
Improved Quantum Algorithms for the k-XOR
Problem

André Schrottenloher*

Cryptology Group, CWI, Amsterdam, The Netherlands
firstname.lastname@m4x.org

Abstract. The 𝑘-XOR problem can be generically formulated as the
following: given many 𝑛-bit strings generated uniformly at random, find
𝑘 distinct of them which XOR to zero. This generalizes collision search
(two equal elements) to a 𝑘-tuple of inputs.
This problem has become ubiquitous in cryptanalytic algorithms. Ap-
plications include variants in which the XOR operation is replaced by a
modular addition (𝑘-SUM) or other non-commutative operations (e.g.,
the composition of permutations). The case where a single solution exists
on average is of special importance.
The generic study of quantum algorithms 𝑘-XOR (and variants) was
started by Grassi et al. (ASIACRYPT 2018), in the case where many
solutions exist. At EUROCRYPT 2020, Naya-Plasencia and Schrotten-
loher defined a class of quantum merging algorithms obtained by com-
bining quantum search. They represented these algorithms by a set of
merging trees and obtained the best ones through linear optimization of
their parameters.
In this paper, we give a new, simplified representation of merging trees
that makes their analysis easier. As a consequence, we improve the quan-
tum time complexity of the Single-solution 𝑘-XOR problem by relaxing
one of the previous constraints, and making use of quantum walks. Our
algorithms subsume or improve over all previous quantum generic algo-
rithms for Single-solution 𝑘-XOR. For example, we give an algorithm for
4-XOR (or 4-SUM) in quantum time r𝒪p27𝑛{24

q.

Keywords: Quantum algorithms, merging algorithms, k-XOR, k-SUM, bicom-
posite search.

1 Introduction

The collision search problem for a random function can be formulated as follows:
given a random ℎ : t0, 1u𝑛 Ñ t0, 1u𝑛, find a pair of distinct inputs p𝑥, 𝑦q such
that ℎp𝑥q “ ℎp𝑦q. This problem is ubiquitous in cryptography and collision
search algorithms have been well studied. It is well known that, as formulated
here, it can be solved in about 𝒪

`

2𝑛{2˘ classical queries to ℎ and time. Using
Floyd’s cycle-finding algorithm, we need only polynomial memory.

* Part of this work was done while the author was at Inria, France.

The numerous applications of collision algorithms may be explained by the
fact that there exist many related problems, such as claw-finding (where we want
to make the outputs of two different functions collide), which can be solved with
the same techniques. But there are also many generalizations of collision search
that arise in different contexts. A possible generalization would be to look for
more than two elements having the same image: the problem (multicollision
search) then becomes harder. Another would be to have more than two elements
collide in the sense that their combination satisfies some condition. This leads to
the Generalized Birthday Problem, or 𝑘-XOR for us, formulated by Wagner [30]:

Given 𝑘 lists of random 𝑛-bit strings: ℒ1, . . . , ℒ𝑘 which can be ex-
tended at will, find a 𝑘-tuple p𝑦1, . . . , 𝑦𝑘q P pℒ1 ˆ . . . ˆ ℒ𝑘q such that
𝑦1 ‘ . . .‘ 𝑦𝑘 “ 0.

The problem is open to many variants and generalizations. The ‘ operation
can be replaced by modular additions or even non-commutative group opera-
tions. Likewise, we may limit the sizes of the lists queried. Some of these cases
have been considered by Wagner [30], and many more have occurred in the
literature afterwards.

In [30], Wagner gave an algorithm to solve 𝑘-XOR for any 𝑘, based on the
merging building block. Although the idea of merging had been around for a
longer time, with examples like [10], this was the first attempt at a generic
study. Later on, many works have either pursued the generic direction [27, 12],
or the optimization of more specific algorithms falling in the same framework.
For example, the best algorithms for randomized instances of subset-sum [17, 3,
6] actually solve 𝑘-list problems with additional constraints, and use merging as
an algorithmic subroutine.

Quantum k-XOR Algorithms. In the context of post-quantum security, we need a
similar level of understanding of quantum algorithms to solve the 𝑘-XOR prob-
lem. We already know that quantum 𝑘-list algorithms play a role in generic
decoding [19] or in lattice sieving [20], which is why it is important to know how
far the “generic” advantage can go.

Grassi et al. [15] tackled the Many-solutions case for a generic 𝑘, and obtained
some quantum time speedups when the elements are produced by a random func-
tion with quantum oracle access. More complete results were obtained in [25].
Quantum algorithms for 𝑘-XOR were extended to a whole family derived from
classical merging strategies, among which some appear to be optimal. These
quantum merging algorithms were represented syntactically as merging trees,
with some parameters to optimize linearly.

Besides, the authors studied the Single-solution case for a generic 𝑘. Previ-
ous results had shown that, contrary to what occurs in the classical case, the
Single-solution 𝑘-XOR problem has a time complexity advantage when 𝑘 in-
creases. More precisely, the Single-solution 2-XOR problem has a quantum time
complexity r𝒪

`

2𝑛{3˘ [1], and an algorithm of time complexity r𝒪
`

20.3𝑛
˘

[5] for
the 4-XOR problem was known. In [25], many more algorithms were given and

2

a closed formula for the time complexity exponent, depending on 𝑘, showed a
convergence towards 0.3, which could then be conjectured to be a lower bound.

Contributions. We improve the study of [25] in different ways. First of all, we
give a new definition of merging trees. In the case where many solutions exist,
we recover the results of [25] and give different, more succinct proofs of their
optimality in the class of merging trees. Going to the single-solution case, we
modify one of the constraints enforced in [25]. This allows us to obtain a new
closed formula, which converges towards 2{7 instead of 0.3 (and reaches it for
7-XOR). Finally, we remark that quantum walks can be used as a new building
block in these algorithms. They allow to reduce further the exponents, although
not below 2{7. In particular, we solve 4-SUM in quantum time r𝒪

`

27𝑛{24˘, below
the previous r𝒪

`

20.3𝑛
˘

. All these algorithms can be easily described.

Organization of the Paper. We open the paper with a formal definition of the
𝑘-XOR problem and a presentation of classical merging algorithms in Section 2.
In Section 3, we introduce some preliminaries of quantum computing, quantum
memory models and quantum search. In Section 4, we give our new definition of
merging trees and prove the correspondence between these abstract objects and
quantum algorithms for Many-solutions 𝑘-XOR. In Section 5, we briefly explain
how the trees are extended to the Single-solution case, and we give some of our
new results. Next, in Section 6, we introduce quantum walk algorithms for Claw-
finding as black-box tools and use them to get our best exponents. In Section 7,
we show that these algorithms can be applied to all bicomposite problems, in
particular multiple-encryption.

2 Classical Merging Algorithms

In this section, we define the 𝑘-XOR problem and reviewWagner’s algorithm [30].

2.1 k-XOR Problem and Extensions

We focus on a simple variant of the Generalized Birthday Problem, where the
data is generated by a single random function ℎ.

Problem 1 (Many-solutions k-XOR). Given oracle access to a random function
ℎ : t0, 1u𝑛 Ñ t0, 1u𝑛, find distinct inputs p𝑥1, . . . , 𝑥𝑘q such that ℎp𝑥1q ‘ . . . ‘
ℎp𝑥𝑘q “ 0.

Throughout this paper, we will assume that quantum access to ℎ is given. We
will also consider the problem with a single solution on average, by restricting
the codomain of ℎ.

Problem 2 (Single-solution k-XOR). Given oracle access to a random function
ℎ : t0, 1u𝑛{𝑘 Ñ t0, 1u𝑛, find distinct inputs p𝑥1, . . . , 𝑥𝑘q such that ℎp𝑥1q ‘ . . .‘
ℎp𝑥𝑘q “ 0.

3

Note that in this case, having quantum access to ℎ is not a strong restriction,
since the whole function can be queried at the beginning of the algorithm.

We will use the term “𝑘-XOR” to refer either to Problem 1 or Problem 2,
as opposed to the original “Generalized Birthday” formulation recalled in the
introduction. We name “𝑘-SUM” the problem where ‘ is replaced by addition
modulo 2𝑛. Since we take 𝑘 as a constant, and consider asymptotic complexities
in 𝑛, we will assume that 𝑛 is divisible by 𝑘 (or by any constant depending
on 𝑘) and write 𝑛{𝑘 instead of r𝑛{𝑘s. Finally, since we formulate the problem
with a random function, a solution might not exist. Since our algorithms are
probabilistic, we include this as a case of failure.

Extension to other operations. Since all the algorithms that we will study are
based on the merging subroutine (and its quantum version), we can modify the
problem as long as merging has an appropriate definition. This was already
remarked by Wagner [30]. We choose to restrict our generic study to the XOR
for simplicity, but we will consider other operations in our applications.

Query Complexity. The classical query complexity of the 𝑘-XOR problem, Single-
or Many-solutions, is 𝛺p2𝑛{𝑘q. When ℎ is a random function, the quantum query
complexity was determined to be 𝛺p2𝑛{p𝑘`1qq by Belovs and Spalek [4] in the
Single-solution case and by Zhandry [31] in the Many-solutions case.

Time Complexity. The time complexity of the 𝑘-XOR problem is also exponen-
tial in 𝑘. We will write it in the form 𝒪p2𝛼𝑘𝑛q where the exponent 𝛼𝑘 depends
only on 𝑘. The quantum algorithms that we will present are based on Grover’s
quantum search algorithm [16] and on quantum walks [23], which achieve at most
a quadratic speedup. So this is the best that we can expect and, in practice, it
will be less. This is already well known, for example in the case of collision search
(𝑘 “ 2, Many- or Single-solution case) where the complexity goes from 𝒪

`

2𝑛{2˘

classically to r𝒪
`

2𝑛{3˘ quantumly [7, 1].

Conventions. Since all the complexities studied in this paper are exponential
in 𝑛, we focus on the exponents. We use the r𝒪 notation to hide polynomial
factors, which will usually be logarithmic. We adopt the following conventions:
lists named ℒ𝑖 have corresponding sizes 𝐿𝑖 “ 2ℓ𝑖𝑛 (up to a constant). We write
for simplicity that ℒ𝑖 “has size ℓ𝑖”. All these ℓ𝑖 are constants.

2.2 Classical Merging

Let ℒ1 and ℒ2 be two lists of 𝑛-bit strings selected uniformly and independently
at random, of respective sizes 𝐿1 » 2ℓ1𝑛 and 𝐿2 » 2ℓ2𝑛. We assume that they
are sorted. We select a prefix 𝑡 of 𝑢𝑛 bits (𝑢 ă 1), where 𝑢𝑛 is approximated to
an integer. By merging ℒ1 and ℒ2 with prefix 𝑡, we say that we compute the join
list ℒ1 ’𝑢 ℒ2 of pairs p𝑥1, 𝑥2q such that 𝑥1 P ℒ1, 𝑥2 P ℒ2, 𝑥1 ‘ 𝑥2 “ 𝑡|˚. We say
that such 𝑥1 and 𝑥2 partially collide on 𝑢𝑛 bits.

4

Remark 1. In this paper, 𝑡 will either have an arbitrary value, or take all values
in t0, 1u𝑢𝑛, which is why the notation focuses on the parameter 𝑢.

Remark 2. Computationally, the join list will contain rather three-tuples (𝑥1, 𝑥2,
𝑥1 ‘ 𝑥2), so that we keep the knowledge of 𝑥1 and 𝑥2.

Wagner’s algorithm starts from lists of pairs p𝑥, ℎp𝑥qq for many arbitrary
values of 𝑥, and merges recursively the lists pairwise with increasing zero-prefixes,
until a tuple of 𝑘 elements with a full-zero sum of images is found. The algorithm
for merging lists pairwise is given in Algorithm 1.1.

Algorithm 1.1 Classical merging.
Input: ℒ1, ℒ2 sorted lists of 𝑛-bit strings of sizes 𝐿1, 𝐿2, prefix 𝑡 of 𝑢𝑛
bits. Elements of these lists are denoted 𝑥1,𝑖1 and 𝑥2,𝑖2 respectively. We use
lexicographic ordering.
Output: Sorted join list ℒ𝑢 “ ℒ1 ’𝑢 ℒ2

1: function Merge(ℒ1, ℒ2, 𝑡)
2: Set 𝑏, 𝑠 “ 1, 2 if 𝐿1 ą 𝐿2 and 2, 1 otherwise
3: If 𝑡 is not provided, set 𝑡 “ 0𝑢𝑛

4: ℒ𝑠 Ð t𝑥‘ p𝑡}0q, 𝑥 P ℒ𝑠u

5: 𝑖1 Ð 0, 𝑖2 Ð 0
6: ℒ𝑢 ÐH

7: while 𝑖1 ď 𝐿1 and 𝑖2 ď 𝐿2 do
8: if 𝑥1,𝑖1 |𝑢𝑛 ą 𝑥2,𝑖2 |𝑢𝑛 then
9: Increment 𝑖2 until 𝑥1,𝑖1 |𝑢𝑛 ď 𝑥2,𝑖2 |𝑢𝑛

10: else if 𝑥1,𝑖1 |𝑢𝑛 ă 𝑥2,𝑖2 |𝑢𝑛 then
11: Increment 𝑖1 until 𝑥1,𝑖1 |𝑢𝑛 ě 𝑥2,𝑖2 |𝑢𝑛

12: else
13: ℒ𝑢 Ð ℒ𝑢 Y tp𝑥𝑏,𝑖𝑏

, 𝑥𝑠,𝑖𝑠 ‘ 𝑡qu

return ℒ𝑢

The result of the merging operation is a list of average size 𝐿1𝐿2
2𝑢𝑛 . Indeed, when

𝑥1 P ℒ1 and 𝑥2 P ℒ2 are selected uniformly at random, then Prp𝑥1 ‘ 𝑥2 “ 𝑡|˚q “
2´𝑢𝑛. By linearity of the expectation, the average time complexity of algorithms
based on merging is easy to compute. The variance is a more difficult problem,
which was first studied by Minder and Sinclair [24, Section 4].

In this paper, we consider the following heuristic, which is enough to ensure
the correctness of our algorithms. We show in Appendix A that our quantum
algorithms work as well without.

Heuristic 1. If ℒ1 and ℒ2 have uniformly random elements, then so does the
join ℒ𝑢 (with the constraint on 𝑢𝑛 bits).

Lemma 1 (Classical merging). The join list ℒ𝑢 “ ℒ1 ’𝑢 ℒ2 can be com-
puted in time maxpℓ1 ` ℓ2 ´ 𝑢, minpℓ1, ℓ2qq (in log2). This list is of size ℓ𝑢 such

5

that E p𝐿𝑢q “
𝐿1𝐿2
2𝑢𝑛 . Under Heuristic 1, the deviation from its expectation is

exponentially small.

2.3 Wagner’s Algorithm

Judging by the time complexity exponent only, the best classical procedure to
solve Problem 1 remains, to date, Wagner’s algorithm [30]. It uses a recursive
merging strategy which can be represented as a merging tree. It is a binary tree
where each node represents an intermediate list of ℓ-tuples with a given size and
prefix constraint on the sum. An example for 𝑘 “ 4 is given in Figure 1.

Single 4-XOR
on 𝑛 bits

ℒ34
2𝑛{3 partial collisions

p𝑥3, 𝑥4q, ℎp𝑥3q ‘ ℎp𝑥4q “ 0𝑛{3|˚

ℒ4
2𝑛{3 elements
p𝑥4, ℎp𝑥4qq

ℒ3
2𝑛{3 elements
p𝑥3, ℎp𝑥3qq

ℒ12
2𝑛{3 partial collisions

p𝑥1, 𝑥2q, ℎp𝑥1q ‘ ℎp𝑥2q “ 0𝑛{3|˚

ℒ2
2𝑛{3 elements
p𝑥2, ℎp𝑥2qq

ℒ1
2𝑛{3 elements
p𝑥1, ℎp𝑥1qq

Fig. 1. Structure of Wagner’s 4-XOR tree.

We name merging algorithms the class of classical algorithms that are repre-
sented by valid merging trees. That is, the root node should have prefix length
𝑛 and expected size 1, and all intermediate nodes have parameters constrained
by the formula of Lemma 1. Using the Merge function recursively, for any such
merging tree, there exists a 𝑘-XOR algorithm with time and memory complexi-
ties equal to the maximum of list sizes in the tree.

