
Quantum Encryption with Certified Deletion:
Public Key and Attribute-Based

Ryo Nishimaki1 and Takashi Yamakawa1

1NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

March 24, 2021

Abstract

Broadbent and Islam (TCC ’20) proposed a quantum cryptographic primitive called quantum encryption with
certified deletion. In this primitive, a receiver in possession of a quantum ciphertext can generate a classical certificate
that the encrypted message is deleted. Though they proved that their construction is information theoretically secure, a
drawback is that the construction is limited to the setting of one-time symmetric key encryption (SKE) where a sender
and receiver have to share a common key in advance and the key can be used only once.

In this paper, we construct a (reusable-key) public key encryption (PKE) and attribute-based encryption (ABE)
with certified deletion. Our PKE with certified deletion is constructed assuming the existence of IND-CPA secure
PKE, and our ABE with certified deletion is constructed assuming the existence of indistinguishability obfuscation and
one-way function.

1

Contents
1 Introduction 1

1.1 Our Result . 1
1.2 Related work . 2

2 Preliminaries 2
2.1 Notations . 2
2.2 Cryptographic Tools . 2

3 Public Key Encryption with Certified Deletion 7
3.1 Definition of PKE with Certified Deletion . 7
3.2 PKE with Certified Deletion from PKE and SKE with Certified Deletion 8

4 Attribute-Based Encryption with Certified Deletion 10
4.1 Definition of ABE with Certified Deletion . 10
4.2 Non-Committing ABE from IO . 12
4.3 ABE with Certified Deletion from NCABE and SKE with Certified Deletion 16

1 Introduction
The no-cloning theorem, which means that a quantum state cannot be copied in general, is one of the most fundamental
principles in quantum physics. As any classical information can be trivially copied, this indicates a fundamental
difference between classical and quantum information. The no-cloning theorem has been a basis of many quantum
cryptographic protocols including quantum money [Wie83] and quantum key distribution [BB84].

Recently, Broadbent and Islam [BI20] used the principle to construct quantum encryption with certified deletion. In
this primitive, a sender encrypts a classical message to generate a quantum ciphertext. A receiver in possession of the
quantum ciphertext and a classical decryption key can either decrypt the ciphertext or “delete" the encrypted message
by generating a classical certificate. After generating a valid certificate of deletion, the receiver (or any other party)
can no longer recover the message even if the decryption key is given. We remark that this functionality is classically
impossible to achieve since one can simply copy a classical ciphertext and keep it so that s/he can decrypt it in any
later time. They prove security of their construction without relying on any computational assumption, which ensures
the information theoretical security. On the other hand, a drawback is that the construction is limited to the setting of
one-time symmetric key encryption (SKE) where a sender and receiver have to share a common key in advance and the
key can be used only once.

A possible application scenario of quantum encryption with certified deletion is the following. A user upload
encrypted data on quantum cloud. Whenever the user wishes to delete the data, the cloud generates the certificate
of the deletion and sends it to the user. After the user verifies the validity of the certificate, s/he is convinced that
the data cannot be recovered even if the decryption key is accidentally leaked later. In this scenario, one-time SKE is
quite inconvenient. By the one-time restriction, the user has to locally keep as many decryption keys as the number of
encrypted data in the cloud, in which case there seems no advantage of uploading the data to cloud: If the user has such
a large storage, s/he could have just locally kept the messages rather than uploading encryption of them to the cloud.
Also, in some cases, a party other than the decryptor may want to upload data to the cloud. This would be possible if we
can extend the quantum encryption with certified deletion to public key encryption (PKE). Remark that the one-time
restriction is automatically resolved for PKE, which can be seen by a simple hybrid argument. Even more flexibly, a
single encrypted data on the cloud may be supposed to be decrypted by multiple users according to some access control
policy. Such an access control has been realized by attribute-based encryption (ABE) [SW05, GPSW06] in classical
cryptography. Thus, it would be useful if we have ABE with certified deletion.

1.1 Our Result
We give formal definitions of PKE and ABE with certified deletion, and give constructions of them:

• We construct a PKE scheme with certified deletion assuming the existence of (classical) IND-CPA secure PKE.
We also observe that essentially the same construction gives a reusable SKE scheme with certified deletion if we
use IND-CPA secure SKE, which exists under the existence of one-way function (OWF), instead of PKE.

• We construct a (public-key) ABE scheme with certified deletion assuming the existence of indistinguishability
obfuscation (iO) [BGI+12] and OWF. This construction satisfies the collusion-resistance, i.e., it is secure against
adversaries that obtain arbitrarily many decryption keys.

We note that our constructions rely on computational assumptions and thus not information theoretically secure unlike
the construction in [BI20]. This is unavoidable since even plain PKE or ABE cannot be information theoretically secure.

Our main technical insight is that we can combine the one-time secure SKE with certified deletion of [BI20]
and plain PKE to construct PKE with certified deletion by a simple hybrid encryption if the latter satisfies receiver
non-committing (RNC) security [CFGN96, JL00, CHK05]. Since it is known that PKE/SKE with RNC security can be
constructed from any IND-CPA secure PKE/SKE [CHK05, KNTY19], our first result follows.

For the second result, we first give a suitable definition of RNC security for ABE that suffices for our purpose.
Then we construct an ABE scheme with RNC security based on the existence of iO and OWF. By combining this with
one-time SKE with certified deletion by hybrid encryption, we obtain an ABE scheme with certified deletion.

1

1.2 Related work
Before the work of [BI20], Fu and Miller [FM18] and Coiteux-Roy and Wolf [CRW19] also studied the concept of
certifying deletion of information in different settings. (See [BI20] for the comparison with these works.)

The construction of quantum encryption with certified deletion in [BI20] is based on Wiesner’s conjugate coding,
which is the backbone of quantum money [Wie83] and quantum key distribution [BB84]. A similar idea has been used in
many constructions in quantum cryptography that include (but not limited to) revocable quantum timed-release encryption
[Unr15], uncloneable quantum encryption [BL20], single-decryptor encryption [GZ20], and copy protection/secure
software leasing [CMP20]. Among them, revocable quantum timed-release encryption is conceptually similar to
quantum encryption with certified deletion. In this primitive, a receiver can decrypt a quantum ciphertext only after
spending a certain amount of time T . The receiver can also choose to return the ciphertext before the time T is over, in
which case it is ensured that the massage can no longer be recovered. As observed in [BI20], an important difference
from quantum encryption with certified deletion is that the revocable quantum timed-release encryption does not have a
mechanism to generate a classical certificate of deletion. Moreover, the construction in [Unr15] heavily relies on the
random oracle heuristic [BR97, BDF+11], and there is no known construction without random oracles.

Kundu and Tan [KT20] constructed (one-time symmetric key) quantum encryption with certified deletion with the
device-independent security, i.e., the security holds even if quantum devices are untrusted. Moreover, they show that
their construction satisfies composable security.

2 Preliminaries
2.1 Notations
We introduce basic notations used in this paper.

In this paper, x← X denotes selecting an element from a finite set X uniformly at random, and y ← A(x) denotes
assigning to y the output of a probabilistic or deterministic algorithm A on an input x. When we explicitly show that A
uses randomness r, we write y ← A(x; r). When D is a distribution, x← D denotes sampling an element from D.
Let [`] denote the set of integers {1, · · · , `}, λ denote a security parameter, and y := z denote that y is set, defined, or
substituted by z. QPT stands for quantum polynomial time. A function f : N→ R is a negligible function if for any
constant c, there exists λ0 ∈ N such that for any λ > λ0, f(λ) < λ−c. We write f(λ) ≤ negl(λ) to denote f(λ) being
a negligible function.

2.2 Cryptographic Tools
In this section, we review cryptographic tools used in this paper.

Public key encryption.

Definition 2.1. A public key encryption scheme Σ = (KeyGen,Enc,Dec) is a triple of algorithm: a key generation
KeyGen, an encryption algorithm Enc and a decryption algorithm Dec.

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input the security parameter and outputs a public key
pk and a secret key sk.

Enc(pk,m)→ CT: The encryption algorithm takes as input pk and a plaintextm ∈M, and outputs a ciphertext CT.

