R .)  

(5) If =0 ,  then return ( *
O −[ s ] *

OR −[( *sO + s ∙ *
Oh ) qmod ] Gv][ ). If =1,  then return 

( *
O −[ s ] *

OR −[ *cO ] Gv][ ). 

(The end of the algoritm I ) 

Now, we analyze the time complexity of I . The time complexity of I  is dominated by the scalar 

multiplications, additions and pairing in  , operations in *
q  and searches on lists which are performed in the 

simulations of oracles. All operands for the above operations in   and *
q  have at most a polynomial size in   

and we can assume that the computational cost of any operation in I  is less than some polynomial )(p . On the 

other hand, the sizes of all lists in oracle simulations of I  do not go beyond the number of all queries by )(I  , 

which is not larger than )(t . It results that the time of a search on any list in I  is also not longer than )(t . 

Therefore, the cost of answering an oracle query in I  is also less than ))()((  tpO  , and we conclude that the 

total time complexity of I  is ))()()(( 2  tptO   which is also polynomial in  . 

It is obvious that if I  does not abort, then )(I  ’s view in the simulated game with I  is 

indistinguishable from its view in the real attack. 

Next, we show that I ’s output is the solution for the instance of the CDH problem, given as input of I , if 

I  does not abort. 

Assume that I  does not abort and outputs some result. 

If =0, then *KO = Gu][ , *cO =, *sO
*
q  and *PO =[ *sO ] G  from the step (a) and (c) of CreateUser . In this 

case, I ’s output is ( *
O −[ s ] *

OR −[( *sO + s ∙ *
Oh ) qmod ] Gv][ ) from the step 3(5) of I . The validity of )(I  ’s 

final result (the forged signature) implies the validity of *
O , and we obtain the following equation from the 

validity of *
O  and the equation Gv][ = 2H ( *wO ∥ *IDO ∥ *PO ∥ *KO ): 

ê ( *
O , G )= ê ( KGCP , *

OR ) ê ( Gv][ , *TO ), 

where *TO = *PO + *KO +[ *
Oh ] KGCP . From the above equation, we can obtain 

ê ( *
O , G ) = ê ( KGCP , *

OR ) ê ( Gv][ , *PO + *KO +[ *
Oh ] KGCP ) 
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= ê ( Gs][ , *
OR ) ê ( Gv][ ,[ *sO ] G + Gu][ +[ *

Oh ] Gs][ ) 

= ê ( Gs][ , *
OR ) ê ( Gv][ ,[( *sO + s ∙ *

Oh ) qmod ] G + Gu][ ) 

= ê ( *][ ORs , G ) ê ([( *sO + s ∙ *
Oh ) qmod ] Gv][ , G ) ê ( Gv][ , Gu][ ), 

and thus,  

ê ( Gv][ , Gu][ )= ê ( *
O − *][ ORs − [( *sO + s ∙ *

Oh ) qmod ] Gv][ , G ). 

From the non-degeneracy of ê , we can obtain 

Guv][ = *
O − *][ ORs − [( *sO + s ∙ *

Oh ) qmod ] Gv][ . 

Therefore, *
O − *][ ORs − [( *sO + s ∙ *

Oh ) qmod ] Gv][  is the solution for the instance given as input of I . 

Similarly, If =1, then *PO = Gu][ , *sO =, *kO
*
q , *cO =( *kO + s ∙ *

Oh ) qmod  and *KO =[ *kO ] G  from the step 

(b) of CreateUser . In this case, I ’s output is ( *
O −[ s ] *

OR −[ *cO ] Gv][ ) from the step 3(5) of I . We obtain the 

following equation from the validity of *
O  and the equation Gv][ = 2H ( *wO ∥ *IDO ∥ *PO ∥ *KO ): 

ê ( *
O , G )= ê ( KGCP , *

OR ) ê ( Gv][ , *TO ), 

where *TO = Gu][ +[ *kO ] G +[ *
Oh ] KGCP . From the above equation, we can obtain 