In the context of Wagner’s algorithm, if 𝑘 is not a power of 2, 𝑘 ´ 2tlog2p𝑘qu

degrees of freedom are left unused. The tree has 2tlog2p𝑘qu prefixless leaves of size
2

𝑛
tlog2p𝑘qu`1 (single elements obtained by querying ℎ). At subsequent levels, lists

are merged pairwise on 𝑛
tlog2p𝑘qu`1 bits, so they remain of size 2

𝑛
tlog2p𝑘qu`1 . The

final level merges on 2𝑛
tlog2p𝑘qu`1 bits to obtain a single solution on average. The

total complexity exponent is 1
tlog2p𝑘qu`1 .

2.4 Depth-first Computation of Lists

The representation of Wagner’s algorithm as a merging tree does not make any
assumption on the order in which the algorithm computes the lists. The tree

6

can be traversed breadth-first, in which case the merging algorithm computes
all leaves, then all nodes of depth tlog2p𝑘qu´1, then all nodes of depth tlog2p𝑘qu´
2, etc. A more interesting option is to traverse it depth-first. This well-known
technique reduces the storage from 2tlog2p𝑘qu to tlog2p𝑘qu lists (Figure 2).

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Single 4-XOR
on 𝑛 bits

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

List of 2𝑛{3 collisions
on 𝑛{3 bits

List of 2𝑛{3

elements
List of 2𝑛{3

elements

Step 1 Step 2 Step 3

Fig. 2. Building the 4-XOR tree of Figure 1 in a breadth-first (above) or depth-first
manner (below) (the figure is taken from [25]). The new nodes are put in bold. Between
two steps, only the lists in bold are stored. Dotted lists are either discarded at this
step, or do not need to be stored at all.

This depth-first traversal has also the effect of rewriting a sequence of Merge
procedures as a sequence of Sample procedures, where Sample procedures are
defined for each list in the tree as follows:
‚ If the list ℒ is a leaf node, then Sample(ℒ) consists in making an arbitrary
query to ℎ and returning p𝑥, ℎp𝑥qq

‚ Otherwise, for ℒ𝑢 “ ℒ1 ’𝑢 ℒ2: we assume that the intermediate list ℒ2 has
been built, and that a Sample for ℒ1 has been defined. Then Sample(ℒ𝑢)
simply consists in sampling 𝑥1 P ℒ1, and looking for an element in 𝑥2 P ℒ2
such that 𝑥1‘𝑥2 has the right prefix. (We repeat this until such an element
is found).
Although this rewriting does not change the classical time complexity, nor the

correctness of the algorithm, replacing the Sample function by a more efficient
quantum procedure is much more easy than the Merge function. This was
remarked in [25] and leads to the definition of quantum merging algorithms.

3 Quantum Preliminaries
In this section, we regroup some technical preliminaries necessary for the quan-
tum algorithms studied in this paper. We stress that no technical knowledge
of quantum computing is required, as we will only use well-known black-boxes.
In particular, we will focus here on quantum search, and defer the definition of
quantum walks to Section 6.

7

3.1 Quantum Algorithms

Our algorithms are ultimately written in the quantum circuit model (see [26]
for an introduction), but we stand on a higher level of abstraction. A quantum
circuit is defined as a sequence of quantum gates acting on a fixed set of qubits.
The state of an individual qubit is represented as a normalized vector in a two-
dimensional Hilbert space, and we denote by |0y , |1y an arbitrary basis. The state
of a system of 𝑛 qubits lies in C2𝑛 , with a basis p|𝑖y , 0 ď 𝑖 ď 𝑛´ 1q representing
all possibilities for the joint state of the 𝑛 qubits. The system evolves through
unitary operators of C2𝑛 .

Quantum gates are elementary operations, that is, fixed unitary operators
applying to one or two qubits at a time. We only assume that we rely on a
standard universal gate set, as all are equivalent up to a polynomial factor.

For an algorithm 𝒜, we let Tq p𝒜q denote its quantum time complexity, the
number of gates in the circuit, and M p𝒜q the number of qubits used.

Sometimes, some of the qubits are actually bits, e.g., when we use a classical
value to control a quantum operation applied. This prompts us to make a differ-
ence between the quantum and classical memories used in a quantum algorithm.
In this paper, we will use three types of memory:

‚ Classical memory with quantum random-access (QRACM)1: it contains clas-
sical data, but superposition access is allowed. Assuming that the data bits
are indexed by 1 ď 𝑖 ď 2𝑚 ´ 1, a unit cost qRAM gate is given:

|𝑖y |𝑦y
qRAM
ÞÝÝÝÑ |𝑖y |𝑦 ‘𝑀𝑖y

where 𝑀𝑖 is the data at index 𝑖. That is, all memory cells can be accessed
simultaneously in superposition.

‚ Quantum memory with quantum random-access (QRAQM)2: it also allows
superposition access, but the data can be a quantum state:

|𝑖y |𝑦y |𝑀0 ¨ ¨ ¨𝑀2𝑚´1y
qRAM
ÞÝÝÝÑ |𝑖y |𝑦 ‘𝑀𝑖y |𝑀0 ¨ ¨ ¨𝑀2𝑚´1y .

‚ Classical memory: it contains classical data with classical random access, and
we can use this data to control quantum gates classically. Since no qRAM
gate is available, we say that we use the (plain) quantum circuit model.

QRACM and QRAQM are ubiquitous in the quantum computing litera-
ture, although often implicit. They are required by many algorithms, including
most 𝑘-XOR algorithms of [25]. The QRACM/QRAQM terminology is borrowed
from [21], and the qRAM gate is defined in [1, Section 6.1].

Although the “full’ QRAQM and QRACM models may seem very powerful
at first sight, they are simply conservative in terms of security, as the imple-
mentations of random access for quantum architectures are still blurry. Besides,
there are cases in which QRAQM can be replaced by QRACM, and QRACM by
QRAQM:

1QACM in [25].
2QAQM in [25].

8

‚ In [25], the quantum Many-solutions 𝑘-XOR algorithms require the QRACM
model only. In the previous work [15], different algorithms of similar com-
plexities were obtained with QRAQM ;

‚ An algorithm that requires QRACM, but makes only a few queries to it, can
be placed in the standard circuit model by replacing all QRACM queries
with sequential lookup circuits. A qRAM gate spanning 𝑀 data registers can
be replaced by r𝒪p𝑀q standard quantum gates.

3.2 Quantum Search

Grover’s quantum search [16] is one of the most well-known quantum algorithms.
We will actually make use of Amplitude Amplification, a powerful generalization
proposed by Brassard et al. [8]. It speeds up the search for a “good” output of
any probabilistic algorithm.

Theorem 1 ([8], Theorem 2). Let 𝒜 be a quantum algorithm that uses no
measurements, let 𝑓 : 𝑋 Ñ t0, 1u be a boolean function that tests if an output
of 𝒜 is “good” and assume that a quantum oracle 𝑂𝑓 for 𝑓 is given: |𝑥y |0y 𝑂𝑓

ÞÝÝÑ

|𝑥y |𝑓p𝑥qy. Let 𝜃𝑎 “ arcsin
?

𝑎. Then there exists an algorithm running in time:
Z

𝜋

4𝜃𝑎

^

p2|𝒜| ` |𝑂𝑓 |q

that obtains a good result with success probability greater than maxp1´ 𝑎, 𝑎q.

We define a quantum sampling black-box, analogous to a classical algorithm
Sample whose task would be to sample uniformly at random from some well-
defined set.

Definition 1. Let 𝑋 be a set. A quantum sampling algorithm for 𝑋 (denoted
qSamplep𝑋q) is a quantum algorithm that takes no input and creates the uniform
superposition of elements of 𝑋 (that is, of basis states uniquely representing the
elements of 𝑋).

In our case, the sets will be lists in a merging trees, and quantum sampling
algorithms will be obtained using Amplitude Amplification, with other quan-
tum samplings as subroutines. With Heuristic 1, we do not only ensure that the
solution exists with high probability, but also, that the list sizes do not devi-
ate much from their expectation. This ensures that all our quantum searches
can run with the expected number of iterations, and still succeed significantly.
If the deviation is higher (say, a constant), a way to fix this is to make several
copies of each qSamplepq in order to dismiss their errors, but this incurs polyno-
mial time factors. We elaborate on the time complexities without the heuristic
in Appendix A.

9

4 Quantum Merging Algorithms

As we recalled in Section 2.4, writing a classical merging procedure in a depth-
first manner allows to replace the Merging subroutine by the Sample one,
which is essentially an exhaustive search. Following [25], we then replace each
Sample by a quantum algorithm qSample, using quantum search. This is what
we do in Section 4.1 below, where we define the building block of quantum
merging algorithms.

In [25], a framework of merging trees is presented. This essentially consists in
taking trees that represent merging algorithms, and computing their complexity
depending on their parameters. The set of constraints is adapted to take quantum
search into account. We provide in Section 4.2 a description of merging trees that
simplifies the one from [25].

Possible extensions of this framework are discussed in [25]. None of the clas-
sical techniques of [12, 2, 13, 27, 24] seem to bring further improvement to the
𝑘-XOR problem in the quantum setting.

4.1 Merging in the Quantum Setting

Quantum merging algorithms are based on a result analogous to Lemma 1: if
the list ℒ2 is given, then from a procedure that samples from the list ℒ1, we can
create a procedure that samples from ℒ𝑢 by simply trying to match the elements
of ℒ1 against ℒ2.

Lemma 2 (Quantum merging). Let 𝑡 be an arbitrary prefix of 𝑢𝑛 bits. Let
ℒ1 and ℒ2 be two lists of respective sizes 2ℓ1𝑛 and 2ℓ2𝑛. Assume that ℒ2 is stored
either in QRACM or in classical memory.

Assume that we are given a quantum sampling algorithm qSamplepℒ1q for
ℒ1. Then there exists a quantum sampling for ℒ𝑢 “ ℒ1 ’𝑢 ℒ2 with quantum
time complexity:

Tq pqSamplepℒ𝑢qq “

#

pTq pqSamplepℒ1qq `𝒪p𝑛qq ¨maxp2
p𝑢´ℓ2q

2 𝑛, 1q with QRACM
`

Tq pqSamplepℒ1qq ` 2ℓ1𝑛
˘

¨maxp2
p𝑢´ℓ2q

2 𝑛, 1q without
(1)

in qRAM gates and 𝑛-qubit register operations.

Proof. We use an Amplitude Amplification, where the amplified algorithm con-
sists in sampling ℒ1, finding whether there is a match of the given prefix in ℒ2,
and returning the pair if it exists. Using Heuristic 1 ensures an exponentially low
error for the full procedure. Indeed, this error depends on the difference between
the average number of solutions (which dictates the number of search iterations)
and the actual one.

To obtain the time complexity, we separate two cases: if 𝑢 ą ℓ2, then the
amplification really needs to take place, and it has 2p𝑢´ℓ2q𝑛 iterations up to
a constant. Each iteration calls qSamplepℒ1q (setup) and queries the memory.

10

Without the QRACM, we use a circuit that performs a sequence of 2ℓ2𝑛 classi-
cally controlled comparisons.

If 𝑢 ă ℓ2, then a given element 𝑥1 P ℒ1 will have on average exponentially
many 𝑥2 P ℒ2 such that 𝑥1 ‘ 𝑥2 “ 𝑡|˚. It is possible to return the superposition
of them at no greater time cost, by ordering the QRACM in a radix tree.

As an illustration, let us recall the 4-XOR example of [25]. Translating the
depth-first classical 4-XOR algorithm (Figure 1) to a quantum one gives the
following heuristic complexity:

2𝑛{3
loomoon

ℒ2

` 2𝑛{3
loomoon

ℒ4

` 2𝑛{3
loomoon

ℒ34

` 𝒪
´
a

2𝑛{3
¯

looooomooooon

Final sample

“ 𝒪
´

2𝑛{3
¯

(2)

where the final qSample procedure requires QRACM access to ℒ2 and ℒ34, and
superposition queries to ℎ. Writing down the lists ℒ2, ℒ4, ℒ34 is a step that we
do not expect to accelerate, and this is the bottleneck of the algorithm.

Though it is not necessary to change the structure of the tree, this situation
calls for an inherently quantum re-optimization of the parameters. This is dis-
played in Figure 3. We will decrease the size of the lists ℒ2, ℒ4, ℒ34 and increase
the size of ℒ1 and ℒ12. The complexity becomes:

2𝑛{4
loomoon

ℒ2

` 2𝑛{4
loomoon

ℒ4

` 2𝑛{4
loomoon

ℒ34

` 𝒪
´
a

2𝑛{2
¯

looooomooooon

Final sample

“ 𝒪
´

2𝑛{4
¯

. (3)

Single 4-XOR
on 𝑛 bits

ℒ34
2𝑛{4 partial collisions

p𝑥3, 𝑥4q, ℎp𝑥3q ‘ ℎp𝑥4q “ 0𝑛{4|˚

ℒ4
2𝑛{4 elements
p𝑥4, ℎp𝑥4qq

ℒ3
2𝑛{4 elements
p𝑥3, ℎp𝑥3qq

ℒ12
2𝑛{2 partial collisions

p𝑥1, 𝑥2q, ℎp𝑥1q ‘ ℎp𝑥2q “ 0𝑛{4|˚

ℒ2
2𝑛{4 elements
p𝑥2, ℎp𝑥2qq

ℒ1
2𝑛{2 elements
p𝑥1, ℎp𝑥1qq

Fig. 3. Re-optimization of 4-XOR merging. Dashed lists correspond to nested QSam-
ples.

11

4.2 Definition of Merging Trees

The goal of merging trees is to represent quantum merging strategies for 𝑘-XOR
in a purely syntactical way. We emphasize that from now on, our representation
will differ from [25].

Definition 2 (Merging trees). A 𝑘-merging tree 𝒯𝑘 is a binary tree defined
recursively as follows:

‚ A node is either labeled “Sample” (S-node) or “List” (L-node)
‚ If 𝑘 “ 1, this is a leaf node 𝒯1
‚ If 𝑘 ą 1, 𝒯𝑘 has two children: an S-node 𝒯𝑘𝑙

and an L-node 𝒯𝑘𝑟
, where

𝑘𝑙 ` 𝑘𝑟 “ 𝑘.

It follows inductively that a 𝑘-merging tree has 𝑘 leaf nodes. Intuitively,
an S-node represents a procedure that samples from a given list and an L-node
represents a list stored in memory, constructed with exponentially many samples.

By convention, we draw Sample nodes (dashed) on the left and List nodes
(plain) on the right, as on Figure 3. To each node 𝒯 corresponds a list ℒ which is
either built or sampled. Since the trees are binary, we adopt a simple numbering
of lists ℒ𝑗

𝑖 . The root node, at level 0 in the tree, is ℒ0
0, and the two children of

ℒ𝑗
𝑖 are numbered respectively ℒ𝑗`1

2𝑖 for the sampled one and ℒ𝑗`1
2𝑖`1 for the list

one. We label a node with the following variables representing the attributes of
ℒ𝑗

𝑖 :

‚ The width 𝑘𝑗
𝑖

‚ The number 𝑢𝑗
𝑖 of bits set to zero (relatively to 𝑛)

‚ The size ℓ𝑗
𝑖 of this list: by our conventions, ℓ𝑗

𝑖 represents a size of 2ℓ𝑗
𝑖
𝑛

Thus, ℒ𝑗
𝑖 is a list of 𝑘𝑗

𝑖 -tuples p𝑥1, . . . , 𝑥𝑘𝑗
𝑖
q such that 𝑥1‘ . . .‘𝑥𝑘𝑗

𝑖
“ 0𝑢𝑗

𝑖
𝑛|˚,

of size 2ℓ𝑗
𝑖
𝑛, which is only stored in memory if 𝑖 is odd, and otherwise, represents

a search space.

Merging strategy and constraints. We constraint the variables ℓ𝑗
𝑖 and 𝑢𝑗

𝑖 in order
to represent a valid merging strategy. First, we want a solution to the 𝑘-XOR
problem.

Constraint 1 (Root node). At the root node: 𝑢0
0 “ 1 and ℓ0

0 “ 0.

As each node results from the merging of its two children, the number of
zeros increases. Furthermore, two siblings shall have the same number of zeros:
𝑢𝑗

2𝑖 “ 𝑢𝑗
2𝑖`1. Otherwise, we could reduce this proportion to the minimum between

them, obtaining an easier strategy.

Constraint 2 (Zero-prefixes). @𝑖, 𝑗 ě 1, 𝑢𝑗
2𝑖 “ 𝑢𝑗

2𝑖`1 and 𝑢𝑗´1
𝑖 ě 𝑢𝑗

2𝑖 .

