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Abstract—We extend a basic key agreement model with a
hidden identifier source to a multi-user model with joint secrecy
and privacy constraints over all entities that do not trust each
other. Different entities that use different measurements of the
same remote source through broadcast channels (BCs) to agree
on mutually-independent local secret keys are considered. This
model is the proper multi-user extension of the basic model
since the encoder and decoder pairs are not assumed to trust
other pairs, unlike assumed in the literature. Strong secrecy
constraints imposed jointly on all secret keys, which is more
stringent than separate secrecy leakage constraints for each secret
key considered in the literature, are satisfied. Inner bounds for
maximum key rate, and minimum privacy-leakage and storage
rates are proposed for any finite number of entities. Inner and
outer bounds for degraded and less-noisy BCs are given to
illustrate cases with strong privacy. A multi-enrollment model
that is used for common physical unclonable functions (PUFs)
is also considered to establish inner and outer bounds for key-
leakage-storage regions that differ only in the Markov chains
imposed. For this special case, the encoder and decoder mea-
surement channels have the same channel transition matrix and
secrecy leakage is measured for each secret key separately. We
illustrate cases for which it is useful to have multiple enrollments
as compared to a single enrollment and vice versa.

I. INTRODUCTION

Physical identifiers such as fine variations of ring oscillator
(RO) outputs or random start-up values of static random
access memories (SRAMs) that depend on uncontrollable
manufacturing variations, are safer and cheaper alternatives to
key storage in a non-volatile memory [2], [3]. Such physical
identifiers for digital devices such as Internet-of-Things (IoT)
devices are called physical unclonable functions (PUFs) [2].
We use the basic source model for key agreement from [4], [5]
to find achievable rate regions for key agreement with PUFs
and biometric identifiers. In this classic model, an encoder
observes a source output to generate a secret key and sends
public side information, i.e., helper data, to a decoder, so
the decoder can reliably reconstruct the same secret key by
observing another source output and the helper data. The main
constraints are that the information leaked about the secret
key, i.e., secrecy leakage, is negligible and the information
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leaked about the identifier output, i.e., privacy leakage, is small
[6]. Furthermore, the amount of public storage should also be
minimized to limit the hardware cost [7].

Suppose the encoder generates a key from a noisy measure-
ment of a hidden (or remote) source output, and a decoder has
access to another noisy measurement of the same source and
the helper data to reconstruct the same key. We call this model
the generated-secret (GS) model with a hidden source. This
model is introduced in [8] as an extension of the visible (noise-
less) source outputs observed by the encoder, considered in [6].
Similarly, for the chosen-secret (CS) model, an embedded (or
chosen) key and noisy identifier measurements are combined
by the encoder to generate the public helper data. We consider
both models to address different applications.

Multiple enrollments of a hidden source using noisy mea-
surements are considered in [9], where weakly secure secret
keys are generated without privacy leakage and storage con-
straints. Furthermore, there is a causality assumption in [9]
on the availability of the helper data, i.e., any decoder has
access to all previously-generated helper data. This assumption
is not necessarily realistic as a decoder of, e.g., an IoT
device that embodies a PUF should be low complexity and
the amount of data to process increases linearly with the
number of enrollments. In addition, any manipulation in any
of the helper data can cause the complete multi-enrollment
system to fail. A classic method used for key agreement,
i.e., the fuzzy commitment scheme (FCS) [10], is used in
[11] in combination with an SRAM PUF to enroll the noisy
outputs of the same SRAM multiple times. The symmetry
condition in [11, Eq. (16)] conditioned on a fixed SRAM
cell state is entirely similar to the symmetry satisfied by
binary-input symmetric output (BISO) channels; see e.g., [12,
p. 613], [8, Eq. (14)]. For SRAM outputs that satisfy this
symmetry, the secrecy leakage about each separate secret key
is shown to be zero. In [13, Theorem 1] the secret-key capacity
of the two-enrollment key agreement problem is established
for measurement channels with the same channel transition
matrix. However, these multi-enrollment models do not con-
sider the privacy leakage and storage constraints, there is no
constraint on the independence of the secret keys of different
enrollments, and the secrecy leakage constraint is weak and