ê ( *
O , G ) = ê ( KGCP , *

OR ) ê ( Gv][ , Gu][ +[ *kO ] G +[ *
Oh ] KGCP ) 

= ê ( Gs][ , *
OR ) ê ( Gv][ , Gu][ +[ *kO ] G + [ *

Oh ] Gs][ ) 

= ê ( Gs][ , *
OR ) ê ( Gv][ ,[( *kO + s ∙ *

Oh ) qmod ] G + Gu][ ) 

= ê ( *][ ORs , G ) ê ([ *cO ] Gv][ , G ) ê ( Gv][ , Gu][ ), 

and thus,  

ê ( Gv][ , Gu][ )= ê ( *
O − *][ ORs −[ *cO ] Gv][ , G ). 

From the non-degeneracy of ê , we can obtain 

Guv][ = *
O − *][ ORs −[ *cO ] Gv][ . 

Therefore, *
O − *][ ORs −[ *cO ] Gv][  is the solution for the instance given as input of I . 

Now, we analyze the probability for I  to output the solution of the given instance of the CDH problem.  

We know that Event 2R  and 3R  never occur in the running of I  if )(I   succeeds the simulated game 
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with I , i.e., )(I   provides a valid delegation and a valid proxy signature. And if I ’s selections of four 

indices O , O ,  ,   and a Boolean value   are correct for the final result 

( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) of )(I  , i.e., the target original signer with *IDO  is 

the O -th user, ( *PO , *KO ) is the O -th full public key of the target original signer, 2H ( *wO ∥ *IDO ∥ *PO ∥ *KO ) 

(where *wO  is the warrant in the delegation *δO ) is the  -th new query to 2H , 

3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ) is the  -th new query to 3H , =0 in the case ( *IDO , *KO ) P  

and =1 in the case ( *IDO , *PO )S ∪ R , Event D , S , 1R  and 4R  never occur in the running of I .  

The probability that I ’s selections of O , O ,  ,   and  are correct is at least 

1/( UN  UKeyN 
2HN 

3HN 2). The probabilities of Events 1E  and 3E  in the running of I  is at most qN /
1H  and 

qN /
3H , respectively. 

Therefore, the probability that I  outputs the solution of the given instance of CDH problem is at least the 

following expression: 

)( /( UN  UKeyN 
2HN 

3HN 2)(1− qN /
1H )(1− qN /

3H ). 

Since 
1HN ,

2HN ,
3HN , UN  and UKeyN  are polynomial in  , q  is exponential in  , )(  is non-negligible, the a

bove expression is also non-negligible.  

Secondly, when )(  is a type II adversary )(II  , we construct an algorithm II  that uses )(II   to 

solve the CDH problem in the group   as follows: 

Algorithm II : 

Input/Output: (These are the same as those in Algorithm I .) 

1. Select four indices 0< O  UN ,0 O < UKeyN , 0< 
2HN  and 0< 

3HN  randomly. 

2. Simulate a challenger in EUF-CMA Game as follows: 

Setup: Let Rs *
q , KGCP ⟵ Gs][ , :Params { a , b , p , q , G , KGCP }, :ParamsB a ∥ b ∥ G ∥ KGCP . Send 

Params and s  to )(II  . Initialize the lists S  and D  with empty list (∅) respectively, and prepare a list 

1H  of 2-tuples, two lists 2H  and 3H  of 3-tuples and a list L  of tuples in form of ( UID , UP , UK , Us , Uc ). 
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Choose randomly *
Oh *

q  and *
3h *

q . Let OCount 0. 

Attack: Answer )(II  ’s queries to oracles as follows:  

 1H ( x ), 2H ( y ), 3H ( z ): (These are the same as that in Algorithm I .) 