Finally, the size of a list is constrained by the sizes of its predecessors and
the new constraint (p𝑢𝑗´1

𝑖 ´ 𝑢𝑗
2𝑖`1q𝑛 more bits to put to zero).

Constraint 3 (Size of a list). @𝑖, 𝑗 ě 1, ℓ𝑗´1
𝑖 “ ℓ𝑗

2𝑖 ` ℓ𝑗
2𝑖`1 ´ p𝑢

𝑗´1
𝑖 ´ 𝑢𝑗

2𝑖`1q .

12

4.3 From Trees to Algorithms
We attach to each node another parameter 𝑡, which represents the sample time.
Our intuition is that the time to sample from the list ℒ𝑗

𝑖 represented by this
node will be r𝒪p2𝑛𝑡q.

Constraint 4 (Sampling). Let 𝒯 𝑗
𝑖 be a node in the tree, either an S-node or an

L-node.

‚ if 𝒯 𝑗
𝑖 is a leaf, 𝑡𝑗

𝑖 “
𝑢𝑗

𝑖

2 .
‚ otherwise, 𝒯 𝑗

𝑖 has an S-child 𝒯 𝑗`1
2𝑖 and an L-child 𝒯 𝑗`1

2𝑖`1, and:

𝑡𝑗
𝑖 “

$

’

’

’

&

’

’

’

%

𝑡𝑗`1
2𝑖 ` 1

2 max
´

𝑢𝑗
𝑖 ´ 𝑢𝑗`1

2𝑖 ´ ℓ𝑗`1
2𝑖`1, 0

¯

with QRACM

maxp𝑡𝑗`1
2𝑖 , ℓ𝑗`1

2𝑖`1q `
1
2 max

´

p𝑢𝑗
𝑖 ´ 𝑢𝑗`1

2𝑖 ´ ℓ𝑗`1
2𝑖`1, 0

¯

without

𝑡𝑗`1
2𝑖 `max

´

𝑢𝑗
𝑖 ´ 𝑢𝑗`1

2𝑖 ´ ℓ𝑗`1
2𝑖`1, 0

¯

classically
(4)

If the node is a leaf, then we simply run Grover’s algorithm multiple times.
Equation (4) is simply a translation of (1) in the case of a specific node. The
third option needs to be added when qRAM is not available, in order to model
a situation where the best thing to do is to sample the list classically. If we do
that, then its parent Sample is also a classical one. Next, from the individual
sampling times of each node, we can compute what should be the time complexity
exponent of a tree.

Definition 3. Let 𝒯𝑘 be a 𝑘-merging tree. We define Tq p𝒯𝑘q and M p𝒯𝑘q as:

Tq p𝒯𝑘q “ max
ˆ

max
List nodes

´

𝑡𝑗
𝑖 ` ℓ𝑗

𝑖

¯

, 𝑡0
0

˙

and M p𝒯𝑘q “ max
List nodes

´

ℓ𝑗
𝑖

¯

.

It should be noted that the list size of Sample nodes plays only a role in the
structural constraints, not in the time complexity. They should simply have a
size sufficient to ensure the existence of a solution in the tree.

With these definitions, and with the help of Lemma 2, we can make merging
trees correspond to merging algorithms.

Theorem 2 (Quantum merging strategies). Let 𝒯𝑘 be a 𝑘-merging tree
and Tq p𝒯𝑘q computed as in Definition 3. Then there exists a quantum merging
algorithm that, given access to a quantum oracle 𝑂ℎ, finds a 𝑘-XOR.

Under Heuristic 1, this algorithm succeeds with probability more than 1´𝑒´𝑎𝑛

for some constant 𝑎 ą 0. It runs in time 𝒪
`

𝑛2Tqp𝒯𝑘q𝑛
˘

, makes the same number
of queries to 𝑂ℎ. It requires only 𝒪p𝑛q computing qubits. It uses a memory
𝒪
`

2Mp𝒯𝑘q𝑛
˘

, counted in 𝑛-bit registers (either classical or QRACM).

Proof. We define recursively the correspondence 𝒯𝑘
𝒜
ÞÝÑ 𝒜p𝒯𝑘q from a merging

tree 𝒯𝑘 to an algorithm 𝒜p𝒯𝑘q solving the 𝑘-XOR problem, with the wanted time
and memory complexities.

Let 𝑁p𝑘, 𝑢, ℓq be the root node of 𝒯𝑘 and 𝑆p𝑘1, 𝑢1, ℓ1q and 𝐿p𝑘2, 𝑢2, ℓ2q its two
children, if they exist.

13

‚ If it is a Sample leaf, then 𝒜p𝒯𝑘q simply consists in running Grover’s algo-
rithm in time 𝒪

`

2𝑢𝑛{2˘.
‚ Otherwise, if it is a Sample:

1. we use 𝒜p𝐿q to sample repeatedly from the child 𝐿: we build the list.
Each call costs time 𝒪

`

2Tqp𝐿q𝑛
˘

and we need to make 𝒪p2ℓ2𝑛q of them
to obtain a list of the wanted size, with high probability.

2. then we apply Lemma 2, since we have a sample for the child 𝑆: 𝒜p𝑆q
‚ If it is a List, the situation is the same, except that we repeat the operation
exponentially many times.

When taking sums of complexities exponential in 𝑛, we write 𝒪p2𝛼𝑛q`𝒪
`

2𝛽𝑛
˘

“

𝒪
`

2maxp𝛼,𝛽q𝑛
˘

, which remains sound since we do that only a constant number
of times. A global factor 𝒪p𝑛q comes from the memory operations.

Thus, merging trees offer a compact and sound way to represent quantum
merging algorithms for the 𝑘-XOR problem. As an example, we represent the
optimal merging tree for 3-XOR of [25] on Figure 4.

ℒ0
0, k = 3

ℓ0
0 “ 0, 𝑢0

0 “ 1
𝑡0
0 “

2
7

ℒ1
1, k = 1

ℓ1
1 “

1
7 , 𝑢1

1 “
2
7

𝑡1
1 “

1
7

ℒ1
0, k = 2

ℓ1
0 “

4
7 , 𝑢1

0 “
2
7

𝑡1
0 “ 0

ℒ2
1, k = 1

ℓ2
1 “

2
7 , 𝑢2

1 “ 0
𝑡2
1 “ 0

ℒ2
0, k = 1

ℓ2
0 “

4
7 , 𝑢2

0 “ 0
𝑡2
0 “ 0

Fig. 4. 3-XOR (optimal) merging tree with QRACM.

4.4 Optimal Trees for k-XOR

Now that we have defined the set of merging trees, we can explore this space to
search for the trees 𝒯𝑘 that minimize Tq p𝒯𝑘q.

Given a tree 𝒯𝑘, its time and memory complexity exponents Tq p𝒯𝑘q and
M p𝒯𝑘q are defined as the maximums of linear combinations of the parameters
ℓ𝑗

𝑖 , 𝑢𝑗
𝑖 . Thus, there exists a choice of these parameters that minimizes Tq p𝒯𝑘q,

under Constraints 1, 2, 3 and 4. The authors of [25] remarked that this was a
linear problem, solvable with Mixed Integer Linear Programming (MILP). Given
𝑘, we try all possible tree structures (all binary trees with 𝑘 leaves) and find the

14

optimal one. As an example, the optimization problem for Figure 4 would be:

Minimize: maxp𝑡0
0, ℓ1

1 ` 𝑡1
1, ℓ2

1 ` 𝑡2
1q

Under the constraints: 𝑡1
1 “

𝑢1
1

2 , 𝑡2
1 “

𝑢2
1

2 , 𝑡2
0 “

𝑢2
0

2 ,

𝑡1
0 “ 𝑡2

0 `
1
2 max

`

𝑢1
0 ´ 𝑢2

0 ´ ℓ2
1, 0

˘

,

𝑡0
0 “ 𝑡1

0 `
1
2 max

`

1´ 𝑢1
0 ´ ℓ1

1, 0
˘

, 𝑢2
0 “ 𝑢2

1, 𝑢1
0 “ 𝑢1

1

There always exists an optimal tree 𝒯𝑘 that achieves the best time complexity
exponent. For a given 𝑘, there is sometimes more than one, but we find that it
is reached by a family of balanced trees 𝑇𝑘.

Definition 4 (Trees 𝑇𝑘). If 𝑘 “ 1, then 𝑇𝑘 is simply a leaf node. If 𝑘 “ 2𝑘1,
then the “Sample” child of 𝑇𝑘 is 𝑇𝑘1 and the “List” child is 𝑇𝑘1 . If 𝑘 “ 2𝑘1 ` 1,
then the “Sample” child of 𝑇𝑘 is 𝑇𝑘1`1 and the “List” child is 𝑇𝑘1 .

In particular, when 𝑘 “ 2𝜅 is a power of 2, 𝑇𝑘 is Wagner’s balanced binary
tree.

Theorem 3 (Quantum k-XOR with QRACM, from [25]). Let 𝑘 ě 2 be
an integer and 𝜅 “ tlog2p𝑘qu. The best quantum merging tree finds a 𝑘-XOR
on 𝑛 bits in quantum time (and memory) r𝒪p2𝛼𝑘𝑛q where 𝛼𝑘 “

2𝜅

p1`𝜅q2𝜅`𝑘 . To
find 2𝑐𝑛 𝑘-XORs for 𝑐 ą 0, the complexity exponent goes to max p𝛼𝑘p1` 2𝑐q, 𝑐q.
Furthermore, for every 𝑘, the optimum is realized by 𝑇𝑘: 𝛼𝑘 “ Tq p𝑇𝑘q.

Theorem 4 (Quantum k-XOR in the circuit model, from [25]). Let
𝑘 ą 2, 𝑘 ‰ 3, 5, 7 be an integer and 𝜅 “ tlog2p𝑘qu. The best quantum merging tree
finds a 𝑘-XOR on 𝑛 bits in quantum time and classical memory 𝒪

`

2𝛽𝑘𝑛
˘

where:

𝛽𝑘 “

#

1
𝜅`1 if 𝑘 ă 2𝜅 ` 2𝜅´1

2
2𝜅`3 if 𝑘 ě 2𝜅 ` 2𝜅´1 .

To find 2𝑐𝑛 𝑘-XORs, the complexity exponent goes to max p𝛽𝑘p1` 𝑐q, 𝑐q. Fur-
thermore, for every 𝑘 ‰ 3, 5, 7, the optimum is realized by 𝑇𝑘.

In the circuit model, the strategies for 2, 3, 5, 7 reach respectively 𝛽2 “
2
5 ([11]), 𝛽3 “

5
14 ([15]), 𝛽5 “

40
129 and 𝛽7 “

15
53 . Incidentally, the latter two

improve over [25] thanks to our rewriting of the constraints (see Appendix C).
We prove Theorem 3 in Appendix B and Theorem 4 in Appendix C. These proofs
are more constructive, in the sense that the optimal parameters for the whole
trees are easier to derive.

5 Extending the Problem

The algorithms of Section 4 solve the Many-solutions case (Problem 1). Following
again the study in [25], we extend the merging trees to target the Single-solution
case (Problem 2). In this section, we assume QRAQM.

15

5.1 Repeating the Trees

When only a few solutions are to be found, merging does not seem to help at
first sight, since it puts more constraints on the solution tuples. However, an
interesting idea is to merge with arbitrary constraints, e.g., by choosing a prefix
𝑡, and to repeat this for every value of 𝑡. This is the core idea of Schroeppel and
Shamir’s algorithm [29] and more generally, the Dissection algorithms of [13,
Section 3]. In the quantum setting, it encompasses some proposed algorithms
such as the element distinctness algorithm of [9] (which corresponds to a Single-
solution 2-XOR).

The classical algorithms are intended to decrease the memory usage while
keeping the time equal or close to the classical birthday bound 𝒪

`

2𝑛{2˘. In
contrast, the quantum algorithms will allow to decrease the time complexity
with respect to the quantum birthday bound 𝒪

`

2𝑛{3˘, as shown in [5, 25].

Algorithm 1.2 Schroeppel and Shamir’s algorithm, based on a repetition loop.
Input: oracle access to ℎ : t0, 1u𝑛{4 Ñ t0, 1u𝑛

Output: 𝑥1, 𝑥2, 𝑥3, 𝑥4 such that ℎp𝑥1q ‘ ℎp𝑥2q ‘ ℎp𝑥3q ‘ ℎp𝑥4q “ 0

1: Create 4 lists ℒ𝑖, 0 ď 𝑖 ď 3, of size 2𝑛{4, where pairs 𝑥, ℎp𝑥q have arbitrary
indices

2: for all Prefix 𝑠 of 𝑛
4 bits do

3: ℒ𝑠
01 Ð Mergepℒ0, ℒ1, 𝑠q Ź ℒ𝑠

101 is of average size 2𝑛{4
ˆ2𝑛{4

2𝑛{4 “ 2𝑛{4

4: ℒ𝑠
23 Ð Mergepℒ2, ℒ3, 𝑠q

5: if there is a collision between ℒ01 and ℒ23 then
Ź Happens for a single 𝑠 (or with probability 2´𝑛{4)

6: return The collision

5.2 Extended Merging Trees

The extended merging trees that we use in this paper subsume those given in [25],
with a technical trick that will allow smaller complexities. It turns out that,
although we can make a very generic definition of these trees and the algorithms
that they represent, the optimal strategies are very simple. Thus, we defer the
complete definition in Appendix D.1, alongside the proof that our strategies are
optimal in this definition.

As in Schroeppel and Shamir’s algorithm, the merging tree is now extended
with repetition loops. We make the selection of some arbitrary prefixes, or more
generally, sublists of list nodes; that is, of a subtree of the merging tree. We
complete the merging process. If a solution is obtained, then the choice of prefixes
(resp. sublists) was good. These repetition loops are performed with multiple
levels of quantum search (but in practice, one).

16

Remark 3 (QRAQM requirement). In Section 4, we only needed QRACM, as
all intermediate lists could be written down classically, and quantum access
was necessary to sample new elements. However, here, the merging operations
(writing down the lists) are performed under a quantum search, which is why
QRAQM is necessary.

Remark 4 (Amending the constraints). Our improved complexities with respect
to [25] rely on the following idea. A subtree 𝒯 𝑗 of width 𝑘𝑗 can cost 0 inside
the repetitions if a global cost 𝑘𝑗

𝑘 (in time and memory) has been already paid.
Indeed, when 𝒯 𝑗 is of width 1, a full lookup table of ℎ can be prepared beforehand
and reused instead of having to rebuild the tree in each search iteration. Likewise,
we can prepare the sorted list of all 𝑘𝑗-tuples, with their sum, in order to retrieve
quickly those having a wanted prefix.

Correspondence with Dissection algorithms. The idea of guessing intermediate
values is the core of the Dissection framework of [13]. This is exactly what we do
here, since under the exhaustive search loops, we merge using arbitrary prefixes:
these intermediate values are the prefixes of the subtrees 𝒯 𝑗 .

Proposition 1. Any Dissection algorithm for 𝑘-XOR (by their definition in [13,
Section 3]) can be reframed as a classical extended merging tree.

5.3 New Results for Single-solution k-XOR

Remark 4 allows us to reach better exponents than [25], and to break the previous
lower bound of 0.3 for 𝑘-list merging.

Theorem 5 (New trees for unique 𝑘-XOR). Let 𝑘 ą 2 be an integer. The
best extended merging tree (with our definition) finds a 𝑘-XOR in time 𝒪p2𝛾𝑘𝑛q

where:
𝛾𝑘 “

𝑘 `
X

𝑘`6
7
\

`
X

𝑘`1
7
\

´
X

𝑘
7
\

4𝑘
. (5)

In particular, it converges towards a minimum 2
7 , which is reached by multiples

of 7.

The proof of this optimality is given in Appendix D. The formula of Theo-
rem 5 comes from the reduction of the constraints to a simple linear optimization
problem with two integer variables. These variables are sufficient to describe the
shape of the corresponding tree.

Optimal Trees. For 𝑘 ď 5, the results of Theorem 5 and [25] coincide and we can
refer to [25]. The novelty of Theorem 5 appears with Algorithm 1.3 (Figure 5),
whose total time complexity is:

22𝑛{7
loomoon

Building ℒ34
and ℒ67

` 2𝑛{7
loomoon

Search of 𝑠

¨

˚

˝

2𝑛{7
loomoon

Computing ℒ567

` 2𝑛{7
loomoon

Search in ℒ12

˛

‹

‚

“ 𝒪
´

22𝑛{7
¯

.

