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Abstract
The Lightning Network (LN) is a prominent scalability so-
lution for Bitcoin that allows for low-latency off-chain pay-
ments through a network of payment channels. LN users lock
bitcoins into collaboratively owned addresses and redistribute
the ownership of these funds without confirming each transfer
on-chain. The LN introduces new privacy challenges.

In this paper, we focus on channel balance probing. We
propose a new model of the LN that accounts for parallel
and unidirectional channels, which has not been done in prior
work. We describe a probing algorithm that accurately updates
the attacker’s balance estimates without the need to directly
connect to victims. We introduce an uncertainty-based metric
to measure the attacker’s information gain.

We implement the first probing-focused LN simulator and
suggest several countermeasures against general probing (im-
plemented considering parallel channels). We evaluate these
techniques using the simulator, as well as experiments on the
real network.

According to our simulations, an attacker can infer up
to 80% information regarding channel balances spending
~ 20 seconds per channel. The suggested countermeasures
limit the attacker’s gain at 30%, while also increasing the
attack time by 2-4x.

In addition, we describe sophisticated attack techniques
that combine fee-probing and channel jamming to get precise
access to individual channel balances inside a hop, and test
them against the real network.

Finally, we discuss payment flows and their concealment.

1 Introduction

Bitcoin is a peer-to-peer electronic cash system [15]. The
requirement for being fully functional on commodity hard-
ware limits Bitcoin’s transaction throughput to approximately
7 transactions per second. Among various scaling approaches,
second-layer (L2) protocols [7] are one of the most promising.
The Lightning Network [20], launched in 2018, is an L2 pro-
tocol on top of Bitcoin. It is a network of payment channels.
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A payment channel is a trust-minimized two-party protocol
that allows for low-latency and low-cost payments [10] with
minimal interaction with the base layer (Bitcoin).

Privacy is a crucial requirement for cryptocurrency pro-
tocols. Bitcoin’s privacy has been shown to have weak-
nesses [1, 13]. One of the main privacy challenges of Bitcoin
is a consequence of its strength — public verifiability. Since
any user must be able to verify all transactions that have ever
happened, all transactions are in the plain sight of an attacker.

In the LN, the full payment details are only known to the
sender and the receiver. This makes the LN a good candidate
for improving not only Bitcoin’s scalability but also privacy.
In practice, however, the LN introduces new privacy attack
vectors [2, 16,24,25]. In particular, an attacker can estimate
channel balances of honest users in a probing attack [11, 12,
33,36]. The key element of probing is sending fake payments
(probes) and narrowing balance estimates via binary search
depending on the error type. The attacker bears only minimal
cost (i.e., on-chain fees for opening channels) and does not
pay LN fees, as failed payment attempts are free. Probing
can be used as a building block to spy on payments or node
balances, or to deanonymize LN users.

Previous work has demonstrated that probing attacks are
cheap, fast and rather non-sophisticated. At the same time, the
prior art has introduced a number of impractical assumptions:

* The attacker connects directly to a victim channel. The
victim may not allow this, moreover, this requirement
makes the attack poorly scalable.

e There is at most one channel between each pair of nodes.
The LN specification explicitly allows multiple chan-
nels between the same pair of nodes. This feature is
widely used in practice (45% of capacity is held in such
channels) and causes problems in channel probing'.

'The paper [16] writes: “Our tool failed to produce accurate results in this
scenario [...] It is however perfectly reasonable to have multiple channels
between two nodes [...] We expect this to be the predominant form of
retrospectively increasing potential payment flow between nodes and further
research on how to deal with this complication would be highly appreciated.”



* Channels forward payments in both directions. In prac-
tice, channel counterparties may disallow forwarding
from their side of the channel, thus preventing probing
from that direction.

Building on top of the most efficient probing technique [33],
our approach expands it with a notion of parallel channels and
channel directions. In particular, we carefully model multi-
hop paths, parallel channels, and channel directions by
representing a network as a directed multigraph. We track
where each error comes from and update the balance esti-
mates accordingly. We do not assume that nodes can only be
connected with one channel, and develop a new hop-based (as
opposed to single-channel-based) model of the network. Fi-
nally, we probe each channel from both directions if possible,
increasing efficiency; unlike previous works, and reflecting
the properties of the real network, we do not assume that
channels are always bidirectional.

To assess the effectiveness of our probing method, we pro-
pose a novel way to measure the attacker’s information gain.
We develop the first probing-based LN simulator that im-
plements the hop model, and measure probing effectiveness
in a simulated environment under different conditions. Our
simulations are based on a real network snapshot.

We describe how two additional attacks (channel jamming
and privacy leakage through channel policies) allow for prob-
ing parallel channels, which would enable a nearly full extrac-
tion of channel balance information. We verify these ideas in
controlled experiments against real LN implementations.

Finally, we propose three types of countermeasures and
demonstrate how their combinations make the attacks 2-4x
longer in time (i.e., reduce their efficiency) and also bound the
attacker’s knowledge to 30% of the initial uncertainty (instead
of 80% without countermeasures).

The rest of this paper is organized as follows. In Section 2,
we provide the necessary background about Bitcoin, Light-
ning, and relevant attacks. Section 3 introduces a novel hop-
based model of the LN and a probing algorithm that accurately
updates balance estimates to fully reflect probing outcomes.
In Section 4, we define the uncertainty-based metrics to as-
sess the attacker’s information gain and attack cost (in terms
of time). In Section 5, we evaluate our probing technique in
a simulated network based on a real LN snapshot. We also
assess three countermeasures: reporting delay, error spoofing,
and deliberate forwarding failure. Section 6 describes how
the attacker can use channel jamming to improve probing of
multi-channel hops. Section 7 briefly describes how to adjust
probing to spy on payments. Section 8 suggests advanced
countermeasures. We discuss usability-privacy trade-offs and
future work in Section 9, review related work in Section 10,
and conclude in Section 11.

2 Background

2.1 Bitcoin

Bitcoin is a distributed system for transactions without a
trusted third party. Every transaction changes ownership over
a certain amount of coins, or satoshis — the minimal unit of
payment (one bitcoin equals 100 million satoshis).

The current ownership of coins is encoded in unspent trans-
action outputs (UTXOs). The most simple ownership rule is
a possession of a private key for a corresponding public key.
To spend a UTXO, its owner signs a transaction that proves
their ownership of the private key in question and transfers
the ownership to the receiver’s public key. All users can then
verify that the sender indeed had access to the private key. To
make this verification practical even on commodity hardware,
the Bitcoin protocol limits the block size. Considering the
constant average time between blocks (10 minutes), Bitcoin
can confirm around 7 transactions per second.

2.2 Lightning architecture

To scale Bitcoin beyond this limit, the LN was introduced.
The LN is a peer-to-peer network of nodes, some of which
share one or multiple payment channels (referred to simply
as channels throughout this work). Nodes and channels are
uniquely identified by their IDs. Compared to Bitcoin, the
LN allows for low-latency payments at the cost of relaxing
certain security assumptions. In particular, LN users must
monitor the Bitcoin’s blockchain and dispute fraud attempts.
It is sufficient to re-connect once every few hours or days,
depending on channel parameters. The monitoring may be
outsourced to specialized services called watchtowers.

Besides payments between channel parties, the LN supports
routing payments across multiple hops. This allows any LN
user to pay any other user without establishing a channel with
them (assuming the receiving user has sufficient incoming
balance). In a multi-hop payment, channel balances along the
path are shifted simultaneously. The atomicity of this shift is
enforced cryptographically.