 CreateUser ( UID ): Let Uh ⟻ 1H ( ParamsB ∥ UID ) and respond differently in the following cases:  

a. If there exists ( UID ,*,*,*,*) L  (where * means for an arbitrary value), then search L  for the 

latest item ( UID ,*, UK ,*, Uc ) indexed by UID  to get UK  and Uc . Otherwise, choose Uk *
q  

randomly, let UK ⟵ GU ]k[  and Uc ⟵( Uk + s  Uh ) qmod .  

b. If Uh = *
Oh , then let OCount ⟵ OCount +1. If OCount = O , then let UP ⟵ Gu][ , put ( UID , UP ,

UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

c. (This is the same as that in Algorithm I .). 

 eyGetSecretK , eyGetPublicK , ionGetDelegat , GetDVPSign , ignVerify DVPS : (These are the same as those in 

Algorithm I .)  

Forgery: Wait until )(II   outputs a tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) as the 

final result of the game.  

3. Check )(II  ’s final result and output the solution of the above instance (i.e., the input) as follows: 

(1) (This is the same as that in Algorithm I .)  

(2) Parse *δO  as ( *wO , *
OR , *

O ). If the following boolean expression is true, then abort. (This case is called 

Event 2R .). 

(( *IDO , *PO )S  ∨ ( *IDO , *PO , *KO , *wO , *δO )D ). 

(3), (4), (5) (These are the same as those in Algorithm I .) 

(The end of the algoritm II ) 

Since the analysis of II  is similar to the one of I , we omit it. This completes the proof.   � 

Theorem 2. In the random oracle model, if there exists a PPT (in  ) adversary )(  that can impersonates 

a proxy signer on the basis of a legitimate delegation to win sEUF Game against our CLDVPS scheme with a non-
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negligible probability of success (in  ), then the GBDH problem in the bilinear group pair (  ,  ) can be solved 

in polynomial time (in  ) with a non-negligible probability (in  ). 

Proof. Suppose that )(  as a impersonated proxy signer succeeds in sEUF Game with a non-negligible 

probability )(  in time )(t  which is polynomial in  . Let 
1HN ,

3HN , UN  and UKeyN  be the same as that in 

the proof of Theorem 1. 

Firstly, when )(  is a type I adversary )(I  , we construct an algorithm I  that uses )(I   and the 

DBDH oracle DBDH  to solve the GBDH problem in the bilinear group pair (  ,  ) as follows: 

Algorithm I : 

Input: An instance of the G B D H  problem, given by q ,  , G ,  and Gu][ , Gv][ , Gw][   where 

*,, qwvu   are unknown.  

Output: The solution uvwGGe ),(ˆ    of the above instance. 

1. Select five indices 0< P , D  UN ,0 P , D < UKeyN , 0<  
3HN  and two boolean values 

P , D{0,1} randomly. 

2. Simulate a challenger in sEUF Game as follows: 

Setup: Let Rs *
q , KGCP ⟵ Gs][ , :Params { a , b , p , q , G , KGCP }, :ParamsB a ∥ b ∥ G ∥ KGCP  and 

send Params to )(I  . Initialize the lists P , S , R  and D  with empty list (∅) respectively, and prepare 

a list 1H  of 2-tuples, two lists 2H  and 3H  of 3-tuples and a list L  of tuples in form of 

( UID , UP , UK , Us , Uc ). Choose randomly *
Ph *

q  and *
Dh *

q  such that *
Ph  *

Dh . Let PCount 0 and 

DCount 0. 

Attack: Answer )(I  ’s queries to oracles as follows:  

 1H ( x ): If there exists Uh *
q  such that ( x , Uh ) 1H , then return Uh . If | 1H | = P −1, then put 

( x , *
Ph ) in 1H  and return *

Ph . If | 1H | = D −1, then put ( x , *
Dh ) in 1H  and return *

Dh . Otherwise, 

choose Uh *
q  randomly. If Uh = *

Ph  or Uh = *
Dh , then abort. (This case is called Event 1E .) 

Otherwise, put ( x , Uh ) in 1H  and return Uh . 
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 2H ( y ): If there exists 2H   such that ( y , 2H  ,*) 2H  (where * means for an arbitrary value), 

then return 2H . Otherwise, choose 2h *
q  randomly, put ( y ,[ 2h ] G , 2h ) in 2H  and return [ 2h ] G . 