17

It benefits from computing some products of lists outside the loops. Interestingly,
this also modifies the memory requirements: only 2𝑛{7 QRAQM is required, in
order to hold ℒ567, and 22𝑛{7 QRACM is needed for ℒ34 and ℒ67.

Algorithm 1.3 New Single-solution 7-XOR algorithm.
Input: 7 lists ℒ𝑖

Output: a 7-tuple p𝑥𝑖q P
ś

𝑖 ℒ𝑖 that XORs to 0
1: Build ℒ67 “ ℒ6 ’0 ℒ7 (all sums between these two lists)
2: Build ℒ34 “ ℒ3 ’0 ℒ4 (all sums between these two lists)
3: Sample 𝑠 P t0, 1u2𝑛{7 such that Ź 2𝑛{7 quantum search iterates
4: Build ℒ567 “ ℒ5 ’𝑠 ℒ67 Ź Time 2𝑛{7, which is the size of the list
5: Sample 𝑥 P ℒ1 ˆ ℒ2 such that Ź 2𝑛{7 quantum search iterates
6: Find 𝑦 P ℒ34 such that 𝑥‘ 𝑦 “ 𝑠|˚
7: Find 𝑧 P ℒ567 such that 𝑥‘ 𝑦 ‘ 𝑧 “ 03𝑛{7|˚
8: if 𝑥‘ 𝑦 ‘ 𝑧 “ 0 then
9: Exit and return the result

10: EndSample
11: EndSample

03𝑛{7|˚

𝑠|˚

ℒ67

ℒ7ℒ6

ℒ5

𝑠|˚

ℒ34

ℒ4ℒ3

ℒ12

ℒ2ℒ1

Fig. 5. Single-solution 7-XOR merging tree of Algorithm 1.3.

The optimal strategy for a bigger 𝑘 actually mimics the 7-XOR example. We
introduce two integer variables 𝑘1 and 𝑘2 with the values:

#

𝑘1 “
X 3𝑘

7
T

𝑘2 “
X 2𝑘

7
\

´
X

𝑘´1
7
\

`
X

𝑘´2
7
\

,
, (6)

where
X 3𝑘

7
T

is the integer closest to 3𝑘
7 , and we perform Algorithm 1.4. The tree

structure (Figure 6) is overly simple: there are four subtrees, each of which is a
trivial product of lists (a merge with empty prefixes). There is only a single repe-
tition loop, and the whole algorithm contains only two levels of quantum search.
The fact that this choice of structure matches the complexity given by Theorem 5
is not obvious, but it will follow naturally from the proof in Appendix D.

18

Root
𝑢 “ 𝑘2

𝑘 `
𝑘´𝑘1´𝑘2

2𝑘

ℒ1, 𝑠|˚

prefix: 𝑢 “ 𝑘2
𝑘

𝒯3
width 𝑘2

𝒯2 of width 𝑘1 ´ 𝑘2
ℒ Ď 𝒯2

size 𝑘´𝑘1´𝑘2
2𝑘

𝑠|˚

𝒯1
width 𝑘2

𝒯0
width 𝑘 ´ 𝑘1 ´ 𝑘2

Fig. 6. Generic merging tree that reaches the optimal complexity for Single-solution
𝑘-XOR (see Algorithm 1.4).

Algorithm 1.4 Generic Single-solution 𝑘-XOR algorithm.
Input: 𝑘 lists ℒ𝑖

Output: a 𝑘-tuple p𝑥𝑖q P
ś

𝑖 ℒ𝑖 that XORs to 0
1: Select 𝑘1, 𝑘2 by Equation 6
2: Build 𝒯1 and 𝒯3, each with the product of 𝑘2 lists
3: Sample 𝑠 P t0, 1u

𝑘2
𝑘 𝑛 such that

4: Sample Sublists ℒ of 𝒯2 of size 𝑘´𝑘1´𝑘2
2𝑘 such that

5: Merge ℒ with 𝒯3 to obtain an intermediate list ℒ1 with prefix of 𝑘2
𝑘 𝑛

bits and size 𝑘´𝑘1´𝑘2
2𝑘

6: Sample 𝑥 P 𝒯0 such that Ź 2
𝑘´𝑘1´𝑘2

2𝑘 𝑛 quantum search iterates
7: Find 𝑦 P 𝒯1 such that 𝑥‘ 𝑦 “ 𝑠|˚
8: if There is a collision on ℒ1 then
9: Exit and return the result

10: EndSample
11: EndSample
12: EndSample

19

Memory Complexity. Our algorithms for single-solution 𝑘-XOR reach the best
time complexity 𝒪

`

22𝑛{7˘ when 𝑘 is a multiple of 7, but at these points, they
require a QRACM of size 22𝑛{7. This is suboptimal with respect to the time-
memory product. By optimizing for it, we obtain the same results as [25]. How-
ever, we could compute trees for higher values of 𝑘. We find that the best time-
memory product decreases for small 𝑘, reaches a minimum, and then increases,
as the exponent behaves like p𝑘 ´𝒪p

?
𝑘qq{2.

Proposition 2. The time-memory product for Single-solution 𝑘-XOR merging
trees is lower bounded by: r𝒪

´

2 7
17 𝑛

¯

which is reached by 𝑘 “ 17.

On Memory Models. The balance between QRACM and QRAQM is interesting
here, since in general, we will use more QRACM than QRAQM. An interesting
question is whether we can get completely rid of QRAQM, and use only classical
memory with quantum access. In this setting, the best procedure remains to cut
the lists in three complete products of equal size, and do a quantum search on
two groups for a match on the third one. This converges towards r𝒪

`

2𝑛{3˘ and
this complexity is reached for powers of 3.

Another interesting question is whether one can get rid of quantum random
access, and use only plain quantum circuits. In this setting, the best algorithm for
Single-solution 2-XOR runs in time 𝒪

`

23𝑛{7˘ using 𝒪
`

2𝑛{7˘ qubits [18]. We can
propose an improved complexity for 4-XOR with the following: we use Schroeppel
and Shamir’s merging tree. We perform a quantum search on the right prefix
𝑠 (2𝑛{8 iterates). At each iterate, we compute the merging tree breadth-first,
without qRAM gates, using sorting networks for the Merge operations. This
costs time r𝒪

`

2𝑛{4˘ (with a polynomial factor from sorting networks). The total
time is r𝒪

`

23𝑛{8˘ which is smaller than 𝒪
`

23𝑛{7˘. It might be possible to improve
on this with a more generic method.

6 Extension with Quantum Walks

The algorithms presented so far are the best ones achievable, but in the re-
stricted model of quantum merging trees. One of the open questions left in [25]
was whether it was possible to improve generically the time complexity using
quantum walks. We find that this is the case, yielding a better curve than The-
orem 5 that we will now explicit. Our strategy is very simple. Instead of going
back to the roots of the framework, we start from our generic result (Algo-
rithm 1.4) and modify it as to allow quantum walks. In particular, we obtain
the first 4-SUM algorithm with complexity below 𝒪

`

20.3𝑛
˘

(obtained in [5] with
a quantum walk).

Theorem 6 (Single-solution 𝑘-XOR with quantum walks). Let 𝑘 ą 2 be
an integer. There exists a quantum Single-solution 𝑘-XOR algorithm running in
time r𝒪p2𝛾𝑘𝑛q where:

𝛾𝑘 “
2𝑘 ´

X

𝑘
7
\

´
X

𝑘`3
7
\

6𝑘
. (7)

20

In particular, it converges towards a minimum 2
7 , which is reached by multiples

of 7.

6.1 Preliminaries

In this paper, we only use quantum walks that solve the following problem.

Problem 3 (Single claw-finding). Let 𝑓, 𝑔 be two functions of different domains
t0, 1uℓ1𝑛, t0, 1uℓ2𝑛, that we can query quantumly, with the promise that there
exists either a single claw p𝑥, 𝑦q such that 𝑓p𝑥q “ 𝑔p𝑦q, or none. Determine the
case and find the claw.

This is an extension of the element distinctness problem, or Single-solution
2-XOR, and it can be solved by similar algorithms. In particular, we will con-
sider Ambainis’ algorithm [1] which is a quantum walk for element distinctness
running in time 𝒪

`

22ℓ𝑛{3˘ when ℓ1 “ ℓ2 “ ℓ. We will give some high-level ideas
and refer to [1], but also to [5, 19] for applications of quantum walks to 𝑘-SUM
algorithms.

When there is a single function ℎ, Ambainis’ algorithm is a walk on a Johnson
graph, where a vertex represents a choice of 2𝑛𝑟 elements, for some parameter 𝑟.
We move randomly on the walk by replacing elements, until the vertex contains
the wanted collision. The classical time complexity of such a random walk (up
to a logarithmic factor) is, depending on 𝑟:

2𝑟𝑛 `
22ℓ𝑛

22𝑟𝑛
p2𝑟𝑛q ,

where 22ℓ𝑛

22𝑟𝑛 is the number of “walk steps” that one should do classically before
finding a marked vertex, and 2𝑟 is the number of vertex updates before arriving
to a new uniformly random vertex. The corresponding quantum walk algorithm,
either in the specific example of Ambainis [1], or the more generic MNRS frame-
work [23], achieves:

2𝑟𝑛 `

c

22ℓ𝑛

22𝑟𝑛

´?
2𝑟𝑛

¯

,

using a quantum memory (QRAQM) of size 2𝑟𝑛 and the same number of quan-
tum queries to ℎ.

When there are two functions 𝑓, 𝑔 with domains of different size, we will use a
random walk on a product Johnson graph, as in [19]. We choose two parameters
𝑟1, 𝑟2; the vertices now contain 2𝑟1𝑛 elements queried to 𝑓 and 2𝑟2𝑛 elements
queried to 𝑔, with 𝑟1 ď ℓ1 and 𝑟2 ď ℓ2. The quantum time complexity becomes:

2𝑟1𝑛 ` 2𝑟2𝑛 `

c

2pℓ1`ℓ2q𝑛

2p𝑟1`𝑟2q𝑛

´

2𝑟1𝑛{2 ` 2𝑟2𝑛{2
¯

.

By symmetry between 𝑟1 and 𝑟2, we can choose 𝑟1 “ 𝑟2 “ 𝑟 and restrict ourselves
to a single parameter.

21

Theorem 7. There exists a quantum algorithm solving the single claw-finding
problem with domains ℓ1𝑛 and ℓ2𝑛, in time r𝒪p2𝜏𝑛q and memory 𝒪p2𝑟𝑛q, where:

𝜏 “ max
ˆ

𝑟,
ℓ1 ` ℓ2 ´ 𝑟

2

˙

,

for any 𝑟 such that 𝑟 ď ℓ1, 𝑟 ď ℓ2, 𝑟 ě 0.

This algorithm succeeds with constant probability. Up to a polynomial factor,
it can be boosted to any probability exponentially close to 1, and thus, used as
a subroutine in a quantum search.

6.2 Using Quantum Walks in a Merging Tree

Since we did not include quantum walks in our merging tree framework, it shall
remain an open question whether the algorithms obtained here are the best possi-
ble. Our goal is merely to improve on what we presented above, using Theorem 7
as a building block.

We will reuse the tree structure of Figure 6. We name ℒ0 to ℒ3 the nodes
of level 2 (actually products of base lists). Thus, we reuse most of the structure
of Algorithm 1.4, except that the parameters will be re-optimized and that the
two innermost Sample loops are replaced by a single call to Claw-finding.
In fact, this change is the same that occurs between Buhrman et al.’s element
distinctness [9] and the improvement by Ambainis [1]. This is why we reach an
improved time complexity. The new choice of 𝑘1, 𝑘2 is the following:

$

’

&

’

%

𝑘1 “

#

X

𝑘`1
7
\

`
X

𝑘`4
7
\

`
X

𝑘`6
7
\

for 𝑘 ě 4
1, 1, 2 for 𝑘 “ 2, 3, 4 respectively

𝑘2 “
X

𝑘
7
\

`
X

𝑘`4
7
\

. (8)

The key idea of Algorithm 1.5 is that the knowledge of ℒ1 and ℒ3, and the
constraints of merging, make sure that we can run the quantum walk as expected
(that is, we can query as efficiently the lists at level 1 as the lists at level 2).

Algorithm 1.5 Single-solution 𝑘-XOR algorithm with a quantum walk.
Input: 𝑘 lists ℒ𝑖

Output: a 𝑘-tuple p𝑥𝑖q P
ś

𝑖 ℒ𝑖 that XORs to 0
1: Select 𝑘1, 𝑘2 by Equation (8)
2: Build 𝒯1 and 𝒯3, each with the product of 𝑘2 lists
3: Sample 𝑠 P t0, 1u

𝑘2
𝑘 𝑛 such that

4: Apply Claw-finding between the lists ℒ0 ’𝑠 ℒ1 and ℒ2 ’𝑠 ℒ3
5: if A claw is found then
6: Exit and return the result
7: EndSample

22

By definition of 𝑘1 and 𝑘2, the base lists ℒ0, ℒ1, ℒ2, ℒ3 have respective widths
p𝑘 ´ 𝑘1 ´ 𝑘2q, 𝑘2, p𝑘1 ´ 𝑘2q, 𝑘2. Thus, taking into account the quantum search
on the right prefix 𝑠, and using Theorem 7, we compute the following time
complexity for Algorithm 1.5:

2
𝑘2
2𝑘 𝑛

´

2𝑟𝑛 ` 2p
𝑘´𝑘1´𝑘2

2𝑘 `
𝑘1´𝑘2

2𝑘 ´𝑟q𝑛 ˆ 2𝑟𝑛{2
¯

` 2
𝑘2
𝑘 𝑛 , (9)

where 𝑟 is the parameter specifying the size of the vertex. The corresponding
QRACM used is 2

𝑘2
𝑘 𝑛, the corresponding QRAQM (for the walks) is 2𝑟𝑛, and

the total memory is the maximum between both.
Thus, when 𝑘1, 𝑘2 are free, the time complexity exponent 𝑡 of Algorithm 1.5

is solution to the following optimization problem:

(C1) 𝑡 ě 𝑘2
2𝑘 ` 𝑟 (C2) 𝑡 ě 𝑘2

𝑘

(C3) 𝑡 ě 𝑘´𝑘2
2𝑘 ´ 𝑟

2
(C4) 𝑟 ď 𝑘´𝑘1´𝑘2

𝑘 (C5) 𝑟 ď 𝑘1´𝑘2
𝑘

Here constraints (C1) and (C3) correspond to the walks, (C2) corresponds to
the computation of lists ℒ1 and ℒ3 outside the main loop. (C4) and (C5) are
the constraints imposed on our choice of 𝑟.

Solving this optimization problem gives us the choice of 𝑘1 and 𝑘2 specified
by Equation (8), and the time complexity exponent of Theorem 7.

6.3 Results

In Figure 7, we compare Algorithm 1.5 with the previous work of [25] (where the
formula was 𝛾𝑘 “

1
𝑘

𝑘`r𝑘{5s

4). We remark that our curve now includes Ambainis’
algorithm for 𝑘 “ 2 as a special case, which was not the case before, and we
actually improve over the complexity r𝒪

`

20.3𝑛
˘

for 4-SUM obtained in [5]. Precise
numbers are given in Table 1.

The algorithm for 4-SUM is very simple. We start from 4 lists. Two of them
are stored in QRACM. Then, we do a quantum search over a prefix of 𝑛

4 bits.
In order to find the good one, we search for a claw between the two level-1 lists
of size 2 𝑛

4 . Thus the complexity is of order:
?

2 𝑛
4 ˆ 2 𝑛

4ˆ
2
3 “ 27𝑛{24.

7 Applications

We now show that, similarly as those of [25], the algorithms of Section 6 apply
to the class of bicomposite problems studied by Dinur et al. [13].

7.1 Bicomposite Problems

The classical Dissection algorithms of [13] are not formulated as Single-solution
𝑘-XOR algorithms, although they can be used in this context. They solve a
more general problem that we will now define. In this definition, the notation 𝑟
assumes the same role as 𝑘.

23

Table 1. Quantum time and memory complexity exponents for Single-solution 𝑘-XOR
obtained with Algorithm 1.5. The time exponent is the best known for all values of 𝑘,
and subsumes all previous works.