Dec(sk,CT)→ m′: The decryption algorithm takes as input sk and CT, and output a plaintextm′ or ⊥.

Definition 2.2 (Correctness for PKE). For any λ ∈ N,m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
CT← Enc(pk,m)

]
≤ negl(λ).

2

Definition 2.3 (IND-CPA security). Let Σ = (KeyGen,Enc,Dec) be a PKE scheme. For QPT adversaries A, we
define the following security experiment Expind-cpa

Σ,A (λ, b).

1. The challenger generates (pk, sk)← KeyGen(1λ), and sends the pk to the A.

2. The A sends (m0,m1) to the challenger.

3. The challenger computes CTb ← Enc(pk,mb), and sends CTb to the A.

4. The A outputs b′ ∈ {0, 1}. This is the output of the experiment.

Let Advind-cpa
Σ,A (λ) be the advantage of the game. We say that the Σ is ε-IND-CPA secure if for any QPT A, it holds that

Advind-cpa
Σ,A (λ) := |Pr[Expind-cpa

Σ,A (λ, 0) = 1]− Pr[Expind-cpa
Σ,A (λ, 1) = 1]| ≤ ε.

When ε is negligible, we omit ε and say Σ is IND-CPA secure.

There are many IND-CPA secure PKE schemes against QPT adversaries under standard cryptographic assumptions.
A famous one is Regev PKE scheme, which is IND-CPA secure if the learning with errors (LWE) assumption holds
against QPT adversaries [Reg09]. See the references for the LWE assumption and constructions of post-quantum secure
PKE [Reg09, GPV08].

Attribute-based encryption. We review the notion of *(key-policy) attribute-based encryption (ABE) [SW05,
GPSW06].

Definition 2.4 (Attribute-BasedEncryption (Syntax)). AnABE scheme is a tuple of algorithms (Setup,KeyGen,Enc,Dec)
with plaintext spaceM, attribute space X , and policy space P .

Setup(1λ)→ (pk,msk): The setup algorithm takes as input the security parameter and outputs a public key pk and a
master secret key msk.

KeyGen(msk, P)→ skP : The key generation algorithm takes as msk and a policy P ∈ P , and outputs a secret key
skP .

Enc(pk, X,m)→ CTX : The encryption algorithm takes as input pk, an attribute X ∈ X , and a plaintextm ∈ M,
and outputs a ciphertext CT.

Dec(skP ,CTX)→ m′: The decryption algorithm takes as input skP and CTX , and output a plaintextm′ or ⊥.

Definition 2.5 (Correctness for ABE). For any λ ∈ N,m ∈M, P ∈ P , and X ∈ X such that P (X) = >,

Pr

Dec(skP ,CTX) 6= m

∣∣∣∣∣∣
(pk,msk)← Setup(1λ)
skP ← KeyGen(msk, P)
CTX ← Enc(pk, X,m)

 ≤ negl(λ).

Definition 2.6 (IND-sel-CPASecurity forABE). LetΣ = (Setup,KeyGen,Enc,Dec) be an ABE schemewith plaintext
spaceM, attribute space X , and policy space P . We consider the following the security experiment Expind-sel-cpa

Σ,A (λ, b).

1. A declare the target attribute X∗ ∈ X and sends it to the challenger.

2. The challenger computes (pk,msk)← Setup(1λ) and sends pk to A.

3. A sends a query P ∈ P to the challenger and it returns skP ← KeyGen(msk, P) to A. This process can be
repeated polynomially many times.

4. A sends (m0,m1) ∈M2 to the challenger.

3

5. The challenger computes CTb ← Enc(pk, X∗,mb) and sends CTb to the A.

6. Again, A can send key queries.

7. At some point, A outputs the b′ ∈ {0, 1}.

Let Advind-sel-cpa
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is IND-sel-CPA secure if for any QPT

adversary A, it holds that

Advind-sel-cpa
Σ,A (λ) := |Pr[Expind-sel-cpa

Σ,A (λ, 0) = 1]− Pr[Expind-sel-cpa
Σ,A (λ, 1) = 1]| ≤ negl(λ).

Theorem 2.7 ([GVW15]). If the LWE assumption holds against QPT adversaries, there exists IND-sel-CPA secure
ABE scheme with P = P/poly against QPT adversaries.

Encryption with certified deletion. Broadbent and Islam introduced the notion of encryption with certified dele-
tion [BI20]. Their notion is for secret key encryption (SKE).

Definition 2.8 (Secret Key Encryption with Certified Deletion (Syntax)). A secret key encryption scheme with
certified deletion is a tuple of quantum algorithms (KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM and key space
K.

KeyGen(1λ)→ sk: The key generation algorithm takes as input the security parameter and outputs a secret key sk ∈ K.

Enc(pk,m)→ CT: The encryption algorithm takes as input the public key and a plaintext m ∈ M and outputs a
ciphertext CT.

Dec(sk,CT)→ m′: The decryption algorithm takes as input the secret key and a ciphertext and output a plaintext
m′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input a ciphertext and outputs a certification cert.

Vrfy(sk, cert)→ > or ⊥: The verification algorithm takes the secret key and a certification and outputs > or ⊥.

Definition 2.9 (Correctness for SKE with Certified Deletion). There are two types of correctness. One is decryption
correctness and the other is verification correctness.

Decryption correctness: For any λ ∈ N,m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ sk← KeyGen(1λ)
CT← Enc(pk,m)

]
≤ negl(λ).

Verification correctness: For any λ ∈ N,m ∈M,

Pr

Vrfy(sk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
CT← Enc(pk,m)
cert← Del(CT)

 ≤ negl(λ).

Broadbent and Islam consider a setting where a secret key is used only once (that is, one time SKE), but it is easy to
extend the definition to reusable secret key setting.

Definition 2.10 (Certified Deletion Security for SKE). Let Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a secret key
encryption with certified deletion. We consider the following the security experiment Expsk-cert-del

Σ,A (λ, b).

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption querym to the challenger and the it returns CT← Enc(sk,m) to A. This process can be
repeated polynomially many times.

4

3. A sends (m0,m1) to the challenger.

4. The challenger computes CTb ← Enc(sk,mb) and sends CTb to the A.

5. Again, A can send encryption queries.

6. At some point, A sends cert to the challenger.

7. The challenger computes Vrfy(sk, cert). If the output is⊥, then abort. Otherwise (the output is>), the challenger
sends the sk to the A.

8. A receives sk and outputs the b′ ∈ {0, 1}.

Let Advsk-cert-del
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is ε-IND-CPA-CD secure if for any

QPT A, it holds that

Advsk-cert-del
E,A (λ) := |Pr[Expsk-cert-del

Σ,A (λ, 0) = 1]− Pr[Expsk-cert-del
Σ,A (λ, 1) = 1]| ≤ ε.

If A is not allowed to send any encryption query at the second and fifth items of Expsk-cert-del
Σ,A (λ, b), we say that Σ is

ε-OT-CD secure. When ε is negligible, we omit ε and say Σ is IND-CPA-CD (or OT-CD) secure.

We sometimes say reusable (resp. one-time) SKE with certified deletion if it satisfies IND-CPA-CD (resp. OT-CD)
security.

We emphasize that in the existing construction of SKE with certified deletion, a secret key is a classical string
though a ciphertext must be a quantum state. Broadbent and Islam prove the following theorem.

Theorem 2.11 ([BI20]). There exists OT-CD secure SKE with certified deletion withM = {0, 1}`m and K = {0, 1}`k

where `m and `k are some polynomials, unconditionally.

ReceiverNon-CommittingEncryption. We introduce the notion of receiver non-committing encryption (RNCE) [CFGN96,
JL00, CHK05], which is used in Section 3.2. We sometimes simply write NCE to mean RNCE since we consider only
RNCE in this paper.

Definition 2.12 (RNCE (syntax)). An NCE scheme is a tuple of algorithms (KeyGen,Enc,Dec,Fake,Reveal) with
plaintext spaceM.

KeyGen(1λ)→ (pk, sk, aux): The key generation algorithm takes as input the security parameter and outputs a key
pair (pk, sk) and an auxiliary information aux.

Enc(pk,m)→ CT: The encryption algorithm takes as input pk and a plaintextm and outputs a ciphertext CT.