is not applied jointly on all secret keys. Furthermore, optimal
random linear code constructions that achieve the boundaries
of the key-leakage-storage regions are given in [14], where
the classic code constructions such as the FCS are shown to
be strictly suboptimal. Therefore, the multi-enrollment models
and constructions in the literature are strictly suboptimal and
not necessarily realistic. We therefore list stronger secrecy
constraints jointly on all entities, which approximates the re-
ality better in combination with storage rate and joint privacy-
leakage rate constraints. These constraints define the multi-
entity key agreement problem, where the entities that use the
same identifier do not have to trust other entities after key
agreement. Thus, the multi-entity key agreement problem is a
proper multi-user extension of single-enrollment models. We
first consider the multi-entity key agreement problem and then
analyze a special case of the multi-enrollment key agreement
problem to illustrate scenarios for which a single enrollment
can be more useful than multiple enrollments and vice versa.

Every measurement of an identifier is considered to be
noisy due to, e.g., local temperature and voltage changes
in the hardware of the PUF circuit or a cut on the finger.
Noise components at the encoder and decoder measurements
of a hidden source can be also correlated due to, e.g., the
surrounding logic in the hardware [15] or constant fingertip
moisture. This correlation between the noise sequences is
modeled in [16] as a broadcast channel (BC) [17] with an input
that is the hidden source output and with outputs that are the
noisy encoder and decoder measurements. We use this model
for multi-entity key agreement, where each entity (i.e., each
encoder and decoder pair) observes noisy identifier outputs of
the same hidden source through different BCs. We allow the
BCs to be different as honest entities use different hardware
implementations of the encoder and decoder pairs, which
results in different correlations between noise components.

We also consider physically-degraded (PD) and less-noisy
(LN) BCs to give finer inner and outer bounds to the key-
leakage-storage regions for the GS and CS models of the
multi-entity key agreement problem. For the considered PD
and LN BCs, we prove that strong privacy can be achieved.
We next list our main contributions below, and a longer version
with further model figures and proofs is available in [1].

II. MULTI-ENTITY KEY AGREEMENT MODELS

Consider hidden identifier outputs Xn that are i.i.d. accord-
ing to a probability distribution PX . The hidden (or remote)
source with outputs Xn is common to all honest entities that
enroll the same identifier, but they observe different noisy
measurements of the same hidden source. If there are a finite
number J of honest entities that use the same identifier,
the j-th encoder and decoder pair observes noisy source
measurements that are outputs of a BC PX̃jYj |X , with an abuse

of notation, for all j ∈ [1 : J ], where X̃j , Yj , and X are finite
sets.
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Fig. 1. Illustration of the multi-entity key agreement problem for J = 2
entities with encoder and decoder measurements through BCs for (a) the GS
model and (b) the CS model.

For the GS model, the j-th encoder generates helper data
Wj and a secret key Sj from its observed sequence X̃n

j . All
secret keys are stored in a secure database, whereas helper data
are stored in a public database so that an eavesdropper has
access only to the helper data. Using the helper data Wj and
its observed sequence Y n

j , the j-th decoder generates the key
estimate Ŝj . Similar steps are applied for the CS model, except
that each Sj should be embedded into the j-th encoder. These
multi-entity models are shown in Fig. 1 for J=2 entities.

Denote a set of secret keys as SK = {Sj : j ∈ K} and a set
of helper data as WK = {Wj : j ∈ K} for any K ⊆ [1 : J ]. A
(secret-key, privacy-leakage, storage), or key-leakage-storage,
rate tuple is denoted as (Rs, R`, Rw). Similarly, we denote a
set of secret-key rates, for any K ⊆ [1 : J ], as Rs,K = {Rs,j :
j ∈ K} and a set of storage rates as Rw,K = {Rw,j : j ∈ K}.