The development of the LN is guided by a set of stan-
dards [3] followed by multiple development teams. Major LN
implementations include LND, C-LIGHTNING, and ECLAIR.

2.2.1 Channels in the LN

A channel is a trust-minimized cryptographic protocol that al-
lows two parties to maintain the distribution of coins initially
committed to a jointly controlled UTXO. The channel state is
encoded in a set of pre-signed commitment transactions. A
channel operates in three stages: opening, normal operation,
and closing. To open a channel, Alice and Bob lock coins in a
cooperatively owned UTXO, establishing the initial balance
distribution. To make a payment, the parties negotiate and ex-
change a new set of commitment transactions. Critically, this



action makes the new channel state enforceable by provably
invalidating the old state [7]. At any time, any party can close
the channel on-chain and withdraw their coins as defined by
the latest channel state.

The total number of coins committed to a channel is called
capacity and is constant throughout the life of a channel. The
amount of coins currently owned by each party is called a
balance and changes as payments are made. The two bal-
ances sum up to the capacity (without accounting for in-flight
payments and fees, see also Section 6.2.2).

According to the LN specification [3], a pair of LN nodes
may share multiple channels. We refer to such channels as
parallel. They constitute 21% of all channels and hold 45% of
total network capacity (see Section 5.2 for more details).

2.2.2 Multi-hop payments

As mentioned earlier, LN payments may be routed through a
path of channels connecting the sender to the receiver. Routing
is atomic: a payment cannot partially fail along the way.

The sender determines the route based on a local view of the
network graph”. The graph information is distributed in gossip
messages and describes the availability, capacities, and fee
policies of channels. Users may also establish unannounced
channels, hidden from the rest of the network. To compensate
for resource usage, routing nodes normally charge a fee.

To hide payment details from routing nodes, LN payments
are onion-routed. Intermediary nodes know the payment
amount but are only aware of the previous and the next node
in the route.

Note that the sender only knows the capacities of remote
channels, whereas their forwarding ability is determined by
their balances. Therefore, a sender cannot reliably choose a
suitable route, and LN payments often fail due to insufficient
balance at an intermediary hop. Normally, a sender makes
multiple attempts before the payment eventually succeeds.

Upon receiving a payment, the receiver finalizes it by prop-
agating the payment secret along the path back to the sender.
The payment secret is the preimage of the payment hash that
identifies the payment’. If an error occurs, the erring node
sends an error message back to the sender along the path.
Therefore, the sender always knows whether an error occurred
and if so — at which node it happened.

2.2.3 Parallel channels and non-strict forwarding

Even though the sender is solely responsible for path-finding,
the protocol only enforces an ordered list of nodes through
which a payment must flow.

2Unless trampoline or rendezvous routing is used [30, 39].

3We refer the reader to [3] for details on hash time-locked contracts
(HTLCs) that are the basis of the LN protocol. The protocol does not forbid
using the same hash for different payments, which is used in multi-part
payments (MPP).

In practice, two nodes in the LN might be connected by mul-
tiple parallel channel. Parallel channels might be useful for se-
curity flexibility: a routing node might have a smaller channel
with relaxed security parameters (e.g., cltv_expiry_delta)
for risky payments and a large channel with strict parame-
ters. These different channels might also have different fee
policies.

If several (parallel) channels are suitable for forwarding a
payment, the protocol does not enforce which one should be
used. A routing node may choose a channel using different
strategies. Currently, all LN implementations use the simple
best-effort approach, i.e., they do forward the payment if at
least one of their channels can do so. No matter which channel
is chosen, a routing node takes all the fees allocated for it.
We discuss how alternative approaches to channel selection
might prevent probing in Section 8.

The three major LN implementations use different channel
selection strategies. ECLAIR uses the channel with the small-
est capacity (among the channels with the same capacity, it
prefers the one with a smaller balance)*. LND chooses a ran-
dom channel’. C-LIGHTNING has no channel selection as it
does not support parallel channels.

2.2.4 Unidirectional channels

All channels in the Lightning Network are bidirectional, mean-
ing they might facilitate payments (both initiated by the chan-
nel counterparties and other nodes in the network via multi-
hop) in both directions.

At the same time, nodes sometimes disable one of the
channel directions for forwarding multi-hop payments. The
responsible channel co-owner may do so by signing a
channel_update message and gossiping it across the net-
work.

Forwarding is usually disabled due to the loss of connec-
tivity, or prior to channel settlement, although other scenar-
ios are also possible. Note that for privacy reasons, private
channels (see Section 2.2.5) might be preferred, because they
achieve the same non-forwarding behavior, but are also not
even known to the network.

In our work, we call these channels unidirectional (not to be
confused with the unidirectional channel construction, which
is not used by the LN). Unidirectional channels constitute
9% of the channel count and control 7% of the LN’s total
capacity.

2.2.5 Private channels

Private channels are not announced to the network. These
channels constitute a non-negligible part of the network. Mo-
bile clients often exclusively use private channels to LN hubs

“https://github.com/ACINQ/eclair/blob/5f9d0d/eclair-
core/src/main/scala/fr/acing/eclair/payment/relay/ChannelRelay.scala#L.199

Shttps://github.com/lightningnetwork/Ind/blob/f98a3c/htlcswitch/switch.go#L1091



to preserve their privacy.

If a node does not announce its channels, only its channel
counterparties would know it exists. However, it can still
receive payments from anywhere if it assists the payee with
so-called routing hints.

Private channels are of interest for us because they can
be used to protect public channels from being probed. We
discuss this in more detail in Section 8.5.

2.3 Attacks on Lightning

The attacker can gain knowledge regarding the activities of
other users using several attack vectors. In this work, we focus
on third party channel / node balance inference via probing.
Balance inference may be interesting for an attacker in several
contexts. In particular, it allows for estimating the victim’s
capital and is a building block for other attacks (payment
inference, payment flow inference), encompassing several
scenarios. For instance, Mallory may want to learn how much
Alice pays to Bob or, more broadly, detect all Alice’s pay-
ments, including their amount, time, and destination.

2.3.1 Probing

The possibility of probing is a consequence of payment chan-
nel networks design. An LN payment can only be forwarded
through a channel if its balance in the required direction is
greater or equal to the payment amount. This leads to in-
formation leakage: a channel reacts to forwarding requests
differently depending on its balance. An attacker exploits this
leak by forwarding fake payments (probes) and observing
resulting errors.

The attack proceeds as follows. First, the attacker defines
the target channel and prepares a route that terminates at this
channel. Since payments may fail along the route, shorter
routes are better. Then, the attacker sends a probe through the
route. The probe either reaches the destination or fails due
to insufficient balance at an intermediary channel®. To avoid
paying fees in the former case, the attacker uses a random
value instead of a payment hash that is normally generated by
the receiver. The receiver does not know the preimage of a ran-
dom hash and responds with a specific error, according to the
protocol. The attacker thus learns whether the balance of the
failing channel is above or below the probe amount, and that
all channels before it have succeeded. Repeating this process,
the attacker can in principle infer the target channel balance
with arbitrarily high accuracy. In practice, the attacker might
terminate the probing after reducing the window between the
balance estimates to an acceptable size. The initial estimates
for an unknown balance b are [0, c], where ¢ is the channel

6Qther errors are possible, but we omit them for simplicity. It is also
possible that the same error we are looking at is caused by limits on in-flight
payments, which either resolves to the same case (if those in-flight payments
succeed), or mislead an attacker (if those payments “roll back™). We leave
the latter considerations for future work.

capacity. The optimal choice of probe amounts (to minimize
the number of probes) depends on the distribution of channel
balances. Assuming uniform distribution, binary search is the
optimal strategy.