Dec(sk,CT)→ m′/⊥: The decryption algorithm takes as input sk and CT and outputs a plaintextm′ or ⊥.

Fake(pk, sk, aux)→ C̃T: The fake encryption algorithm takes pk, sk, and an auxiliary input aux and outputs a fake
ciphertext C̃T.

Reveal(pk, sk, aux, C̃T,m)→ s̃k: The reveal algorithm takes pk, sk, aux, a fake ciphertext C̃T, and a plaintextm, and
outputs a fake secret key s̃k.

Correctness is the same as that of PKE.

Definition 2.13 (Receiver Non-Committing (RNC) Security). An NCE scheme is RNC secure if it satisfies the
following. Let Σ = (KeyGen,Enc,Dec,Fake,Reveal) be an NCE scheme. We consider the following the security
experiment Exprec-nc

Σ,A (λ, b).

1. The challenger computes (pk, sk, aux)← KeyGen(1λ).

5

2. A sends a querym ∈M to the challenger.

3. The challenger does the following.

• If b = 0, the challenger generates CT← Enc(pk,m) and returns (CT, sk) to A.

• If b = 1, the challenger generates C̃T ← Fake(pk, sk, aux) and s̃k ← Reveal(pk, sk, aux, C̃T,m) and
returns (C̃T, s̃k) to A.

4. A outputs the b′ ∈ {0, 1}.

Let Advrec-nc
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is RNC secure if for any QPT adversary,

it holds that

Advrec-nc
Σ,A (λ) := |Pr[Exprec-nc

Σ,A (λ, 0) = 1]− Pr[Exprec-nc
Σ,A (λ, 1) = 1]| ≤ negl(λ).

Theorem 2.14 ([KNTY19]). If there exists an IND-CPA secure SKE/PKE scheme (against QPT adversaries), there
exists an RNC secure secret/public key NCE scheme (against QPT adversaries) with plaintext space {0, 1}`, where ` is
some polynomial, respectively.

Note that Kitagawa, Nishimaki, Tanaka, and Yamakawa [KNTY19] prove the theorem above for the SKE case, but it
is easy to extend their theorem to the PKE setting. We also note that the core idea of Kitagawa et al. is based on the
observation by Canetti, Halevi, and Katz [CHK05].

Non-interactive zero-knowledge. We review non-interactive zero-knowledge (NIZK) which is used in Section 4.2.

Definition 2.15 (Non-Interactive Zero-Knowledge Proofs). A non-interactive zero-knowledge (NIZK) proof for an
NP language L consists of PPT algorithms (Setup,Prove,Vrfy).

Setup(1λ)→ crs: The setup algorithm takes as input the security parameter 1λ and outputs a common reference string
crs.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x, and a
witness w and outputs a proof π.

Vrfy(crs, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string crs, a statement x, and a
proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.

A non-interactive proof must satisfy the following requirements.

Completeness: For all λ ∈ N and all pairs (x,w) ∈ R, we have

Pr[Vrfy(crs, x, π) = > | crs← Setup(1λ), π ← Prove(crs, x, w)] = 1.

Statistical Soundness. For all unbounded time adversaries A, if we run crs← Setup(1λ), then we have

Pr[x 6∈ L ∧ Vrfy(crs, x, π) = > | (x, π)← A(crs, ·, ·)(1λ, crs)] ≤ negl(λ).

(Computational) Zero-Knowledge: If there exists a PPT simulator Sim = (Sim1,Sim2) such that for all QPT
adversaries A and for all (x,w) ∈ R, we have∣∣∣∣Pr
[
A(1λ, crs, x, π) = 1

∣∣∣∣ crs← Setup(1λ),
π ← Prove(crs, x, w)

]
− Pr

[
A(1λ, c̃rs, x, π) = 1

∣∣∣∣ (c̃rs, td)← Sim1(1λ, x),
π ← Sim2(c̃rs, td, x)

]∣∣∣∣ ≤ negl(λ).

Theorem 2.16 ([PS19]). If the LWE assumption holds against QPT adversaries, then there exists computational NIZK
proof for NP against QPT adversaries.

6

Definition 2.17 (Statistical Simulation-Sound NIZK). A NIZK proof system Πnizk is statistical simulation-sound if it
is hard to generate a convincing proof for a false statement even if an adversary is given a simulated proof. That is, for
all statements x and all unbounded time adversaries A, we have

Pr[x∗ 6= x ∧ x∗ /∈ L ∧ Vrfy(c̃rs, x∗, π∗) = > | (c̃rs, td)← Sim1(1λ, x), π ← Sim2(c̃rs, td, x), (x∗, π∗)← A(c̃rs, x, π)] ≤ negl(λ).

Theorem 2.18 ([GGH+16]). If there exist computational NIZK proof systems for L and non-interactive perfectly
binding commitment schemes, there exists a statistical simulation-sound NIZK proof system for L.

Non-interactive perfectly binding commitment can be constructed from IND-CPA PKE with perfect correct-
ness [LS19]. We can obtain such PKE schemes by slightly modifying IND-CPA PKE with imperfect correctness. For
example, we can obtain a variant of Regev PKE scheme that has perfect correctness from Regev PKE scheme. Thus, we
obtain the following corollary from Theorems 2.16 and 2.18.

Corollary 2.19. If the LWE assumption holds against QPT adversaries, there exists a statistical simulation-sound NIZK
proof system for NP.

Definition 2.20 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is an IO for a circuit class {Cλ}λ∈N
if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈ N, circuit C ∈ Cλ, and input x, we have that

Pr[C ′(x) = C(x) | C ′ ← iO(C)] = 1 .

Indistinguishability: For any QPT distinguisher D and for any pair of circuits C0, C1 ∈ Cλ such that for any input x,
C0(x) = C1(x) and |C0| = |C1|, it holds that

Advio
iO,A(λ) := |Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ) .

There exist candidate constructions of IO against QPT adversaries [GP20, WW20, BDGM20].

3 Public Key Encryption with Certified Deletion
In this section, we define the notion of PKE with certified deletion, which is a natural extension of SKE with certified
deletion and present how to achieve PKE with certified deletion from OT-CD secure SKE and IND-CPA (standard) PKE.

3.1 Definition of PKE with Certified Deletion
The definition of PKE with certified deletion is an extension of SKE with certified deletion. Note that a verification key
for verifying a certification is generated in the encryption algorithm.

Definition 3.1 (PKE with Certified Deletion (Syntax)). A certified deletion public-key encryption scheme is a tuple
of quantum algorithms (KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM.

KeyGen(1λ)→ (pk, sk) The key generation algorithm takes as input the security parameter and outputs a key pair
(pk, sk).

Enc(pk,m)→ (vk,CT) The encryption algorithm takes as input the public key and a plaintext and outputs a verification
key vk and a ciphertext CT.

Dec(sk,CT)→ m′ The decryption algorithm takes as input the secret key and a ciphertext and outputs a plaintextm′
or ⊥.

Del(CT)→ cert The deletion algorithm takes as input a ciphertext and outputs a certification cert.

7

Vrfy(vk, cert)→ > or ⊥ The verification algorithm takes the verification key and a certificate and outputs > or ⊥.

Definition 3.2 (Correctness for PKE with Certified Deletion). There are two types of correctness. One is decryption
correctness and the other is verification correctness.

Decryption correctness: For any λ ∈ N,m ∈M,

Pr
[
Dec(sk,CT) 6= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(vk,CT)← Enc(pk,m)

]
≤ negl(λ).

Verification correctness: For any λ ∈ N,m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk,CT)← Enc(pk,m)
cert← Del(CT)

 ≤ negl(λ).

Definition 3.3 (Certified Deletion Security for PKE). Let Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a PKE with certified
deletion scheme. We consider the following the security experiment Exppk-cert-del

Σ,A (λ, b).

1. The challenger computes (pk, sk)← KeyGen(1λ) and sends pk to A.

2. A sends (m0,m1) ∈M2 to the challenger.

3. The challenger computes (vkb,CTb)← Enc(sk,mb) and sends CTb to the A.

4. At some point, A sends cert to the challenger.

5. The challenger computes Vrfy(vkb, cert). If the output is⊥, then abort. Otherwise (the output is>), the challenger
sends the sk to the A.

