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Abstract. Differential privacy has been widely applied to provide privacy guarantees by adding random noise
to the function output. However, it inevitably fails in many high-stakes voting scenarios, where voting rules are
required to be deterministic. In this work, we present the first framework for answering the question: “How private
are commonly-used voting rules?” Our answers are two-fold. First, we show that deterministic voting rules provide
sufficient privacy in the sense of distributional differential privacy (DDP). We show that assuming the adversarial
observer has uncertainty about individual votes, even publishing the histogram of votes achieves good DDP. Second,
we introduce the notion of exact privacy to compare the privacy preserved in various commonly-studied voting rules,
and obtain dichotomy theorems of exact DDP within a large subset of voting rules called generalized scoring rules.

1 INTRODUCTION

Differential privacy (DP) has gained much public attention recently, partly due to its use in the United States 2020
Census. Improving upon ad-hoc privacy techniques that were broken in the previous census [Garfinkel et al., 2018],
formal privacy definition like DP are much more suitable for controlling the leakage of sensitive data.

Yet, sensitive data is still published today without necessarily understanding the privacy leakage it incurs. In par-
ticular, voting data has been surprisingly accessible. In the US, histograms of votes are revealed per county, and voting
and registration tables are released [US Census Bureau, 2019], which include fields like sex, race, age, location, and
marital status. This abundance of information has enabled politicians to buy voter profiles from data mining companies
to manipulate public opinion [Verini, 2007; Bradshaw and Howard, 2018].

Unfortunately, it is not easy to achieve (differential) privacy for voting. It is insufficient to protect voter registration
tables with proven privacy techniques; releasing the election outcome can also be a cause of information leakage.
To see how an individual’s vote can be inferred by observing the winner of the election, we consider the following
example. Suppose Alice cast a vote in an election, and then the winner is announced. Further suppose that an adversary
can accurately estimate other votes from questionnaires or by machine learning from the other voters’ social media,
and it turns out these other votes ended up with a tie among the candidates. In this case, the adversary can distinguish
Alice’s vote even if he knows nothing about Alice, since Alice must have voted for the winner as the tie-breaker.

The strict definition of differential privacy means the mere possibility of the above scenario is a privacy violation.
Moreover, ties do occur quite often in real life elections. For example, 9.2% of STV elections on Preflib election
data [Mattei and Walsh, 2013] are tied [Wang et al., 2019]. Even if we consider another formal privacy definition that
accepts the uncertainly stemming from machine learning methods or low likelihood of ties as helpful in disguising
votes, it is unclear how to quantitatively measure the effect of such uncertainty, and how (or whether) privacy differs
for different voting rules.

Motivated by the privacy concern in voting, we focus on the following key question in this paper.

How private are commonly-used voting rules?

The importance of answering this question is both practical and theoretical. On the practical side, minimizing the
amount of information leakage from voting rules helps protect against censorship, coercion, and vote buying. On the
theoretical side, privacy provides a new angle to comparing voting rules and designing new ones.

A first attempt would be to employ differential privacy (DP) [Dwork, 2006], measure of privacy widely-accepted
and widely-applied in the cryptographic community. Mathematically, a voting rule M for n € N voters is a mapping
M : U™ — R, where U is the set of all possible votes; R is the set of all possible outcomes of voting, e.g. winners
or histograms of votes. M is (e, §)—differentially private if for any pair of preference profiles X € U™ and X' € U™
that only differ on one vote, and any subset of outcomes S C R, the following inequality holds:

PrM(X) € S] < e Pr[M(X') € S] +4. 1



Smaller ¢, ¢ are desirable as it means the outcome of M is not affected much by one vote, and thus reveals little
about an individual voter. Note in general M must be randomized to satisfy Inequality (1); indeed [Shang er al., 2014;
Lee, 2015; Hay et al., 2017] achieved DP via randomized voting.

Yet most, if not all, voting rules used in high-stakes political elections are deterministic, since randomized voting
rules suffer from difficulties in verifying implementation correctness, e.g. the controversy in the 2016 Democratic
primary election in Towa [Clayworth and Noble, 2016]. Unfortunately, the randomness in Inequality (1) comes from
the voting rule itself, so deterministic rules cannot achieve DP except with the trivial parameter of § > 1, which always
holds (see Example 1 for more details).

1.1 OUR CONTRIBUTIONS

To overcome the critical limitation of DP in high-stakes voting scenarios, we study the privacy of deterministic voting
rules using distributional differential privacy (DDP) [Bassily et al., 20131, a well-accepted notion of privacy that works
for deterministic functions. DDP measures the amount of individual information leakage, assuming the adversary only
has uncertain information about voter preferences, for example when using a machine learning algorithm. Our result
on the DDP of commonly-used voting rules carries the following encouraging message:

Main Message 1: Many commonly-used voting rules achieve good DDP in natural settings.

More precisely, we focus on a natural DDP setting where the adversary’s information is represented by a set of
i.i.d. distribution’s over preference profiles, denoted by A C IT(U), where II(Uf) is the set of all probability distribu-
tions over U with full support. A voting rule M’s DDP is now measured by three parameters (¢, §, A). A deterministic
function is DDP (Definition 2) if it satisfies an inequality similar to Inequality (1), but now the randomness is replen-
ished by the adversary’s uncertainty about the profile X, represented by A. Like DP, smaller € and § in DDP are more
desirable.

With DDP, we can quantitatively measure the privacy of the histogram rule Hist, which outputs the frequency of
each type of vote in the preference profile, in the following Theorem 1. As an immediate consequence, many common
voting rules also achieve good privacy.

Theorem 1 (DDP for Hist). GivenanyU = {x1,...,x;} and A C II(U) with |A| < 00, let pmin = mingea,i<i(m(z:)).
Foranyn € Nandanye > 2In (1 + pmfnn), Hist for nvotersis (€, 6, A)-DDP where § = exp(—$2(npmin[min(21n(2), €)]?)).

Theorem 1 states that Hist is private with good parameters, as even a small € results in 0 that is considered
negligible in cryptography literature. The winner of many commonly-used voting rules depends only on the outcome
of Hist, and thus contain (often strictly) less information than Hist. Thus, they achieve at least as good privacy
w.r.t. DDP as simply outputting the histogram.

Next, we highlight that DDP (as well as DP and its variants) parameters only describe loose bounds on privacy—by
definition, if a voting rule satisfies (e, , A)-DDP, it also satisfies (¢ + 0.1, + 0.1, A)-DDP. To compare the privacy-
preserving capability of voting rules, we introduce the notion of exact distributional differential privacy (eDDP),
whose parameters describe tight bounds on ¢ and §. We focus on the ¢ = 0 case as a first step to compare various
voting rules with their eDDP in the § parameter. Our results on the eDDP of commonly-used voting rules carry the
following message:

Main Message 2: For many combinations of commonly-used voting rules and A, the (0, J, A)-eDDP exhibits a
dichotomy between § = O(y/1/n) and 6 = exp(—12(n)).

More precisely, we prove the following dichotomy theorem for two candidates {a, b} and a-biased majority rules
with « € (0, 1), which chooses a as the winner iff at least an out of n votes prefer a.

Theorem 2 (Dichotomy in Exact DDP for a-Majority Rules over Two Candidates, Informal) Fix rwo candidates
{a,b} and A C II({a,b}) with |A| < co. For any o € (0, 1), the a-biased majority rule is (0,8, A)-eDDP for all n,
where § is either ©(+/1/n), when A contains a distribution m with w(a) = «, or exponentially small otherwise.

For more than two candidates, we prove the following dichotomy theorem for a large family of voting rules and
ACHU).



Theorem 3 (Dichotomy in Exact DDP of A Large Class of Voting Rules and A, Informal) For any fixed number of
candidates, and any voting rule in a large family, the (0,0, A)-eDDP is § = O(+/1/n), when A contains the uniform
distribution, or 6 = exp(—{2(n)), when A is finite and does not contain any unstable distributions.

Intuitively, a distribution 7 is unstable under a voting rule M if adding small perturbations can cause a different
candidate to win (Definition 7). Instead of conducting case-by-case studies of eDDP for commonly-used voting rules,
we prove Theorem 3 for a large family of voting rules called generalized scoring rules [Xia and Conitzer, 2008]
that further satisfy monotonicity, local stability, and canceling-out. We show that many commonly-used voting rules
satisfy these conditions (Section 5). We also compute and compare the concrete § values for small elections (Table 1,
Section 6 and Appendix E).

M Borda STV Maximin Plurality 2-approval
1 1 1 1 1
5(n)
V/1.347n + 0.5263 | v/1.495n + 0.02669 | /1.553n + 4.433 | /1.717n — 0.09225 | \/1.786n + 0.3536

Table 1. § values in (0, §, A)-eDDP for some commonly-used voting rules under the i.i.d. uniform distribution, m = 3 and n < 50.
From left to right, we rank rules from least to most private.

1.2 RELATED WORK

Differential privacy [Dwork, 2006] has been used to add privacy to rank aggregation: Shang et al. (2014) applied
Gaussian noise to the histogram of linear orders, while Hay ef al. (2017) used Laplace and Exponential mechanisms
applied to specific voting rules. Lee (2015) also developed a method of random selection of votes to achieve differential
privacy. One interesting aspect of adding noise to the output that was observed in [Birrell and Pass, 2011; Lee, 2015]
is that it enables an approximate strategy-proofness; the idea here is that the added noise dilutes the effect of any
individual deviation, thereby making strategies which would slightly perturb the outcome irrelevant. We remark that
if one wishes to achieve DP for a large number of voting rules, well-known DP mechanisms (like adding Laplace
noise [Dwork et al., 2006]) can be applied to rules in GSR in a straightforward way, by adding noise to each component
of the score vector and outputting the winner based on the noised score vector. Our work is different because we focus
on exact privacy of deterministic voting rules.

In our work, we compare deterministic functions by their exact privacy. In differential privacy literature where
functions must be randomized, their accuracy, or utility, is used to compare them. A number of works have defined
utility as a metric which describes the comparative desirability of e-DP mechanisms. In [McSherry and Talwar, 20071,
utility is an arbitrary user-defined function, used in the exponential mechanism. The works of [Blum et al., 2008;
Hardt and Talwar, 2010; Bassily and Smith, 2015] define utility in terms of error, where the closer (by some metric)
the output of the function, which uses this mechanism to apply noise, is from the desired (deterministic) query’s, the
higher the utility; the definition of [Ghosh et al., 2009] in addition allows the user to define as a parameter, the prior
distribution on the query output. In contrast, our results imply that in the context of distributional differential privacy,
voting rules achieve a well-accepted notion of privacy while preserving perfect accuracy, or utility.

1.3 DISCUSSIONS

While DP has been widely applied to measure privacy and has been applied to voting, as we discussed in the Introduc-
tion, it fails for deterministic functions such as voting rules in high-stakes elections. This critical limitation motivates
our study. To the best of our knowledge, we are the first to illustrate how to measure privacy in high-stakes voting
using (e)DDP in a natural setting. We will see that the problem, though challenging, can be solved by our novel trails
technique. Below we explicitly discuss our conceptual and technical contributions and closely related works. More
comprehensive discussions of related work can be found in Appendix A.



Conceptual contributions. Our first conceptual contribution is the application of DDP to deterministic voting rules.
As discussed earlier, while previous works add random noise to achieve DP, to the best of our knowledge, no previous
studies were done for deterministic voting rules. We note that the truncated histogram result of [Bassily et al., 2013]
does not suffice, since in general, votes are not removed in an election. Moreover, we prove our results in a simpler
definition than DDP; the equivalence of this definition and DDP is proven in Appendix B.1. Our second conceptual
contribution is the introduction of exact DDP, addressing the issue that parameters of DDP (and other relaxations of
DP [Bassily et al., 2013; Groce, 2014; Kasiviswanathan and Smith, 2008; Hall ef al., 2012; Duan, 2009; Bhaskar et al.,
2011]) describe only upper bounds on privacy. We are not aware of other works that explicitly propose to characterize
tight bounds on the privacy parameters ¢ and 4.