2.3.2 Channel jamming

As we will show in subsequent chapters, the attacker can
improve the effectiveness of probing by combining it with
another type of attack — channel jamming. Jamming is a fam-
ily of denial-of-service attacks on LN channels. An attacker
initiates a payment along a route that goes through a target
channel and terminates at another attacker’s node. Then, an
attacker refuses to finalize the payment, locking the funds
along the entire route until the timelocks expire. There is no
simple solution to this problem. An intuitive timeout would
not work, because then an attacker just repeats the payment
over and over again. After the attack is done, an attacker fails
the payment (to release their coins without paying fees).

There are two types of jamming. In capacity-based jam-
ming, an attacker jams a channel (fully or partially) by ini-
tiating a payment of a given (presumably high) value’. In
slot-based jamming, an attacker blocks a channel completely
by sending a series of small payments and reaching the limit
of in-flight payments (by default, it is 483 in each direction).

3 Network model for probing

Parallel channels account for 45% of network capacity and
are common between highly-connected and well-capitalized
nodes (“hubs’’). We expect them to be heavily used in payment
forwarding, so they should not be ignored in the context of
channel probing.

Parallel channels prevent the attacker from learning channel
balances with arbitrary precision using simple binary search.
With a trivial approach to probing and current payment for-
warding protocols, the attacker can only reliably find the max-
imum balance among a set of parallel channels, but cannot
argue about the exact balance of each channel. To better under-
stand these limitations and suggest attack strategies and coun-
termeasures, we propose an alternative model of the Lightning
Network, which better reflects the reality. Our model includes
two graphs: the LN graph that models the LN itself, and the
hop graph that models the attacker’s knowledge about the
network.

7 An attacker might have also just sent this payment to themselves without
withholding and achieve the same effect, but this would cost paying fees.
Sending instead of withholding may make sense because it eases the require-
ment of the overall capital to be locked, in the case of jamming multiple
parallel channels simultaneously.



3.1 LN graph model

We represent the LN as a directed multigraph (i.e., parallel
edges are allowed), in which vertices represent nodes and
edges represent channels between them.

We define the direction of a channel to take two values:
direction dir0 goes from the node with the alphanumerically
smaller ID, and dirl is the opposite. Analogously, we refer
to the balance b at the alphanumerically smaller node ID as
balance in direction dir0. This notation is consistent with
the LN specifications. The balance in direction dirl can be
derived as b = ¢ — b, where ¢ is the channel capacity.

3.2 Hop graph

We model the attacker’s view of the LN as a directed multi-
graph H. Each edge of H represents a hop — a set of parallel
channels between two nodes. The channels in the hop fully
determine its properties. In particular, a hop with n chan-
nels can forward at most byax = maxic(; ) (b;) in dir0 and
bimax = maxie|y ) (b;) in dirl.

In some cases (for example, in a single-channel hop),
probes reveal information about individual channels. In gen-
eral, however, probes only reveal information about a hop as
a whole. To accurately reflect this distinction, the attacker
maintains upper and lower bounds for each channel, as well
as bounds for the hop as a whole. We refer to channel-level
bounds for the i-th channel in a hop as bf and bf’, and to
hop-level bounds as b',,, and b/,..
The upper bound 4", ,. shows how much a hop can forward
in the best case. It can be calculated from the channel bounds
as maxie(i ) (b"). The lower bound b!,,, shows how much a
hop is guaranteed to be able to forward. It cannot be calculated
from balance bounds alone: a successful probe of amount a
tells the attacker that at least one of the channels can forward
a, but does not tell which channels can do it. As a result, the
attacker can only update the hop-level bounds. In contrast, if
a probe of amount a fails, the attacker can update the upper
bounds for individual channels, as no channel can forward a.
Therefore, bf,m is the only field assigned per-hop and not per
individual channels.

The following invariants hold for both directions for any
hop with n channels (only the channels enabled in the required
direction are considered):

s Vi€ [l,n],bl <b; <b!<c;

o bl > maxiepy , (BY);

'max
h h
¢ bmax = MaXic|1 | (bz )

Consider an example of a multi-channel hop in Table 1.
Taking channel directions into account, the hop described in
Table | can forward b, = max(42,81) =81 in dir0 and

Bmax = max(119,126) = 126 in dirl.

cid | ¢ b b dir0 enabled | dirl enabled
1 100 | 42 58 yes no
2 200 81 | 119 yes yes
3 300 | 174 | 126 no yes

Table 1: Example of three parallel channels.

The attacker defines channel- and hop-level bounds for
each hop and direction in its local hop graph. In the hop
defined above, a priori channel bounds are: Vi € [1,n],b! =
0,b" = c;. The attacker only maintains channel bounds in
dir0, as the bounds in dirl are automatically derived as
b* = ¢ —b" and b" = ¢ — b'. A priori hop-level bounds are
bl =D, =0and b" = max(c;) for channels enabled
in dir0, that is, b = max(100,200) = 200. Analogously,

= max
! . = max(200,300) = 300.

3.3 Updating the bounds

Starting from the initial bounds, the attacker performs a series
of probes toward each target hop with the goal to shrink the
interval between the balance bounds. Recall that the attacker
always knows where each probe fails. A probe may gain
extra knowledge for a target hop as a whole or for individual
channels. If a probe has not reached the target hop, the attacker
tries another route. The attacker stops probing as soon as the
precision is achieved, as defined using information-theoretic
metrics (see Section 4).

We now describe the update rules that allow the attacker
to precisely reflect the information from probes. Consider
a probe in direction dir0 with amount a being forwarded
through an n-channel hop. The case of dirl is analogous. The
channels have capacities cy,...,c, and balances by, ...,b,.
The current upper and lower bounds for b; are bf and b?, and
for byuax the bounds are b, and b" . There are two possible
outcomes: the probe went through (“success”) or it did not
(“failure”).

The attacker only updates the bounds if the new estimate is
more precise, i.e., the attacker never decreases lower bounds
and never increases upper bounds. For simplicity, the algo-
rithm description omits this implementation detail: one should
read 7 := a as h° := max(h°, a).

3.3.1 Success case

In the success case, the probe has been forwarded. This means
that the hop can forward at least a, therefore, b/, ., := a.
Additional information may be derived from this outcome.
If the attacker knows which channels the probe could have
been forwarded through, the bounds of these channels may
be updated. For instance, in a single-channel hop case, the
attacker updates both hop bounds and channel bounds for its

only channel.



To capture this information in the multi-channel case, the
attacker orders the channels in the hop by the upper bounds of
their balances bf‘. If bﬁ-’ >a> bﬁ’ 1 the probe could only have
been forwarded through channels 1,...,i. To avoid tracking
bounds for each channel subset, we use a simplified version of
this rule. If 5 > a > b%, this means that only the channel with
the highest estimated balance could have forwarded the probe.
Therefore, the attacker updates the first channel’s balance
lower bound: bl1 =a.

This, in turn, allows the attacker to also improve channel
estimates in the opposite direction. Indeed, if the balance of
the first channel b; > a, then b; = ¢; — b; < ¢; — a. Therefore,
the attacker updates b, := maxic(y 5 (c; — b;) accounting
for the new bound on b;. This updated upper bound implies
that all channel-level bounds in dirl can also be updated:
Vi€ [1,n]: Ef.’ :=max(c; —a,co—ba,...,cn —by).

