
Size of IK00 Branching Program

Yupu Hu1, Xingting Dong1, and Baocang Wang1

State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an, Shaanxi, China

yphu@mail.xidian.edu.cn

Abstract. Branching program is an important component of indistin-
guishability obfuscation (IO) schemes, its size greatly influences the ef-
ficiencies of corresponding IO schemes. There are two major candidates
of branching programs, Bar86 branching program and IK00 branching
program. Bar86 branching program was shown to efficiently recognize
NC1 circuits. In specific, a Boolean circuit of depth d can be recognized
by a Bar86 branching program of length not larger than 4d (Therefore
of size not larger than 52 × 4d).

In this short paper we present similar result about IK00 branching
program. We show that IK00 branching program efficiently recognizes
NC1 circuits, that is, a Boolean circuit of depth d can be recognized by
an IK00 branching program of size not larger than (n+ 1)× 4d, where n
is input length.

Our result may be a negative evidence for IK00 branching program
to efficiently recognize polynomial-time computable functions.

Keywords: Indistinguishability Obfuscation · Branching Programs ·
NC1 Circuits.

1 Introduction

Branching program [1–4] is an important component of indistinguishability ob-
fuscation (IO) schemes [5–7], its size greatly influences the efficiencies of corre-
sponding IO schemes. There are two major candidates of branching programs,
Bar86 branching program [1,2] and IK00 branching program [3,4]. Bar86 branch-
ing program was shown [1] to efficiently recognize NC1 circuits. In specific, a
Boolean circuit of depth d can be recognized by a Bar86 branching program of
length not larger than 4d (That is, of not more than 4d Boolean matrices of 5×5,
therefore of size not larger than 524d). Up to now, there is no clear conclusion
about the size of IK00 branching program, although there is a negative feeling
(see final paragraph of section 2 of [3]) and an open question (see final graph of
page 116 of [8]).

In this short paper we present similar result about IK00 branching program.
We show that IK00 branching program efficiently recognizes NC1 circuits, that
is, a Boolean circuit of depth d can be recognized by an IK00 branching program
of size not larger than (n + 1)× 4d, where n is input length.

Our result may be a negative evidence for IK00 branching program to effi-
ciently recognize polynomial-time computable functions.

Paper organization is the follow. In section 2 we review generic expression of
Boolean circuit, under {+,×} description and {or, and} description respectively.
Section 3 is a careful review of IK00 branching program. In section 4 we show
our result, that is, a Boolean circuit of depth d can be recognized by an IK00
branching program of size not larger than (n + 1)× 4d.

2 Preliminary: generic expression of Boolean circuit

Generally speaking, a polynomial-time-computable Boolean function cannot be
expressed by geometrical normal form, because the number of terms may be
exponentially large. From [9], a reasonable expression is sequentially giving each
step, say {input a, input b, operation f, output f(a, b)}. There are two different
sets of operations, {+,×} and {or, and}, where “ + ” is exclusive-or, “ × ” is
multiplication. We know two simple relations: x “and” y = x × y, x “or” y =
x+ y+ (x× y). For a fixed set of operations, O, n-dimensional Boolean function
c(x) is expressed as follow.

– input: x0, x = (x1, x2, · · · , xn), where x0 = 1 is constant.
– Sequential steps: For i = n + 1, n + 2, · · · , N , let xi = ci

(
xa(i), xb(i)

)
, where

a (i) ∈ {0, 1, 2, · · · , i− 2} , b (i) ∈ {1, 2, · · · , i− 1}, a (i) < b (i) , ci ∈ O. A
special case for O = {+,×} is that, if a(i) = 0, ci is only “ + ”. Similarly, a
special case for O = {or, and} is that, if a(i) = 0, ci is only “or”.

– Output: xN .(We know xN = c(x))

We call {x0, x = (x1, x2, · · · , xn) ; (a (i) , b (i) , ci, xi) , i = n + 1, n + 2, · · · , N} generic
expression of n-dimensional Boolean function c(x), N the circuit size of c(x),
{(a (i) , b (i)) , i = n + 1, n + 2, · · · , N} the topology of c(x), {ci, i = n + 1, n +
2, · · · , N} the operation series of c(x). To ensure that there is no redundant
operation, each position j ∈ {1, 2, · · · , N − 1} should be an input position
j ∈ {a (i) , b (i)}, where i = {n + 1, n + 2, · · · , N}. If so, we call n not only
the dimension but also the locality of c(x).

3 IK00 branching program [3,4]

Suppose n-dimensional Boolean function c(x) has a generic expression {x0, x =
(x1, x2, · · · , xn); (a(i), b(i), ci, xi), i = n + 1, n + 2, · · · , N}, under either O =
{+,×} or O = {or, and}.

3.1 Directed graphs

We define each graph corresponding to each xi, denoted as G(i), where i ∈
{0, 1, · · · , N}. Each G(i) is an acyclic directed graph, with single starting vertex
and single ending vertex, each of its edges is assigned an affine functions of x,

2

and any two vertexes have at most one directed edge. For i ∈ {0, 1, 2, · · · , n},
each G(i) has only two vertexes, starting vertex and ending vertex; the directed
edge from starting vertex to ending vertex is assigned xi. Now take i ∈ {n +
1, n+ 2, · · · , N}, and suppose {G(1), G(2), · · · , G(i− 1)} have been defined. We
construct G(i).

