
A preliminary version of this paper appears in the proceedings of ASIACRYPT 2021. This is the
full version.

Chain Reductions for Multi-Signatures
and the HBMS Scheme

Mihir Bellare1 Wei Dai2

September 15, 2021

Abstract

Existing proofs for existing Discrete Log (DL) based multi-signature schemes give only weak
guarantees if the schemes are implemented, as they are in practice, in 256-bit groups. This
is because the underlying reductions, which are mostly in the standard model and from DL,
are loose. We show that relaxing either the model or the assumption suffices to obtain tight
reductions. Namely we give (1) tight proofs from DL in the Algebraic Group Model, and (2)
tight, standard-model proofs from well-founded assumptions other than DL. We first do this
for the classical 3-round schemes, namely BN and MuSig. Then we give a new 2-round multi-
signature scheme, HBMS, as efficient as prior ones, for which we do the same. These multiple
paths to security for a single scheme are made possible by a framework of chain reductions,
in which a reduction is broken into a chain of sub-reductions involving intermediate problems.
Overall our results improve the security guarantees for DL-based multi-signature schemes in the
groups in which they are implemented in practice.
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1 Introduction

Usage in cryptocurrencies has lead to interest in practical, Discrete-Log-based multi-signature
schemes. Proposals exist, are efficient, and are supported by proofs, BUT, the bound on ad-
versary advantage in the proofs is so loose that the proofs fail to support use of the schemes in the
256-bit groups in which they are implemented in practice. This leaves the security of in-practice
schemes unclear.

We ask, is it possible to bridge this gap to give some valuable support, in the form of tight
reductions, for in-practice schemes? As long as we stay in the current paradigm, namely standard-
model proofs from DL, the answer is likely NO. To make progress, we need to be willing to change
either the model or the assumption. We show that in fact changing either suffices. Our approach is
to give, for any scheme, many different paths to security. In particular we give (1) tight reductions
from DL in the Algebraic Group Model (AGM) [16], and (2) tight, standard-model reductions
from well-founded assumptions other than DL. We obtain these results via a framework in which
a reduction is “factored” into a chain of sub-reductions involving intermediate problems.

We implement this approach first with classical 3-round schemes, giving chain reductions yield-
ing (1) and (2) above for the BN [6] and MuSig [24] schemes. Then, in the space of 2-round schemes,
we give a new, efficient scheme, called HBMS, for which we do the same. We now look at all this
in more detail.
Background. A multi-signature σ on a message m can be thought of as affirming that “We,
the members of this group, all, jointly, endorse m.” The group is indicated by the vector vk =
(vk[1], . . . ,vk[n]) of individual public verification keys of its members, and can be dynamic, chang-
ing from one signature to another. Signing is done via an interactive protocol between group
members; each member i begins with its own public verification key vk[i], its matching private
signing key sk[i], and the message m, and, at the end of the interaction, they output the multi-
signature σ. The latter should be compact (of size independent of the size of the group), precluding
the trivial solution in which σ is a list of the individual signatures of the group members on m.

Following its suggestion in the 1980s [19], the primitive has seen much evolution [18, 21, 28, 25,
6]. Early schemes assumed all signers in the signing protocol picked their verification keys honestly.
“Rogue-key attacks,” in which a malicious signer picked its verification key as function of that of
an honest signer, lead to an upgraded target, schemes that retain security even in the presence
of adversarially-chosen verification keys. Towards this challenging end we first saw schemes either
using interactive key-generation [25] or making the “knowledge of secret key” assumption [9, 22].
Finally, BN [6] gave an efficient, Schnorr-based scheme in the “plain public-key” model, where
security was provided even in the face of maliciously-chosen verification keys, yet no more was
assumed about these keys than their having certificates as per a standard PKI.

The BN model and definition have become the preferred target; it is the one used in the schemes
we discuss next, and in our scheme as well. We denote the security goal as MS-UF. In Section 4 we
define it via a game, and define the ms-uf advantage of an adversary as its probability of winning
this game.
A new wave. Applications in blockchains and cryptocurrencies —see [10] for details— have fu-
eled a resurgence of interest in multi-signatures. The desire here is MS-UF-secure, DL-based
schemes that work over standard elliptic curves such as Secp256k1 or Curve25519. (Pairing-based
schemes [10] are thus precluded.) The natural candidate is BN. But the new application arena
has lead to a desire for the following further features, not possessed by BN: (1) Key aggregation.
There should be a way to aggregate a set of verification keys into a single, short aggregate key,
relative to which signatures are verified. (2) Two rounds. A signing protocol using only 2 rounds of
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Scheme MS
Previous Ours

UBms-uf
MS (t, q, qs, p) p ≈ 2256 UBms-uf

MS (t, q, qs, p) p ≈ 2256

BN [6]
√

(q · t2)/p 2−8 t2/p 2−96

MuSig [10, 24] 4
√

(q3 · t2)/p 1 t2/p 2−96

Figure 1: Bounds on ms-uf advantage for the 3-round schemes BN and MuSig. First we
show prior bounds, then ours. In each case we first show the upper bound UBms-uf

MS (t, q, qs, p) as a
formula, where t, q, qs are, respectively the adversary running time, the number of its RO queries
and the number of executions of the signing protocol, while prime p is the size of the underlying
group G. We then show the evaluation with t = q = 280, qs = 230 and p ≈ 2256, to capture security
over 256-bit curves Secp256k1 or Curve25519.

interaction, as opposed to the 3 used by BN.
MuSig [24, 10] broke ground by adapting BN to add key aggregation. Now the effort moved to

reducing the number of rounds. This proved challenging. Early proposals of two-round schemes
—[2, 23, 34] as well as an early, two-round version of MuSig [24]— were broken by DEFKLNS [14].
To fill the gap, DEFKLNS gave a new two-round scheme, mBCJ. Other proposals followed:
MuSig2 [26], MuSig-DN [27] and DWMS [1]. All these support key aggregation.

All the schemes discussed here come with proofs of MS-UF security based on the hardness of
the DL (Discrete Log) problem in the underlying group G, up to variations in the model (standard
or AGM [16]) or the type of DL problem (plain or OMDL [5]).
Current bounds. On being informed that a scheme has a proof of security based on the hardness
of the DL problem in an underlying elliptic-curve group G, the expectation of a practitioner is that
the probability that a time t attacker can violate MS-UF security is no more than the probability
of successfully computing a discrete logarithm in G, which, as per [33], is t2/p, where p, a prime,
is the size of G. Concretely, with the 256-bit curves Secp256k1 or Curve25519 —p ≈ 2256— they
would expect that a time t ≈ 280 attacker has ms-uf advantage at most 2160−256 = 2−96.

But this expectation is only correct if the reduction in the proof is tight. Current proofs for
DL-based multi-signature schemes are loose. With the 256-bit curves Secp256k1 or Curve25519,
and for a 280-time attacker, the proof of [6] for BN can preclude only a 2−8 ms-uf advantage, while
the proof of [24, 10] for MuSig cannot even preclude a ms-uf advantage of 1, meaning there may
be, per the proof, no security at all (cf. Figure 1). For 2-round schemes, the advantage precluded
by current proofs is 2−16 in one case, and again just 1 for the others (cf. Figure 2). Overall, the
proofs fail, by big margins, to support the parameter choices and expectations of practice.

Before continuing, let us expand on the above estimates. A proof of MS-UF security for a multi-
signature scheme MS gives a formula UBms-uf

MS (t, q, qs, p) that upper bounds the ms-uf advantage of
an adversary as a function of its running time t, the number q of its queries to the random oracle,
and the number qs of executions of the signing protocol in the chosen-message attack in the ms-uf
game. They are shown in Figures 1 and 2. We assume that t ≥ q ≥ qs. To get these formulas,
we first assume that the best attack against the DL problem is generic, so that a time t attacker
has success probability at most t2/p [33]. Next, we use the concrete-security results, in theorems
in the papers, that give reductions from the DL problem to the MS-UF security of their scheme.
The square-roots in the formulas arise from uses of forking lemmas [30, 6, 2]; the fourth-roots from
nested use. The bounds in our Figures are approximate, dropping negligible additive terms. The
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Scheme
Security Efficiency

UBms-uf
MS (t, q, qs, p) p ≈ 2256 Sign Vf

mBCJ [14] (q3
s · q2 · t2)/p 1 Tme

2 + Tme
3 3Tme

2
MuSig-DN [27] 4

√
(q3 · t2)/p 1 NIZK Tme

2
MuSig2, ν ≥ 4 [26] 4

√
(q3 · t2)/p 1 Tme

ν Tme
2

MuSig2, ν = 2 [26] (t2 + q3)/p 2−16 Tme
2 Tme

2
DWMS [1] t2/p+ q/

√
p 2−48 Tme

2 + Tme
2N Tme

2

HBMS t2/p 2−96 Tme
2 Tme

3

Figure 2: Bounds on ms-uf advantage for 2-round schemes. First we show bounds for
prior schemes, then the bounds for our new scheme HBMS. As before, we first show the upper
bound formula UBms-uf

MS (t, q, qs, p), where t, q, qs are, respectively the adversary running time, the
number of its RO queries and the number of executions of the signing protocol, while prime p is
the size of the underlying group G. We then show the evaluation with t = q = 280, qs = 230 and
p ≈ 2256, to capture security over 256-bit curves Secp256k1 or Curve25519. For MuSig2, results
differ depending on a parameter ν of the scheme. We also show estimates of signing time (per
signer) and verification time. Here Tme

n is the time to compute one n-multi-exponentiation in G.
The “NIZK” for MuSig-DN indicates that signing requires computation and verification of a NIZKs,
which is (much) more expensive then other operations shown.

proofs on which the bounds of Figures 1 and 2 are based, are, for BN [6], MuSig [10, 24], mBCJ
[14], MuSig-DN [27] and MuSig2 (ν ≥ 4) [26], in the standard model; and for MuSig2 (ν = 2) [26],
DWMS [1] and HBMS, in the AGM. See Appendix A for details.
Towards better bounds. Our thesis is that proofs should provide, not merely a qualitative
guarantee, but one whose bounds quantitatively support parameter choices made in practice and
the indications of cryptanalysis. Accordingly we want multi-signature schemes for which we can
prove tight bounds on ms-uf advantage. How are we to reach this end? Impossibility results for
Schnorr signatures [29, 20], on which the multi-signature schemes under consideration are based,
indicate that a search for tight reductions that are both (1) in the standard model, and (2) from
DL, is unlikely to succeed. We need to be flexible, and relax either (1) or (2). In fact we show
that relaxing either suffices: We give (1) tight reductions from DL in the Algebraic Group Model
(AGM) [16], and (2) tight, standard-model reductions from assumptions other than DL. Together,
these provide valuable theoretical support for the use of practical multi-signature schemes in 256-bit
groups.
AGM. The AGM considers a limited, but still large class of adversaries, called algebraic. When
such an adversary queries a group element to an oracle, it provides also its representation in terms of
prior group elements that the adversary has seen. Intuitively, the assumption is that the adversary
“knows” how group elements it creates are represented. For elliptic curve groups, this appears to be
a realistic assumption, and here the AGM captures natural and currently-known attack strategies.

When considering the merits of the AGM, an important one to keep in mind is that a proof in
the AGM immediately implies a proof in the well-accepted Generic Group Model (GGM) of [33].
(So the AGM is only “better” than the GGM.) In more detail, a tight AGM reduction from DL to
some problem X immediately yields a GGM bound on adversary advantage, for X, that matches the
GGM bound for DL [16]. Thus, overall, tight AGM reductions provide a valuable guarantee. This
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is recognized by Fuchsbauer, Plouviez and Seurin [17] who use the AGM to give a tight reduction
from DL to the UF security of the Schnorr signature scheme. Their result gives hope, realized here,
that such reductions are possible for multi-signatures as well.
Chain reductions. We achieve the above ends, and more, as follows. For each multi-signature
scheme MS we consider, we give a chain of reductions, starting from DL, that we depict as

DL = P0 → P1 → · · · → Pm−1 → Pm = MS ,
where P1, . . . ,Pm−1 are intermediate computational problems. We refer to m ≥ 1 as the length of
the chain. For each step Pi−1 → Pi we provide one of the following.
1. A tight, standard-model reduction. This is the ideal and done for as many steps as possible.
2. When 1. is not possible, we give BOTH of the following:

2.1 A tight AGM reduction, AND ALSO
2.2 A non-tight standard-model reduction.

Since a tight standard-model reduction implies a tight AGM one, this yields a tight AGM reduction
from DL to MS, the first of our goals stated above. (A bit better, since some sub-reductions are
standard-model.) For i such that the chain Pi → · · · → MS consists only of tight standard-model
reductions, we have a tight, standard model proof of MS from assumption Pi, realizing our second
goal, stated above, of tight standard-model reductions from assumptions other than DL. (Of course
how interesting or valuable this is depends on the choice of Pi, but as discussed below, we are able
to make well-founded choices.)

Finally, something not yet mentioned, that follows from 1 and 2.2 of the chain reductions, is
that we always have a standard model (even if non-tight) reduction DL → MS. This means that,
while adding tight AGM reductions that are valuable in practice, we are not lowering the theoretical
or qualitative guarantees, these remaining as one would expect or desire.

Chain reductions can be seen as a way to implement a modular proof framework in the style
of [20], in which steps are reused across proofs for different schemes.
New bounds for classical schemes. We start by revisiting the classical 3-round schemes, namely
BN and MuSig. Figure 3 illustrates our chains, that we now discuss.

IDL, formulated in [20] —they call it IDLOG, which we have abbreviated— is a purely group-
based problem that is equivalent to the security against parallel impersonation under key-only
attack (PIMP-KOA) of the Schnorr ID scheme. A tight GGM bound for IDL was shown by [20],
but an AGM reduction DL→ IDL does not seem to be in the literature; we fill this gap by providing
it in Theorem 3.1. A (non-tight) standard model DL → IDL reduction is in [20], but we slightly
improve it in Theorem 3.2.

Now our chain for BN is DL → IDL → BN. This chain has length 2. Our main result for
BN is Theorem 5.1, which shows IDL → BN with a tight, standard model reduction. Putting this
together with our above-mentioned tight DL→ IDL AGM-reduction of Theorem 3.1, we get a tight
DL → BN AGM-reduction. Also our tight, standard-model IDL → BN reduction says that BN is
as secure as the Schnorr identification scheme, which is valuable in its own right since the latter
has withstood cryptanalysis for many years.

We introduce an intermediate, purely group-based problem we call XIDL. We show IDL →
XIDL with a tight AGM reduction (Theorem 3.3) and a (non-tight) standard-model reduction
(Theorem 3.4).

Our chain for MuSig is DL→ IDL→ XIDL→ MuSig. This chain has length 3. Our main result
for MuSig is Theorem 6.1, which shows XIDL → MuSig with a tight, standard model reduction.
Putting this together with the rest of the chain, we get a tight DL → MuSig AGM-reduction. If
we are willing to view XIDL as an assumption extending IDL, we can also view MuSig as based
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DL

IDL BN

XIDL MuSig

HBMS

1
2

3
4

5

Reduction SM AGM

1 DL→ IDL Th. 3.2 Th. 3.1
2 IDL→ BN Th. 5.1 –
3 IDL→ XIDL Th. 3.4 Th. 3.3
4 XIDL→ MuSig Th. 6.1 –
5 XIDL→ HBMS Th. 7.2 Th. 7.1

Figure 3: Chain reductions for multi-signatures. SM stands for “Standard Model” and AGM
for “Algebraic Group Model.” An arrow P → Q means a reduction from P to Q; i.e. a proof that
P implies Q. A boldface Theorem Number indicates the reduction is tight. A blank appears in
the AGM column when a (tight) SM reduction to its left makes the AGM reduction unnecessary.
Writing a MS scheme like BN,MuSig,HBMS as a point in a chain refers to MS-UF security of the
scheme in question.

tightly on that.
This means we show that UBms-uf

MS (t, q, qs, p) ≤ t2/p for both schemes, matching the DL bound.
This is tight and optimal, since the multi-signature schemes can be broken by taking discrete-logs.
Figure 1 compares our results with the prior ones.
New 2-round scheme. Turning to 2-round schemes, we give a new scheme, called HBMS. HBMS
supports key aggregation, in line with other 2-round schemes. Our chain for our new 2-round HBMS
scheme is DL→ IDL→ XIDL→ HBMS. This chain has length 3. We show XIDL→ HBMS with
a tight AGM reduction (Theorem 7.1) and a (non-tight) standard-model reduction (Theorem 7.2).
Putting this together with the rest of the chain, we get a tight DL → HBMS AGM-reduction, in
particular showing UBms-uf

MS (t, q, qs, p) ≤ t2/p, matching the DL bound. We also get a (non-tight)
DL→ HBMS standard-model-reduction.

Figure 2 compares HBMS with prior 2-round schemes. It shows that our improvement in security
is not at the cost of efficiency. (Signing in HBMS is as efficient, or more so, than in prior schemes.
For verification, MuSig-DN [27] is slightly faster, but signing in the latter is prohibitive due to the
use of NIZKs.)

As the above shows, we reuse steps across different chains. Thus XIDL is an intermediate point
for both MuSig and HBMS, and IDL for both BN and XIDL. This simplifies proofs and reduces
effort. It also shows common elements and relations across schemes.
Equivalences. As discussed above, Theorem 5.1 shows IDL → BN with a tight, standard model
reduction. We also give, in Theorem 5.2, a converse, namely a tight, standard-model reduction
showing BN → IDL. This shows that IDL and BN are, security-wise, equivalent. Similarly, as
discussed above, Theorem 6.1 shows MuSig → XIDL with a tight, standard model reduction,
and we also give, in Theorem 6.2, a converse, namely a tight, standard-model reduction showing
XIDL → MuSig. This shows that XIDL and MuSig are equivalent. Overall, this shows that IDL
and XIDL are not arbitrary choices, but characterizations of the schemes whose consideration is

7



necessary.
Definitional contributions. DEFKLNS [14] found subtle gaps in some prior proofs of security
for some two-round multi-signature schemes [2, 23, 34]. This indicates a need for greater care in the
domain of multi-signatures. We suggest that this needs to begin with definitions. The ones in prior
work, stemming mostly from [6], suffer from some lack of detail and precision. In particular, the
very syntax of a multi-signature scheme is not specified in detail. This results in scheme descriptions
that lack in precision, and proofs that stay at a high level in part due to lack of technical language
in which to give details. This in turn can lead to bugs.