Technical contributions. Our first theorem (Theorem 1) is quite positive, showing the privacy of outputting his-
tograms. Theorem 2 and 3 characterize eDDP in terms of ¢ values by fixing ¢ = 0. We do so for the two reasons:
(1) it is the common convention to compute § based on a fixed ¢ for DP or DDP; (2) ¢ = 0 is the most infor-
mative choice, since Theorem 1 shows that even for small non-zero ¢, any difference we can observe in the § of
two voting rules is exponentially small—considered negligible in cryptography literature. While our theorems ap-
pear similar and related to the dichotomy theorems on the probability of ties in voting [Xia and Conitzer, 2008;
Xia, 2015], the definition and mathematical analysis are quite different, and previous techniques do not work for all
cases; see more discussions in the proof sketch for Theorem 3. To address the challenge, we developed the trails
technique, which significantly simplifies calculations.

Generality of our setting. As the first work towards answering our key question, we assume the adversary’s beliefs
are modeled by a set of i.i.d. distributions over the votes. A special case is the i.i.d. uniform distribution, which is
known as the impartial culture assumption in social choice [Georges-Théodule, 1952]. Extending to general (e, ¢),
and non-i.i.d. distributions is an important and challenging future direction. Lastly, though our definitions and results
are presented in the context of voting for the sake of presentation, they can easily be extended to general applications.

2 PRELIMINARIES

LetC = {c1,...,cm ) be a set of m > 2 candidates, and £(C) denote the set of all linear orders over C: that is, the
set of all antisymmetric, transitive, and total binary relations. Let I/ denote the set of all possible votes. Given n € N,
we let X = (X1,...,X,,) € U™ denote a collection of n votes called a preference profile. Let R denote the set of
outcomes of voting. A (deterministic) voting rule for n voters is a mapping M : U™ — R.

For example, in the plurality rule, Y = R = C; each voter votes for one favorite candidate, and the winner is the
candidate with the most votes. In the Borda rule, U = L(C) and R = C; each voter cast a linear order X over C,
denoted by ¢;, > ¢;, > -+ > ¢;,, , where a > b means that a is preferred over b; each candidate c gets m — ¢ points in
each vote, where ¢ is the rank of ¢ in the vote; the winner is the candidate with the highest total points. A tie-breaking
mechanism is used when there are ties in plurality and Borda.

Definition 1 (The histogram rule). Ler Y = {z1,--- ,2;}. For any n € N, the histogram function, denoted by
Hist : U™ — N, takes as input a preference profile X = (X1,...,X,) € U™ and outputs a I-dimensional integer
vector whose ith component is |{j: X; = z;,7 € {1,--- ,n}}|.

For example, when applied to the setting of the plurality rule, [ = m and Hist outputs the number of votes each
candidate receives. When applied to the setting of the Borda rule, [ = m! and Hist outputs the number of occurrences
of each linear order.

3 DISTRIBUTIONAL DIFFERENTIAL PRIVACY FOR VOTING

As we discussed, DP is not a suitable notion to analyze nontrivial deterministic voting rules as shown in the following
example, which motivates our use of distributional differential privacy (DDP) [Bassily et al., 2013].

Example 1 (DP fails for deterministic voting rules). Consider the plurality rule for two candidates {a,b} and three
voters (n = 3). We have Y = R = {a, b}. In Inequality (1), let X = (a,a,b), X' = (b,a,b), and S = {a}. Then, (1)
becomes 1 < e€ x 0 + §, which means that § > 1.



At a high level, the DDP of a (deterministic or randomized) function is characterized by three parameters (e, 5, A),
where € and J are privacy parameters similar to DP, and A is a set describing the adversary’s knowledge about the
preference profile. We consider adversaries that can be modeled as A C IT(U/), which encodes each of the adversary’s
possible uncertainties as a distribution where each vote is i.i.d..

Example 2 (Adversary’s information A). Suppose Y = R = C = {a, b}, and the n votes could be i.i.d. generated
from either 7.2 or mg 7. Here, for any v € [0, 1], 7y (a) = ~. Then, the adversary’s information is represented by
A = {mg.2,m0.7}. Say we prove that some voting rule is (¢ = 0.5, = 0.1, A)-DDP for the above A. Intuitively,
this means that the voting rule has privacy ¢ = 0.5, = 0.1, given the adversary’s knowledge can be modeled by
any distribution in A. We remark that this privacy holds without the need to add noise to the outcome of the election,
contrasting with DP.

To simplify presentation, below we will introduce the definition of DDP studied in this paper. In our setting of this
paper, our simpler definition is equivalent to the original DDP. More details can be found in Appendix B.1.

Definition 2 (DDP studied in this paper). For any A C II(U), € > 0, and 6 > 0, a voting rule M : U™ — R is
(e,0,A)-DDP if foreverym € A, i <n, xz,x' € U, and S C R, the following inequality holds.
PI"XNW(M(X) S S‘X»L = I)

2
<ePrx-(M(X) € S|X; =a') + 6, @

where X = (X1,...,X,,) is a preference profile where each vote is i.i.d. generated from .

For deterministic M, the randomness in Inequality (2) comes from the adversary’s incomplete information, captured
by A. We show that Hist satisfies good DDP.

Theorem 1 (DDP of Hist, proof in Appendix B.2). Given anyU = {x1,...,2;} and A C II(U) with |A| < oo, let
Pmin = Minzen j<;(7(z;)). For any n € N and any ¢ > 21In(1 + pln) Hist for n voters is (e, §, A)-DDP where
§ = exp(—2(npmin[min(21n(2), €)]?)).

As corollary, these privacy parameters of Hist automatically apply to all functions that only depend on the output
of Hist, i.e. most voting rules, or outputting the histogram in addition to the winner as in US presidential elections.
This follows immediately from a property of DDP called immunity to post processing (see Lemma 3 in Appendix B.2).
We note the result is similar to that of [Bassily et al., 2013], but they assume lower-frequency items in the histogram
are truncated (which is not the case in general when election results are posted) and describe a less precise §.

4 EXACT PRIVACY OF VOTING RULES: TWO-CANDIDATE CASE

In this section, we first present the definition of exact distributional differential privacy (exact DDP or eDDP), then
characterize (0, 4, A)-eDDP for two candidates under any «-biased majority rule. The proof of this theorem will serve
as a toy application of our trails technique, useful for proving our main result Theorem 3.

Intuitively, a function has exact privacy with parameters € and § if the function cannot satisfy the privacy definition
with strictly better parameters. We remark that this definition can easily be altered to define (e, §)-exact differential
privacy (eDP) by omitting A.

Definition 3 (Exact Distributional Differential Privacy (eDDP)). A voting rule M is (e, 0, A)-Exact Distributional
Differential Privacy (eDDP) if it is (€, 9, A)-DDP and there does not exist (¢ < €,§' < §) nor (¢ < €,§' < 0) such
that ML is (€/,6', A)-DDP.

The «-biased majority rule, denoted by M,,, over two candidates (a, b) outputs a as the winner if at least « fraction

of votes prefer a over b. An example of this type of voting rule is supermajority, used in government decisions around
the world.

Theorem 2 (Exact DDP for Majority Rules, full proof in Appendix C.2). Fix two candidates {a,b} and A C
II({a,b}) with |A| < co. Forany o € (0, 1), the a-biased majority rule is (0,9, A)-eDDP for all n, where

_ ey (1=n)]
(Sp—ﬂ&l;a:XﬁEA@( n |:(Oé) <1—a) :| )

In particular, § = © (\/1/n) if there exists m € Awith w(a) = «; otherwise § = exp(—{2(n)).



In the following subsections, we will present our #rails technique for analyzing DDP in voting, followed by a proof
sketch of Theorem 2 using the trails technique.

4.1 OUR TOOL TO ANALYZE PRIVACY: TRAILS TECHNIQUE

Let us describe the trails technique using a simple, toy example: suppose there are two candidates {a, b}, andn = 5
votes. Let M be the majority rule where ties are broken in favor of a, i.e. « = 0.5. We want to compute (0, §, A)-eDDP
of M for any A C II({a, b}). In light of Definitions 2 and 3, we have:

§= max [Prx~-(M(X) € S|X;==zx)
S,z,x’i,TEA (3)
—Prx-(M(X) € S|X; =a')].

Now, the majority rule is anonymous, that is, the identity of the voter is irrelevant and it chooses the winner only
based on the histogram of votes. We can thus write M. = f o Hist, where ¢t = (¢,,t;,) and f(¢) outputs a if t, > ¢
and outputs b otherwise. Then, Equation (3) can be rewritten with probabilities over histograms, which is easier to
compute (below, X ~ 7 is implicit).

0= max [Pr(f(Hist(X)) € S|X; =x)

S,z,x’i,TEA

— Pr(f(Hist(X)) € S|X; = /)]

=g max Z Pr(Hist(X) = ¢|X; = x) 4)
t: f(t)eES

— > Pr(Hist(X) =t|X; =)
t: f(t)eS

For example, if S = {a}, then T = {¢: f(¢t) € S} = {(5,0),(4,1),(3,2)} is an example of what we call a
trail. Intuitively, a trail T is a set of histograms consecutive in the sense that, starting from some ¢, we can list exactly
the elements of T by iteratively subtracting 1 from and adding 1 to two components of ¢, respectively. We see that T
can be listed in such a way, starting from entry Enter(T) = (5,0) and ending at exit Exit(T) = (3, 2), by interatively
subtracting from the first component and adding to the second component of (5, 0) (we say the direction of T is (1, 2)).

See Figure 1.
We now give intuition for our key Lemma 1 presented below using this example. Suppose in Equation (4) the
maximizing S is {a} (so that {¢: f(¢t) € S} = T), © = a, and 2’ = b. Then, for any 4, and any 7 € A:

6= > Pr(Hist(X) = t|X; = a)
t€{(5,0),(4,1),(3,2)}
- > Pr(Hist(X) = t|X; = b).
t€{(5,0),(4,1),(3,2)}

The core of Lemma 1 is the observation that when votes are independent (e.g. when A C IT({a,b})), then for all
t = (tq, tp) such that ¢, > 0, the following holds

Pr(Hist(X) = (ta,t)|X: = a)
= Pr(Hist(X) = (ta — 1,1 + 1)|X; = b).
In light of this, Pr(Hist(X ) = (5,0)|X; = a) cancels out with Pr(Hist(X) = (4,1)|X; = b), and Pr(Hist(X) =
(4,1)|X; = a) cancels out with Pr(Hist(X) = (3,2)|X; = b). This leaves
§ =Pr(Hist(X) = (3,2) = Exit(T)|X; = a)
— Pr(Hist(X) = (5,0) = Enter(T)| X; = b).
We note that here Pr(Hist(X) = Enter(T)|X; = b) = 0, but this does not hold generally for all trails for m >
2. This calculation can be extended to the more general Lemma 1 below. Before that, let us formally define trails.

For any histogram ¢ = (ty,---,#;) € N, any z € Z and j < [, we let (t1,--- ,t;) + zx; denote the histogram
(tr, -yt 42, 1).



b wins

a wins
(2,3)

(3,2)€End(a)

Trail T with
Enter(T)=(5,0)
and Exit(T) = (3, 2) (5,0)

Fig. 1. A trail for two candidates. A graph of number of votes for candidate a (= t,) versus votes for candidate b (= ¢;). Each
point in the line is a histogram where the total number of votes is n = 5. The set {(5,0), (4, 1), (3,2)} forms a trail. We denote
by End(a) (used in the proof of Theorem 3) the set of histograms which are exits of trails where a is the winner. In this example
End(a) = {(3,2)}.