3.3.2 Failure case

In the failure case, the probe has not been forwarded. This
means that all channel balances in the hop are strictly lower
than a. The attacker updates: Vi € [1,n] : b := a— 1. This also
allows for updating the hop-level lower bound in the opposite
direction. Indeed, Vi € [1,n] : b; < a = bi=ci—b;>ci—
a. Note that b, = maxic(y ) (ci — bi) > maxc(y 5 (c; —a) =
maxic(y 5| (ci) —a = ¢| — a, where ¢ is the highest capacity
among the channels enabled in direction dirl. Therefore, we
may apply the new lower bound for the opposite direction:
l;fnax =¢1—a+1.

3.4 Countermeasures

In this Section, we broadly discuss countermeasure design
for channel probing and suggest three ideas. This is the first
proper evaluation of these novel countermeasures. While they
are not related to parallel channels, we used our advanced
parallel-aware model while evaluating these countermeasures
in our simulator. Now, let us discuss the countermeasures.

If reliably distinguishing between probes and genuine pay-
ments were possible, routing nodes could just ban the at-
tackers without the need for sophisticated countermeasures.
However, certain architectural aspects of the LN make such
differentiation difficult. First, routing errors are a part of the
normal protocol operation. Honest payments may and in fact
do fail due to insufficient balances at intermediary hops. Sec-
ond, the LN uses onion routing to preserve users’ privacy.
Therefore, even if it were possible to reliably detect probing,
routing nodes would not know where the probes are coming
from and therefore could not easily ban attackers.

Since channel probing may be applied to spy on both node
balances and payments, the incentives of implementing coun-
termeasures are unclear. In the former case, the hop being
probed always belongs to the victim. Thus, the privacy solely
depends on the victim, although per some countermeasures,

routing nodes may agree to help a victim preserve privacy. In
both cases, the countermeasures that we suggest might not
be not incentive-compatible, as they require sharing failures
or delays across the payment path. Applying them might not
be in the best interest of economically rational forwarding
nodes: failures and delays would reduce their reliability score
as calculated by other users, who would then route fewer
payments through those nodes. The burden on the user expe-
rience of honest payers should be also considered. We leave
this evaluation for further discussion, and now present the
three countermeasures.

3.4.1 Channel selection: random failure and single ran-
dom channel

Here we describe two similar strategies. The first one is to
“fail with probability p” payments that would otherwise pass.
This strategy may be applied when a probing attack is detected.
In such case, the attacker needs to issue at most k more probes
to be sure that the failure was caused by the strategy rather
than an actual lack of balance:

P(success |bpax < a) > 1—p* Q)

For example, assuming p = 0.1, if we set an error prob-
ability P(probe failure |bq < a) < 0.001, k =3 would be
sufficient. However, this countermeasure might be more dif-
ficult to overcome if the node adaptively increases p during
the attack.

The second approach is to use the “single random channel”
selection strategy. For a hop with n channels, a channel with
the maximal balance will be selected with probability 1/n.
So in the case of a probe failure with amount a, the attacker
needs to repeat the probing at most cn times for some constant
¢ to make the probing error arbitrarily small:

l cn 1 c
P( success |bpgy < a) >1— (1 — ) ~1— <) . (2
n

e

Comparing the two approaches, we note that in the first
case the binary-search prober needs to make c times more
probes, while in the second case the number of extra probes
is proportional to the number n of channels in a hop. Since n
is typically not large, both cases are similar to the best-effort
payment selection strategy.

The “single random channel” strategy leaks information
that is otherwise unavailable to the attacker, namely, it reveals
channel balances beyond b,,,, in the general case. Having
ordered the channels by balance, we can consider the bal-
ance distribution function of a hop as a monotonic function
F:{1,2,...,n} = {0,...,bya}- The attacker can efficiently
recover this function (or, equivalently, the balance distribution
of a hop up to a permutation of its channels) by measuring
the frequency of probe successes and failures.



3.4.2 Adding artificial delays

Significant time requirements make large-scale probing chal-
lenging (we discuss the time-cost in Section 4.2). To leverage
this factor against the attacker, honest nodes may add an arti-
ficial delay when forwarding payments®.

The effect of additional delays is twofold. At the very least,
this countermeasure slows down the information gathering by
the attacker. Moreover, if the network handles heavy payment
traffic, the probing results may be outdated by the time the
attack is finished. The exact delay might be tuned considering
how much obfuscation honest payments can provide. One
way to limit the impact of this countermeasure on honest
users could be to introduce extra delay only when an attack is
detected (e.g., a series of failed payments), though the attacker
could overcome this by sending more probes.

3.4.3 Replacing errors

As mentioned earlier, probing is based on the distinction be-
tween payment failure and success, which an attacker ob-
serves by looking at what kind of error is returned by whom
along the payment path. Normally, routing nodes propagate a
forwarding failure back to the sender. However, if a routing
node receives an error from the next node in the path, it can
pretend the error happened at its own channel (spoof the error).
The sender has no way of distinguishing genuine errors from
spoofed ones. This countermeasure would obfuscate the pic-
ture for the attacker. The side-effect of this countermeasure is
a decreased precision of node scoring models based on failure
history.

4 Metrics

The attacker aims to obtain the highest amount of information
at the lowest possible cost. We introduce metrics to quantify
how successful the attacker is in achieving this goal.

4.1 Success metrics

We assess the quality of a probing by the amount of infor-
mation the attacker obtains. Consider a target hop with n
channels. The initial uncertainty about channel balances is
the number of bits required to store vector B of balances:
Y log,(ci+1). To reflect the fact that the attacker may
be interested in this information up to a certain granularity
(i.e., u = 1000 satoshis), we use the formula:

n

Ubef()re = logz (Ci + 1) - nlogz(u) 3)

i=1

8The delay cannot be applied just on the probe receiver node, because
then an attacker would expand the route to one more hop, so it is applied
(with some probability) at every hop while propagating an error back to the
sender.

This formula assumes uniform distribution of balance b;
in the range [0,...,c¢;] and independence of balances among
the channels of a hop — the worst-case assumption for the
attacker.

As a result of probing, the uncertainty decreases to a range
between the lower and upper bounds b < b; < b} The re-
maining uncertainty can be expressed as’:

Uifter = max(O,logz(bf-’ — bg +1)—log,(u)) &

n
i=1

The information gain thus is:
I= Ubefore - Uafler )

Full information extraction from a hop is often impossi-
ble due to symmetries. For example, in a hop with all ¢; = ¢
(channels with equal capacities), it is possible to extract in-
formation only up to a permutation of b;’s, and thus up to
log, (n!) bits of uncertainty would remain (at least without
resorting to advanced probing techniques, which we discuss
in Section 6.2.2). On the other hand, full information extrac-
tion is not always needed. If the attacker is only interested in
whether a hop can pass the payment of size q, it is sufficient
to find b,,,,. To learn the total balance in a target hop, the
precise information about all channels is also unnecessary:
the sum Y\, b; is invariant under permutations.

However, in our evaluation (Section 5), we assume that
the attacker wants to know the exact channel balance for
every channel in the target hop and assess the attacker’s gains
with Formula 5, summing up all channels in the target hop.
Additionally, we account for the case when the attacker’s
bounds are misleading (the true balance is not between them).
Such a scenario is possible if nodes apply countermeasures,
i.e., fail probes that would otherwise succeed. In that case, we
set the information gain for this channel to zero.