 3H ( z ): If there exists 3H   such that ( z , 3H ,*) 3H  (where * means for an arbitrary value), then 

return 3H . If | 3H |= −1 then put ( z , Gw][ ,) in 3H  and return Gw][ . Otherwise, choose 3h *
q  

randomly, put ( z ,[ 3h ] G , 3h ) in 3H  and return [ 3h ] G .  

 CreateUser ( UID ): Let Uh ⟻ 1H ( ParamsB ∥ UID ) and respond differently in the following cases:  

a. If there exists ( UID ,*,*,*,*) L  (where * means for an arbitrary value), then search L  for the 

latest item ( UID ,*, UK ,*, Uc ) indexed by UID  to get UK  and Uc . Otherwise, consider the 

following cases: 

– If P=0 and Uh = *
Ph , then let UK ⟵ Gu][  and Uc  .  

– If D=0 and Uh = *
Dh , then let UK ⟵ Gv][  and Uc  .  

– Else, choose Uk *
q  randomly, let UK ⟵ GU ]k[  and Uc ⟵( Uk + s  Uh ) qmod .  

b. If P=1 and Uh = *
Ph , then let PCount ⟵ PCount +1. If PCount = P , then let UP ⟵ Gu][ , put 

( UID , UP , UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

c. If D=1 and Uh = *
Dh , then let DCount ⟵ DCount +1. If DCount = D , then let UP ⟵ Gv][ , put 

( UID , UP , UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

d. Choose Us *
q  randomly, let UP ⟵[ Us ] G , put ( UID , UP , UK , Us , Uc ) in L , and return ( UP ,

UK ). 

 eyGetSecretK , KeyGetPartial , eyGetPublicK , rKey sReplaceUse : (These are the same as those in Algorithm 

I  in the proof of Theorem 1.)  

 ionGetDelegat ( OID , OP , OK , Ow ): (This is the same as that in Algorithm I  in the proof of Theorem 

1, except that the step (b) in Algorithm I  is replaced by the following one: 

b. Search 2H  for the item ( Ow ∥ OID ∥ OP ∥ OK , 2H , 2h ) indexed by ( Ow ∥ OID ∥ OP ∥ OK , 2H ) to 

get 2h .) 
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 GetDVPSign ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m ): (This is the same as that in 

Algorithm I  in the proof of Theorem 1, except that the step (g) in Algorithm I  is replaced by the 

following one:  

g. If 3h =, then abort. (This case is called Event S .)) 

 ignVerify DVPS ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m , m ): Parse Oδ  as ( Ow , OR , O ) 

and check whether all input parameters comform to Ow . If not, return False. If the check is passed, 

follow the next steps:  

a~g. (These steps are the same as those in Algorithm I  in the proof of Theorem 1.) 

h. If 3h , then return mv ≟ ê ( PRs][ +[ 3h ] PT , DT ). Otherwise, go forward. 

i. Search 1H  for the item ( ParamsB ∥ PID , Ph ) indexed by ParamsB ∥ PID  to get Ph . If the search does 

not succeed, return . 

j. Search L  for the item ( PID , PP , PK , Ps , Pc ) indexed by ( PID , PP , PK ) to get Ps  and Pc . If the 

search does not succeed, return . If Ps = and Pc =, return . If Ps  and Pc , return 

mv ≟ ê ( PRs][ +[( Ps + Pc ) qmod ] 3H , DT ). 

k. Search 1H  for the item ( ParamsB ∥ DID , Dh ) indexed by ParamsB ∥ DID  to get Dh . If the search do

es not succeed, return . 

l. Search L  for the latest item ( DID , DP , DK , Ds , Dc ) indexed by ( DID , DP , DK ) to get Ds  and 

