
LESS-FM: Fine-tuning Signatures from the
Code Equivalence Problem

Alessandro Barenghi1, Jean-François Biasse2, Edoardo Persichetti3 and
Paolo Santini4

1Politecnico di Milano, 2University of South Florida, 3Florida Atlantic University, 4Università Politecnica delle
Marche

Abstract. Code-based cryptographic schemes are highly regarded among the quantum-safe alterna-
tives to current standards. Yet, designing code-based signatures using traditional methods has always
been a challenging task, and current proposals are still far from the target set by other post-quantum
primitives (e.g. lattice-based). In this paper, we revisit a recent work using an innovative approach for
signing, based on the hardness of the code equivalence problem. We introduce some optimizations and
provide a security analysis for all variants considered. We then show that the new parameters produce
instances of practical interest.

1 Introduction

Digital signature schemes are a fundamental primitive in modern times as they offer a way to achieve
authentication, one of the most important cryptographic goals. Since their inception, signature schemes have
traditionally been designed using classical number theory problems like integer factorization and computing
discrete logarithms. In [16], Biasse, Micheli, Persichetti and Santini described LESS, a Zero-Knowledge
protocol and signature scheme whose security provably relies on the hardness of the Code Equivalence
problem (CE). Unlike signatures based on factoring or discrete logarithms, there does not seem to be efficient
quantum attacks against LESS. The LESS signature scheme differs from the other proposals for quantum-
safe signatures based on coding theory, because it does not rely on the hardness of the Syndrome Decoding
Problem (SDP). Note that the CE problem can be solved using decoding algorithms in the Hamming metric,
such as ISD (e.g. [25, 14]); however, it yields more efficient choices of parameters, overall, than schemes
based directly on SDP. It is worth noting also that the graph isomorphism problem provably reduces to
(permutation) CE. Prior to the appearance of an efficient algorithm for the resolution of the former [6], this
could have documented hardness of CE. However, an efficient solution to the graph isomorphism problem
does not give any information on the hardness of CE. Finally, we point out that if CE is NP-hard, then the
polynomial hierarchy collapses, thus making CE unlikely to be NP-hard.

Interestingly, CE can be framed as a cryptographic group action [2] (also described by Couveignes as a
hard homogeneous space [18]). Such a framework can be used to highlight similarities between LESS and other
ZK protocols and signature schemes such as SeaSign [19]. This can facilitate the adaptation of optimizations
from other schemes based on group actions to the case of LESS. The main roadblock to the conversion of
other existing schemes is that the group action induced by CE is non-commutative. In particular, this seems
to prevent a CE-based key agreement protocol à la Diffie-Hellman.

Our Contribution In this paper, we build on the original description of LESS [16]. Our main contribution,
is to leverage the cryptographic group action framework to introduce a number of significant optimizations.
We present two techniques. The first is a generalization of the underlying identification scheme that makes
use of multi-bit challenges, by changing the role of the selected challenge bits. This results in a tradeoff, with
a reduction in signature size, at the expense of an increase in public key size. The second technique, instead,
exploits the imbalance between the cost of different responses corresponding to the chosen challenge bits.
Choosing the challenge string to have a fixed, low Hamming weight ends up in much shorter signatures, as
well as providing constant-time verification. We show that the two techniques can be combined, providing a
flexible and practical scheme. We give an explicit proof for the EUF-CMA security property of the original

LESS scheme, with minor tweaks. This proof serves as a basis for the security of the variant schemes. Note
that the multi-bit variants rely on a new problem which we call Multiple Codes Linear Equivalence (MCLE,
Problem 2), and for which we give a tight reduction to the Code Equivalence problem. Finally, we present
multiple sets of parameters for a concrete instantiation of our scheme, and make practical considerations,
including a comparison with the existing code-based alternatives.

The paper is organized as follows. We begin by recalling some useful background notions in Section 2.
The LESS signature scheme, and the underlying group action, are presented in Section 3, which includes a
dedicated proof of security for the EUF-CMA security notion. In Section 4, we present an extensive analysis
of the different attacks techniques against the code equivalence problem. The various optimizations for the
scheme are described in Section 5. Finally, parameters and implementation details are given in Section 6,
including a comparison with other code-based signature schemes.

2 Background

We will use the following conventions throughout the rest of the paper:

a a scalar
A a set
a a vector
A a matrix
a a function or relation
A an algorithm
In the n× n identity matrix

[a; b] the set of integers {a, a+ 1, . . . , b}
U(A) the uniform distribution over the set A
$←− A sampling uniformly at random from A

We denote with Zq the ring of integers modulo q, and with Fq the finite field of order q, as is customary;
obviously, we have Zq = Fq when q is a prime. The multiplicative group of Fq is indicated as F∗q . We denote
with Aut(Fq) the group of automorphisms of the field Fq. The sets of vectors and matrices with elements in
Zq (resp. Fq) are denoted by Znq and Zm×nq (resp. Fnq and Fm×nq). We also write Znq,w (resp. Fnq,w) to indicate
the set of vectors with components in Zq (resp. Fq) having length n and Hamming weight w. We write GLk(q)
for the set of invertible k × k matrices with elements in Fq, or simply GLk when the finite field is implicit.
Let Sn be the set of permutations over n elements. Given a vector x = (x1, · · · , xn) ∈ Fnq and a permutation
π ∈ Sn, we write the action of π on x as π(x) = (xπ(1), · · · , xπ(n)). Note that a permutation can equivalently
be described as an n× n matrix with exactly one 1 per row and column. Analogously, for linear isometries,
i.e. transformations τ = (v;π) ∈ F∗nq oSn, we write the action on a vector x as τ(x) = (v1xπ(1), · · · , vnxπ(n)).
Then, we can also describe these in matrix form as a product Q = DP where P is an n × n permutation
matrix and D = {dij} is an n × n diagonal matrix with entries in F∗q . We denote with Mn the set of such
matrices, usually known as monomial matrices.

2.1 Cryptographic Group Actions

At a high level, a group action is an operator involving a group, for which an identity exists, and that verifies
the compatibility property, as follows.

Definition 1. Let X be a set and (G, ◦) be a group. A group action is a mapping

? : X ×G→ X
(x, g) → x ? g

such that, for all x ∈ X and g1, g2 ∈ G, it holds that (x ? g1) ? g2 = x ? (g1 ◦ g2).

2

A group action is usually called cryptographic if it satisfies some additional properties that make it inter-
esting in a cryptographic context. In the first place, besides efficient sampling, computation, and membership
testing, a cryptographic group action should certainly be one-way, i.e. given randomly chosen x1, x2 ∈ X, it
should be hard to find g ∈ G such that x1 ? g = x2 (if such a g exists). Other desirable properties include,
for instance, pseudorandomness of the output, as well as more traditional ones such as commutativity, tran-
sitivity etc. Due to space constraints, we refer the reader to [2] for an extensive treatment of cryptographic
group actions and their properties.

2.2 Code Equivalence

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional vector subspace of Fnq . It can

be represented by a matrix G ∈ Fk×nq with rank k, called generator matrix, whose rows form a basis for the

vector space, i.e., C = {uG, u ∈ Fkq}. Alternatively, a linear code can be represented as the kernel of a rank

n−k matrix H ∈ F(n−k)×n
q with rank n−k, known as parity-check matrix, i.e. C = {x ∈ Fnq : HxT = 0}. For

both representations, there exists a standard choice, called systematic form, which corresponds, respectively,
to G = (Ik |M) and H = (−MT | In−k). Generator (resp. parity-check) matrices in systematic form can
be obtained very simply by calculating the row-reduced echelon form1 starting from any other generator
(resp. parity-check) matrix. We denote such a procedure by sf. The parity-check matrix is important also
as it is a generator for the dual code, defined as the set of words that are orthogonal to the code, i.e.
C⊥ = {y ∈ Fnq : ∀x ∈ C, x · yT = 0}. Codes that are contained in their dual, i.e. C ⊆ C⊥, are called

self-orthogonal or weakly self-dual, and codes that are equal to their dual, i.e. C = C⊥, are called simply
self-dual.

The concept of equivalence between two codes, in its most general formulation, is defined as follows.

Definition 2 (Code Equivalence). We say that two linear codes C and C′ are equivalent, and write
C ∼ C′, if there exist a field automorphism α ∈ Aut(Fq) and a linear isometry τ = (v;π) ∈ F∗nq o Sn that
map C into C′, i.e. such that C′ = τ(α(C)) = {y ∈ Fnq : y = µ(α(x)), x ∈ C}.

Clearly, if C and C′ are two codes with generator matrices G and G′, respectively, it holds that

C ∼ C′ ⇐⇒ ∃(S; (α,Q)) ∈ GLk o (Aut(Fq)×Mn) s.t. G′ = Sα(GQ).

The notion we just presented is usually known as semilinear equivalence and it is the most generic. If the
field automorphism is the trivial one (i.e. α = id), then the notion is simply known as linear equivalence. If,
furthermore, the monomial matrix is a permutation (i.e. Q = DP with D = In), then the notion is known
as permutation equivalence. Note that, in this work, we always work with prime fields Fq, and therefore the
last two notions are the only ones of interest to us. Finally, we state the following computational2 problem.

Problem 1 (Code Equivalence) Let G,G′ ∈ Fk×nq be two generator matrices for two linearly equivalent
codes C and C′. Find a field automorphism α ∈ Aut(Fq) and two matrices S ∈ GLk and Q ∈ Mn such that
G′ = Sα(GQ).

We normally refer, respectively, to semilinear, linear or permutation equivalence problem, according to
what is the notion of code equivalence considered. Alternatively, we refer simply to the code equivalence
problem where such distinction is not important.

1 In general, it is possible that computing the row-reduced echelon form of G returns a matrix that does not have
full rank. If so, there are procedures to obtain a matrix in systematic form by reducing with respect to a different
minor (see e.g. [3]).

2 Note that this problem is traditionally formulated as a decisional problem in literature, yet for our purposes it is
more natural to present here the search version.

3

3 Code-based Group Actions and Applications

We begin by describing the group action associated to code equivalence. To do this we consider the set
X ⊆ Fk×nq comprised of all full-rank k × n matrices, i.e. the set of generator matrices of [n, k]-linear codes,
andG = GLko(Aut(Fq)×Mn). Note that this group is isomorphic to the group (GLk×(F∗q)n)o(Aut(Fq)×Sn) if
we decompose each monomial matrix Q ∈ Mn into the product D ·P ∈ (F∗q)noMn; then the group operation
◦ is defined as

((S,D); (α,P)) ◦ ((S′,D′); (α′,P ′)) = ((Sα(S′),D · α(D′P)); (αα′,PP ′)).

The group action is given by

? : X ×G → X
(G, (S; (α,Q)))→ Sα(GQ)

It is easy to see that the action is well-formed, with the identity element being (Ik; (id, In)). Furthermore,
it satisfies some essential properties that are of cryptographic interest. First of all, the action verifies all the
basic requirements3 such as efficient membership testing, sampling, computation etc., to which the authors
in [2] assign the nomenclature of effective. The action is also one-way, based on the presumed hardness of
the code equivalence problem. In fact, given G and Sα(GQ), it should be infeasible to recover S, α and Q
in polynomial time, else this would provide a solver for the problem. Unfortunately, our group action does
not satisfy some useful additional properties (as formalized in [2]). For instance, it is not transitive, meaning
that it is not possible to connect every element of X (i.e. every generator matrix) via a group element.
Most importantly, the action is not commutative, which represents a considerable obstacle in the design of
cryptographic protocols. Nevertheless, it is possible to employ the group action for this purpose successfully,
as we will see.

Remark 1. Note that the above formulation includes some trivial instances, for example those such that
Q = vIn, for v ∈ F∗q , in which case the action returns just a different generator matrix for the same code.
Thus, in practice, it makes sense to consider a simplified version of the group action, where X contains only
the (full-rank) generator matrices in systematic form, and G = Aut(Fq)×Mn.

The work of [16] introduces a 3-pass identification scheme, with soundness error 1/2, which defines a zero-
knowledge proof of knowledge of an isometry between codes, and is based precisely on the code equivalence
setting. The authors then suggest that such a scheme can be turned into a signature scheme by applying the
Fiat-Shamir transformation, without however providing full details. We give here an explicit description of
such a scheme, with the addition of some minor tweaks4.

In Table 1, for convenience, we have set G0 = G and Q0 = In, which allows to formulate a simple and
compact description. It is then immediate to verify the correctness of the scheme, which follows from the
argument given in [16, Section 4]. In particular, following the notation of Table 1, when hi = 0, we have

µi = Q̃i and so Ĝi = sf(G0µi) = sf(GQ̃i) = G̃i; on the other hand, when hi = 1, we have µi = Q−11 Q̃i

and so again Ĝi = sf(G1µi) = sf(GQ1Q
−1
1 Q̃i) = G̃i. We remark that the scheme may be equivalently

instantiated by relying on permutations, instead of monomials. To this end, it is enough to replace the set
group Mn with that of permutations Sn.

We now show that the LESS signature scheme is EUF-CMA secure. We begin with the following trivial
result.

Lemma 1. Let Mn be the set of monomial matrices as defined in Section 2. Then for any A ∈ Mn and

B
$←− Mn, we have that A−1B is uniformly distributed over Mn.

3 Note that the concepts of origin is not needed and does not apply to our case.
4 For example, the original scheme did not use public keys in systematic form.

4

Setup Input parameters q, n, k, λ ∈ N, then set t = λ. Choose matrix G ∈ Fk×nq and hash function

H : {0, 1}∗ → {0, 1}λ. Set Q0 = In and G0 = sf(G).

Private Key Monomial matrix Q1 ∈ Mn.

Public Key Generator matrix G1 = sf(GQ1).

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).
Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 1: The LESS Signature Scheme.

Next, we recall the Forking Lemma, which is the traditional tool required for proofs of this kind. We use
the formulation of Bellare-Neven (see [11]).

Lemma 2. Fix an integer Q ≥ 1 and a set H of size |H| ≥ 2. Let A be a randomized algorithm that takes
as input elements h1, . . . , hQ ∈ H and outputs a pair (J, σ) where 1 ≤ J ≤ Q with probability P . Consider
the following experiment:

1. Choose h1, . . . , hQ uniformly at random from H.
2. A(h1, . . . , hQ) outputs (I, σ) with I ≥ 1.
3. Choose h′I , . . . , h

′
Q uniformly at random from H.

4. A(h1, . . . , hI−1, h
′
I , . . . , h

′
Q) outputs (I ′, σ′).

Then the probability that I ′ = I and h′I 6= hI is at least

P

(
P

Q
− 1

|H|

)
.

The main result is given next.

Theorem 1. The LESS signature scheme of Table 1 is existentially unforgeable under adaptive chosen-
message attacks, in the random oracle model, under the hardness of the linear code equivalence problem.

Proof. Let A be a polynomial-time EUF-CMA adversary for the signature scheme, as defined in Definition 4.
A takes as input a verification key vk, then performs a polynomial number of signing queries, say Qs, and
a polynomial number of random oracle queries, say Qr. Eventually, A outputs a forgery (m∗, σ∗), with a
certain probability of success p. We now show how to construct an adversary A′ that is able to solve the
linear code equivalence problem. A′ will interact with A and use it as a subroutine, playing the role of the
challenger in the EUF-CMA game and simulating correct executions of the LESS protocol, without obviously
having access to the private key.

To begin with, A′ is given an instance (G,G′ = SGQ) of Problem 1, which he sets up as public key in
the simulated LESS protocol. A′ will answer signing queries and random oracle queries as described below;
to ensure consistency of the simulation, the queries will be tracked with the help of a table T, initially empty,
where the calls to the random oracle will be stored as they are answered, in the form of pairs (input, output).

5

Setup. Set G0 = G and G1 = G′.

Random Oracle Queries. In a random oracle query, A submits an input x of the form (Ĝ0, . . . , Ĝt−1,m)
and expects to receive a λ-bit string h. A′ proceeds as follows:

1. Look up x in T. If (x, h) ∈ T for some h, return h and halt.

2. Generate uniformly at random a λ-bit string h.

3. Add (x, h) to T.

4. Return h.

Signing Queries. In a signing query, A submits a message m and expects to receive a valid signature σ for
it. A′ proceeds as follows:

1. Generate uniformly at random a λ-bit string h.

2. Generate uniformly at random matrices Q̂0, . . . , Q̂t−1.

3. Set µi = Q̂i.

4. Return signature σ = (µ0, . . . µt−1, h).

After that, A′ adjusts his registry of queries by recording the query corresponding to h in table T. More
specifically, A′ will parse h = h0, . . . ht−1, where hi ∈ {0, 1}, then compute gi = sf(Ghiµi) and finally set h

to be the response to the random oracle query with input (Ĝ0, . . . , Ĝt−1,m). Note that, due to Lemma 1,
signatures produced in this way are indistinguishable from authentic signatures, since they follow the exact
same distribution.

The simulation halts if, during a signing query, the input to the random oracle had already been queried
before, in which case the signing query outputs ⊥ instead. Note that this can only happen with negligible
probability; more precisely, the probability is at most q′/Kt, where q′ = qs+qr is the total number of queries
performed, and K is an upper bound on the probability of finding a collision, i.e. sampling two monomial
matrices that lead to linearly equivalent codes (see Proposition 10 of Appendix B).

Once A is done performing queries, it will output a forgery (m, σ), where σ = (µ0, . . . µt−1, h0, . . . ht−1),
that successfully passes verification. At this point, A′ rewinds his tape and plays the simulation again, in the
exact same way, except that one of the random oracle queries is answered differently. By the Forking Lemma,
A will now output, with non-negligible probability, a forgery (m′, σ′), where σ′ = (µ′0, . . . µ

′
t−1, h

′
0, . . . h

′
t−1),

for the same message m′ = m and the same random oracle input (Ĝ0, . . . , Ĝt−1,m), such that σ′ 6= σ. Let
l be the index such that h′l 6= hl; then sf(Gh′l

µ′l) = sf(Ghlµl), which means that the monomial matrix µ′lµ
−1
l

is a solution to the linear code equivalence problem as desired. ut

4 Solving the Code Equivalence Problem

As proven in [28], the permutation equivalence problem is unlikely to be NP-complete, since this property
would imply a collapse of the polynomial hierarchy. Yet, while the problem can be efficiently solved for
some families of codes, there are however many instances that, after almost 40 years of study, are still
intractable. Below, we discuss the best known solvers for the code equivalence problem, in order to carefully
assess its security. We will first deal with the case of permutation equivalence, and report the complexity
of all techniques to solve this problem. Then, we will see how these techniques adapt to the case of linear
equivalences.

We start by describing how the number of codewords of some desired weight (without considering scalar
multiples) can be estimated for a random code.

6

Proposition 1. Let C ⊆ Fnq be a random linear code with length n and dimension k. Let Aw be the set of
codewords of C such that

- if c ∈ C has weight w, then bc ∈ Aw for some b ∈ F∗q ;

- bc 6= b′c′, for all b, b′ ∈ F∗q and all c 6= c′ ∈ Aw.

Then, the average cardinality of Aw is given by

Nw =

(
n

w

)
(q − 1)w−2qk−n+1.

Proof. See Appendix C.

We anticipate that, in the subsequent analysis, we will frequently make use of this result. In the following,
we recall a trivial property of code equivalence.