Time QRACM QRAQM Parameters
𝑘 Rounded As fraction Rounded As fraction Rounded As fraction 𝑘1 𝑘2

2 0.3333 1/3 0.0 0 0.3333 1/3 1 0
3 0.3333 1/3 0.3333 1/3 0.0 0 1 1
4 0.2917 7/24 0.25 1/4 0.1667 1/6 2 1
5 0.3 3/10 0.2 1/5 0.2 1/5 2 1
6 0.3056 11/36 0.1667 1/6 0.2222 2/9 3 1
7 0.2857 2/7 0.2857 2/7 0.1429 1/7 3 2
8 0.2917 7/24 0.25 1/4 0.1667 1/6 4 2
9 0.2963 8/27 0.2222 2/9 0.1852 5/27 4 2
10 0.3 3/10 0.3 3/10 0.15 3/20 5 3
11 0.2879 19/66 0.2727 3/11 0.1515 5/33 5 3
12 0.2917 7/24 0.25 1/4 0.1667 1/6 5 3
13 0.2949 23/78 0.2308 3/13 0.1795 7/39 6 3
14 0.2857 2/7 0.2857 2/7 0.1429 1/7 6 4
15 0.2889 13/45 0.2667 4/15 0.1556 7/45 7 4
16 0.2917 7/24 0.25 1/4 0.1667 1/6 7 4
17 0.2941 5/17 0.2941 5/17 0.1471 5/34 8 5
18 0.287 31/108 0.2778 5/18 0.1481 4/27 8 5
19 0.2895 11/38 0.2632 5/19 0.1579 3/19 8 5
20 0.2917 7/24 0.25 1/4 0.1667 1/6 9 5
21 0.2857 2/7 0.2857 2/7 0.1429 1/7 9 6
22 0.2879 19/66 0.2727 3/11 0.1515 5/33 10 6
23 0.2899 20/69 0.2609 6/23 0.1594 11/69 10 6
24 0.2917 7/24 0.2917 7/24 0.1458 7/48 11 7
25 0.2867 43/150 0.28 7/25 0.1467 11/75 11 7
26 0.2885 15/52 0.2692 7/26 0.1538 2/13 11 7
27 0.2901 47/162 0.2593 7/27 0.1605 13/81 12 7
28 0.2857 2/7 0.2857 2/7 0.1429 1/7 12 8
29 0.2874 25/87 0.2759 8/29 0.1494 13/87 13 8
...

...
...

...
...

...
...

...
...

24

10 20 30 400.28

0.3

0.32

0.34

0.36

0.38

𝑘

𝛾
𝑘

[25]
Theorem 7

The complexities
are r𝒪p2𝛾𝑘𝑛q

Fig. 7. Single-solution 𝑘-XOR time complexity and comparison with [25].

Problem 4 (𝑟-composite search). Let p𝑋𝑖, 1 ď 𝑖 ď 𝑟 ` 1q be a family of 𝑟 ` 1
finite sets of same cardinality (say, 2𝑛 for some parameter 𝑛). Let ℱ1, . . . , ℱ𝑟

be 𝑟 families of functions: 𝑓𝑖 P ℱ𝑖 : 𝑋𝑖 Ñ 𝑋𝑖`1, e.g., permutations or random
functions, with the same cardinality 2𝑛.

Let p𝑥1
1, . . . , 𝑥1

𝑟q P 𝑋1 and p𝑥𝑟`1
1 , . . . , 𝑥𝑟`1

𝑟 q P 𝑋𝑟`1. Find 𝑓1 P ℱ1, . . . , 𝑓𝑟 P ℱ𝑟

such that:
@𝑖, p𝑓𝑟 ˝ . . . ˝ 𝑓1qp𝑥

1
𝑖 q “ 𝑥𝑟`1

𝑖 .

In other words, we are given lists of transitions (the families ℱ𝑖) that act on
𝑟 inputs (the 𝑥1

𝑖), and we want to find a sequence of such transitions that brings
these inputs to 𝑟 given targets. The bicomposite nature of this problem comes
from the orthogonality between the choices of the transitions and the targets.
For example, assume that 𝑥𝑖`1

1 , . . . , 𝑥𝑖`1
𝑖 are given, then we can find immediately

the sequence of 𝑖 transitions 𝑓𝑖 ˝ . . .˝𝑓1 that lead to these values: we do not need
to guess the full tuple 𝑥𝑖`1

1 , . . . , 𝑥𝑖`1
𝑟 .

A prominent example of a bicomposite problem is the case where all the 𝑓𝑖

are permutations: this is the multiple-encryption problem.

Problem 5 (𝑟-encryption). Let 𝐸1, . . . , 𝐸𝑟 be 𝑟 block ciphers on 𝑛 bits, indexed
by key spaces of the same size 2𝑛. Assume that we are given 𝑟 plaintext-ciphertext
pairs p𝑝𝑖, 𝑐𝑖q, encrypted by the composition of the 𝐸𝑖 under a sequence of inde-
pendent keys 𝑘1, . . . , 𝑘𝑟:

@𝑖, 𝑐𝑖 “
`

𝐸𝑟
𝑘𝑟
˝ . . . ˝ 𝐸1

𝑘1

˘

p𝑝𝑖q,

then retrieve 𝑘1, . . . , 𝑘𝑟.

The number of given plaintext-ciphertext pairs is enough to discriminate the
good sequence of keys with constant probability, as each key is of 𝑛 bits and
each plaintext is of 𝑛 bits.

25

7.2 Relation with k-XOR
The Single-solution 𝑘-XOR and 𝑘-SUM problems are naturally 𝑘-composite. The
intermediate states 𝑥𝑖 are 𝑛-bit strings, that we can divide into a product of 𝑘
strings of 𝑛{𝑘 bits. A 𝑘-composite algorithm makes some guesses for partial
intermediate states, which correspond to merging the lists ℒ𝑖 with arbitrary
prefixes.

This relation goes the other way. Instead of trying to prove a full-fledged cor-
respondence between Single-solution 𝑟-XOR algorithms of our framework and
𝑟-composite problems, we can focus on the algorithms presented in Section 6.
For simplicity, we consider a single family of permutations ℱ , of size 2𝑛, although
this works as well with 𝑟 families and for one-way functions (since we can tab-
ulate them individually). We write down Algorithm 1.6. Its time complexity is
computed with the same formula as the 𝑘-XOR variant.

Theorem 8. For any 𝑟 ě 2, let 𝛾𝑟 be the optimal time complexity exponent for
unique 𝑟-XOR with merging trees, given by Theorem 6. Then there exists a quan-
tum algorithm for 𝑟-composite search, with domain size 2𝑛, of time complexity
𝒪p2𝛾𝑟𝑟𝑛q.

8 Conclusion

In this paper, we have improved the known quantum algorithms for the 𝑘-XOR
and 𝑘-SUM problems, also leading to the best quantum algorithms for bicom-
posite search, and in particular, multiple-encryption.

We have found significant advantage in combining merging trees and quantum
walks, such as improving the previous best algorithm for 4-SUM. However, this
advantage vanishes in the long run, and both methods converge towards the
same exponent 2

7 . In particular, any problem that can be reduced to 𝑘-SUM, for
any 𝑘, does not see any improvement from using walks, for now.

Of course, this might be because the involvement of quantum walks has re-
mained rather superficial, since most of our analysis has been done with quantum
search only. It is possible, although we have not attempted, to define a bigger
class of merging tree algorithms built entirely over quantum walks, possibly with
nested walks. This would be much more technical, and it is difficult to estimate
whether one would gain a significant advantage.

There are also more specific questions that remain open. For example, can we
obtain a better time complexity than r𝒪

`

2𝑛{3˘ for Single-solution 3-XOR? Can
we obtain a better time complexity than r𝒪

`

2𝑛{3˘ for Single-solution k-XOR in
the QRACM model?

Acknowledgements. The author would like to thank André Chailloux and
María Naya-Plasencia for many discussions and comments on intermediate ver-
sions of this work, and Pierre Briaud and Johanna Loyer for their comments. This
work has been supported by the European Union’s H2020 project No. 714294
(QUASYModo) and by ERC-ADG-ALSTRONGCRYPTO (project 740972).

26

Algorithm 1.6 Quantum 𝑟-composite search.
Input: two 𝑟-tuples 𝑥1 “ p𝑥1

1, . . . , 𝑥1
𝑟q and 𝑥𝑟`1 “ p𝑥𝑟`1

1 , . . . , 𝑥𝑟`1
𝑟 q, a family

of permutations ℱ indexed by a “key” 𝑘 P 𝐾, with quantum oracle access
to:

𝑥, 𝑘 ÞÑ 𝑓𝑘p𝑥q

Output: a sequence of “keys” 𝑘1, . . . , 𝑘𝑟 such that 𝑥1 is mapped to 𝑥𝑟`1

by 𝑓𝑘𝑟
˝ . . . ˝ 𝑓𝑘1

1: Select 𝑟1, 𝑟2 with Equation 6
2: Build a list ℒ1:

ℒ1 “ tp𝑓𝑘𝑟2
˝ . . . ˝ 𝑓𝑘1qp𝑥

1q, 𝑘𝑟2 , . . . , 𝑘1 P 𝐾u

Ź Thus, the list contains all possible choices for the 𝑟2 first steps
3: Build a list ℒ3:

ℒ3 “ tp𝑓
´1
𝑘𝑟´𝑟2

˝ . . . ˝ 𝑓´1
𝑘𝑟
qp𝑥𝑟`1q, 𝑘𝑟´𝑟2`1, . . . , 𝑘𝑟 P 𝐾u

Ź Thus, the list contains all possible choices for the 𝑟2 last steps
4: Sample 𝑦1, . . . , 𝑦𝑟2 such that

Ź These guesses are from the intermediate state 𝑥𝑟´𝑟1

5: Define: ℒ0 the list of all key sequences for steps 𝑟2 ` 1, . . . , 𝑟 ´ 𝑟1
6: Define: ℒ2 the list of all key sequences for steps 𝑟´ 𝑟1` 1, . . . , 𝑟´ 𝑟2` 1

7: Define: ℒ01 the list of all key-sequences from ℒ1ˆℒ0 such that 𝑥1
1, . . . , 𝑥1

𝑟2
is mapped to 𝑦1, . . . , 𝑦𝑟2

8: Define: ℒ23 the list of all key-sequences from ℒ2ˆℒ3 such that 𝑦1, . . . , 𝑦𝑟2

is mapped to 𝑥𝑟`1
1 , . . . , 𝑥𝑟`1

𝑟2
9: Find a claw between ℒ01 and ℒ23

10: EndSample

It remains to explain how we sample from ℒ01 (resp. ℒ23) in time 1, given the
knowledge of ℒ1 (resp. ℒ3). This is made possible by the fact that both ℒ1 and
ℒ3 contain all their key-sequences.

‚ For ℒ01: when we sample an element from ℒ0, we have a key-sequence for
steps 𝑟2 ` 1, . . . , 𝑟 ´ 𝑟1, and we also have an endpoint 𝑦1, . . . , 𝑦𝑟2 . Thus we
invert the steps from 𝑦1, . . . , 𝑦𝑟2 , we obtain an intermediate 𝑧1, . . . , 𝑧𝑟2 and
we find in ℒ1 a key-sequence that sends 𝑥1

1, . . . , 𝑥1
𝑟2

to this intermediate.
‚ For ℒ23: when we sample an element from ℒ2, we have a key-sequence for
steps 𝑟´ 𝑟1` 1, . . . , 𝑟´ 𝑟2` 1, and we also have a starting point 𝑦1, . . . , 𝑦𝑟2 .
Thus we obtain an intermediate 𝑧1, . . . , 𝑧𝑟2 and we find in ℒ3 the key-
sequence that sends this intermediate to 𝑥𝑟`1

1 , . . . , 𝑥𝑟`1
𝑟2

.

27

References

[1] Andris Ambainis. “Quantum Walk Algorithm for Element Distinctness”.
In: SIAM J. Comput. 37.1 (2007), pp. 210–239.

[2] Shi Bai et al. “Improved Combinatorial Algorithms for the Inhomogeneous
Short Integer Solution Problem”. In: J. Cryptology 32.1 (2019), pp. 35–83.

[3] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. “Improved Generic
Algorithms for Hard Knapsacks”. In: EUROCRYPT. Vol. 6632. LNCS.
Springer, 2011, pp. 364–385.

[4] Aleksandrs Belovs and Robert Spalek. “Adversary lower bound for the
k-sum problem”. In: ITCS. ACM, 2013, pp. 323–328.

[5] Daniel J. Bernstein et al. “Quantum Algorithms for the Subset-Sum Prob-
lem”. In: PQCrypto. LNCS Vol. 7932. Springer, 2013, pp. 16–33.

[6] Xavier Bonnetain et al. “Improved Classical and Quantum Algorithms
for Subset-Sum”. In: ASIACRYPT. LNCS. Springer, 2020. url: https:
//eprint.iacr.org/2020/168.

[7] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum Cryptanalysis of
Hash and Claw-Free Functions”. In: LATIN. Vol. 1380. LNCS. Springer,
1998, pp. 163–169.

[8] Gilles Brassard et al. “Quantum amplitude amplification and estimation”.
In: Contemporary Mathematics 305 (2002), pp. 53–74.

[9] Harry Buhrman et al. “Quantum Algorithms for Element Distinctness”.
In: SIAM J. Comput. 34.6 (2005), pp. 1324–1330.

[10] Paul Camion and Jacques Patarin. “The Knapsack Hash Function pro-
posed at Crypto’89 can be broken”. In: EUROCRYPT. Vol. 547. LNCS.
Springer, 1991, pp. 39–53.

[11] André Chailloux, María Naya-Plasencia, and André Schrottenloher. “An
Efficient Quantum Collision Search Algorithm and Implications on Sym-
metric Cryptography”. In: ASIACRYPT (2). Vol. 10625. LNCS. Springer,
2017, pp. 211–240.

[12] Itai Dinur. “An algorithmic framework for the generalized birthday prob-
lem”. In: Des. Codes Cryptogr. 87.8 (2019), pp. 1897–1926.

[13] Itai Dinur et al. “Efficient Dissection of Composite Problems, with Applica-
tions to Cryptanalysis, Knapsacks, and Combinatorial Search Problems”.
In: CRYPTO. Vol. 7417. LNCS. Springer, 2012, pp. 719–740.

[14] Philippe Flajolet and Andrew M. Odlyzko. “Random Mapping Statistics”.
In: EUROCRYPT. Vol. 434. LNCS. Springer, 1989, pp. 329–354.

[15] Lorenzo Grassi, María Naya-Plasencia, and André Schrottenloher. “Quan-
tum Algorithms for the k-xor Problem”. In: ASIACRYPT 2018. Vol. 11272.
LNCS. Springer, 2018, pp. 527–559.

[16] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: STOC. ACM, 1996, pp. 212–219.

[17] Nick Howgrave-Graham and Antoine Joux. “New Generic Algorithms for
Hard Knapsacks”. In: EUROCRYPT. Vol. 6110. LNCS. Springer, 2010,
pp. 235–256.

28

https://eprint.iacr.org/2020/168
https://eprint.iacr.org/2020/168

[18] Samuel Jaques and André Schrottenloher. “Low-gate Quantum Golden
Collision Finding”. In: SAC. LNCS. Springer, 2020. url: https : / /
eprint.iacr.org/2020/424.

[19] Ghazal Kachigar and Jean-Pierre Tillich. “Quantum Information Set De-
coding Algorithms”. In: PQCrypto. Vol. 10346. LNCS. Springer, 2017,
pp. 69–89.

[20] Elena Kirshanova et al. “Quantum Algorithms for the Approximate k-List
Problem and Their Application to Lattice Sieving”. In: ASIACRYPT (1).
Vol. 11921. Lecture Notes in Computer Science. Springer, 2019, pp. 521–
551.

[21] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for
the Dihedral Hidden Subgroup Problem”. In: TQC. Vol. 22. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 20–34.

[22] Vadim Lyubashevsky. “The Parity Problem in the Presence of Noise, De-
coding Random Linear Codes, and the Subset Sum Problem”. In: APPROX-
RANDOM. Vol. 3624. LNCS. Springer, 2005, pp. 378–389.

[23] Frédéric Magniez et al. “Search via Quantum Walk”. In: SIAM J. Comput.
40.1 (2011), pp. 142–164.

[24] Lorenz Minder and Alistair Sinclair. “The Extended k-tree Algorithm”.
In: J. Cryptology 25.2 (2012), pp. 349–382.

[25] María Naya-Plasencia and André Schrottenloher. “Optimal Merging in
Quantum k-XOR and k-SUM Algorithms”. In: EUROCRYPT (2). LNCS
Vol. 12106. Springer, 2020, pp. 311–340.

[26] Michael A. Nielsen and Isaac L. Chuang. “Quantum information and quan-
tum computation”. In: Cambridge: Cambridge University Press 2.8 (2000),
p. 23.