Dc . If the search does not succeed, return . If Ds = and Dc =, return . If Ds  and Dc , 

return mv ≟ ê ( 3H , [( Ds + Dc ) qmod ] PT ) ê ( PR , Ds]T[ ). 

m. I f  Pc = and Dc = ,  l e t  h ⟵ ê ( 3H ,[ ( Ds + s ∙ Dh ) qmod ] PT + [ ( Ps + s ∙ Ph )

qmod ] DK ) ê ( PR , Ds]T[ ). 

n. If Pc = and Ds =, let h ⟵ ê ( 3H ,[ Dc ] PT +[( Ps + s ∙ Ph ) qmod ] DP ) ê ( PR , Ds]T[ ). 

o. If Ps = and Dc =, let h ⟵ ê ( 3H ,[( Ds + s ∙ Dh ) qmod ] PT +[ Pc ] DK ) ê ( PR , Ds]T[ ). 

p. If Ps = and Ds =, let h ⟵ ê ( 3H ,[ Dc ] PT +[ Pc ] DK ) ê ( PR , Ds]T[ ). 

q. return DBDH ( Gu][ , Gv][ , Gw][ , mv / h ). 
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Forgery: Wait until )(I   outputs a tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) as the 

final result of the game.  

3. Check )(I  ’s final result and output the solution of the above instance (i.e., the input) as follows: 

(1) If the following boolean expression is true, then abort. (This case is called Event 1R .). 

*
Ph  1H ( ParamsB ∥ *IDP ) ∨ *

Dh  1H ( ParamsB ∥ *IDD ) ∨ 

Gw][  3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ). 

(2) If the following boolean expression is true, then abort. (This case is called Event 2R .) 

((( *IDP , *KP )P  ∧ ( *IDP , *PP )S ∪ R ) ∨ (( *IDD , *KD )P  ∧ ( *IDD , *PD )S ∪ R )). 

(3) If ignVerify DVPS ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 )=False, then then abort. 

(This case is called Event 3R .) Otherwise, parse *m
  as ( *

PR , *m
v ) and return *m

v /
*h . ( *m

v /
*h  is the 

last parameter of the query to DBDH  in the oracle ignVerify DVPS .) 

(The end of the algoritm I ) 

Since the analysis of I  is similar to the one of I  in the proof of Theorem 1, we only show that I ’s output 

is the solution for the given instance of the GBDH problem if I  does not abort. 

I  can output the result *m
v /

*h  if and only if )(I   succeeds the simulated game with I , i.e., )(I   

provides a valid proxy signature, and I ’s selections of five indices P , D , P , D ,   and two Boolean 

values P , D  are correct for the final result ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) of 

)(I  , i.e., the target proxy signer with *IDP  is the P -th user, the target designated verifier with *IDD  is the 

D -th user, ( *PP , *KP ) is the P -th full public key of the target proxy signer, ( *PD , *KD ) is the D -th full public 

key of the target designated verifier, 3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ) is the  -th new query to 3H , 

P=0 in the case ( *IDP , *KP ) P , P=1 in the case ( *IDP , *PP )S ∪ R , D=0 in the case ( *IDD , *KD ) P , 

D=1 in the case (
*IDD ,

*PD )S ∪ R .  

Assume that I  does not abort and outputs the result. 
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If P=0, then *KP = Gu][ , *cP =, *sP
*
q  and *PP =[ *sP ] G  from the step (a) and (d) of CreateUser . If P=1, 

then *PP = Gu][ , *sP =, *kP
*
q , *KP =[ *kP ] G , *cP =( *kP + s ∙ *

Ph ) qmod  from the step (a) and (b) of CreateUser . If 

D=0, then *KD = Gv][ , *cD =, *sD
*
q  and *PD =[ *sD ] G  from the step (a) and (d) of CreateUser . If D=1, then 

*PD = Gv][ , *sD =, *kD
*
q , *KD =[ *kD ] G , *cD =( *kD + s ∙ *

Dh ) qmod  from the step (a) and (c) of CreateUser . 