6. A receives sk and outputs the b′ ∈ {0, 1}.

Let Advpk-cert-del
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is ε-IND-CPA-CD secure if for any

QPT adversary A, it holds that

Advpk-cert-del
E,A (λ) := |Pr[Exppk-cert-del

Σ,A (λ, 0) = 1]− Pr[Exppk-cert-del
Σ,A (λ, 1) = 1]| ≤ ε.

When ε is negligible, we omit ε and say Σ is IND-CPA-CD secure.

3.2 PKE with Certified Deletion from PKE and SKE with Certified Deletion
In this section, we present how to construct a PKE scheme with certified deletion from an SKE scheme with certified
deletion and NCE scheme, which can be constructed from standard IND-CPA PKE schemes.

Our PKE Scheme. We construct Σpkcd = (KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM from an SKE with
certified deletion scheme Σskcd = SKE.(Gen,Enc,Dec,Del,Vrfy) with plaintext spaceM and key spaceK and a public
key NCE scheme Σnce = NCE.(KeyGen,Enc,Dec,Fake,Reveal) with plaintext space K.

KeyGen(1λ):

• Generate (nce.pk, nce.sk, nce.aux)← NCE.KeyGen(1λ) and output (pk, sk) := (nce.pk, nce.sk).

Enc(pk,m):

• Parse pk = nce.pk.
• Generate ske.sk← SKE.Gen(1λ).

8

• Compute nce.CT← NCE.Enc(nce.pk, ske.sk) and ske.CT← SKE.Enc(ske.sk,m).
• Output CT := (nce.CT, ske.CT) and vk := ske.sk.

Dec(sk,CT):

• Parse sk = nce.sk and CT = (nce.CT, ske.CT).
• Compute sk′ ← NCE.Dec(nce.sk, nce.CT).
• Compute and outputm′ ← SKE.Dec(sk′, ske.CT).

Del(CT):

• Parse CT = (nce.CT, ske.CT).
• Generate ske.cert← SKE.Del(ske.CT).
• Output cert := ske.cert.

Vrfy(vk, cert):

• Parse vk = ske.sk and cert = ske.cert.
• Output b← SKE.Vrfy(ske.sk, ske.cert).

Correctness. The decryption and verification correctness easily follows from the correctness of Σnce and Σskcd.

Security. We prove the following theorem.

Theorem 3.4. If Σnce is RNC secure and Σskcd is OT-CD secure, Σpkcd is IND-CPA-CD secure.

Proof. We define the following hybrid game Hyb(b).

Hyb(b): This is the same as Exppk-cert-del
Σpkcd,A

(λ, b) except that the challenger generate the target ciphertext as follows. It
generates ske.sk ← SKE.Gen(1λ) and computes nce.CT∗ ← NCE.Fake(nce.pk, nce.sk, aux) and ske.CT∗ ←
SKE.Enc(ske.sk,mb). The target ciphertext is CT∗ := (nce.CT∗, ske.CT∗). In addition, we reveal s̃k ←
Reveal(nce.pk, nce.sk, nce.aux, nce.CT∗, ske.sk) instead of nce.sk.

Proposition 3.5. If Σnce is RNC secure, |Pr[Exppk-cert-del
Σpkcd,A (λ, b) = 1]− Pr[Hyb(b) = 1]| ≤ Advpk-nce

Σnce,B1
(λ).

Proof. We construct an adversary B1 that breaks the RNC security of Σnce by using the distinguisher D for these two
games. First,B1 is given nce.pk. B1 generates ske.skb ← SKE.Gen(1λ) and sends nce.pk toD. WhenD sends (m0,m1),
B1 sends ske.sk to the challenger of NCE, receives (nce.CT∗, s̃k) and generates ske.CT← SKE.Enc(ske.sk,mb). B1
sends (nce.CT∗, ske.CT) to D as the challenge ciphertext. At some point, D outputs cert. If SKE.Vrfy(cert) = >, B1
sends s̃k to D.

• If (nce.CT∗, s̃k) = (NCE.Enc(nce.pk, ske.sk), nce.sk), B1 perfectly simulates Exppk-cert-del
Σpkcd,A (λ, b).

• If (nce.CT∗, s̃k) = (NCE.Fake(nce.pk, nce.sk, nce.aux),NCE.Reveal(nce.pk, nce.sk, nce.aux, nce.CT∗, ske.sk)),
B1 perfectly simulates Hyb(b).

Thus, if D distinguishes the two games, we can break the RNC security. This completes the proof.

Proposition 3.6. If Σskcd is OT-CD secure, |Pr[Hyb(0) = 1]− Pr[Hyb(1) = 1]| ≤ Advsk-ot-cd
Σskcd,B2

(λ).

Proof. We construct an adversary B2 that breaks the OT-CD security of Σskcd by using the distinguisher D for these
two games. First, B2 generates (nce.pk, nce.sk, nce.aux) ← NCE.KeyGen(1λ) and sends nce.pk to D. When D
sends (m0,m1), B2 sends (m0,m1) to the challenger of OT-CD SKE, receives ske.CT∗, and generates nce.C̃T ←
NCE.Fake(nce.pk, nce.sk, nce.aux). B2 sends (nce.C̃T, ske.CT∗) to D as the challenge ciphertext. At some point,
D outputs cert. B2 passes cert to the challenger of OT-CD SKE. If the challenger returns ske.sk, B2 generates
s̃k← NCE.Reveal(nce.pk, nce.sk, nce.aux, nce.C̃T, ske.sk) and sends s̃k to D.

9

• If ske.CT∗ = SKE.Enc(ske.sk,m0), B2 perfectly simulates Hyb(0).

• If ske.CT∗ = SKE.Enc(ske.sk,m1), B2 perfectly simulates Hyb(1).

Thus, if D distinguishes the two games, we can break the OT-CD security. This completes the proof.

By Propositions 3.5 and 3.6, we immediately obtain Theorem 3.4.

By Theorems 2.11, 2.14 and 3.4, we immediately obtain the following corollary.

Corollary 3.7. If there exists IND-CPA secure PKE against QPT adversaries, there exists IND-CPA-CD secure PKE
with certified deletion.

Reusable SKE with certified deletion. We can construct a secret key variant of Σpkcd above (that is, reusable SKE
with certified deletion) by replacing Σnce with a secret key NCE scheme. We omit the proof since it is almost the same
as that of Theorem 3.4. By Theorem 2.14 and the fact that OWFs imply (reusable) SKE [HILL99, GGM86], we also
obtain the following theorem.

Theorem 3.8. If there exists OWF against QPT adversaries, there exists IND-CPA-CD secure SKE with certified
deletion.

4 Attribute-Based Encryption with Certified Deletion
In this section, we define the notion of attribute-based encryption (ABE) with certified deletion, which is a natural
extension of ABE and PKE with certified deletion and present how to achieve ABE with certified deletion from OT-CD
secure SKE, IO, and OWFs. In Section 4.1, we present the definition of ABE with certified deletion and non-committing
ABE (NCABE), which is a crucial tool to achieve ABE with certified deletion. In Section 4.2, we present how to
achieve NCABE from IO and standard ABE. In Section 4.3, we present how to achieve ABE with certified deletion
from NCABE and OT-CD secure SKE with certified deletion.

4.1 Definition of ABE with Certified Deletion
The definition of ABE with certified deletion is a natural combination of ABE and PKE with certified deletion.

Definition 4.1 (Attribute-Based Encryption with Certified Deletion (Syntax)). A certified deletion ABE scheme is
a tuple of quantum algorithms (Setup,KeyGen,Enc,Dec,Del,Vrfy) with plaintext spaceM, attribute space X , and
policy space P .

Setup(1λ)→ (pk,msk): The setup algorithm takes as input the security parameter and outputs a public key pk and a
master secret key msk.

KeyGen(msk, P)→ skP : The key generation algorithm takes as msk and a policy P ∈ P , and outputs a secret key
skP .

Enc(pk, X,m)→ (vk,CTX): The encryption algorithm takes as input pk, an attribute X ∈ X , and a plaintext
m ∈M, and outputs a verification key vk and ciphertext CTX .