[27] Ivica Nikolic and Yu Sasaki. “Refinements of the k-tree Algorithm for the
Generalized Birthday Problem”. In: ASIACRYPT (2). Vol. 9453. LNCS.
Springer, 2015, pp. 683–703.

[28] Alessandro Panconesi and Aravind Srinivasan. “Randomized Distributed
Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds”. In:
SIAM J. Comput. 26.2 (1997), pp. 350–368.

[29] Richard Schroeppel and Adi Shamir. “A 𝑇 “ 𝒪p2𝑛{2q, 𝑆 “ 𝒪p2𝑛{4q Al-
gorithm for Certain NP-Complete Problems”. In: SIAM J. Comput. 10.3
(1981), pp. 456–464.

[30] David A. Wagner. “A Generalized Birthday Problem”. In: CRYPTO. Vol. 2442.
LNCS. Springer, 2002, pp. 288–303.

[31] Mark Zhandry. “How to Record Quantum Queries, and Applications to
Quantum Indifferentiability”. In: CRYPTO (2). Vol. 11693. LNCS. Springer,
2019, pp. 239–268.

29

https://eprint.iacr.org/2020/424
https://eprint.iacr.org/2020/424

A List Sizes and Heuristics

In this section, we prove that the list sizes do not deviate “too much” from
their expectation in the merging algorithms studied in this paper, and we show
that Heuristic 1 is not required in our quantum algorithms.

Let us consider two lists ℒ1, ℒ2 merged into ℒ𝑢, and start with the case where
ℒ𝑢 is smaller.

Lemma 3. If ℓ𝑢 ď maxpℓ1, ℓ2q, there exists two constants 𝑎, 𝑏 ą 0 such that with
probability 1 ´ 𝑒´𝑎𝑛, a proportion 𝑏 of the elements of ℒ𝑢 are drawn uniformly
at random from all 𝑛-bit strings with prefix 𝑡.

Proof. As an example of non-independence between the output pairs, let us
consider 𝑥1, 𝑦1 P ℒ1 and 𝑥2, 𝑦2 P ℒ2, then the events 𝑥1 ‘ 𝑥2 “ 𝑡|˚, 𝑦1 ‘ 𝑥2 “
𝑡|˚, 𝑥1 ‘ 𝑦2 “ 𝑡|˚ and 𝑦1 ‘ 𝑦2 “ 𝑡|˚ are not independent. In order to recover
independence when ℓ𝑢 ď maxpℓ1, ℓ2q, we will use an argument similar to [22].
We first need a technical result, which is a property of random mappings.

Lemma 4. Let ℎ : t0, 1u𝑛 Ñ t0, 1u𝑛 be a random function. Let 𝑌 pℎq be the
number of elements in t0, 1u𝑛 without a preimage. Then:

Prp𝑌 pℎq ą 0.4 ¨ 2𝑛q ď 0.99872𝑛

. (10)

Proof. We write 𝑌 pℎq “
ř

𝑖Pt0,1u𝑛 𝑌𝑖pℎq, where 𝑌𝑖pℎq is 1 if 𝑖 has no preimage by
ℎ. The 𝑌𝑖pℎq are not independent, but they are negatively correlated: knowing
that 𝑥 has no preimage only decreases the probability that this is the case for
𝑥1 ‰ 𝑥. In that case, a Chernoff bound applies [28], and for any 𝛿 ą 0:

Pr
ˆ

𝑌 pℎq ě
p1` 𝛿q2𝑛

𝑒

˙

ď

ˆ

𝑒𝛿

p1` 𝛿q1`𝛿

˙

2𝑛

𝑒

,

where 2𝑛

𝑒 is the average of 𝑌 pℎq, which is a standard result of random map-
pings [14]. We then choose 𝛿 “ 0.4𝑒 ´ 1 » 0.087 and obtain the claimed bound
by rounding the term on the left side.

Assume without loss of generality that ℓ2 ď ℓ1. The idea is that since ℓ𝑢 ď

ℓ1, a given element of ℒ1 intervenes in one pair on average, which ensures the
independence of the pairs. We assume that ℓ2 ´ 𝑢 ą 0.

First of all, we cut ℒ2 into sublists ℒ𝑥
2 depending on 𝑢𝑛-bit prefixes 𝑥. Then

any element in ℒ𝑢 is the sum of an element 𝑥1 in ℒ1 of prefix 𝑥, and an element
𝑥2 of ℒ𝑥

2 . We use Chernoff bounds to show that the individual sizes of the ℒ𝑥
2

do not deviate much from their expectation E p𝐿𝑥
2q “ 2𝑛pℓ2´𝑢q. We have:

@𝑥,@𝛿 ď 1, Prp|𝐿𝑥
2 ´ E p𝐿𝑥

2q| ě 𝛿 E p𝐿𝑥
2qq ď 2𝑒´

𝛿2 Ep𝐿𝑥
2q

3 , (11)

30

and by taking 𝛿 “ pE p𝐿𝑥
2qq

1{3, since E p𝐿𝑥
2q is exponential in 𝑛, taking a union

bound over all prefixes 𝑥 does not change that the probability to deviate is
vanishingly small:

Pr
´

D𝑥, |𝐿𝑥
2 ´ E p𝐿𝑥

2q| ě E p𝐿𝑥
2q

2{3
¯

ď 2𝑢𝑛`1𝑒´
Ep𝐿𝑥

2q
1{3

3 . (12)

Focusing on ℒ1, we extract a sublist ℒ11 of its elements having distinct pre-
fixes of 𝑢𝑛 bits, and we show that the size of ℒ11 is only smaller by a constant.
This comes from Lemma 4. If we index elements of ℒ1 by their ℓ1𝑛-bit prefix,
then at least a constant proportion of these prefixes are occupied, with probabil-
ity exponentially close to 1. Combining this with Equation (12), we bound the
deviation of the merged list size from its expectation.

It remains to observe that ℒ11 ’ ℒ2 Ď ℒ𝑢 contains independent sums, since
each element of ℒ2 appears at most once. In the case where ℓ1 “ ℓ2 “ 𝑢, taking
unique prefixes for both lists ℒ1 and ℒ2 gives the same result.

Lemma 3 allows to show that if all list sizes in a merging tree are decreasing,
then with probability exponentially close to 1, its time complexity is, up to a
constant, equal to the average. Indeed, we will simply use the Lemma for each
merging step individually. This includes Wagner’s algorithm [30] as a special
case.

In a generic merging tree, however, the list sizes do not always decrease. In
fact, when the initial lists are too small, the first levels of the tree will make them
increase, as remarked by Minder and Sinclair [24]. They will decrease afterwards,
because the complete merging tree ends with a single solution.

This case seems problematic at first sight, because the bigger lists of the
middle levels are not statistically close to lists of uniform bit-strings. For exam-
ple, when we take a complete cross-product of two lists, the 2pℓ1`ℓ2q𝑛 resulting
elements were obtained from 2ℓ1𝑛 ` 2ℓ2𝑛, and there are many relations between
them. But despite this “loss of randomness”, the list behaves nicely for the sub-
sequent merging steps. The following lemma aims at capturing this intuition.

Lemma 5. Consider 𝑡 lists ℒ1, . . . , ℒ𝑡 and their product ℒ “ ℒ1 ˆ . . . ˆ ℒ𝑡.
Assume that the ℒ𝑖 are of exact size 2𝑛ℓ and contain uniformly drawn 𝑛-bit
strings. Then there exists two constants 𝑎, 𝑏 ą 0 such that with probability 1 ´
𝑒´𝑎𝑛, ℒ meets a proportion 𝑏 of 𝑛ℓ𝑡-bit prefixes.

Proof. We detail the proof for a pair of lists pℒ1, ℒ2q, but the extension to 𝑡 lists
is easy. We consider two independent, arbitrary ranges of ℓ𝑛 bits, “range 1” and
“range 2”.

By Lemma 4, ℒ1 meets a proportion 𝑏1 of bit-strings in range 1, with proba-
bility 1´ 𝑒𝑎1𝑛 for some 𝑎1, 𝑏1 ą 0. We will assume that all prefixes are met (for
simplicity), but in general we must always reason with some of them missing.

We can define a random variable 𝑋1p𝑖q that given a range-1 value 𝑖 P t0, 1u𝑛ℓ,
gives the value of the p1 ´ ℓq𝑛 remaining bits of the corresponding element in
ℒ1. We define 𝑋2p𝑖q similarly.

31

The cross-product ℒ1ˆℒ2 can be partitioned into 2ℓ𝑛 bins depending on the
value in range 1. Bin 𝑖 contains all the 𝑋1p𝑗q ‘ 𝑋2p𝑖 ‘ 𝑗q for 𝑗 P t0, 1u𝑛. But
then, a given 𝑋1p𝑗q or 𝑋2p𝑗q intervenes only in one element: because they are
independent, we can use Lemma 4 again. This time, we show that for a given
value of 𝑖, all (up to a constant) values in range 2 are met. Because we used a
Chernoff bound, this can hold simultaneously for all range-1 values.

In the end, a constant number of range-1 values are met, and for each of
them, a constant number of range-2 values are met as well. Thus a constant
proportion of 2ℓ-bit prefixes are met in total.

Lemma 5 contains all what we need for more general merging trees. At a
given merging step, we will not have necessarily a complete cross-product, as we
might have merged for some prefix value. But the merged list is then a sublist
of the cross-product, depending on the prefixes, and we can also bound its size.

In practice, we need to use this lemma only for our Single-solution 𝑘-XOR
algorithms, which have a very specific shape. They have three levels (see Algo-
rithm 1.4):

‚ Level 2: 4 complete cross-products (of different sizes);
‚ Level 1: merging with a decreasing size;
‚ Level 0: merging with a single solution at most (often none).

The tree is parameterized by some guess, that will only be right once. So
we only need our algorithm to succeed once, on this guess. By Lemma 5, we
guarantee the size of the level-2 lists, but also of the level-1 lists (since there are
enough elements with the given prefixes). Then it amounts to find a collision
between them.

Quantum Complexities. If we remove Heuristic 1, the “quantum merging” lemma
(Lemma 2) is not true anymore. We cannot guarantee that the list sizes are ex-
ponentially close to their average and, in particular, all our QSample procedures
may now have constant probabilities of error.

However, fixing the Many-solutions and Single-solution 𝑘-XOR algorithms
presented in this paper is easy. In the Many-Solutions case, the optimal algo-
rithms use only a single level of Amplitude Amplification: they do not amplify
non-exact procedures. In fact, they perform only quantum searches in some lists
at the lowest level. The guarantee on all list sizes entails that these searches will
succeed with constant probability. Since the results (partial 𝑘-XORs) can always
be checked, there is only a constant increase in time complexity.

In the Single-solution case, the algorithms use a single level of quantum search
(for an intermediate prefix, and possibly, a sublist), followed by either a single
level of quantum search, or a quantum walk, that solves a Single claw-finding
problem. This “inner” procedure has a constant probability of success due to our
loose guarantees on the list sizes: we can repeat it 𝒪p𝑛q times to make its failure
probability exponentially low. This ensures that when the solution occurs, the
“inner” procedure always finds it, and that the “good choice” for the outer search
is flagged without error. This ensures a constant probability of success.

32

B Proof of Optimality in the QRACM Setting

We prove Theorem 3:

For any integer 𝑘 and 𝑐 ą 0, the best quantum merging procedure
that samples 2𝑐𝑛 times a 𝑘-XOR on 𝑛 bits has a time complexity expo-
nent max p𝛼𝑘p1` 2𝑐q, 𝑐q, where 𝛼𝑘 “

2𝜅

p1`𝜅q2𝜅`𝑘 .

Proof. We use a recurrence on 𝑘. For 𝑘 “ 2, we have 𝜅 “ 1 and 𝛼2 “
1
3 . Finding

2𝑐𝑛 collisions p𝑥1, 𝑥2, ℎp𝑥1q ‘ ℎp𝑥2q “ 0q, or sampling a collision 2𝑐𝑛 times can
be done in time 2p

2𝑐
3 `

1
3 q𝑛, using a re-optimization of the steps in BHT collision

search [7]. This works as long as 𝑐 ď 1, i.e., 2𝑐 ` 1 ď 3. Thus, the theorem is
true for 𝑘 “ 2.

Let us consider a merging tree 𝒯𝑘 for some 𝑘 ą 2, with a list size 𝑐 ą 0 at
the root. The root node has two subtrees: the “list” one 𝒯𝑟, on the right, and
the “sampled” one 𝒯𝑙, on the left. Let 𝑢 be the length of the zero-prefix in both
nodes. Let ℓ𝑟 and ℓ𝑙 be their respective sizes, let 𝑘𝑟 ` 𝑘𝑙 “ 𝑘 be their width.

First, notice that we have 1´𝑢´ℓ𝑟 ě 0, otherwise we could reduce the value
of the parameter ℓ𝑟 without increasing the time complexity.

We use the recurrence hypothesis on 𝒯𝑙 and 𝒯𝑟, relatively to the number
of zeros 𝑢 that they have (since they contain XORs on 𝑢𝑛 bits instead of
𝑛). The right list, of size 𝑢 ℓ𝑟

𝑢 , is produced in time max
`

𝛼𝑘𝑟 p1` 2 ℓ𝑟

𝑢 q,
ℓ𝑟

𝑢

˘

𝑢 “
max p𝛼𝑘𝑟 p𝑢` 2ℓ𝑟q, ℓ𝑟q.

Since we want to sample 𝑐 times from the root node, we need to sample
𝑐` 1

2 p1´ 𝑢´ ℓ𝑟q times from the left list, which costs:

max
ˆ

𝛼𝑘𝑙

ˆ

𝑢` 2
ˆ

𝑐`
1
2 p1´ 𝑢´ ℓ𝑟q

˙˙

,

ˆ

𝑐`
1
2 p1´ 𝑢´ ℓ𝑟q

˙˙

We obtain that the time complexity exponent 𝑡 must be minimized under the
constraints:

(C1) 𝑡 ě 𝛼𝑘𝑟 p𝑢` 2ℓ𝑟q (C2) 𝑡 ě ℓ𝑟

(C3) 𝑡 ě 𝛼𝑘𝑙
p2𝑐` 1´ ℓ𝑟q (C4) 𝑡 ě 𝑐` 1

2 ´
𝑢
2 ´

ℓ𝑟

2

By combining these inequalities, we will obtain information about the shape
of the optimal trees. We combine (C1), (C4) and (C3) to eliminate 𝑢 and ℓ𝑟:

pC1q ` 2𝛼𝑘𝑟
pC4q ` 𝛼𝑘𝑟

𝛼𝑘𝑙

pC3q ðñ 𝑡

ˆ

1` 2𝛼𝑘𝑟
`

𝛼𝑘𝑟

𝛼𝑘𝑙

˙

ě 2𝛼𝑘𝑟
p2𝑐` 1q .

Then this inequality becomes:

𝑡 ě
2𝛼𝑘𝑟

1` 2𝛼𝑘𝑟
`

𝛼𝑘𝑟

𝛼𝑘𝑙

p2𝑐` 1q “ 2𝛼𝑘𝑟
𝛼𝑘𝑙

𝛼𝑘𝑙
` 𝛼𝑘𝑟

` 2𝛼𝑘𝑟
𝛼𝑘𝑙

p2𝑐` 1q .

33

We are interested in the quantity 2𝛼𝑘𝑟 𝛼𝑘𝑙

𝛼𝑘𝑙
`𝛼𝑘𝑟`2𝛼𝑘𝑟 𝛼𝑘𝑙

when 𝑘𝑙 and 𝑘𝑟 vary. We
would like to make it minimal, since this loosens the constraint on 𝑡. Thus, we
want to maximize its inverse:

1` 1
2𝛼𝑘𝑙

`
1

2𝛼𝑘𝑟

.

Since 𝛼𝑘𝑙
is a decreasing function of 𝑘𝑙, this sum becomes maximal when 𝑘𝑙 is

close to 𝑘𝑟 “ 𝑘 ´ 𝑘𝑙. More precisely: if 𝑘 is even, then 𝑘𝑟 “ 𝑘𝑙 “
𝑘
2 gives the

smallest sum possible. If 𝑘 is odd, then 𝑘𝑙 “
X

𝑘
2
\

and 𝑘𝑟 “ 𝑘´
X

𝑘
2
\

or the converse.
In both cases, if we write 𝜅 “ tlog2 𝑘u, then tlog2 t𝑘{2uu “ tlog2p𝑘 ´ t𝑘{2uqu “

𝜅´ 1. Using the recurrence hypothesis, we obtain that:

1` 1
2𝛼𝑘𝑙

`
1

2𝛼𝑘𝑟

“ 1`
p1` 𝜅´ 1q2𝜅´1 ` 𝑘 ´

X

𝑘
2
\

2𝜅
`
p1` 𝜅´ 1q2𝜅´1 `

X

𝑘
2
\

2𝜅

“
2𝜅p1` 𝜅q ` 𝑘

2𝜅
.