To address these issues, we revisit the definitions. We start by giving a detailed syntax that
formalizes the signing protocol as a stateful algorithm, run separately by each player. Details
addressed include that a player knows its position in the signer list, that player identities are
separate from public keys, and integration of the ROM through a parameter describing the type
of ideal hash functions needed. Then we give a security definition written via a code-based game.
See Section 4.
Related work. The interest for blockchains and cryptocurrencies, and thus our focus, is DL-
based schemes over elliptic curves. There are many other multi-signature schemes, based on other
hard problems. Aggregate signatures [11, 4] yield multi-signatures, but these use pairings (bilinear
maps). A pairing-based multi-signature scheme is also given in [10]. Lattice-based multi-signature
schemes include [15, 13].

As noted above, IDL [20] captures the security against parallel impersonation under key-only
attack (PIMP-KOA) of the Schnorr ID scheme and thus, given the ZK property of the scheme,
also its security against parallel impersonation under passive attack (PIMP-PA). “Parallel” means
multiple impersonation attempts are allowed. IMP-PA, traditional security against impersonation
under passive attack, is the case where just one impersonation attempt is allowed. The Reset
Lemma [7] gives a standard model DL→ IMP-PA reduction. This uses rewinding and is non-tight,
with a square-root loss. BD [3] introduce the Multi-Base Discrete Logarithm (MBDL) problem,
give a tight standard-model MBDL→ IMP-PA reduction, and show that, in the GGM, the security
of MBDL is the same as that of DL. An interesting open question is whether MBDL can be used
as a starting point for tight reductions for multi-signature schemes. Rotem and Segev [31] give a
standard model DL → IMP-PA reduction that improves the square-root-loss reduction but is still
not tight.

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n− 1} and [n] or [1..n] denote
the set {1, . . . , n}. If x is a vector then |x| is its length (the number of its coordinates), x[i] is its
i-th coordinate and [x] = {x[i] : 1 ≤ i ≤ |x| } is the set of all its coordinates. A string is identified
with a vector over {0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. By ε
we denote the empty vector or string. The size of a set S is denoted |S|.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from S
and assigning it to x. We let y ← AO1,...(x1, . . . ; ρ) denote executing algorithm A on inputs x1, . . .
and coins ρ with access to oracles O1, . . ., and letting y be the result. We let ρ←$ rand(A) denote
sampling random coins for algorithm A and assigning it to variable ρ. We let y←$ AO1,...(x1, . . .)
be the result of ρ←$ rand(A) followed by y ← AO1,...(x1, . . . ; ρ). We let [AO1,...(x1, . . .)] denote the
set of all possible outputs of A when invoked with inputs x1, . . . and oracles O1, . . .. Algorithms
are randomized unless otherwise indicated. Running time is worst case.
Games. We use the code-based game playing framework of [8]. (See Fig. 4 for an example.) Games
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have procedures, also called oracles. Amongst these are Init and a Fin. In executing an adversaryA
with a game Gm, procedure Init is executed first, and what it returns is the input to A. The latter
may now call all game procedures except Init,Fin. When the adversary terminates, its output is
viewed as the input to Fin, and what the latter returns is the game output. By Gm(A) ⇒ y we
denote the event that the execution of game Gm with adversary A results in output y. We write
Pr[Gm(A)] as shorthand for Pr[Gm(A) ⇒ true], the probability that the game returns true. In
writing game or adversary pseudocode, it is assumed that boolean variables are initialized to false,
integer variables are initialized to 0 and set-valued variables are initialized to the empty set ∅.

A procedure (oracle) with a certain name O may appear in several games. (For example, Ch
appears in two games in Figure 4.) To disambiguate, we may write Gm.O for the one in game Gm.

When adversary A is executed with game Gm, we consider the running time of A as the running
time of the execution of Gm(A), which includes the time taken by game procedures. By QO

A we
denote the number of queries made by A to oracle O in the execution. These counts are both worst
case.
Groups. Throughout, G is a group whose order, assumed prime, we denote by p. We will use
multiplicative notation for the group operation, and we let 1G denote the identity element of G.
We let G∗ = G \ {1G} denote the set of non-identity elements, which is the set of generators of G
since the latter has prime order. If g ∈ G∗ is a generator and X ∈ G, then DLG,g(X) ∈ Zp denotes
the discrete logarithm of X in base g.
Algebraic algorithms. We recall the definition of algebraic algorithms [16]. As above, fix a
group G of prime order p, and let g be a generator. In all of our security games involving G and
g, we assume that any inputs and outputs of game oracles that are group elements (meaning,
in G) are distinguished. In particular, it will be clear from the game pseudocode definition which
components of inputs and outputs are such group elements. We say that an adversary, against game
Gm, is algebraic, if, whenever it submits a group element Y ∈ G as an oracle query, it also provides,
alongside, a representation of Y in terms of group elements previously returned by the game oracles
(the latter including Init). Specifically, suppose during an execution of adversary A with game Gm,
the adversary submits a group element Y ∈ G to game oracle O. Then, alongside, it must provide
a vector (v0, v1, . . . , vm) ∈ Zmp , called a representation of Y , such that Y = gv0 · hv1

1 · · ·hvmm , where
h1, . . . , hm are the group elements that have been returned to the adversary by game oracles of
Gm, so far. When considering an execution of game Gm with an adversary A that is not algebraic,
we omit the writing of representations in the oracle calls.
Hedging. Not all attacks are algebraic. The thesis of [16] is that natural ones are, and thus proving
security relative to algebraic adversaries gives meaningful guarantees in practice. We adopt this
here but add hedging. Recall this means that, for the same scheme, we seek both (1) A tight AGM
reduction from DL, and (2) a standard-model (even if non-tight) reduction from DL. The former is
used to guide and support parameter choices. The latter is viewed as at least qualitatively ruling
out non-algebraic attacks.
Reductions. All our standard-model reductions are black-box and preserve algebraic-ness of ad-
versaries, meaning, if the starting adversary is algebraic, so is the constructed one. This means
that we can chain standard-model reductions with AGM-reductions to get overall AGM reductions.

3 Hardness of problems in groups

Our chain reductions exploit three computational problems related to groups: standard discrete
log (DL); IDL [20]; and a new problem XIDL that we introduce. Here we give the definitions. We
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Game Gmdl
G,g

Init:
1 x←$ Z|G| ; X ← gx ; Return X

Fin(x′):
2 Return (x = x′)

Game Gmidl
G,g,q

Init:
1 x← Z|G| ; X ← gx

2 Return X

Ch(R): // At most q queries.
3 i← i+ 1 ; Ri ← R

4 ci←$ Z|G| ; Return ci

Fin(I, z):
5 Return (gz = RI ·XcI )

Game Gmxidl
G,g,q1,q2

Init:
1 x← Z|G| ; X ← gx

2 Return X

NwTar(S): // At most q1 queries.
3 j ← j + 1 ; Sj ← S

4 ej ←$ Z|G| ; Tj ← Sj ·Xej

5 Return ej

Ch(jsel, R): // At most q2 queries.
6 i← i+ 1 ; Ri ← R ; Yi ← Tjsel

7 ci←$ Z|G| ; Return ci

Fin(I, z):
8 Return (gz = RI · YIcI )

Figure 4: Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator of G. Let
q, q1, q2 be positive integers. Top: Game defining discrete logarithm (DL) problem. Bottom left:
Game defining identification logarithm (IDL) problem. Bottom right: Game defining random-target
identification logarithm (XIDL) problem.

then show the length-2 chain DL→ IDL→ XIDL. We give reductions that are tight in the AGM
and also give (non-tight) standard-model reductions, a total of four results. Referring to Figure 3,
we are establishing the four theorems, shown in the table, that correspond to arrows 1 and 3. For
the rest of the section, we fix a group G of prime order p, and a generator g ∈ G.
DL. We recall the standard discrete logarithm (DL) problem via game Gmdl

G,g in Figure 4. Init
provides the adversary, as input, a random challenge group element X, and to win it must out-
put x′ = DLG,g(X) to Fin. We let Advdl

G,g(A) = Pr[Gmdl
G,g(A)] be the discrete-log advantage of

adversary A.
IDL. The identification discrete logarithm (IDL) problem, introduced by KMP [20], characterizes
the hardness of parallel impersonation under key-only attack (PIMP-KOA) security [20] of the
Schnorr identification scheme [32]. Formally, consider the game Gmidl

G,g,q given in Fig. 4, where
parameter q is a positive integer. The IDL-adversary receives a random target point X from Init.
It is additionally given access to a challenge oracle Ch that can be called at most q times. The
oracle takes as query a group element R (representing the commitment sent by the prover in Schnorr
identification), stores it as Ri, and responds with a random challenge ci←$ Zp (representing the
one sent by the verifier). The adversary wins if it can produce the discrete log z (representing
the final prover response) of the group element Ri ·Xci , for a choice of i, denoted I, made by the
adversary. We define the IDL-advantage of A to be Advidl

G,g,q(A) = Pr[Gmidl
G,g,q(A)].
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KMP [20] study IDL in the Generic Group Model (GGM) [33] and prove a bound matching
that for DL. Here, we strengthen this to give a tight AGM reduction DL → IDL. This could be
seen as implicit in part of the AGM proof of security for the Schnorr signature scheme given in
[17], although they make no connection to IDL.

Theorem 3.1 [DL→ IDL, AGM] Let G be a group of prime order p with generator g. Let q be a
positive integer. Let Aalg

idl be an algebraic adversary against Gmidl
G,g,q. Then, adversary Adl can be

constructed so that
Advidl

G,g,q(A
alg
idl ) ≤ Advdl

G,g(Adl) + q

p
.

Furthermore, the running time of Adl is about that of Aalg
idl .

The full proof is given in Appendix C. The idea of the proof is as follows. Since Aalg
idl is algebraic,

its query R to Ch is accompanied by (r1, r2) such that R = gr1Xr2 . Our adversary Adl, who
is running Aalg

idl , records these as Ri, ri,1, ri,2, and responds with a random ci. Eventually, Aalg
idl

outputs I, z. Assuming it succeeds, we have gz = RI · XcI = grI,1XrI,2XcI , or gz−rI,1 = Xw

where w = (rI,2 + cI) mod p. Now DLG,g(X) can be obtained as long as w has an inverse modulo
p, meaning is non-zero. But cI was chosen at random after the adversary supplied rI,2, so the
probability that w is 0 is at most 1/p. The factor of q accounts for the adversary’s having a choice
of I made after receiving challenges.

By q-IDL, we refer to IDL with parameter q. 1-IDL corresponds to IMP-KOA security of the
Schnorr identification scheme, and a reduction DL → 1-IDL is obtained via the Reset Lemma
of [7]. KMP show that 1-IDL → q-IDL. Overall this gives a standard model (very non-tight)
DL → q-IDL reduction. However, a somewhat tighter (but still non-tight) result can be obtained
when the forking lemma of [6] (which we recall as as Lemma B.1.) is applied directly instead.
Concretely, we give the following theorem, improving the prior reduction by a √q factor. The proof
is in Appendix D.

Theorem 3.2 [DL → IDL, Standard Model] Let G be a group of prime order p = |G|, and let
g ∈ G∗ be a generator of G. Let q be a positive integer. Let Aidl be an adversary against the game
Gmidl

G,g,q. The proof constructs an adversary Adl (explicitly given in Fig. 12) such that

Advidl
G,g,q(Aidl) ≤

√
q ·Advdl

G,g(Aidl) + q

p
. (1)

Additionally, the running time of Adl is approximately TAdl ≈ 2 · TAidl.

Theorem 3.2 appears to yield a 1-IDL→ q-IDL reduction with a bound that contradicts the lower
bound claimed in [20, Corollary 4.4]. Our best guess as to an explanation is that our reduction
does not meet the key and randomness preserving restrictions of [20, Corollary 4.4] or that their
lower bound does not cover rewinding strategies.
XIDL. We define a new problem, random target identification discrete logarithm, abbreviated
XIDL. It abstracts out the algebraic core of MuSig, and we will show that its security is equivalent
to the MS-UF security of MuSig. It will also be an intermediate point in our reduction chain
reaching our new HBMS scheme, thereby serving multiple purposes.

With G, p, g fixed as usual, XIDL is parameterized by positive integers q1, q2. Formally, consider
the game Gmxidl

G,g,q1,q2 given in Fig. 4. The adversary receives a randomly chosen group element X
from Init. The game maintains a list T1, . . . , Tq1 of “targets.” The adversary can create a target by
querying the New Target oracle NwTar with a group element S of its choosing, whence Tj = S ·Xej

is added to the list of targets, for ej chosen randomly from Zp by the game and returned to the

11



adversary. The adversary can query the challenge oracle Ch(jsel, R) by supplying an index jsel and
a group element R. The oracle records Tjsel as Yi, and R as Ri, based on the counter i it maintains.
Intuitively, Ch is similar to the challenge oracle Ch in IDL game, besides that our adversary here
needs to specify the target Tjsel it is trying to impersonate against. The adversary wins the game if
it can produce the discrete log z of RI · Y cI

I , for an index I of its choice. The oracles NwTar and
Ch are allowed to be called at most q1 and q2 times, respectively. We define the XIDL advantage
of A as Advxidl

G,g,q1,q2(A) = Pr[Gmxidl
G,g,q1,q2(A)].

We show hardness of XIDL in both the AGM and the standard model, starting with the former.
The theorem actually establishes the stronger DL→ XIDL, tightly in the AGM.

Theorem 3.3 [DL → XIDL, AGM] Let G be a group of order p with generator g. Let q1, q2 be
positive integers. Let Aalg

xidl be an algebraic adversary against Gmxidl
G,g,q1,q2. Then, adversary Adl can

be constructed so that
Advxidl

G,g,q1,q2(Aalg
xidl) ≤ Advdl

G,g(Adl) + q1 + q2
p

.

Furthermore, the running time of Adl is about that of Aalg
xidl.

The full proof is given in Appendix E. Here we sketch the intuition. Since Aalg
xidl is algebraic, the

j-th query to NwTar is of the form Sj , sj,1, sj,2 such that Sj = gsj,1Xsj,2 , and the i-th query to
Ch is of the form jsel, Ri, ri,1, ri,2 such that Ri = gri,1Xri,2 . Let ej , ci denote, respectively, the
responses to the j-th query to NwTar and the i-th query to Ch. Eventually, Axidl outputs I, z.
Assuming it succeeds, the equation gz = RI · T cIJ = RI · (SJ · XeJ )cI must hold, where J was
the selected index jsel in the I-th query to Ch. This means that gz = grI,1XrI,2(gsJ,1XsJ,2XeJ )cI ,
whence gz−rI,1−sJ,1·cI = Xw, where w = rI,2 + (sJ,2 + eJ)cI . As long as w is non-zero modulo p, one
can solve for the value of DLG,g(X). But eJ and cI were independently chosen after the adversary
supplied sJ,2 and rI,2, respectively. The probability that there exists j such that (sj,2 + ej) = 0
mod p is at most q1/p over q1 queries to NwTar. Assuming there is no such j, the probability
that w = 0 is at most q2/p, due to the q2 queries to Ch that Aalg

xidl can make.
In the standard model, techniques in the security proof of MuSig [10, 24] could be used to show

DL → XIDL, which involves two applications of the Forking Lemma, leading to a fourth-root in
the bound. We now show IDL → XIDL, using a single application of the forking lemma and thus
with only a square-root in the bound. Combining this with Theorem 3.2 recovers the DL→ XIDL
reduction with its fourth-root.

Theorem 3.4 [IDL → XIDL, Standard Model] Let G be a group of prime order p with generator
g. Let q1, q2 be positive integers. Let Axidl be an adversary against Gmxidl

G,g,q1,q2. Then, an adversary
Aidl can be constructed so that

Advxidl
G,g,q1,q2(Axidl) ≤

√
q2 ·Advidl

G,g,q1(Aidl) + q2
p
.

Furthermore, the running time of Aidl is about twice of that of Axidl.

The full proof is given in Appendix F. We now sketch the intuition. Adversary Aidl receives X from
game Gmidl

G,g,q1 and runs adversary Axidl, forwarding it X as the target point. It answers queries to
Axidl’s NwTar oracle using its own Gmidl

G,g,q1 .Ch oracle. Specifically, the j-th query S to NwTar

is responded to with ej ←$ Gmidl
G,g,q1 .Ch(S), and Aidl additionally records the group element Tj

← S ·Xej . It simulates adversary Axidl’s Ch oracle locally, meaning the i-th query Ch(jsel, R) is
responded to with a fresh challenge ci←$ Zp. Eventually, adversary Axidl gives a response I, z. Our
Aidl adversary wins game Gmidl

G,g,q1 if it can produce the discrete log of Tj for any j of its choice.
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To do so, Aidl uses rewinding, the analysis of which uses the Forking Lemma [6] that we recall as
Lemma B.1. Rewinding is used to produce another response, (I ′, z′), from a forked execution of
Axidl. The Forking Lemma applies to an execution of an algorithm making queries to one oracle,
but adversary Axidl has two oracles NwTar and Ch. We only “fork” Axidl on its queries to Ch.
Specifically, we program oracle NwTar to behave identically compared to the first run (meaning we
use previously recorded values of e1, . . . as long as they are defined). In the second run, oracle Ch
is replied with c1, . . . , cI−1, c

′
I , . . ., where c′I , . . . are randomly chosen from Zp. Let us assume that

Aidl has derived two valid responses from Axidl using the Forking Lemma. Then it is guaranteed
that I = I ′ and cI 6= c′I . Moreover, we know the two executions of Axidl only differ after the
response of the I-th query to Ch, so the I-th query to Ch in both runs is some J,RI . This allows
our adversary to solve the equations gz = RI · T cIJ and gz

′ = RI · T
c′I
J (which are guaranteed to be

true if both runs succeed) to compute DLG,g(TJ) and thus win the IDL game.

4 Definitions for multi-signatures

As discussed in Section 1, current definitions for multi-signatures, stemming mostly from [6], suffer
from some lack of detail and precision, including lack of a precise syntax. This results in scheme
descriptions that also lack somewhat in precision, and to proofs that stay at a high level in part
due to lack of technical language in which to give details. This could be one of the contributors to
bugs in these proofs [14].