An alternative way to measure the attacker’s gain would be
to use hop-based uncertainty (as opposed to channel-based
uncertainty defined in Formula 5). After finding b, and

Dpax, the only thing the attacker can tell is that:

Vi, max(c; — by, 0) < by < min(bY,,, i) (6)
Given the public capacity vector C of the hop and the mea-
sured bounds on by, and by, the attacker can compute the
hop-based information gain by using Formula (5) and plug-
ging into it the bounds from inequality (6). This also implies
that for any hop ¢; < byax + Dinay- This inequality may save
a bit of probing compared to naive binary search for each
direction separately (but at most a factor of two).

Finally, we note that a hop may resist information extrac-

tion. This is especially relevant if the attacker wants to learn

9We take max to account for the case when the bounds are closer than the
required granularity: the uncertainty is then set to zero instead of a negative
value.



the flow of payments that has passed through the hop in a
certain time interval. For example, even after passing several
payments using best effort strategy, the hop’s b,y in either
direction might not change, if the hop “absorbs” these pay-
ments inside its minor channel balances. We discuss this in
Section 7.

4.2 Cost and efficiency metrics

Channel probing is a non-blocking activity that takes time, so
during the attack the target channel might be used for hon-
est payments. This means that the state of the target channel
might change during probing, resulting in outdated or incor-
rect balance bounds. If an attacker is interested in comparing
two snapshots of the same channel to track payments, balance
changes during probing might make the attacker’s conclu-
sions inaccurate. This issue becomes even more apparent in
case of several target channels.

Thus, making channel probing fast is crucial for an at-
tacker. We use the time it takes to probe one target hop as
our efficiency metric. We also note that probing can be par-
allelized (if target hops are not included into paths to other
target hops).

Capital cost metric should also be considered. There are
two components to the capital cost of probing: 1) on-chain
fees for opening and closing the attacker’s channels; 2) the
time value (i.e., interest rate) of capital locked up in those
channels for the duration of the attack. The trade-offs between
the time-efficiency and capital costs are as follows.

* In regular probing (no jamming), making direct chan-
nels'” with the victims makes probing much faster (be-
cause there are no routing failures), but every channel
costs an on-chain fee and locks up a certain amount of
capital (a function of the target channel capacity).

» Capacity-based jamming has a cost of opening one large
channel. It requires paying one on-chain fee (it does not
depend on the amount), but the funds locked are close
to the aggregate amount of all parallel target channels
(e.g., in a single target hop).

¢ Slot-based jamming has a cost of opening many small
channels (and paying an on-chain fee for each of them),
although the capital locked in them can be minimal. The
exact number of channels is equal to the number of target
channels to be jammed, because the attacker’s path is
limited by the same number of slots (including the first
component of their own channels)''.

The attacker never pays LN routing fees, because probing
payments never succeed.

101n practice, nodes may forbid opening ad-hoc channels to them.
1T Assuming all channels have the same number of slots, although in prac-
tice an attacker can sometimes find a more “permissive” path.

5 Evaluation

In this Section, we evaluate the attacker’s information gain
and time cost.

5.1 Simulator

We develop a simulator to model probing in the LN. The
simulator takes as input the LN topology graph that contains
public information from gossip. To establish the ground truth
for the probing evaluation, we populate the graph with channel
balances generated uniformly at random.

The attacker’s node opens large channels to selected well-
connected hubs. It then generates a random list of target hops
and probes them one by one as per the algorithm described
in Section 3. The information gain obtained during probing,
including intermediate hops, is saved and reused. The attacker
only considers paths that may succeed, according to the cur-
rent bounds.

To simulate probing time, we increment a counter at ev-
ery hop of every probe. We pick a single-hop delay from a
list of values from 0.25 to 2.75 seconds with a step of 0.25.
The weights are distributed symmetrically around 1.5 sec-
onds, which is in line with prior work [11,33] and our own
experiments on the real network.

The simulator mimics the channel choice behavior of LND
and ECLAIR as seen in their source code (C-LIGHTNING
does not support parallel channels). In our simulations, we
choose the channel choice strategy for each forward randomly,
weighted by relative implementation prevalence: 91% LND,
7% C-LIGHTNING, and 2% ECLAIR [14].

We intend to release the simulator as open-source software.

5.2 Dataset

Our experiments are based on a snapshot of public
LN channels obtained on 2020-12-28 from our own C-
LIGHTNING node running on mainnet'”. The snapshot con-
tains 3672 nodes and 23026 channels. Compared to a popular
Lightning explorer'” ran by ACINQ (the company behind
ECLAIR), our snapshot contains approximately 47% fewer
nodes and 30% fewer channels. We explain it by the fact
that our node has been launched shortly before capturing the
snapshot, while popular public nodes run continuously and
accumulate gossip information for a much longer period of
time (but then may include non-active or dead nodes).

We proceed with its largest connected component, which
consists of 3614 nodes and 22975 channels in 20156 hops.
The total network capacity is approximately 927 BTC. As
per our snapshot, 4769 channels (21% of total) belong to

12Note that here we are only aware of publicly announced channels and
nodes. Detecting unannounced channels, while possible in principle [12,21],
is outside the scope of this work.

Bhttps://explorer.acing.co/.


https://explorer.acinq.co/

multi-channel hops and hold 416 BTC (45% of total capac-
ity). We thus see that parallel channels hold on average more
coins than non-parallel ones and presumably play a significant
role in routing. The LN contains 2173 unidirectional channels
(9% of total), which hold 67 BTC (7% of total capacity). Com-
pared to parallel channels, unidirectional channels represent
a smaller but still non-negligible share of the network. We
conclude that accurately modeling parallel and unidirectional
channels is important for a more precise analysis of probing,
countermeasures and other potential applications. We also
note that the set of channels that can only be probed in one
direction includes, besides unidirectional channel, leaf chan-
nels (i.e., channels where one of the endpoints has a degree of
one). The LN contains 1270 leaf channels (6% of total) that
hold 8 BTC (1% of total capacity).

5.3 Evaluation

We explore the effectiveness of the probing algorithm de-
scribed earlier with and without each of the countermeasures:
deliberate failures, artificial delays, and error spoofing. We use
the information gain defined in Section 4 and the simulated
probing time.

In Figure 1, we observe how the attacker’s information gain
grows if various countermeasures are applied. The results are
averaged across 10 experiments with 100 random target hops
each. The probability of each countermeasure being applied is
set to p = 0.2. In the case of combined countermeasures, each
forwarding node chooses independently whether to apply any
of the selected countermeasures (each with probability p).
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Figure 1: Attacker’s information gain growing over time
while probing 100 target hops. If done in parallel, attacks
are around 100 times faster, but the correspondence between
attacks holds.

In the absence of countermeasures, an attacker is able to
reach 0.8 information gain over all target hops after approxi-
mately 2000 seconds. Note that an attack can be parallelized
to approach all targets simultaneously, allowing to cut the
time significantly.

The attacker does not gain perfect knowledge due to par-
allel channels: without additional enhancements discussed
in Section 6, the attacker does not know which channels the
probes are forwarded through and therefore can, in the general
case, obtain only b,,, but not individual channel balances.