Proposition 2. Let C1,C2 ⊆ Fnq be two linear codes with dimension k, and let C⊥1 , C⊥2 be their duals. Then

i. if π ∈ Sn is such that π(C⊥1) = C⊥2 , then also π(C1) = C2;

ii. if µ ∈ Mn is such that µ(C⊥1) = C⊥2 , then also µ′(C1) = C2, where µ′ is derived from µ by taking the
reciprocal of the scaling factors.

The above proposition is fundamental to understand the hardness of solving the code equivalence problem.
Indeed, the problem can equivalently be solved by looking at the given codes, or at their duals. For the
sake of simplicity, in the following we will describe all the algorithms and procedures by considering solely
the initially given codes; to derive the corresponding complexity for the attack on the duals, it is enough
to replace k with n − k in all the provided formulas. Finally, we will first focus on methods to solve the
permutation equivalence problem, and then describe how they can be adapted to tackle the more general
case of linear equivalences.

4.1 Leon’s Algorithm

Chronologically, the first method capable of solving the code equivalence problem is due to Leon [25], and
is based on the following reasoning. Let C1 and C2 be two linear codes with length n and dimension k, and
π ∈ Sn such that π(C1) = C2. Then, for each X ⊆ C1 there must exist Y ⊆ C2, having the same cardinality
of X and such that π(X) = Y . Thus, among all the maps from X to Y , there must necessarily also be those
mapping C1 into C2. In [25], Leon proposes an algorithm that constructs the group of permutations between
two sets, with a running time that is polynomial in the cardinality of the sets. Starting from the observation
that permutations (as well as linear and semilinear isometries) preserve the Hamming weight, Leon suggests
to use the sets of codeword with a fixed (and properly low) weight w.

Let MorSn(Bw1 , B
w
2) be the group of all permutations π ∈ Sn such that π(Bw1) = Bw2 . In a nutshell, Leon’s

algorithm operates as follows:

1. for i = 1, 2, compute Bwi = {c ∈ Ci | wt(c) = w};
2. find generators of MorSn(Bw1 , B

w
2);

3. check if there exists π ∈ MorSn(Bw1 , B
w
2) such that π(C1) = C2.

As Leon proves in the original paper, the complexity of the second and third steps is polynomial in the
cardinality of Bw1 and Bw2 , which we estimate as (q − 1)Nw (see Proposition 1). This also allows us to
properly choose the value of w. Indeed, when w is too high, then also Nw may become so high that the
second step (i.e., the construction of MorSn(Bw1 , B

w
2)) becomes too time-consuming. On the other hand, if w

is too low, then the sets Bw1 and Bw2 are rather small and do not possess enough structure, in the sense that
there may exist a very large number of maps from Bw1 to Bw2 (so, the third step becomes too time-consuming).
Heuristically, optimal values of w are those that are slightly larger than the minimum distance of the codes

7

(which can be estimated with the Gilbert-Varshamov distance). Indeed, this normally guarantees that the
sets Bw1 and Bw2 are moderately small and, at the same time, contain a sufficient number of codewords.

It is evident that the bottleneck, in the algorithm’s time complexity, is given by the codeword search
in Step 1. Given that we are interested in producing low weight codewords, the best option is to rely on
Information-Set Decoding (ISD) type algorithms. We refer the reader to [7] for a review of ISD algorithms
in the binary case, and present a brief treatment of the non-binary case in Appendix E.

Putting everything together, we are able to assess the complexity of Leon’s algorithm as follows.

Proposition 3. Let C1 ⊆ Fnq be a random code with dimension k, and C2 = π(C1), with π being a randomly
picked permutation. Then, the complexity of using Leon’s algorithm to solve the permutation equivalence
problem on the pair C1, C2 is at least

O

(
CISD(q, n, k, w) · 2

Nw∑
i=1

1

i

)
,

where Nw is the number of weight w-codewords (neglecting scalar multiples) estimated as in Proposition 1,
w is chosen as the smallest integer such that Nw ≥ 2, and CISD(q, n, k, dGV) denotes the time complexity
of an ISD algorithm, searching for a codeword with weight dGV in a linear code with length n, dimension k
and defined over Fq.

Proof. We first consider the cost of the codeword enumeration in Step 1. To set w, we make the following
conservative reasoning. When Bw1 and Bw2 are too small, there may exist a prohibitively large number of
permutations mapping Bw1 into Bw2 . Assume that w is so small that Nw = 1; then, the sets Bw1 and Bw2 are
formed by q−1 codewords, and we trivially have that MorSn(Bw1 , B

w
2) contains at least (n−w)! permutations.

Unless n is extremely low, such a number is prohibitively large so that the third step becomes too time-
consuming. To avoid this, we must require Bw1 and Bw2 to show sufficient structure, i.e., we require Nw to
be sufficiently large. However, setting a precise bound on the size of Nw requires troublesome computations.
Hence, conservatively, we assume that whenever Nw ≥ 2 the size of Bw1 and Bw2 is large enough to make the
set MorSn(Bw1 , B

w
2) small enough, so that testing all the contained permutations can be done in reasonable

time.

Note that, in practice, when the value of w is properly chosen, it happens that the second and third steps
of Leon’s algorithm run with a computational complexity that is significantly lower than that of codewords
enumeration. Hence, conservatively, we assess the cost of Leon’s algorithm with that of its first step. To
this end, we model an ISD algorithm as an oracle that, for each call, returns a random codeword with the
desired weight, using time complexity given by CISD(q, n, k, w)/Nw. Let us first focus on C1: since the code
contains Nw codewords of the desired weight, the first ISD call will return one of them with time complexity
CISD(q, n, k, w)/Nw. In the second call, we desire a distinct codeword, so we have a complexity that is
CISD(q, n, k, w)/(Nw − 1). If we iterate this reasoning, we get that the codewords enumeration for C1 takes
time

O

(
CISD(q, n, k, w) ·

Nw∑
i=1

1

i

)
.

Finally, we double the cost because the enumeration has to be repeated for C2. ut

4.2 Beullens’ Algorithm

In a recent work [14], Beullens introduced a novel approach to solve the code equivalence problem. Basically,
Beullens’ algorithm can be thought of as a refinement of Leon’s algorithm, which tries to reduce the com-
putational complexity by avoiding to compute the whole set of codewords with some fixed weight. Before

8

entering into the details of the algorithm, we hint at its flavour with a preliminary reasoning. As before, we
denote with C1 and C2 two linear codes such that π(C1) = C2 for some permutation π, and indicate with
Aw1 ⊆ C1 and Aw2 ⊆ C2 the sets of codewords with fixed weight w (again, neglecting multiple scalars). Let
X ⊆ Aw1 and Y ⊆ Aw2 and, for (x,y) ∈ X × Y , denote

MorSn(x,y) = {ϕ ∈ Sn | ϕ(x) = y} .

In other words, MorSn(x,y) is the set of all permutations mapping x into y. Note that MorSn(x,y) is non-
empty if and only if the multisets defined by the entries of x and y are identical. Furthermore, if x and y
are such that π(x) = y, then we have π ∈ MorSn .

In a nutshell, Beullens’ algorithm works as follows. First, it computes at random the sets X and Y , then
searches for collisions in the multisets defined by the entries of all pairs x ∈ X, y ∈ Y . For each collision
found, the algorithm computes the set MorSn(x,y), containing candidates for the permutation transforming
C1 into C2. Finally, it checks each candidate permutation ϕ ∈ MorSn(x,y), by testing if it indeed holds that
ϕ(C1) = C2. If this relation does not hold true, the algorithm restarts by picking another colliding pair (x,y).

The procedure is detailed in Algorithm 1. We have used MS to denote the function returning the multiset
of entries for the input vector, while Lex denotes the function that, on input a, returns the first element,
in lexicographical order, of the set {MS(ba) | b ∈ F∗q}. To understand how these functions operate, we have
reported a toy example in Figure 1.

MS(1a) = {1, 2, 2, 3, 3, 3, 4}
MS(2a) = {1, 1, 1, 2, 3, 4, 4}
MS(3a) = {1, 1, 2, 3, 4, 4, 4}
MS(4a) = {1, 2, 2, 2, 3, 3, 4}

(a)

1◦ -
2◦ -
3◦ -
4◦ -

MS(2a) = {1, 1, 1, 2, 3, 4, 4}
MS(3a) = {1, 1, 2, 3, 4, 4, 4}
MS(4a) = {1, 2, 2, 2, 3, 3, 4}
MS(1a) = {1, 2, 2, 3, 3, 3, 4}

(b)

Fig. 1: Example of lexicograph ordering, for the finite field with q = 5 elements and a vector a =
(0, 3, 2, 0, 0, 3, 3, 2, 4, 1), for which Lex(a) = {1, 1, 1, 2, 3, 4, 4}. Figure (a) shows the multisets of entries for all scalar
multiples of a, while figure (b) reports the lexicographic order of such multisets.

9

Data: Subset size L ∈ N, weight w ∈ N, ISD routine
Input: linear codes C1,C2 ⊆ Fnq with dimension k
Output: permutation ϕ ∈ Sn such that ϕ(C1) = C2

/* Produce a list X of L codewords from C1 with weight w */

1 X = ∅;
2 while |X| < L do
3 Call ISD to find x ∈ C1 with weight w;
4 X ← X ∪ {x, Lex(x)};

/* Produce a list Y of L codewords from C2 with weight w */

5 Y = ∅;
6 while |Y | < L do
7 Call ISD to find y ∈ C2 with weight w;
8 Y ← Y ∪ {y, Lex(y)};

/* Find collisions between the lists X and Y */

9 for {x,y} ∈ X × Y do
10 if Lex(x) = Lex(y) then
11 P ← P ∪ {x,y};

/* Go through all permutations mapping the pairs of codewords in P, and check whether they

also define an equivalence between C1 and C2 */

12 for {x,y} ∈ P do
13 Compute b ∈ F∗q such that MS(x) = MS(by);
14 Compute MorSn(x, by);
15 for ϕ ∈ MorSn(x, by) do
16 if ϕ(C1) = C2 then
17 return ϕ

Algorithm 1: Beullens’ algorithm to solve the permutation equivalence problem

The computational complexity of Beullens’ algorithm is described in the following proposition.

Proposition 4. Let C1 ⊆ Fnq be a random code with dimension k, and C2 = π(C1), with π being a random
permutation. Let L,w ∈ N, with w ≤ n and L ≤ Nw, where Nw is computed as in Proposition 1. Then,
the computational complexity of Beullens’s algorithm with parameters L and w, to solve the permutation
equivalence problem on C1 and C2, is at least

O

(
1

β(w,L)
·
(

2CISD(q, n, k, w)∑L−1
i=0 (Nw − i)−1

+ Cperm

)
,

where CISD(q, n, k, w) denotes the time complexity of an ISD algorithm, searching for a codeword with weight
w in a linear code with length n, dimension k and defined over Fq, and

Cperm = Lw(q − 2)
(
1 + log2(L)

)
+
M ′′

M
(n− w)!(m!)q−1(n+ k2),

with m = max {1 , dw/(q − 1)c}, β(w,L) = 1−
(
Nw−L
L

)
/
(
Nw
L

)
, M = L2/Nw and M ′ = (1−

(
w+q−3
w−1

)−1
)M +

L2
(
w+q−3
w−1

)−1
.

If L� Nw, q is rather large and
(
w+q−3
w−1

)−1 � L2, the complexity simplifies as

O

(
2L · CISD(q, n, k, w) + (n− w)!(n+ k2)

Nw
(
1− 2L log2(1−L/Nw)

))
.

10

Proof. The proof is provided in Appendix C.

Improving the Permutation Reconstruction In Proposition 4, the term Cperm corresponds to the cost of
reconstructing the permutation mapping the pairs of codewords in P . Notice that it is exponential in n,
so that it may rapidly grow (especially when w is low). However, as Beullens points out, when C1 does
not contain codewords having the same multiset of entries, there is a very efficient way to reconstruct the
permutation mapping the two codes. Indeed, let us assume that P does not contain “bad” collisions, and
that it contains a sufficiently large number of pairs {x,y}. Under such hypothesis, there is a very simple
way to reconstruct the target permutation, exploiting a crucial observation: if we know that π(x) = y for
some permutation π (which are trying to recover), and xi 6= yj , then we know that π does not map i
to j. Considering all pairs of indexes (i, j), we gather a significant amount of information about π or, to
put it differently, we filter out a wide number of candidates. Exploiting all pairs in P , and putting all the
information together, it becomes possible to recover the secret π with a simple procedure as the one in
Algorithm 2 (in other words, one may replace the instructions in Lines 12–17 with those in Algorithm 2).

Input: list P , containing couples {x,y} ∈ Fnq × Fnq
Output: permutation π ∈ Sn, or report failure

1 U ← n× n matrix made of all ones;
2 for {x,y} ∈ P do
3 for i ∈ {1, · · · , n} do
4 for j ∈ {1, · · · , n} do
5 if xi 6= yj then
6 ui,j = 0

/* Use U to reconstruct the permutation; if not possible, report failure */

7 if U is a permutation matrix then
8 return π;
9 else

10 report failure

Algorithm 2: Fast permutation recovery, for the permutation equivalence version of Beullens’ algo-
rithm

To estimate the probability that Algorithm 2 is successful, and to additionally derive the minimum
number of elements that P should contain, we rely on the following proposition.

Proposition 5. Let C1 ⊂ Fnq be a random linear code with dimension k, and let C2 = π(C1) with π being
a random permutation. Let Nw estimate the number of weight-w codewords in C1, as in Proposition 1, and
P be the list obtained through the instructions in lines 1–11 of Algorithm 1, using parameters L and w. Let(
w+q−3
w−1

)−Nw ·∏Nw−1
j=1

(
Nw
2

)
− j � 1. Then, Algorithm 2 retrieves the correct permutation π with probability

γ(L,Nw) =

1−
((

1− w

n

)(
1− w − 1

n− 1

)
+

w(w − 1)

n(n− 1)(q − 1)

) L2

Nw

n(n−1)

.

Proof. We first want to assure that, with very high probability, the code C1 does not contain weight-w
codewords having the same multiset of entries. When this condition is satisfied, then the set P contains only
“good” collisions and Algorithm 2 returns a valid permutation. To derive the probability with which such an
event occurs, we assume that each weight-w codeword is random. Then, we can consider that the multiset of
entries of each weight-w codeword is obtained by picking at random an element among the

(
w+q−3
w−1

)
multisets

11

formed by a 1 and by other w − 1 elements from F∗q . Hence, the probability that all the codewords with
weight w (in number equal to Nw) have distinct multisets is obtained as(

w+q−3
w−1

)
− 1(

w+q−3
w−1

) (
w+q−3
w−1

)
− 2(

w+q−3
w−1

) · · ·
(
w+q−3
w−1

)
− (Nw − 1)(

w+q−3
w−1

) =

∏Nw−1
j=1

(
w+q−3
w−1

)
− j(

w+q−3
w−1

)Nw .

When this probability is extremely low, one can guarantee that P is well-formed (i.e., does not contain bad
collisions).

Now, we estimate how the size of P contributes to the success probability of the permutation reconstruc-
tion phase. To do this, let us consider a pair {x,y} ∈ P , and focus on a generic j-th entry of x, that is,
xj . We consider the probability that a generic index ` is such that xi = y`, but π(i) 6= `. This can happen
only in two cases: either xj = y` = 0, or xj = y` 6= 0. By putting everything together, we have that xj = y`
happens with probability

ρ =

(
n−w
2

)(
n
2

) +

(
w
2

)(
n
2

) · 1

q − 1
=
(

1− w

n

)(
1− w − 1

n− 1

)
+

w(w − 1)

n(n− 1)(q − 1)
.

The algorithm will fail, i.e., will not be able to recover the valid permutation, if for all pairs {x,y} ∈ P we
have xj = y`. This happens with probability 1−ρ|P |: in other words, this is the probability that we correctly
guess π(j) 6= `. Remember that, on average, |P | = L2/Nw. Since we have to guess correctly for a total of

n(n− 1) pairs of indexes, we finally estimate the success probability as γ(L,Nw) =
(
1− ρM

)n(n−1)
. ut

When one uses Algorithm 2 to reconstruct the permutation between the two codes, the complexity of Beullens’
algorithm reduces. To this end, we consider the following proposition.

Proposition 6. Let w and q be such that the condition of Proposition 5 is satisfied. Then, Beullen’s algo-
rithm using Algorithm 2 to reconstruct the permutation runs in time

O

(
2L · CISD(q, n, k, w)

Nw
(
1− 2L log2(1−L/Nw)

)),
and succeeds with probability γ(L,Nw), computed as in Proposition 5.

Proof. With respect to the estimate provided in Proposition 4, we neglect the cost of reconstructing the
permutation (that is, the term Cperm). ut

Remark 2. In practice, Beullens’ algorithm is able to outperform Leon only in some specific cases, that is,
the ones in which the finite field is rather large. Indeed, this is the case when multiset of entries of weight-w
codewords do not collide with high probability. Otherwise, the permutation cannot be reconstructed with
the fast method explained in Algorithm 2, and one has to go through all permutations mapping all pairs in
the list P . The number of such permutations is given by (n−w)!(m!)q−1, and m grows with q. For instance,
consider that for q = 2 we have that the number of permutations is maximum, and corresponds to (n−w)!w!:
this number explodes unless n is extremely small.

Even when the finite field is large enough, so that one can rely on the fast permutation reconstruction
phase, we observe that the advantage with respect to Leon’s algorithm is rather limited. Indeed, assuming
that both algorithms are optimized with the same value of w, we have that the speed-up of Beullens’ algorithm

is given by Nw ln(Nw)
L . As suggested in [14], Beullens’ approach has a non-trivial success probability when

L = Θ
(√

Nw ln(n)
)

, which means that the advantage over Leon can be roughly assessed as

√
Nw ln(Nw)√

ln(n)
= 20.5 log2(Nw)+log2(ln(Nw))−0.5 log2(ln(n)).

In practice, Leon can use slightly smaller values of w, so that the real advantage is actually lower.

12

4.3 The Support Splitting Algorithm

The Support Splitting Algorithm (SSA), introduced by Sendrier [31], follows a very different approach from
the previous ones, based on the idea of signature function. This is defined as a map S such that, for a given
code C with length n and for each position i ∈ [0;n− 1], verifies

S(C, i) = S
(
π(C), π(i)

)
, ∀π ∈ Sn.

A signature function is said to be fully discriminant if S(C, i) 6= S(C, j), ∀i 6= j. Once in possession of a
fully discriminant signature, a permutation π between two codes C1 and C2 can immediately be recovered,
since

S(C1, i) = S(C2, j) ⇐⇒ j = π(i).

Assuming that such a fully discriminant function S is available, SSA essentially consists of searching
for collisions between the sets of values S(C1, i) and S(C2, j), for (i, j) ∈ [0;n − 1] × [0;n − 1]. We point
out that the existence of such a function (and one that doesn’t require unfeasible computation) is clearly
not guaranteed, a priori. When a fully discriminant signature is not available, one can use refinements, new
computations and combinations of signatures, that proceed until a fully discriminant function is obtained.