To address this, we revisit the definitions. We give a detailed syntax that formalizes the signing
protocol as a stateful algorithm, run separately by each player. (The state will be maintained by the
overlying game.) Details addressed include that a player knows its position in the signer list, that
player identities are separate from public keys, and integration of the ROM through a parameter
describing the type of ideal hash functions needed. Then we give a security definition written via
a code-based game.
Syntax. A multi-signature scheme MS specifies algorithms MS.Kg, MS.Vf, MS.Sign, as well as a
set MS.HF of functions, and an integer MS.nr, whose intent and operation is as follows:

Key generation. Via (pk, sk)←$ MS.Kg, the key generation algorithm generates public signature-
verification key pk and secret signing key sk for a user. (Each user is expected to run this
independently to get its keys.)
Hash functions. MS.HF is a set of functions, from which, via h←$ MS.HF, one is drawn and
provided to scheme algorithms (except key generation) and the adversary as the random oracle.
Specifying this as part of the scheme allows the domain and range of the random oracle to be
scheme-dependent.
Verification. Via d ← MS.VfH(pk,m, σ), the verification algorithm deterministically outputs a
decision d ∈ {true, false} indicating whether or not σ is a valid signature on message m under a
vector pk of verification keys.
Signing. The signing protocol is specified by signing algorithm MS.Sign. In each round, each
party, applies this algorithm to its current state st and the vector in of received messages from
the other parties, to compute an outgoing message σ (viewed as broadcast to the other parties)
and an updated state st′, written (σ, st′)← MS.SignH(in, st). In the last round, σ is the signature
that this party outputs. (See Figure 5.)
Rounds. The interaction consists of a fixed number MS.nr of rounds. (We number the rounds
0, . . . ,MS.nr. The final broadcast of the signature is not counted as in practice it is a local
output.)
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We say that a multi-signature scheme MS supports key aggregation if MS has two additional al-
gorithms, MS.Ag and MS.VfAg, such that the following hold: (1) Via apk←$ MS.AgH(pk1, . . . ,
pkn), the key aggregation algorithm MS.Ag generates an aggregate public key, (2) Via d ←
MS.VfAgH(apk,m, σ), the aggregate verification algorithm deterministically outputs a decision
d ∈ {true, false}, and (3) the verification algorithm MS.Vf is defined exactly as MS.VfH(pk,m,
σ) = MS.VfAgH(MS.AgH(pk),m, σ).

Some conventions will aid further definitions and scheme descriptions. A party’s state st has
several parts: st.n is the number of parties in the current execution of the protocol; st.me ∈ [1..st.n]
is the party’s own identity; st.rnd ∈ [0..MS.nr] is the current round number; st.sk is the party’s
own signing key; st.pk is the st.n-vector of all verification keys; st.msg is the message being signed;
st.rej ∈ {true, false} is the decision to reject (not produce a signature) or accept. It is assumed and
required that each invocation of MS.Sign leaves all of these unchanged except for st.rnd, which it
increments by 1, and st.rej, which is assumed initialized to false and may at some point be set to
true. The state can, beyond these, have other components that vary from protocol to protocol.
(For example, Figure 6 describing the BN scheme has st.R[j], st.t[j], st.z[j], st.R, . . ..) We write
st← StInit(j, sk,pk,m) to initialize st by setting st.n← |pk| ; st.me← j ; st.rnd← 0 ; st.sk← sk ;
st.pk← pk ; st.msg← m ; st.rej← false. If an execution (σ, st′)← MS.SignH(in, st) returns σ = ⊥
then it is assumed and required that further executions starting from st′ all return ⊥ as the output
message.
Correctness. Algorithm ExecMS, shown in the left column of Fig. 5, executes the signing protocol
of MS on input a vector sk of signing keys, a vector pk of matching verification keys with |sk| =
|pk|, and a message m to be signed, and with access to random oracle h ∈ MS.HF. The number of
parties n at line 1 is the number of coordinates (length) of pk. The state stj of party j at line 3 is
initialized using the function StInit defined above. The loop at line 5 executes MS.nr rounds. Here
b denotes the n-vector of currently-broadcast messages, meaning b[i] was broadcast by party i in
the prior round, and the entire vector is the input to party j for the current round. At line 8, b
now holds the next round of broadcasts.

The correctness game Gms-cor
MS,n shown in the right column of Fig. 5 has only one procedure,

namely Fin. We say that MS satisfies (perfect) correctness if for all positive integers n we have
Pr[Gms-cor

MS,n ] = 1.
Unforgeability. Game Gms-uf

MS in Fig. 5 captures a notion of unforgeability for multi-signatures
that slightly extends [6]. There is one honest player whose keys are picked at line 1, the adversary
controlling all the other players. A new instance of the signing protocol is initialized by calling
NS with an index k and a vector pk of verification keys that the adversary can choose, possibly
dishonestly, subject only to pk[k] being the verification key pk of the honest player, as enforced
by line 2. The first message of the honest player is sent out, and at this point stu.rnd = 1. Now
the adversary can run multiple concurrent instances of the signing protocol with the honest signer.
Oracle H is the random oracle, simply calling h. Eventually the adversary calls Fin with a forgery
index k, a vector of verification keys (subjected to pk[k] being the public key of the honest signer),
a message and a claimed signature. It wins if verification succeeds and the forgery was non-trivial.
The ms-uf-advantage of adversary A is Advms-uf

MS (A) = Pr[Gms-uf
MS (A)].

It is convenient for (later) proofs to have a separate signing oracle Signj for each round j ∈
[1..MS.nr]. It is required that any Signj(s, ·) satisfy s ∈ [1..u], and that the prior round queries
Signk(s, ·) for k < j have already been made. It is required that for each j, s, at most one Signj(s, ·)
query is ever made.
Remarks. Our syntax and security notions for multi-signatures view a group of signers as captured
by the vector (rather than the set) of their public keys. So for example, a forgery ((pk1, pk2),m, σ) is
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Algorithm Exech
MS(sk,pk,m):

1 n← |pk|
2 For j = 1, . . . , n do
3 stj ← StInit(j, sk[j],pk,m)
4 b← (ε, . . . , ε) // n-vector
5 For i = 1, . . . ,MS.nr do
6 For j = 1, . . . , n do
7 (σj , stj)←$ MS.Signh(b, stj)
8 b← (σ1, . . . , σn)
9 Return σ1

Game Gms-cor
MS,n

Fin:
1 h←$ MS.HF
2 For i = 1, . . . , n do
3 (pk[i], sk[i])←$ MS.Kg
4 σ←$ Exech

MS(sk,pk,m)
5 d← MS.Vfh(pk,m, σ)
6 Return d

Game Gms-uf
MS

Init:
1 h←$ MS.HF ; (pk, sk)←$ MS.Kg ; Return pk

NS(k,pk,m):
2 pk[k]← pk ; u← u+ 1 ; pku ← pk ; mu ← m ; stu ← StInit(k, sk,pk,m)
3 b← (ε, . . . , ε) ; (σ, stu)←$ MS.SignH(b, stu) ; Return σ

Signj(s, b): // 1 ≤ j ≤ MS.nr
4 (σ, sts)←$ MS.SignH(b, sts) ; Return σ

H(x):
5 Return h(x)

Fin(k,pk,m, σ):
6 If (pk[k] 6= pk) then Return false
7 If (pk,m) ∈ {(pki,mi) : 1 ≤ i ≤ u} then Return false
8 Return MS.VfH(pk,m, σ)

Figure 5: Top left: Procedure specifying an honest execution of the signing protocol associated
with multi-signature scheme MS. Top right: Correctness game. Bottom: Unforgeability game.

considered to be non-trivial even if there was a previous signing session under public keys (pk2,pk1)
and message m. This differs from previous formalizations that work instead with sets of public
keys. However, previous definition can be recovered if a canonical encoding of sets of public keys
into vectors of public keys is fixed in the usage of a scheme.

5 Analysis of the BN scheme

BN scheme. Let G be a group of prime order p. Let g be a generator of G and let ` ≥ 1 be an
integer. The associated BN [6] multi-signature scheme MS = BN[G, g, `] is shown in detail, in our
syntax, in Fig. 6. The set MS.HF consists of all functions h such that h(0, ·) : {0, 1}∗ → {0, 1}` and
h(1, ·) : {0, 1}∗ → Zp. For b ∈ {0, 1} we write Hb(·) for H(b, ·), so that scheme algorithms, and an
ms-uf adversary, will have access to oracles H0,H1 rather than just H.

The signing protocol has 3 rounds. In round 0, player j picks r←$ Zp, stores gr in its state
as st.R[j], computes, and stores in its state, a value st.t[j] ← H0((j, st.R[j])) that we call the
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BN-commitment, and broadcasts the BN-commitment. (Per our syntax, what is returned is the
message to be broadcast and the updated state to be retained.) Since each player does this, in
round 1, player j receives the BN-commitments of the other players, storing them in vector st.t,
and now broadcasting st.R[j]. In round 2, these broadcasts are received, so player j can form the
vector st.R. At line 20, it returns ⊥ if one of the received values fails to match its commitment. As
per our conventions, when this happens, this player will always broadcast ⊥ in the future, so for
round 3 we assume lines 21 and 22 are executed. These lines create the second component st.z[j] of
a Schnorr signature relative to the Schnorr-commitment st.R[j] defined at line 13, and the player’s
own secret key, the computations being modulo p. This st.z[j] is broadcast, so that, in round 3, our
player receives the corresponding values from the other players. At line 27 it forms their modulo-p
sum z and then forms the final signature (st.R, z).

Our description of the signing protocol differs, from that in [6], in some details that are brought
out by our syntax, for example in using explicit party identities rather than seeing these as implicit
in public keys.
Prior bounds. We recall the prior result of [6]. Let MS = BN[G, g, `] and let Ams be an adversary
for game Gms-uf

MS . Assume the execution of game Gms-uf
MS with Ams has at most q distinct queries

across H0,H1 and at most qs queries to NS. Suppose the number of parties (length of verification-
key vector) in queries to NS and Fin is at most n. Let a = 8qs + 1 and b = 2q + 16n2qs. Let
p = |G|. Then BN [6] give a DL-adversary Adl such that

Advms-uf
MS (Ams) ≤

√
(q + qs) ·

(
Advdl

G,g(Adl) + a

p
+ b

2`
)
. (2)

The running time of Adl is twice that of the execution of game Gms-uf
MS with Ams. BN obtain this

result via their general forking lemma, which uses rewinding and accounts for the square-root in
the bound.
Security of BN from IDL. We give a IDL → BN reduction that is tight and in the standard
model. Combining this with our tight AGM reduction DL → IDL of Theorem 3.1 we conclude a
tight AGM reduction DL → BN. However, the standard model tight IDL → BN reduction is also
interesting in its own right. It says that BN is just as secure as the Schnorr identification scheme.
Since the latter has been around and resisted cryptanalysis for quite some time, this is good support
for the security of BN.

Theorem 5.1 [IDL → BN, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and let ` ≥ 1 be an integer. Let MS = BN[G, g, `] be the associated BN multi-
signature scheme. Let Ams be an adversary for game Gms-uf

MS of Figure 5. Assume the execution
of game Gms-uf

MS with Ams has at most q0, q1, qs distinct queries to H0,H1,NS, respectively, and the
number of parties (length of verification-key vector) in queries to NS and Fin is at most n. Let
α = qs(4q0 + 2q1 + qs) and β = q0(q0 + n). Then we construct an adversary Aid for game Gmidl

G,g,q1
(shown explicitly in Figure 18) such that

Advms-uf
MS (Ams) ≤ Advidl

G,g,q1(Aidl) + α

2p + β

2` . (3)

The running time of Aidl is about that of the execution of game Gms-uf
MS with Ams. Furthermore,

adversary Aidl is algebraic if adversary Ams is.

Above, q0 is the number of distinct queries to H0 made, not directly by the adversary, but across
the execution of the adversary in game Gms-uf

MS , and similarly for q1. A lower bound on q1 is the
length of pk in Ams’s Fin query, so we can assume it is positive. With the above theorem, we can
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Kg:

1 sk←$ Zp ; pk ← gsk

2 Return (pk, sk)

VfH(pk,m, σ):

3 (R, z)← σ ; (pk1, . . . , pkn)← pk

4 BN :
5 For i = 1, . . . , n do ci ← H1((i, R,pk,m))
6 Return ( gz = R ·

∏n

i=1 pk
ci
i )

7 MuSig :

8 apk ←
∏n

i
pk

H2((i,pk))
i

9 c← H1((R, apk,m))
10 Return ( gz = R · apkc )

SignH(b, st):

11 j ← st.me ; n← st.n ; m← st.msg ; sk ← st.sk ; pk← st.pk
12 If (st.rnd = 0) then
13 st.r←$ Zp ; st.R[j]← gr ; st.t[j]← H0((j, st.R[j])) ; st.rnd← st.rnd + 1
14 Return (st.t[j], st)
15 If (st.rnd = 1) then
16 For all i 6= j do st.t[i]← b[i]
17 st.rnd← st.rnd + 1 ; Return (st.R[j], st)
18 If (st.rnd = 2) then
19 For all i 6= j do st.R[i]← b[i]
20 If ( ∃ i : H0((i, st.R[i])) 6= st.t[i] ) then Return (⊥, st)
21 st.R←

∏n

i=1 st.R[i]
22 BN : cj ← H1((j, R,pk,m)) ; st.z[j]← sk · cj + st.r
23 MuSig :
24 apk ←

∏n

i=1 pk[i]H2((i,pk)) ; c← H1((R, apk,m))
25 st.z[j]← sk ·H2((st.me,pk)) · c+ st.r
26 st.rnd← st.rnd + 1 ; Return (st.z[j], st)
27 If (st.rnd = 3) then
28 For all i 6= j do st.z[i]← b[i]
29 z ←

∑n

i=1 st.z[i] ; Return ((st.R, z), st)

Figure 6: Algorithms of the multi-signature scheme BN[G, g, `] and MuSig[G, g, `], where G is a
group of prime order p with generator g. Code that differs between the two schemes is marked
explicitly. Oracle Hi(·) is defined to be H(i, ·) for i = 0, 1 (BN) and i = 0, 1, 2 (MuSig).

now derive an upperbound UBms-uf
MS (t, q, qs, p) of the advantage of any MS adversary with running

time t, making q queries to H, and qs signing interactions. We take ` ≈ log2(p) and assume that
qs ≤ q ≤ t ≤ p. Additionally, we assume that the advantage of any IDL adversary with running
time t is at most t2/p (as justified by Theorem 3.2). We obtain UBms-uf

MS (t, q, qs, p) ≤ t2/p as shown
in Fig. 1.

The full proof of Theorem 5.1 is given in Appendix G. Here we give a sketch. The reduction
adversary Aidl receives a group element X from Gmidl

G,g,q1 and forwards it to adversary Ams as the
target public key. In order to run adversary Ams, our adversary needs to be able to simulate the
signing oracles NS,Sign1,Sign2 as well as random oracles H0 and H1 without knowing DLG,g(X).
We first describe how the reduction proceeds if Ams makes no queries to NS,Sign1 or Sign2,
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as this steps constitutes the main difference between our proof and the original proof of security
for BN [6]. Adversary Aidl uses the challenge oracle Gmidl

G,g,q1 .Ch to program the random oracle
H1 (hence Ch needs to be able to be queried upto the number of times H1 is evaluated). In
particular, for each query H1((k,R,pk,m)) where pk[k] = X, our adversary first computes T ←
R ·
∏
j 6=k pk[j]H1((j,R,pk,m)), then obtains c←$ Ch(T ) before returning c as the return value for the

query H1((k,R,pk,m)). By construction, a valid forgery for pk,m is some signature σ = (R, z)
such that

gz = R ·
n∏
i=1

pk[i]H1((i,R,pk,m)) = T ·Xc ,

where the first equality is by the verification equation of BN and the second equality is by the way
H1 is programmed. This means that adversary Aidl can simply forward the value of z from a valid
forgery, along with the index of the Ch query corresponding to the H1 query of the forgery, to
break game Gmidl

G,g,q1 . Moreover, adversary Aidl succeeds as long as the forgery given by Ams is
valid.

It remains to show that oracles NS,Sign1,Sign2 can be simulated without knowledge of the
secret key, DLG,g(X). Roughly, this is done using the zero-knowledge property of the underlying
Schnorr identification scheme as well as by programming the random oracles H0 and H1. The
original proof by [6] constructs an adversary and argues that it simulates these oracles faithfully
if certain bad events do not happen. We take a more careful approach and do this formally via a
sequence of seven games and use the code-base game playing framework of [8]. This game sequence
incurs the additive loss as indicated in Equation (3).
Converse. IDL is not merely some group problem that can be used to justify security of BN
tightly; the hardness of IDL is, in fact, tightly equivalent to the MS-UF security of BN. Formally,
we give below a reduction turning any adversary against IDL into a forger Ams against BN. This
means that any security justification for BN must also justify the hardness of IDL.

Theorem 5.2 [BN→ IDL, Standard Model] Let G be a group of prime order p. Let g be a generator
of G and let ` ≥ 1 be an integer. Let MS = BN[G, g, `] be the associated BN multi-signature scheme.
Let q be a positive integer and Aidl be an adversary against Gmidl

G,g,q. Then, we can construct an
adversary Ams for game Gms-uf

MS , making no queries to NS, and at most 2q queries to H1, such that
Advms-uf

MS (Ams) ≥ Advidl
G,g,q(Aidl) . (4)

The running time of Ams is about that of Aidl.

Proof of Theorem 5.2: Consider the adversary given in Fig. 7. The adversary receives the
target public key pk from the MS-UF game and samples a key pair (pk′, sk′)←$ MS.Kg. The
adversary will attempt to forge a signature against the vector of public keys (pk, pk′). Adversary
Ams forwards X = pk as the target point and runs IDL adversary Aidl. For each query Ch(R) of
Aidl, adversary Ams simulates the response as per line 4 to 6. If Aidl succeeds, it must be that

gz = RI · pkcI,1 .
The value of z can be used to construct a forgery signature (line 3).

6 Analysis of the MuSig scheme

The current three-round version of MuSig has been proposed and analyzed by both [24] and [10].
Roughly, it is the BN scheme with added key aggregation.
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AH1
ms(pk):

1 X ← pk ; (pk′, sk′)←$ MS.Kg()
2 (I, z)← ACh

xidl(pk) // gz = RI · pkcI,1

3 σ ← (RI , z + sk′ · cI,2 mod p) ; Return ((pk, pk′),mI , σ)

Ch(R):

4 i← i+ 1 ; Ri ← R ; mi ← 〈i〉
5 ci,1←$ H1((1, Ri, (pk, pk′),mi)) ; ci,2←$ H1((2, Ri, (pk, pk′),mi))
6 Return ci,1

Figure 7: Adversary Ams for Theorem 6.1. For an integer i, 〈i〉 denote the binary representation
of i.