Hence, in running of ySignVerifyProx (
*IDO ,

*IDP ,
*IDD ,

*PO ,
*PP ,

*PD ,
*
O ,

*m , *m
 ), the step (m) is executed if 

P=0 and D=0, the step (n) is executed if P=0 and D=1, the step (o) is executed if P=1 and D=0, and 

the step (p) is executed if P=1 and D=1. 

If I ’s selections of   is correct for the final result provided by )(I  , the following equation holds. 

Gw][ = 3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ). 

If )(I   provides a valid proxy signature, the final result satisfies the following verification equation:  

*
mv = ê ( *

PR , KGCP )
*t D  ê ( Gw][ , *TP )

*t D . 

where *m
 =( *

PR ,
*
mv ), *TP = *PP + *KP +[ *

Ph ] KGCP  and *t D =( *sD + *cD ) qmod . From the above equation, we can 

obtain 

*
mv = ê ( *

PR , KGCP )
*t D  ê ( Gw][ , *TP )

*t D  

= ê ( *
PR ,[ *t D ][ s ] G ) ê ( Gw][ ,[ *t D ][ *t P ] G ) 

= ê ( *
PR ,[ s ] *TD ) ê ( Gw][ ,[( *t D

*t P ) qmod ] G ).  

where *t P =( *sP + *cP ) qmod . 

When  =0 and  =0, we can compute  

ê ( Gw][ ,[( *t D ∙ *t P ) qmod ] G ) 

= ê ( Gw][ ,[(( *sD + *cD )∙( *sP + *cP )) qmod ] G ) 

= ê ( Gw][ ,[(( *sD + v + s ∙ *
Dh )∙( *sP + *cP )) qmod ] G ) 

= ê ( Gw][ ,[(
*sD + s ∙

*
Dh ) qmod ][

*t P ] G +[( v ∙(
*sP + u + s ∙

*
Ph )) qmod ] G ) 

= ê ( Gw][ ,[( *sD + s ∙ *
Dh ) qmod ] *TP +[( uv ) qmod ] G +[( *sP + s ∙ *

Ph ) qmod ] Gv][ ) 
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= ê ( Gw][ ,[( *sD + s ∙ *
Dh ) qmod ] *TP +[( *sP + s ∙ *

Ph ) qmod ] *KD )∙ ê ( Gw][ ,[( uv ) qmod ] G ) 

= ê ( Gw][ ,[( *sD + s ∙ *
Dh ) qmod ] *TP +[( *sP + s ∙ *

Ph ) qmod ] *KD )∙ uvwGGe ),(ˆ . 

Hence, from the following equation  

*h = ê ( Gw][ ,[( *sD + s ∙ *
Dh ) qmod ] *TP +[( *sP + s ∙ *

Ph ) qmod ] *KD ) ê ( *
PR ,[ s ] *TD )  

and the above discussion, we can obtain 

uvwGGe ),(ˆ = *m
v /

*h . 

Similarly, we can discuss other cases. 

Secondly, when )(  is a type II adversary )(II  , we construct an algorithm II  that uses )(II   and 

the DBDH oracle DBDH  to solve the GBDH problem in the bilinear group pair (  ,  ) as follows: 

Algorithm II : 

Input/Output: (These are the same as those in Algorithm I .) 

1. Select five indices 0< P , D  UN ,0 P , D < UKeyN  and 0< 
3HN  randomly. 

2. Simulate a challenger in EUF-CMA Game as follows: 

Setup: Let Rs *
q , KGCP ⟵ Gs][ , :Params { a , b , p , q , G , KGCP }, :ParamsB a ∥ b ∥ G ∥ KGCP . Send 

Params and s  to )(II  . Initialize the lists S  and D  with empty list (∅) respectively, and prepare a list 

1H  of 2-tuples, two lists 2H  and 3H  of 3-tuples and a list L  of tuples in form of ( UID , UP , UK , Us , Uc ). 

Choose randomly *
Ph *

q  and *
Dh *

q  such that *
Ph  *

Dh . Let PCount 0 and DCount 0. 