The signature function proposed by Sendrier in [31] is based on the hull space of a code, that is, the
intersection between a code and its dual. In particular, to create a dependence between the signature value
and the code positions, one can puncture the code, i.e. remove coordinates from the codewords. Putting
these considerations together, in [31, Section 5.2] Sendrier proposes to build a signature as

S(C, i) :=

{
Wef

(
H
(
C\i
))

, Wef

(
H
(
C⊥\i
))}

, (1)

where C\i is the code obtained from C punctured in position i, H denotes the hull and Wef denotes the Weight
Enumerator Function. The hull computation requires simple linear algebra, and comes with a cost of O(n3)
operations in the finite field. To compute the weight enumerator of a code, one usually needs to enumerate
all of its codewords: assuming that the hull has dimension h, we can use O(nqh) as an estimate for the cost
of each Wef computation. Finally, heuristically, we observe that using ln(n) refinements is enough to obtain
a fully discriminant signature. Putting everything together, we are able to estimate the complexity of SSA
as follows.

Proposition 7. Let C1 ⊆ Fnq be a random code with dimension k, with hull of dimension h ≤ min{k , n−k}.
Let C2 = π(C1), with π being a randomly picked permutation. Then, the computational complexity of using
the SSA algorithm to solve the permutation equivalence problem on C1 and C2 can be estimated as

O
(
n3 + n2qh ln(n)

)
.

For complete details on how the computational complexity is assessed, we refer the interested reader to [31].

As highlighted by the above formula, the hull dimension plays a crucial role in defining the algorithm
performances, from a complexity standpoint. We remark that, for random codes, this dimension is with high
probability equal to a small constant [32], de facto making SSA a polynomial-time solver for permutation
equivalence. On the other hand, SSA is very inefficient for codes that have a large hull. In fact, since the
time complexity is dominated by qh, SSA becomes quickly unfeasible as h grows. This is, for instance, the
case of self-dual codes, for which h = k: for such codes, SSA can be made arbitrarily hard by choosing codes
with a sufficiently large dimension.

13

4.4 The BOS Algorithm

In 2019, Bardet et al. [8] proposed a new method to solve the permutation equivalence problem, which fully
exploits the connection between the permutation equivalence problem and the one called graph isomorphism.
In this section we briefly recall this approach, which we refer to as BOS using the authors’ initials.

Let us first define the Weighted Graph Isomorphism (WGI) problem. We consider only undirected and
weighted graphs. Each graph of this type can be fully represented by an adjacency matrix, such that the
element in position (i, j) is equal to ξ if and only the vertices i and j are connected by an edge with weight
ξ. Two graphs are isomorphic if one is obtained from the other by permuting its vertices, while keeping
both adjacent vertices and edges weights. Equivalently, two graphs with adjacency matrices A1 and A2 are
isomorphic if and only if there exists a permutation matrix P such that A2 = P>A1P .

The main observation behind the BOS method is reported below [8, Theorem 5].

Theorem 2. Let C1,C2 ⊆ Fnq be linear codes with dimension k and trivial hull. For i = 1, 2, let Gi be a
generator of the code Ci, and

ACi = G>i (GiGi)
−1

Gi.

Then, C1 and C2 are permutation equivalent, i.e., there exists π ∈ Sn such that π(C1) = C2 if and only if
AC1 = P>AC1P , where P is the permutation matrix associated to π.

The above theorem is at the core of the BOS approach to solve the permutation equivalence problem. Indeed,
AC1

and AC2
are interpreted as the adjacency matrices of two graphs, and hence are given as input to some

routine which solves the WGI problem. The output permutation P corresponds to a permutation mapping
also the two codes. Given that to compute AC1 and AC2 only O(n2.373) operations in the finite field are
required (this is essentially the cost of matrix inversion), we have that the BOS approach in this case gives
a complexity of

O

(
n2.373CWGI(n)

)
,

where CWGI(n) denotes the complexity of a solver for the weighted graph isomorphism problem. Note that
the problem can be solved, for many classes of graphs, with very efficient algorithms. Furthermore, Babai’s
recent breakthrough paper [5] shows that the problem can be solved, in the worst case, with quasi-polynomial
complexity. Hence, even in the worst case scenario, the BOS approach on codes with trivial hull runs in time
that is quasi-polynomial in the code length.

For the more general case of codes with a non-trivial hull, the reduction from WGI works in a different
way. We do not enter into full details here, and simply report that the complexity of the approach, whose
proof can be found in [8, Theorem 10], is asymptotically estimated as

O
(
hn2.373+h+1CWGI(n)

)
.

Putting everything together, we estimate the complexity of the BOS approach as follows.

Proposition 8. Let C1 ⊆ Fnq be a random code with dimension k. Let C2 = π(C1), with π being a randomly
picked permutation. Let CWGI(n) denote the time complexity of an algorithm solving the WGI problem on two
graphs with n nodes. Then, the computational complexity of using the BOS approach to solve the permutation
equivalence problem on C1 and C2 can be estimated as

- O
(
n2.373CWGI(n)

)
, if the codes have trivial hulls;

- O
(
n2.373+h+1CWGI(n)

)
, if the codes have hulls of dimension h.

4.5 Solving the Linear Equivalence Problem

In this section we describe the state-of-the-art solvers for the linear equivalence problem. We anticipate that
all known solvers inherit the approaches which we have already presented for the permutation equivalence
case; yet, using monomial transformations instead of permutations makes, in certain cases, the hardness of
the algorithms radically different.

14

Leon’s algorithm Leon’s algorithm can be used to solve the linear equivalence problem as well, with an
operating procedure that is essentially identical to the one we have already discussed in Section 4.1. The
only difference is in the fact that, after the codewords enumeration, one searches for a monomial matrix
instead of a permutation. When the value of w is properly chosen, this can be reconstructed in polynoimal
time, so that the bottleneck in the computational complexity is (again) in the codewords enumeration. Hence,
we rely on Proposition 3 to estimate the cost of the algorithm.

Beullens’ algorithm Beullens’ algorithm can also be adapted to tackle the case of linear equivalences. How-
ever, in this case, codewords of low weight do not provide enough information about the searched transfor-
mation, since monomials also modify the multiset of entries. To overcome this issue, the author in [14] first
observes that if µ ∈ Mn is such that µ(C1) = C2, then for any subcode V1 ⊆ C1 there must exist a subcode
V2 ⊆ C2 such that µ(V1) = V2. To exploit this fact, one can consider subcodes of small dimension and small
support, i.e., such that a rather large portion of the coordinates is null. In this case, one can operate as in
Algorithm 1, with only three exceptions:

1. the lists X and Y are populated with pairs {X, Lex(X)} and {Y , Lex(Y)}, where X, Y are subcodes
of the given C1 and C2, and Lex returns the first basis of the input subspace, in lexicographical order.
For an example of how such a basis can be computed, we refer the reader to Appendix D;

2. the list P contains the pairs {X,Y } for which Lex(X) = Lex(Y);

3. in the reconstruction phase, one first finds the permutation, and then recovers the scaling factors. To
recover the permutation, one proceeds in a way that is analogous to that for the permutation equivalence
case; for the sake of completeness, we have reported the procedure in Algorithm 3. To recover the scaling
factors, many efficient choices are possible. For instance, we may proceed as follows: we first apply the
found permutation π to each low weight codeword of C1, and then search among the already found low
weight codewords of C2, to find a pair having the same support. With overwhelming probability, a pair
of codewords with the same support corresponds to a codeword of π(C1), where each non null entry
has been scaled as an effect of the scaling factors in the monomial. Hence, each pair of such codewords
exactly gives us w coefficients out of n. Then, finding a bunch of such pairs will be enough to completely
retrieve the scaling vectors in v. After this, we have obtained the desired monomial as π o v.

Neglecting the cost of Algorithm 3, we have that the complexity of Beullens’ algorithm to solve the linear
equivalence is identical to that in Proposition 6. The only difference is in the fact that one may use different
values for w and L, and that the success probability changes.

15

Input: list P , containing couples {X,Y } ∈ F 2×n
q × F2×n

q , codes C1,C2

Output: permutation π, or report failure

1 U ← n× n matrix made of all ones;
2 for {X,y} ∈ P do
3 for i ∈ {1, · · · , n} do
4 xi ← i-th column of X;
5 for j ∈ {1, · · · , n} do
6 yj ← j-th column of Y ;

/* If only one of the columns is null, remove j from the possible images of i */

7 if (xi == 0) 6= (yj == 0) then
8 ui,j = 0;

/* Use U to reconstruct the permutation; if not possible, report failure */

9 if U is a permutation matrix then
10 π ← permutation described by U ;
11 return π;

12 else
13 report failure;

Algorithm 3: Fast permutation recovery, for the linear equivalence version of Beullen’s algorithm.

Proposition 9. Algorithm 3 with parameters L and Nw succeds with probability

γ(L,Nw) =

1−
(

1− 2

(
1− (n− w)2

n2

)
(n− w)2

n2

)L2(L2−Nw)

2N2
w

n(n−1)

.

Proof. After having found L codewords with weight w in both codes C1 and C2, we expect on average to
have M = L2/Nw pairs such that µ(x) = y, with x ∈ C1 and y ∈ C2. Let us consider a pair {X,Y } ∈ P ;
furthermore, let xj denote the j-th column of X and y` the `-th column of Y . We assume π(j) 6= ` if and
only if xj 6= 0 and y` = 0, or xj = 0 and y` 6= 0. Since each row of these matrices contain w non-zero entries,
we have that the assumption is correct with probability

ρ = 2

(
1− (n− w)2

n2

)
(n− w)2

n2
.

Given that we can form
(
M
2

)
= M(M−1)

2 subcodes, the probability that at the end of the algorithm we have

concluded that π(j) 6= ` is given by 1− (1− ρ)(
M
2). Since for each index j ∈ [1;n] we have n− 1 guesses to

make, we finally estimate the success probability as

γ(L,Nw) =
(

1− (1− ρ)(
M
2)
)n(n−1)

=

(
1− (1− ρ)

L2(L2−Nw)

2N2
w

)n(n−1)
ut

Support Splitting Finally, SSA can be used to solve the linear equivalence problem as well, as the problem can
be reduced to that of finding a permutation equivalence between the closures of the codes in question. Here,
by closure of a linear code C, we mean the code C̃ defined as {c ⊗ a, c ∈ C}, where a = (a1, · · · , aq−1) is
any ordering of the non-zero elements of Fq. A fundamental point, though, is that, for q ≥ 5, the closure of a
code is always weakly-self dual, and thus has a hull of maximum dimension k, leading to exactly the hardest
instances for SSA to solve. These results are corroborated by the analysis in [30]. In the end, the complexity
of the SSA algorithm, to solve the linear equivalence problem, can be estimated through Proposition 7,
assuming that the hull has maximum dimension h = k.

16

4.6 A Complete Picture

For the sake of clarity, in Table 2 we briefly resume the features of all the algorithms we have presented in
this section. It is possible to note that the complexity of the algorithms to solve the code equivalence problem
essentially does not change with the equivalence type. In fact, apart from some small choices in setting the
attack options (for instance, the value of w and L in Beullens’ algorithm), we have that the complexities for
the linear case are identical to those of the permutation case. Then, one may be led into thinking that the
two problems are equally hard; yet, this claim is fundamentally false.

To be clear, the permutation equivalence problem is actually easy in many cases. Using either SSA or
BOS, one can comfortably solve random instances since, with very high probability, they have a hull with
very small dimension. Yet, these algorithms fail in successfully solving the problem when the hull dimension
increases, which is the case, for example, of (weakly) self-dual codes. In such cases, the problem becomes
harder and one must rely on algorithms such as those of Leon and Beullens, whose running time is exponential.
So we can conclude that the permutation equivalence is hard only for some very specific instances.

Type of
equivalence

Algorithm Complexity Notes

Permutation

Leon O
(
CISD(q, n, k, dGV) · 2 ln (Nw)

) Preferable with small
finite fields and large
hulls.

Beullens O

(
2L·CISD(q,n,k,w)

Nw(1−2L log2(1−L/Nw))

) Preferable with large
finite fields and large
hulls.
It may fail, when L is
too small.

SSA O
(
n3 + n2qh logn

) Efficient with small,
non-trivial hulls

BOS

{
O
(
n2.373CWGI(n)

)
if h = 0

O
(
n2.373+h+1CWGI(n)

)
if h > 0

Efficient with trivial
hulls

Linear

Leon O
(
CISD(q, n, k, dGV) · 2 ln (Nw)

) Preferable with small
finite fields and large
hulls.

Beullens O

(
2L·CISD(q,n,k,w)

Nw(1−2L log2(1−L/Nw))

) Preferable with large
finite fields and large
hulls.
It may fail, when L is
too small.

SSA

{
O
(
n3 + n2qh logn

)
if q < 5

O
(
n3 + n2qk logn

)
if q ≥ 5

Efficient if q < 5 and
the hull is trivial.

Table 2: Summary of techniques to solve the code equivalence problem

The situation is quite the opposite, when dealing with the linear equivalence problem. Indeed, in this
case, SSA is efficient only for random codes defined over finite fields with q ≤ 5, and becomes exponentially
hard if the field size grows, regardless of the code properties. Hence, for large q, it is fair to say that no
polynomial-time solver is currently known. This seems to suggest that, for large finite fields, the linear
equivalence problem is a much harder problem, in general, compared to permutation equivalence.

17

5 Optimizations

In this section we discuss possible strategies to optimize the LESS signature scheme which, in its basic form,
we have recalled in Table 1.

5.1 Multi-bit Challenges

A first natural observation is that signature size can be reduced by decreasing the number of rounds that are
necessary to reach the desired preimage security level. This, obviously, requires the soundness error in the
underlying ZK identification scheme to decrease proportionally. Such a scenario can be realized, for instance,
by increasing the number of challenge bits in each round, as described in SeaSign [19]. Each challenge bit
becomes an `-bit challenge string, which can be interpreted as an integer between 0 and 2` − 1, i.e. as
an element of Z2` , using the well-known correspondence Z`2 = Z2` . Accordingly, the scheme is modified to
feature r = 2` independent public keys; each challenge string is then used to select one of the keys, for
which a response is produced (using the corresponding private key). To keep notation simple, we exploit the
bijection mentioned above, and interchangeably use the same symbol to denote an `-bit string (as part of a
hash output) or an integer in [0; 2` − 1] (for example, when used as an index). A pictorial representation of
this variant is given in Table 3, below, where we call the scheme LESS-M (for Multi-bit).

Setup Input parameters q, n, k, `, λ ∈ N, then set r = 2` and t = dλ/`e. Choose matrix G ∈ Fk×nq

and hash function H : {0, 1}∗ → {0, 1}λ.

Private Key Monomial matrices Q0 = In . . .Qr−1 ∈ Mn.

Public Key Generator matrices G0 . . .Gr−1, where Gi = sf(GQi) for i = 0 . . . r − 1.

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).

Parse h = h0, . . . ht−1, for hi ∈ Z`2.

For i = 0 . . . t− 1, compute µi = Q−1
hi

Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ Z`2.

For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 3: The LESS-M Signature Scheme.

Note that this variant is more natural than what it may seem at a first glance. In fact, the original
LESS signature scheme of Table 1 can be seen as a particular case of the LESS-M scheme, where ` = 1 and
Q0 = In. The main difference is in the security notion underlying the scheme. The security assumption in
this case becomes the following.

Problem 2 (Multiple Codes Linear Equivalence) Consider a collection of linearly equivalent [n, k]-
linear codes C0 . . .Cr−1, admitting generator matrices G0, . . . ,Gr−1 of the form S0GQ0, . . . ,Sr−1GQr−1.
Find matrices S∗ ∈ GLk and Q∗ ∈ Mn such that Gj′ = S∗GjQ

∗, for some j 6= j′.

This problem is still hard, and reduces tightly to the linear code equivalence problem. A reduction is
given below.

Theorem 3. Given an algorithm to solve the Multiple Codes Linear Equivalence Problem (Problem 2),
that runs in time T and succeeds with probability ε, it is possible to solve the Linear Equivalence Problem
(Problem 1), in time approximately equal to T +O(rn3), with probability of success equal to ε/2.

18

Proof. Let A be an adversary for Problem 2. We now show how to construct an adversary A′ that is able to
solve the linear code equivalence problem. A′ will interact with A and use it as a subroutine. To begin, A′ is
given an instance (G,G′ = SGQ) of Problem 1. It will then proceed to generate r = 2` equivalent codes, in
the following way. First, A′ samples uniformly at random matrices S0, . . . ,Sr−1 and Q0, . . . ,Qr−1. Then,
it computes half of the codes starting from G, and half starting from G′; wlog, we can imagine that Gi is
generated as SiGQi when i ∈ [0; r/2 − 1], and as SiG

′Qi when i ∈ [r/2; r − 1] (and then reordered). It is
clear that this computation can be done in polynomial time, at most O(rn3), and that there is no way to
distinguish how an individual matrix was generated (i.e. from G rather than G′). At this point A′ runs A on
input G0, . . . ,Gr−1, and A will output, with probability ε, a response (S∗,Q∗) such that Gj′ = S∗GjQ

∗.
Now, if one of the two matrices was of the first type, and the other of the second type, A′ is able to win.
For instance, if Gj = SjGQj and Gj′ = Sj′G

′Qj′ , then it must be Q∗ = Q−1j QQj′ , which immediately

reveals5 Q. Since this happens with probability 1/2, we get the thesis. ut

We now state the security result.

Theorem 4. The LESS-M signature scheme described in Table 3 is existentially unforgeable under adap-
tive chosen-message attacks, in the random oracle model, under the hardness of the multiple codes linear
equivalence problem.

Proof. (Sketch) The proof is nearly identical to the proof of Theorem 1, above. Indeed, let A be a polynomial-
time EUF-CMA adversary for LESS-M. In this case A will serve as subroutine for an adversary A′ against
Problem 2. To begin with, A′ is given an instance (G0, . . . ,Gr−1) of Problem 2, which he sets up as public key
in the simulated LESS-M protocol. As before, A′ will answer signing queries and random oracle queries with
the help of an auxiliary table T. For random oracle queries, the input is still of the form (Ĝ0, . . . , Ĝt−1,m),
with the only difference being that before we had t = λ, whereas now we have t = λ/`. Queries are
answered in the exact same way as above, by selecting a uniform random λ-string h and updating the table.
For signing queries, the procedure is also very similar. Once again, a signature is created using uniformly-
sampled matrices Q̂0, . . . , Q̂t−1 (with t = λ/`). Now, when A′ adjusts his registry of queries, he will parse

h = h0, . . . ht−1, where hi ∈ Z`2, then proceed as before, computing Ĝi = sf(Ghiµi) and matching h with the

random oracle query with input (Ĝ0, . . . , Ĝt−1,m). It is easy to see that signatures produced in this way
are still indistinguishable from authentic signatures.