Applying both error_spoofing (each forwarding node
with probability p spoofs the error message as if it happened
at this node) and delay_5x (each forwarding node delays a
response by a factor of five with probability p for both failed
and successful forwards) separately does not prevent an at-
tacker from gaining the same 0.8 information, but makes it
10% and 100% longer, respectively. Error spoofing makes the
attack longer because the attacker can no longer rely on the
balance information accumulated during previous probings.
However, since the attacker still manages to find paths, they
get the same 0.8 information. Combining these countermea-
sures adds another 100% in terms of time.

Unlike the other two countermeasures, applying
hop_failure (forwarding nodes deliberately fail payments
that could have succeed with a probability p) separately
makes an attacker stop the attack just around reaching 0.25
information. This is not surprising, since occasional errors
are effectively false positives leading an attacker to the wrong
results'#. Additionally, an attacker might stop earlier because
they think there are no suitable path to the target, after getting
fake errors from many paths.

Adding error_spoofing only improves hop_failure by
making it 10% longer in terms of time, probably because false
positives from hop_failure are triggered by intermediate
routing nodes even before error_spoofing comes into play.

Finally, a combination of delay_5x and hop_failure
achieves the best result: it simultaneously limits the attacker’s
information gain to around 0.25 and makes it significantly
longer to achieve it (three times longer comparing to gaining
0.8 knowledge in the case of no countermeasures). Combin-
ing all three countermeasures does not improve further: again,
because hop_failure augments error_spoofing.

6 Distinguishing between parallel channels
for improved probing efficiency

Our probing method (Section 3) accounts for parallel channels
but makes no active attempts to distinguish between them.
However, precisely probing a multi-channel hop in the general
case is impossible unless the attacker knows which channel
the probes go through. The attacker may achieve this goal
by blocking all channels except for one. We now describe
multiple ways to block channels via jamming.

14 A more sophisticated attacker could be aware of these measures and
adjust the attack (e.g., repeat failed probes). Still, an attacker is bounded by
time (see Section 4.2).



6.1 Theory

The attacker may manipulate the channels in a target hop to
make sure that probes go through the desired channel. There
are multiple methods to manipulate the channels: policy-
aware probing (fees), blocking by capacity, and blocking by
slots.

In the next Section, we demonstrate how distinctions in fee
policies on parallel channels of the same hop allow access
to individual channels. In practice, an attacker might also
exploit other channel policies (see Section 2.2.3). Note that
if all policies are the same across all parallel channels, an
attacker cannot exploit this.

6.1.1 Probing with fee policy

In fee-aware probing, the attacker carefully chooses fees such
that the probe can only be forwarded through a subset of
cheaper channels, assuming the fees differ among some of
the parallel channels. If implemented trivially, this technique
allows for probing the cheapest channel as if it had no paral-
lel channels. Furthermore, all channels can be grouped into
increasing nested subsets according to the different fee levels
in the hop. Each fee level (i.e. a set of nodes with fee less
or equal than f) has its own local balance maximum bf,,ax. If
the balance of the smallest-fee channel has global b, then
nothing else can be learned. The other extreme is if fees and
balances (f;,b;) both form an increasing sequence. In that
case, the attacker can learn all channel balances by gradually
increasing the fees. In the general case, if the channels are
sorted by fees, then the attacker can learn bﬂm for each fee
level (similar as previously via binary search, but over the
fee-level subset) and thus gain much more information about
balances of the hop than just a single hop-level b, .

We recall that in LND the routing node picks a random
channels satisfying the fee and balance, while in ECLAIR
the channel is chosen deterministically. This difference is not
important if we resort only to fee-probing, since it is irrelevant
over which channel with sufficient balance the probe would
pass. However, it may becomes relevant if we combine fee
probing with jamming (as described later).

6.1.2 Probing with capacity-based jamming

An attacker might jam a certain balance in a hop by sending
one large payment to their own nodes via target channels, and
never resolving it on the receiving side.

After learning that hop’s b,y via probing technique of the
previous section, the attacker may choose to send a payment
of size b, and hold it on the receiving side. Now, the attacker
faces the same hop with one channel less, and this technique
can be applied iteratively by jamming channels one-by-one.
Assuming there are k channels in a hop, the attacker needs
k jamming probes and at most Zf:l log,(c;) binary search
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probes (this is worst case when all b; = ¢;) to completely
discover all k£ channel balances in the hop.

6.1.3 Probing with slot-based jamming

An attacker may exploit a limit of in-flight payments to com-
pletely disable one of the channels by sending several hun-
dreds of small payments and not resolving them for the time
of probing. To optimize the use of time and payment slots,
an attacker may modify the attack depending on the victim’s
payment forwarding strategy (similarly to fee-aware probing).

In the ECLAIR case, an attacker may be able to direct jam-
ming towards a certain channel. Then, it would require send-
ing 483 payments to jam channels one by one, which is con-
siderably easier. Since this can be done in parallel, it takes up
to 3 seconds (the time of a single payment).

In the case of LND, for N channels, an attacker would need
to send and hold 483 - N — 1 tiny payments in-flight, to leave
one slot for probing. Then, after binary-search probing the
only available channel left, an attacker will block the last slot,
blocking that channel, and will release a new random slot.
With a good chance it will be a slot in another channel which
can again be probed. This process requires about N - [og(N) -
log, (max(c;)) probes.

6.1.4 Jamming challenges

In some cases, jamming might be challenging or impossible.
For example, if there are several channels between Alice and
Bob, and there is only one channel to reach Alice, it would
be impossible to slot-jam more than one Alice-Bob channel,
since slots for all hops on the path would also be jammed. The
same applies for capacity jamming'”. These limits apply on
“both sides” of the victim, although in some cases an attacker
can negotiate expanding these limits. Thus, it would help if
the attacker is directly connected to the victim or if there are
several disjoint paths to the victim.

It would be difficult to control the in-flight limits, if other
payments are also flowing across these channels. The posi-
tive side-effect of this is that this could be a new method to
track payments, since they would temporarily block the only
available slot.

Jamming is detectable on the victim’s side, so they might
take action to obfuscate the state of their channels. Finally, a
node might decide to use one of its higher fee channels even
if sender specified lower fees. This can happen if the payment
helps node to rebalance its channels, which has economic
value for the node, or as a countermeasure against jamming.

6.1.5 Combining fees and jamming

Fee-based probing can be enhanced with jamming: after prob-
ing the cheapest channel (or a subset of channels), they can be

I5Note that these channels are not “useless”: e.g., they might be bottle-
necked by slots, but available by capacity.



jammed, so that the next-by-fee channel becomes effectively
the cheapest, and may be now probed by fees. Moreover, jam-
ming gives access to individual channel balances inside the
fee-level subset of nodes. The only downside of this approach
is that fee-probing the (N + 1)-st channel would require keep-
ing N channels jammed (meaning locked liquidity if jamming
by capacity).

On the other hand, jamming can in turn be enhanced with
fee considerations: to jam specific channels, an attacker might
tune fees, as described previously.

6.2 Experiments on the real network

To confirm that the proposed attack optimizations indeed
work, we test them against the real Lightning Network.
6.2.1 Setting

Our setting consisted of five nodes located on the same ma-
chine and running on different ports (see Figure 2)'°.

Y
N

Prober

5004_
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166k : 334k

»
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s

Figure 2: Experimental setup

For Prober and Jammer, we used the C-LIGHTNING imple-
mentation to build on the previous work on channel probing.
For JamRecv, we modified the C-LIGHTNING implementation
to sleep (120) after receiving a payment for a non-intended
invoice, so that the channels on the route from the Jammer
are indeed jammed. For VictimA and VictimB, we used the
ECLAIR implementation, since C-LIGHTNING does not sup-
port parallel channels (and that is what we wanted to test).