Definition 1. A key-leakage-storage rate tuple
(Rs,[1:J], R`,Rw,[1:J]) is achievable for the multi-entity GS
and CS models with j-th encoder and decoder measurements



through a BC PX̃jYj |X if, given any δ>0, there is some n≥1,

and J encoder and decoder pairs for which Rs,j =
log |Sj |
n

for all j ∈ [1 : J ] and

Pr

[ ⋃
j∈[1:J]

{Sj 6= Ŝj}

]
≤ δ (reliability) (1)

1

n
H(Sj) ≥ Rs,j − δ, ∀j∈ [1 :J ] (key uniformity) (2)

I (SK;SKc) ≤ δ, ∀K⊆ [1 :J ] (strong key ind.) (3)
1

n
I(Xn;W[1:J])≤R`+δ (privacy) (4)

I
(
S[1:J];W[1:J]

)
≤ δ (strong secrecy) (5)

1

n
log |Wj | ≤ Rw,j+δ, ∀j∈ [1 :J ] (storage). (6)

The multi-entity key-leakage-storage regions Cgs for the GS
model and Ccs for the CS model are the closures of the set of
all achievable rate tuples (Rs,[1:J], R`,Rw,[1:J]).

Both secret-key uniformity (2) and storage rate (6) con-
straints are J separate constraints. However, reliability (1),
strong and mutual key independence (3), privacy-leakage rate
(4), and secrecy leakage (5) constraints are joint constraints
for all J honest entities. Suppose after a key generation, an
honest entity has access only to its corresponding secret key
and it does not have access to other entities’ keys or sequences
or even to the sequence it observed to generate its secret key.

The mutual key independence constraint in (3) is not im-
posed in the multi-enrollment key agreement problem consid-
ered in [11]. Furthermore, a normalized (weak) version of this
constraint is imposed in the multi-enrollment key agreement
problem considered in [9], where the j-th decoder is assumed
to have access to the set of helper dataW[1:j] for all j ∈ [1 : J ].
The lack of the mutual key independence constraint and the
assumption of availability of all previous helper data require
that different encoder and decoder pairs should trust each
other after key agreement. This can be the case, e.g., if all
enrollments are made by the same entity. Therefore, the multi-
entity key agreement problem imposes strictly more stringent
constraints than the multi-enrollment key agreement problem.

The unnormalized secrecy leakage constraint (5) provides
strong secrecy, a stronger notion than the weak secrecy
considered in [6], [8], [9], [11]. Furthermore, (5) is more
stringent than the set of individual secrecy leakage constraints
I(Sj ;W[1:J]) imposed for all j ∈ [1 : J ], considered in [11]
for symmetric PUFs in combination with the suboptimal FCS.

III. INNER BOUNDS

We are interested in characterizing the optimal trade-off
among the secret-key, privacy-leakage, and storage rates with
strong secrecy for BC measurements at the encoders and
decoders of any finite number J of entities that use the same
hidden identifier outputs for the multi-entity key agreement

problem. We give achievable rate regions for the GS and CS
models in Theorem 1. The proofs are given in [18, Section V].

Denote UK = {Uj : j ∈ K} and define a function max{·, ·}
that gives the maximum of the input values as its output.

Theorem 1. (Inner Bounds for Multi-entity Models): An
achievable rate region Rgs for the multi-entity GS model with
J entities is the union over all PUj |X̃j

for all j ∈ [1 : J ] of
the rate tuples such that Rs,j ≥ 0 for all j ∈ [1 : J ] and

Rs,j ≤ I(Uj ;Yj)− I(Uj ;U[1:J]\{j}), ∀j ∈ [1 : J ] (7)

R` ≥
J∑

j=1

max{0, I(Uj ;X)−I(Uj ;Yj)}, (8)