Definition 4 (Trails). Given a pair of indices (j, k) where j # k, a histogram t, and a length q, we define the trail

Tt an.q = 1t — 225 + zwy) : 0 < 2 < g}, where (j, k) is called the direction of the trail, t is then the entry of this

trail, also denoted by Enter(T; 5, 2, q), and t — qxj + qxy, is called the exit of the trail, denoted by Exit(T; o, o, q)-
Alternatively, a trail T can be defined by just its entry and exit.

Lemma 1. Let T be a trail with direction (j, k), and let m € II(U). For any i, xj, x, € U, we have:
XPNrﬂ(Hist(X) €T|X; =uxj)
— XPNrﬂ(Hist(X) €T| X =)
= XPNrﬂ(Hist(X) = Exit(T) | X = z;)
— XPNrﬂ(Hist(X) = Enter(T) | X; = xx).
Proof. Fix distribution 7 over n votes, where each vote is independently distributed. For X ~ 7, denote X_; as the

random variable X but without the ith vote. The equality in the lemma comes from the simple observation that when
votes are independently distributed, for any histogram ¢ € N! and any j € [[]

XPr (Hist(X) =t|X; = z;) = XPr (Hist(X_;) =t —z;)

(Below, X ~ m is implicit). Let ¢ be the length of the trail. For any 0 < z < ¢, let t, = Enter(T) — zx; + zzy. Then,

Pr(Hist(X) = t.|X; = ;)
=Pr(Hist(X_;) =t. — z;)
= Pr(Hist(X) =t. — x; + x| X; = z1)
= PI‘(HiSt(X) = tz+1‘Xi = .Tk)
In other words,
Pr(Hist(X) € T|X; = z;)
— Pr(Hist(X) € T|X; = ax)
=Pr(Hist(X) = t4|X; = z;)
— Pr(Hist(X) = to]| X = xx)



+ 3 (Pr(Hist(X) = t.|X; = x;)

0<z<gq
~ Pr(Hist(X) = to1|X; = :rk))
=Pr(Hist(X) = t4|X; = ;)
— Pr(Hist(X) = to]| X: = xx)
(Every term in the summation of differences cancels out.)
=Pr(Hist(X) = Exit(T)|X; = z;)
— Pr(Hist(X) = Enter(T)|X; = xx)

Remark. In this subsection’s example, no matter the S, the set {¢: f(¢) € S} forms one single trail, but this does not
hold in general. Instead, to prove our main theorem we will partition this set into multiple trails, and apply Lemma 1
to simplify probabilities over each trail.

4.2 A SIMPLE APPLICATION OF TRAILS TECHNIQUE: PROOF OF THEOREM 2

Proof. [Proof sketch for Theorem 2, see Appendix C.2 for the full proof].

Forany 7w € A,letp = w(a). Lettrails T, = {t : t = (k,n — k), k > an}and T, = {t : t = (k,n — k), k < an}.
It follows that any histogram in T, results in a being the winner, and any in T, results in b as the winner. Also, Equa-
tion (4) implies we should not consider S = {a, b} nor & = () as otherwise § = 0 (the default lower bound on §).
Thus, we only consider S = {a} (when winner is a, corresponding to trail T,) or & = {b} (trail T}). Then Equation
(4) becomes (we disregard the value of ¢ since votes are i.i.d.):

0= max [Prx~.(Hist(X) € T;|X; =z)
j€{a,b},xz,x’

—Prx~~(Hist(X) € T;|X; = )] (Equation (4))

= max [Pr(Hist(X) = Exit(T;)|X; = z)
j€{a,b},x,x’

— Pr(Hist(X) = Enter(T,)|X; = 2")] . (Lemma 1)

We first discuss S = {a} whose corresponding trail T, starts at Enter(T,) = (n,0) and exits at Exit(T,) =
(fan], [(1 — @)n]). Here, x = a and 2’ = b maximize . Then,

Pr(Hist(X) = Enter(T,)|X; = b)
= Pr(Hist(X) = (n,0)|X; =b) =0,

and
Pr(Hist(X) = Exit(T,)|X; = a)

(e =)TT).

The case for S = {b} is the same and Theorem 2 follows by maximizing ¢ over m € A.

S EXACT PRIVACY OF VOTING RULES: GENERAL CASE

The main result of this section, Theorem 3, characterizes (0, J, A)-exact DDP of generalized scoring rules (GSR) for
arbitrary number of candidates, defined below. The main message is that the characterization holds for commonly-
used voting rules (Corollary 1). Therefore, to get the main message, a reader can skip the technical descriptions and
definitions below to Corollary 1.

Definition 5 (Generalized Scoring Rules (GSR) [Xia and Conitzer, 2008]). A Generalized Scoring Rule (GSR)
is defined by a number K € N and two functions £ : L(C) — RX and g, which maps weak orders over the set
{1,..., K} to C. Given a vote V. € L(C), (V) is the generalized score vector of V. Given a profile P, we call
f(P) = >y cpf(V) the score. Then, the winner is given by g(Ord(f(P))), where Ord outputs the weak order of
the K components in £(P).



We say that a rule is a GSR if it can be described by some f, g as above. Most popular voting rules (i.e., Borda, Plurality,
k-approval and ranked pairs) are GSRs. See Example 3 and Example 4 for f, g for plurality rule and majority rule.
The domain of GSRs can be naturally extended to weighted profiles, where each type of vote is weighted by a real
number, due to the linearity of f.

Example 3. The simplest example of a GSR is plurality. This is the voting rule where each voter chooses exactly
one candidate, and the candidate with the most votes is the winner. Here, K is equal to the number of candidates m.
Suppose V is a vote (linear order over candidates) where the top candidate is x;. The function f would map V' to a
vector f(V') = (0,---,0,1,0,---,0) where the 1 is at position 4 in the vector. Then, f(P) is exactly the histogram
counting the number of times each candidate is ranked at the top of a vote. Finally, the function g chooses the winner.

We now define a set of properties of GSRs to present our characterization of eDDP in Theorem 3.

Definition 6 (Canceling-out, Monotonicity, and Local stability). A voting rule M satisfies canceling-out if for any
profile X, adding a copy of every ranking does not change the winner. That is, M(X) = M(X U L(C)).

A voting rule satisfies monotonicity one cannot prevent a candidate from winning by raising its ranking in a vote
while maintaining the order of other candidates.

A voting rule M satisfies local stability if there exist locally stable profile. A profile X* is locally stable (to M),
if there exists a candidate a, a ranking W, and another ranking V' that is obtained from W by raising the position of
a without changing the order of other candidates, such that for any X' in the v neighborhood of X* in terms of Lo,
norm, we have (1) M(X') # a, and (2) the winner is a when all W votes in X' becomes V votes.

Definition 7 (Unstable distributions). Given a GSR M, a distribution 7 over U is unstable, if for any € > 0, there
exists p and q with |p||2 = ||q||2 < € such that M(7 + q) # M(7 + q)*, where || - ||2 is the lo-norm.

Theorem 3 (Dichotomy of Exact DDP for GSR, full proof in Appendix D.1). Fix m > 2 and A C II(L(C)) with
|A| < co. For any n, any GSR M that satisfies monotonicity, local stability, and canceling-out is (0,0, A)-DDP, where
0 is

- O(\/1/n), if A contains the uniform distribution over L(C), or
— exp(—12(n)), if A does not contain any unstable distribution.

Proof (Proof sketch for Theorem 3). (See Appendix D.1 for the full proof)

We first prove the § = exp[—{2(n)] case. Recalling the proof of Theorem 2, we know that § is closely related
to the probability of End(a) for some a € C. It turns out that this is also the case for any GSR M that also satisfies
monotonicity. Applying our trails technique, we have

0 < max Z Pr(P —-V),

P€End(a)

where V' is a vote s.t. there exists vote W with M(P — V 4+ W) # a. Thus, we know ¢ is upper bounded by the

probability of all profiles (P — V') “close” to a tie of voting rule 7. For any unstable distribution 7, we can prove
that the center of 7 is reasonably “far” away from any profile in End(a) (or “far” away from any ties). Then, the
exponential upper bound follows after Chernoff bound and union bound. The proof for this part is similar to the
analysis of probabilities of tied profiles as in [Xia and Conitzer, 2008].

We now move on to the § = ©(1/1/n) case. The upper bound O(4/1/n) also derived from the trails technique’s
result: § < maxq ) peg(e) P12 — V). General framework of our proof is similar with the § = exp[—{2(n)] case.
Since adding any vote to a uniform profile results in a new winner, we know the uniform distribution of preferences
is always an unstable distribution when requirements in Theorem 3 are met. Thus, we can prove that the center of the
profiles’ distribution (multinomial distribution in m!-dimensional space) is “close” to a tie. Then, we apply Stirling’s
formula to each trails and give an upper bounds to Pr(P — V) for profiles P € End(a).

For the lower bound {2(/1/n), canceling-out and locally stability are used to construct a “good” subset of profiles.
At a high level, canceling-out ensures that the constructed subset is large enough, and locally stability ensures the
trails constructed from the selected subset is long enough. Our subset is contracted by certain profiles with O(y/n)
distance’ from the center of profile distribution in the direction of local stable profile. Giving a lower bound to the

* We slightly abuse notation—M (7) denotes the output of M when the voters cast fractional votes according to 7.
> we use /5 distance in the m/!-dimensional space of profile.



Pr(P — V) for any profile P in our selected subset is the most non-trivial part of this proof and is quite different from
the proof in [Xia and Conitzer, 2008]. Unlike the profiles P in our selected subset of profiles, P —V do not necessarily
concentrated in a specific region in the space of profiles. Here, we use a non-i.i.d. version of Lindeberg-Levy central
limit theorem [Greene, 2003] to analyze the multinomial distribution of m! kinds of votes.

Next, we use a simple example of majority rule to show the results in Theorem 3 matches the 2-candidate results
in Section 4. In the following example, we also provide the intuitions on how to describe voting rules in the language
of GSR.

Example 4 (Example of Definition 5 and Theorem 3). LetUd = R =C = {c1,c2}, V = [c1 = o), and W = [c2 > ¢1].
For the majority rule with o = 0.5, we have f(V') = (1,0) and £f(1W) = (0, 1). Then, the winner is chosen according
to g corresponding to the largest component in f(P). Recalling our definition of unstable distribution, we know (%, %)
is the only unstable distribution for 2-candidate majority rule. This is the intuitive reason behind 6 = ©(1/1/n) when
7 = (3, ) for both Theorem 3 and Theorem 2 (when o = 0.5). For any other 7 # (3, 3), these two theorems result
in & = exp[—42(n)]. We note that while Theorem 3 covers more voting rules, Theorem 2 is a more fine-grained result
for two candidates.

Corollary 1. Plurality, veto, k-approval, Borda, Maximin, Copeland, Bucklin, Ranked Pairs, Schulze (see e.g. [Xia
and Conitzer, 2008]) are (0,0 (1/y/n) , A)-eDDP when A contains the uniform distribution.

Proof. As shown in Definition 6, canceling-out and monotonicity are very natural properties of most voting rules.
These two properties can be easily checked according to the definitions of voting rules discussed in Corollary 1. In the
next proposition, we prove a more generalized version of Corollary 1 for local stability, which indicate a large subset
of the voting rules can satisfies all properties required by Theorem 3.

Proposition 1. All positional scoring rules and all Condorcet consistent and monotonic rules satisfy the property of
local stability.