We did not verify these techniques against the “real” (non-
our) victims, and focused on the highly-controlled experiment
instead. All the remaining logic was implemented in the sim-
ulator.

For both experiments, we start by opening two channels
between VictimA and VictimB, allocating the balances as
68k:432k and 166k:334k. We also open supplementary chan-
nels from the attacker to the victims. The setting is summa-
rized in Figure 2.

Since the victims run ECLAIR, they inherit the capacity-
balance channel choice strategy, although the experiments we
describe in this section are agnostic to it and would work for
other implementations as well.

16Note that Prober and Jammer can be the same node with two channels
for each activity, but we make them distinct for simplicity.
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Probing in these conditions without optimizations provides
an upper bound of 167k satoshis for both channels, and the
lower bound for the entire hop is 165k satoshis.

6.2.2 Jamming

The jamming-enhanced probing proceeds as follows.

1. To infer the balance of the smaller channel, an attacker
sends a payment of 150k satoshis from the Jammer node
to the JamRecv node, and holds it for two minutes on
the receiving side.

2. The available balances are 68k:432k and 16k:334k (note
that the in-flight balance is not available here for either
direction).

3. Since the 67k channel has the largest balance in this hop,
an attacker can actually probe it.

4. Probing in these conditions yields an estimate of [66k :
68k], which indeed represents the balance of the second
channel.

5. After the probing is done, JamRecv notifies VictimB that
the payment has failed, thus an attacker does not have to
pay routing fees.

Thus, we confirmed that channel jamming might indeed be
used to improve channel probing.

6.2.3 Probing by fee

For these experiments, only three nodes were relevant: Prober,
VictimA, and VictimB. To demonstrate how an attacker can
use this technique, we update the larger channel from the
previous experiment to require non-zero fees.

The attacker configures the Prober node to send probes
while allocating fees sufficient to cover the more expensive
channel. Then, by sending such probes, an attacker yields
the same result, inferring the balance of the larger (non-zero-
fee channel). Then, to probe the smaller channel, an attacker
configures the Prober node to send only zero-fee probes. Since
the routing node would now allow forwarding over the smaller
zero-fee channel, the attacker successfully infers balance of
the smaller channel: [66k : 68k].

7 Payment and flow inference

In this section, we show how to expand our balance knowledge
into a knowledge of payment flows through a hop or sequence
of hops. This method is mostly agnostic to having parallel
channels.

Given a set of sufficiently frequent balance snapshots, the
attacker can construct a balance difference graph, in which
edges with non-zero difference correspond to payments. This



will work well even for several disjoint payments, since in
a simple single-channel hop scenario the balances along the
route will be shifted by the same amount (modulo fees), and
thus it would be easy to discover the sender, the receiver and
the amount.

However, if some cases payments are absorbed by parallel
channels, the inference method needs to be more precise.
Previous work [12] has shown that at the current level of
activity in the LN is relatively low (2000 payments per day).
Under these conditions, it is sufficient to make a balance
snapshot every 30 seconds to achieve 66% success.

While obtaining a full network snapshot at this speed is
challenging, it is much easier if our goal is to track payment
flows between a given pair of nodes A and B. If they are
endpoints of one hop, extracting 10 most significant bits of
the hop balance requires about 13 probes in our simulations
(0.77 bits per probe).

Multiple targets can be tracked in parallel. If A and B are
not directly connected, the attacker needs to track balances in
a set of 10 shortest paths between them (most of our probes
succeed within 10 path attempts). Since diameter of the whole
network is only 6 hops [28], and typical path lengths are 3-6
hops, the size of a target sub-network in such case is around
50. The worst case for the attacker is when equal amounts are
sent via intersecting paths within a single time slot.

8 Advanced countermeasures

In this Section, we consider alternative forwarding strategies
that might be employed by routing nodes to prevent probing.
Some of these countermeasures require honest users to have
parallel channels, while others are more general.

8.1 Intra-hop payment split

Due to non-strict forwarding, routing nodes can choose any
channel to forward a payment to the next node (strictly speci-
fied by the sender). However, they do not perform intra-hop
payment split among the channels inside a hop. Intra-hop split
is being discussed as part of the future switch to the new type
of channel construction, namely PTLC [19,38]. This feature
could be used by routing nodes to optimize hop bandwidth or
as a countermeasure against probing. Intra-hop split is similar
to multi-part payments (MPP) but differs in an important way.
In MPP, the sender chooses how to split the payment, and
forwarding nodes cannot alter this. In intra-hop payment split,
a forwarding node decides how to split a payment among its
adjacent channels.

In the most direct best-effort intra-hop split, the node splits
the payment if the total sum of channel balances is lower than
the payment amount. This behavior, while optimal in terms
of efficiency, would make probing easier: a hop becomes
equivalent to a pair of directed channels with balances equal to
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the sum of balances in each direction. Thus, a simple probing
would be sufficient to discover the sum of balances.

8.2 Rebalancing

Any form of on-demand rebalancing (e.g., JIT routing [18]) is
likely to hinder probing, similarly to intra-hop payment split.
In fact, rebalancing is a better version of straightforward intra-
hop payment split because it does not aggregate channels into
a single pseudo-channel, thus revealing the aggregate hop
balance. However, rebalancing is likely to have the same
disadvantage if the aggregate hop balance is lower than the
largest channel capacity: in this case, the largest channel after
rebalancing would represent the aggregate hop balance.

8.3 Adversarial multiple channel selection
strategy

Is it possible to route payments while minimizing changes in
bmax? What should be the best channel structure for achieving
this goal?

If a channel is actively used, then it could execute payments
in batches once every time At (i.e., 1 second). The payments
in a batch are re-ordered to minimize changes of b, and
Byax- In the best case, if payments of equal amounts are for-
warded in the opposite directions, they “cancel” each other
and become invisible to the attacker. The task seems more
challenging if the flow through the hop is unbalanced. In that
case, the hop might need to perform regular rebalancing.

The hop can also detect probing using heuristics, i.e., a
sequence of payments failing due to wrong invoices and with
specific binary-search amounts. In that case, future probes can
be routed through special channels with artificially set b,,q-€s.
However, since adversarial probing can be more stealthy, it
is advisable and indeed possible (given sufficient liquidity
in parallel channels) to have a more generic strategy that
information-theoretically conceals the flows.

8.4 Gates

Consider a scenario when tightly-coupled clusters of nodes
with high payment activity among them emerge in the LN. In
that case, the gate channel structure may limit the capabilities
of an out-of-cluster prober. In particular, node operators may
limit capacities or balances of channels connecting the cluster
of nodes to the rest of the network (the gate channels). Lim-
iting by balances is preferable since the capacity is publicly
visible (if channels in the cluster are publicly announced).
The gate channels may only be open at short agreed upon
time intervals to let the traffic in and out of the cluster. The
disadvantage of gates is that they impede honest payments
between the cluster and the rest of the network.



8.5 Private channels

Since an attacker has to rely on the public channel metadata
(to pick probe amounts and update estimates), having some
of the information unavailable indeed requires extra consider-
ations.

In practice, the existence of private channels results in the
following situations:

* an attacker might be able to discover private channels
easily and even infer their balances (e.g., if balance of
the private channel exceeds balances of public channels);

e an attacker cannot discover private channels easily
(e.g., if private channel balance does not exceed balances
of public channels).