Let G be a group of prime order p. And let g be a generator of g and ` ≥ 1 be an integer. The
formal specification of MS = MuSig[G, g, `] in our syntax is shown in Fig. 6. There are minimal
differences between MuSig and BN and we only highlight the differences. The set MS.HF consists
of all functions h such that h(0, ·) : {0, 1}∗ → {0, 1}` and h(i, ·) : {0, 1}∗ → Zp for i = 1, 2.
Verification is done as follows. First, an aggregate key apk for the list of keys pk = (pk1, . . . ,pkn)
is computed as apk ← pk

H2((1,pk))
1 · · · pkH2((n,pk))

n (line 8). Next, a single challenge is derived from
the commitment R and aggregate key apk (line 9). The signature (R, z) is valid if gz = R · apkc.
The second round of signing also changes accordingly to generate a valid signature (line 24 and 25).

The following gives a tight, standard-model reduction XIDL→ MuSig. Combining this with our
tight AGM chain DL → IDL → XIDL from Theorems 3.1 and 3.3, we get a tight AGM reduction
DL→ MuSig.

Theorem 6.1 [XIDL → MuSig, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and ` ≥ 1 be an integer. Let MS = MuSig[G, g, `] be the associated MuSig multi-
signature scheme. Let Ams be an adversary for game Gms-uf

MS of Figure 5. Assume the execution of
game Gms-uf

MS with Ams has at most q0, q1, q2, qs distinct queries to H0,H1,H2,NS, respectively, and
the number of parties (length of verification-key vector) in queries to NS and Fin is at most n. Let
α = qs(4q0 + 2q1 + qs) + 2q1q2 and β = q0(q0 + n). Then we can construct an adversary Axidl for
game Gmxidl

G,g,q2,q1 (shown explicitly in Figure 24) such that

Advms-uf
MS (Ams) ≤ Advxidl

G,g,q2,q1(Axidl) + α

2p + β

2` . (5)

The running time of Axidl is about that of the execution of game Gms-uf
MS with Ams. Furthermore,

adversary Axidl is algebraic if adversary Ams is.

We remark that the values of q1 and q2 above arise from the number of queries to H1 and H2
made in the execution of Gms-uf

MS (Ams). As a result, the appearance of q1 and q2 has their orders
“switched” compared to in Section 3. With the above theorem, we can now derive an upperbound
UBms-uf

MS (t, q, qs, p) of the advantage of any MS adversary with running time t, making q queries to
H, and qs signing interactions. We take ` ≈ log2(p) and assume that qs ≤ q ≤ t ≤ p. Additionally,
we assume that the advantage of any XIDL adversary with running time t is at most t2/p (as
justified by Theorem 3.4). We obtain UBms-uf

MS (t, q, qs, p) ≤ t2/p as shown in Fig. 1.
We again describe the reduction at a high level and defer the full proof to Appendix H. First, the

reduction adversary Axidl receives group element X from game Gmxidl
Gg,q2,q1 and runs Ams with the

target public key set to X. Similar to the proof of Theorem 5.1, our adversary needs to simulate the
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AH1,H2
ms (pk):

1 X ← pk ; (I, z)← ANwTar,Ch
xidl (pk) ; J ← TI[I]

2 σ ← (RI , z) ; Return ((pk, SJ),mI , σ)

NwTar(S):

3 j ← j + 1 ; Sj ← S

4 ej,1←$ H2((1, (pk, S))) ; ej,2←$ H2((2, (pk, S))) ; ej ← ej,2/ej,1 mod p

5 apkj ← pkej,1Sej,2 ; Tj ← pk · Sej ; Return ej

Ch(jsel, R):

6 i← i+ 1 ; Ri ← R ; mi ← 〈i〉 ; TI[i]← jsel

7 ci ← H1((apkjsel
, R,mi)) · ejsel,1 ; Return ci

Figure 8: Adversary Ams for Theorem 6.1. For an integer i, 〈i〉 denote the binary representation
of i.

signing oracles NS, Sign1,Sign2 as well as H0,H1,H2 without knowing DLG,g(X) in order to runAms.
This again relies on the zero-knowledge property of the underlying Schnorr identification scheme
and the programming of H0,H1,H2. This step is done formally in a game sequence in the full proof
and incurs the additive loss in Equation (5). To turn a forgery into a break against XIDL, our
adversary programs H1 and H2 as follows. For the j-th query of H2((k,pk)) where pk[k] = X, the
adversary first computes S ←

∏
i 6=k pk[i]H2((i,pk)), then obtains ej ←$ NwTar(S) before returning

ej as the response for the query. We remark that this particular query of H2 have created an
aggregate public key apk =

∏|pk|
i=1 pk[i]H2((i,pk)) = S · Xej , which is also the value of Tj that is

recorded in the game Gmxidl
G,g,q2,q1 . For each i-th query of H1((R, apk,m)), the adversary first finds

the index jsel of the H2-query that corresponds to the input apk, then obtains ci←$ Ch(jsel, R)
before returning ci as the response for the query. If the eventual forgery is given for these two
particular queries to H1 and H2, meaning forgery is pk,m, (R, z) for some z, then the verification
equation of the signature scheme says that gz = R · apkH1((R,apk,m)). But this matches exactly the
winning condition of Gmxidl

G,g,q2,q1 , since apk = Tjsel and ci = H1((R, apk,m)). Hence, our adversary
Axidl can simply return (i, z) to break XIDL, as long as the forgery provided by Ams is valid.

Similar to the relation between IDL and BN, XIDL is also tightly equivalent to the MS-UF
security of MuSig. In particular, we turn any adversary breaking XIDL into a forger against MuSig.
This means that any security justification for MuSig must also justify the hardness of XIDL.

Theorem 6.2 [MuSig → XIDL, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and let ` ≥ 1 be an integer. Let MS = MuSig[G, g, `] be the associated MuSig multi-
signature scheme. Let q1, q2 be a positive integers and Axidl be an adversary against Gmxidl

G,g,q2,q1.
Then, we can construct an adversary Ams for game Gms-uf

MS , making no queries to NS, and at most
2q1 and 2q2 queries to H1 and H2 respectively, such that

Advms-uf
MS (Ams) ≥ Advxidl

G,g,q2,q1(Axidl) . (6)
The running time of Ams is about that of Aidl.

Proof of Theorem 6.2: Consider the adversary given in Fig. 8. The adversary receives the
target publick key pk from the MS-UF game. Adversary Ams forwards X = pk as the target point
and runs XIDL adversary Aidl. For each query NwTar(S) of Axidl, adversary Ams uses S as a
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MS.Kg:

1 sk←$ Zp ; pk ← gsk

2 Return (pk, sk)

MS.VfH0,H1,H2 (pk,m, σ):

3 (pk1, . . . , pkn)← pk ; apk ←
∏n

i
pk

H2((i,pk))
i

4 (T, s, z)← σ ; c← H1((T, apk,m))
5 h← H0((pk,m)) ; Return (gzhs = T · apkc)

MS.SignH0,H1,H2 (b, st):

6 j ← st.me ; n← st.n ; m← st.msg ; sk ← st.sk ; pk← st.pk
7 (pk1, . . . , pkn)← pk ; apk ←

∏n

i
pk

H2((i,pk))
i

8 If (st.rnd = 0) then
9 st.r[j]←$ Zp ; st.s[j]←$ Zp

10 h← H0((pk,m)) ; st.R[j]← gst.r[j] ; st.T [j]← st.R[j] · hst.s[j]

11 st.rnd← st.rnd + 1 ; Return (st.T [j], st)
12 If (st.rnd = 1) then
13 For all i 6= j do st.T [i]← b[i]
14 st.T ←

∏n

i=1 st.T [i] ; st.c← H1((st.T, apk,m)) ; ej ← H2((j,pk))
15 st.z[j]← sk · c · ej + st.r[j] ; st.t[j]← (st.s[j], st.z[j])
16 st.rnd← st.rnd + 1 ; Return (st.t[j], st)
17 If (st.rnd = 2) then
18 For all i 6= j do st.t[i]← b[i]
19 (s, z)←

∑n

i
t[i] ; Return ((st.T, s, z), st)

Figure 9: Two-round multi-signature scheme MS = HBMS[G, g] parameterized by a group G of
prime order p with generator g.

public key to generate the aggregate key apk for the list (pk, S). By construction, the j-th target
Tj for the XIDL game is related to apkj by apkj = T

ej,1
j . For each Ch(jsel, R) query of Axidl,

adversary Ams programs in the H1 outputs corresponding to a forgery agaisnt the aggregate key
apkjsel (line 6 and 7). By construction, if Axidl succeeds, it must be that

gz = RI · T cIJ = RI · T
H1((apkJ ,R,mi))·eJ,1
J = RI · apk

H1((apkJ ,R,mi))
J .

Hence, adversary Ams produces a valid forgery at line 2.

7 HBMS: Our new two-round multi-signature scheme

Recall that BN and MuSig are three-round schemes, and two-round schemes are desired due to
blockchain applications. In this section, we introduce our new, efficient two-round multi-signature
scheme supporting key-aggregation, HBMS. We first demonstrate its tight security against algebraic
adversaries (Theorem 7.1), before justifying its security in the standard model (Theorem 7.2).
Referring to Fig. 3, these results establish arrow 5. We refer to Fig. 2 for comparisons of HBMS
against other two-round schemes.
Two-round MS scheme HBMS. The formal definition of our scheme is given in Fig. 9. HBMS
has the same key generation algorithm Kg and key aggregation Ag algorithm as MuSig. We describe
informally the process involved to sign a message m under a vector of public keys pk. In the first
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round, each signer i samples si and ri uniformly from Zp and computes a commitment
Ti ← H0((pk,m))si · gri ,

which is sent to every other signer. In the second round, each signer receives the list of commitments
T1, . . . , Tn from each signer, and computes the aggregate value T ←

∏
i Ti. Each signer then

computes the challenge value as c← H1((T, apk,m)). To compute the reply, each signer i computes
zi ← ri + sk · c · H2((i,pk)) and sends (si, zi) to every other signer. Finally, any signer can now
compute the final signature as (T, s, z) where s =

∑
i si and z =

∑
i zi. To verify a signature (T, s, z)

on (pk,m), the equation
gz ·H0((pk,m))s = T · apkH1((T,apk,m)) ,

must hold, where apk =
∏|pk|
i=1 pk[i]H2((i,pk)). Compared to MuSig, the verification equation of

HBMS involves an additional power of H((pk,m)) (hence the name HBMS, or “Hash-Base Multi-
Signature”).
Tight security against algebraic adversaries. We first show that HBMS is tightly MS-UF-
secure against algebraic adversaries.

Theorem 7.1 [DL→ HBMS, AGM] Let G be a group of prime order p with generator g. Let MS
be the HBMS[G, g] scheme. Let Aalg

ms be an algebraic adversary for game Gms-uf
MS of Figure 5. Assume

the execution of game Gms-uf
MS with Ams has at most q1, q2 distinct queries to H1,H2, respectively.

Then we can construct an adversary Adl for game DLG,g (shown explicitly in Figure 26) such that

Advms-uf
MS (Aalg

ms) ≤ Advdl
G,g(Adl) + (q1 + 1)q2

p
. (7)

The running time of Adl is about that of the execution of game Gms-uf
MS with Aalg

ms .

Above, a reduction is given directly from DL, and there is no multiplicative loss. As before,
assuming qs ≤ q ≤ t ≤ p and the generic hardness of DL (advantage of t-time adversary to be at
most t2/p), we derive that UBms-uf

MS (t, q, qs, p) ≤ t2/p, as shown in Fig. 2.
We give the highlevel proof sketch here and defer the full proof to Appendix I. Let Ams be

the algebraic adversary against HBMS. Our reduction adversary Adl sets its own target point X
(which it needs to obtain the discrete log of) as the target public key for Ams. In order to run Ams,
our adversary Adl needs to be able to simulate oracles NS,Sign1,Sign2 (oracles representing the
honest signer) as well as random oracles H0,H1,H2. We first tackle the problem of simulating the
honest signer without knowledge of the corresponding secret key. This is done by programming of
random oracle H0. Suppose for pk,m, we set H0((pk,m)) to be h = gαpkβ for some α, β 6= 0 ∈ Zp
(whose exact distribution will be specified later). When the adversary interacts with the honest
signer, the honest signer must first provide some commitment T ∈ G (in the output of NS), then
later produce z, s ∈ Zp (in the output of Sign1) such that

gzhs = T · pkc , (8)
where c ∈ Zp is some challenge value (that is derived using the random oracle and the responses
of the adversary). To do this, our adversary set commitment T = gahb for a, b←$ Zp. It shall be
convenient to express pk in terms of g and h as well. Note that as long as β 6= 0, pk = h(β−1)g−α(β−1).
Since both T and pk are known to be of the form g?h? (where ? denotes some element of Zp), so is
the group element T ·pkc (for any known value of c). Hence, the right-hand side of Equation (8) is
of the form gzhs for some values z and s that our adversary can compute, and our adversary can
return them as response in the second round. Above, we noted that this works as long as β 6= 0.
To guarantee this, we sample α←$ Zp and β←$ Z∗p in H0. It remains to check that such way of
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simulating the honest signer is indistinguishable from the behavior of an honest signer holding the
secrete key and executing the protocol. Roughly, this is because in both cases, the triple (T, z, s)
is uniformly distributed over G× Z2

p, subjected to the condition that Equation (8) holds.
Now, our adversary Adl can move onto turning a forgery from Ams into a discrete logarithm for

target point X. Suppose adversary Ams returns forgery (pk,m, (T, s, z)). Then,
gzhs = T · apkc , (9)

where apk =
∏|pk|
i=1 pk[i]H2((i,pk)) and c = H1((T, apk,m)). Since Ams is algebraic, our adversary

Adl can rewrite Equation (9) to the form gαg = XαX , which allows us to compute the discrete
log of X as αgα−1

x mod p, as long as αX is not zero. The full proof upperbounds the probability
that αX = 0 to be at most q1q2/p. Outside of this bad event, our adversary Adl will successfully
compute the value of DLG,g(X) from a valid forgery.
Standard Model Security of HBMS. We reduce the security of HBMS to the hardness of
XIDL, with factor qs loss. For applications, the number of signing queries qs is much less than
adversarial hash function evaluations. As a result, even though our reduction here is non-tight, the
reduction loss is smaller compared to previous results for BN, MuSig or other two round schemes
(cf. Figure 1 and 2), at the expense of assuming the hardness of XIDL. Interestingly, due to
Theorem 6.2, our results also state that HBMS is secure as long as MuSig is (via the reduction chain
MuSig→ XIDL→ HBMS), and this reduction again only losses a factor of qs in the advantage.

Theorem 7.2 [XIDL→ HBMS, Standard Model] Let G be a group of prime order p with generator
g. Let MS be the HBMS[G, g] scheme given in Fig. 9. Let Ams be an adversary for game Gms-uf

MS of
Figure 5. Assume the execution of game Gms-uf

MS with Ams has at most q0, q1, q2, qs distinct queries
to H0,H1,H2,NS, respectively. Then we can construct an adversary Axidl for game Gmxidl

G,g,q2,q1
(shown explicitly in Figure 28) such that

Advms-uf
MS (Ams) ≤ e(qs + 1) ·Advxidl

G,g,q2,q1(Axidl) + q1q2
p

, (10)

where e is the base of the natural logarithm. Adversary Axidl makes q2 queries to NwTar and q1
queries to Ch. The running time of Axidl is about that of the execution of game Gms-uf

MS with Ams.

Concretely, if we assume that XIDL is quantitatively as hard as DL, then against any adversary
with running time t, making q evaluations of the random oracle and making at most qs signing
queries, HBMS has security (qst

2 + q2)/p ≈ qst
2/p.

We sketch the highlevel proof here and give the full proof in Appendix J. Our adversary receives
the target point X from the XIDL game and sets it as the target public key for adversary Ams.
As before, in order to run Ams, we need to simulate oracles NwTar,Sign1,Sign2 as well as
H0,H1,H2. Recall that in the AGM proof, we can simulate the honest signer for pk,m if we set
H0((pk,m)) = gαhβ. However, this way of programming H0 does not facilitate in turning a forgery
into a break for XIDL. Instead, we would like to program H0((pk,m)) = gα for the forgery pk,m.
To do this, we use a technique of Coron [12], which programs H0((pk,m)) randomly in one of
these two ways depending on a biased coin flip (with probability ρ of giving 1). The reduction only
succeeds if correct “guesses” are made. Specifically, we need that for every pk,m that is queried
to the honest signer (in NS) then H0((pk,m)) must have been programmed to be gαpkβ (for some
α and β), and for the forgery pk,m, it must be that H0((pk,m)) = gα (for some α). We can then
optimize for the value of ρ, resulting in a multiplicative loss of e(1 + qs).

Suppose adversaryAms returns a forgery (pk,m, (T, s, z)) where we have previously programmed
H0((pk,m)) = gα. The verification equation say that gzhs = T · apkc. Since h is just a power of g,
the left-hand side of the verification equation is also a known power of g (specifically gz+α·s). This
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means that our adversaryAxidl can proceed exactly as the reduction for MuSig. In particular, for the
j-th query of H2((k,pk)) where pk[k] = X, the adversary first computes S ←

∏
i 6=k pk[i]H2((i,pk)),

then obtains ej ←$ NwTar(S) before returning ej as the response for the query. We remark that
this particular query of H2 have created an aggregate public key apk =

∏|pk|
i=1 pk[i]H2((i,pk)) = S ·Xej ,

which is also the value of Tj that is recorded in the game Gmxidl
G,g,q2,q1 . For each i-th query of

H1((T, apk,m)), the adversary first finds the index jsel of the H2-query that corresponds to the input
apk, then obtains ci←$ Ch(jsel, T ) before returning ci as the response for the query. If the eventual
forgery is given for these two particular queries to H1 and H2, meaning forgery is pk,m, (T, s, z),
then the verification equation of the signature scheme says that gz+α·s = T · apkH1((T,apk,m)) (if we
programmed H0((pk,m)) to be gα). Hence, our adversary Axidl can simply return (i, z + α · s) to
break XIDL, as long as the forgery provided by Ams is valid and we have made the right guesses
in programming H0.
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A Security bounds of multi-signature schemes

We survey previous results on discrete-log-based multi-signature schemes, with a focus on their re-
duction loss. We restate these results in the same notation and framework to facilitate comparisons.
We have used this to obtain the estimates in Figures 1 and 2.