Proof. Let s; to denote the score of the i-th candidate (f(P) in definition 5). Suppose $1 = --- = 5; > s;11. We let
V =[a>c1 > c—_1> b others]and W = [¢; > ¢;—1 > b > a > others]. Let M be the permutation ¢; — ¢o —
...Cm—2 — c1.Let Vi = [a > b > others] and V2 = [b > a > others]. Let P/ = U:’;Q M4(Vy) U M#(Vz). Let
P* =2P' U {V,W}. It follows that a and b are the only two candidates tied in the first place in P*. Therefore, there
exists € to satisfy the condition in local stability.

The same profile can be used to prove the local stability of all Condorcet consistent and monotonic rules.

Then, Corollary 1 follows by combining the results for all three properties.

Another commonly-used GSR called STV does not satisfy monotonicity, which means that Theorem 3 does not apply.
However, empirical results (Section E) suggest that STV is likely also (0, © (1/+/n) , A)-eDDP for this distribution.

6 CONCRETE ESTIMATION OF THE PRIVACY PARAMETERS

We present an example of computing concrete estimates of (0, d, A)-exact DDP values for several GSRs. For this
example, we let A = {7} such that m € IT ({1, 2, x3}) and w(x;) = 7(z;) = 1/3 (i.e., votes are i.i.d. and uniform).

We generated these concrete estimates via exhaustive search over possible profiles for 3 candidates and n < 50 votes,
and computing the ¢ values exactly for each n. Since we know that § = ©(1/4/n), we fit these values to §(n) = \/aiﬁ

via linear regression. We rank voting rules from most to least private. The larger the a, the smaller the § value and thus
more private:

2-approval > Plurality > Maximin > STV > Borda

We showed in Table 1 (Section 1, also see Table 2 in Appendix E for more information) the fitted § curves. Figure 2
shows the comparison between Plurality, Borda, and STV voting rules w.r.t. their § values in (0, d, A)-eDDP, when

fitted to 6(n) = \/aiﬁ
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Fig. 2. The ¢ values in (0, 8, A)-eDDP for Borda, STV, and plurality in our concrete estimates.

7 SUMMARY AND FUTURE WORK

We address the limitation of DP in deterministic voting rules by introducing and characterizing (exact) DDP for voting
rules, leading to an encouraging message about the good privacy of commonly-studied voting rules and a framework
to compare them w.r.t. eDDP. There are many directions for future work. An immediate open question for theoretical
study is to extend our studies to general (¢, ), and non-i.i.d. distributions, as well as to other high-stakes social
choice procedures such as matching and resource allocation. On the practical side, it could be informative to study the
eDDP of other data that is often published during an election, such as demographic information, and interpret their
consequences.
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A Additional Related Literature

The first works on DP described how one can create mechanisms for answering standard statistical queries on a
database (e.g., number of records with some property or histograms) in a way that satisfies the DP definition. This
ignited a vast and rapidly evolving line of research on extending the set of mechanisms and achieving different DP
guarantees—we refer the reader to [Dwork and Roth, 2014] for an (already outdated) survey—to a rich literature of
relaxations to the definition, e.g., [Bhaskar ef al., 2011; Leung and Lui, 2012a; Duan, 2009; Bassily ef al., 2013],
that capture among others, noiseless versions of privacy, as well as works studying the trade-offs between privacy and
utility of various mechanisms [McSherry and Talwar, 2007; Blum et al., 2008; Hardt and Talwar, 2010; Bassily and
Smith, 2015; Ghosh et al., 2009].

Generalized Scoring Rules (GSRs) is a class of voting rules that include many commonly studied voting rules, such
as Plurality, Borda, Copeland, Maximin, and STV [Xia and Conitzer, 2008]. It has been shown that for any GSR the
probability for a group of manipulators to be able to change the winner has a phase transition [Xia and Conitzer, 2009;
Mossel et al., 2013]. An axiomatic characterization of GSRs is given in [Xia and Conitzer, 2009]. The most robust
GSR with respect to a large class of statistical models has been characterized [Caragiannis er al., 2014]. Recently
GSRs have been extended to an arbitrary decision space, for example to choose a set of winners or rankings over
candidates [Xia, 2015].

Relaxations to Differential Privacy and Noiseless Functions Relaxations to differential privacy have been proposed
to allow functions with less to no noise to achieve a DP-style notion of privacy. Kasiviswanathan and Smith [Ka-
siviswanathan and Smith, 2008] formally proved that differential privacy holds in presence of arbitrary adversarial
information, and formulated a Bayesian definition of differential privacy which makes adversarial information ex-
plicit. Hall et al. [Hall et al., 2012] suggested adding noise to only certain values (such as low-count components in
histograms) to achieve a relaxed notion of Random Differential Privacy with higher accuracy. Taking advantage of (as-
sumed) inherent randomness in the database, several works have also put forward DP-style definitions which allow for
noiseless functions. Duan [Duan, 2009] showed that sum queries of databases with i.i.d. rows can be outputted with-
out noise. Bhaskar et al. [Bhaskar et al., 2011] introduced Noiseless Privacy for database distributions with i.i.d. rows,
whose parameters depend on how far the query is from a function which only depends on a subset of the database.
Motivated by Bayesian mechanism design, Leung and Lui [Leung and Lui, 2012b], suggested noiseless sum queries
and introduced Bayesian differential privacy for database distributions with independent rows, where the auxiliary
information is some number of revealed rows.

These ideas were generalized and extended by Bassily et al. who introduced distributional differential privacy
(DDP) [Bassily et al., 2013; Groce, 2014]. Informally, given a distribution (X, Z), where X is the adversary’s un-
certainty in the database distribution and Z is a parameter used for proving composition theorems (i.e. computing
DDP when outputting results from two functions that are both DDP with some parameters), we say a function M is
(e,0,A ={(X, Z)})-DDP if its output distribution M (X )|Z can be simulated by a simulator that is given the database
missing one row. In these works, noiseless functions which have been shown to satisfy DDP are exact sums, truncated
histograms, and stable functions where with large probability, the output is the same given neighboring databases.

B Distributional Differential Privacy for Voting

B.1 Equivalence of our DDP definition and that of Bassily et. al 2013

For completeness we present the DDP definition of [Bassily ef al., 2013]. However, this definition is harder to work
with, and harder to explain conceptually. Thus, we choose to present Definition 2. Below, we will show that in our
setting, these two definitions are equivalent.

Definition 8 (Distributional Differential Privacy (DDP) [Bassily et al., 2013]). A function M : U* — R is
(¢, 0, A)-distributional differentially private (DDP) if there is a simulator Sim such that for all D = (7,7) € A,
X ~ 7, foralli, (x,z) € Supp(X;, Z) (where X; denotes the random variable that is the ith component of X, X _;
denotes the r.v. that is X without the ith component, and Supp(.) denotes the support of a distribution), and all sets
SCR,

XPr M(X)eS|X;=x,Z=2) <e XPr (Sim(X_,)) eS| X;=z,Z=2)+6¢
and

XPr (Sim(X_;) e S|X; =2,Z=2) < eexPr M(X) eS| X;=a,Z=2)+9



Lemma 2 (Equivalence of definitions). For any U, let A C II(U) and A’ = (A, Z = () (where Z is a parameter
in the [Bassily et al., 2013] definition). Suppose M is (e, 0, A')-(simulation-based) DDP [Bassily et al., 2013], then
M is (2¢, (1 4 €°)d, A)-DDP for our Definition 2. Conversely, if M is (e, §, A)-DDP for Definition 2 then M satisfies
(e, 0, A")-(simulation-based) DDP.

Proof (Lemma 2).
We prove the first statement, that is, if M is (e, d, A’)-(simulation-based) DDP [Bassily et al., 20131, then M is
(2¢, (1 + e°)d, A)-DDP of Definition 2.

By the definition of M being (e, §, A’)-(simulation-based) DDP, the simulator Sim has to satisfy the below in-
equalities for any (7, Z) € A’, any i, and « € Supp(X;) (for X ~ m). With Z = (), we can write the inequalities in
the DDP definition without Z as

)?r M(X)eS|X;=x) geEXPr (Sim(X_;) eS| X;=z)+4¢

gr (Sim(X_;) e S|X; =z) <e° XPr M(X)eS|X;=x)+¢ Q)

(We make X ~ 7 implicit to ease presentation.) Now consider any ' € Supp(X;), possibly different from the x
above. By the definition of DDP, the inequalities should also hold for 2/, i.e.

Pr(M(X) eS| X; =2') <e Pr(Sim(X_;) | X; =2')+§

Since the simulator is not given ith entry of the database, its output does not depend on the value of the ith row. More-
over, if database rows are independent, the distributions X _;|X; = ' = X_;|X; = x. Thus Pr(Sim(X_,) | X; =
') =Pr(Sim(X_;) € S| X; = z). So,
Pr((M(X) eS| X; =12") <
Pr((M(X)e S| X;=2") <
Pr(M(X)eS|X;=12") <

e Pr(Sim(X_;) eS| X, =2)+9¢
ef(e*Pr(M(X) € §|X; = x) + J) +  (By Equation 5 above.)
XPr(M(X) €S| X, =) +e6+9
Thus, we have shown that for all 2, 2’ € Supp(X;) (and all ),

PriM(X) €S| X; =) <e®*Pr(M(X) € S| X; = z) + (ef + 1)§
So, M is (2¢, (1 + €“)d, A)-DDP, proving the first statement.

We now prove the second statement. That is, if M is (¢, 4, A)-DDP of Definition 2 then M is (¢, §, A’)-(simulation-
based) DDP. To do so, we define the simulator Sim to be the algorithm which inserts any z' € Supp(X;) to the
missing ith row of the database, and apply M to the result. By independence of rows, Pr(Sim(X_;) | X; = z) =
Pr(Sim(X_;) | X; = 2’) by our definition of Sim, equal to Pr(M(X) | X; = 2’). Then, for any X € A, 4, and
x,2" € Supp(X;),

Pr(Sim(X_;,) eS| X;=2)=Pr(M(X) eS| X; =2') <e"Pr(M(X) € S| X, =x) + 6

by inequality of Definition 2. This proves the second statement.

B.2 Proof of Theorem 1: DDP of Histogram

Theorem 1 (DDP of Hist) GivenanyU = {x1,...,x;} and A C II(U) with |A| < 00, let pmin = mingea ;<;(m(x;)).
Foranyn € Nandany e > 2 1n(1+ﬁ), Hist for nvoters is (¢, 0, A)-DDP where § = exp(—2(npmin[min(21n(2), €)]?)).
Proof. At a high level, the proof is similar to Theorem 8 of [Leung and Lui, 2012b].

Fix m € A. Since votes are i.i.d. and all ¢ € [n] are equivalent, we simplify Prx.,.(Hist(X) € S|X; = z) as
Pr(Hist(z, X_1) € S), where X _; refers to X without the first vote.



We need to show that for all x;, z; € {1, ,z;},and all S C N

Pr(Hist(z;,X_1) € S) < e Pr(Hist(z;,X_1) € S)+4¢

We observe that for any set 5 and x:

Pr(Hist(z, X_1) € S) = Pr(Hist

< Pr(Hist

(z, X_
(x, X_

1) € SN B) + Pr(Hist(z, X _
1) € SN B) + Pr(Hist(z, X _

1) €SNB)
1)63)

(6)
(7

Let B be the set of all histogram ¢ € N where t; > p;(n — 1)e“/? and ¢; < p;(n — 1)e~*/2. Fix a choice of
€>2In(l+ 5 L), We claim that for § = exp({2(npmin (min(21n(2), €))?), the following hold:

Claim 1: Pr(Hist(z;, X_1) € SN B) < e Pr(Hist(z;, X_1) € SN B)

Claim 2: Pr(Hist(x;, X_1) € B) <§

If both claims are true, then by Inequality (7),

Pr(Hist(z;, X_1) € S) < Pr(Hist(z;, X_1) € SN B) + Pr(Hist(x;, X_1) € B)
< efPr(Hist(z;,X_1) € SNB) +4
< e“Pr(Hist(z;,X_1) € S)+¢

which proves the theorem. Below we will prove both claims.