The rest of the proof proceeds exactly as before, with A′ rewinding the tape, repeating the simulation
and invoking the Forking Lemma to obtain two valid forged signatures σ′ 6= σ for the same message. Again, if
l is the index such that h′l 6= hl, then sf(Gh′l

µ′l) = sf(Ghlµl) and therefore µ′lµ
−1
l is a solution to the multiple

codes linear equivalence problem as desired (with j′ = h′l 6= hl = j as per the formulation of Problem 2). ut

5.2 Fixed-weight Challenges

In this variant, contrary to what we were doing before, we propose to increase the number of rounds,
rather than decreasing them. This may seem counterintuitive, but in fact it works out to be very efficient,
and it is based on just as natural an observation as the previous one. In this case, the key idea is that
different responses, corresponding to different challenge bits, have a very unbalanced impact on the size
of the signature. In particular, for the original LESS scheme described in Table 1, in the case hi = 0 the
response µi consists of the purely random monomial matrix Q̃i, and therefore the signer can transmit just
the seed used to generate such random object. This, of course, is much more compact than the monomial
matrix Q−11 Q̃i which needs to be transmitted, in full, when hi = 1. It makes sense, therefore, to try and
minimize the amount of bits hi that are equal to 1, in the challenge string h output by H.

In our case, a natural way to implement this idea is to switch the output distribution of H, so that it
returns a vector of fixed weight, rather than a uniformly distributed binary string. In other words, we need
to pick H to be a weight-restricted hash function, whose range is the set Zt2,ω. The modified protocol is
described in Table 4 below, where we call the scheme LESS-F (for Fixed-weight).

19

Setup Input parameters q, n, k, λ, t, ω ∈ N. Choose matrix G ∈ Fk×nq and w.r. hash function
H : {0, 1}∗ → Zt2,ω. Set Q0 = In and G0 = sf(G).

Private Key Monomial matrix Q1 ∈ Mn.

Public Key Generator matrix G1 = sf(GQ1).

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).
Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 4: The LESS-F Signature Scheme.

Note that this idea is not new in the context of identification and signature schemes. In fact, as reported
in [29], the suggestion to use a fixed-weight challenge vector is already present in the original Fiat-Shamir
work [22]. More recently, some signature schemes appeared that also make use of a similar approach, albeit
in a different context. For instance, Picnic, which earned much praise during the NIST post-quantum stan-
dardization process [1], uses a pre-processing stage and a cut-and-choose procedure to achieve the desired
security level. This technique was later revisited and generalized by Beullens [15], who presents an applica-
tion to multivariate schemes, as well as PKP. In all cases, it is evident how picking the challenge vector from
a carefully crafted distribution beats the simple parallel repetition of the protocol.

A crucial aspect is, of course, that it is necessary to avoid losing security during the process. This implies
that the final preimage security level of the protocol needs to remain equal to the original goal of 2−λ,
which was naturally obtained via parallel repetition. In our case, simply constraining the challenge vector
to a target Hamming weight is guaranteed to lose security bits. Indeed, this happens even in the most basic
scenario, i.e. if we restrict to the expected value ω = t/2; for instance, when λ = 128, sampling h among the
vectors of weight 64 only leads to approximately 124 preimage security bits.

To understand this phenomenon, recall that preimage security corresponds, essentially, to the difficulty of
guessing the entire challenge vector. In the case of parallel repetition, since each instance is independent from
the others, this is equivalent to correctly picking the challenge in each round, which leads to a probability
of εt, where ε is the soundness error (in our case 1/2). However, if the challenge is sampled among vectors
of fixed Hamming weight, then the difficulty of guessing is the reciprocal of∣∣∣Zt2,ω∣∣∣ =

(
t

ω

)
.

From this, it follows that, in order to safely switch to constrained-weight challenge vectors, it is necessary
to ensure that log2

(
t
ω

)
≥ λ. This leads to an increase in the overall length of the challenge vector, thus

increasing the number of rounds, as claimed in the beginning of this section. We will discuss the optimal
choices of t and ω for this variant when selecting parameters, in Section 6. We now state the security result
for this variant.

5 If needed, S can then be found in polynomial time also.

20

Theorem 5. The LESS-F signature scheme described in Table 4 is existentially unforgeable under adap-
tive chosen-message attacks, in the random oracle model, under the hardness of the linear code equivalence
problem.

Proof. (Sketch) The proof is essentially identical to the proof of Theorem 1. If A is a polynomial-time EUF-
CMA adversary for LESS-F, it will be used as subroutine by an adversary A′ against Problem 1. The setup
is the same, including the use of the auxiliary table T. Indeed the only difference between the two proofs
is in the output of the hash function H. This means that the random string h, generated to answer both
random oracle and signing queries, is sampled uniformly from Zt2,ω rather than from {0, 1}λ. The remainder
of the proof proceeds unchanged. ut

Note that the aforementioned difference is relevant exclusively in the statement of the Forking Lemma.
In fact, the (inverse of the) size of H appears in the Lemma’s statement as a negative term (and should
therefore be negligible). In the original LESS scheme (as is customary) one has H = {0, 1}λ, so |H| = 2λ

and thus the term appearing in the Lemma is 1/2λ. Accordingly, with this variant, we have H = Zt2,ω, so

|H| =
(
t
ω

)
, which is precisely why we require log2

(
t
ω

)
≥ λ.

5.3 Combining the Approaches

In this section we explain how to combine the approaches illustrated in the previous sections. The result is
depicted in Table 5, below, where we call the scheme LESS-FM (as it is a combination of the two techniques).

Table 5: The LESS-FM Signature Scheme.

Setup Input parameters q, n, k, `, λ, t, ω ∈ N, then set r = 2`. Choose

matrix G ∈ Fk×nq and w.r. hash function H : {0, 1}∗ → Zt2`,ω.

Set Q0 = In and G0 = sf(G).

Private Key Monomial matrices Q1 . . .Qr−1 ∈ Mn.

Public Key Generator matrices G1 . . .Gr−1, where Gi = sf(GQi) for i = 1 . . . r − 1.

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}`.
For i = 0 . . . t− 1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}`.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

This formulation is the most generic, as it includes the previous ones as particular cases. The quantity
to consider for preimage security is

∣∣∣Zt2`,ω∣∣∣ =

(
t

ω

)
(2` − 1)ω. (2)

As mentioned before, the parameter choice is discussed in the next section.

21

6 Concrete parameter sets and Implementation strategies

Selecting optimal parameters for LESS-FM involves a multi-target optimization where the considered figures
of merit are: i) the desired security level, ii) the size of the keypair and of the transmitted signature message,
and iii) the computational load required. In this work, we propose parameter sets which are targeted to a
computational effort of 2128 classical gates, as is standard in literature. This will also facilitate a comparison
with other existing signature schemes. Nevertheless, we also ensured that our parameters achieve at least 64
quantum security bits, according to the best known quantum algorithm techniques (see Appendix F).

Table 6 gives a synthetic view of public key and signature sizes as a function of the LESS variant
parameters.

Version Type Num. of Rounds |pk| |σ|

-

Perm λ k(n− k)Q λ
(
1 + λ+nN

2

)
Mono λ k(n− k)Q λ

(
1 + λ+nN+nQ

2

)
M

Perm dλ
`
e (2` − 1)k(n− k)Q dλ

r
e
(
2`+ nN

2

)
Mono dλ

`
e (2` − 1)k(n− k)Q dλ

r
e
(
2r + nN+nQ

2

)
F

Perm t s.t.
(
t
ω

)
> 2λ k(n− k)Q t+ (t− ω)λ+ ωnN

Mono t s.t.
(
t
ω

)
> 2λ k(n− k)Q t+ (t− ω)λ+ ωn (N +Q)

FM

Perm t s.t.
(
t
ω

)
(2` − 1)ω > 2λ (2` − 1)k(n− k)Q `t+ (t− ω)λ+ ωnN

Mono t s.t.
(
t
ω

)
(2` − 1)ω > 2λ (2` − 1)k(n− k)Q `t+ (t− ω)λ+ ωn (N +Q)

Table 6: Overview of the number of rounds and public key/signature sizes in bits as a function of the LESS variant
parameters, with N = dlog2(n)e and Q = dlog2(q)e.

Efficient key storage and manipulation Storing LESS-FM keypairs in an efficient-to-employ format
can be achieved representing the field elements of Fq as Q = dlog2(q)e integers, and linearizing the non-
trivial portion of the Gi matrices of the public keys performing bitpacking. This yields a public key size
of (2` − 1)k(n − k)Q (considering one can always set Q0 = In and G0 = sf(G)). Concerning the storage
representation of the monomial matrices composing the private key, they can be materialized as an n element
vector of pairs which stores the index of the permuted element, and the value of the multiplicative coefficient
on Fq of the said element. We note that, while a compact representation of the permutation alone is possible
over dlog2(n!)e bits, this saves a relatively small amount of space (about 4.5% in our “minimize pk+sig.size”
parameter set), at the cost of performing the relatively demanding computation of permutation unranking,
to bring the permutation in a usable representation. Finally, as noted, we achieve a significant reduction
in signature size by sending the seeds employed to generate the ephemeral random monomial matrices Q̃i

instead of the monomial matrices themselves. We also note that, from a computational standpoint, it is more
efficient to store the inverses of the monomial matrices in the private key, moving their computation to the
key generation process. This results in an overall improvement in the computation time in all the cases where
long-term keys for the signatures are employed.

Table 7 reports the result of the optimization of the LESS-FM parameters when targeting the minimiza-
tion of i) the public key size, ii) the signature size or iii) the sum of the aforementioned quantities. The
rationale behind these criteria is to highlight the flexibility of LESS-FM in application scenarios where i) the
space for public key storage is constrained (e.g. microcontrollers with tight Flash memory limits), ii) digital
certificates, which employ a concatenation of public keys and signatures, and iii) application scenarios where
a large amount of signed messages are exchanged between two endpoints employing long-term keypairs. De-
spite our conservative quantification of the computational effort required by the most effective cryptanalytic
approaches, LESS can be instantiated with parameters pushing the size of the public key below 10 kB, or
keep the sum of the public key and signature below 22 kB.

22

Optimization LESS Type n k q ` t ω pk sig pk + sig

Criterion (kB) (kB) (kB)

Min. pk size F Mono 198 94 251 1 283 28 9.77 15.2 24.97

Min. sig size FM Perm 235 108 251 4 66 19 205.74 5.25 210.99

Min. pk + sig size F Perm 230 115 127 1 233 31 11.57 10.39 21.96

Beullens [14] - Mono 250 125 53 1 128 - 11 28 39

Table 7: Parameter sets for LESS-FM, for a security level of λ = 128 classical bits.

Our balanced optimization criterion, combined with the use of fixed-weight challenges allows us to reduce
to less than half the signature size, with respect to the parameter sets proposed by Beullens in [14], while
retaining the same public key size. Finally, we are able, at the cost of a larger public key size, to achieve
a minimum signature size of 5.25 kB, reducing the signature size by close to 3× with respect to the other
parameter sets.

Table 8 reports a comparison of the data sizes achieved by LESS variants with other code-based signature
schemes.

Scheme
Security pk sig pk + sig Security

Level (kB) (kB) (kB) Assumption

Stern [21] 80 18.48 113.5 131.98 Low-weight Hamming

Veron [21] 80 18.52 109.05 127.57 Low-weight Hamming

CVE [21] 80 5.31 66.44 71.75 Low-weight Hamming

Wave [20] 128 3205 1.04 3206.04 High-weight Hamming

cRVDC [12] 125 0.15 22.48 22.63 Low-weight Rank

Durandal - I [4] 128 15.24 4.06 19.3 Low-weight Rank

Durandal - II [4] 128 18.60 5.01 23.61 Low-weight Rank

LESS-F min. pk size 128 9.77 15.2 24.97 Linear Equivalence

LESS-FM min. sig size 128 205.74 5.25 210.99 Perm Equivalence

LESS-F min. pk + sig size 128 11.57 10.39 21.96 Perm Equivalence

Table 8: A comparison of public keys and signature sizes with alternative code-based signature schemes

Considering the algorithms employing Fiat-Shamir, we see that LESS consistently outperforms the tra-
ditional schemes based on the Hamming metric (such as Stern, Veron and CVE), even when compared to
80-bit security versions, while its characteristics are orthogonal to those of cRVDC (which is rank-based).
Indeed, despite a much larger public key, LESS achieves more compact signatures, and therefore compares
favourably in scenarios ii) and iii). Finally, we consider two recent signature algorithms (namely, Wave and
Durandal). We observe that LESS also provides favourable figures with respect to Wave, as it features a
public key which is smaller by two orders of magnitude, albeit at the cost of an increase of an order of
magnitude in signature size. This provides a practical advantage in scenarios where a public key/signature
pair is transferred at each communication, such as in the TLS authentication phase, which transmits X.509
certificates. In this regard, the performance of LESS is very similar to that of Durandal, which is an adap-
tation of the Schnorr’s paradigm to the rank metric. It is then worth noting that the closest competition for
LESS, in terms of performance, is represented by rank metric schemes, an area which is somewhat further
away from traditional coding theory (while strongly related to multivariate cryptography), and, in the case
of Durandal, relying on younger, ad-hoc computational assumptions.

23

Efficiency of LESS-FM and constant-time implementation techniques. The operations involved in
LESS act, at low level, on elements of Fq for relatively small values of q. This in turn allows to perform
efficient modular reduction through Barrett’s reduction techniques, as the triple-precision multiplier required
only needs to be able to deal with a 10- and a 20-bit operand. This, in turn, fits easily into a 32-bit multiplier
with a single precision output, which is available also on embedded platforms (e.g. ARM Cortex-M3 and
ARM Cortex-M4).

Multiplications by monomial matrices can be implemented as simple column permutations of the corre-
sponding generator matrix, combined with a scalar-by-vector multiplication over Fq. Such operations allow
for a significant amount of inner parallelism in the latter operation, which can be leveraged for consistent
speedups if vector ISA extensions are available on the computing platform. Care should be taken in perform-
ing the column-wise permutation, as its value is part of the private key. To this end, the use of permutation
network-based strategies (e.g. Beneš networks or Omega-Flip networks) provides an effective and efficient
solution.

Finally, concerning the computation of the systematic form of the G̃i matrices, we note that a random
selection of a k-column minor may not yield a non-singular k×k matrix. However, a non-singular matrix will
be selected with probability

∏k
i=1(1− 1

qi), which, given the choice of the values of q and k, provides a > 95%
probability of selecting a non-singular k column minor. Therefore, the conservative strategy of drawing a
new value for the ephemeral random monomial matrix Q̃i and recomputing the systematic form of GQ̃i will
trade off a minimal performance penalty for an easily auditable constant-time systematic form computation.

Acknowledgments

The authors would like to thank Ward Beullens and Robert Ransom for their insightful comments, that
greatly contributed to the development of this work. The authors would also like to recognize support for
this work; in particular, Jean-Francois Biasse is supported by NIST grant 60NANB17D184 and NSF grant
183980, while Edoardo Persichetti is supported by NSF grant 1906360.

References

[1] https://csrc.nist.gov/Projects/Post-Quantum-Cryptography. 2017.
[2] N. Alamati et al. “Cryptographic Group Actions and Applications”. In: ASIACRYPT. Springer. 2020, pp. 411–

439.
[3] M. R. Albrecht et al. “Classic McEliece: conservative code-based cryptography”. In: (). url: https://classic.

mceliece.org/.
[4] N. Aragon et al. “Durandal: A Rank Metric Based Signature Scheme”. In: Advances in Cryptology – EURO-

CRYPT 2019. Ed. by Y. Ishai and V. Rijmen. Cham: Springer International Publishing, 2019, pp. 728–758.
[5] L. Babai. “Graph Isomorphism in Quasipolynomial Time”. In: CoRR abs/1512.03547 (2015). arXiv: 1512.

03547. url: http://arxiv.org/abs/1512.03547.
[6] L. Babai. “Graph isomorphism in quasipolynomial time”. In: Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing. 2016, pp. 684–697.
[7] M. Baldi et al. “A Finite Regime Analysis of Information Set Decoding Algorithms”. In: Algorithms 12.10

(2019). issn: 1999-4893. url: https://www.mdpi.com/1999-4893/12/10/209.
[8] M. Bardet, A. Otmani, and M. Saeed-Taha. “Permutation Code Equivalence is Not Harder Than Graph Iso-

morphism When Hulls Are Trivial”. In: IEEE ISIT 2019. July 2019, pp. 2464–2468.
[9] R. Beals et al. “Quantum Lower Bounds by Polynomials”. In: 39th Annual Symposium on Foundations of

Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA. IEEE Computer Society,
1998, pp. 352–361. doi: 10.1109/SFCS.1998.743485. url: https://doi.org/10.1109/SFCS.1998.743485.

[10] A. Becker et al. “Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set
Decoding”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by
D. Pointcheval and T. Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 520–536.
doi: 10.1007/978-3-642-29011-4_31. url: https://doi.org/10.1007/978-3-642-29011-4%5C_31.

24

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://classic.mceliece.org/
https://classic.mceliece.org/
https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547
http://arxiv.org/abs/1512.03547
https://www.mdpi.com/1999-4893/12/10/209
https://doi.org/10.1109/SFCS.1998.743485
https://doi.org/10.1109/SFCS.1998.743485
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4%5C_31

[11] M. Bellare and G. Neven. “Multi-signatures in the plain public-key model and a general forking lemma”. In:
CCS. 2006, pp. 390–399.

[12] E. Bellini et al. “Improved Veron Identification and Signature Schemes in the Rank Metric”. In: ISIT. Paris,
France, 2019, pp. 1872–1876.

[13] D. J. Bernstein et al. “Quantum Algorithms for the Subset-Sum Problem”. In: Post-Quantum Cryptography -
5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings. Ed. by P. Gaborit.
Vol. 7932. Lecture Notes in Computer Science. Springer, 2013, pp. 16–33. doi: 10.1007/978-3-642-38616-9_2.
url: https://doi.org/10.1007/978-3-642-38616-9%5C_2.

[14] W. Beullens. Not enough LESS: An improved algorithm for solving Code Equivalence Problems over Fq. Cryp-
tology ePrint Archive, Report 2020/801.

[15] W. Beullens. “Sigma protocols for MQ, PKP and SIS, and fishy signature schemes”. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2020, pp. 183–211.

[16] J.-F. Biasse et al. “LESS is More: Code-Based Signatures Without Syndromes”. In: AFRICACRYPT. Ed. by
A. Nitaj and A. Youssef. Springer, 2020, pp. 45–65.

[17] G. Brassard, P. Høyer, and A. Tapp. “Quantum Counting”. In: Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings. Ed. by K. G. Larsen,
S. Skyum, and G. Winskel. Vol. 1443. Lecture Notes in Computer Science. Springer, 1998, pp. 820–831. doi:
10.1007/BFb0055105. url: https://doi.org/10.1007/BFb0055105.

[18] J. M. Couveignes. “Hard Homogeneous Spaces.” In: IACR Cryptol. ePrint Arch. 2006 (2006), p. 291.
[19] L. De Feo and S. D. Galbraith. “SeaSign: Compact isogeny signatures from class group actions”. In: EURO-

CRYPT. Springer. 2019, pp. 759–789.
[20] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. “Wave: A new family of trapdoor one-way preimage sampleable

functions based on codes”. In: ASIACRYPT. Springer. 2019, pp. 21–51.
[21] S. M. El Yousfi Alaoui et al. “Code-Based Identification and Signature Schemes in Software”. In: Security

Engineering and Intelligence Informatics. Ed. by A. Cuzzocrea et al. Springer Berlin, 2013, pp. 122–136.
[22] A. Fiat and A. Shamir. “How to prove yourself: Practical solutions to identification and signature problems”.