Thus, we can write: 𝑡 ě p2𝑐` 1q 2𝜅

2𝜅p1`𝜅q`𝑘 , which gives the expected formula
for 𝛼𝑘. The second inequality 𝑡 ě 𝑐 stems trivially from (C4). We finish the proof
of optimality by showing, also by induction on 𝑘, that the optimization of the
balanced trees 𝑇𝑘 indeed reaches this exponent.

Lemma 6. Optimizing the balanced trees 𝑇𝑘 yields the optimal exponents.

First, we focus on the case 𝑐 ď 𝛼𝑘

1´2𝛼𝑘
, where the complexity exponent is

expected to be p2𝑐 ` 1q𝛼𝑘, and we consider an even 𝑘. We choose 𝑢 “ p1 ´
3𝛼𝑘qp2𝑐` 1q and ℓ𝑟 “ 𝛼𝑘p2𝑐` 1q. This gives that 𝑐` 1

2 ´
𝑢
2 ´

ℓ𝑟

2 “ p2𝑐` 1q𝛼𝑘,
so (C4) is satisfied. Second, we have:

𝛼𝑘{2p𝑢` 2ℓ𝑟q “ p2𝑐` 1q𝛼𝑘{2p1´ 𝛼𝑘q “ p2𝑐` 1q𝛼𝑘

by definition of the 𝛼𝑘 (their formula implies 𝛼𝑘{2
1`𝛼𝑘{2

“ 𝛼𝑘). Thus (C1) is satisfied.
By a similar computation, (C3) is satisfied since 𝛼𝑘{2p2𝑐` 1´ ℓ𝑟q “ 𝛼𝑘p2𝑐` 1q.
Finally, (C2) is trivially satisfied by our choice of ℓ𝑟.

If 𝑘 is odd, we choose

𝑢 “

ˆ

1´3𝛼𝑘 `
1

p1` 𝜅q2𝜅 ` 𝑘

˙

p2𝑐`1q and ℓ𝑟 “

ˆ

𝛼𝑘´
1

p1` 𝜅q2𝜅 ` 𝑘

˙

p2𝑐`1q .

Again, (C4) becomes an equality. (C1) is an equality as well, using the fact that
𝛼𝑘𝑟

“ 𝛼t𝑘{2u “ 𝛼p𝑘´1q{2. Indeed, we have:

𝛼𝑘𝑟 p𝑢` 2ℓ𝑟q “ 𝛼p𝑘´1q{2

ˆ

1´ 𝛼𝑘 ´
1

p1` 𝜅q2𝜅 ` 𝑘

˙

“ p2𝑐` 1q 2𝜅´1

𝜅2𝜅´1 ` p𝑘 ´ 1q{2

ˆ

2𝜅p1` 𝜅q ` 𝑘 ´ 2𝜅 ´ 1
p1` 𝜅q2𝜅 ` 𝑘

˙

“ p2𝑐` 1q𝛼𝑘 .

34

The constraints (C2) and (C3) become strict inequalities, but they are also
satisfied.

When 𝑐 ě 𝛼𝑘

1´2𝛼𝑘
, all the merges become classical. The only quantum opera-

tions remaining are the Grover searches in some newly inserted leaves.

C Proof of Optimality in the Circuit Model

ℒ0
0, k = 5

ℓ0
0 “ 0, 𝑢0

0 “ 1
𝑡0
0 “

40
129

ℒ1
1, k = 2

ℓ1
1 “

17
129 , 𝑢1

1 “
22
43

𝑡1
1 “

23
129

ℒ2
3, k = 1

ℓ2
3 “

20
129 , 𝑢2

3 “
40

129
𝑡2
3 “

20
129

ℒ2
2, k = 1

ℓ2
2 “

23
129 , 𝑢2

2 “
40

129
𝑡2
2 “

20
129

ℒ1
0, k = 3

ℓ1
0 “

46
129 , 𝑢1

0 “
22
43

𝑡1
0 “

17
129

ℒ2
1, k = 1

ℓ2
1 “

16
129 , 𝑢2

1 “
16
43

𝑡2
1 “

8
43

ℒ2
0, k = 2

ℓ2
0 “

16
43 , 𝑢2

0 “
16
43

𝑡2
0 “

16
129

ℒ3
1, k = 1

ℓ3
1 “

16
129 , 𝑢3

1 “
32

129
𝑡3
1 “

16
129

ℒ3
0, k = 1

ℓ3
0 “

16
43 , 𝑢3

0 “
32

129
𝑡3
0 “

16
129

Fig. 8. Optimal 5-XOR merging tree in the circuit model.

In the circuit model, we found that our new definition of merging trees allowed
to reduce the exponents for 𝑘 “ 5 and 7 that were obtained in [25]. We obtain
𝛽5 “

40
129 and 𝛽7 “

15
53 instead of 14

45 and 2
7 respectively. The details are given

in Figure 8 and Figure 9. For other values of 𝑘, our results coincide with [25]
and we prove Theorem 4:

For any integer 𝑘 ě 8 and 𝑐 ą 0, the best quantum merging procedure
without qRAM that samples 2𝑐𝑛 times a 𝑘-XOR on 𝑛 bits has a time
complexity exponent max p𝛽𝑘p1` 𝑐q, 𝑐q, where:

𝛽𝑘 “

" 1
𝜅`1 if 𝑘 ă 2𝜅 ` 2𝜅´1

2
2𝜅`3 if 𝑘 ě 2𝜅 ` 2𝜅´1

And when 𝑘 ě 8, this procedure samples classically.

Proof. We prove this by induction on 𝑘. For small values of 𝑘, the experimental
results give us the optimal trees. We consider a merging tree 𝒯𝑘 for 𝑘 ě 8, with
a list size 𝑐 ą 0 at the root. We use the same notations as in Section B, and
introduce 𝑘𝑙, 𝑘𝑟, 𝛽𝑘𝑙

, 𝛽𝑘𝑟
and the variables 𝑢, ℓ𝑟.

For 𝑘 ď 7, we notice that the exponent is always at least maxp𝛽𝑘p1 ` 𝑐q, 𝑐q
(it will lie somewhere between 𝛽𝑘p1 ` 𝑐q and 𝛽𝑘p1 ` 2𝑐q). Having `𝑐 instead

35

ℒ0
0, k = 7

ℓ0
0 “ 0, 𝑢0

0 “ 1
𝑡0
0 “

15
53

ℒ1
1, k = 4

ℓ1
1 “

11
53 , 𝑢1

1 “
34
53

𝑡1
1 “

4
53

ℒ2
3, k = 2

ℓ2
3 “

15
53 , 𝑢2

3 “
15
53

𝑡2
3 “ 0

ℒ3
7, k = 1

ℓ3
7 “

15
53 , 𝑢3

7 “ 0
𝑡3
7 “ 0

ℒ3
6, k = 1

ℓ3
6 “

15
53 , 𝑢3

6 “ 0
𝑡3
6 “ 0

ℒ2
2, k = 2

ℓ2
2 “

15
53 , 𝑢2

2 “
15
53

𝑡2
2 “ 0

ℒ3
5, k = 1

ℓ3
5 “

15
53 , 𝑢3

5 “ 0
𝑡3
5 “ 0

ℒ3
4, k = 1

ℓ3
4 “

15
53 , 𝑢3

4 “ 0
𝑡3
4 “ 0

ℒ1
0, k = 3

ℓ1
0 “

8
53 , 𝑢1

0 “
34
53

𝑡1
0 “

11
53

ℒ2
1, k = 1

ℓ2
1 “

6
53 , 𝑢2

1 “
18
53

𝑡2
1 “

9
53

ℒ2
0, k = 2

ℓ2
0 “

18
53 , 𝑢2

0 “
18
53

𝑡2
0 “

6
53

ℒ3
1, k = 1

ℓ3
1 “

6
53 , 𝑢3

1 “
12
53

𝑡3
1 “

6
53

ℒ3
0, k = 1

ℓ3
0 “

18
53 , 𝑢3

0 “
12
53

𝑡3
0 “

6
53

Fig. 9. Optimal 7-XOR merging tree in the circuit model.

of `2𝑐 comes from the use of a classical merging at the root. Once we know
that the merge is classical, we can deduce easily that both subtrees must be
of similar shapes, hence 𝑘ℓ “

X

𝑘
2
\

and 𝑘𝑟 “
P

𝑘
2
T

or the converse. Then we can
use the recurrence hypothesis easily: the two subtrees have the same complexity,
which depends on the case for 𝑘. If 𝑘 ă 2𝜅 ` 2𝜅´1, then

X

𝑘
2
\

ă 2𝜅´1 ` 2𝜅´2; and
conversely, if 𝑘 ě 2𝜅 ` 2𝜅´1, then

X

𝑘
2
\

ě 2𝜅´1 ` 2𝜅´2.
In order to prove that the root merge is classical, let us assume that it is

quantum instead. We use the recurrence hypothesis for both subtrees. Although
the actual optimal merging trees do not allow to sample quantumly, we suppose
that they do. Thus, sampling 𝑐` 1

2 p1´ 𝑢´ ℓ𝑟q times from the left child is done
in time maxp𝑐` 1

2 p1´𝑢´ ℓ𝑟q, 𝛽𝑘𝑙

`

𝑢` 𝑐` 1
2 p1´ 𝑢´ ℓ𝑟q

˘

q. We also do the same
number of QRACM emulations, in time ℓ𝑟 each. With the right child, we have
at least maxp𝛽𝑘𝑟

p𝑢` ℓ𝑟q, ℓ𝑟q (notice that this is not tight for small 𝑘𝑟). Let 𝑡 be
the time exponent, then we have the constraints:

(C1) 𝑡 ě 𝛽𝑘𝑟
p𝑢` ℓ𝑟q (C2) 𝑡 ě

𝛽𝑘𝑙

2 p2𝑐` 1` 𝑢´ ℓ𝑟q

(C3) 𝑡 ě 1
2 p2𝑐` 1´ 𝑢` ℓ𝑟q

By combining (C2) and (C3), we obtain:
ˆ

2
𝛽𝑘𝑙

` 2
˙

𝑡 ě 2p2𝑐` 1q ùñ 𝑡 ě
𝛽𝑘𝑙

1` 𝛽𝑘𝑙

p2𝑐` 1q “ 𝛽2𝑘𝑙
p2𝑐` 1q

where the last equality follows by definition of the 𝛽𝑖. But since 𝑡 ď 𝛽𝑘´1p𝑐` 1q,
we obtain that 𝛽𝑘´1 ě 𝛽2𝑘𝑙

ùñ 2𝑘𝑙 ě 𝑘 ´ 1 ùñ 𝑘𝑙 ě t𝑘{2u.
Furthermore, at the optimal point we expect:
𝛽𝑘𝑙

2 p2𝑐` 1` 𝑢´ ℓ𝑟q “
1
2 p2𝑐` 1´ 𝑢` ℓ𝑟q ùñ 𝑢 “ ℓ𝑟 `

𝛽𝑘𝑙
´ 1

𝛽𝑘𝑙
` 1 p2𝑐` 1q .

36

Next, we remark that an algorithm in the circuit model should cost at least as
much as in the QRACM model, so we introduce:

pC4q 𝑡 ě 𝛼𝑘𝑟 p𝑢` 2ℓ𝑟q ùñ 𝑡 ě 𝛼𝑘𝑟

ˆ

3ℓ𝑟 `
𝛽𝑘𝑙
´ 1

𝛽𝑘𝑙
` 1 p2𝑐` 1q

˙

.

Since 𝑢 ě 0, we should have ℓ𝑟 ě
1´𝛽𝑘𝑙

𝛽𝑘𝑙
`1 p2𝑐`1q. But then we find 𝑡 ě 2𝛼𝑘𝑟

𝛽𝑘𝑙
´1

𝛽𝑘𝑙
`1 p2𝑐`

1q.
Since we have 𝑘𝑙 ě t𝑘{2u, at the same time, we should have 𝑘𝑟 ď r𝑘{2s so 𝑘𝑟 ď

𝑘𝑙`1 and 𝛼𝑘𝑟 ě 𝛼𝑘𝑙`1. This inequality becomes 𝑡 ě 2𝛼𝑘𝑙`1
1´𝛽𝑘𝑙

𝛽𝑘𝑙
`1 p2𝑐`1q. A quick

computation of the first values of 𝛼𝑖 and 𝛽𝑖 shows that for 𝑘𝑙 ě 15, 2𝛼𝑘𝑙`1
1´𝛽𝑘𝑙

𝛽𝑘𝑙
`1 ě

𝛽𝑘𝑙`1. In other words, while small values of 𝑘 may benefit from using a quantum
search at the root of the tree (and this is indeed the case), for a general 𝑘, the
root node is a classical merge between two classically stored lists.

Again, we can verify that the balanced trees 𝑇𝑘 give the optimal results for
𝑘 ě 8.

D Proof of Optimality for Single-solution k-XOR

We now prove Theorem 5. More precisely, we will prove the following result. It
implies the formula for the optimal complexity and the shape of the optimal
trees that we gave.

Theorem 9. For any 𝑘, the optimal time 𝑡 for the Single-solution 𝑘-XOR prob-
lem, with our merging tree framework, is given by:

𝑡 “ min
𝑘1,𝑘2PN2,𝑘1`𝑘2ď𝑘

ˆ

max
ˆ

𝑘2

𝑘
,

1
2

ˆ

1´ 𝑘1

𝑘

˙

,
1
4

ˆ

1` 𝑘1 ´ 𝑘2

𝑘

˙˙˙

(13)

and can thus be obtained by solving a simple mixed integer linear program.

In Section D.1, we give the definition of extended merging trees. In Sec-
tion D.2, we show how this definition leads to optimal algorithms of a very
simple shape, with a constant number of parameters to optimize. We reduce the
constraints further in Section D.3 and finish the proof of the theorem.

D.1 Definition of Extended Merging Trees

Structurally, we still consider binary trees as in Definition 2. We adopt the same
numbering of nodes and keep the variables 𝑘𝑗

𝑖 , 𝑢𝑗
𝑖 , ℓ𝑗

𝑖 that determine the shape
of the list ℒ𝑗

𝑖 . Thus, the tree still represents an appropriate merging operation.
We introduce a new variable 𝑟 for repetitions. We cannot expect the tree to

always contain a 𝑘-XOR; instead, we will repeat the computation until we find
one. That is, do another quantum search. Constraints 3 and 2 remain unchanged,
but we adapt the constraint for the root node:

37

Constraint 5 (Root node). At the root node: 𝑢0
0 ` 𝑟 “ 1 and ℓ0

0 “ 0.

Next, we add the new repetition variables 𝑟𝑗 . On most nodes we set 𝑟 “ 0,
but we single out the right subtrees on the main branch, as depicted on Figure 10.
Thus, there is only one non-zero repetition variable at each level, which is why
we simply number them level by level.

Root
𝑘 “ 𝑘1

1 ` 𝑘2
1 ` 𝑘3

1 ` 1

Subtree 𝒯 1

𝑘1
1, 𝑟1

1

ℒ1
0

𝑘 “ 𝑘2
1 ` 𝑘3

1 ` 1

Subtree 𝒯 2

𝑘2
1, 𝑟2

1

ℒ2
0

𝑘 “ 𝑘3
1 ` 1

Subtree 𝒯 3

𝑘3
1, 𝑟3

1

ℒ3
0

𝑘 “ 1

Fig. 10. Main branch of a merging tree and all the subtrees that are attached to it.

For each subtree 𝒯 𝑗 , 𝑟𝑗 represents the number of times it must be recom-
puted. Each computation should produce a new, independent list of elements,
possibly with a new prefix.

Constraint 6 (Repetitions). We have: 𝑟 “
ř

𝑗 𝑟𝑗, and for each subtree 𝒯 𝑗 of
width 𝑘𝑗: 𝑟 ď

𝑘𝑗

𝑘 ´ ℓ𝑗 , where ℓ𝑗 is the size of the list at the root of 𝒯 𝑗.

We still denote by 𝑡𝑗
𝑖 the sampling time of a node. Constraint 4 still applies,

in its simplest form, since we use the QRAQM model only.

Constraint 7 (Sampling). Let 𝑇 𝑗
𝑖 be a node in the tree, either an S-node or an

L-node.