Claim 1 proof:
Since all entries in random variable X _; are i.i.d., the random variable
Hist(X_;) which outputs the histogram of the database has distribution equal to the multinomial distribution on n — 1
trials and [ events:
(n—1)! 4 oph

1):(t17"'7tl)):mp1 !

where t; is the count of entries with the value ; and p; is the probability for an entry to have the value x;.

Pr(Hist(X_

Thus,
. _ _ (n—1)! t ti—1 ¢
PI’(HlSt(.’E“X )_(tlv 7tl))_ tl' (tz—l)' tl'pl Y 2 pll
and ( )y
i = = n_ . tl ... t"_l... t
Pr(Hist(z;, X_1) = (t1,--- ,t))) = SO tl!pl Py P
So, forevery t = (t1,--- ,t;) € SN B:
(n—1)! t1 ti—1 1,
Pr(Hist(z;, X_1) =t)  t;!--(t; — 1)! tl!pl p; Dy
Pr(Hist(z;, X —1)=1t) (n—1)! R
1 .-.pi ...pl
(b — 1)ty
_lipj
pi tj
_ ti pj(nf 1)
pi(n— 1) tj

By definition of B, t; > p;(n — 1)e“/? or t; < p;(n — 1)e~/2,
sot € Bhast; <t;(n—1)e’/?andt; > pj(n —1)e /2
pi(n—1)e’?  pj(n—1)

_ 6/2>< €/2 _ e
Pl =1 pyn—ne 0 7070




This proves Claim 1.

Claim 2 proof: Recall B is the set of all histogram ¢ € N! where t; > p;(n — 1)e¥/? and t; < p;(n — 1)e~/2. For
any ¢ € {1,---,1} let Hist(a, X_1); denote ith component of the random variable Hist(x, X _1).
Pr(Hist(z;, X_1) € B)
=Pr (Hist(sci,X_l)i > pi(n — 1)e¥/? or Hist (x5, X _1); < pj(n — 1)676/2)
<Pr (Hist(xi,X_l)i > pi(n — 1)66/2> +Pr (Hist(a:i, X_1); <pjn— 1)8_6/2) (By union bound)
=Pr (1 + Bin(n — 1,p;) > pi(n — 1)e€/2> + Pr (Bin(n —1,p;) <pjn— 1)6_6/2)
(Where Bin(n, p) denotes binomial r.v. with n trials and success probability p)
=Pr(Bin(n — 1,p;) > pi(n — 1)(e? — (pi(n — 1)) 1))
+ Pr(Bin(n — 1,p;) < pj(n — 1)e~2)
The random variable Bin(n — 1, p;) has mean ¢ = p;(n — 1). When

1 1

2In(1 + <2In(l+ —— ) <e<2In(2) < 2In(2 4+ ——
( ) ( pmin(n*]-)) (2) ( =)

pi(n—1)

we have 0 < 3 = e“/2 — (p;(n — 1))~ — 1 < 1. By Chernoff bound,

Pr(Bin(n — 1,p;) > (1 + 8)u < o—1B/3
— exp(—2(piln — V(e — (pi(n — 1) — 1)%))
= eXp(*Q(PiTLéQ))

The random variable Bin(n — 1, p;) has mean p = p;(n — 1). By Chernoff bound, forany 0 < f = 1—e~/2 < 1
(ie. € > 0),

Pr(Bin(n —1,p;) < (1 —B)u) < o B /2

So that:
Pr(Hist(z;, X_1) € B) < Pr(Bin(n — 1,p;) > pi(n — 1)(e/? — (pi(n — 1))71))
+ Pr(Bin(n — 1,p;) < pj(n — 1)675/2)
< exp(—2(pine®)) + exp(—2(p;ne?))
< exp(—2(pminne®)) = 6

for 21In(1 + M) < € < 21In(2). To get rid of the upper bound on ¢, notice when ¢ = 2In(2), § =

exp(—2(pminn(21n(2))?)) suffices to satisfy the inequality
Pr(Hist(z;, X_1) € S) < e Pr(Hist(z;, X_1) € S)+ 4

Thus, when € > 21n(2), the same § = exp = (2(nPmin[min(21n(2),€)]?)) = exp(—2(pminn(21n(2))?)) also
suffices, as a larger € only makes the right hand side of the inequality larger.

This proves Claim 2.



The definition of distributional differential privacy, like differential privacy, is immune to post-processing. This
means that if M is (e, §, A)-DDP, and f is a function on the output of M, then f o M (their composition) is also
(e,0, A)-DDP. Note that post-processing immunity is not a property of exact privacy, since exact privacy describes
tight bounds on €, d.

Lemma 3 (Immunity to Post-processing). Suppose M : U* — R is (¢,, A)-DDP. Let f : R — R’ be a determin-
istic function. Then f o M : U* — R/ is also (¢, 5, A)-DDP.

Proof. Forany m € A, z,2’ € Supp(X;)and S C R, let W = {w : f(w) € S}. Then

Pr (F(M(X)) € 5| X, = a)

=Pr(M(X)eW | X, =x) (By definition of W)
<ePr(M(X)eW|X;=2')+46 (By M being (¢, §, A)-DDP)
=ePrfM(X)) eS| Xi=2)+9 (By definition of W)

By post-processing immunity, the parameters proven in Theorem 1 also apply to functions whose outputs are based
on the histogram of the database, such as most voting rules.

C Exact Privacy of Voting Rules: Two Candidate-Case (Cont’d)

C.1 Proof of Lemma 1: Trails Technique

Lemma 1 (Trails) Let T be a trail with direction (j, k), and let w be a distribution where votes are independently
distributed. For any i, xj, x; € Supp(X;),

XPr (Hist(X) e T | X; =x;) — XPr (Hist(X) e T| X; = xy)

= )?r (Hist(X) = Exit(T) | X; = z;) — XPr (Hist(X) = Enter(T) | X; = xp)

Proof (Proof for Lemma 1). Fix distribution 7 over n votes, where each vote is independently distributed. For X ~
denote X _; as the random variable X but without the ith vote. The equality in the lemma comes from the simple
observation that when votes are independently distributed, for any histogram ¢ € N and any j € [I]

XPNrW(Hist(X) =tX; =z;) = XPNI“W(HiSt(X—z') =t—uz,)
(Below, X ~  is implicit). Let ¢ be the length of the trail. For any 0 < z < g, let t, = Enter(T) — zz; + zx. Then,

Pr(Hist(X) = t.|X; = z;)
= PI‘(HiSt(X_Z) = tz — IL']‘)
= Pr(Hist(X) =t, — z; + 24| X; = xx) = Pr(Hist(X) = t.41|X; = )

In other words,

Pr(Hist(X) € T|X; = z;) — Pr(Hist(X) € T|X; = zx)
= Pr(Hist(X) = t,|X; = ;) — Pr(Hist(X) =¢)
+ > Pr(Hist(X) = t.|X; = ;) — Pr(Hist(X) = t.41|X; = 21
0<z<gq
= Pr(Hist(X) = t,|X; = z;) — Pr(Hist(X) = to|X; = )
(Every term in the summation of differences cancels out.)
= Pr(Hist(X) = Exit(T)|X; = z;) — Pr(Hist(X) = Enter(T)|X; = )



C.2 Full proof for Theorem 2: Biased Majority

Theorem 2 (Exact DDP for Majority Rules) Fix two candidates {a,b} and A C II({a,b}) with |A| < oc. For any
€ (0,1), the a-biased majority rule is (0,0, A)-eDDP for all n, where

_ Loy (1=p\'"""
5p—7r£{ll)a:xﬂ'€A6< nl(a) (l—a) ])

In particular, § = © (\/1/n) if 3m € As.t. m(a) = a; otherwise § = exp(—£2(n)).

Proof. (Full proof for Theorem 2).

Foranym € A,letp = w(a). Lettrails T, = {t : t = (k,n — k), k > an}and Ty = {t : t = (k,n — k), k < an}.
It follows that any histogram in T, results in a being the winner, and any in T, results in b as the winner. Also, Equa-
tion (4) implies we should not consider S = {a, b} nor S = () as otherwise § = 0 (the lower bound on §). Thus, we
only consider S = {a} (when the winner is a, corresponding to trail T,) or S = {b} (trail T;). Then Equation (4)
becomes (we disregard the value of ¢ since votes are i.i.d.):

6= max [Prx~.(Hist(X) € T;|X; =z) — Prx~-(Hist(X) € T;|X; = 2')] (Equation (4))

j€{a,b},z,z’

=  max [Pr(Hist(X) = Exit(T;)|X; = «) — Pr(Hist(X) = Enter(T;)|X; = z')] (Lemma 1)

j€{a,b},x,x’
We first discuss the case that S = {a} where its corresponding trail T, starts at Enter(T,) = (n,0) and exits at
Exit(T,) = ([an], (1 — a)n]). Here, = a and &’ = b maximize ¢. Thus,
Pr(Hist(X) = Enter(T,)|X; = b) = Pr(Hist(X) = (n,0)|X; =b) =0
and
Pr(Hist(X) = Exit(T,)|X; = a)
= Pr(Hist(X) = ([an], |(1 — a)n])|X; = a)
— Pr(Hist(X) = ([an] — 1, |(1 - a)n])
(n—1)!
[an — 1! [(1 — a)n]!

[an—1] _ [(A—e)n]
=0 [\}ﬁ . <f045711]> . (L((ll—z)):sz) ] (Stirling’s formula)

(e =)

-«
The case for S = {b} is similar. We note that (g)a (L;p) < 1, and equality holds if and only if p = a.

_ plenl=1(] _ p)la-oin]

(0%
Finally, we take the maximum of all 4’s over m € A.

D Exact Privacy of Voting Rules: General Case (Cont’d)

In all proofs of this section, we will use r instead of M to denote GSR voting rules.

D.1 Full proof for Theorem 3

Theorem 3 (Dichotomy of Exact DDP for GSR) Fix m > 2 and A C II(L(C)) with |A| < oc. For any n, any GSR
M that satisfies monotonicity, local stability, and canceling-out is (0,9, A)-DDP, where ¢ is ©(+/1/n) if A contains
the uniform distribution over L(C), or exp(—{2(n)) if A does not contain any unstable distribution.

Proof ( Theorem 3, (Exact) DDP for GSR.).
To present the result, we first introduce an equivalent definition of GSR that is similar to the ones used in [Xia and
Conitzer, 2009; Mossel et al., 2013].



Definition 9 (The (H, gp) definition of GSR). A GSR over m candidates is defined by a set of hyperplanes H =
{hi,...,hr} C R™ and a function gz : {+,0,—}H| — C. For any anonymous profile p € R™, we let H(p) =
(Sign(hy - p),...,Sign(hg - p)), where Sign(z) is the sign (+,— or 0) of a number x. We let the winner be
gu (H(p)).

That is, to determine the winner, we first use each hyperplane in H to classify the profile p, to decide whether p is on
the positive side (4), negative side (—), or is contained in the hyperplane (0). Then g is used to choose the winner
from H (p). We refer to this definition the (H, g ) definition. Also see Example 4 for how (H, gp ) works. In the next
claim, we show the equivalence of two definitions of GSR.

Claim 1 The (H, g ) definition of GSR is equivalent to the (f, g) definition of GSR in Definition 5.