In: CRYPTO. Springer. 1986, pp. 186–194.
[23] S. Goldwasser, S. Micali, and R. L. Rivest. “A digital signature scheme secure against adaptive chosen-message

attacks”. In: SIAM Journal on computing 17.2 (1988), pp. 281–308.
[24] G. Kachigar and J. Tillich. “Quantum Information Set Decoding Algorithms”. In: Post-Quantum Cryptography

- 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings. Ed.
by T. Lange and T. Takagi. Vol. 10346. Lecture Notes in Computer Science. Springer, 2017, pp. 69–89. doi:
10.1007/978-3-319-59879-6_5. url: https://doi.org/10.1007/978-3-319-59879-6%5C_5.

[25] J. Leon. “Computing automorphism groups of error-correcting codes”. In: IEEE Transactions on Information
Theory 28.3 (May 1982), pp. 496–511.

[26] A. May, A. Meurer, and E. Thomae. “Decoding Random Linear Codes in 20.054n”. In: Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Seoul, South Korea, December 4-8, 2011. Proceedings. Ed. by D. H. Lee and X. Wang. Vol. 7073.
Lecture Notes in Computer Science. Springer, 2011, pp. 107–124. doi: 10.1007/978-3-642-25385-0_6. url:
https://doi.org/10.1007/978-3-642-25385-0%5C_6.

[27] C. Peters. “Information-set decoding for linear codes over Fq”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2010, pp. 81–94.

[28] E. Petrank and R. M. Roth. “Is code equivalence easy to decide?” In: IEEE Transactions on Information
Theory 43.5 (Sept. 1997), pp. 1602–1604.

[29] R. Ransom. Constant-time verification for cut-and-choose-based signatures. Cryptology ePrint Archive, Report
2020/1184. 2020.

[30] M. A. Saeed. In: PhD thesis (2017).
[31] N. Sendrier. “The Support Splitting Algorithm”. In: Information Theory, IEEE Transactions on (Aug. 2000),

pp. 1193–1203.
[32] N. Sendrier and P. Symbolique. “On the Dimension of the Hull”. In: SIAM Journal on Discrete Mathematics

10 (Nov. 1995). doi: 10.1137/S0895480195294027.
[33] S. Tani. “An Improved Claw Finding Algorithm Using Quantum Walk”. In: Mathematical Foundations of

Computer Science 2007, 32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August
26-31, 2007, Proceedings. Ed. by L. Kucera and A. Kucera. Vol. 4708. Lecture Notes in Computer Science.
Springer, 2007, pp. 536–547. doi: 10.1007/978-3-540-74456-6_48. url: https://doi.org/10.1007/978-3-
540-74456-6%5C_48.

25

https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9%5C_2
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-59879-6%5C_5
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0%5C_6
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1007/978-3-540-74456-6_48
https://doi.org/10.1007/978-3-540-74456-6%5C_48
https://doi.org/10.1007/978-3-540-74456-6%5C_48

A Standard Definitions for Signature Schemes

Definition 3. A Digital Signature Scheme, or simply Signature Scheme (SS), is a 6-tuple (K,M,S,KeyGen,Sign,Ver)
defined as follows.

– K = Ksign×Kver is the key space, containing pairs of private/public keys (sgk, vk), respectively the signing
key and the verification key.

– M and S are, respectively, the message space and the signature space.
– KeyGen is a probabilistic key-generation algorithm that takes as input a security parameter λ and outputs

a keypair (sgk, vk) ∈ K.
– Sign is a (possibly probabilistic) private signing algorithm that receives as input a signing key sgk ∈ Ksign

and a message µ ∈ M and returns a signature σ ∈ S.
– Ver is the (deterministic) public verification algorithm that receives as input a verification key vk ∈ Kver,

a message µ ∈ M and a signature σ ∈ S and outputs 1, if the signature is recognized as valid, or 0
otherwise.

Intuitively, a signature scheme is secure if a forger has only a negligible probability of producing a
valid signature without knowing the private key. Among the several models described in literature, the one
which is usually considered the most desirable, is the chosen-message attack model, in which an attacker
is allowed access to an arbitrary number of message/signature pairs of his choosing, via so-called signing
queries. The resulting security notion is known as Existential Unforgeability under Chosen-Message Attacks
(EUF-CMA) [23], and can be formalized as follows.

Definition 4. An adversary A for SS in the EUF-CMA attack model is a polynomial-time algorithm playing
the following attack game:

1. Query a key generation oracle to obtain a verification key vk. The corresponding signing key sgk is kept
private and is unknown to A.

2. Perform a polynomial number of signing queries. In each signing query, A chooses a message m and
submits it to a signing oracle. The oracle replies with σ = Signsgk(m).

3. Output a pair (m∗, σ∗).

The adversary succeeds if Vervk(m
∗, σ∗) = 1 and m∗ had not been queried before. We say that a signature

scheme is EUF-CMA secure if the probability of success of any adversary A is negligible in the security
parameter.

B The automorphism group of a random code

In this appendix we derive an estimate on the size of the automorphism group of a random linear code. We
first consider the case of permutations, and then extend our results to the case of monomials. We anticipate
the main results we derive, and then proceed by showing how they can be proven.

Proposition 10. Let C ⊆ Fnq be a random linear code with dimension k. Let dGV denote the GV distance

of C, and NdGV =
⌈(

n
dGV

)
(q − 1)dGV −2(qk−n+1)

⌉
. Let d⊥GV be the GV distance of the dual code, and N⊥dGV =⌈(

n
d⊥GV

)
(q − 1)d

⊥
GV −2(q−k+1)

⌉
. The probability that π

$←− Sn is in the permutations automorphism group of C,

i.e., π(C) = C, is not greater than

εSn(n, k, q) =
(q − 1) min

{
NdGV !dGV !(n− dGV)! , N⊥dGV !d⊥GV !(n− d⊥GV)!

}
n!

= (q − 1) min

{
NdGV !(

n
dGV !

) , N⊥dGV !(
n

d⊥GV !

)} ,
26

while the probability that τ
$←− Mn is in the monomials automorphism group of C, i.e., τ(C) = C, is not

greater than εMn(n, k, q) =

=
min

{
NdGV !dGV !(n− dGV)!(q − 1)n−dGV +1 , N⊥dGV !d⊥GV !(n− d⊥GV)!(q − 1)n−d

⊥
GV +1

}
n!(q − 1)n

= min

{
NdGV !(q − 1)−dGV +1(

n
dGV !

) ,
N⊥dGV !(q − 1)−d

⊥
GV +1(

n
d⊥GV !

) }
.

B.1 Proof for the permutations automorphism group

To derive a bound on the size of the automorphism group of a code, we will consider the action of permutations
on the set of minimum weight codewords. To this end, we first derive some preliminary results.

Proposition 11. Let a, b ∈ Fnq with the same Hamming weight d and same entries multisets. Let MorSn(a, b) =
{π ∈ Sn | π(a) = b}. Then, the cardinality of MorSn(a, b) is not greater than w!(n− w)!.

Proof. Let E = {i ∈ [0;n − 1] | ai = 0}. For a permutation π, we can have π(i) = j if and only if ai = bj .
Let mx, for x ∈ Fq, be the number of entries with value equal to x in both a and b; since a and b have
Hamming weight w, it holds that m0 = n− w and

∑
x∈F∗q

mx = w. Then, we have

|MorSn(a, b)| =
∏
x∈Fq

mx! = (n− w)!
∏
x∈F∗q

mx!.

It is immediately seen that
∏
x∈Fq∗ mx! ≤

(∑
x∈F∗q

mx

)
! = w!, so that as an upper bound on the size of

MorSn(a, b) we can use (n− w!)w!. ut
Proposition 12. Let A ⊆ Fnq , with cardinality M , such that all the contained vectors have Hamming weight
w. Let AutSn(A) = {π ∈ Sn | π(a) ∈ A, ∀a ∈ A}; then, the size of AutSn(A) is not greater than M !w!(n−w)!.

Proof. If π ∈ AutSn(A), then for each a ∈ A, either π(a) = a or there exists a′ ∈ A, a′ 6= a, such
that π(a) = a′. Let us define some order for the elements of A and write A =

{
a1,a2, · · · ,aM

}
. For each

π ∈ AutSn(A), there exists one and only one bijection f : {1, · · · ,M} 7→ {1, · · · ,M} such that f(i) = j if and
only if π(ai) = aj . On the contrary, for a fixed bijection f , we may have more than one valid permutation,
i.e., a permutation that places i in position j if and only if f(i) = j. It is easily seen that, for a bijection f ,
the set of all valid permutations is obtained as follows

Aut
(f)
Sn

(A) =

M⋂
i=1

MorSn
(
ai,af(i)

)
.

Each bijection f can be seen as an element of the symmetric group on M elements (which we denote as

SM), so that the number of possible bijections is given by M !. Notice that, if π ∈ Aut
(f)
Sn

(A), then it is also

in AutSn(A): hence, AutSn(A) corresponds to the union of all sets Aut
(f)
Sn

(A), that is

AutSn(A) =
⋃
f∈SM

Aut
(f)
Sn

(A) =
⋃
f∈SM

(
M⋂
i=1

MorSn
(
ai,af(i)

))
.

We are now able to derive a simple upper bound on the size of AutSn(A), as follows

|AutSn(A)| =

∣∣∣∣∣∣
⋃
f∈SM

(
M⋂
i=1

MorSn
(
ai,af(i)

))∣∣∣∣∣∣ ≤ |SM | ·
∣∣∣∣∣
M⋂
i=1

MorSn
(
ai,af(i)

)∣∣∣∣∣
= M ! ·

∣∣∣∣∣
M⋂
i=1

MorSn
(
ai,af(i)

)∣∣∣∣∣ ≤M !w!(n− w!),

27

where the last inequality comes from Proposition 11. ut

Using the previous results, we are finally able to prove the main result of this section.

Theorem 6. Let C ⊆ Fnq be a linear code with minimum distance d. Let Tq(c) =
{
bc | b ∈ F∗q

}
, and let

V ⊂ Fq be a set of codewords such that

i) if c ∈ C has weight d, then Tq(c) and V have only one element in common;
ii) all codewords in V have weight d.

Let AutSn(C) be the permutations automorphism group of C. Then, the cardinality of AutSn(C) is not greater
than (Nd)!(q − 1)d!(n− d)!, where Nd denotes the cardinality of V .

Proof. Without loss of generality, we can define V such that all of its codewords have the first entry that
is equal to 1. Now, let π ∈ AutSn(C); then, π must map the set of codewords of C with weight d into itself.
Since this set is obtained as Vq =

⋃
c∈V Tq(c), we have that the image of Vq under the permutation π is

equal to itself. Hence, for each c ∈ C with weight d, there must be c′ ∈ V such that π(c) ∈ Tq(c′). Note that
this also guarantees that, for each ĉ ∈ Tq(c), one also has π(ĉ) ∈ Tq(c′). To put it differently, for each c ∈ V
there must exist i) another codeword c′ ∈ V , and ii) a non null element b ∈ F∗q , such that π(c) = bc′. Hence,
we have

AutSn (Vq) =
⋃

f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorSn

(
ci, bcf(i)

))
.

This allows us to derive a bound on the size of AutSn(Vq), using the union bound for two times

|AutSn(V)| =

∣∣∣∣∣∣
⋃

f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorSn

(
ci, bcf(i)

))∣∣∣∣∣∣
≤ |SNd | ·

∣∣F∗q∣∣ ·
∣∣∣∣∣
Nd⋂
i=1

MorSn

(
ci, bcf(i)

)∣∣∣∣∣
≤ Nd!(q − 1)d!(n− d)!.

Finally, we consider that if π ∈ AutSn(C), then it must necessarily be π ∈ AutSn(Vq): hence, it must be
AutSn(C) ⊆ AutSn(Vq). So, we can use the bound on the cardinality of AutSn(Vq) as an upper bound for the
size of AutSn(C). ut

The above results allow to prove the bound on the permutations automorphism group stated in Proposition
10. To estimate the minimum distance of a code, we use the well known Gilbert-Varshamov bound, and rely
on Proposition 1 to estimate the cardinality of the set V used in Proposition 6. Hence, we set d as the GV
distance, and ceil the obtained NdGV to guarantee that the cardinality of V is not lower than 1. Finally, we
consider that the automorphism group of a code coincides with that of its dual.

B.2 Proof for the monomials automorphism group

We now generalize the results in the previous section to the case of monomials.

Proposition 13. Let a, b ∈ Fnq with the same Hamming weight d and same entries multisets. Let MorMn(a, b) =
{τ ∈ Mn | τ(a) = b}. Then, the cardinality of MorMn(a, b) is equal to w!(n− w)!(q − 1)n−w.

Proof. We reason on the characteristics that a monomial τ ∈ Mn must have, in order to guarantee that the
image of a is b. To this end, we write τ = π o v, with π ∈ Sn and v ∈ F∗nq . Let E(a) be the set of positions

pointing at null entries in a, and let Ē(a) be that of indexes pointing an non-null entries in a; the same
notation is employed for b. To have τ(a) = b, the following conditions must be verified:

28

i) π (E(a)) = E(b);
ii) if i ∈ E, then vi can have whichever value;
iii) π

(
Ē(a)

)
= Ē(b);

iv) if π(i) = j, then vi = a−1i bj .

The number of permutations satisfying conditions i) and iii) is given by w!(n − w)!, while that of vectors
satisfying ii) and iv) corresponds to (q − 1)n−w. ut

Proposition 14. Let A ⊆ Fnq , with cardinality M , such that all the contained vectors have Hamming weight
w. Let AutSn(A) = {π ∈ Sn | π(a) ∈ A, ∀a ∈ A}; then, the size of AutMn(A) is not greater than M !w!(n−
w)!(q − 1)n−w.

Proof. We reason as in the proof of Proposition 12. If τ ∈ AutMn(A), then for each a ∈ A, either τ(a) = a
or there exists a′ ∈ A, a′ 6= a, such that τ(a) = a′. We write again A =

{
a1,a2, · · · ,aM

}
, and consider

that for each τ ∈ AutMn(A), there exists one and only one bijection f : {1, · · · ,M} 7→ {1, · · · ,M} such that

f(i) = j if and only if τ(ai) = aj . Let Aut
(f)
Mn

(A) =
⋂M
i=1 MorMn

(
ai,af(i)

)
, and consider that

AutMn(A) =
⋃
f∈SM

Aut
(f)
Mn

(A) =
⋃
f∈SM

(
M⋂
i=1

MorMn
(
ai,af(i)

))
.

Using the union bound, we find that the cardinality of AutMn(A) cannot be greater thanM !
∣∣MorMn(ai,af(i))

∣∣,
and we finally rely on Proposition 13 to bound the cardinality of MorMn(ai,af(i)). ut

Finally, we adapt Theorem 6 to the case of monomials.

Theorem 7. Let C ⊆ Fnq be a linear code with minimum distance d. Let Tq(c) =
{
bc | b ∈ F∗q

}
, and let

V ⊂ Fq be a set of codewords such that

i) if c ∈ C has weight d, then Tq(c) and V have only one element in common;
ii) all codewords in V have weight d.

Let AutMn(C) be the monomials automorphism group of C. Then, the cardinality of AutMn(C) is not greater
than (Nd)!(q − 1)d!(n− d)!, where Nd denotes the cardinality of V .

Proof. As in the proof of Theorem 6, we define V such that all of its codewords have the first entry that is
equal to 1, and Vq =

⋃
c∈V Tq(c). If τ(Vq) = Vq, then for each c ∈ V there must exist i) another codeword

c′ ∈ V , and ii) a non null element b ∈ F∗q , such that π(c) = bc′. Then, we have

AutMn (Vq) =
⋃

f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorMn

(
ci, bcf(i)

))
.

Using twice the union bound, we find that an upper bound on the size of AutMn (Vq) is given by Nd!(q −
1)w!(n− w)!(q − 1)n−w. Again, the proof is completed by noticing that AutMn (C) ⊆ AutMn (Vq). ut

C Proofs of Section 4

Proposition 1. Let C ⊆ Fnq be a random linear code with length n and dimension k. Let Aw be the set of
codewords of C such that

- if c ∈ C has weight w, then bc ∈ Aw for some b ∈ F∗q ;

- bc 6= b′c′, for all b, b′ ∈ F∗q and all c 6= c′ ∈ Aw.

29

Then, the average cardinality of Aw is given by

Nw =

(
n

w

)
(q − 1)w−2qk−n+1.

Proof. Let Tq(c) = {bc | b ∈ F∗q}, i.e., the orbit of a vector c under the scalar multiplication by an element

of F∗q . Since C is linear, we can find a set V ⊆ C, containing (qk − 1)/(q − 1) codewords, such that

1. Tq(c) ∩ Tq(c′) = ∅, ∀c, c′ ∈ V , c 6= c′;
2. C \ {0n} =

⋃
c∈V Tq(c), where 0n is the null codeword.

Without loss of generality, we can require that each c ∈ V has, as the first non-null entry, the value 1.
Now, we focus on the number of codewords in V having a desired weight w, which we indicate as Nw: it is
immediately seen that such codewords form the set Aw. Let us pick at random a codeword from V : since
the code is random, the probability that it has weight w is given by(

n
w

)
(q − 1)w−1

qn−1 − 1
.

Indeed, the numerator corresponds to the number of vectors with length n, weight w and whose first entry
is a 1, while the denominator gives the number of vectors whose first non-null entry is a 1. Since V contains
(qk−1)/(q−1) codewords, under the assumption that all of such codewords are randomly and independently
picked, we estimate Nw as

qk − 1

q − 1
·
(
n
w

)
(q − 1)w−1

qn−1 − 1
≈
(
n

w

)
(q − 1)w−2qk−n+1.

ut

Proposition 4. Let C1 ⊆ Fnq be a random code with dimension k, and C2 = π(C1), with π being a random
permutation. Let L,w ∈ N, with w ≤ n and L ≤ Nw, where Nw is computed as in Proposition 1. Then,
the computational complexity of Beullens’s algorithm with parameters L and w, to solve the permutation
equivalence problem on C1 and C2, is at least

O

(
1

β(w,L)
·
(

2CISD(q, n, k, w)∑L−1
i=0 (Nw − i)−1

+ Cperm

)
,

where CISD(q, n, k, w) denotes the time complexity of an ISD algorithm, searching for a codeword with weight
w in a linear code with length n, dimension k and defined over Fq, and

Cperm = Lw(q − 2)
(
1 + log2(L)

)
+
M ′′

M
(n− w)!(m!)q−1(n+ k2),

with m = max {1 , dw/(q − 1)c}, β(w,L) = 1−
(
Nw−L
L

)
/
(
Nw
L

)
, M = L2/Nw and M ′ = (1−

(
w+q−3
w−1

)−1
)M +

L2
(
w+q−3
w−1

)−1
.

If L� Nw, q is rather large and
(
w+q−3
w−1

)−1 � L2, the complexity simplifies as

O

(
2L · CISD(q, n, k, w) + (n− w)!(n+ k2)

Nw
(
1− 2L log2(1−L/Nw)

))
.