Dec(skP ,CTX)→ m′: The decryption algorithm takes as input sk and CT, and output a plaintextm′ ∈M or ⊥.

Del(CT)→ cert: The deletion algorithm takes as input CT and outputs a certification cert.

Vrfy(vk, cert)→ > or ⊥: The verification algorithm takes msk and cert and outputs > or ⊥.

Definition 4.2 (Correctness for ABE with Certified Deletion). There are two types of correctness. One is decryption
correctness and the other is verification correctness.

10

Decryption correctness: For any λ ∈ N,m ∈M, P ∈ P , and X ∈ X such that P (X) = >,

Pr

Dec(skP ,CTX) 6= m

∣∣∣∣∣∣
(pk,msk)← Setup(1λ)
skP ← KeyGen(msk, P)
(vk,CTX)← Enc(pk, X,msg)

 ≤ negl(λ).

Verification correctness: For any λ ∈ N, P ∈ P , X ∈ X ,m ∈M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk,msk)← Setup(1λ)
(vk,CTX)← Enc(pk, X,msg)
cert← Del(CTX)

 ≤ negl(λ).

Definition 4.3 (ABE Certified Deletion Security). Let Σ = (Setup,KeyGen,Enc,Dec,Del,Vrfy) be an ABE with
certified deletion. We consider the following the security experiment Expind-sel-cpa-cd

Σ,A (λ, b).

1. A declare the target attribute X∗ ∈ X and sends it to the challenger.

2. The challenger computes (pk,msk)← Setup(1λ) and sends pk to A.

3. A sends a key query Pi ∈ P to the challenger and it returns skPi
← KeyGen(msk, Pi) toA. This process can be

repeated polynomially many times.

4. A sends (m0,m1) ∈M2 to the challenger.

5. The challenger computes (vkb,CTb)← Enc(pk, X∗,mb) and sends CTb to the A.

6. Again, A can send key queries.

7. A computes cert← Del(CTb) and sends cert to the challenger.

8. The challenger computes Vrfy(vkb, cert). If the output is ⊥, then abort. Otherwise, the challenger sends msk to
the A.

9. A receives msk and outputs the b′ ∈ {0, 1}.

Let Advind-sel-cpa-cd
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is IND-sel-CPA-CD secure if for

any QPT adversary A, it holds that

Advind-sel-cpa-cd
Σ,A (λ) := |Pr[Expind-sel-cpa-del

Σ,A (λ, 0) = 1]− Pr[Expind-sel-cpa-cd
Σ,A (λ, 1) = 1]| ≤ negl(λ).

Next, we define non-committing ABE, which is a non-committing encryption version of ABE.

Definition 4.4 (Non-Committing Attribute-Based Encryption (Syntax)). A non-committing (key policy) attributed-
based encryption (NCABE) is a tuple of algorithms (Setup,KeyGen,Enc,Dec,FakeSetup,FakeSK,FakeCT,Reveal)
with plaintext spaceM, attribute space X , and policy space P .

Setup(1λ)→ (pk,msk): The setup algorithm takes as input the security parameter and outputs a public key pk and a
master secret key msk.

KeyGen(msk, P)→ skP : The key generation algorithm takes as input msk and a policy P ∈ P , and outputs a secret
key skP .

Enc(pk, X,m)→ CT: The encryption algorithm takes as input pk, an attribute X ∈ X , and a plaintextm ∈M, and
outputs a ciphertext CT.

Dec(sk,CT)→ m′/⊥: The decryption algorithm takes as input sk and CT and outputs a plaintextm′ ∈M or ⊥.

11

FakeSetup(1λ, aux′)→ (pk, aux): The setup algorithm takes as input the security parameter and a pre-auxiliary
information aux′ and outputs a public key pk, a post-auxiliary information aux.

FakeCT(pk, aux, X)→ C̃T: The fake encryption algorithm takes pk, aux, and X ∈ X , and outputs a fake ciphertext
C̃T.

FakeSK(pk, aux, P)→ s̃k: The fake key generation algorithm takes pk, aux, and P ∈ P , and outputs a fake secret key
s̃k.

Reveal(pk, aux, C̃T,m)→ m̃sk: The reveal algorithm takes pk, aux, a fake ciphertext C̃T, and a plaintext m ∈ M,
and outputs a fake master secret key m̃sk.

Correctness is the same as that of ABE.

Definition 4.5 (RNC Security for ABE). An NCABE scheme is RNC secure if it satisfies the following. Let Σ =
(Setup,KeyGen,Enc,Dec,Fake,Reveal) be an NCE scheme. We consider the following the security experiment
Exprnc-sel-cpa

Σ,A (λ, b).

1. A declared the target attribute X∗ ∈ X and sends it to the challenger.

2. The challenger sets aux′ := X∗.

• If b = 0, The challenger computes (pk,msk)← Setup(1λ) and sends pk to A.
• If b = 1, The challenger computes (pk, aux)← FakeSetup(1λ, aux′) and sends pk to A.

3. A sends a query Pi ∈ P to the challenger. If Pi(X∗) = >, returns nothing. Else:

• If b = 0, the challenger returns a secret key skPi ← KeyGen(msk, Pi).
• If b = 1, the challenger returns a fake secret key s̃kPi

← FakeSK(pk, aux, Pi).

A can send polynomially many key queries.

4. At some point, A sends a querym ∈M to the challenger. The challenger does the following.

• If b = 0, the challenger generates CT∗ ← Enc(pk, X∗,m) and returns (CT,msk) to A.

• If b = 1, the challenger generates C̃T
∗
← FakeCT(pk, aux, X∗) and m̃sk← Reveal(pk, aux, C̃T,m) and

returns (C̃T, m̃sk) to A.

5. Again A can send key queries.

6. A outputs the b′ ∈ {0, 1}.

Let Advrnc-sel-cpa
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is RNC secure if for any QPT

adversary, it holds that

Advrnc-sel-cpa
Σ,A (λ) := |Pr[Exprnc-sel-cpa

Σ,A (λ, 0) = 1]− Pr[Exprnc-sel-cpa
Σ,A (λ, 1) = 1]| ≤ negl(λ).

If A also declares the target plaintextm at the beginning of the game above, we say that Σ is selective-message RNC
secure and write its advantages as Advrnc-sel2-cpa

Σ,A (λ).

Note that a selective-message RNC secure scheme is sufficient for our purpose (ABE with certified deletion) since
we use the hybrid encryption technique as in Section 3.2.

4.2 Non-Committing ABE from IO
In this section, we construct NCABE scheme with plaintext space {0, 1}`m , attribute space X = {0, 1}`x where `m and
`x are some polynomials, and policy space P = P/poly from IO for P/poly and PKE scheme with plaintext space
{0, 1}.

12

Our NCABE scheme. We present an NCABE scheme based on any IND-CPA-secure PKE scheme and IO. Let
Σabe = ABE.(Setup,KeyGen,Enc,Dec) be an IND-sel-CPA-secure ABE scheme on the message space {0, 1} and
Πnizk a statistically simulation-sound NIZK protocol. Let pk := {abe.pki,0, abe.pki,1}i∈`m

. We define an NP relation
RL defined as follows.

RL := {((pk, {CTi,0,CTi,1}i∈[`m], X), {(m[i], ri,0, ri,1)}i∈[`m]) | ∀i∀b CTi,b = ABE.Enc(abe.pki,b, X,m[i]; ri,b)}.

We construct an NCABE scheme Σnce = (Setup,KeyGen,Enc,Dec,FakeSetup,FakeCT,FakeSK,Reveal) as
follows.

Setup(1λ, 1`m) :

1. Generate (abe.pki,b, abe.mski,b)← ABE.Setup(1λ) for every i ∈ [`m] and b ∈ {0, 1}.
2. Choose z ← {0, 1}`m .
3. Computes crs← NIZK.Setup(1λ).
4. Output pk := ({abe.pki,b}i∈[`m],b∈{0,1}, crs) and msk := ({abe.mski,z[i]}i∈[`m], z).

KeyGen(msk, P):

1. Parse msk = ({abe.mski}i∈[`m], z).
2. Generate ski ← ABE.KeyGen(abe.mski, P) for every i ∈ [`m].
3. Generate and output skP := iO(D[crs, {ski}i, z]), where circuit D is described in Figure 1.