Proof (Proof for Claim 1). We first show that any (H, gy ) GSR can be represented by a (f, g) GSR in the following
way: for each ranking V', we let f(V) = (hy - ey,ha - ey,...,hg - ey,0). Then, the g function mimics gz by only
focusing on orderings between the kth component of f(P) and the last component, which is always 0, for all £ < R.
More precisely, ordering between the kth component of f(P) and 0 uniquely determines Sign(hy - p).

We now prove that any (f, g) GSR can be represented by an (H, g) GSR. For any pair of distinct component
k1, ky < K, we introduce a hyperplane hy, r, = ([f(V)]r, — [f(V)]k,)ver(c)- Therefore, for any profile p, hy, ., -
p = [f(®)]k, — [f(D)]k,- The sign of hy, 1, - p corresponds to the order between [f(p)]x, and [f(p)]k,. Then, gy
mimics g.

We are now ready to present our theorem on GSRs. We will characterize eDDP under uniform distribution and give
an exponential upper bound on DDP under some other distributions. For any pair of 7 and h, we let Dist(7r, h) = ﬁ
to denote the distance between hyperplane h - p = 0 and vector 7.

We first show that w.l.0.g. we can assume that all hyperplanes in H passes 1.

Lemma 4. A GSR satisfies canceling-out, if and only if there exists another equivalent GSR r = (H, g ), where all
hyperplanes passes 1.

Proof. The “if” direction is straightforward. To prove the “only if” part, it suffices to prove that gz does not depend
on outcomes of hyperplanes in H that does not pass 1. W.l.o.g. let h; € H denote the hyperplane that does not pass
1, thatis, b - 1 # 0. We will prove that for any w_; € {—1,0,1}X~1 and any uy,u} € {—1,0,1}, such that there
exist profiles P, Q with H(P) = (uj,u_1) and H(Q) = (u},u_1), we have g (u1,u_1) = g (uf,u_1).

For the sake of contradiction, suppose this does not hold and let P, @ be the profiles such that H(P) and H(Q)
differ on the first coordinate, and r(P) # r(Q). Then, for sufficiently large n we have that H(P + nL(C)) =
H(Q + nL(C)). This is because for any h € H that passes 1, we have h - (P +nL(C)) =h-P =h-(Q +nL(C)).
For any h € H that does not pass 1, we have h - (P +nL(C)) = h - P + nh - 1, and when n is sufficiently large,
the sign of h - (P 4+ nL(C)) is the same as the sign of nh - 1, which is the sign of h - (Q + nL(C)). This means that
Sign(h - P) = Sign(h - (P +nL(C))) = Sign(h - (Q +nL(C))) = Sign(h - Q), which is a contradiction.

Let r be a GSR, P* be the locally stable profile and a be the candidate, V, W be the rankings as in the statement
of Definition 6. W.l.o.g. suppose V is the first type ranking and W is the second type ranking. In other words, V'
(respectively, W) is the first (respectively, second) coordinate in the m-profiles space. We will show that the exact
DDP bound is achieved when S is the set of all profiles where the winner is a.

We recall that for any profile P, a pair of different votes V, IW. and a length ¢ € N, Tpy 1,4 is the trail starting at
P, going along the V' — W direction, and contains ¢ profiles. We let T p v w,oc = max, T p,v,w,q denote the longest
V' — W trail starting at P. For a GSR r, we define End(a) = {Exit(Tpyv,w.c0) : VV.W € U, r(P) = a}. In other
words, there are no W votes in End(a).

Because r satisfies monotonicity, for any profile P such that r(P) = a, we must have that a is the winner under
all profiles in the V-W trail starting at P. Therefore, S can be partitioned into multiple non-overlapping trails, each
of which starts at a different profile, where a is the winner, and a is no longer the winner if we go one step into the
W -V direction. Formally, we let End(a) (shown in Figure 3) denote all n-profiles P such that (1) #(P) = a and (2)
r(P+ W —V) # a. Then, we define a partition S, as follows.

Sa={P:r(P)=a}= |J Trvmws

P€End(a)



(V. W, X, 3)trail T, 5, with (O Histograms where

# Enter(T,) = (7,0,0), Exit(T,) = (5,2,0) a is winner
‘ Histograms where

b is winner

(V. W, X, 3)trail T , , with

7.0)

Enter(T,) = (4,0,3), Exi(T,) = (2,2,3)

(V. W, X, 3)trail T, ;, with
Enter(T,) = (2.5,0), Exit(T,) = (0,7.0)

(0,4,3) \/ W

Fig. 3. Example of End(a) and End(b), for 3-candidate case. The 3 kinds of votes other than V, W and X are not shown to simplify
notations. Number of unshown votes are considered as constant.

It follows from Lemma 1 that

Pr(P € S, X, =V)-Pr(PeS,|X;, =W)= > Pr(P -V).
P€End(a):P(V)>0

We will define a subset of n-profile, R,, and prove the lower bound on it. For a locally stable profile P* (with
constant ~y in the statement of Definition 6), let po = P* — 1 - %. That is, po be obtained from P* by subtracting a
constant in each component, such that py - 1 = 0. For any n, we define R,, to be the set of n-profiles that are in the
~+/n neighborhood of % -1+ po - v/n w.r.t. Ly norm for last m! — 2 dimensions. That is,

Ro = {P: PV =0and ¥j = 3,| P[j] — (2 + poli] - vin) | <7}

Throughout the proof in Theorem 3, we will use 7 to denote the database distribution D, and 7[j] denote the
probability of j-th kind of ranking. Here P[V] is the number of V' votes in P and P[j] is the number of j-th type of
vote in P. For any P € R,,, we let Piv(P) = End(a) N T p,y,w,cc denote the intersection of End(a) and the V-W trail
starting at P. That is, Piv(P) = P + I[(V — W) for some | € Z, r(Piv(P)) = a, and r(Piv(P) — V + W) # a.

We next prove that the number of V' votes in Piv(P) and the number of W votes in Piv(P) are close—the difference

is O(v/n).
Claim 2 For any P € R,,, we have |Piv(P)[V] — Piv(P)[W]| = O(y/n).

Proof. Let QT = Piv(P) and Q~ = Piv(P) — V 4+ W. We note that Piv(P) is at the boundary of S, which means that
r(QT) # r(Q™). Therefore, because r is a GSR, the line segment between @ and )~ must contain the intersection
of Tpv,w,o and a hyperplane h ¢ H. Therefore, it suffices to show that the difference in number of V' votes and
number of W votes at the intersection of T p v, 1,00 and any hyperplane h is O(y/n).

We recall that by Lemma 4, all hyperplanes for r pass 1. For any h € H, we recall that we assumed that V'
and W corresponds to the first and second coordinate, respectively. Because h - (P + (V' — W)) = 0, we have
(hg =h1)l=h-P=h-(P—1-2)=0(y/n). This means that |I| = [Piv(P)[V] — Piv(P)[W]| = O(v/n).

Claim 3 Forany P € R, there is a V-W trail passing P.

Proof. According to the canceling out property of r, we can construct profile P’ = P — w, which is
equivalent to P. For any profile P € R,,, we have ‘P[j] — (& +pols] - \/ﬁ)| < ~+/n, which is equivalent with

|P'[§] — P*[j] - v/n| < v4/n, which means % is in the v neighborhood of profile P* in terms of the 3-rd to m!-th
dimensions. According to the (H, g) definition of GSR, we know r(P*) = r(P’) and the claim follows by local
stability of P*.



We will show that the probability of a subset of End(a)—the pivotal profiles on trails starting at profiles in R,,—is
6(1/+/n) for the condition that r is uniform over /. Let R;; € R™~2 and for any p_ € R, we define Piv(p_) =
Piv(P), where P € R, and P[3,...,ml] =p_.

> Pr(P-V)> > Pr(Piv(P)-V)

PEEnd(a) PER,

_ 3 (Pr(P[S, oml]=p_)-

p_€Rp,|Pl=n—1

Pr(P[1] = Piv(p-)[1] — 1, Pr(P[2] = Piv(p-)[2]|P[3, ..., m!] = p,))

where A(p_) = Pr(P[3,...,m!] =p_)and
B(p-) = Pr(P[1] = Piv(p_)[1] — 1,Pr(P[2] = Piv(p-)[2]|P[3,...,m!] = p_)

It follows that B(p_) is equivalent to probability of flipping a coin (TW]WV] probability for head) for Piv(p_)[1] +
Piv(p_)[2] — 1 times, with Piv(p_)[1] — 1 heads and Piv(p_)[2] tails. The next lemma gives a lower bound to

>p_er: | Pl=n—1 A(P-)B(p-) when  is a uniform distribution.

Lemmas. > - p_, A(p-)B(p-) =1 (ﬁ) if m is uniform over U.
Proof. We first bound the total number of V' and W votes in P € R, in the next claim.
Claim 4 Piv(p_)[1] + Piv(p_)[2] — 1 =O(n) forallp_ € R,,.

Proof.
Piv(p-)[1] + Piv(p- ———Zﬂp ——\< 7f+|po[]|\/ﬁ)§(7+1)m!\/ﬁ

According to Claim 2 & 4, we know that B(p_) is equivalent to probability of flipping a fair coin for Lt ocivn
times and get -7y + co+/n, where ¢; and c; are bounded constants. In the next claim, we give a tight bound to B(p-)
for uniform dlstrlbuted entries.

Claim5 B(p_) =6 (\/g) foranyp_ € R,

Proof. Letting n' = % + c1v/n, ¢ = ca — 4 and assuming n’ is a even number, for the lower bound, we have,

<1)m|+61f (ml _—:;2\\;) /(;)n' (n//2 Z/C/\/ﬁ)
) ()

/ , ;= Ve
>21"’<n?’l/2) | (W)

1
=N — (applying Stirling’s Formula)
vn

o |

(®)

Upper bound can be obtained using similar technique as lower bound.

The next claim gives a lower bound on ) p_cR A(p-). The proof uses the main technique of Lindeberg-Levy
Central Limit Theorem [Greene, 2003].



Claim6 > .- A(p-)=2(1).

Proof (Proof of Claim 6). We first define a set of m!—2 dimensions random variables that Y; = (Y;[1], -, Y;[m! — 2]),
where Y;[j] = 1 if ranking j happens to i-th row and Y;[j] = 0 otherwise. According to the definition of profile, we
have P[j+2] = 3°7_, Yi[j]and E(P[j]) = ;% for uniform case. We further define a mn!—2 dimensional random vector
w such that u[j] = (P[j + 2] — 7) /y/n, which is the scaled average of Y1, - - -, Y,. According to Lindeberg-Levy
Central Limit Theorem [Greene, 2003], we know that the distribution of u converges in probability to multivariate
normal distribution A/ (0, X), where

T mhZ T mh)?2 T (m))?

Since each diagonal element in X is strictly larger than the sum of the absolute value of all other elements in the same
row, we know that X' is non-singular according to Levy-Desplanques Theorem [Horn and Johnson, 1990]. According
to Varah ef al. [Varah, 1975], we obtain a bound on ¥ ~!’s L., norm as,

1 (m!)?
= 2
min (|53 = 52,1531

For any m!—2 dimensional random vector u constructed from a profile P using the procedure that u[j] = (P[j + 2] — ) //n,
we have,

127 o <

PeR, ifandonlyif weU={u:|ulj]—polj]l <, Ve [m! —2]}.
Thus, for all w € U we know about its Probability Density Function (PDF) that,

1 1
PDF(u) = —————— exp (—uTE—lu)
(277)777,.— |2| 2
= <uTE u|)
QWW2WI
1 T -1 ) .
—_— X —||u” X = |lu Holder’s Inequalit
1, 1 )
ex —u oo - || 2 - - |lu
g o (gl 1 -l
1 (m!)2 ~llull%
(2m)m!=2| 3| 4
=0().