For the rest of the section, fix a group G of prime order p that shall be used by each of the
schemes of interest. Additionally, we assume that we fix adversaries Ams attacking each multi-
signature scheme of interest, with running time t (this is the total execution time of Gms-uf

MS (Ams)
and includes the running time of all oracles), making q queries to the random oracle, qs queries to
NS involving maximum of N -signers while achieving success advantage of ε. For convenience, we
let qT = 1 + q + qs.
BN. Bellare and Neven [6] gave a 3-round MS scheme that is based on the DL problem. In
particular, they showed that given an MS-UF adversary A, there exists DL-adversary with running
time t′ achieving success advantage ε′:

ε′ ≥ ε2

q + qs
− 2q + 16N2qs

2` − 8Nqs
p

, (11)

t′ ≈ 2t , (12)
where ` is a parameter, describing the output lengths of the random oracle used for commitments.
MuSig. BDN [10] and MPSW [24] gave a 3-round MS scheme that adds key aggregation on-top
of BN. For security, BDN showed [10][Theorem 4] that given an MS-UF adversary A, there exists
DL-adversary with running time t′ achieving success advantage ε′ where

ε′ = ε− δ
64 , (13)
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t′ = 512 · t · q2
T(ε− δ)−1 ln−2(64/(ε− δ)) , (14)

δ = 4NqT
p

, (15)

as long as p > 8q/ε. MPSW gave a tighter result by two direct applications of the forking lemma.
In particular, they showed that [24][Theorem 1] given an MS-UF adversary Ams, there exists DL-
adversary with running time t′ achieving success advantage ε′ where

ε′ = ε4

q3
T
− 16qs(q +N · qs)

p
− 16(q +Nqs)2 + 3

2` , (16)

t′ ≈ 4t . (17)

mBCJ. DEFKLNS [14] gave a 2-round MS scheme mBCJ. For security, they showed that given an
MS-UF adversary A, there exists DL-adversary with running time t′ achieving success advantage
ε′ where

ε′ = ε

8e(qs + 1) , (18)

t′ = t · 64(N + 1)2qT(qs + 1)ε−1 ln−1(8e(N + 1)(qs + 1)/ε) , (19)
as long as p > 64e(N + 1)qT(qs + 1)/ε.

MuSig-DN. NRSW [27] gave a 2-round MS scheme that has deterministic signing. For security,
their result [27][Theorem 1] roughly translates to: given an an adversary attack MuSig-DN, there
exists OMDL adversary attacking DL with success advantage approximately

ε′ ≥
(
ε− qsδ −

q2
T

2λ−2 −
2

2λ/4

)4

q−3
T , (20)

t′ ≈ 4t , (21)
where λ is a parameter of the scheme and δ is a small constant associated with the group.

MuSig2. NRS [26] gave a 2-round MS scheme, parameterized by ν. For ν ≥ 4, they showed that
if there exists A attacking their scheme, they [26][Theorem 1] can build νqs-OMDL adversary with
running time t′ achieving success advantage ε′ where

ε′ ≥ ε4

m3 −
11
p
− 43m4

(p− 1)ν−3 , (22)

t′ ≈ 4t , (23)

m = (ν − 1)(q + qs) + 1 . (24)
For ν = 2, they give a tighter proof against algebraic adversaries. In particular, given an algebraic
adversary A attacking their scheme for ν = 2, they build adversary B against qs-OMDL that runs
in time t′ to achieve success advantage ε′ with

ε′ ≥ ε− 14q
3

p
,

t′ ≈ t+O(q3) .

DWMS. Alper and Burdges [1] gave a 2-round MS scheme DWMS similar MuSig2 that is proved
secure from OMDL in AGM using an intermediate problem called the 2-entwined sum problem.
Combining Theorem 1, 2 and 3 of [1], we the following reduction for DWMS: given an algebraic
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Game Gm0

Fin:
1 x←$ IG
2 c1, . . . , cq←$ C

3 (I, σ)←$A(x, c1, . . . , cq)
4 Return (I > 0)

Game Gm1

Fin:
1 x←$ IG
2 ρ←$ rand(A) ; c1, . . . , cq←$ C

3 (I, σ)←$A(x, c1, . . . , cq)
4 If (I = 0) then return (0, ε, ε)
5 c′I , . . . , c

′
q←$ C

6 (I ′, σ′)←$A(x, c1, . . . , cI−1, c
′
I , . . . , c

′
q)

7 Return ((I = I ′) and (cI 6= c′I))

Figure 10: Games referred to in Lemma B.1. Both games have just one procedure, Fin, which does
not take any input. These games run an algorithm A internally.

MS-UF adversary Aalg
ms , an qs-OMDL adversary can be constructed with advantage ε′

ε′ ≥ ε− qsq

p
− q
√
p
.

Unfortunately, their theorems do not formally state the running time overhead of their reductions.
Upon closer inspection however, their reductions do not rewind adversaries and only incur simu-
lation overhead of games. Hence, we have t′ = O(t), meaning there is no multiplicative factors
involving either t, q, or qs.

B Forking lemma

We recall the general forking lemma of [6]. We restate it using the games of Figure 10. Each game
has just one procedure, Fin, which takes no inputs. The games are parameterized by an algorithm
A that is executed inside the game, and also by an algorithm IG called an input generator.

Lemma B.1 [6] Let q ≥ 1 be an integer. Let C be a set of size |C| ≥ 2. Let A be a randomized
algorithm that on inputs x, c1, . . . , cq returns a pair, the first element of which is an integer in the
range 0, . . . , q, and the second element of which we refer to as a side output. Let IG be a randomized
algorithm that, as above, we call the input generator. Consider Gm0 (called the single run) and
Gm1 (called the forked run) given in Fig. 10. Then:

Pr[Gm0] ≤ q

|C|
+
√
q · Pr[Gm1] . (25)

C Proof of Theorem 3.1

Proof of Theorem 3.1: Consider game Gm0 given in the left panel of Fig. 11. By construction,
it is the game Gmidl

G,g,q(A
alg
idl ). Next, consider game Gm1, where the winning condition has been

changed to checking that (x = x′), where x′ is either computed on line 8 or 9 depending on whether
w = 0. We claim that regardless of whether w = 0, game Gm1 returns true as long as Gm0 does.
Assume Gm0 returns true, then b is set to true. If w = 0, then the game Gm1 sets x′ to x at line
8, so Gm1 alsot returns true. If w 6= 0, then the game Gm1 computes x′ as per line 12 and 13.
Observe that if b is true, then

gz = RI ·XcI .
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 (I, z)←$ACh
idl(X)

3 b← (gz = RI ·XcI )
4 Gm0: Return b

5 w ← (rI,2 + cI)
6 If (w = 0) then bad← true
7 Gm1:
8 If b then x′ ← x

9 Else x′ ← ⊥
10 Gm2: x′←$ Zp

11 Else
12 v ← (z − rI,1)
13 x′ ← v · w−1 mod p

14 Gm1,Gm2: Return (x = x′)

Ch(R, (r1, r2)):
15 i← i+ 1 ; Ri ← R

16 ri,1 ← r1 ; ri,2 ← r2

17 ci←$ Zp ; Return ci

Adversary Adl(X):

1 (I, z)←$ANwTar,Ch
idl (X)

2 w ← (rI,2 + cI)
3 If (w = 0) then x′←$ Zp

4 Else
5 v ← (z − rI,1)
6 x′ ← v · w−1 mod p

7 Return x′

Ch(R, (r1, r2)):

8 i← i+ 1 ; Ri ← R

9 ri,1 ← r1 ; ri,2 ← r2

10 ci←$ Zp ; Return ci

Figure 11: Games Gm0,Gm1,Gm2 and adversary Adl the proof of Theorem 3.1.

Expanding this equation using the fact that Ri = gri,1Xri,1 , we get
gz = grI,1XrI,2 ·XcI ,

which means that
gx = X = g(z−rI,1)w−1 = gx

′
.

So game Gm1 must return true in this case as well. Hence
Pr[Gm0] = Pr[Gm1] . (26)

Next, consider game Gm2, which sets x′ differently if w = 0. We have
Pr[Gm1] ≤ Pr[Gm2] + Pr[Gm2 sets bad]

≤ Pr[Gm2] + q

p
.

(27)

Above, the calculation of Pr[Gm2 sets bad] is justified as follows. For each Ch query, there is 1/p
chance that ri,2 + ci = 0, since ci is uniform and independent of ri,2. Hence, the probability that
there is a choice of i to make w = ri,2 + ci zero is at most q/p using the union bound. Finally, we
construct adversary Adl, given in Fig. 11 such that

Pr[Gm2] = Advdl
G,g(Adl) . (28)

This is straight-forward, as Adl simulates Ch and computes x′ exactly as Gm2.
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 ρ←$ rand(Aidl) ; c1, . . . , cq←$ Zp

3 (I, z)← ACh1
idl (X; ρ)

4 b← (gz = RI · Y cI
I )

5 If not b then I ← 0
6 Gm0: Return (I > 0)
7 For i = 1, . . . , I − 1 do c′i ← ci

8 c′I , c
′
I+1, . . . , c

′
q←$ Zp

9 i← 0 ; (I ′, z′)←$ACh2
idl (X; ρ)

10 b′ ← (gz
′

= RI′ · Y cI′
I′ )

11 If not b′ then I ′ ← 0
12 Gm1:
13 Return ((I = I ′ > 0) and (cI 6= c′I))
14 Gm2:
15 If ((I 6= I ′) or (cI = c′I)) then
16 Return ⊥
17 w ← (cI − c′I)−1(z − z′) mod p

18 Return (gw = X)

Ch1(R):

11 i← i+ 1 ; Ri ← R

12 Return ci

Ch2(R):

13 i← i+ 1 ; R′i ← R

14 Return c′i

Adversary Adl(X):

1 c1, . . . , cq←$ Zp ; ρ←$ rand(Aidl)
2 (I, z)←$ACh1

idl (X; ρ)
3 b← (gz = RI · Y cI

I )
4 If not b′ then Return ⊥
5 For i = 1, . . . , I − 1 do c′i ← ci

6 c′I , c
′
I+1, . . . , c

′
q2 ←$ Zp

7 i← 0 ; (I ′, z′)←$ACh2
idl (X; ρ)

8 b′ ← (gz
′

= Ri′ · Y
ci′
i′ )

9 If not b′ then Return ⊥
10 If ((I 6= I ′) or (cI = c′I)) then
11 Return ⊥
12 w ← (cI − c′I)−1(z − z′) mod p

13 Return w

Ch1(R):

14 i← i+ 1 ; Ri ← R

15 Return ci

Ch2(R):

16 i← i+ 1 ; R′i ← R

17 Return c′i

Figure 12: Games Gm0,Gm1,Gm2 and adversary Adl for proof of Theorem 3.2. ρ←$ rand(Aidl)
denotes sampling the random coins of Aidl and assigning it to ρ.

D Proof of Theorem 3.2

Proof of Theorem 3.2: Consider games Gm0 given in Fig. 12. Game Gm0 pre-samples all the
c1, . . . , cq values at line 2, but the game behaves otherwise exactly as Gmidl

G,g,q(Aidl). We define
Pr[Gm0] to be the probablity that the first component of the return value of Gm0 is non-zero.
Hence,

Pr[Gm0] = Advidl
G,g,q(Aidl) . (29)

Next, consider Gm1, which executes line 6 to 13 in addition to those executed by game Gm0. Similar
to Gm0, we define Pr[Gm1] to be the probablity that the first component of the return value of Gm1
is non-zero. We have constructed Gm1 so that it is a forked run of Gm0 (with c1, . . . , cq viewed
as inputs) as defined by the forking lemma [6]. Specifically, line 8 to 10 freshly samples challenges
c′I , . . . , c

′
q2 after the selected forgery index I before invoking Aidl with these values programmed
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into Ch2. By the forking lemma, we have

Pr[Gm0] ≤ q2
p

+
√
q2 · Pr[Gm1] . (30)

We now move onto game Gm2, which rewrites the winning condition of Gm1 into line 15 to 18. We
claim that game Gm2 returns true as long as game Gm1 returns true. This is because if both flags
b and b′ are ture, then

gz = RiX
ci

gz
′ = Ri′X

ci′ ,

where i = i′ > 0. Notice that we also have Ri = Ri′ , this is because the two runs of Aidl has not
diverged when Ri and Ri′ are supplied (since the first different value of ci′ is only supplied afte Ri′
is given). Hence, putting the two equation together, we have

XcI−c′I = gz−z
′
,

which implies the the computed value of w = (cI − c′I)−1(z− z′) (line 17) is the correct discrete log
of X base g. As a result, Gm2 must return true as well, and

Pr[Gm2] ≥ Pr[Gm1] . (31)
Finally, we construct adversary Adl, given in Fig. 12, such that

Pr[Gm2] = Advdl
G,g(Adl) . (32)

Adversary Adl forwards its target point X to Aidl and simulates Gm2, starting from line 2 of Gm2
and ending at line 17 of Gm2, before outputting the computed value of w as the discrete log of
target point X. Putting the above equations together, we obtain the claim in the theorem.

E Proof of Theorem 3.3

Proof of Theorem 3.3: We recall the convention that representation of each of the group
elements S and R are additionally supplied when oracles NwTar and Ch are called. Specifically,
each of its NwTar queries must be of the form

NwTar(S, (s1, s2)) ,
such that S = gs1Xs2 . And each Ch query must be of the form

Ch(jsel, R, (r1, r2)) ,
such that R = gr1Xr2 .

Consider game Gm0 given in the left panel of Fig. 13. By construction, it is the game Gmxidl
G,g,q1,q2(Axidl).

Next, consider game Gm1, where the winning condition has been changed to checking that (x = x′),
where x′ is either computed on line 9 or 10 depending on whether w = 0. We claim that regardless
of the value of w, game Gm1 returns true as long as Gm0 does (Gm0 returns the boolean value b).
We check this by cases. First, if w = 0, then the games sets x′ to x if b is true, so Gm1 also returns
true. If w 6= 0, then observe that if b is true, then

gz = RI · (SJ ·XeJ )cI .
Expanding this equation using the fact that Ri = gri,1Xri,1 and Sj = gsj,1Xsj,2 , we get

gz = grI,1XrI,2 · (gsJ,1XsJ,2 ·XeJ )cI ,
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx

2 e1, . . . , eq1 ←$ Zp ; c1, . . . , cq2 ←$ Zp

3 (I, z)←$ANwTar,Ch
xidl (X)

4 b← (gz = RI · Y cI
I )

5 Gm0: Return b

6 w ← (rI,2 + (sI,2 + eJ) · cI)
7 If (w = 0) then bad← true
8 Gm1:
9 If b then x′ ← x

10 Else x′ ← ⊥
11 Gm2: x′←$ Zp

12 Else
13 v ← (z − rI,1 − sI,1 · c)
14 x′ ← v · w−1 mod p

15 Gm1,Gm2: Return (x = x′)

NwTar(S, (s1, s2)):
16 j ← j + 1 ; Sj ← S

17 sj,1 ← s1 ; sj,2 ← s2

18 ej ←$ Zp ; Tj ← Sj ·Xej

19 Return ej

Ch(jsel, R, (r1, r2)):
20 Requires 1 ≤ jsel ≤ j
21 i← i+ 1 ; Ri ← R

22 ri,1 ← r1 ; ri,2 ← r2

23 Yi ← Tjsel ; TJ[i]← jsel

24 ci←$ Zp ; Return ci

Adversary Adl(X):

1 (I, z)←$ANwTar,Ch
xidl (X)

2 J ← TJ[I]
3 w ← (r2 + s2 · eJ · cI)
4 If (w = 0) then x′←$ Zp

5 Else
6 v ← (z − rI,1 − sI,1 · c)
7 x′ ← v · w−1 mod p

8 Return x′

NwTar(S, (s1, s2)):

9 j ← j + 1 ; Sj ← S

10 sj,1 ← s1 ; sj,2 ← s2

11 ej ←$ Zp ; Tj ← Sj ·Xej

12 Return ej

Ch(jsel, R, (r1, r2)):

13 Requires 1 ≤ jsel ≤ j
14 i← i+ 1 ; Ri ← R

15 ri,1 ← r1 ; ri,2 ← r2

16 Yi ← Tjsel ; TJ[i]← jsel

17 ci←$ Zp ; Return ci

Figure 13: Games Gm0,Gm1,Gm2 and adversary Adl the proof of Theorem 3.3.

which means that
gx = X = g(z−rI,1−sJ1·cI)w−1 = gx

′
.

Hence
Pr[Gm0] = Pr[Gm1] . (33)

Next, consider game Gm2, which sets x′ differently if w = 0. We have
Pr[Gm1] ≤ Pr[Gm2] + Pr[Gm2 sets bad]

≤ Pr[Gm2] + q1 + q2
p

.
(34)

Above, the calculation of Pr[Gm2 sets bad] is justified as follows. First, the probability that sj,2 +
ej = 0 for any j is at most q1/p, since ej is uniform and independnet of sj,2. Second, assuming
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Game Gm0, Gm1, Gm2

Init:
1 x←$ Zp ; X ← gx ; ρ←$ rand(Axidl)
2 e1, . . . , eq1 ←$ Zp ; c1, . . . , cq2 ←$ Zp

3 (I, z)← ANwTar,Ch
xidl (X; ρ)

4 b← (gz = RI · Y cI
I )

5 If not b then I ← 0
6 Gm0: Return (I > 0)
7 For i = 1, . . . , I − 1 do c′i ← ci

8 i, j ← 0 ; c′I , c′I+1, . . . , c
′
q←$ Zp

9 (I ′, z′)←$ANwTar,ChSim
xidl (X; ρ)

10 b′ ← (gz
′

= RI′ · Y
c′

I′
I′ )

11 If not b′ then i′ ← 0
12 j ← TJ[I] ; j′ ← TJ[I ′]
13 Gm1:
14 Return ((I = I ′ > 0) and (cI 6= c′I))
15 Gm2:
16 If ((I 6= I ′) or (cI = c′I)) then
17 Return ⊥
18 w ← (cI − c′I)−1(z − z′) mod p

19 Return (gw = Tj)

NwTar(S):
20 j ← j + 1 ; Sj ← S ; Tj ← Sj ·Xej

21 Return ej

ChSimi(jsel, R): // i ∈ {1, 2}
22 i← i+ 1 ; Ri ← R

23 Yi ← Tjsel ; TJ[i]← jsel

24 ChSim1 : Return ci

25 ChSim2 : Return c′i

Adversary ACh
idl(X):

1 c1, . . . , cq2 ←$ Zp ; ρ←$ rand(Axidl)
2 (I, z)←$ANwTar1,ChSim1

xidl (X; ρ)
3 b← (gz = RI · Y cI

I )
4 If not b then Return ⊥
5 For i = 1, . . . , I − 1 do c′i ← ci

6 i, j ← 0 ; c′I , c′I+1, . . . , c
′
q←$ Zp

7 (I ′, z′)←$ANwTar2,ChSim2
xidl (X; ρ)

8 b′ ← (gz
′

= RI′ · Y cI′
I′ )

9 If not b′ then Return ⊥
10 If ((I 6= I ′) or (cI = c′I)) then
11 Return ⊥
12 j ← TJ[I] ; j′ ← TJ[I ′]
13 w ← (cI − c′I)−1(z − z′) mod p

14 Return (j, w)

NwTar1(S):

15 j ← j + 1 ; ej ←$ Ch(S) ; Sj ← S

16 Tj ← Sj ·Xej ; Return ej

NwTar2(S):

17 j ← j + 1
18 If not ej then ej ← Ch(S)
19 Return ej

ChSimi(jsel, R) // i ∈ {1, 2}:

20 i← i+ 1 ; Ri ← R

21 Yi ← Tjsel ; TJ[i]← jsel

22 ChSim1 : Return ci

23 ChSim2 : Return c′i

Figure 14: Games Gm0,Gm1,Gm2 and adversary Aidl for proof of Theorem 3.4.

sj,2 + ej 6= 0 for all j, then the probability that ri,2 + (sTJ[i],2 + eTJ[i]) · ci = 0 for some i is at most
q2/p, since ci is uniform and independent of ri,2. Finally, we construct adversary Adl, given in the
right panel of Fig. 13 such that

Pr[Gm2] = Advdl
G,g(Adl) . (35)

This is straight-forward, as Adl simulates NwTar,Ch and computes x′ exactly as Gm2.