Proof. We use Nw, as in Proposition 1, to estimate the number of weight-w codewords in the codes C1 and
C2. The algorithm starts by producing the set X, i.e., produces L codewords in C1 with weight w. To do this,
we perform multiple calls to an ISD algorithm. Let CISD(q, n, k, w) the complexity of a single call. Since the

30

code contains Nw codewords with the desired weight, and we want to find L of them, we have a complexity
that is

CISD(q, n, k, w) ·
L−1∑
i=0

1

Nw − i
.

Notice that if L� Nw (as it is preferable), we have
∑L−1
i=0

1
Nw−i ≈

L
Nw

.
Notice that, for each found codeword x, we have to compute the result of Lex(x): this is done with, at

least, w(q−2) multiplications in the finite field. Indeed, we have to compute all multisets MS(bx), for b ∈ F∗q :
for b = 1 we do not perform any multiplication, while for b 6= 1 the product bx requires w single element
multiplications. Neglecting the cost of computing the lexicographically smallest multiset (which we expect
to be negligible, with respect to the other terms), we obtain that to build X one faces a cost

O

(
CISD(q, n, k, w)∑L−1
i=0 (Nw − i)−1

+ Lw(q − 2)

)
.

Then, we do the same for Y . Notice that the list Y does not need to be materialized, since for each found
codeword y it is enough to sarch for a collision in X. Using a proper binary search algorithm, a collision can
be found with O (log2(L)) operations. Hence, if we put everything together, we get that to build the lists X
and Y , and to merge them into P , we have a complexity of

O

(
CISD(q, n, k, w)∑L−1
i=0 (Nw − i)−1

+ Lw(q − 2) (1 + log2(L))

)
.

Let us now estimate the average size of the list P . Consider that it may contain two types of elements:

- good collisions: pairs {x,y} such that π(x) = y. Since C1 contains Nw codewords with weight w, under
the assumption that the automorphism group of the code is trivial (i.e., there is only one permutation
π ∈ Sn so that π(C1) = C2), we get that for each x ∈ C1 there is only one codeword y ∈ C2 such that
π(x) = y. Hence, since ISD returns random codewords of weight w, we have that on average the number
of good collisions is given by

M =

L∑
i=1

i ·
(
L
i

)(
Nw−L
L−i

)(
Nw
L

) =
L2

Nw
.

- bad collisions: pairs {x,y} such that π(x) 6= y. We now try to estimate the number of such pairs; to
this end, we first make some preliminary considerations. First, it is easily seen that for any vector a, we
have that Lex(a) contains at least a 1. Hence, for each pair {x, Lex(x)} ∈ X, we may assume that Lex(x)
is a random multiset with one entry equal to 1, and the other w − 1 ones picked at random over F∗q .
The same goes for each {y, Lex(y)} ∈ Y . To have {x,y} ∈ P , it must be Lex(x) = Lex(y): since there
are

(
q+w−3
w−1

)
possible outputs for the function Lex, we assume that a collision happens with probability(

q+w−3
w−1

)−1
. Hence, the number of bad collisions can be estimated as

M̃ = (L2 −M)

(
w + q − 3

w − 1

)−1
.

Hence, we estimate the number of entries in P as

M ′ = M + M̃ =

(
1−

(
w + q − 3

w − 1

)−1)
M + L2

(
w + q − 3

w − 1

)−1
.

We notice that, when L2
(
w+q−3
w−1

)
� 1, the number of bad collisions is extremely low and can be assumed to

be equal to 0, so that all pairs in P are good collisions.

31

For each pair {x,y} ∈ P , the algorithm goes through all permutations in MorSn(x,y), i.e., considers all
permutations σ such that σ(x) = y. For a pair {x,y}, since both x and y have Hamming weight w, the
number of such permutations is derived as

(n− w)!

q−1∏
a=1

ma!,

where ma corresponds to the number of entries that, in both x and y, are equal to a ∈ F∗q . On average, we
expect to have

ma = m := max {1 , dw/(q − 1)c} ,

and hence estimate the size of MorSn(x,y), for each {x,y} ∈ P , as

(n− w)!(m!)q.

Hence, we use (n−w)! to estimate To test a candidate permutation σ, it is enough to compute a generator
for σ(C1) and see if its systematic form is equal to that of C2. This can be done with basic linear algebra, and,
at a high level, costs O(n+k3) log2

2(q) operations. It is clear that if {x,y} is a good collision, then the correct
permutation π is in MorSn(x,y). Otherwise, the algorithm goes through all permutations in MorSn(x,y),
verifies that no one of them is valid and starts with another couple. The number of couples that one has
to test, on average, before finding a good collision is given by M ′/M . Hence, the cost of the producing the
valid permutation is lower bounded by

O

(
M ′

M
· (n− w)!(n+ k3)

)
.

Finally, we consider the success probability, i.e., the probability that P contains at least a good collision.
This is given by

β(w,L) = 1−
(
Nw−L
L

)(
Nw
L

) = 1−
L−1∏
i=0

(
1− L

Nw − i

)
.

If L� Nw (as it should be), we get that the failure probability 1− β(w,L) is roughly 1− 2L log2(1−L/Nw).
Before concluding the proof, we consider that the preferable setting for the algorithm is the one in which

the set P contains only good collisions. To do this, one has to carefully choose the value of w and L, so

that L � Nw and L2
(
w+q−3
w−1

)−1 � 1. If such conditions are met, it happens that the bottleneck in the
algorithm complexity is represented by the cost of finding the low weight codewords in the given codes.
Hence, as a consequence of this consideration and applying some simple approximations (which we have
already highlighted through the proof), we can simplify the complexity of the algorithm as

O

(
2L · CISD(q, n, k, w)

Nw
(
1− 2L log2(1−L/Nw)

))ut
D Lexicographic ordering of basis

Let V ⊆ Fnq be a 2-dimensional subspace. To compute the first lexicographic basis of all possible monomial
transformations of V, we can operate as follows. Let us start with a generic basis B for V. Now, we multiply
each column of B by the inverse of the element in the first row, in order to remain with either zeros or ones
in the first row. Now, we permute the columns of the obtained matrix with the goal of placing the zeros in
the leftmost part of the first row. To do this, we consider the element in the second row: when two columns
have the same element in the first row, we look at the element in the second row, and put on the left the
one with the lowest entry. Finally, if we have some non null entry in the second row which corresponds to a
null entry in the first row, we can scale the corresponding column to put a one in the second row. For the
sake of clarity, in Figure 2 we show an example of this procedure.

32

(
0 1 0 0 2 3 2 0 4

1 0 0 2 0 3 4 0 2

)

(a)

(
0 1 0 0 1 1 1 0 1

1 0 0 2 0 1 2 0 3

)

(b)(
0 0 0 0 1 1 1 1 1

0 0 1 2 0 0 1 2 3

)

(c)

(
0 0 0 0 1 1 1 2 1

0 0 1 1 0 0 1 2 3

)

(d)

Fig. 2: Example of lexicographig ordering of a basis, for the finite field with q = 5 elements. In figure (a) we show
the initial basis, while in the other figures we detail the steps we perform to find the corresponding lexicographic
minimum. The matrix in figure (b) is obtained by scaling all columns so that the entry in the first row is a 1. To
obtain the matrix in figure (b), we sort the columns. Finally, we see that we have some degrees of freedom, since the
third and fourth columns have a zero in the first row and a non null entry in the second row. Hence, we scale these
columns and finally obtain the minimum lexicograph basis as in figure (d).

We repeat this procedure for all possible basis for V, and for each basis keep only the resulting lexi-
cographically minimum matrix, obtained as above. Finally, we compare all of such matrices and pick the
one which comes first, in the lexicographically order. Notice that, for a given subspace, we test a total of
(q2−1)/(q2− q) basis, and for each basis we use O(n) operations to find the lexicographic minimum matrix.
Finally, we use no more than O

(
n(q2 − 1)(q2 − q)

)
operations to compare the resulting matrices.

33

T
y
p

e
V

a
ri

a
n
t

P
a
ra

m
et

er
s

q
=

1
3

q
=

3
1

q
=

6
1

q
=

1
2
7

q
=

2
5
1

|p
k|

|σ
|
|p
k|

+
|σ
|
|p
k|

|σ
|
|p
k|

+
|σ
|
|p
k|

|σ
|
|p
k|

+
|σ
|
|p
k|

|σ
|
|p
k|

+
|σ
|
|p
k|

|σ
|
|p
k|

+
|σ
|

P
er

m

P
la

in
-

1
3
.5

2
2
4
.7

2
3
8
.2

4
1
1
.3

9
2
0
.4

8
3
1
.8

7
1
1
.1

6
1
6
.6

6
2
7
.8

2
1
0
.5

6
1
5
.1

2
2
5
.6

8
1
0
.5

1
4
.1

6
2
4
.6

6

L
E

S
S
-F

t
=

2
4
7
,
w

=
3
0

1
3
.5

2
1
4
.4

7
2
7
.9

9
1
1
.3

9
1
2
.5

8
2
3
.9

7
1
1
.1

6
1
0
.8

2
2
1
.9

8
1
0
.5

6
1
0
.0

8
2
0
.6

4
1
0
.5

9
.6

1
2
0
.1

1

L
E

S
S
-M

`
=

2
4
0
.5

8
1
8
.0

3
5
8
.6

1
3
4
.1

7
1
4
.8

5
4
9
.0

2
3
3
.4

8
1
1
.9

8
4
5
.1

4
3
1
.6

9
1
0
.8

3
4
2
.5

2
3
1
.5

1
1
0
.1

1
4
1
.6

2

`
=

3
9
4
.7

0
1
4
.0

2
1
0
8
.7

2
7
9
.7

3
1
1
.5

3
9
1
.2

6
7
8
.1

2
9
.2

8
8
7
.4

0
7
3
.9

5
8
.3

7
8
2
.3

2
7
3
.5

2
7
.8

1
8
1
.3

3

`
=

4
2
0
2
.9

3
1
1
.1

5
2
1
4
.0

8
1
7
0
.8

5
9
.1

6
1
8
0
.0

1
1
6
7
.4

0
7
.3

7
1
7
4
.7

7
1
5
8
.4

8
6
.6

4
1
6
5
.1

2
1
5
7
.5

6
6
.1

9
1
6
3
.7

5

L
E

S
S
-F

M

`
=

2
,
t

=
1
4
4
,
w

=
2
4

4
0
.5

8
1
0
.7

3
5
1
.3

1
3
4
.1

7
9
.2

1
4
3
.3

8
3
3
.4

8
7
.8

1
4
1
.2

9
3
1
.6

9
7
.2

2
3
8
.9

1
3
1
.5

1
6
.8

5
3
8
.3

6

`
=

3
,
t

=
9
5
,
w

=
2
1

9
4
.7

0
8
.8

5
1
0
3
.5

5
7
9
.7

3
7
.5

5
8
7
.2

8
7
8
.1

2
6
.3

4
8
4
.4

6
7
3
.9

5
5
.8

3
7
9
.7

8
7
3
.5

2
5
.5

2
7
9
.0

4

`
=

4
,
t

=
7
9
,
w

=
1
8

2
0
2
.9

3
7
.6

2
2
1
0
.5

5
1
7
0
.8

5
6
.4

8
1
7
7
.3

3
1
6
7
.4

0
5
.4

1
1
7
2
.8

1
1
5
8
.4

8
4
.9

6
1
6
3
.4

4
1
5
7
.5

6
4
.6

8
1
6
2
.2

4

M
o
n
o

P
la

in
-

1
2
.8

7
3
4
.4

2
4
7
.2

9
1
0
.6

4
3
0
.2

7
4
0
.9

1
1
0
.2

6
2
7
.2

5
3
7
.5

1
9
.8

2
2
6
.4

8
3
6
.3

9
.7

7
2
6
.3

8
3
6
.1

5

L
E

S
S
-F

t
=

2
8
3
,
w

=
2
8

1
2
.8

7
1
8
.7

2
3
1
.5

9
1
0
.6

4
1
6
.9

0
2
7
.5

4
1
0
.2

6
1
5
.5

8
2
5
.8

4
9
.8

2
1
5
.2

4
2
5
.0

6
9
.7

7
1
5
.2

2
4
.9

7

L
E

S
S
-M

`
=

2
3
8
.6

2
2
5
.3

1
6
3
.9

3
3
1
.9

2
2
2
.1

9
5
4
.1

1
3
0
.7

8
1
9
.9

3
5
0
.7

1
2
9
.4

7
1
9
.3

5
4
8
.8

2
2
9
.3

2
1
9
.2

8
4
8
.6

`
=

3
9
0
.1

1
1
9
.7

2
1
0
9
.8

3
7
4
.4

8
1
7
.2

8
9
1
.7

6
7
1
.8

2
1
5
.5

1
8
7
.3

3
6
8
.7

6
1
5
.0

5
8
3
.8

1
6
8
.4

3
1
5

8
3
.4

3

`
=

4
1
9
3
.1

1
1
5
.6

9
2
0
8
.8

1
5
9
.6

0
1
3
.7

5
1
7
3
.3

5
1
5
3
.9

0
1
2
.3

3
1
6
6
.2

3
1
4
7
.3

5
1
1
.9

7
1
5
9
.3

2
1
4
6
.6

4
1
1
.9

2
1
5
8
.5

6

L
E

S
S
-F

M

`
=

2
,
t

=
1
8
1
,
w

=
2
2

3
8
.6

2
1
3
.9

9
5
2
.6

1
3
1
.9

2
1
2
.6

3
4
4
.5

5
3
0
.7

8
1
1
.6

0
4
2
.3

8
2
9
.4

7
1
1
.3

3
4
0
.8

2
9
.3

2
1
1
.3

4
0
.6

2

`
=

3
,
t

=
1
3
0
,
w

=
1
9

9
0
.1

1
1
1
.6

8
1
0
1
.7

9
7
4
.4

8
1
0
.5

0
8
4
.9

8
7
1
.8

2
9
.6

1
8
1
.4

3
6
8
.7

6
9
.3

7
7
8
.1

3
6
8
.4

3
9
.3

4
7
7
.7

7

`
=

4
,
t

=
9
7
,
w

=
1
7

1
9
3
.1

1
1
0
.1

3
2
0
3
.2

4
1
5
9
.6

0
9
.0

9
1
6
8
.6

9
1
5
3
.9

0
8
.2

9
1
6
2
.1

9
1
4
7
.3

5
8
.0

8
1
5
5
.4

3
1
4
6
.6

4
8
.0

6
1
5
4
.7

T
a
b
le

9
:

E
x
p
lo

ra
ti

o
n

o
f

th
e

p
o
ss

ib
le

p
a
ra

m
et

er
se

ts
fo

r
L

E
S
S

in
st

a
n
ce

s
w

it
h

se
cu

ri
ty

eq
u
iv

a
le

n
t

to
a

2
1
2
8

co
m

p
u
ta

ti
o
n
a
l

eff
o
rt

.

34

E A Note on Information-Set Decoding

Almost all the algorithms we have analyzed in this section employ ISD as a subroutine. Hence, for the sake
of completeness, we provide here an analysis of the ISD algorithm we have chosen, namely, Peters’ ISD
[27], which comes as an adaptation of Stern’s ISD in the non-binary case. Note that, to obtain conservative
parameters for our scheme, we consider an optimistic analysis for the algorithm.

We consider a code described by a generator matrix G ∈ Fk×nq , and assume that we seek to find a

codeword with weight w. Let Em,p =
{
e ∈ Fmq , wt(e) = p

}
. Peters’ algorithm uses as options two integers p

and `, with 0 ≤ ` ≤ n− k and 0 ≤ w ≤ min{w, k + `}, and works as follows:

1. choose a random permutation π ∈ Sn and use Gaussian elimination to transform π(G) into

G′ =

[
Ibk/2c 0bk/2c×dk/2e

0dk/2e×dk/2e Idk/2e

∣∣∣∣ G′X,ZG′Y,Z

∣∣∣∣ G′V] ,
where G′X,Z ∈ Fbk/2c×`q , G′Y,Z ∈ Fdk/2e×`q and G′V ∈ Fk×(n−k−`)q . If this is not possible, restart by picking
another permutation π;

2. create a list X =
{

(e, s = eG′X,Z), with e ∈ E′bk/2c, p
}

;

3. create a list Y =
{

(e, s = eG′Y,Z), with e ∈ Edk/2e, p
}

;
4. produce Z = {[x | y], such that (x, sx) ∈ X, (y, sy) ∈ Y, sx = −sy};
5. for each e ∈ Z, compute eG′V ; if it has weight w − 2p, return π−1([e | eG′V]).

We now analyze the cost of this algorithm, under some conservative assumptions and optimizations that will
ultimately lead to a cost that is likely to be below the actual one.

Optimized Gaussian Elimination In [27], the author proposes to use, for each new iteration, the matrix G′

that one has obtained in the previous iteration (clearly, after having removed the effect of the permutation).
The gain is in the fact that some columns have already been pivoted: this simplifies the Gaussian elimination
step, de facto reducing the count of operations. If we select completely at random a new permutation, we
have that on average k2/n of the selected columns have already been pivoted, meaning that the Gaussian
elimination has to be repeated only on the remaining k − k2/n columns.

Yet, as observed in [27], this procedure can further optimized by considering some additional aspects.

1. We can force some columns to be exactly the same as the ones that were previously selected. If we
select only t new columns, then only these need to be reduced. However, this makes iterations dependant
and, as an effect, decreases the success probability of each iteration. The probability to succeed after
N iterations can be estimated by considering a Markov chain, where the states are identified with the
number of set coordinates which are present in the chosen information set. Assuming that we start
from b ∈ [0; min{w, k}] set coordinates (which happens with probability

(
w
b

)(
n−w
k−n

)
/
(
n
k

)
), replacing only t

columns in the information set makes the number of set coordinates in the information set vary from b−t
to min{b+ t,min{w, k}}. In the most extreme case, one sets t = 1, which minimizes the cost of Gaussian
elimination (since we only swap one column, with respect to the information set we have chosen in the
previous iteration), but as a side-effect reduces to a minimum the probability of succeeding after a fixed
number of iterations.

2. We can exploit precomputations, in the following way. We notice that certain combinations of the same
rows are considered multiple times, when performing Gaussian elimination. Hence, we can precompute
such sums and use them when perfomring Gaussian elimination. We denote with m the number of rows
we consider, with m ≤ t. Assuming that we swap only t columns, we have that to perform a complete
Gaussian elimination, we use [27] a cost of

Cg = (n− 1)
(
(k − 1)(1− q−m) + (qm −m)

) t
m

log2(q). (3)

Once again, as noted in [27], the gain becomes ineffective as soon as the finite field becomes large.

35

Aiming at a rather conservative estimate for the cost of Gaussian elimination, we choose to i) rely on (3) for
the cost of Gaussian elimination, selecting the values of t and m that minimizes the cost, and ii) assess the
success probability of each iteration by neglecting that we have forced some columns (i.e., we assume that
the new permutation is chosen completely at random).

List Merging To merge two lists A and B of the same size L, we consider a cost of 2L log2(L). Indeed, we
first sort one of the two lists (say, B), with a cost of L log2(L) operations, and then exploit binary search
to determine collisions. In particular, for each element in A, we are able to search for a collision in B with
log2(L) operations: since A contains L entries, we do the whole search with a cost of L log2(L) collisions. If
the lists have different sizes, say, L1 and L2, we instead get a total cost of L1 log2(L1) + L2 log2(L1), where
L1 and L2 can be swapped according to which list is sorted. If the difference between the sizes is rather
limited, we can only consider the size of the smallest one, and use 2L log2(L) as a reliable estimate for the
collisions search complexity, with L = min{L1, L2}.