Thus, letting Vol(+) be the volume function,
> A(p-) > Vol(U) - min PDF(u) > A2 0 (1) = 2(1).
P-€Rn
Lemma 5 follows be combining Claim 6 and Claim 5.
Recalling Lemma 1, for the case that 7 is uniform over all ranking, we have,
0 zﬁg’)éPr(M(X) €SIX; =x)-Pr(M(X) € S|X; =1')

<Pr(M(X) € 8,|X1 = W) — Pr(M(X) € S,|X; = V)

= > Pr(PV)—Q(\/ﬁ>.

P€End(a)



Then, we derive an upper bound of § using the similar technique of lower bound (7 can be non-uniform for this
bound). We first define R/, a subset of n-profile space, where event P € R/, will be proved to happen with high
probability.

R, = {P: PV]=0and¥j > 3,|P[j] - (n- lj])| <n*/'}.

Then, we recall Lemma 1, for the case that 7 such that min; 7[i] > 0, we have,

o = max Pr(PeS|X1=V)-Pr(PeS|X,=W)

i (PeS&|X,=V)-Pr(PeS|X = i Z
i=1 i=1 PcEnd

where S; = {X :r(X) =z} = UPGEnd(zi) Tpv,w,co. The next claim gives am upper bound on the number of
pivotal profiles sharing one End.

Claim 7 For any profile P in R.,, there are at most | H| pivotal profiles following V. — W direction.

Proof. We know from the (H, g ) definition of GSR that r’s output only changes while passing at least one hyper-
plane. Considering a trail T p, enter at (Py[1]+Fy[2],0, Po[3],- - - , Po[m!]) and exit at (0, Py[1]+FPo[2], Po[3],- - - , Po[m!])
(P is an arbitrary n-profile). Thus, there are at most | H | pivotal profiles sharing the same end point because T p, passes
hyperplanes at most | H | times.

Using the partition of R/, and arbitrarily selected candidate a, we have,

> Pr(P-V)<|H| ( > Pr(Piv(P)-V)+ > Pr(Piv(P) - V))

PEEnd(z;) PER!, PEEnd(z;)\ R,

<|H| > A(p-)B(p-) + > A(p-)B(p-)
p_€Ry ,|P|l=n—1 p_¢gRy ,|P|l=n—1
<|H|| max B(p Z A(p-)+ max B(p Z A(p-)
p_€ER) P_¢Ry —
P_ER, P_&Ry

—0 (%) 0(1)+0(1)- 0 (%) (by applying Claim 9)

1
(%)
The next claim gives an upper bound to » - A(p-).
Claim8 > .. A(p-)=0 (ﬁ)

Proof. Let Yj(i) = "the i-th agent gives vote of type j”. One can see that P[j] = > " | Yj(i), E(P[j]) = nn[j] and
Var(P[j]) = nx[j](1 — w[j]). Thus,

> A(p_)=Pr [nj { |P[j] = n-x[j]| < n3/4}
p_¢Ry J=3
<> pe[{ [Pu - et <2}
j=3
< i n’/T[]]Sé/—z k) (by Chebyshev’s Inequality)



Then, all we need is an upper bound on B(p_ ), and we first prove that the length of V' — W sequence is ©(n) for
all P e R..

Claim 9 Piv(p_)[1] + Piv(p_)[2] — 1 = O(n) forall P € R.,.

Proof.
Piv(p_)[1] + Piv(p_)[2] — n(x[W] + x[V]) = 3 P[] = n -]l < 3 0% < ml - /4
=3 =3

Then, using the same technique of Claim 5, we know that,

B(p_)=6 <\/T> forall p_ € R~
n

Thus, combining all results above, we have,

§<> Y Prp-v)=>_ > Pr(P—V)zO(\/lﬁ>

i=1 P€End(z;) 1=1 P€End(x;)

Next, we will give a exponential (tighter) upper bound on § when 7 does not belong to any hyperplanes.We first
give a generalized definition of pivotal profile.

Definition 10 (Generalized Pivotal Profile). Profile P is a (generalized) pivotal profile if there exist pair of votes V.
and W such that r(P) #r(P -V + W).

Then, we define a distance function Dist™ (P, h) to be a generalized distance between profile P and hyperplane h. We
define

Dist*(P,h) = inf ||P — P'||.,
P'eh

where o = {P € h : 3 unit vector e s.t. 7(P' — €) # r(P’ + e)}. In the next lemma we will show generalized pivotal
profiles only lays close to hyperplanes. We fist gives definition of distance function Dist(-, -):

1. for hyperplane h and a point (n-profile) P, Dist(h, P) = ||’;i|1|32’ which is the Euclidean distance between P and
hyperplane h - p = 0.

2. for 2 points (n-profile) P; and P, Dist(h, P), returns the Euclidean distance between P; and Ps.

Claim 10 For any GSR r = (H, gy ) and one of its generalized pivotal profile P, there must exist one hyperplane
h € H such that Dist(h, P) < \/2.

Proof. Recalling the definition of generalized pivotal profiles, we know the GSR winner will change at the 1 neighbor-
hood of P. Thus, there must exist a hyperplane h € H and pair of votes V, W such that Sign [h - P] # Sign[h - (P +V — W)]
and Dist(h, P) < Dist(P,P +V — W) = /2.

Lemma 6. Let D be the distribution on profiles (databases of votes), where each entry is iid according to distribution
over linear orders on m candidates. GSRr(H, hy) is (0,0, A = {(D, 0)})-DDP when only the winner is announced,

where
. [minge g Dist™(, h)]2 n
X — .
P 3(m!)? (max;emy 7[i])

0=0

=0 {6_9(")} .

Proof. We first define the set of all generalized pivotal profiles Pp;,. For any P € Ppy, we know that there ex-
ist hyperplane h € H such that Dist*(h, P) < /2. According to triangular inequality, we have Dist*(nm, P) >
Dist*(n7, h) — Dist(h, P) > nDist*(, h) — v/2. The second > sign comes from the fact that all hyperplanes passes



0. Thus, there must exist one dimension j that | P[j] — nx[j]| > W Then, we bound § as,

) :6{11/%’)‘(9 [PI‘(P S Si‘Xl = V) —PI‘(P S Si‘Xl = W)]

IN

Z {max Pr(P € Ppy| X1 = V)}
PePry v

< maxPr <|Pm ) > MO ) ﬁ\xl - v)
Vih,j m!

< maxPr (|Pm g > PR ) = V2 1)
2]

m!

=0

( [minye 7 Dist* (7, b))
exp | —

. by applying Chernoff bound.
3(m!)? (mae puy 1) ”)] Y AP

Theorem 3 follows by combining all three bounds derived above.

D.2 Proof for Corollary 1

Proposition 2. All positional scoring rules and all Condorcet consistent and monotonic rules satisfy all properties
required by Theorem 3.

Proof (Proof of Proposition 2 ). Suppose s1 = -+- = §; > s;41. WeletV =[a > ¢; > ¢;—1 = b > others] and W =
[~ c1 > ¢—1 > b > a = others]. Let M be the permutation ¢; — ¢o — ...¢pm—2 — ¢1. Let Vi = [a > b > others]
and Vo = [b > a > others]. Let P = |J/",* M*(V1) U M*(Va). Let P* = 2P’ U {V, W}. It follows that a and b are
the only two candidates tied in the first place in P*. Therefore, there exists € to satisfy the condition.

The same profile can be used to prove the local stability of all Condorcet consistent and monotonic rules.

Corollary 1 follows by the definition of voting rules and the definition of positional scoring rules.

D.3 Exact DDP for Histogram
As a complementary result to the DDP result for histograms, we present the histogram’s eDDP with € = 0.

Theorem 4 (Exact DDP of Histogram). Fix! > 2, U = {x1,--- ,2;}, and A C IT(U). Let pin = mingeca(m(x;)+
m(z;)). Foralln € N, Hist of n voters is (0,5(n) = © ( %) , A)-eDDP.

MNPmi
Proof (Sketch). First we present the case for [ = 2.

Lemma 7 (Exact DDP for Histogram, when [ = 2). Fix U = {x1, 22} and A C II(U). The histogram for n voters
is (0,0(1/+/n), A)-eDDP.

Proof (Lemma 7). Consider some m € A, and let p = m(a). Without loss of generality let + = z7 and 2’ = x9
(otherwise, rename them). Then, the maximizing set S in Equation (3) is exactly the set of histograms such that

)?r (Hist(X) € S|X; = x1) > Pr(Hist(X) € S| X; = z2)
S

Since votes are i.i.d., these follow the binomial distribution (with n trials). Below we find that S is the set of histograms
(k,n — k) where k > pn.
Pr(Hist(X) = (k,n — k)| X; = z1) > Pr(Hist(X) = (k,n — k)| X; = 2)
& (n—1)! (n—1)!
(n—k)(k—1)! (n—k—1)k!
= k>pn

= "1 -p)" > pF(1 —p)n k!



Thus, S = {t = (k,n — k): k > pn}. This set forms a trail T which starts from Enter(()T) = (n, 0) and exits at
Exit(T) = (pn + 1,n — (pn + 1)). Thus,

0 = Pr(Hist(X) € S§|X; = z1) — Pr(Hist(X) € S|X; = 22) (Equation (3))
= Pr(Hist(X) = Exit(T)|X; = x1) — Pr(Hist(X) = Enter(T)|X; = x2) (Lemma 1)
= Pr(Hist(X) = (pn+ 1,n — (pn + 1))|X; = 1) — Pr(Hist(X) = (n,0)|X; = x2)

(n—1)!

=p" (L —p)" !

(pn)!(n —pn —1)!
(When one row is fixed to x2, the probability of histogram being (n, 0) is zero.)

= O(1//n) (By applying Stirling’s formula)

We can generalize the result to [ > 2, by using the trail technique. Again we assume WLOG that x = z; and
' = xg. Lett = (t1,--- ,t;) be the histogram, where ¢; counts the number of occurrences of x;. We observe that,
when votes are i.i.d, t3, - - - , ¢; are independent of ¢, t, when conditioned on the sum s = ¢; + to. This means that we
can compute J for general [, as a sum

§= Y 6,Pr(Bin(n,m(x1) + m(x2)) = 5)

0<s<n

Where 4 is the d-value for [ = 2, when there are s votes. Using Chernoff bound we see that Bin(n, 7(z1) + m(x2))

is concentrated at its mean n (7 (x1) + 7(x2)). Plugging in the result for | = 2, we get§ = 0 [ ——L— |.
n(m(z1)+7(z2))

Full proof Below we present the full proof of Theorem 4, using Lemma 7 which showed the case for | = 2.

Proof (Proof of Theorem 4, Exact DDP of Histogram).