F Proof of Theorem 3.4

Proof of Theorem 3.4: Consider games Gm0 given in Fig. 14. Game Gm0 pre-samples all the
ej and ci values at line 2 and 3, but the game behaves otherwise exactly as Gmxidl

G,g,q1,q2(Axidl). We
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define Pr[Gm0] to be the probablity that the first component of the return value of Gm0 is non-zero.
Hence,

Pr[Gm0] = Advxidl
G,g,q1,q2(Axidl) . (36)

Next, consider Gm1, which executes line 6 to 14 addition to those executed by game Gm0. Similar
to Gm0, we define Pr[Gm1] to be the probablity that the first component of the return value of Gm1
is non-zero. We have constructed Gm1 so that it is a forked run of Gm0 (with c1, . . . , cq2 viewed
as inputs) as defined by the forking lemma [6]. Specifically, line 8 to 10 freshly samples challenges
c′i, . . . , c

′
q2 after the selected forgery index i before invoking Axidl with these values reprogrammed

into Ch. We remark that the values of e1, . . . , eq1 , which are outputs of NwTar are not resampled
across the two runs of Axidl. By the forking lemma, we have

Pr[Gm0] ≤ q2
p

+
√
q2 · Pr[Gm1] . (37)

We now move onto game Gm2, which rewrites the winning condition of Gm1 into line 16 to 19. We
claim that game Gm2 returns true as long as game Gm1 returns true. This is because if both flags
b and b′ are ture, then

gz = RIY
cI
I

gz
′ = RI′Y

cI′
I′ ,

where I = I ′ > 0. Notice that we also have RI = RI′ , this is because the two runs of Axidl has not
diverged when RI and RI′ are supplied (since the first different value of c]iforge′ is only supplied
afte Ri′ is given). Via simila reasoning, YI = YI′ = TJ . Hence, putting the two equation toether,
we have

Y
ci−ci′
i = gz−z

′
,

which implies the the computed value of w (line 18) is the correct discrete log of TJ base g. As a
result, Gm2 must return true as well, and

Pr[Gm2] ≥ Pr[Gm1] . (38)
Finally, we construct adversary Aidl, given in Fig. 14, such that

Pr[Gm2] = Advidl
G,g,q1(Aidl) . (39)

Crucially, in the construction of Aidl, NwTar oracle need to be simulated differently for the two
runs of Axidl. In the first run, the oracle NwTar1 forwards the queries to Ch (that is given to
our reduction adversary from the game Gmidl

G,g,q1), while recording the responses e1, . . . , ej . Then,
in the second run, the oracle NwTar2 will return previously recorded values of e1, . . . , ej as long
as they are available, and only starts to forward queries when it runs out of previously recorded
ones. This is to simulate the behavior of Gm2, where there is one single fixed sequence of values
e1, . . . , eq1 , used by the oracle NwTar. Putting the above equations together, we obtain the claim
in the theorem.

G Proof of Theorem 5.1

Proof of Theorem 5.1: The proof uses a game sequence. Our games will implement H0,H1 with
lazy sampling, maintaining tables HF0,HF1 for this purpose. They will provide oracles Sign1,Sign2
for the first two rounds, but omit Sign3, since this round returns to the adversary only a quantity
it could itself compute already. In Fin (for example Figure 15) we assume the query is non-trivial,
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Init: // Games Gm0–Gm7
1 (pk, sk)←$ MS.Kg ; Return pk

NS(k,pk,m): // Games Gm0 , Gm1
2 u← u+ 1 ; ku ← k ; pk[1]← pk ; pku ← pk ; mu ← m ; nu ← |pk|
3 CommitStageu ← true ; ru,k←$ Zp ; Ru,k ← gru,k ; tu,k←$ {0, 1}`

4 If ( ∃u′ < u : Ru,ku = Ru′,ku′ ) then bad← true ; tu,ku ← tu′,ku′

5 If (HF0[(k,Ru,1)] 6= ⊥) then bad← true ; tu,k ← HF0[(k,Ru,k)]
6 Return tu,k

Sign0(s, t): // Games Gm0,Gm1
7 k ← ks ; t[k]← ts,k ; ts ← t ; CommitStages ← false
8 HF0[(k,Rs,k)]← ts,k ; Return Rs,k

Sign1(s,R): // Games Gm0,Gm1,Gm2
9 k ← ks ; R[k]← Rs,k

10 For i = 1, . . . , ns do yi ← H0((i,R[i]))
11 If ( ∃ i : yi 6= ts[i] ) then Return ⊥
12 Rs ←

∏ns

i=1 R[i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

13 Return zs,k

H0(x): // Games Gm0 , Gm1
14 If (HF0[x] 6= ⊥) then Return HF0[x]
15 HF0[x]←$ {0, 1}`

16 If (∃u′ : x = (ku′ , Ru′,ku′ ) and CommitStageu′ ) then
17 bad← true ; HF0[x]← tu′,ku′

18 Return HF0[x]

H1(x): // Games Gm0–Gm7
19 If (HF1[x] 6= ⊥) then Return HF1[x]
20 HF1[x]←$ Zp ; Return HF1[x]

Fin(pk,m, (R, z)): // Games Gm0–Gm7
21 n← |pk|
22 For i = 1, . . . , n do ci ← H1((i, R,pk,m))
23 X ←

∏n

i=1 pk[i]ci ; Return (gz = RX)

Figure 15: Games Gm0,Gm1 for proof of Theorem 5.1. Some procedures will be included in later
games, as indicated. A box around the name of a game following an oracle means the boxed code
in that oracle is included in the game.
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meaning lines 6,7 of Figure 5 return true, and these lines are thus omitted. We start with games
Gm0,Gm1 in Figure 15. Game Gm0 includes the boxed code, and we claim that

Advms-uf
MS (A) = Pr[Gm0(A)] . (40)

Let us explain. We wish to move to a game where signing queries are answered without using the
secret key sk. Naturally, we expect, for this, to use the zero-knowledge property of the Schnorr
scheme. But certain obstacles must be removed before we can do this, and this will take a few
steps. The first obstacle we address is that the BN-commitment tu,k = H0((k,Ru,k)) may leak
information about Ru,k. Rather than define tu,k in this way, games Gm0,Gm1 accordingly pick it
at random at line 3. The reason for the boxed code at line 4 is that, under the “true” assignment
tu,k = H0((k,Ru,k)), having Ru,ku = Ru′,ku′ would imply tu,ku = tu′,ku′ . At line 8, now that the
BN-commitments t of all players are known, the games ensure that tu,k indeed equals H0((k,Ru,k)).
This is consistent with the real game only if the hash function was not already defined at this point,
captured by setting bad at line 17. The boolean CommitStage ensures that bad is only set prior
to the release of Rs,k, since the adversary can set it with probability one if it knows Rs,k. This
justifies Eq. (40).

Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [8]
Pr[Gm0(A)] ≤ Pr[Gm1(A)] + Pr[Gm1(A) sets bad] .

The probability of setting bad at line 4 is at most (0 + 1 + · · ·+ qs − 1)/p, and the probabilities of
setting bad at line 5 and line 17 are at most qsq0/p, so

Pr[Gm1(A) sets bad] ≤ qs(qs − 1)
2p + 2qsq0

p
= qs(4q0 + qs − 1)

2p .

Game Gm2 changes the NS,Sign0,H0 oracles as shown in Figure 16, maintaining the other oracles
of Gm1 from Figure 15. It drops redundant code, which allows it to move the choice of Rs,k to
line 28. At line 40, it also introduces a table HI to maintain an inverse of the hash function, but
does not use this. We have

Pr[Gm1(A)] = Pr[Gm2(A)] .
Game Gm3 (oracles shown across Figures 16 and 15) aims to figure out the Rs,j-values of parties
j 6= k before having to supply Rs,k, because we will later need these to program H1 values. It does
this by “inverting” the BN-commitments, meaning at line 30 it seeks inputs to H0 that result in the
BN-commitments in t. If these cannot be found, then random values are chosen instead at line 31.
(Not finding the inverses is not yet a bad event. It can happen with high probability. It becomes
a bad event only at line 36 when the BN-commitments are verified.) The computation of t at that
line is only to ensure that H0 has been called; this variable will not be used. These steps do not
change what the oracles return compared to Gm2, so we have

Pr[Gm2(A)] = Pr[Gm3(A)] .
Moving to game Gm4, the change is only at line 36, which now includes the boxed code. The hope
here is that the R∗s obtained at lines 30,31 is correct with high probability. The boxed code ensures
that in Gm4, it is always correct. Since Gm3,Gm4 are identical-until-bad we have

Pr[Gm3(A)] ≤ Pr[Gm4(A)] + Pr[Gm3(A) sets bad] .
Line 36 can only set bad if yi = ts[i] for all i, due to line 35. So it is set only if there is a collision
in H0-values, or no query hashing to ts[i] was made prior to the latter being provided, but is made

36



NS(k,pk,m): // Games Gm2–Gm7
24 u← u+ 1 ; ku ← k ; pk[1]← pk ; pku ← pk ; mu ← m ; nu ← |pk|
25 tu,1←$ {0, 1}` ; Return tu,1

Sign0(s, t): // Game Gm2
26 t[1]← ts,1 ; ts ← t ; rs,1←$ Zp ; Rs,1 ← grs,1 ; HF0[(1, Rs,1)]← ts,1

27 Return Rs,1

Sign0(s, t): // Games Gm3,Gm4
28 k ← ks ; t[k]← ts,k ; ts ← t ; rs,k←$ Zp ; Rs,k ← grs,1 ; HF0[(k,Rs,k)]← ts,k

29 For i = 1, . . . , ns do
30 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
31 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
32 Return Rs,k

Sign1(s,R): // Games Gm3, Gm4
33 k ← ks ; R[k]← Rs,k

34 For i = 1, . . . , ns do yi ← H0((i,R[i]))
35 If ( ∃ i : yi 6= ts[i] ) then Return ⊥
36 If (R 6= R∗s) then bad← true ; R← R∗s

37 Rs ←
∏ns

i=1 R[i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

38 Return zs,k

H0(x): // Games Gm2–Gm7
39 If (HF0[x] 6= ⊥) then Return HF0[x]
40 HF0[x]←$ {0, 1}` ; (i, R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

Figure 16: Games for proof of Theorem 5.1.

later. Thus

Pr[Gm3(A) sets bad] ≤ q2
0 + nq0

2` . (41)

In game Gm4, the R queried to Sign1 is the same as the R∗ determined in Sign0, allowing game
Gm5 (Figure 17) to move line 37 into Sign0 as line 45 and to simplify Sign1. We have

Pr[Gm4(A)] = Pr[Gm5(A)] .
Now that Rs is determined prior to the release of Rs,ks , it becomes possible to successfully program
H1 via the zero-knowledge simulation. Game Gm6 of Figure 17 does this, setting bad at line 56 if
the programming was precluded by the hash value already being defined, and including the boxed
code to correct. We have

Pr[Gm5(A)] = Pr[Gm6(A)] .
Games Gm6,Gm7 (Figure 17) are identical-until-bad, so

Pr[Gm6(A)] ≤ Pr[Gm7(A)] + Pr[Gm7(A) sets bad] . (42)
When line 56 is executed, the adversary has as yet no information about Rs, which means

Pr[Gm7(A) sets bad] ≤ qsq1
p

. (43)
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Sign0(s, t): // Game Gm5
41 k ← ks ; t[k]← ts,k ; ts ← t ; rs,k←$ Zp ; Rs,k ← grs,k ; HF0[(k,Rs,k)]← ts,k

42 For i = 1, . . . , ns do
43 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
44 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
45 Rs ←

∏ns

i=1 R∗s [i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

46 Return Rs,k

Sign1(s,R): // Game Gm5,Gm6,Gm7
47 k ← ks ; R[k]← Rs,k

48 For i = 1, . . . , ns do yi ← H0((i,R[i]))
49 If ( ∃ i : yi 6= ts[i] ) then Return ⊥ else Return zs,k

Sign0(s, t): // Game Gm6 , Gm7
50 k ← ks ; t[k]← ts,k ; ts ← t

51 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k ← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k

52 For i = 1, . . . , ns do
53 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
54 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
55 Rs ←

∏ns

i=1 R∗s [i]
56 If (HF1((k,Rs,pks,ms)) 6= ⊥) then bad← true ; cs,k ← HF1[(k,Rs,pks,ms)]
57 HF1[(k,Rs,pks,ms)]← cs,k ; Return Rs,k

Figure 17: Games for proof of Theorem 5.1.

We now build an adversary Aidl so that
Advidl

G,g,q(Aidl) ≥ Pr[Gm7(Ams)] . (44)
We specify Aidl in Figure 18. It forwards the public key pk to Ams. Simulating signatures without
knowing the secret key, as Aidl needs to do, is now easy because the oracles of games Gm7 already
did this, and Aidl can just use the same code. Line 17 to 19 programs the challenge ck of the target
public key by first deriving commitment Rk, which is then submitted to Ch to derive ck. Since
Gmidl

G,g,q game also samples the challenge uniformly at random, this does not change the behavior
of H1. However, if a forgery (pk,m, (R, z)), then it must be that

gz = R ·
|pk|∏
i=1

pk[i]H1(i,R,pk,m) = Rj,k · pkcj,k .

So Aidl wins game Gmidl
G,g,q. Eq. (3) is obtained by putting the above all together.

H Proof of Theorem 6.1

Let G be a group of prime order p with generator g. Let MS = MuSig[G, g, `] be the associated
MuSig multi-signature scheme. Let Ams be an adversary for game Gms-uf

MS of Figure 5. We shall
fix these quantities for the rest of the proof. The first lemma relates the advantage of Ams against
Gms-uf

MS to a simplied game Gmsimp (given in Fig. 19).
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Adversary ACh
idl(pk):

1 (pk,m, (R, z))←$ANS,Sign0,Sign1,H0,H1 (pk) ; Return (TJ[R], z)

NS(k,pk,m):

2 u← u+ 1 ; ku ← k ; pk[1]← pk ; pku ← pk ; mu ← m ; nu ← |pk|
3 tu,k←$ {0, 1}` ; Return tu,k

Sign0(s, t):

4 k ← ks ; t[k]← ts,k ; ts ← t

5 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k ← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k

6 For i = 1, . . . , ns do
7 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
8 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
9 Rs ←

∏ns

i=1 R∗s [i] ; HF1[(k,Rs,pks,ms)]← cs,k ; Return Rs,k

Sign1(s,R):

10 k ← ks ; R[k]← Rs,k

11 For i = 1, . . . , ns do yi ← H0((i,R[i]))
12 If ( ∃ i : yi 6= ts[i] ) then Return ⊥ else Return zs,k

H0(x):

13 If (HF0[x] 6= ⊥) then Return HF0[x]
14 HF0[x]←$ {0, 1}` ; (i, R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

H1(x):

15 If (HF1[x] 6= ⊥) then Return HF1[x]
16 (k,R,pk,m)← x ; HF1[x]←$ Zp

17 If (pk[k] = pk) then
18 j ← j + 1 ; For i = 2, . . . , |pk| do ci ← H1((i, R,pk,m))
19 Rj,k ← R ·

∏
i 6=k pk[i]ci ; HF1[x]← ck ← Ch(Rj,k) ; TJ[R]← j

20 Return HF1[x]

Figure 18: Adversary Aidl for Theorem 5.1.

Lemma H.1 Assume the execution of game Gms-uf
MS with Ams has at most q0, q1, q2, qs distinct

queries to H0,H1,H2,NS, respectively, and the number of parties (length of verification-key vector)
in queries to NS and Fin is at most n. Let α = qs(4q0 + 2q1 + qs) + 2q1q2 and β = q0(q0 + n).
Then,

Advms-uf
MS (Ams) ≤ Pr[Gmsimp(Ams)] + α

2p + β

2` . (45)

The second lemma constructs the reduction adversary against Gmxidl
G,g,q2,q1 .