Rw,j≥I(Uj ; X̃j)− I(Uj ;Yj), ∀j ∈ [1 : J ] (9)
Rs,j +Rw,j ≤ H(Uj | U[1:J]\{j}), ∀j ∈ [1 : J ]. (10)

An achievable rate region Rcs for the multi-entity CS model
with J entities is the union over all PUj |X̃j

for all j ∈ [1 : J ]

of the rate tuples such that Rs,j ≥ 0 for all j ∈ [1 : J ], (7),
(8), and

Rw,j≥I(Uj ; X̃j)− I(Uj ;U[1:J]\{j}), ∀j ∈ [1 : J ] (11)
Rw,j ≤ H(Uj | U[1:J]\{j}), ∀j ∈ [1 : J ]. (12)

For the achievable rate regions Rgs and Rcs, we have

PU[1:J]X̃[1:J]XY[1:J]
= PX

J∏
j=1

PUj |X̃j
PX̃jYj |X . (13)

Corollary 1. Suppose for all j ∈ [1 : J ] that X̃j−Yj−X form
a Markov chain, i.e., X is a PD version of Yj with respect to
X̃j , or PXYj |X̃j

is a LN BC with I(Uj ;Yj) ≥ I(Uj ;X) for
all PUj |X̃j

. For the two cases, strong privacy, i.e.,

R` ≥ 0 (14)

can be achieved for the multi-entity GS and CS models in
combination with the other bounds given in Theorem 1.

The proof of Corollary 1 follows from Theorem 1 because
I(Uj ;X) − I(Uj ;Yj) ≤ 0 for all j ∈ [1 : J ] for BCs
considered in Corollary 1. Corollary 1 illustrates that it is
possible to obtain strong privacy, i.e., negligible unnormal-
ized privacy leakage, without the requirement of a common
randomness that is hidden from an eavesdropper which was
assumed in [6], [19]. This is the case because the observation
Y n
j of each decoder is “better” than the observation X̃n

j of
the corresponding encoder with respect to the hidden source
Xn for all entities.

Remark 1. The rate regions for our problem depend on the
joint conditional probability distributions PXYj |X̃j

rather than
only the marginal conditional distributions. Thus, the key-
leakage-storage regions for the stochastically-degraded BCs
are not necessarily equal to the regions for the corresponding
PD BCs, unlike in the classic BC problem. Furthermore, since



PX̃[1:J]XY[1:J]
is fixed, the distinction between the LN BCs and

essentially-less noisy BCs [20], is not necessary.

We next give simple outer bounds for the multi-entity key-
leakage-storage regions Cgs for the GS model and Ccs for the
CS model when the BCs PXYj |X̃j

for all j ∈ [1 : J ] are PD
BCs or LN BCs. These outer bounds give insights into the
reason for different bounds on the secret-key rates. Based on
these insights, we show a special multi-enrollment case in the
next section with a less stringent secrecy constraint, for which
the inner and outer bounds differ only in the Markov chains
imposed and we illustrate that they match for simpler models.

Lemma 1. Suppose one of the cases given in Corollary 1
is satisfied by the BCs PXYj |X̃j

for all j ∈ [1 : J ]. An outer
bound on the multi-entity key-leakage-storage region Cgs is the
union over all PUj |X̃j

, where Uj−X̃j−(X,Yj) form a Markov
chain, for all j ∈ [1 : J ] of the rate tuples such that Rs,j ≥ 0
for all j ∈ [1 : J ], (9), (14), and

Rs,j ≤ I(Uj ;Yj), ∀j ∈ [1 : J ]. (15)

An outer bound to the multi-entity key-leakage-storage region
Ccs for the same BCs PXYj |X̃j

is the union over all PUj |X̃j
,

where Uj − X̃j − (X,Yj) form a Markov chain, for all j ∈
[1 : J ] of the rate tuples such that Rs,j ≥ 0 for all j ∈ [1 : J ],
(14), (15), and

Rw,j ≥ I(Uj ; X̃j), ∀j ∈ [1 : J ]. (16)

The proof of Lemma 1 follows straightforwardly by fol-
lowing the steps in [8, Section VI], defining the auxiliary
random variables Uj,i = (Sj ,Wj , Y

i−1
j ) for all j ∈ [1 : J ] and

i ∈ [1 : n], and by bounding I(Xn;W[1:J]) ≥ 0; therefore,
we omit the proof.