Attack: Answer )(II  ’s queries to oracles as follows:  

 1H ( x ), 2H ( y ), 3H ( z ): (These are the same as that in Algorithm I .) 

 CreateUser ( UID ): Let Uh ⟻ 1H ( ParamsB ∥ UID ) and respond differently in the following cases:  

a. If there exists ( UID ,*,*,*,*) L  (where * means for an arbitrary value), then search L  for the 

latest item ( UID ,*, UK ,*, Uc ) indexed by UID  to get UK  and Uc . Otherwise, choose Uk *
q  

randomly, let UK ⟵ GU ]k[  and Uc ⟵( Uk + s  Uh ) qmod .  

b. If Uh = *
Ph , then let PCount ⟵ PCount +1. If PCount = P , then let UP ⟵ Gu][ , put ( UID , UP ,
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UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

c. If Uh = *
Dh , then let DCount ⟵ DCount +1. If DCount = D , then let UP ⟵ Gv][ , put ( UID , UP ,

UK ,, Uc ) in L  and return ( UP , UK ). Otherwise, go forward. 

d. (This is the same as that in Algorithm I .) 

 eyGetSecretK , eyGetPublicK , ionGetDelegat , GetDVPSign : (These are the same as those in Algorithm I .)  

 ignVerify DVPS ( OID , OP , OK , Oδ , PID , PP , PK , DID , DP , DK , m , m ): Parse Oδ  as ( Ow , OR , O ) 

and check whether all input parameters comform to Ow . If not, return False. If the check is passed, 

follow the next steps:  

a‒i. (These steps are the same as those in Algorithm I .) 

j. Search L  for the item ( PID , PP , PK , Ps , Pc ) indexed by ( PID , PP , PK ) to get Ps  and Pc . If the 

search does not succeed, return . If Pc =, return . If Ps , return mv ≟ ê ( PRs][ +[( Ps + Pc )

qmod ] 3H , DT ). 

k. Search 1H  for the item ( ParamsB ∥ DID , Dh ) indexed by ParamsB ∥ DID  to get Dh . If the search do

es not succeed, return . 

l. Search L  for the latest item ( DID , DP , DK , Ds , Dc ) indexed by ( DID , DP , DK ) to get Ds  and 

Dc . If the search does not succeed, return . If Dc =, return . If Ds , return mv ≟ ê ( 3H , 

[( Ds + Dc ) qmod ] PT ) ê ( PR , Ds]T[ ). 

m. If Ps = and Ds =, let h ⟵ ê ( 3H ,[ Dc ] PT +[ Pc ] DK ) ê ( PR , Ds]T[ ). 

n. return DBDH ( Gu][ , Gv][ , Gw][ , mv / h ). 

Forgery: Wait until )(II   outputs a tuple ( *IDO , *PO , *KO , *δO , *IDP , *PP , *KP , *IDD , *PD , *KD , *m , *m
 ) as the 

final result of the game.  

3. Check )(II  ’s final result and output the solution of the above instance (i.e., the input) as follows: 

(1) (This is the same as that in Algorithm I .)  

(2) If the following boolean expression is true, then abort. (This case is called Event 2R .) 

((
*IDP ,

*PP )S  ∨ (
*IDD ,

*PD )S ). 
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(3) (This is the same as that in Algorithm I .) 

(The end of the algoritm II ) 

Since the analysis of II  is similar to the one of I , we omit it. This completes the proof.     � 

From Theorem 1 and 2, we can conclude that our CLDVPS scheme is strong existentially unforgeable 

against an adaptively chosen-message attack and an adaptively chosen-warrant attack in the random oracle model 

(ROM), under the assumption that the Computational Diffie–Hellman (CDH) Problem in an elliptic curve group 

and the Gap Bilinear Diffie–Hellman (GBDH) Problem in a bilinear group pair are hard.  

Next, we consider the non-transferability of our CLDVPS scheme.  