Even in the former case (and indeed in the latter), an at-
tacker cannot just blindly use the regular probing approach.
For example, because the capacity of the private channel is un-
known, an attacker will be unable to use bidirectional probing
easily.

For now, we just note that private channels might be use-
ful in protection against channel probing. We leave a more
detailed exploration of private channels for future work.

9 Discussion and Future Work

9.1 The countermeasures vs. incentives

The fundamental limitation of many countermeasures against
channel probing, including those discussed in Section 3.4, is
that they are often not incentive-compatible for three reasons:

* the privacy of end-users (payment senders and receivers)
often depends on the routing nodes, since probing the
entire route is an intuitive way to infer a payment;

¢ the privacy of routing nodes may depend on the cooper-
ation of other routing nodes;

* most countermeasures (both deployed for self-defense
and for helping others) require selectively failing pay-
ments, delaying responses and limiting bandwidth. This
makes those nodes less attractive for routing and puts
them in a worse economic position than those that do
not implement countermeasures.

We may also envision a future where protecting privacy is
a competitive advantage for routing nodes, while they also
charge extra fees for enabling privacy-preserving features.
The challenge here is to make it provable that routing nodes
adhere to privacy practices.
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9.2 The countermeasures vs. user experience

Another shortcoming of many of the countermeasures dis-
cussed in the Section 3.4 and Section 8 (except Section 8.3)
is that they put the burden not only on the attacker but also
on honest users: payments fail more often and errors arrive
slower. UX burden may become the cost for privacy features.
Perhaps it is also possible to deploy countermeasures only dur-
ing the attack, although since the attacks are currently cheap
and easy, the LN could be under these attacks constantly.

We expect that advanced flow-concealing countermeasures
proposed in Section 8.3 would be more attractive for rout-
ing nodes and users, since they may provide perfect security
against probing at the cost of higher routing liquidity for rout-
ing nodes, with a limited impact on both user experience and
routing nodes’ economic incentives.

9.3 Non-trivial probing optimizations

To speed-up the binary search probing, an attacker might
consider behavioral patterns of nodes. E.g., merchants are
more likely to have a high inbound balance, so the first probe
might be in the third quarter instead of the middle of the initial
bounds interval. An attacker may also consider the historical
behavior of nodes and channel management strategies of the
particular LN implementation that the victim runs.

An attacker might also consider bulk probing: construct-
ing a probing path such that multiple target channels are
probed at once, which might be relevant for probing hubs.
Deriving sophisticated probing algorithms is a future chal-
lenge.

10 Related work

Attacks on the Lightning Network can be grouped into
privacy-related [2, 11,12, 16,24,25,33,36], DoS-related [8,
14,17,24,26,32,34] and incentive-related [35].

Prior work on channel probing introduced the general idea
of probing based on binary search [11], probing channels
from both ends [36], and controlling both sender and receiver
of the probes [12].

We build on top of prior work, adding the notions of paral-
lel and unidirectional channels (which was never thoroughly
explored before), as well as accommodating probing from any
location in the network (which was considered only in [33]).

Multiple simulators of the LN have been proposed. Existing
simulators were designed to analyze honest economic activ-
ity [2,5,37] or the cost of opening payment channels [4, 6].
Our simulator is the first one to focus on probing. We start
with the probing method presented in [33] and augment it
according to our model improvements.

Among other relevant attacks on the LN, channel jam-
ming [14,32] and channel policy exploitation [22] are used
in our work to expand attacker’s capabilities and overcome



the issues with parallel channels. One of the improvements to
payment forwarding [38] (namely splitting it up via AMP to
two sub-payments) influenced our “intra-hop payment split”
countermeasure.

Free channel probing was mentioned as an adjacent is-
sue to jamming, and rate-limiting was proposed to mitigate
them [31]. Currently, several rate-limiting approaches are
being discussed [23,27].

Although the current fee structure was previously found
to be non-economical [2], we believe that incentive-
compatibility of probing countermeasures with reliability-
based routing protocols [9] should be discussed.

The tension between privacy and utility of the routing nodes
found in [29] are partially confirmed in our work.

Using channel probing as a building block for payment
inference was briefly discussed in [12], and our optimizations
make those attacks much more feasible, while also providing
ways to prevent them.

11 Conclusion

The Lightning Network is a promising technology to improve
Bitcoin’s scalability. While the LN has the potential to also
become a privacy-preserving tool, recent work has demon-
strated that the existing public payment channel network leaks
private information about payments.

In this work, we advance the understanding of channel
probing — an attack that allows an adversary to infer user
balances by sending fake payments. Compared to state-of-the-
art, we provide the most precise network model that reflects
the existence of parallel and unidirectional channels. Such
channels are common in the LN and obviate previous work on
probing. We develop the first probing-focused LN simulator
that implements our model. We describe information-gain,
time, liquidity metrics and mathematical models which could
make the attack more practical.

Finally, we suggest countermeasures. Even though they
are not specific to parallel channels, we evaluate them in our
novel model. Using our simulator, we demonstrate that the
suggested countermeasures reduce the attacker’s information
gain from 80% to 30%, while increasing the time an attack
takes by 2-4x. Although the countermeasures work well and
make probing quite infeasible, they may negatively influence
incentive-compatibility and user experience. Navigating these
trade-offs should be discussed in the Lightning community.
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A  Uncertainty metrics for unidirectional

channels

Bidirectional probing may not be always available. There
are three cases: (a) leaf nodes that cannot be connected to
and thus can be only probed in one direction. For leaf nodes
this is direction from the core of the network towards the
leaf node; (b) unidirectional channels (similar to leaf node
channels for our purposes); (c) intermediate graph nodes that
are connected to the rest of the network via channels either
with very low capacity or with very low balance.

In the first two cases (leaf nodes and partially active chan-
nels), the attacker can only measure b,,,, in one direction (so
we will omit in the following formulas its directional index).
It gives them the information that for all the channels of the
hop for which ¢; > by it follows byq > b;. Lower bound in-
formation, however, may be obtained only on hop as a whole:
when a payment of size a passes, the uncertainty of the hop
reduces to:

logy ([T (et 1)) —a') + ) loga(ci+1),

Vei>a Vei<a

(N

here ¢ = |{i|c; > a}| is the number of channels with capacity
strictly larger than a. The second term in this sum indicates
that the attacker learns nothing about other channels of this
hop. It can be proven that expression (7) is monotone in a
and reaches minimal uncertainty for a = b,,,,. If upper and
lower bounds: b, < byax < bl are known, they can be
substituted in (7) instead of ¢; and a, respectively. If by,
is known (as happens during the probing attack), the best
achievable bound on the hop balance uncertainty (for only
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unidirectional probing) is as follows (for ¢ defined as above
t = [{ilci > bpax }]):

IOgZ((bmax""l)t_(bmaX)t)"’ Z loga(ci+ 1)~

\'/Ci<bmw(

®)

logy (1) + (1 — 1)10gy (bmax + 1)+ Y, loga(ci+1). (9)
Ve <bmax

This formula comes directly from equation (7) by replacing
¢i’s by byax, since all balances are lower or equal to this value.
Luckily, in the real LN leaf nodes rarely create multi-channel
hops.

The situation with narrow capacity or balance to a node is
similar: it limits what the attacker can derive about the b4
bounds in one or both directions. Due to economic incentives,
nodes probably do not create high-capacity hops surrounded
from both sides with low-capacity ones, essentially wasting
liquidity, unless they are only interested in paying each other
or unless this is used as a countermeasure (see Section 8.4).
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