Let us now consider the case in which the two lists contain some repeated elements. To capture this
situation, we assume that the elements in the lists A and B take values in F`q, and that q` < L. In such
a case, instead of sorting B, we can proceed in a slightly different way. We sort again the list B, but with
the aim of producing a new list B′ that does not contain replicated elements. For each entry b in B′, we
store (say, in an auxiliary list B̃) the indexes pointing to the entries in B corresponding to the value b. Note
that this comes with essentially the same cost of the sorting procedure, so we have again a cost of L log2(L)
operations. Then, we search for collisions between A and B′, with a cost of L log2(|B′|). For the size of B′,
we can set a safe upper bound as q`, so that the collisions search takes no more than L` log2(q). Every time

we find a collisions for an element b, we read from B̃ the positions of all entries in B with value b. Hence,
we can set the cost of this procedure as

L log2(L) + L log2(q`) = L log2(Lq`).

Enumeration We consider, again, that we search for a codeword having the first entry in X which is equal
to 1. By doing this, we have that the list X can be built to contain

(bk/2c
p

)
(q − 1)p−1 pairs (e, eG′X,Z). To

compute eG′Z , we can first multiply each row of G′Z , and then combine such scaled vectors. Hence, we get
an overall cost of

(q − 2)bk/2c` log2(q) +

(
bk/2c
p

)
(q − 1)p−1(p− 1)` log2(q)

=

(
(q − 2)bk/2c+

(
bk/2c
p

)
(q − 1)p−1(p− 1)

)
` log2(q).

We do the same for Y , using Edk/2e,p, and building Y with a cost of(
(q − 2)dk/2e+

(
dk/2e
p

)
(q − 1)p(p− 1)

)
` log2(q).

Then, we proceed by merging the two lists; let L = min{|Edk/2e,p|, q`}. To merge the lists we use a complexity
given by (

bk/2c
p

)
(q − 1)p−1

(
(p− 1) log2(q − 1) + log2

((
bk/2c
p

))
+ log2(L)

)
.

Then, the overall cost to produce Z is given by

Cl =

(
(q − 2)bk/2c+

(
bk/2c
p

)
(q − 1)p−1(p− 1)

)
` log2(q)

+

(
(q − 2)dk/2e+

(
dk/2e
p

)
(q − 1)p(p− 1)

)
` log2(q)

+

(
bk/2c
p

)
(q − 1)p−1

(
(p− 1) log2(q − 1) + log2

((
bk/2c
p

))
+ log2(L)

)
.

36

Weight Testing Finally, we consider the cost of testing the candidates stored in Z. To do this, we first
consider that the number of elements in Z can be estimated as

|Z| = |X| · |Y |
q`

=

(bk/2c
p

)(dk/2e
p

)
(q − 1)2p−1

q`
.

For each candidate e ∈ Z, we compute eG′V and check its weight. Again, we rely on early abort, and hence
stop the computation as soon as we reach the weight w−2p+ 1. For each entry, we compute 2p−1 products
(since we always have the first entry of e equal to 1), and 2p− 1 sums. Hence, we estimate the cost of this
step as

Ct = |Z| · (w − 2p+ 1)
q

q − 1
(4p− 2) log2(q)

=

(bk/2c
p

)(dk/2e
p

)
(q − 1)2p−2

q`−1
(w − 2p+ 1)(4p− 2) log2(q).

Success Probability The success probability of the algorithm is given by

Pp,` =

(
w
p

)(
w−p
p

)(
n−w
`

)(
n−w−`
k−2p−`

)(
n
k

) .

Completing the Puzzle Taking the above analysis into account, we estimate the cost of Peters’ ISD as

C =
Cg + Cl + Ct

Pp,`
. (4)

To verify that our treatment yields an optimistic analysis of Peters’ algorithm, consider Figures 3 and 4,
where we have compared our analysis of Peters’ algorithm with that given in [27], for codes with moderate
lengths and different code rates and values of q. For each setting, we have set w as the Gilbert - Varshamov
distance. This shows that our analysis is conservative and likely an under-estimation of the actual algorithm
cost.

37

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

60

80

100

120

140

Code rate

C
o
m

p
le

x
it

y
q = 13, Our analysis

q = 13, Peters’ analysis

q = 61, Our analysis

q = 61, Peters’ analysis

q = 251, Our analysis

q = 251, Peters’ analysis

Fig. 3: Complexities to find a minimum-weight codeword, for codes with n = 200. The minimum distances of the
codes have been estimated through the Gilbert-Varshamov bound. The complexity of the algorithms is expressed in
bits.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
80

100

120

140

160

180

200

220

240

260

Code rate

C
o
m

p
le

x
it

y

q = 13, Our analysis

q = 13, Peters’ analysis

q = 61, Our analysis

q = 61, Peters’ analysis

q = 251, Our analysis

q = 251, Peters’ analysis

Fig. 4: Complexities to find a minimum-weight codeword, for codes with n = 400. The minimum distances of the
codes have been estimated through the Gilbert-Varshamov bound. The complexity of the algorithms is expressed in
bits.

38

F Quantum Algorithms for Code Equivalence

To analyze the quantum security of the code equivalence problem, we begin by investigating SDP as a first
stepping stone.

F.1 SDP as a 4-sum Problem

We solve the syndrome decoding problem using the approach presented by Kachigar and Tillich [24] which
consists in rephrasing it as a 4-sum problem and then using a quantum walk (and Grover search) to solve it
with quantum computers. In this section, we briefly review the problem and how it can be rephrased as a
4-sum problem.

Definition 5 (Syndrome Decoding Problem (SDP)). Let C be a code of length n and dimension k

defined by a parity-check matrix H ∈ F(n−k)×n
q , and let s ∈ Fn−kq , w ≤ n, find e ∈ Fnq such that HeT = sT

and e is of weight w.

Given that the matrix H has n columns but only n− k rows, SDP is equivalent to solving an underde-
termined linear system. As long as w < n − k, we can hope that the solution e has k zero coefficients. Let
π ∈ Sn be the permutation of the columns of H that brings all these zeros to the last coefficients, then we
have

HeT =
(
H1 H2

)(eT1
0

)
= H1e

T
1 = sT

where H1 ∈ F(n−k)×(n−k)
q , and e1 ∈ Fn−kq . We can then solve for e1 and recover e. The original strategy

to solve SDP due to Prange (which is usually recognized as the first instance of an ISD algorithm) consists
in sampling random π ∈ Sn, and for each π, apply the permutation to H and attempt to solve the system
of n − k unknowns H1e

T
1 = sT . When an appropriate π is found (which is the difficult part), this yields a

solution to SDP at little extra cost.

The above strategy puts the entire burden of the computation on the search for a good permutation π
and almost none on the resolution of the subsequent linear system H1e

T
1 = sT . Instead, we can use tradeoff

where more permutations are considered (thus making the search for permutations more likely to succeed)
at the cost of a more difficult system to solve. More specifically, we introduce two parameters l, p, and denote
by S a set of k+ l indices, where instead of assuming that all entries of the solution are zero on these indices,
we rather assume that only p of them are non-zero. Thus, the first construction corresponds to l = p = 0.
The probability that exactly p non-zero coordinates of a fixed e belong to S while the remaining w− p are
outside of it is denoted by

Pl,p :=

(
k+l
p

)(
n−k−l
w−p

)(
n
w

) .

Assuming a good permutation is found, we now need to solve the a new linear algebra problem. By good, we
mean that it moves the k+ l coordinates of indices in S to the left of the matrix. We apply this permutation
π to the columns of H and assume that the restriction of π(H) to its last n − k − l columns is of full row
rank. We perform a Gaussian elimination, which corresponds to the multiplication of π(H) by an invertible
matrix U on the left such that the resulting matrix has the shape:

U · π(H) =

(
H ′ 0l
H ′′ In−k−l

)
We can write π(e) = (e′||e′′) where e′ ∈ Fl+kq has weight p and e′′ ∈ Fn−k−lq . Then, given a good permutation,

we can reduce our problem to the resolution of the overdetermined system defined by H ′ ∈ Fl×(k+l)q . Indeed.
we have

U · sT =

(
s′T

s′′T

)
= U ·HeT =

(
H ′e′T

H ′′e′T + e′′T

)

39

Once we find a solution e′ to the system H ′e′T = s′T (which is somewhat expensive), we can immediately
derive e′′T as s′′T −H ′′e′T .

Input: H, s, l, p, w.
Output: e of weight w such that HeT = sT .
1: for all π ∈ Sn do

2: Compute row reduction of π(H): U · π(H) =

(
H ′ 0l
H ′′ In−k−l

)

3: Compute s′, s′′ defined by U · sT =

(
s′T

s′′T

)
4: Find e′ of weight p such that H ′e′T = s′T . (method to be determined)

5: e′′T ← s′′T −H ′′e′
T

, e← (e′||e′′).
6: if e has weight w then
7: break
8: end if
9: end for

10: return e.

Algorithm 4: Generic ISD approach

We are now concerned with solving the overdetermined linear system of Step 4 of Algorithm 4. This

means that we are given H ′ ∈ Fl×(k+l)q , and s′ ∈ Flq, and we are trying to find e′ ∈ Fl+kq of weight p such

that H ′e′T = s′T . This problem can be rephrased as a k-sum problem.

Definition 6 (Generalized k-sum problem). Consider an abelian group G, and arbitrary set E, a
map f : E → G, k subsets V0, V1, . . . , Vk−1 ⊆ E, a map g : Ek → {0, 1}, and an element s ∈ G. Find
(v0, . . . , vk−1) ∈ V0 × . . .× Vk−1 such that

1. f(v0) + f(v1) + . . .+ f(vk−1) = s.
2. g(v0, . . . , vk−1) = 0.

The search for e′ can be reduced to the 2-sum problem with the following parameters:

G = Flq, E = Fl+kq , f(v) = H ′TvT , s = s′

V0 = {(e0,0(k+l)/2) ∈ Fl+kq , e0 ∈ F(l+k)/2
q ,wt(e0) = p/2}

V1 = {(0(k+l)/2, e1) ∈ Fl+kq , e1 ∈ F(l+k)/2
q ,wt(e1) = p/2}

and g defined as g(v0, v1) = 0 if and only if e = (e′||e′′) is of weight w where e′ = v0 + v1 and e′′T =
s′′T −H ′′e′T . The cost of the resolution of the 2-sum problem is a tradeoff between the size of the Vi’s and
the size of G.

To further reduce the size of the sets involved and create more possibilities for tradeoffs, we can reduce
the search for e′ ∈ Fl+kq of weight p such that H ′e′T = s′T to a 4-sum problem with the following parameters.

G = Flq, E = Fl+kq , f(v) = H ′T vT , s = s′

V00 = {(e00,03(k+l)/4) ∈ Fl+kq , e00 ∈ F(l+k)/4
q ,wt(e00) = p/4}

V01 = {(0(k+l)/4, e01,0(k+l)/2) ∈ Fl+kq , e01 ∈ F(l+k)/4
q ,wt(e01) = p/4}

V10 = {(0(k+l)/2, e10,0(k+l)/4) ∈ Fl+kq , e10 ∈ F(l+k)/4
q ,wt(e10) = p/4}

V11 = {(03(k+l)/4, e11) ∈ Fl+kq , e11 ∈ F(l+k)/4
q ,wt(e11) = p/4}

and g defined as g(v00, v01, v10, v11) = 0 if and only if e = (e′||e′′) is of weight w where e′ = v00+v01+v10+v11
and e′′T = s′′T −H ′′e′T .

40

F.2 Quantum Algorithm for the 4-sum Problem

The strategy for solving the 4-sum problem used by Kachigar and Tillich [24] relies on two different ingre-
dients:

– Grover’s search algorithm
– Quantum walk

Note that the former is a special case of the latter. Grover’s algorithm assumes we know a set S and a
function f : S → {0, 1} that is implemented by a quantum algorithm Of . Grover’s algorithm returns (with
constant probability) a marked element, that is x ∈ S such that f(x) = 1. If we denote by f−1({1}) = M ⊆ S
and ε = |M |/|S|, the cost of Grover’s algorithm is in

O

(
Cost(Of)√

ε

)
.

Grover’s search algorithm is generalized by the notion of random walk on a graph. We assume that a graph
G is given by a set of vertices V and edges E, and we assume that we are looking for a marked element in
M = f−1({1}) for some f : V → {0, 1}. The general strategy of a random walk is to start from a vertex
x ∈ V , check if f(x) = 1, and if not, then walk in the graph by sampling neighboors uniformly at random
long enough to ensure the new vertex x′ attained is distributed almost uniformly at random in V , then test
if f(x′) = 1. This is repeated until a marked element is found. In addition to running Of , there are two main
steps in a quantum walk that contribute to the overall cost:

– Setup: sampling the first vector and initializing the data structure.
– Update: sampling a neighboor and updating the data structure (we need to update the current node and

its neighbors).

Each of the aforementioned steps have a cost that depend on the data structure that is chosen to navigate
the graph (note that depending on the model of computation chosen, memory-intensive data structures can
penalize the cost). Moreover, the cost is impacted by the shape of the transition matrix M . In the case of a
d-regular graph (which is relevant to our problem), M = 1

dA where A is the adjacency matrix of the graph.

The number of update steps required to reach a node almost uniformly distributed is Õ
(
1
δ

)
where δ is the

spectral gap of M , i.e. δ := 1−maxi>1 |λi| where (λi)i>1 are the eigenvalues of M not equal to 1. The cost
of a quantum walk is given by

Cost(Setup) +
1√
ε

(
Cost(Of) +

1√
δ

Cost(Update)

)
The search for solutions of the 4-sum problem reduces to a walk in the product of Johnson graphs of the

Vi’s. In general, a Johnson graph J(n, r) is an undirected graph whose vertices and the subsets of size r of a
given set of size n. There is an edge between vertices S and S′ if and only if |S ∩ S′| = r− 1 (i.e. they differ
by only 1 element). The Johnson graph J(n, r) has

(
n
r

)
elements, is r(n− r)-regular and its spectral gap is

δ =
n

r(n− r)
.

The product Jm(n, r) of m copies of J(n, r) is the graph whose vertices are of the form (v1, . . . , vm) where
each vi is a vertex of J(n, r), and there is an edge between (v1, . . . , vm) and (v′1, . . . , v

′
m) if and only if there

is an edge between vi and v′i for some i, and vj = v′j for all j 6= i. As recalled in [24], Jm(n, r) has
(
n
r

)m
elements, is mr(n− r)-regular, and its spectral gap satisfies

δ(Jm(n, r)) ≥ 1

m
δ(J(n, r)).

To solve the 4-sum problem with a combination of Grover’s search algorithm and a random walk in a
product of 4 copies of a Johnson graph, we make the assumption that |Vi| = V for all i, and that G = G0×G1.

41

We denote by πi : G→ Gi the projection of G onto one of its components. We keep the same notation as in
the formulation of the search for e′ such that H ′e′T = s′T as a 4-sum problem. The algorithm is a Grover
search for an element r ∈ G1 such that g(r) = 1 where g : G1 → {0, 1} evaluates to 1 if and only if there
exists (v00,v01,v10,v11) ∈ V00 × V01 × V10 × V11 such that

π1(f(v00)) + π1(f(v01)) = r

π1(f(v10)) + π1(f(v11)) = π1(s)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(s)

g(v00,v01,v10,v11) = 0

The overall cost of this procedure is O
(√
|G1|Cost(Og)

)
. The cost of the Grover oracle Og is determined by

the strategy we employ to find a quadruplet with the desired properties. In [24], Kachigar and Tillich use a
quantum walk in the product of the 4 Johson graphs defined by the Vi’s and subsets Ui ⊆ Vi of cardinality
U = Θ

(
V 4/5

)
. By using a similar data structure and update strategy as in [13], they show the following

statement.

Proposition 1 (Prop. 3 of [24]). Assuming that |G1| = Ω(V 4/5), and |G| = Ω(V 8/5), it is possible to set
up a data structure of size O(U) such that the above quantum walk takes time Õ

(
V 4/5

)
.

Hence the time (i.e. cost expressed in terms of circuit depth) taken to solve our 4-sum problem is in
Õ
(
|G1|1/2V 4/5

)
(see [24, Prop. 2]).

Let us see how this applies to the time complexity of Algorithm 4 for solving the ISD problem. We use
Grover’s quantum search to determine an appropriate π ∈ Sn (main “for” loop from Step 1 to Step 9). The
oracle we denote by gperm : Sn → {0, 1} satisfies gperm(π) = 1 if and only if Steps 2 to 7 lead to the creation
of an appropriate e ∈ Fnq . Hence, the cost of Ogperm is dominated by that of solving the 4-sum problem (i.e.
Step 4 of Algorithm 4). We denote by ε the proportion of marked elements (i.e. good permutation π leading
to a solution of the 4-sum problem). Hence the total cost of the procedure is

O

(
1√
ε

Cost
(
Ogperm

))
= Õ

(
1√
ε
|G1|1/2V 4/5

)
.

For a given e of weight w, a permutation π yields a solution to the 4-sum problem if the k + l positions of
S are split into 4 sets of size k+l

4 containing exactly p/4 non-zero coefficients each. We denote by Nw the
number of possible e’s of weight w, which yields

ε = Nw

(k+l
4
p
4

)4(
n−k−l
w−p

)(
n
w

) .

Meanwhile, G = Flq and G1 = Fl/2q , while the cardinality V of the Vi’s satisfies

V = (q − 1)
p
4

(k+l
4
p
4

)
.

Finally, the condition |G| = Ω
(
V 8/5

)
induces the constraint on l and p:

l ≥ 8

5
logq

(
(q − 1)

p
4

(k+l
4
p
4

))
.

The total time is obtained by finding the optimum of this cost when l and p vary.