Enc(pk, X,m) :

1. Parse pk = ({abe.pki,b}i∈[`m],b∈{0,1}, crs).
2. Generate CTi,b ← ABE.Enc(abe.pki,b, X,m[i]) for every i ∈ [`m] and b ∈ {0, 1}.
3. Generate π ← NIZK.Prove(crs, d, w) where d = ({(abe.pki,0, abe.pki,1,CTi,0,CTi,1)}i, X) and w =

(m, {ri,0, ri,1}i).
4. Output CTX := ({CTi,0,CTi,1}i∈[`m], π).

Dec(skP ,CTX) :

1. Parse skP = D̃ and CTX = ({CTi,0,CTi,1}i∈[`m], π).
2. If NIZK.Vrfy(crs, d, π) 6= >, output ⊥.
3. Compute and outputm := D̃(CTX).

FakeSetup(1λ, 1`m , aux′) :

1. Parse aux′ = X∗.
2. Generate (abe.pki,b, abe.mski,b)← ABE.Setup(1λ) for every i ∈ [`m] and b ∈ {0, 1}.
3. Choose z∗ ← {0, 1}`m .
4. Compute CT∗i,z∗[i] ← ABE.Enc(abe.pki,z∗[i], X∗, 0) and CT∗i,1−z∗[i] ← ABE.Enc(pki,1−z∗[i], X∗, 1) for

every i ∈ [`m].
5. Computes (c̃rs, td)← Sim1(1λ, d∗) where d∗ = ({(abe.pki,0, abe.pki,1,CT∗i,0,CT∗i,1)}i, X∗).
6. Output pk := ({abe.pki,b}i∈[`m],b∈{0,1}, c̃rs) and aux := ({abe.mski,b}i∈[`],b∈{0,1}, {CT∗i,b}i∈[`m], z

∗).

FakeSK(pk, aux, P) :

1. Parse aux = ({abe.mski,b}i∈[`m],b∈{0,1}, {CT∗i,b}i∈[`m], z
∗).

2. Generate sk0
i ← ABE.KeyGen(abe.mski,0, P) for every i ∈ [`m] and set sk0

P := {sk0
i }i.

13

3. Generate and output s̃k := iO(D0[c̃rs, sk0
P]), where circuit D0 is described in Figure 2.

FakeCT(pk, aux, X) :

1. Parse pk = ({abe.pki,b}i∈[`m],b∈{0,1}, c̃rs) and aux = ({abe.mski,b}i∈[`],b∈{0,1}, {CT∗i,b}i∈[`m], z
∗).

2. Compute π̃ ← Sim2(c̃rs, td, d∗).

3. Outputs C̃TX := ({CT∗i,b}i∈[`m],b∈{0,1}, π̃).

Reveal(pk, aux, C̃TX ,m) :

1. Parses aux = ({abe.mski,b}i∈[`m],b∈{0,1}, {CT∗i,b}i∈[`m], z
∗).

2. Outputs m̃sk := ({abe.mski,z∗[i]⊕m[i]}i∈[`m], z
∗ ⊕m).

Left-or-Right Decryption Circuit D
Input: A ciphertext CTX .

Hardwired value: crs, z, and {ski}i.

1. Parse CTX = ({CTi,0,CTi,1}i, π)
2. If NIZK.Vrfy(crs, d, π) 6= >, output ⊥.
3. Computem[i]← ABE.Dec(ski,CTi,z[i]) for i ∈ [`m].
4. Outputm := m[1]‖ · · · ‖m[`m].

Figure 1: The description of the left-or-right decryption circuit

Left Decryption Circuit D0

Input: A ciphertext CTX .

Hardwired value: c̃rs and sk0
P = {sk0

i }i.

1. Parse CTX = ({CTi,0,CTi,1}i, π)
2. If NIZK.Vrfy(crs, d, π) 6= >, output ⊥.
3. Computem[i]← ABE.Dec(sk0

i ,CTi,0) for i ∈ [`m].
4. Outputm := m[1]‖ · · · ‖m[`m].

Figure 2: The description of the left decryption circuit

Correctness. Correctness of Σnce easily follows from correctness of Σabe and completeness of Πnizk.

Security. We prove the following theorem.

Theorem 4.6. If Σabe is IND-sel-CPA and iO is secure IO for P/poly, and Πnizk is an SSS-NIZK proof system for NP,
Σnce is selective-message RNC secure NCABE.

Proof. We define a sequence of hybrid games.

• Hyb0: This is the same asExprnc-sel-cpa
Σ,A (λ, 0). LetX∗,m∗, andd∗ = ({(abe.pki,0, abe.pki,1,CT∗i,0,CT∗i,1)}i, X∗)

be the target attribute, target message, and statement of NIZK used in the target ciphertext, respectively.

14

• Hyb1: This is the same as Hyb0 except that the challenger generates a simulated NIZK proof for the target
ciphertext instead of real one. That is, it generates π̃ ← Sim2(c̃rs, td, d∗) where (c̃rs, td) ← Sim1(1λ, d∗),
d∗ = ({abe.pki,0, abe.pki,1,CT∗i,0,CT∗i,1}i, X∗), andX∗ is the target attribute that the adversary declares at the
beginning of the game. In addition, it uses c̃rs instead of crs as a part of pk. This change is indistinguishable by
the computational ZK property of Πnizk.

• Hyb2: This is the same as Hyb1 except that the challenger uses circuit D0[c̃rs, sk0
P] instead of D[crs, {ski}i, z] to

generate secret keys for key queries. That is, it returns s̃k = iO(D0[c̃rs, sk0
P]) instead of sk = iO(D[crs, {ski}i, z]).

This change is indistinguishable by the IO security and statistical simulation-soundness of Πnizk. Note that secret
keys do not depend on z in this game. Let q be the total number of key queries.

• Hyb3: This is the same asHyb2 except that the challenger generates an inconsistent target ciphertext. That is, it gen-
erates CT∗i,1−z[i] ← ABE.Enc(abe.pki,1−z[i], X∗, 1−m∗[i]) and CT∗i,z[i] ← ABE.Enc(abe.pki,z[i], X∗,m∗[i])
instead of double encryption ofm[i] for all i. Note that the NIZK proof in the target ciphertext is simulated in this
game.

• Hyb4: This is the same as Hyb3 except that the challenger chooses z∗ ← {0, 1}`m , computes CT∗i,z[i]∗ ←
ABE.Enc(abe.pki,z∗[i], X∗, 0) and CT∗i,1−z∗[i] ← ABE.Enc(abe.pki,1−z∗[i], X∗, 1), and sets m̃sk := (z∗ ⊕m∗,
{mski,z[i]∗⊕m∗[i]}i∈[`m]) as a master secret key.

We prove Propositions 4.7 to 4.10.

Proposition 4.7. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ Advc-zk
B1,Πnizk

(λ).

Proof of Proposition 4.7. The only difference of these two games is the NIZK proof in the target ciphertext. The
distinguisher declares the target attribute X∗ and message m∗ at the beginning of the game since we consider the
selective setting. We can construct an adversary B1 for computational ZK as follows by using the distinguisher D.
B1 generates (abe.pki,b, abe.mski,b) ← ABE.Setup(1λ), CT∗i,b ← ABE.Enc(abe.pki,b, X∗,m∗[i]; ri,b) for i ∈ [`m]
and b ∈ {0, 1}. B1 sets d∗ := ({abe.pki,0, abe.pki,1,CT∗i,0,CT∗i,1}i, X∗), sends (d∗, w∗) to the challenger where
w∗ = (m∗, {ri,0, ri,1}i) is the witness for d∗ and receives (crs∗, π∗). B1 sets pk := ({abe.pki,b}i,b, crs∗) and
CT∗ := ({CT∗i,b}i,b, π∗). B1 passes pk to D and simulate secret keys by using {mski,b}i,b.

• If (crs∗, π∗) consists of crs∗ ← NIZK.Setup(1λ) and π∗ ← NIZK.Prove(crs, d∗, w∗), B1 perfectly simulates
Hyb0

• If (crs∗, π∗) consists of (crs∗, td)← Sim1(1λ, d∗) and π∗ ← Sim2(crs∗, td, d∗), B1 perfectly simulates Hyb1

Thus, if D distinguishes these two games, B1 breaks the computational ZK property of Πnizk. We complete the
proof.