The outer bounds do not include the inequalities in (10) and
(12). Furthermore, the secret-key rate achieved by the inner
bound in (7) is smaller than the outer bound given in (15),
where the difference is the term −I(Uj ;U[1:J]\{j}). This term
is a result of a constraint imposed to satisfy the strong and
mutual key independence constraint given in (3). Therefore,
we next consider a model without the constraint in (3) and
use a secrecy-leakage constraint that is less stringent than the
one in (5), i.e., replace (5) by I(Sj ;W[1:J]) ≤ δ for all j ∈
[1 : J ] which is also a strong secrecy metric. Due to the lack
of a mutual key independence constraint, the model in the
next section is not a multi-entity model but rather a multi-
enrollment model. For a special case of this multi-enrollment
key agreement problem, we establish inner and outer bounds
for the key-leakage-storage regions that comprise the same
bounds but for different Markov chains.

IV. BOUNDS FOR A MULTI-ENROLLMENT MODEL

Consider next the multi-enrollment model, where the strong
and mutual key independence constraint (3) of the multi-entity
model is not imposed. Assume further J = 2 entities that

measure noisy outputs of the same hidden source Xn through
separate channels that have the same channel transition matri-
ces, i.e., for all j ∈ [1 : 2], x̃j ∈ X̃ , and yj ∈ X̃ we have

PX̃jYj |X(x̃j , yj |x) = PX̃|X(x̃j |x)PX̃|X(yj |x). (17)

This model is common for SRAM PUFs, for which each
measurement channel is modeled as a BSC with the same
crossover probability corresponding to a worst case scenario
[21]. Using (17), we define a multi-enrollment model.

Definition 2. A key-leakage-storage rate tuple
( sRs,1, sRs,2, sR`, sRw,1, sRw,2) is achievable for the multi-
enrollment GS and CS models with measurements through
a BC PX̃Y |X(x̃, y|x) as in (17) if, given any δ > 0, there
is some n ≥ 1, and two encoder and decoder pairs for

which sRs,1 =
log |S1|
n

, sRs,2 =
log |S2|
n

, sRw,1 =
H(W1)

n
,

sRw,2 =
H(W2)

n
, and

Pr
[
{S1 6= Ŝ1}

⋃
{S2 6= Ŝ2}

]
≤ δ (reliability) (18)

1

n
H(Sj) = sRs,j − δ, j = 1, 2 (key uniformity) (19)

1

n
I(Xn;W1,W2)= sR`+δ (privacy) (20)

I (Sj ;W1,W2) ≤ δ, j = 1, 2 (strong secrecy) (21)
1

n
log |Wj | = sRw,j+δ, j = 1, 2 (storage) (22)

I(W1;W2) ≤ δ (storage ind.). (23)

The multi-enrollment key-leakage-storage regions sCgs,J=2 for
the GS model and sCcs,J=2 for the CS model are the closures
of the set of all achievable rate tuples.

We characterize in Theorem 2 inner and outer bounds for
sCgs,J=2 and sCcs,J=2. The proofs of Theorem 2 are given in
[18, Section VI], where the reason for the necessity of the
secrecy-leakage constraint in (21) that is less stringent than the
joint secrecy-leakage constraint in (5) is given in Remark 2.
Similarly, the reason for the necessity of the strong helper
data (storage) independence constraint in (23) is discussed in
Remark 4. The equalities in (19), (20), and (22) are required
in the outer bounds in Theorem 2 to provide both upper and
lower bounds on sR` and sRw,j in terms of entropy terms.