Consider any m € A, and let p; = m(x;). Like in the [ = 2 case, without loss of generality, we can let z = x; and
2’ = x9 (otherwise, rename them). Then, the maximizing set S (similar to when [ = 2) is exactly the set of histograms
such that

Pr (Hist(X) € S|X; = 1) > Pr (Hist(X) € S|X; = 22)

(We will implicitly assume X ~ 7 from now on) Since we have i.i.d. votes, the histogram follows the multinomial
distribution (with n trials). For any 0 < s < n, (t3,--- ,%;) wherets +---+t;, =n—s,and k < s:

PI‘(HiSt(X) = (]{J,S - k,tg, ce ,tl)‘XZ‘ = 561) > PI‘(HiSt(X) = (k?,S - k,tg, ce ,tl)|Xi = .132)

k—1, n—k, t3 t (n—1)! k_n—k—1_t3 t (n—1)!
. > R
L T TR ST PO R e B N (S A T AT B
P2 D1
> i
s—k k
k> ( P1 >s
D1+ D2
Thus, the set S = {t = (k,s —k,t3, - ,t;): k> (pllj}m) s}.
Letp = Bt Foreach0 < s < nand (t3, -~ ,#;) whichsumton—s (i.e. tz+---+t; =n—s),let T, (1 .. 1)
be the trail starting from Enter(T, (4, ... +,)) = (5,0,13,--- , ;) and exiting at Exit(T, (1, ... 1,)) = (ps +1,5 — (ps +
1),t3,--- ,t;). The set S then can be partitioned into such trails. Thus,

- Z Pr(Hist(X) € T (ty,... )| Xi = 21) — Pr(Hist(X) € Ty (4y,... )| Xi = 22)
Tsta 1)

= ) Pr(Hist(X) = Bxit(T, ... 1)) | Xi = 21)
TSr(”S«"'vtl)



— Pr(Hist(X) = Enter(T, (¢,,... 1,))|X: = 22) (By Lemma 1)
= Z Z Pr(Hist(X) = (ps + 1,5 — (ps + 1),t3,- - ,1))|X; = 1)

0<s<n  (tg,-,t;)
tg+-+ti=n—s

— Pr(Hist(X) = (s,0,t3,--- , )| X; = z2)
Now let us consider these two probabilities. Consider the distribution X _;, which is X but without the ¢th row.

Let the random variables of the individual components of Hist(X _;) be (a1, - ,a;). Since votes are i.i.d., for any
(tla o 7tl)’

Pr(Hist(X) = (t1, -+ , )| X = x1)

= Pr(Hist(X_;) = (t; — 1,42, 13, , 1))

=Pr((a1, - ,a;) = (t1 — L, ta,t3,- -+ ,1;)) (Recall these a’s are components of Hist(X_;))
=Pr((a1, - ,a;) = (t1 — L, ta,ts, -+ ,t))|a1 + a2 = s) X Pr(a; + ag = 9)

= Pr((ar,a2) = (t1 — 1,t2) |a1 + a2 = )

x Pr((ag, - ,a;) = (3, ,t) |a1 + az = s) X Pr(a; + az = s)
(By Lemma 8, (a1, as) and (as, - - - , a;) are independent conditioned on a; + az = s)

Similar to the [ = 2 case, Pr(Hist(X) = (s,0,t3,- -+ ,#)|X; = x2) = 0. This is because when one vote is fixed
to xo, it is impossible to have zero in the second component in the histogram (which is the number of occurences of
o). Thus,

]

Z Z Pr((ai,a2) = (ps,s — (ps+ 1))|a1 + az = s)

0<s<n  (tz,-,t)
t3t--+ti=n—s

x Pr((ag, -+ ,a;) = (t3,- -+ ,t1)|ar + aa = 8) x Pr(a; + a2 = 3)
Z Pr((a1,az2) = (ps,s — (ps + 1))|a; + a2 = s) x Pr(a; + az = 3)

0<s<n

x oy Pr((ag,eee @) = (b, t)|ar +az = s)

(t3, t1)
ts+--+t;=n—s

(Factor out the common terms Pr((a1, az) = (ps, s — (ps + 1))|a1 + a2 = s) and Pr(a; + ag = s))

Z Pr((a1,a2) = (ps,s — (ps+1))|a1 + az = s) x Pr(a; + as = s)

0<s<n

(For any s, the second sum equals one.)

Where Pr((a1,az2) = (ps, s— (ps+1))|ai +az = s) is the § value for histogram when [ = 2, the vote distribution

is 7" € II({z1,22}), where n'(x1) = -BL—, and number of voters is s (we refer to Lemma 7 of the [ = 2 case for

this claim). We denote this § by J5. Moreover,

Pr(a; + az = s) = Pr(Bin(n,p1 + p2) = s)

We denote p’ = p; + pa. Then, Bin(n, p’) is the binomial distribution with n trials and probability p’ = p; + p2
(recall that p; = w(z;)). Then

§= Z 35 Pr (Bin (n,p’) = s)

0<s<n

= Z Pr (Bin(n,p’) = s) x §; + Z Pr (Bin (n,p’) = s) x d

sz(l—ﬁ)np/ s<<1—\/§)np
s§<1+ %)np s>(1+ %)np'



Lower bound of J:

0> Z Pr (Bin (n,p/) = s) X ds

= 6(1+ %>np, X |:1 —Pr <Bin(n,p/) > (1 + \/inp/>> —Pr (Bin(n,p/) < (1 — \/inp/>>:|

By Chernoff bound for binomial distribution, for any 0 < S < 1, we have:

B2u

Pr(Bin (n,p) > (14 8) ) < e~ 5"

B2u

Pr(Bin(n,p') < (1—=B)pu) <e 2

Where p = np’ is the mean of Bin (n,np’). Now let 8 = %, which is between 0 and 1. Then,

1> [1 —Pr (Bin (n,p') > (1 + \/i) np') —Pr (Bin (n,p') < (1 — \/i) np’)]

_ap _3
>1—e 43 —¢ 1

(NS

np/ _ 3np/

=1—e 2 —e "2

(For large enough n, np/ > 1,50 e~ % < e Y2and e~ p < e 3/2)

1
S 1 e 1/2_ 325 1
> e e > 1

Which means [1 —Pr (Bin(n,p’) > (1 + \/g) np’) —Pr (Bin(n,p’) < (1 - \/g) np’) =60(1).

By Stirling formula, we have

1
=6

6(1+ ) (1-i-\/§)’
1) P
-6 (/7)

(Recall we assumed the maximizing x, 2’ are 1, x2, up to renaming the x;’s, and that p’ = p; + p2)

1 .
=6 < Do > (In general, Pmin = mmi#je[l] (pi +pj))

Which gives us the lower bound § > © (, / ﬁ)
Upper bound of §:

6= Z Pr (Bin (mp/) = s) X 0s



+ Z Pr (Bin (mp') = s) X O
(1w

s>(1+\/§)np/
Since 6 < 1forallsand Y Pr(Bin(n,p/) =s) <1
52(1—\/§)np/
a§(1+ %)np/
< max (0s) + Z Pr (Bin (n,p’) = s)
(D e T
5>(1+\/§)np/
_ . 3 / . / /
= 5(17\/3)7”7, + Pr (Bm (n p) < <1 — \/;> np) + Pr (Bm (n,p) > <1 + \/;> np>
< 5(17 S T e o (By Chernoff bound for binomial)
<9 PN (Si "> 0,both e~ "%, 2 < /1)
SOy o ince np’ > 0, both e ,e <\
.. 1
By Stirling’s formula, & ( \/—) , =0

1— —% np T =
(1= /=3

- (V)

As is with the lower bound, in general (without assuming (z,2") = (21, z2)), we have p’ = pmin = mingzjep (ps +

p;)- Since both lower and upper bounds of ¢ are © ( ! ), =06 (1 / npfnm )

MPmin

Lemma 8 (Conditional independence). Let U = {x1, - ,x;} and m € A(U). Let #x; denote the r.v. of the number
of occurrences of the vote x; in 7. Then, for all 0 < s < n, the random variables (#x1,#x2) and (#x3,- - ,#x])
are independent conditioned on #x1 + #x5 = s. In other words, for any (t1,- - - ,t;) such that ZZ t; = n, we have

Pr((#z1, -, #x) = (t1, -, 0) | #x1 + #x2 = 5)
=Pr((#z1, #x2) = (t1,t2) | #21 + #32 = 8) X Pr((#as, -+, #x1) = (t3,- -+, 1) | #21 + #22 = 3)
Proof (Proof for Lemma 8). We equivalently show that
Pr((#w?n e a#xl) = (t?ﬂ e 7tl> ‘ #ml + #.172 = S)
= Pr((#x37 e 7#xl) = (t37 T 7tl) | #1’1 + #xQ =sA (#xlv #-TZ) = (t17t2))

Now, conditioned on there being exactly s people who voted x; or xo, let D; > Dy > --- > D, denote the random
variables of the indices of the votes in the profile which voted for z; or x5, in ascending order. By total probability,
the left hand side of Equation 9 is:

Pr((#xs,- -+, #x1) = (t3,- -, 1) | #21 + #22 = 5)

= Z Pr((#x?)v"'7#3:1):(1:37"'7tl)|#xl+#$2:SA(D17"'7DS):(d17"'7d~9))

dy>do>-->dg

€))

X Pr((Dlv"' aDS) = (dsv“' 7ds) | #x1+#$2 :8)

We already assume there are exactly s votes for x; or z3, so

Pr((#iﬂsa"' ,#l’l) = (t37"’ ,tl) \ H#Hx1 + Hro = S)
= Y Pr((#as,#wm) = (ts, o t) [ (Dr,or Dy) = (da, - dy))

dy>da>-->ds
X Pr((Dl,' c ,Ds) = (dla. o 3d5))



The right hand side of Equation 9 is:

131“((3@95637 <. ,#:rl) = (t37- .- ,tl) | #:El + #ZEQ =S A (#231,#.%2) = (thtg))
= Pr((#xs, -, #x) = (t3, -+ t) | #21 + #x2 = s A (F31, #22) = (t1,12))
= Pr((#x3, -, #x1) = (tz, -+, ) | (FEx1, #22) = (t1,12)) (Since we assume t1 + to = s)

= Z Pr((#x&"'v#xl):(t?w"' 7tl)|(#xl»#l?):(tht?)/\(Dl,"' 7DS):(d17"'7dS))

dy>do>-->dg

X Pr((D1,-+- ,Ds) = (d1,- -+ ,ds) | (#x1, #x2) = (t1,t2)) (By total probability,)

Since each vote is independent, (#x3, - - - , #x;) is independent of (#x1, #x2). Moreover, the vote indices (D1, - - - , Dy)
are independent of (#x1, #x2). As votes are i.i.d., (#x1, #x2) does not depend on the value of (dy, - - , ds). Thus,

Pr((#xs, -+, #x1) = (t3,- - 1) | #x1 + #x2 = s A (F#21, #22) = (L1, 12))
= Z Pr((#x?n"'a#xl):(t?ﬂ"'7tl)|(D1a"'7Ds):(dla"'7ds))

d1>do>>dg

x Pr((Dy, -+ ,Ds) = (d1,- -+ ,ds))

This concludes that the left hand side and right hand side probabilities of Equation 9 are equal. The random variables
(#£x1, #x2) are independent conditioned on (#x1, #x2).

E Concrete Estimate of the Privacy Parameters

-exact DDP values for several GSRs.

In this section we present an example of computing concrete estimates of (0, J, A)
z;) = w(x;) = 1/3 (i.e., votes are i.i.d. and

For this example, we let A = {7} such that 7 € IT({z1, 22, 23}) and 7 (
uniform).

We generated these concrete estimates by doing an exhaustive search of all possible profiles for 3 candidates and
n < 50 votes, and computing the ¢ values exactly for each n. Since we know that 6 = ©(1/+/n), we fit these values
to d(n) = il via linear regression. We rank voting rules from most to least private, by the value a for outputting

the winner. The larger the a, the smaller the § value and more private. The resulting ranking from most to least private
is:

ﬂ
+
=

2-approval > Plurality > Maximin > STV > Borda
We show in Table 2 the fitted § curves with the mean square error in the fit.

Rule Winner Mean Square Error (n € [50])

Borda |d(n) = S S 0.0566844201243
v/1.347n + 0.5263

STV |6(n) = ! 0.0542992943035
v1.495n + 0.02669

Maximin | §(n) = -t 0.0377631805983

V1.553n +4.433

Plurality |6(n) = ! 0.0477175838906
v/ 1.717n — 0.09225

2-approval| 6(n) = S S 0.0454223047191
v/1.786n 4 0.3536

Table 2. § values in (0, 6, A)-eDDP for some commonly-used voting rules under the i.i.d. uniform distribution. m = 3 and n = 10
to 50.