42

F.3 Representation Technique and 1 + 1 = 0

The solution relying on the quantum algorithm to solve the 4-sum problem can be optimized using techniques
of [10, 26]. This consists in restricting the search space of elements inG that yield a solution (v00,v01,v10,v11)
to the 4-sum problem. To do this, we need to increase the ways we can represent a solution e′ to the system
H ′e′T = s′T . The first way we can do this, introduced in [26], is called the representation technique. It
consists in relaxing the conditions on the positions of the positions of the p/4 non-zero coordinates of the
solutions v00,v01,v10,v11. Previously, we assumed the permutation π mapped the p indices in S to 4 groups
of size p/4 each within [1, (k+ l)/4], [(k+ l)/4 + 1, (k+ l)/2], [(k+ l)/2 + 1, 3(k+ l)/4], [3(k+ l)/4 + 1, k+ l].
Thus, we requested that the vi’ be of the form

v00 = (e00,03(k+l)/4)

v01 = (0(k+l)/4, e01,0(k+l)/2)

v10 = (0(k+l)/2, e10,0(k+l)/4)

v11 = (03(k+l)/4, e11)

for wt(e00) = wt(e01) = wt(e10) = wt(e11) = p/4. Instead of this, we may only assume that π maps the p
indices in S to 2 groups of size p/2 each within [1, (k + l)/2] and [(k + l)/2 + 1, k + l]. In this case, we can
write e′ = v00 + v01 + v10 + v11 with v00,v01,v10,v11 of the shape

v00 = (e00,0(k+l)/2)

v01 = (0(k+l)/2, e01)

v10 = (e10,0(k+l)/2)

v11 = (0(k+l)/2, e11)

for wt(e00) = wt(e01) = wt(e10) = wt(e11) = p/4. This way, v00 + v01 and v10 + v11 both have weight p/2
with half of their non-zero coordinates in [1, (k+ l)/2], and the other half in [(k+ l)/2 + 1, k+ l]. Each choice
of p/4 coordinates of e′ within its p/2 non-zero coordinates in [1, (k + l)/2] and p/4 coordinates within its
p/2 non-zero coordinates in [(k+ l)/2 + 1, k+ l] fixes a quadruplet v00,v01,v10,v11 with the shape described

above such that e′ =
∑
i vi. Therefore we can re-write e′ in

(
p/2
p/4

)2
different ways. With this relaxation, a

subset of the original search space over the parameter r ∈ G yields the solution e′ to the system H ′e′T = s′T .
In [10], a further refinement of this technique was introduced to take advantage of potential cancellations of
coefficients in the sum (v00 +v01) + (v10 +v11) when the weight of v00 +v01 and of v10 +v11 are p

2 +∆p for
some ∆p. Indeed, if the weight of v00 +v01 is p

2 +∆p, then if the ∆p extra non-zero coefficients of v00 +v01

are on the same indices as the ∆p extra non-zero coefficients of v10 + v11, then these will cancel and thus
won’t contribute to the weight of e′. This method was described as “1+1 = 0” since it took advantage of the
fact that over F2, 1’s in matching indices canceled out. Over Fq, this could be rephrased as “x+ (q−x) = 0”
meaning that if v00 + v01 has coefficient x 6= 0 at the index i, and if v10 + v11 has coefficient q − x at index
i, then the coefficient i of e′ = (v00 + v01) + (v10 + v11) is zero and thus does not contribute to wt(e′). The
search for a solution of the 4-sum problem is therefore over the new Vi’s given by

V00 = V10 =

{
(e0,0(k+l)/2) ∈ Fl+kq , e0 ∈ F(l+k)/2

q ,wt(e0) =
p

4
+
∆p

2

}
V01 = V11 =

{
(0(k+l)/2, e1) ∈ Fl+kq , e1 ∈ F(l+k)/2

q ,wt(e1) =
p

4
+
∆p

2

}

The solution e′ ∈ Fl+kq of weight p can be represented in
(
p/2
p/4

)2(k+l
2 −

p
2

∆p
2

)2
(q − 1)∆p different ways as e′ =

v00 +v01 +v10 +v11 where vi ∈ Vi. This is due to the fact that for each choice of the p/2 non-zero coordinates
of v00 +v01, we can choose an additional ∆p indices among the k+ l−p indices where e′ has a zero coefficient
(split evenly between [1, (k+l)/2] and [(k+l)/2+1, k+l]), together with ∆p non-zero coordinates of v00+v01
at these indices.

43

Now that more r’s in G can yield a 4-tuple solution to the 4-sum problem, we restrict the search space
accordingly by writing G = G0×G1×G2. In this new setting, G1 where we search r is replaced by G1×G2,
and we only search for an r1 in G1 (having fixed the r2 coordinate of r = (r1, r2) arbitrarily). We denote
by π0, π2, π12 the projections of G onto G0, G1, and G1 × G2 respectively. The size of G2 is adjusted so
that for a given (arbitrary) choice of r2 ∈ G2, there is only one r = (r1, r2) ∈ G1 × G2 such that there is
(v00, v01, v10, v11) ∈ V00 × V01 × V10 × V11 such that

π12(f(v00)) + π12(f(v01)) = r

π12(f(v10)) + π12(f(v11)) = π12(s)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(s)

g(v00,v01,v10,v11) = 0

For a choice of r2, we define the search oracle gr2 : G1 → {0, 1} where gr2(r1) = 1 if and only if r =
(r1, r2) satisfies the above conditions for a 4-tuple (vi). As before, the overall cost of this procedure is

O
(√
|G1|Cost(Ogr2)

)
. The cost of the Grover oracle Ogr2 is determined by the cost of the quantum walk in

the product of the 4 Johnson graphs defined by the Vi’s and subsets Ui ⊆ Vi of cardinality U = Θ
(
V 4/5

)
.

Proposition 2 (Prop. 4 of [24]). Assuming that |G1||G2| = Ω(V 4/5), |G| = Ω(V 8/5), and that there are
Ω(|G2|) solutions to the 4-sum problem, then the above quantum walk takes time Õ

(
V 4/5

)
.

Hence the time (i.e. cost expressed in terms of circuit depth) taken to solve our 4-sum problem is in
Õ
(
|G1|1/2V 4/5

)
.

Let us see how this applies to the time complexity of Algorithm 4 for solving SDP. We use Grover’s
quantum search to determine an appropriate π ∈ Sn (main “for” loop from Step 1 to Step 9). The oracle
we denote by gperm : Sn → {0, 1} satisfies gperm(π) = 1 if and only if Steps 2 to 7 lead to the creation of an
appropriate e ∈ Fnq . Hence, the cost of Ogperm is dominated by that of solving the 4-sum problem (i.e. Step 4
of Algorithm 4). We denote by ε the proportion of marked elements (i.e. good permutation π leading to a
solution of the 4-sum problem). Hence the total cost of the procedure is

O

(
1√
ε

Cost
(
Ogperm

))
= Õ

(
1√
ε
|G1|1/2V 4/5

)
.

For a given e of weight w, a permutation π yields a solution to the 4-sum problem if the k+ l positions of S
are split into 2 sets of size k+l

2 containing exactly p/2 non-zero coefficients each. Still denoting the number
of weight-w solutions by Nw, we get

ε = Nw

(k+l
2
p
2

)2(
n−k−l
w−p

)(
n
w

) .

Meanwhile, we still have G = Flq and to ensure that there are Ω(|G2|) solutions to the 4-sum problem, we

set G = Fl2q for

l2 := logq


(
p/2

p/4

)2(k+l
2 −

p
2

∆p
2

)2

(q − 1)∆p︸ ︷︷ ︸
number of representations of e′


This yields G1 = F

l
2−l2
q , while the cardinality V of the Vi’s satisfies

V = (q − 1)
p
4+

∆p
2

(k+l
2

p
4 + ∆p

2

)
.

44

Finally, the condition |G| = Ω
(
V 8/5

)
induces the constraint on l and p:

l ≥ 8

5
logq

(
(q − 1)

p
4+

∆p
2

(k+l
2

p
4 + ∆p

2

))
.

The total time is obtained by finding the optimum of this cost when l, p, and ∆p vary.

F.4 Leon/Beullens: Code Equivalence as a Claw-Finding Problem

Recall the notation from Section 4.1. We now show how to recast Beullens’ algorithm as a claw finding
procedure. Assume that m = log2(X) = log2(Y), and assume that the quantum version of Algorithm 4 to
solve SDP takes as input a seed in {0, 1}m to search a fraction of the possible permutations expected to yield
on average 1 weight-w codeword. Then we have two functions

f : x ∈ {0, 1}m 7→ multiset of weight-w codeword given by Algorithm 4 on C1

g : x ∈ {0, 1}m 7→ multiset of weight-w codeword given by Algorithm 4 on C2

Finding matching multisets between elements of X and Y corresponds to finding claws of f and g, i.e. pairs
x,y ∈ {0, 1}m such that f(x) = g(y). Tani’s quantum algorithm [33] allows us to find such claws. According
to Beullens, Θ(log(n)) claws are needed to solve the Code Equivalence problem. The procedure to reconstruct
the permutation from these claws is described in Algorithm 2.

Theorem 8 (Tani). The time to find Θ(log(n)) pairs of vectors in X × Y with matching multisets with
Tani’s claw finding algorithm is in

2m+1CISD + Õ
(

2m22m
2p

2p+1

)
,

where p = Θ(log(n)) is the number of claws required.

Proof. We call the quantum ISD 2m times (with different seeds) in C1 and 2m times in C2. This way, we
have two lists X,Y of weight-w codewords of length 2m. Then we define our functions to be

f : i ∈ {0, 1}m 7→ multiset of ith codeword of X

g : j ∈ {0, 1}m 7→ multiset of jth codeword of Y

Note that the circuit depth of the oracle evaluating the check of equality between f(i), g(j) is Õ(2m), due to
the fact that the circuit needs to contain the information of the codewords for each index in {0, 1}m. Then

from [33], we know that we can find p unique claws in O(22m
2p

2p+1) oracle calls.

Note that the above approach is a naive combination of ISD and Tani’s claw finding method. If m is
so large that the cost of ISD is less than 2m, then one would rather have ISD evaluated in superposition
inside of the oracle of Tani’s quantum walk-based claw algorithm. This would replace the proposed oracle
that has all 2m weight-w elements hard coded. Typically, we expect the size 2m of the lists X,Y to be small,
thus making ISD the bottleneck. Beullens shows that the right amount of claws is guaranteed as long as

2m = Θ
(√
|Aw1 | log(n)

)
. To estimate this cost, we approximate |Aw1 | by its average cardinality

Nw =

(
n

w

)
(q − 1)w−2qk−n+1.

Beullens [14, Sec. 4] also proposed a claw-finding procedure to solve the linear code equivalence. In this
case, it is not sufficient to compare vectors of low weight from C1 and C2 to infer information on the hidden

45

map from C1 to C2. However, this can be done if we consider 2-dimensional subspaces of C1 and C2 of support
bounded by w. We denote

X1(w) = {V ⊂ C1 | dim(V) = 2 and |Supp(V)| ≤ w}
X2(w) = {V ⊂ C2 | dim(V) = 2 and |Supp(V)| ≤ w}

Testing whether µ(V) = W for V ∈ X1(w) and W ∈ X2(w) and µ the secret monomial permutation, can
be done by comparing lex(V) and lex(W) which are values that identify the orbits of V and W under the
action of Mn, the group of monomial permutations. More specifically, for a given V , one compute all possible
bases x,y of V and find the one that minimizes µ′(x), µ′(y) where µ′ runs over all possible monomial
permutations. This procedure costs O(q) time. With Ω(log(n)) pairs V, µ(V), we can recover the secret
monomial permutation. It is made of the information of a permutation π ∈ Sn which is recovered in the
same way as in the permutation code equivalence problem (as outlined in Algorithm 3), and of a vector of
scaling factors in F×q which are recovered from pairs of codewords with same support.

The bulk of the work in the above procedure is the search for elements of X1(w) and X2(w). Beullens
proposes an adaptation of the general high level routine of Algorithm 4. First, assume we fix V ∈ X1(w),
and let π ∈ Sn be chosen at random. Then the probability that 2 indices of Supp(V) get mapped to [1, k]
while the w − 2 remaining ones get mapped to [k + 1, n] is

P :=

(
n−k
w−2

)(
k
2

)(
n
w

) .

For each good permutation π, we apply π to the generating matrix of the code and compute its row echelon
form according to the first k columns (assuming linear Independence of its restriction to these columns).
Then one of the

(
k
2

)
vector spaces spanned by two rows of the resulting matrix is π(V). Finding it costs

O(k2) row operations. There are an average of

|X1(w)| =
(
n

w

)
(qw − 1)(qw − q)
(q2 − 1)(q2 − q)

q−2(n−k)

different V ’s to be found, and thus the probability that a given π ∈ Sn yields some V ∈ X1(w) is thus

ε := P |X1(w)| = q−2(n−k)
(
n−k
w−2

)(
k
2

)(
n
w

) (
n

w

)
(qw − 1)(qw − q)
(q2 − 1)(q2 − q)

.

Let g : Sn → {0, 1} be the function that returns 1 if and only if a V ∈ X1(w) is found by applying the

procedure described above. Then the cost of finding a V is in O
(

1√
ε
Cost(Og)

)
where Og is the quantum

circuit implementing g. To find the list of 2m spaces V ∈ X1(w) and 2m spaces W ∈ X2(w), we simply apply
the above algorithm 2m+1 times sequentially. Then we use a claw finding method to recover p ∈ Ω(log(n))

pairs V,W with lex(V) = lex(W), which costs Õ
(

2m22m
2p

2p+1

)
time with Tani’s claw finding algorithm, as

noted before. Here we assume that lex(V) and lex(W) for V ∈ X1(w),W ∈ X2(w) are all precomputed
classically in time O(q2m). Then the functions f, g used in Tani’s algorithm are:

f : i ∈ {0, 1}m 7→ lex of ith space of X

g : j ∈ {0, 1}m 7→ lex of jth space of Y

Overall, the time complexity of finding p pairs of matching lex is in

O

(
log(n)√

ε
k2n log(q)

)
+O(q2m) + Õ

(
2m22m

2p
2p+1

)
.

As for the case of permutation equivalence resolution, this approach is a naive juxtaposition of quantum ISD
and Tani’s algorithm. The description of other ways to combine these two approaches (likely through the
execution of quantum ISD within Tani’s algorithm) is left for future work.

46

F.5 SSA

To conclude, we have a look at the quantum complexity of the Support Splitting Algorithm. Recall that
this, essentially, boils down to the computation of the Weight Enumerator Function (WEF) on the hull of
the considered codes. The hull computation requires simple linear algebra, and comes with a cost of O(n3)
operations in the finite field. The computation of the WEF of a code is the bottleneck of SSA. By definition,
Wef(C) is a bivariate polynomial given by

Wef(C)(x, y) =

n∑
w=0

Nwx
wyn−w where Nw = |{c ∈ C | wt(c) = w}.

Hence, the computation of Wef(C) boils down to the counting of elements of weight w for all w ∈ [0, n] of a
code. This can be seen as n instances of the quantum counting problem, which is defined as follows.

Definition 7 (Counting problem). Given a set X and a function f : X → {0, 1}, find f−1({1}).
The computation of Wef(C) is thus directly rephrased as n counting problems defined by the functions
fw : c ∈ C 7→ 1 if and only if wt(c) = w. It is pretty clear that the cost of evaluating fw is in O(n). We
denote by Of the quantum circuit that reversibly evaluates f . The cost of finding an approximation of Nw
can be obtained from a result of Brassard, Høyer and Tapp [17].

Proposition 3 (Cor. 4 of [17]). Let f : X → {0, 1} be a function, N = |X|, and t = f−1({1}). Then

there is an algorithm requiring an expected number of Θ
(√

tN
)

evaluations of f an estimate t such that

t = t with probability at least 3/4 using space linear in log(N).

Beals, Buhrman, Cleve, Mosca, and de Wolf [9] proved that any quantum algorithm capable of deciding
with high probability whetheror not a function F : {0, . . . , N − 1} → {0, 1} is such that | F−1({1}) |≤ t,
given some 0 < t < N/2, must query F at least Ω(

√
Nt) times, showing the optimality of Proposition 3.

The issue to directly apply this result to the computation of Wef(C) is the probability of success of quantum
couting. Indeed, Wef(C) is only successfully computing if the n instances of the couting problems return the
correct Nw. In [17, Sec. 4], it is shown that an exact count can be reached with high probability through
the use of Θ(t) additional quantum memory. It is beyond the scope of this document to analyse which
trade-off between success probability of quantum counting and quantum memory required would procure us
an acceptable probability of success for the comptutation of Wef(C). Instead, we focus on time (i.e. circuit
depth) to provide a lower bound on the gate count. In this setting, the extra memory does not impact the
performance, and we assume quantum counting with high probability of success.

Proposition 4. Let C be an [n, k] linear code over Fq. There is a quantum algorithm for computing Wef(C)
in time

O

(
n2qk/2

√
max
w≤n

Nw

)
,

where Nw ∼
(
n
w

)
(q − 1)w−2qk−n+1 is the number of codewords of weight w.

Proof. We simply apply the counting algorithm for each possible weight (i.e. at most n times). For each call,

the query complexity is O(
√
qkNw) while the cost of the oracle is O(n), hence the final result.

The above gives us a (conservative) estimate on the cost of compute S(C, i) for i ∈ [1, n] (as we assume
large amounts of memory and only focus on circuit depth). Then the SSA can be reprhased as finding claws
for

f : i ∈ [1, n] 7−→ S(C1, i)

g : j ∈ [1, n] 7−→ S(C2, j)

Here again, for the sake of finding conservative estimates, we only focus on execution time of this algorithm,
ignoring issues relative to quantum memory use. We precompute all f(i) and g(j) in a list. The bit size
of each element is in O(n2 log(n)). We use Tani’s algorithm to produce n claws for f, g. The oracle testing
f(i) = g(j) has depth O(n3 log(n)) as it must have all values of f(i), g(j) hard coded.

47

Theorem 9 (Tani). The time to find n pairs of indices (i, j) ∈ [1, n]2 with f(i) = f(j) using Tani’s claw
finding algorithm is in

O

(
n3qk/2

√
max
w≤n

Nw

)
+ Õ

(
n3 · n2

2n
2n+1

)
.

Note that as n grows to infinity, Tani’s algorithm does not seem to procure a significant advantage
through the strategy outlined above. It is however possible that more clever algorithms could take advantage
of quantum counting done in superposition. Such improvement is left for future work.

F.6 Deriving Quantum-Safe Parameters

While quantum algorithms for solving the ISD problem have already been fairly optimized, the situation
is less clear regarding the Code Equivalence problem. Indeed, the strategies outlined in this document are
straightforward combinations of quantum ISD and claw finding through a classical channel. There might
be better ways to leverage the general idea of matching low-weight codewords by running quantum ISD in
superposition (although it is not clear which gains we could obtain this way, if any).

To derive secure parameters on the code equivalence problem, we use lower bounds on the costs computed
in the previous sections. First, note that all costs are in term of circuit depth, and memory costs were not
factored in (a very conservative approach in the case of quantum counting, and to some extend for Tani’s
claw-finding algorithm as well). Then, for the Leon/Beullens claw-finding approach, we under-estimate the
cost of creating a list of p weight-w codewords by CISD. Then the finding of p claws is lower-bounded by the

number of oracle calls which is in O(22m
2p

2p+1). Finally, we identify the weight w that minimizes the lower
bound on the cost given by

CISD + 22m
2p

2p+1 ,

where CISD is parametrized by weight w, p = log(n) and m = 1
2 log (Nw log(n)).

A similar conservative lower bound can be obtained for the quantum SSA algorithm by considering
only 1 call to the quantum counting routine while the proposed upper bound consists in n successive calls.
By counting this cost only once, we anticipate a potentially more sophisticated ad-hoc method capable of
deriving the weight enumerator function in one amplitude amplification routine rather than n consecutive
ones. The precise description of such an algorithm would be a significant contribution outside of the scope
of this document. We therefore use the lower bound for the cost given by

n2qk/2
√

max
w≤n

Nw + n3 · n2
2n

2n+1 .

Note that even when assuming costless quantum memory, the quantum SSA described in this document does
not achieve a square root improvement over its classical counterpart. This is due to the fact that the oracle
complexity to count the target t is in O(

√
Nt). In instances where t = Nw is large, this heavily penalizes the

cost.

48

	LESS-FM: Fine-tuning Signatures from the Code Equivalence Problem