Proposition 4.8. IfΠnizk is statistically simulation-sound, |Pr[Hyb1 = 1]−Pr[Hyb2 = 1]| ≤ q ·Advio
B2,iO(λ)+negl(λ).

Proof of Proposition 4.8. We define more hybrid games. Recall q is the total number of key queries.

Hybj1: This is the same as Hyb1 except that

• for j < k ≤ q, the challenger generates sk = iO(D[crs, {ski}i, z]) for the k-th key query.

• for 1 ≤ k ≤ j, the challenger generates s̃k = iO(D0[c̃rs, sk0
P]) for the k-th key query.

Clearly, Hyb0
1 = Hyb1 and Hybq1 = Hyb2.

Let Invalid be an event that the adversary generatesCT†i,0 = ABE.Enc(abe.pki,0, X†,m0[i]),CT†i,1 = ABE.Enc(abe.pki,1,
X†,m1[i]), and π† such that NIZK.Vrfy(c̃rs, d†, π†) = > where d† = ({abe.pki,0, abe.pki,1,CT†i,0,CT†i,1}i, X†),
m0[i] 6= m1[i] for some i ∈ [`m], and (c̃rs, td)← Sim1(1λ, d∗) such that d∗ 6= d†. By the definition of D and D0, their
functionalities are equivalent for all inputs as long as Invalid does not happen. By the statistical simulation-soundness,
there is no false statement d† such that d† 6= d∗ and a proof for d† can pass the verification except negligible probability.

15

Note that if d† = d∗, X† = X∗ and the decryption algorithm must output ⊥ since P (X∗) = ⊥ by the admissible
property of the ABE security. This means both D and D0 output ⊥ for the target ciphertext. That is, Invalid happens
with negligible probability by the statistical simulation-soundness. Thus, D and D0 are functionally equivalent except
negligible probability.

The difference between Hybj−1
1 and Hybj1 is that the j-th key query answer is generated by D0 instead of D. These

are indistinguishable by the IO security. That is, |Pr[Hybj−1
i = 1]− Pr[Hybji = 1]| ≤ Advio

B3,iO(λ) + negl(λ).

Proposition 4.9. |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ `m · Advind-sel-cpa
B3,Σabe

(λ).

Proof of Proposition 4.9. We define more hybrid games. Recall `m is the length of plaintexts.

Hybj2: This is the same as Hyb2 except that

• for j < i ≤ `m, the challenger generates CT∗i,b ← ABE.Enc(abe.pki,b, X∗,m[i]) for b ∈ {0, 1}.
• for 1 ≤ i ≤ j, the challenger generatesCT∗i,1−z[i] ← ABE.Enc(abe.pki,1−z[i], X∗, 1−m[i]) andCT∗i,z[i] ←

ABE.Enc(abe.pki,z[i],m[i]).

Clearly, Hyb0
2 = Hyb2 and Hyb`m

2 = Hyb3.

The difference between Hybj2 and Hybj−1
2 is the j-th component of the target ciphertext is valid or invalid. However, in

these two games, msk := ({abe.mski,z[i]}i∈[`m], z). That is, {mskj,1−z[j]}j is never revealed to the adversary.
We can construct an adversary B3 that breaks IND-sel-CPA security of Σabe under key abe.pkj,1−z[j] by using

the distinguisher D of these two games. D first declares the target attribute X∗ and target message m∗. B3
passes X∗ to the challenger, receives abe.pk, and sets abe.pkj,1−z[j] := abe.pk. For other public keys (that is,
{abe.pki,b}i,b \ {abe.pkj,1−z[j]}), B3 generates them by itself. B3 sends {abe.pki,b}i,b to the distinguisher. When the
distinguisher sends a key queryP ,B3 passesP to the challenger and receives skj,1−z[j] ← ABE.KeyGen(mskj,1−z[j], P).
For other secret keys for P (that is, {ski,b ← ABE.KeyGen(mski,b, P)}i,b \ {skj,1−z[j]}), B3 generates them by itself
since it has {mski,b}i,b except mskj,1−z[j]. Thus, B3 can compute s̃k = iO(D0[c̃rs, sk0

P]).
At some point, B3 sends (m∗[j], 1−m∗[j]) to the challenger and receives CT∗j,1−z[j]. For (i, b) ∈ [`m]× {0, 1} \

(j, 1− z[j]), B3 generates CT∗j,z[j] ← ABE.Enc(abe.pkj,z[j], X∗,m∗[j]) and {CTi,b}i∈[`m]\{j},b∈{0,1} as in Hybj2 and
Hybj−1

2 . Note that the difference between two games is the j-th component (and in particular (j, 1− z[j]) part) of the
target ciphertext. Again, B3 simulates answers for secret key queries as above. B3 outputs whatever D outputs.

• If CT∗j,1−z[j] ← ABE.Enc(abe.pkj,1−z[j], X∗,m∗[j]), B3 perfectly simulates Hybj−1
i .

• If CT∗j,1−z[j] ← ABE.Enc(abe.pkj,1−z[j], X∗, 1−m∗[j]), B3 perfectly simulates Hybji .

Thus, if D distinguishes these two games, B3 breaks IND-sel-CPA security of Σabe. This completes the proof.

Proposition 4.10. Hyb3 = Hyb4.

Proof of Proposition 4.10. This is a conceptual change. The advantage of distinguishing these two games is 0 since we
can see that these two games are identical if we set z := z∗ ⊕m∗. Note that secret keys do not depend on z in these
games.

Clearly, Hyb4 = Exprnc-sel-cpa
Σ,A (λ, 1). Therefore, we complete the proof by Propositions 4.7 to 4.10.

4.3 ABE with Certified Deletion from NCABE and SKE with Certified Deletion
In this section, we construct ABE with certified deletion from NCABE and OT-CD secure SKE with certified deletion.

16

OurABEwith certifieddeletion scheme. Weconstruct anABEwith certified deletion schemeΣcd = (Setup,KeyGen,
Enc,Dec,Del,Vrfy) with plaintext spaceM, attribute space X , policy space P from an NCABE scheme Σnce =
NCE.(Setup,KeyGen,Enc,Dec,FakeSetup,FakeSK,FakeCT,Reveal) with plaintext space {0, 1}`, attribute space X ,
policy space P and an SKE with certified deletion scheme Σskcd = SKE.(Gen,Enc,Dec,Del,Vrfy) with plaintext space
M and key space {0, 1}`.

Setup(1λ):

• Generate (nce.pk, nce.msk, nce.aux)← NCE.Setup(1λ).
• Output (pk,msk) := (nce.pk, nce.msk).

KeyGen(msk, P):

• Generate nce.skP ← NCE.KeyGen(nce.msk, P) and output skP := nce.skP .

Enc(pk, X,m):

• Parse pk = nce.pk.
• Generate ske.sk← SKE.Gen(1λ).
• Compute nce.CTX ← NCE.Enc(nce.pk, X, ske.sk) and ske.CT← SKE.Enc(ske.sk,m).
• Output CTX := (nce.CTX , ske.CT) and vk := ske.sk.

Dec(skP ,CTX):

• Parse skP = nce.skP and CTX = (nce.CTX , ske.CT).
• Compute sk′ ← NCE.Dec(nce.skP , nce.CTX).
• Compute and outputm′ ← SKE.Dec(sk′, ske.CT).

Del(CT):

• Parse CTX = (nce.CTX , ske.CT).
• Generate ske.cert← SKE.Del(ske.CT).
• Output cert := ske.cert.

Vrfy(vk, cert):

• Parse vk = ske.sk and cert = ske.cert.
• Output b← SKE.Vrfy(ske.sk, ske.cert).

Correctness. Correctness easily follows from correctness of Σskcd and Σnce.

Theorem 4.11. If Σnce is selective-message RNC secure NCABE and Σskcd is OT-CD secure, Σcd is IND-sel-CPA-CD
secure ABE.

Proof. We define the following hybrid game Hyb(b).