Lemma H.2 Assume the execution of game Gms-uf
MS with Ams has at most q0, q1, q2, qs distinct

queries to H0,H1,H2,NS, respectively. We construct an adversary Axidl for game Gmxidl
G,g,q2,q1

(shown explicitly in Figure 24) such that
Pr[Gmsimp(Ams)] ≤ Advxidl

G,g,q2,q1(Axidl) . (46)
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Init:
1 (pk, sk)←$ MS.Kg ; Return pk

NS(k,pk,m):
2 u← u+ 1 ; ku ← k ; pk[1]← pk ; pku ← pk ; mu ← m ; nu ← |pk|
3 tu,1←$ {0, 1}` ; Return tu,1

Sign1(s,R):
4 k ← ks ; R[k]← Rs,k

5 For i = 1, . . . , ns do yi ← H0((i,R[i]))
6 If ( ∃ i : yi 6= ts[i] ) then Return ⊥ else Return zs,k

Sign0(s, t):
7 k ← ks ; t[k]← ts,k ; ts ← t

8 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k ← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k

9 For i = 1, . . . , ns do
10 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
11 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
12 Rs ←

∏ns

i=1 R∗s [i]
13 HF1[(k,Rs,pks,ms)]← cs,k ; Return Rs,k

H0(x):
14 If (HF0[x] 6= ⊥) then Return HF0[x]
15 HF0[x]←$ {0, 1}` ; (i, R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

H1(x):
16 If (HF1[x] 6= ⊥) then Return HF1[x]
17 (R, apk,m)← x ; TV[apk]← TV[apk] ∪ {x}
18 HF1[x]←$ Zp ; Return HF1[x]

H2(x):
19 If (HF2[x] 6= ⊥) then Return HF2[x]
20 (k,pk)← x ; For i = 1, . . . , |pk| do HF2[(i,pk)]← ei←$ Zp

21 apk ←
∏|pk|
i=1 pk[i]ei ; For y ∈ TV[apk] do HF1[y]← ⊥

22 Return HF2[x]

Fin(pk,m, (R, z)):
23 For i = 1, . . . , |pk| do ci ← H1((i, R,pk,m)) ; ei ← H2((i,pk))
24 X ←

∏|pk|
i=1 pk[i]ei·ci ; Return (gz = RX)

Figure 19: Game Gmsimp for proof of Theorem 6.1.

Proof of Lemma H.1:

The proof uses a game sequence. Our games will implement H0,H1,H2 with lazy sampling, main-
taining tables HF0,HF1,HF2 for this purpose. They will provide oracles Sign0,Sign1 while omit-
ting Sign2, since this round returns to the adversary only a quantity it could itself compute already.
In Fin (for example Figure 20) we assume the query is non-trivial, meaning lines 6,7 of Figure 5
return true, and these lines are thus omitted. We start with games Gm0,Gm1 in Figure 20. Game
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Init: // Games Gm0–Gm9
1 (pk, sk)←$ MS.Kg ; Return pk

NS(k,pk,m): // Games Gm0 , Gm1
2 u← u+ 1 ; ku ← k ; pk[k]← pk ; pku ← pk

3 mu ← m ; nu ← |pk| ; CommitStageu ← true
4 ru,k←$ Zp ; Ru,k ← gru,k ; tu,k←$ {0, 1}`

5 If ( ∃u′ < u : Ru,ku = Ru′,ku′ ) then bad← true ; tu,ku ← tu′,ku′

6 If (HF0[(k,Ru,k)] 6= ⊥) then bad← true ; tu,k ← HF0[(k,Ru,k)]
7 Return tu,k

Sign0(s, t): // Games Gm0,Gm1
8 t[k]← ts,k ; ts ← t ; CommitStages ← false
9 HF0[(k,Rs,k)]← ts,k ; Return Rs,k

Sign1(s,R): // Games Gm0,Gm1,Gm2
10 R[k]← Rs,k

11 For i = 1, . . . , ns do yi ← H0((i,R[i]))
12 If ( ∃ i : yi 6= ts[i] ) then Return ⊥
13 Rs ←

∏ns

i=1 R[i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

14 Return zs,k

H0(x): // Games Gm0 , Gm1
15 If (HF0[x] 6= ⊥) then Return HF0[x]
16 HF0[x]←$ {0, 1}` ; If (∃u′ : x = (ku′ , Ru′,ku′ ) and CommitStageu′ ) then
17 bad← true ; HF0[x]← tu′,ku′

18 Return HF0[x]

H1(x): // Games Gm0–Gm7
19 If (HF1[x] 6= ⊥) then Return HF1[x]
20 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Games Gm0–Gm7
21 If (HF2[x] 6= ⊥) then Return HF1[x]
22 HF1[x]←$ Zp ; Return HF1[x]

Fin(k,pk,m, (R, z)): // Games Gm0–Gm9
23 For i = 1, . . . , |pk| do ci ← H1((i, R,pk,m)) ; ei ← H2((i,pk))
24 X ←

∏|pk|
i=1 pk[i]ei·ci ; Return (gz = RX)

Figure 20: Games Gm0,Gm1 for proof of Theorem 6.1. Some procedures will be included in later
games, as indicated. A box around the name of a game following an oracle means the boxed code
in that oracle is included in the game.
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NS(k,pk,m): // Games Gm2–Gm9
25 u← u+ 1 ; ku ← k ; pk[.]← pk ; pku ← pk ; mu ← m ; nu ← |pk|
26 tu,k←$ {0, 1}` ; Return tu,k

Sign0(s, t): // Game Gm2
27 k ← ks ; t[.]← ts,k ; ts ← t ; rs,k←$ Zp ; Rs,k ← grs,k ; HF0[(k,Rs,k)]← ts,k

28 Return Rs,k

Sign0(s, t): // Games Gm3,Gm4
29 k ← ks ; t[k]← ts,k ; ts ← t ; rs,k←$ Zp ; Rs,k ← grs,k ; HF0[(k,Rs,k)]← ts,k

30 For i = 1, . . . , ns do
31 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
32 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
33 Return Rs,k

Sign1(s,R): // Games Gm3, Gm4
34 R[k]← Rs,k

35 For i = 1, . . . , ns do yi ← H0((i,R[i]))
36 If ( ∃ i : yi 6= ts[i] ) then Return ⊥
37 If (R 6= R∗s) then bad← true ; R← R∗s

38 Rs ←
∏ns

i=1 R[i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

39 Return zs,k

H0(x): // Games Gm2–Gm9
40 If (HF0[x] 6= ⊥) then Return HF0[x]
41 HF0[x]←$ {0, 1}` ; (i, R)← x ; HI0[i,HF0[x]]← R ; Return HF0[x]

Figure 21: Games for proof of Theorem 6.1.

Gm0 includes the boxed code, and we claim that
Advms-uf

MS (A) = Pr[Gm0(A)] . (47)
Games Gm0,Gm1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [8]

Pr[Gm0(A)] ≤ Pr[Gm1(A)] + Pr[Gm1(A) sets bad] .
The probability of setting bad at line 4 is at most (0 + 1 + · · · + qs − 1)/p, while the probabilities
of setting it at line 5 and 15 are at most qsq0/p so

Pr[Gm1(A) sets bad] ≤ qs(qs − 1)
2p + 2 · qsq0

p
= qs(4q0 + qs − 1)

2p .

Game Gm2 changes the NS,Sign0,H0 oracles as shown in Figure 21, maintaining the other oracles
of Gm1 from Figure 20. It drops redundant code, which allows it to move the choice of Rs,1 to
line 29. At line 31, it also introduces a table HI to maintain an inverse of the hash function, but
does not yet use this. We have

Pr[Gm1(A)] = Pr[Gm2(A)] .
Game Gm3 (oracles shown across Figures 21 and 20) aims to figure out the Rs,j-values of parties
j 6= k before having to supply Rs,k, because we will later need these to program H1 values. It does
this by “inverting” the BN-commitments, meaning at line 27 it seeks inputs to H0 that result in the
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Sign0(s, t): // Game Gm5
42 k ← ks ; t[k]← ts,k ; ts ← t ; rs,k←$ Zp ; Rs,k ← grs,k ; HF0[(k,Rs,k)]← ts,k

43 For i = 1, . . . , ns do
44 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
45 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
46 Rs ←

∏ns

i=1 R∗s [i] ; cs,k ← H1((k,Rs,pks,ms)) ; zs,k ← sk · cs,k + rs,k

47 Return Rs,k

Sign1(s,R): // Game Gm5–Gm9
48 k ← ks ; R[k]← Rs,k

49 For i = 1, . . . , ns do yi ← H0((i,R[i]))
50 If ( ∃ i : yi 6= ts[i] ) then Return ⊥ else Return zs,k

Sign0(s, t): // Game Gm6 , Gm7–Gm9
51 k ← ks ; t[k]← ts,k ; ts ← t

52 cs,k←$ Zp ; zs,k←$ Zp ; Rs,k ← gzs,kpk−cs,k ; HF0[(k,Rs,k)]← ts,k

53 For i = 1, . . . , ns do
54 If (HI0[i, ts[i]] 6= ⊥) then R∗s [i]← HI0[i, ts[i]]
55 Else R∗s [i]←$ G ; t← H0((i,R∗s [i]))
56 Rs ←

∏ns

i=1 R∗s [i]
57 If (HF1((k,Rs,pks,ms)) 6= ⊥) then bad← true ; cs,k ← HF1[(k,Rs,pks,ms)]
58 HF1[(k,Rs,pks,ms)]← cs,k ; Return Rs,k

Figure 22: Games for proof of Theorem 6.1.

BN-commitments in t. If these cannot be found, then random values are chosen instead at line 37.
(Not finding the inverses is not yet a bad event. It can happen with high probability. It becomes
a bad event only at line 37 when the BN-commitments are verified.) The computation of t at that
line is only to ensure that H0 has been called; this variable will not be used. These steps do not
change what the oracles return compared to Gm2, so we have

Pr[Gm2(A)] = Pr[Gm3(A)] .
Moving to game Gm4, the change is only at line 33, which now includes the boxed code. The hope
here is that the R∗s obtained at lines 32,33 is correct with high probability. The boxed code ensures
that in Gm4, it is always correct. Since Gm3,Gm4 are identical-until-bad we have

Pr[Gm3(A)] ≤ Pr[Gm4(A)] + Pr[Gm3(A) sets bad] .
Line 38 can only set bad if yi = ts[i] for all i, due to line 37. So it is set only if there is a collision
in H0-values, or no query hashing to ts[i] was made prior to the latter being provided, but is made
later. Thus

Pr[Gm3(A) sets bad] ≤ q2
0 + nq0

2` . (48)

In game Gm4, the R queried to Sign1 is the same as the R∗ determined in Sign0, allowing game
Gm5 (Figure 22) to move line 38 into Sign0 as line 46 and to simplify Sign1. We have

Pr[Gm4(A)] = Pr[Gm5(A)] .
Now that Rs is determined prior to the release of Rs,ks , it becomes possible to successfully program
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H1(x): // Game Gm8,Gm9
59 If (HF1[x] 6= ⊥) then Return HF1[x]
60 (R, apk,m)← x ; TV[apk]← TV[apk] ∪ {x}
61 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Game Gm8, Gm9
62 If (HF2[x] 6= ⊥) then Return HF2[x]
63 (·,pk)← x ; For i = 1, . . . , |pk| do HF2[(i,pk)]← ei←$ Zp

64 apk ←
∏|pk|
i=1 pk[i]ei

65 If TV[apk] 6= ⊥ then
66 bad← true ; For y ∈ TV[apk] do HF1[y]← ⊥
67 Return HF2[x]

Figure 23: Games for proof of Theorem 6.1.

H1 via the zero-knowledge simulation. Game Gm6 of Figure 22 does this, setting bad at line 57 if
the programming was precluded by the hash value already being defined, and including the boxed
code to correct. We have

Pr[Gm5(A)] = Pr[Gm6(A)] .
Games Gm6,Gm7 (Figure 22) are identical-until-bad, so

Pr[Gm6(A)] ≤ Pr[Gm7(A)] + Pr[Gm7(A) sets bad] . (49)
When line 57 is executed, the adversary has as yet no information about Rs, which means

Pr[Gm7(A) sets bad] ≤ qsq1
p

. (50)

Moving on, let us consider games Gm8 and Gm9 in Fig. 23, which differ from Gm7 in modifications
to oracles H1 and H2. Oracle H1 now keeps track of a table TV, that stores for each aggregate
key apk the set of H1 queries that contain it. It otherwise behave identically to Gm7.H1. Oracle
Gm8.H2 does not contain the boxed code, which makes the oracle behave identically to Gm7.H2.
So, we have

Pr[Gm7(A)] = Pr[Gm8(A)] . (51)
By construction, Gm7 and Gm8 are identical-until-bad, hence

Pr[Gm8(A)] ≤ Pr[Gm9(A)] + Pr[Gm8 sets bad] (52)

≤ Pr[Gm9(A)] + q1q2
p

, (53)

where the last inequality is by the fact that each H2 query has probability at most q1/p of setting
bad. Lastly, we note that Gm9 and Gmsimp are identical. This completes the proof of Lemma H.1.

Proof of Lemma H.2: Consider Axidl in Figure 24. It forwards the public key pk to Ams.
Simulating signatures without knowing the secret key can be done exactly as Gmsimp. To break
Gmxidl

G,g,q2,q1 , our adversary Axidl needs to program H1 and H2. For each H2 query, Line 10 to 12
programs the response ej for the target public key by first deriving commitment S =

∏
i 6=k pk[i]ei ,

which is then submitted to NwTar to derive ek that is returned as the response. By construction,
the corresponding aggregate public key apk = S·pkek is exactly the target Tj recorded by Gmxidl

G,g,q2,q1
for this NwTar query. For each H1 query, our adversary first uses the aggregate public key apk
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Adversary ACh
xidl(pk):

1 (pk,m, (R, z))←$ANS,Sign0,Sign1,H0,H1,H2 (pk)
2 apk ←

∏|pk|
i=1 pk[i]H2((i,pk)) ; Return (TI[(apk, R,m)], z)

H1(x):

3 If (HF1[x] 6= ⊥) then Return HF1[x]
4 (R, apk,m)← x ; TV[apk]← TV ∪ {x}
5 If (TJ[apk] = ⊥) then Return HF1[x]←$ Zp

6 ι← ι+ 1 ; TI[x]← ι

7 HF1[x]← cι←$ Ch(TJ[apk], R) ; Return HF1[x]

H2(x):

8 If (HF2[x] 6= ⊥) then Return HF2[x]
9 (·,pk)← x ; If (pk 6∈ pk) then Return HF2[x]←$ Zp

10 j ← j + 1 ; k ← minInd(pk,pk) ; If (x 6= (k,pk)) then Return HF2[x]←$ Zp

11 S ←
∏
i6=k pk[i]H2((i,pk))

12 HF2[x]← ej ← NwTar(S) ; apk ← S · pkej ; TJ[apk]← j

13 For y ∈ TV[apk] do HF1[y]← ⊥
14 Return HF2[x]

Figure 24: Adversary Axidl for Theorem 6.1. Oracles NS,Sign0,Sign1,H0 are copied from game
Gmsimp (Fig. 19).

find the corresponding H2 query via table TJ. If possible, then the adversary proceeds to program
in a challenge using the challenge oracle Ch of XIDL. If this is not possible, the advesary simply
simulates H1 honestly. If a forgery (pk,m, (R, z)) is valid, then it must be that

gz = R ·
|pk|∏
i=1

apkH1((R,apk,m)) ,

where apk =
∏|pk|
i=1 pk[i]H2((i,pk)). Observe that call involving a fresh vector pk to oracle H2 erases

the table HF1 at every entry associated with the derived apk. Hence, our adversary can use the
above relation to directly break XIDL. In other words, the value of z included in the forgery
makes the following equation true in game Gmxidl

G,g,q2,q1 , gz = R · T cij , where j = TJ[apk] and
i = TI[(R, apk,m)]. This justifies Equation (46).

I Proof of Theorem 7.1

The first step in the proof is to move from the security game Gms-uf
MS to a game where the signing

oracles can be simulated without the target secret key. We encapsulate this in the lemma below,
which works strictly in the standard model, meaning it does not require adversaries involved to be
algebraic. This allows our latter standard model proof of security for HBMS to also rely on this
lemma.

Lemma I.1 Let G be a group of prime order p with generator g. Let MS = HBMS[G, g] be the
scheme specified in Fig. 9. Let Ams be an adversary for game Gms-uf

MS of Fig. 5. Assume the
execution of game Gms-uf

MS with Ams has at most q0, q1, q2 distinct queries to H0,H1,H2 respectively.
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Game Gm0, Gm1,ρ, Gm2,ρ

Init:
1 (pk, sk)←$ MS.Kg ; Return pk

NS(k,pk,m):
2 pk[k]← pk ; u← u+ 1
3 ku ← k ; mu ← m

4 pku ← pk ; h←$ H0((pk,m))
5 apku ←

∏n

i
pk

H2((i,pk))
i

6 au, bu←$ Zp ; Tu,k ← gauhbu

7 Return Tu,k

Sign1(v, in):
8 (Tv,1, . . . , Tv,n)← in ; Tv ←

∏n

i=1 Tv,i

9 cv ← H1((Tv, apkv,mv))
10 ev ← H2((kv,pk))
11 Gm0:
12 zv ← av + sk · ev · cv mod p

13 sv ← bv

14 Gm1,ρ,Gm2,ρ:
15 (w, βg, βpk)← TH[(pkv,mv)]
16 If (w 6= pk) then abort
17 sv ← bv + ev · cv · β−1

pk mod p

18 zv ← av + βg · bv − βg · sv mod p

19 Return (sv, zv)

Sign2(v, in):
20 (t1, . . . , tn)← in ; t←

∑
i
ti

21 (s, z)← t ; Return (Tv, s, z)

H0(x): // Gm0
22 If HF0[x] = ⊥ then HF0[x]←$ G

23 Return HF0[x]

H0(x): // Gm1,ρ,Gm2,ρ
24 If HF0[x] 6= ⊥ then Return HF0[x]
25 βg←$ Zp ; βpk ←$ Z∗p
26 If (Coin(ρ) = 1) then
27 HF0[x]← gβgpkβpk

28 TH[x]← (pk, βg, βpk)
29 Else
30 HF0[x]← gβg

31 TH[x]← (g, βg, βpk)
32 Return HF0[x]

Hi(x): // i ∈ {1, 2}
33 If (HFi[x] = ⊥) then HFi[x]←$ Zp

34 Return HFi[x]

Fin(pk,m, (T, s, z)):
35 If (pk[k] 6= pk) then return false
36 If (pk,m) ∈ {(pki,mi) : 1 ≤ i ≤ u} then return

false
37 h← H0((pk,m))
38 Gm2,ρ:
39 (w, βg, βpk)← TH[pk,m]
40 If (w 6= g) then abort
41 (pk1, . . . , pkn)← pk

42 apk ←
∏n

i
pk

H2((i,pk))
i

43 c← H1((T, apk,m))
44 Return (gzhs = T · apkc)

Figure 25: Games Gm0, Gm1,ρ, and Gm2,ρ, where ρ ∈ [0, 1] is a real number, used in Lemma I.1
and proof of Theorem 7.2. Notation Coin(ρ) denotes flipping of a biased coin with probability ρ of
giving 1 and 1− ρ of giving 0.