When we fix a challenge message *m , the identities { *IDO , *IDP , *IDD } of an original singer, a proxy signer 

and a designated verifier, a valid delegation *δO , the public keys *PO , *KO , *PP , *KP , *PD , *KD , and the 

corresponding private keys *sP , *cP , *sD , *cD  for signing, based on submission of an adversary in NT Game 

(Definition 7), the following values are also fixed: 

*t P  ( *sP + *cP ) qmod , 

*t D  ( *sD + *cD ) qmod , 

*TP 
*PP + *KP +[ 1H ( ParamsB ∥ *IDP )] KGCP , 

*TD  *PD + *KD +[ 1H ( ParamsB ∥ *IDD )] KGCP , 

3H  3H ( *m ∥ *δO ∥ *IDP ∥ *PP ∥ *KP ∥ *IDD ∥ *PD ∥ *KD ). 

Then, the ensemble of valid signatures on *m  produced by the algorithm GenerateDVPSign is as follows: 

   {( PR , ê ([ Pr ] KGCP +[ *t P ] 3H , *TD )) | Pr R *
q , PR ⟵[ Pr ] G }. 

Meanwhile, the the ensemble of valid simulated signatures on *m  produced by the simulation algorithm 

SimulateDVPSign is as follows: 

S   {( DR , ê ( DR , KGCP )
*t D  ê ( 3H ,

*TP )
*t D ) | Dr R *

q , DR ⟵[ Dr ] G }. 

Considering the equations *TP =[ *t P ] G  and *TD =[ *t D ], we can compute the following equations. 

ê ( DR , KGCP )
*t D  ê ( 3H , *TP )

*t D = ê ( DR ,[ *t D ] KGCP ) ê ( 3H ,[ *t D ] *TP ) 
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= ê ( DR ,[ *t D ][ s ] G ) ê ( 3H ,[ *t D ][ *t P ] G ) 

= ê ([ s ] DR ,[ *t D ] G ) ê ([ *t P ] 3H ,[ *t D ] G ) 

= ê ([ Dr ][ s ] G , *TD ) ê ([ *t P ] 3H , *TD ) 

= ê ([ Dr ] KGCP +[ *t P ] 3H , *TD ). 

That is, any element of   corresponds to only one element of S  and vice versa. The randomness of any 

element in   is determined by Pr R *
q  and the randomness of any element in S  is also determined by 

Dr R *
q . Therefore, the distributions of any element of   and any element of S  are identical and any 

unconditional distinguisher t  cannot determine whether the signature is created by the proxy signer or 

simulated by the designated verifier. Namely, we can obtain the following result. 

Theorem 3. The proposed CLDVPS scheme is undconditionally (perfectly) non-transferable. 

6. Conclusion 

Certificateless designated verifier proxy signature (CLDVPS) stands for designated verifier proxy signature 

(DVPS) in the certificateless setting which is intermediate between traditional PKI and Identity-based setting and 

has neither the certificate management issue nor private key escrow problem. 

In this paper, we formalize the definition of a CLDVPS scheme and the security model for CLDVPS 

schemes. We then proposed the first CLDVPS scheme and analyze its efficiency. We also prove that in the 

random oracle model, our scheme is strong existentially unforgeable against an adaptively chosen-message attack 

and an adaptively chosen-warrant attack under the assumption that the Computational Diffie–Hellman (CDH) 

Problem in an elliptic curve group and the Gap Bilinear Diffie–Hellman (GBDH) Problem in a bilinear group pair 

are hard, and it is unconditionally non-transferable.  

To the best of our knowledge, the concept of certificateless designated verifier proxy signature (CLDVPS) 

has not been appeared in the literature but Identity-based DVPS (IBDVPS) schemes have been discussed. Our 

scheme is the first provably secure CLDVPS scheme.  

We believe that our scheme satisfies the privacy of signer’s identity.  

We leave constructing a non-delegatable CLDVPS scheme as future work. It is also interesting to construct a 

CLDVPS schemes without pairings and prove the security in the standard model.  
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