Case 1: ci = +. We have three steps.
(1) First take G(i)∗ as parallel connection of G(a(i)) and G(b(i)), that is,

starting vertexes of G(a(i)) and G(b(i)) are merged into starting vertex
of G(i)∗, ending vertexes of G(a(i)) and G(b(i)) are merged into ending
vertex of G(i)∗.

(2) Second, take G(i)∗∗ as vertex reduction of G(i)∗ (Sometimes a vertex
of G(a(i)) and a vertex of G(b(i)) can be merged into one vertex).

(3) Finally, take G(i) as edge reduction of G(i)∗∗ (If two vertexes of G(i)∗∗

has more than one directed edge, merge them into one directed edge,
with assigned value which is the sum).

Case 2: ci = or. We have four steps.
(1) First, take G(i)∗ as parallel connection of G(a(i)) and G(0).
(2) Second, take G(i)∗∗ as parallel connection of G(b(i)) and G(0).
(3) Third, take G(i)∗∗∗ as series connection of G(i)∗ and G(i)∗∗ , that is,

ending vertex of G(i)∗ and starting vertex of G(i)∗∗ are merged into one
vertex of G(i)∗∗∗.

(4) Finally, take G(i) as parallel connection of G(i)∗∗∗ and G(0).
Case 3: ci = and (ci = and). Define G(i) as series connection of G(a(i)) and

G(b(i)), that is, ending vertex of G(a(i)) and starting vertex of G(b(i)) are
merged into one vertex of G(i).

The number of vertices of G(i) is denoted as |G(i)|. It is easy to see the
correctness of Lemma 3.1.

Lemma 3.1 |G(i)| = 2 for i ∈ {0, 1, 2, · · · , n}, and for i ∈ {n+1, n+2, · · · , N},{
max {|G(a(i))| , |G(b(i))|} ≤ |G(i)| ≤ |G(a(i))|+ |G(b(i))| − 2, if ci = +,
|G(i)| = |G(a(i))|+ |G(b(i))| − 1, if ci = ×(ci = and), ci = or.

The final graph G(N) is called IK00 branching program of c(x).

3.2 Matrix of degree-3 randomized polynomials [3, 4]

Suppose |G(N)| = T , T is polynomially large. Arrange vertexes in partial order,
and take T × T matrix M0 as such: its (i, i) entry is constant 1, and (i, j) entry
(i 6= j) is assigned value of (i, j) edge. Then M0 is an upper triangular matrix,
with main diagonal entries which are constant 1.

Take (T − 1)× (T − 1) matrix M1 as M0 crossing the first column and final
row. It is easy to show that, for any x, determinant of M1 equals c(x).

Take two (T − 1)× (T − 1) random matrices L and R with determinants 1.
Fix L and R, and denote M = LM1R. Then for any x, modular 2 determinant
of M equals c(x). Besides, M is the matrix of affine functions of x, therefore the
size of M is (n+1)×(T −1)2. Now we call M IK00 branching program of circuit
c(x).

3

4 IK00 branching program efficiently recognize NC1

circuits

Lemma 4.1 Suppose c(x) is of depth d. Then |G(N)| ≤ 2d + 1.

Proof. We make use of mathematical induction. If d = 0, c(x) is just some
xi, i = 0, 1, · · · , n. In such case N = 1, and |G(N)| = |G(1)| = 2 = 20 + 1.
Suppose all circuits of depth d, where d ≤ D, satisfy |G(N)| ≤ 2d + 1, and c(x)
is of depth D + 1. We know that c(x) is an operation of two sub-circuits c∗(x)
and c∗∗(x), where c∗(x) and c∗∗(x) are of depth not larger than D. According
to Lemma 3.1, for c(x) we have |G(N)| ≤ 2(2D + 1)− 1 = 2D+1 + 1. ut

Theorem 4.1 Suppose c(x) is of depth d. Then M has size (n + 1)× 4d.

Proof. Just notice Lemma 4.1 and the fact that M has size (n+1)×(|G(N)|−1)2.
ut

References

1. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In: Proceedings of the eighteenth annual ACM
STOC, pp 1-5, 1986.

2. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In: Journal of computer and system sciences, vol.
38, no. 1, pp 150-164 (1989), Elsevier, 1989.

3. Ishai, Y., Kushilevitz, E.: Randomizing Polynomials: A new representation with ap-
plications to round-efficient secure computation. In: Proceedings of the 41st FOCS,
pp. 294-304 (2000).

4. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M., (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244-256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22.

5. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October 2013, Berkeley, CA, USA, pp. 40-49 (2013).

6. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016. LNCS, vol.9665,
pp. 28-57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2.

7. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.10401,
pp. 599-629. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-
7 20.

8. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: Computational Complexity, vol. 15 (2006),
pp. 115 – 162. 1016-3328/06/020115–48. https://doi.org/10.1007/s00037-006-0211-
8.

4

https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/s00037-006-0211-8
https://doi.org/10.1007/s00037-006-0211-8

9. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545-
554. ACM Press, June 2013.

5

	Size of IK00 Branching Program