Let ρ ∈ [0, 1] be a real number. Consider games Gm0 and Gm1,ρ give in Fig. 25. Then,
Advms-uf

MS (Ams) = Pr[Gm0(Ams)] (54)

= Pr[Gm1,ρ(Ams) | Gm1,ρ(Ams) does not abort ] . (55)
Moreover, the probability that game Gm1 does not abort is

Pr[Gm1,ρ(Ams) does not abort ] = ρq0 , (56)
which is 1 if ρ = 1.

Proof of of Lemma I.1: Consider games Gm0 and Gm1,ρ given in Fig. 25. Game Gm0 is simply
a rewrite of Gms-uf

MS , where H0,H1,H2 are lazily sampled. We fix the given adversary Ams for the
rest of the proof and omit writing it in expression such as Pr[Gm0(Ams)] for simplicity. Game
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Gm1,ρ is parameterized by a real number ρ ∈ [0, 1], and changes the code of NS, Sign1 and H0.
The changes are made so that Sign1 does not use the secret key sk, but will however preserve the
output distribution of all oracles when it does not abort, as we will show below. In particular, for
each H0 query, game Gm1 makes a guess, by flipping a biased coin Coin(ρ), which has probability
ρ of returning 1 and probability 1 − ρ of returning 0. If the coin flip returns 1, then we set the
output of H0(x) to be gβgpkβpk , otherwise we set the output of H0(x) to be gβg . In either case, βg
and βpk are uniformly chosen at random as per line 25.

Looking ahead, Gm1,ρ will be able to simulate signatures for pk,m when H0(pk,m) is set to
gβgpkβpk (when the coin toss returns 1). In fact, ρ is set to 1 in deriving the AGM result and
the coin toss never returns 0. However, for the standard model result, we will need to make
sure that the H0 query corresponding to the forgery pk,m is programmed differently, namely that
H0((pk,m)) = gβg .

Game Gm1,ρ could abort at line 16 (it is assumed that the adversary losses the game if Gm1 is
aborted). By construction, we have

Pr[Gm1 does not abort] = ρq0 . (57)
We claim that, for any value of ρ, if game Gm1 does not abort, then it is indistinguishable from
Gm0 to the adversary. In particular, we claim

Pr[Gm1 | Gm1 does not abort] = Pr[Gm0] . (58)
Showing this amounts to showing that the outputs of Sign1 oracle in either games are distributed
identically. Observe that, in game Gm0, the return value Tv of NS and (sv, zv) of Sign1 are
uniformly distributed subjected to the constraint that

gzvH0((pkv,m))sv = Tv,k · pkevcv .
We will show that this is also true in Gm1,ρ, namely that Sign0 and Sign1 in Gm1,ρ also returns
Tv,k and (sv, zv) that are uniformly distributed subjected to the above equation. In game Gm1,ρ, if
w = pk at line 15, then h = H0((pkv,m)) = gβgpkβpk , by construction of H0 (line 27). Hence, for
a query Sign1(v, (Tv,1, . . . , Tv,n)) of game Gm1,ρ, it holds that

Tv,kv · pkevcv = gav · hbv · pkevcv = gav · (gβgpkβpk )bv · pkevcv

= gav+βg ·bv · pkβpk ·bv+evcv .

We claim that the above is also equal to gzv · hsv . In fact, we set zv, sv on line 17 and 18 exactly
to make this true. To verify this, check that

gzvhsv = gav+βg ·bv−βg ·sv(gβgpkβpk )sv = gav+βg ·bvpkβpk ·sv

= gav+βg ·bv · pkβpk ·bv+evcv .

Additionally, notice that sv, zv are both marginally uniform over Zp by construction. This means
the outputs of Sign0,Sign1 oracle from Gm1,ρ has the same output distribution compared to that
of Gm0. This justifies Equation (58).

Equipped with Lemma I.1, we move on to prove Theorem 7.1. The proof constructs adversary Adl
that simulates Gm1,1 (with ρ set to 1).

Proof of Theorem 7.1: Consider the games Gm0 and Gm1,1 (with ρ = 1) in Fig. 25. We know
that,

Pr[Gm0] = Pr[Gm1,1 | Gm1,1 does not abort] .
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Adversary Adl(X):

1 pk ← X ; (k,pk,m, (T, s, z))←$ANS,Sign1,Sign2,H0,H1,H2
ms (pk)

2 If (pk[k] 6= X) then return ⊥
3 If (pk,m) ∈ {(pki,mi) : 1 ≤ i ≤ u} then return ⊥
4 If not MS.VfH0,H1,H2 (pk,m, σ) then return ⊥
5 (w, βg, βpk)← TH[pk,m] ; apk ←

∏|pk|
i=1 pk[i]H2((i,pk))

6 c← H1((T, apk,m)) ; For i = 1, . . . , |pk| do ei ← H2((i,pk))
7 αg ← z + βg − Ext(T, g)− c ·

∑
i 6=k Ext(pk[i], g) · ei

8 αX ← −s · βpk + Ext(T,X) + c · (ek +
∑

i 6=k Ext(pk[i], X) · ei)
9 If (αX = 0) then bad← true ; x′←$ Zp

10 Else x′ ← αgα
−1
X mod p

11 Return x′

Figure 26: Adversary Adl for Theorem 7.1, oracles NS,Sign1,Sign2,H0,H1,H2 are implemented
using the exact code as those in Gm1,1. Notation Ext(·, g) and Ext(·, X) are defined in the proof of
Lemma 7.2. Computation of αg and αX are done modulo p.

Moreover,
Pr[Gm1,ρ does not abort] = ρq0 = 1,

when ρ = 1. Hence, game Gm1,1 never aborts and Pr[Gm0] = Pr[Gm1,1] . We shall construct an
adversary Adl, using the fact that given adversary Aalg

ms is algebraic, directly against game Gmdl
G,g.

We first analyze the group elements involved in the inputs and outputs of oracles of Gm1,1. The
u-th NS query takes in a list of group elements pku. The v-th Sign1 query takes in a list of group
elements (Tv,1, . . . , Tv,n). The i-th H2 query take in a list of group elements pkH2,i. The i-th H1
query (T, apk,m) takes in group elements TH1,i and apkH1,i. Above are the exhaustive list of group
elements that are given to Gm1,1, let us denote this list by out, since they are the output of the
adversary. The initial query to Init outputs a group element pk. The u-th NS query gives out
a group element Tu,ku . The i-th H0 query gives out a group element hi. The last query to Fin
gives group elements T (first component of the forged signature) and pk. Above (plus the group
generator g) are the exhaustive list of group elements that are given out to the adversary Aalg

ms .
Let us denote this list as in. Hence, the algebraic adversary Aalg

ms gives, for each group element in
the list out, a vector that is of dimension |in| which is a valid representation of the corresponding
group element. Note that every group element in the list in is derived using only group operations
on two group elements: g and pk (this is by the construction of game Gm1,1). As a result, every
group element in the list out can be represent using g and pk only. For any Y ∈ out, we use
Ext(Y, g) and Ext(Y,pk) to denote this representation, i.e.

Y = gExt(Y,g) · pkExt(Y,pk) .

We forego writing explicit code deriving these representations, with the understanding that they are
well-defined and can be computed easily from the oracle queries of Aalg

ms . We will use this notation
freely in simulations of Gm1,1.

We move on to giving adversary Adl, which simulates Gm1,1 for Aalg
ms . Our adversary Adl is given

in Fig. 26. Our adversary Adl simulates oracles NS,SignStage1,SignStage2,H0,H1 exactly as
Gm1,1, hence their code are omitted. As stated above, since Adl simulates Gm1,1, the representation
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of any group element Y ∈ out are available via scalars Ext(Y, g) and Ext(g,pk). Our adversary
uses these scalars to compute the discrete log x′.

If Aalg
ms gives a valid forgery (pk,m, (T, s, z))1 then the verification equation says that

gzH0((pk,m))s = T · apkH1((T,apk,m)) ,

where apk =
∏|pk|
i=1 pk[i]H2((i,pk)). Since every group element in the above equation can be repre-

sented using g and X, one can solve for DLG,g(X). Our adversary Adl implements this intuition,
computing value αg and αX (line 7 and 8) such that gαg = XαX . The only caveat is that αX could
be 0, in which case DLG,g(X) cannot be solved for. When αX = 0 adversary Adl sets bad, and
we would like to upperbound the probability of this event. First, note that the view of adversary
Ams is independent of the value of βpk . This is because the adversary is only given the value
of h = gβgpkβpk . So, if the forgery is such that s 6= 0, then αX = 0 with probability at most
1/p. If s = 0, then we need to make sure that Ext(T,X) + c · (ek +

∑
i 6=k Ext(pk[i], X) · ei) is not

zero. We first bound the probability that there exists some query H2((·,pk′)) (which defines the
values of e′1, . . . , e′|pk′|) such that e′k +

∑
i 6=k Ext(pk′[i], X) · e′i = 0 (call this quantity γpk′). This

happens with probability at most q2/p. Suppose the above does not happen, then for each query
H1((T ′, apk′,m′)) (which defines the value of c′), where apk′ is the aggregate key of some vector
pk′, the probability that Ext(T ′, X)+c′ ·γpk′ = 0 is at most q2/p, accounting for at most q2 non-zero
values that γpk′ could take. This results in an overall bad probability of q2/p+q1q2/p = (q1+1)q2/p.
This justifies Equation (7).

J Proof of Theorem 7.2

Proof of of Theorem 7.2: We will start by considering Gm1,ρ given in Fig. 25. By Lemma I.1,
Advms-uf

MS (Ams) = Pr[Gm1,ρ(Ams) | Gm1,ρ(Ams) does not abort] .
Towards construction of an adversary against XIDL, consider game Gm2,ρ (Fig. 25), differ from
Gm1,ρ only at line 40–it aborts if the coin flip corresponding to the forgery target (pk,m) results
in w = g. Marginally, Gm2,ρ does not abort at line 40 with probability (1− ρ). We need to lower
bound the probability of Gm2,ρ not aborting overall, at either line 16 or line 40. Since there are
overall qs unique queries to NS in the execution of Gm0 with Ams, then the probability that Gm1
does not abort is exactly

Pr[Gm2(Ams) does not abort] = ρqs(1− ρ) .
Setting ρ = (1− (1 + qs)−1), we have that

Pr[Gm2(Ams) does not abort] = (1− (1 + qs)−1)qs(1 + qs)−1 ≥ 1
e(1 + qs)

,

where we applied the fact that (1 − (1 + n)−1)n ≥ e−1 for positive n. Since game Gm2 can only
abort more often than Gm1 and that the aborting at line 40 is an event independent of whether
Ams succeeds, Equation (58) gives us that

Pr[Gm0(Ams)] = Pr[Gm2(Ams) | Gm2(Ams) does not abort] .

1Note that for the fogery pk,m, (T, s, z) returend, the corresponding random oracles queries H0((pk,m)),
H1((T, apk,m)), and H2((i,pk)) are made in line 4 to 6, even if these points were previously unqueried during
the execution of Aalg

ms .
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H1(x): // Game Gm3,Gm4
45 If (HF1[x] 6= ⊥) then Return HF1[x]
46 (T, apk,m)← x ; TV[apk]← TV[apk] ∪ {x}
47 HF1[x]←$ Zp ; Return HF1[x]

H2(x): // Game Gm3,Gm4
48 If (HF2[x] 6= ⊥) then Return HF2[x]
49 (·,pk)← x ; For i = 1, . . . , |pk| do HF2[(i,pk)]← ei←$ Zp

50 apk ←
∏|pk|
i=1 pk[i]ei

51 If TV[apk] 6= ⊥ then BadSet← BadSet ∪ TV[apk]
52 Return HF2[x]

Fin(pk,m, (T, s, z)): // Game Gm3, Gm4
53 If (pk[k] 6= pk) then return false
54 If (pk,m) ∈ {(pki,mi) : 1 ≤ i ≤ u} then return false
55 (w, βg, βpk)← TH[pk,m] ; If (w 6= g) then abort
56 (pk1, . . . , pkn)← pk ; apk ←

∏n

i
pk

H2((i,pk))
i

57 If ( (T, apk,m) ∈ BadSet ) then bad← true ; HF1[(T, apk,m)]← ⊥
58 c← H1((T, apk,m)) ; h← H0((pk,m))
59 Return (gzhs = T · apkc)

Figure 27: Games Gm3 and Gm4 for proof of Theorem 7.2. Oracles Init,NS,Sign1,Sign2,H0 are
the same as those in Gm2,ρ. Parameter ρ is set to (1− (1 + qs)−1) in oracle H0.

Hence,

Pr[Gm2,ρ(Ams)] ≥
1

e(1 + qs)
· Pr[Gm0(Ams)] . (59)

For the rest of the proof, we set ρ = (1 − (1 + qs)−1) and omit writing them in the subscript for
games. Next, we need to further modify oracles H1 and H2 so that whenever H2 derives a fresh
aggregate key apk, it must not have been queried to H1 (in the form of (T, apk,m) for any T and
m). Formally, consider games Gm3 and Gm4 given in Fig. 27. These games also keep track of a
set BadSet, which contains those H1 queries (T, apk,m) such that the aggregate key apk is later
derived in H2 (line 51). By construction, if any H1 query (T, apk,m) is not in BadSet (at the
end of the game execution), the aggregate key apk is either previosly derived in H2, or it has never
been derived in any H2 query. Game Gm3.Fin does not contain the boxed code, which makes the
oracle behave identically to Gm2.H2. So, we have

Pr[Gm2(A)] = Pr[Gm3(A)] . (60)
Oracle Gm4.H2 contains the boxed code, which reset the oracle H1 at the chosen forgery point
(T, apk,m) if it is part of BadSet. This ensures the value HF1[(T, apk,m)] to always be defined
after the H2 query that derives aggregate key apk. By construction, Gm3 and Gm4 are identical-
until-bad. So,

Pr[Gm3(A)] ≤ Pr[Gm4(A)] + Pr[Gm4 sets bad] . (61)
We first compute that probability that BadSet is non-empty at line 57. Since each H2 query has
probability at most q1/p probability of adding elements to BadSet, we can bound

Pr[BadSet 6= ∅ at line 57 ] ≤ q1q2
p

. (62)
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Adversary ANwTar,Ch,Fin
xidl (X):

1 pk ← X ; (k,pk,m, σ)←$ANS,Sign1,Sign2,H0,H1,H2
ms (pk)

2 If (pk[k] 6= pk) then return ⊥
3 If (pk,m) ∈ {(pki,mi) : 1 ≤ i ≤ u} then return ⊥
4 (w, βg, βpk)← TH[pk,m] ; If (w 6= g) then abort
5 (pk1, . . . , pkn)← pk ; apk ←

∏n

i
pk

H2((i,pk))
i ; (T, s, z)← σ

6 If ( (T, apk,m) ∈ BadSet ) then HF1[(T, apk,m)]← ⊥
7 c← H1((T, apk,m)) ; h← H0((pk,m)) ; i← TI[(T, apk,m)]
8 Return (i, (z + s · βg) mod p)

H1(x):

9 If (HF1[x] 6= ⊥) then Return HF1[x]
10 (T, apk,m)← x

11 TV[apk]← TV[apk] ∪ {x}
12 If (TJ[apk] = ⊥) then
13 Return HF1[x]←$ Zp

14 ι← ι+ 1 ; TI[x]← ι

15 HF1[x]← cι←$ Ch(TJ[apk], T )
16 Return HF1[x]

H2(x):

17 If (HF2[x] 6= ⊥) then Return HF2[x]
18 (·,pk)← x ; If (pk 6∈ pk) then
19 Return HF2[x]←$ Zp

20 j ← j + 1 ; k ← minInd(pk,pk)
21 If (x 6= (k,pk)) then
22 Return HF2[x]←$ Zp

23 S ←
∏
i 6=k pk[i]H2((i,pk))

24 HF2[(k,pk)]← ej ← NwTar(S)
25 apk ← S · pkej ; TJ[apk]← j

26 If TV[apk] 6= ⊥ then
27 BadSet← BadSet ∪ TV[apk]
28 Return HF2[x]

Figure 28: Adversary Axidl used in Theorem 7.2. Oracles NS,Sign1,Sign2,H0 are simulated
exactly per code from Fig. 25.

Note that flag bad can only be set if Gm4 did not abort (in oracle H0 or line 55), which happens
with probability 1/(e(1 + qs)) by previous analysis. Furthermore, the view of the adversary is
independent of whether game Gm4 aborts. Hence,

Pr[Gm4(A) sets bad] ≤ q1q2
ep(1 + qs)

. (63)

We now move on to the construction of the adversary, given in Fig. 28. The adversary Axidl
runs Ams while giving it simulated oracle H0,H1,H2,NS,SignStage1,SignStage2. Code for
H0,NS,Sign1,Sign2 are copied from game Gm4. The only new code here is in H1 and H2, which
we now explain.

For each j-th H2 query x = (·,pk), where HF2[x] is not yet defined the adversary will sample
HF2[(i,pk)] for each i = 1, . . . , |pk| as follows. If the target public key X is not in pk, then these
values are sampled honestly (line 15). Otherwise, let k be the smallest index such that pk[k] = X.
Our adversary will query the NwTar oracle from Gmxidl

G,g,q2,q1 game so that the resulting aggregate
public key apk is the target point Tj generated by the game Gmxidl

G,g,q2,q1 . This is done by first
computing the partial aggregation value of S (line 17), before submitting it to the NwTar oracle
to obtain response ej which is set as the output of H2 (line 19).

For each H1 query (T, apk,m), the adversary will submit the commitment to the oracle Ch, at the
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index that corresponds to the aggregate public key apk. This is done so that a forgery (T, s, z)
corresponding to this H1 query can be turned into a break against Gmxidl

G,g,q2,q1 . Here, we are also
utilizing the fact that a successful forgery (pk,m, (T, s, z)) is such that H0((pk,m)) is a known
power of g. Hence, the verification equation

gzhs = T · apkH1((T,apk,m)) ,

of the signature scheme implies that the computed response z + βgs, against the game Gmxidl
G,g,q2,q1 ,

is valid, i.e. gz+βgs = T · TH1((T,apk,m))
j , where Tj = apk is the j-th target point generated by

NwTar oracle. Hence,
Pr[Gm4(Ams)] = Pr[Gmxidl

G,g,q2,q1(Axidl)] . (64)
Putting Equation (59), (60), (61) and (64) together, we obtain the result claimed in the theorem.
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