Define j′ = 3− j for j = 1, 2.

Theorem 2. (Inner Bounds for Multi-enrollment Models):
An achievable multi-enrollment key-leakage-storage region
sRgs,J=2 is the union over all PU1|X̃1

and PU2|X̃2
of the rate

tuples such that sRs,j ≥ 0 for j = 1, 2 and

sRs,j ≤ I(Uj ;Yj), j = 1, 2 (24)

sR` ≥
2∑

j=1

(
I(Uj ;X)−I(Uj ;Yj)

)
, (25)



sR` ≤
2∑

j=1

(
I(Uj ;X)−I(Uj ; X̃j)+ sRw,j

)
, (26)

sRw,j≥I(Uj ; X̃j)− I(Uj ;Yj), j = 1, 2 (27)
sRs,j + sRw,j ≤ H(Uj), j = 1, 2 (28)
sRs,j + sRw,j + sRw,j′ ≤ H(Uj , Uj′), j = 1, 2. (29)

An achievable multi-enrollment key-leakage-storage region
sRcs,J=2 is the union over all PU1|X̃1

and PU2|X̃2
of the rate

tuples such that sRs,j ≥ 0 for j = 1, 2, (24)-(26), and

sRw,j≥I(Uj ; X̃j), j = 1, 2 (30)
sRw,j ≤ H(Uj), j = 1, 2 (31)
sRw,j+ sRw,j′≤H(Uj , Uj′)+ sRs,j′ , j = 1, 2. (32)

For both achievable regions sRgs,J=2 and sRcs,J=2, we have

PU1U2X̃1X̃2XY1Y2
(u1, u2, x̃1, x̃2, x, y1, y2)

= PU1|X̃1
(u1|x̃1)PU2|X̃2

(u2|x̃2)PX̃|X(x̃1|x)PX̃|X(x̃2|x)
× PX̃|X(y1|x)PX̃|X(y2|x)PX(x). (33)

(Outer Bounds for Multi-enrollment GS and CS Models):
An outer bound for sCgs,J=2 is the union over all PU1|X̃1

and
PU2|X̃2

of the rate tuples such that sRs,j ≥ 0, (24) - (29), and
Uj−X̃j−X−Yj form a Markov chain for j = 1, 2. An outer
bound for sCcs,J=2 is the union over all PU1|X̃1

and PU2|X̃2
of

the rate tuples such that sRs,j ≥ 0, (24) - (26), (30) - (32), and
Uj − X̃j −X − Yj form a Markov chain for j = 1, 2.

The inner and outer bounds differ because the outer bounds
define rate regions for the Markov chains U1 − X̃1 −X − Y1
and U2− X̃2−X −Y2, which are larger than the rate regions
defined by the inner bounds that satisfy (33). For instance, in
the achievability proof of Theorem 2, we apply the properties
of the Markov chain U2 − X̃2 − U1, which does not form a
Markov chain for the choice of U1 and U2 in the outer bounds.
Therefore, inner and outer bounds do not match in general.

Corollary 2. Choosing U1 = X̃1 and U2 = X̃2, it is straight-
forward to show that inner and outer bounds in Theorem 2
match if we do not impose any storage or privacy constraints,
i.e., impose only (18), (19), and (21). This result improves on
the secret-key capacity region given in [13, Theorem 1] for a
weak secrecy constraint.

Example 1. Consider the RO PUF model from [22, Sec-
tion 4.1] where a transform-coding method is applied to
conservatively model the measurement channels PY |X =PX̃|X
as independent BSCs with the same crossover probability
of pA and where the hidden source output is Bern( 12 ). We;
therefore, can apply the achievability results from Theorem 2
to this RO PUF model. Using [8, Theorem 3] to evaluate
the boundary tuples of sRgs,J=2, it suffices to consider prob-
ability distributions PUj |X̃j

for j = 1, 2 such that PX̃j |Uj

are BSCs. Consider the projection of the boundary tuples
of sRgs,J=2 onto key-leakage plane, i.e., (24) and (25). We
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Fig. 2. Privacy-leakage vs. secret-key rate projection of the boundary tuples
of the single- and two-enrollment RO PUF models with BSCs(pA = 0.06).