Hyb(b): This is the same as Expind-sel-cpa-cd
Σcd,A

(λ, b) except that following two differences: (1) the challenger generates
the target ciphertext as follows. It generates ske.sk ← SKE.Gen(1λ) and nce.aux ← FakeSetup(1λ, X∗),
and computes nce.CT∗X ← NCE.Fake(nce.pk, nce.aux, X∗) and ske.CT∗ ← SKE.Enc(ske.sk,mb). The
target ciphertext is CT∗X := (nce.CT∗, ske.CT∗). (2) the challenger generates secret keys as follows. It
generates nce.s̃kP ← NCE.FakeSK(nce.pk, nce.aux, P) and returns it. (3) The challenger reveals m̃sk ←
Reveal(nce.pk, nce.aux, nce.CT∗X , ske.sk) instead of nce.msk.

Proposition 4.12. |Pr[Expind-sel-cpa-cd
Σcd,A (λ, b) = 1]− Pr[Hyb(b) = 1]| ≤ Advrnc-sel2-cpa

Σnce,B1
(λ).

17

Proof. We construct an adversary B1 that breaks the selective-message RNC security of Σnce by using the distinguisher
D for these two games. First, the distinguisher declares the target attribute X∗. B1 generates ske.sk← SKE.Gen(1λ)
and passes (X∗, ske.sk) as the target attribute and message to the challenger, receives nce.pk, and passes nce.pk to D.

WhenD sends a key query P , B1 returns⊥ if P (X∗) = ⊥, otherwise it passes P to the challenger, receives skP , and
passes it to D. When the challenger sends (nce.CT∗X , nce.msk∗) to B1, B1 generates ske.CT← SKE.Enc(ske.sk,mb)
and sends (nce.CT∗X , ske.CT) to D as the challenge ciphertext. At some point, D outputs cert. If SKE.Vrfy(cert) = >,
B1 sends msk∗ to D.

• If (nce.CT∗X ,msk∗) = (NCE.Enc(nce.pk, X∗, ske.sk), nce.msk) and skP = NCE.KeyGen(nce.msk, P), B1
perfectly simulates Expind-sel-cpa-cd

Σcd,A (λ, b).

• If (nce.CT∗X ,msk∗) = (NCE.FakeCT(nce.pk, nce.aux, X∗),NCE.Reveal(nce.pk, nce.aux, nce.CT∗X , ske.sk))
and skP = NCE.FakeSK(nce.pk, nce.aux, P), B1 perfectly simulates Hyb(b).

Thus, if D distinguishes the two games, B1 breaks the selective-message RNC security. This completes the proof.

Proposition 4.13. |Pr[Hyb(0) = 1]− Pr[Hyb(1) = 1]| ≤ Advsk-ot-cd
Σskcd,B2

(λ).

Proof. We construct an adversary B2 that breaks the OT-CD security of Σskcd by using the distinguisherD for these two
games. First, D declares the target attribute X∗. B2 generates (nce.pk, nce.aux) ← NCE.Setup(1λ, X∗) and sends
nce.pk to D. When D sends a key query P , B2 generates s̃kP ← NCE.FakeSK(nce.pk, nce.aux, P) and returns it to
D. When D sends (m0,m1), B2 sends (m0,m1) to the challenger of OT-CD SKE, receives ske.CT∗ and generates
nce.C̃TX ← NCE.FakeCT(nce.pk, nce.aux, X∗). B2 sends (nce.C̃TX , ske.CT∗) to D as the challenge ciphertext. At
some point, D outputs cert. B2 passes cert to the challenger of OT-CD SKE. If the challenger returns ske.sk, B2
generates m̃sk← NCE.Reveal(nce.pk, nce.msk, nce.aux, nce.C̃TX , ske.sk) and sends m̃sk to D.

• If ske.CT∗ = SKE.Enc(ske.sk,m0), B2 perfectly simulates Hyb(0).

• If ske.CT∗ = SKE.Enc(ske.sk,m1), B2 perfectly simulates Hyb(1).

Thus, if D distinguishes the two games, we can break the OT-CD security. This completes the proof.

By Propositions 4.12 and 4.13, we immediately obtain Theorem 3.4.

Summary of this section. Since IO and OWFs imply computational NIZK proof for NP [BP15] and IND-sel-CPA
secure ABE with P = P/poly, we immediately obtain the following corollary by using Theorems 2.11, 2.18, 4.6
and 4.11.

Corollary 4.14. If there exist secure IO for P/poly against QPT adversaries, there exists ABE with certified deletion
with policy space P/poly.

Note that we can instantiate all building blocks except NCABE without IO (that is, can construct from the LWE
assumption against QPT adversaries).

References
[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing.

In IEEE International Conference on Computers Systems and Signal Processing, pages 175–179. IEEE,
1984. (Cited on page 1, 2.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011. (Cited on page 2.)

18

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for iO: Circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024, 2020.
https://eprint.iacr.org/2020/1024. (Cited on page 7.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1–6:48, 2012.
(Cited on page 1, 7.)

[BI20] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 92–122. Springer,
Heidelberg, November 2020. (Cited on page 1, 2, 4, 5.)

[BL20] Anne Broadbent and Sébastien Lord. Uncloneable quantum encryption via oracles. In Steven T. Flammia,
editor, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2020, June 9-12, 2020, Riga, Latvia, volume 158 of LIPIcs, pages 4:1–4:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. (Cited on page 2.)

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistinguisha-
bility obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 401–427. Springer, Heidelberg, March 2015. (Cited on page 18.)

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making UOWHFs practical. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 470–484. Springer, Heidelberg,
August 1997. (Cited on page 2.)

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation. In
28th ACM STOC, pages 639–648. ACM Press, May 1996. (Cited on page 1, 5.)

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key encryption. In
Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 150–168. Springer, Heidelberg, February 2005.
(Cited on page 1, 5, 6.)

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv, 2009.13865, 2020. (Cited on
page 2.)

[CRW19] Xavier Coiteux-Roy and StefanWolf. Proving erasure. 2019 IEEE International Symposium on Information
Theory (ISIT), Jul 2019. (Cited on page 2.)

[FM18] Honghao Fu and Carl A. Miller. Local randomness: Examples and application. Physical Review A, 97(3),
Mar 2018. (Cited on page 2.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–929,
2016. (Cited on page 7.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, 1986. (Cited on page 10.)

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. Cryptology ePrint
Archive, Report 2020/1010, 2020. https://eprint.iacr.org/2020/1010. (Cited on page 7.)

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309. (Cited on page 1, 3.)

19

https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2020/1010

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008. (Cited on page 3.)

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. J.
ACM, 62(6):45:1–45:33, 2015. (Cited on page 4.)

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable decryption keys. Cryptology ePrint Archive, Report
2020/877, 2020. https://eprint.iacr.org/2020/877. (Cited on page 2.)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. (Cited on page 10.)

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing
concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
221–242. Springer, Heidelberg, May 2000. (Cited on page 1, 5.)

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively secure and succinct
functional encryption: Improving security and efficiency, simultaneously. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551. Springer,
Heidelberg, August 2019. (Cited on page 1, 6.)

[KT20] Srijita Kundu and Ernest Tan. Composably secure device-independent encryption with certified deletion.
arXiv, 2011.12704, 2020. (Cited on page 2.)

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments. Cryptology
ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/279. (Cited on page 7.)

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 89–114. Springer, Heidelberg, August 2019. (Cited on page 6.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1–
34:40, 2009. (Cited on page 3.)

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005. (Cited on page 1,
3.)

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. J. ACM, 62(6):49:1–49:76, 2015. (Cited
on page 2.)

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983. (Cited on page 1, 2.)

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. Cryptology ePrint
Archive, Report 2020/1042, 2020. https://eprint.iacr.org/2020/1042. (Cited on page 7.)

20

https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2020/1042

	Introduction
	Our Result
	Related work

	Preliminaries
	Notations
	Cryptographic Tools

	Public Key Encryption with Certified Deletion
	Definition of PKE with Certified Deletion
	PKE with Certified Deletion from PKE and SKE with Certified Deletion

	Attribute-Based Encryption with Certified Deletion
	Definition of ABE with Certified Deletion
	Non-Committing ABE from IO
	ABE with Certified Deletion from NCABE and SKE with Certified Deletion