plot in Fig. 2 single-enrollment results where the privacy-
leakage rate is measured with respect to single helper data,
and two-enrollment results for the sum rate of the two keys,
both for pA = 0.06 [22]. To achieve a total secret-key rate
of I(X̃1;Y1) = I(X̃2;Y2), the privacy-leakage rate for the
two-enrollment model is approximately 13.5% less than the
rate for the single-enrollment model. This gain follows from
the information bottleneck problem that arises from (24) and
(25) to find the boundary tuples.

Example 2. Consider uniform binary antipodal measurements
over an additive white Gaussian noise (AWGN) channel.
Define the signal power as PS and the noise power as PN,
so we have a signal-to-noise ratio (SNR) of SNR = PS/PN.
If a matched filter, which maximizes the SNR at the sampling
instant for the AWGN channel, is applied at the encoder and
decoder, the bit error probability Pb is given by

Pb = Q
(√

SNR
)
. (34)

The channel between input binary symbols and outputs of the
matched filter is a BISO channel. Using [8, Theorem 3], we
have that PX̃j |Uj

for j=1, 2 that are BSCs suffice to obtain
the boundary tuples of sRgs,J=2. The value pA =0.06 used in
Example 1 corresponds to an SNR of approximately 3.83dB.

In Fig. 3, the privacy-leakage rate vs. secret-key rate bound-
ary tuples are depicted for two cases. First, a two-enrollment
model at SNR = 3.83dB with a sum rate for two secret keys
is depicted, where each enrollment has a signal power of Ps.
We plot also a single-enrollment model with the signal power
of 2Ps, i.e., we have an SNR of approximately 6.84dB. Fig. 3
shows for the two cases with the same total signal power of
2Ps, unlike in Example 1, that the single enrollment boundary
tuple can result in a gain of approximately 228.55% at its top
left corner point in terms of the secret-key rate achieved for a
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Fig. 3. Privacy-leakage vs. secret-key rate projection of the boundary tuples
of the single- and two-enrollment RO PUF models with different SNRs.

given privacy-leakage rate. For such channels with a fixed total
signal power; thus, the single-enrollment model can result in
significant gains in terms of the achieved secret-key rate as
compared to the two-enrollment model for small sR` values.

V. CONCLUSION

We derived inner bounds for the multi-entity key-leakage-
storage regions for GS and CS models with strong secrecy,
a hidden identifier source, and correlated noise components
at the encoder and decoder measurements that are modeled
as BCs. The inner bounds are valid for any finite number
of entities that use the same hidden source to agree on a
secret key. We argued that the mutual key independence
constraint we impose makes the proposed multi-entity key
agreement problem a proper multi-user extension of the classic
single-enrollment key agreement problem, unlike the multi-
enrollment key agreement problem considered in the literature.
A set of degraded and less-noisy BCs was shown to provide
strong privacy without a need for a common randomness. We
also established inner and outer bounds for the key-leakage-
storage regions for a two-enrollment model with measurement
channels that are valid for SRAM and RO PUFs. Inner and
outer bounds were shown to differ only in the Markov chains
imposed and they match if the storage and privacy-leakage
rate constraints are removed. Two examples illustrated that
depending on the constraints of the practical scenario, a single
or multiple enrollments might perform better in terms of the
secret-key vs. privacy-leakage rate ratio. In future work, we
will find a set of symmetric probability distributions for which
the strong helper data independence constraint in the two-
enrollment model can be eliminated.
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[22] O. Günlü, T. Kernetzky, O. İşcan, V. Sidorenko, G. Kramer, and R. F.
Schaefer, “Secure and reliable key agreement with physical unclonable
functions,” Entropy, vol. 20, no. 5, May 2018.