‚ if 𝑇 𝑗
𝑖 is a leaf, 𝑡𝑗

𝑖 “
𝑢𝑗

𝑖

2 .
‚ otherwise, 𝑇 𝑗

𝑖 has an S-child 𝑆𝑗`1
2𝑖 and an L-child 𝑆𝑗`1

2𝑖`1, and:

𝑡𝑗
𝑖 “ 𝑡𝑗`1

2𝑖 `
1
2 maxp𝑢𝑗

𝑖 ´ 𝑢𝑗`1
2𝑖 ´ ℓ𝑗`1

2𝑖`1, 0q . (14)

However, the total time complexity will be computed differently. Focusing on
the subtrees 𝒯 𝑗 of the main branch, we let 𝑡𝑗 denote their respective complete
time complexities, that is, the time to build the whole subtree with quantum
merging.

38

Constraint 8 (Subtrees). Let 𝒯 𝑗 be the right subtree at level 𝑖. Then:

𝑡𝑗 “ max
ˆ

max
List nodes of 𝒯 𝑗

p𝑡𝑗
𝑖 ` ℓ𝑗

𝑖 q

˙

, (15)

where the sum is over all list nodes of 𝒯 𝑗, including its own root (since this is a
list node itself).

Then, we can now define the formulas for the time and memory complexities.

Definition 5. Let 𝒯 be an extended 𝑘-merging tree. Let 𝒯 1, . . . , 𝒯 𝑝 be the right
subtrees of the main branch. We define Tq p𝒯 q, Tc p𝒯 q and M p𝒯 q as:

M p𝒯 q “ max
List nodes

pℓ𝑗
𝑖 q

Tc p𝒯 q “ max
ˆ

𝑟 ` 𝑡0
0, 𝑟1 ` 𝑡1, 𝑟1 ` 𝑟2 ` 𝑡2, . . . ,

˜

𝑗
ÿ

𝑗1“1
𝑟𝑗1

¸

` 𝑡𝑗 , . . . , 𝑟 ` 𝑡𝑝

˙

Tq p𝒯 q “ max
ˆ

𝑟

2 ` 𝑡0
0,

𝑟1

2 ` 𝑡1,
𝑟1 ` 𝑟2

2 ` 𝑡2, . . . ,
1
2

˜

𝑗
ÿ

𝑗1“1
𝑟𝑗1

¸

` 𝑡𝑗 , . . . ,
𝑟

2 ` 𝑡𝑝

˙

The idea of this definition is that the algorithm performs 𝑝 nested loops,
one for each subtree of the main branch. We choose to nest from level 1 to 𝑝,
as in Algorithm 1.7, with the idea that bigger and more costly subtrees may
be attached to nodes at lower levels. We will see however that in the optimal
algorithm for Single-solution 𝑘-XOR, all these levels collapse into a single one.

We can see that, with our definitions of 𝑡𝑗 , 𝑡0, 𝑟𝑗 and 𝑟, the time complexity
of Algorithm 1.7, up to a polynomial factor, is going to be:

2𝑛𝑟1

¨

˚

˝

2𝑛𝑡1
loomoon

𝒯 1

`2𝑛𝑟2

¨

˚

˝

2𝑛𝑡2
loomoon

𝒯 2

` . . .` 2𝑛𝑟𝑝

¨

˚

˝

2𝑛𝑡𝑝
loomoon

𝒯 𝑝

` 2𝑛𝑡0
loomoon

Sample

˛

‹

‚

. . .

˛

‹

‚

˛

‹

‚

(16)

where we recover the equation of Definition 5. In the quantum setting, all these
loops become nested quantum searches.

Remark 5 (Further generalizations). In full generality, one could add repetition
loops to any list node in the tree, and put them in any order that remains
coherent with the tree. Except for the specific example of Remark 4, it does not
seem to bring any improvement at all.

Correspondence between Trees and Algorithms. Similarly as in Section 4, to any
extended merging tree corresponds a classical (respectively quantum) extended
merging algorithm that has the wanted complexity.

Theorem 10 (Quantum extended merging strategies). Let 𝒯𝑘 be an ex-
tended 𝑘-merging tree and Tq p𝒯𝑘q computed as in Definition 5. Then there exists

39

Algorithm 1.7 Generic algorithm defined by an extended merging tree.
Input: oracle access to ℎ : t0, 1u𝑛{𝑘 Ñ t0, 1u𝑛

Output: 𝑘-XOR solution tuple
1: for all Choices of 𝒯 1 do

Ź Either defined with a change of prefix, or a new choice of elements.
2: Build 𝒯 1

3: for all Choices of 𝒯 2 do
4: Build 𝒯 2

. . .
5: for all Choices of 𝒯 𝑝 do
6: Build 𝒯 𝑝

7: Sample 𝑥 P ℒ𝑝
0 such that

8: Find a match in 𝒯 𝑝

9: Find a match in 𝒯 𝑝´1

. . .
10: Find a match in 𝒯 1

11: if this gives a complete 𝑘-XOR to zero then
12: return the solution
13: EndSample

a quantum extended merging algorithm that, given access to a quantum oracle
𝑂ℎ, finds a 𝑘-XOR.

This algorithm succeeds with constant probability. It runs in time 𝒪
`

2Tqp𝒯𝑘q𝑛
˘

,
counted in 𝑛-qubit register operations, makes the same number of queries to
𝑂ℎ. It uses a memory 𝒪

`

2Mp𝒯𝑘q𝑛
˘

, counted in 𝑛-qubit registers (QRAQM). The
constants in the 𝒪 depend on 𝑘.

Proof. We rely on Theorem 2 for the correctness of merging strategies. Each
level of quantum search builds a new subtree, as in Algorithm 1.7. The search
space itself is defined by an arbitrary prefix, either of the codomain (a merging
constraint, as in Schroeppel and Shamir’s algorithm) or of the domain (an input
sublist). A given bit-string of the search space at level 𝑗 is good if, after building
the corresponding subtree 𝒯 𝑗 , and after running the search at level 𝑗 ` 1, we
find a solution 𝑘-XOR.

Among all repetitions of the subtrees 𝒯 1, . . . , 𝒯 𝑝, only one choice shall lead
to a solution (otherwise there would be too many repetitions). We miss it if the
corresponding merging tree fails to find it; but Theorem 2 ensures a constant
probability of success.

D.2 Step 1: Reducing the Search Space

When merging, we drop many tuples. Since all possibilities must be studied in
the end, this will only create more repetitions. For example, Schroeppel and
Shamir’s algorithm requires 2𝑛{4 repetitions due to the intermediate prefix of 𝑛

4
bits. This simple fact simplifies considerably the shape of the trees.

40

Lemma 7. For any 𝑘, the optimal time complexity is reached by a tree where
all main subtrees are trivial merges: 𝒯 𝑖 has no guessed prefix, except at its root.

Proof. Let 𝒯 𝑖 be one of the subtrees of the main branch. This is a list node of
size ℓ and prefix 𝑢. Next, we assume that its children ℒ𝑠 (sampled) and ℒ𝑙 (built)
have a non-empty prefix 𝑢1. We have 𝑢1 ď 𝑢 by the constraints of merging trees.

Let 𝑟𝑙 be the number of times that ℒ𝑙 will be repeated, let 𝑟 be the additional
number of repetitions of 𝒯 𝑖. By dissociating the two, we are going to prove at
the same time that more complex repetitions loops do not bring an advantage.

We have 𝑟𝑙 ě 𝑢1 and 𝑟 ě 𝑢, and the total number of repetitions of this
subtree 𝒯 𝑖 is at least 𝑟𝑙 ` 𝑟. We will not write the total time complexity of the
algorithm, because the other subtrees and loops intervene as well, but we focus
on the terms that are related to 𝒯 𝑖:

(Some factor)
ˆ

2
𝑛𝑟𝑙

2

ˆ

Build ℒ𝑙 ` 2 𝑛𝑟
2
`

Build 𝒯 𝑖 ` (Other terms)
˘

˙˙

.

Let 𝑡𝑙 be the time to build ℒ𝑙, ℓ𝑙 its size, 𝑡𝑠 the time to sample ℒ𝑠. We rewrite
this with placeholders for the terms that will remain unchanged:

p˚q ¨

ˆ

2
𝑛p𝑟𝑙´𝑢1q`𝑛𝑢1

2

ˆ

2𝑛𝑡𝑙 ` 2 𝑛𝑟
2

ˆ

2
p𝑢´𝑢1´ℓ𝑙q𝑛

2 2𝑡𝑠𝑛 ¨ 2𝑛ℓ ` p˚q

˙˙˙

.

Now, let us simply remove the prefix condition on both ℒ𝑠 and ℒ𝑙. We want
a list ℒ𝑙 of same size as before, so in practice, we may reduce the width of its
subtree. In return, we increase the size of ℒ𝑠 so that it forms a bigger search
space.

We do not have to loop on 𝑢1 anymore, although there are 𝑟𝑙 ´ 𝑢1 ě 0
repetitions to take into account. The terms 𝑡𝑠 and 𝑡𝑙 are replaced by 𝑡1𝑠 ď 𝑡𝑠 and
𝑡1𝑙 ď 𝑡𝑙. The complexity becomes:

p˚q ¨

ˆ

2
𝑛p𝑟𝑙´𝑢1q

2

ˆ

2𝑛𝑡1𝑙 ` 2 𝑛𝑟
2

´

2
p𝑢´ℓ𝑙q𝑛

2 2𝑡1𝑠𝑛 ¨ 2𝑛ℓ ` p˚q

¯

˙˙

.

The only term that has increased here is the sampling of an element in the
root of 𝒯 𝑖. Since the prefix condition on 𝑢1 is removed, we have to iterate the
quantum search 2

p𝑢´ℓ𝑙q𝑛

2 times instead of 2
p𝑢´𝑢1´ℓ𝑙q𝑛

2 times. But this increase is
balanced with the removal of 𝑢1.

Thus, the subtrees of the main branch are very simple. Inside of them, there
are only empty prefixes, except the root. If we focus on this particular example
𝒯 𝑖, then the list child ℒ𝑙 is simply a list of unconstrained sums of elements, and
so is the sampled child ℒ𝑠.

We can also make another remark. If 𝑢 is nonzero, then it must be equal to
ℓ𝑙. Indeed, if 𝑢 was smaller, then we might as well decrease the size of ℒ𝑙 and
reduce the time complexity. But if it was bigger, we would pay a term 2p𝑢´ℓ𝑙q𝑛{2

for each element of 𝒯 𝑖 produced, in addition to the repetition term 2𝑢{2. Thus
we might as well make the root list of 𝒯 𝑖 bigger to compensate.

41

𝑘

𝒯 1, 𝑘1, 𝑟1
ℓ1, 𝑢1 “ ℓ2 “ ℓ𝑟

1

𝒯 1
𝑟

𝑘𝑟
1, ℓ𝑟

1 “ 𝑢1
No prefix

𝒯 1
𝑙

𝑘𝑙
1, ℓ𝑙

1 “ ℓ1
No prefix

𝒯 2

𝑘2, ℓ2, 𝑟2
No prefix

𝒯 3

𝑘3, ℓ3
No prefix

Fig. 11. Extended merging tree with three levels and a single non-empty prefix.

Next, we show that the main branch of this optimal tree has, actually, only
three levels. This is represented on Figure 11.

Lemma 8. For any 𝑘, the optimal time complexity is reached by a tree where
only two nodes (children of the root) have a non-empty prefix.

Proof. Let us consider a tree with four levels, with two non-trivial prefixes 𝑢1
(at level 1) and 𝑢2 (at level 2). As an illustration, we can picture a tree like
in Figure 11 but with a non-empty prefix 𝑢2 in 𝒯 2.

We have at least two repetition loops: the outer one in which we choose
𝑢1, then build 𝒯 1 (of size ℓ1), and the inner one in which we choose 𝑢2, then
build 𝒯 2 (of size ℓ2). Inside all these loops, there is a final term corresponding
to the quantum search at the root. This term contains a factor 2p𝑢1´𝑢2´ℓ1q𝑛{2

corresponding to the search of a matching element in 𝒯 1, when we try to compute
the root of the merging tree.

Similarly to the proof of Lemma 7, we will now remove the prefix 𝑢2, but keep
the size of 𝒯 2 unchanged. As a result, we have to increase the search space for
the last quantum search. The term 2p𝑢1´𝑢2´ℓ1q𝑛{2 becomes 2p𝑢1´ℓ1q𝑛{2, because
we don’t have the prefix 𝑢2 anymore. However, this is balanced by the removal
of 2𝑢2𝑛{2 quantum search iterates.

D.3 Step 2: Solving the Constraints

We are now considering the simple tree shape of Figure 11. There are only a
constant numbers of variables, some of which are integer: the shape of the tree
is determined by 𝑘3, 𝑘2, 𝑘𝑙

1, 𝑘𝑟
1. The other parameters are ℓ3, ℓ2, ℓ1 and 𝑢1 “ ℓ2

by optimization.
Overall, the structure of the corresponding algorithm is similar to Algo-

rithm 1.4. Let 𝑡 be its time complexity.
Computing products of lists (i.e., nodes at level 2 in the tree) outside or

inside the repetition loops makes a change in the rewriting of the constraints.
We find that it is better to create them outside, possibly taking sublists of them
afterwards if necessary.

42

There are possibly two repetition loops, with variables 𝑟1 and 𝑟2:

𝑟1 “ 𝑢1 `
𝑘𝑙

1
𝑘
´ ℓ1 `

𝑘𝑟
1

𝑘
´ ℓ2 “

𝑘𝑙
1

𝑘
´ ℓ1 `

𝑘𝑟
1

𝑘
and 𝑟2 “

𝑘2

𝑘
´ ℓ2 , (17)

and 𝑡 satisfies the constraints:

𝑡 ě max
´

𝑘2
𝑘 ,

𝑘𝑙
1

𝑘

¯

Computation of product lists
𝑘𝑟

1
𝑘 ě ℓ2,

𝑘𝑙
1

𝑘 ě ℓ1, 𝑘2
𝑘 ě ℓ2 Limitations on the list sizes

𝑡 ě 𝑟1
2 ` ℓ1 Total workload of 𝒯 1

𝑡 ě 𝑟1
2 `

𝑟2
2 `

1
2
`

𝑘3
𝑘

˘

Final search in 𝒯 3

which gives:

(C1) 𝑡 ě max
ˆ

𝑘2

𝑘
,

𝑘1 ´ 𝑘𝑟
1

𝑘

˙

(C2) 𝑘𝑟
1

𝑘
ě ℓ2,

𝑘1 ´ 𝑘𝑟
1

𝑘
ě ℓ1,

𝑘2

𝑘
ě ℓ2

(C3) 𝑡 ě
1
2

ˆ

𝑘𝑙
1

𝑘
´ ℓ1 `

𝑘𝑟
1

𝑘

˙

` ℓ1 ùñ 𝑡 ě
1
2

ˆ

𝑘1

𝑘
` ℓ1

˙

(C4) 𝑡 ě
1
2 p1´ ℓ1 ´ ℓ2q

We will now write a smaller set of constraints without the variables ℓ1 and ℓ2, and
show that they are sufficient. From (C4), (C2) and (C3) we obtain: 4𝑡 ě 1`𝑘1´𝑘2

𝑘 .
We also keep 𝑡 ě 𝑘2

𝑘 . From (C4) and (C2) we obtain: 2𝑡 ě 1´ ℓ1 ´ ℓ2 ě 1´ 𝑘1
𝑘 .

We now show that these constraints are necessary and sufficient: given a
choice of 𝑘1, 𝑘2, we exhibit merging trees that reach the prescribed complexity.
These trees are those given in Theorem 5.

Lemma 9. Let 𝑘1, 𝑘2 be such that 𝑘1 ` 𝑘2 ď 𝑘. Then there exists an extended
merging tree algorithm solving Single-solution 𝑘-XOR in time (exponent):

𝑡 “ max
ˆ

𝑘2

𝑘
,

1
2

ˆ

1´ 𝑘1

𝑘

˙

,
1
4

ˆ

1` 𝑘1 ´ 𝑘2

𝑘

˙˙

. (18)

Proof. First of all, consider the case 𝑘1 ď 𝑘2, i.e., the subtree at level 2 is
bigger than the subtree at level 1. This implies in particular 𝑡 ě 𝑘2

𝑘 ě 𝑘1
𝑘 and

𝑡 ě 1
2 p1 ´

𝑘1
𝑘 q, thus 𝑡 ě 1

3 : this is unlikely to be a good parameter choice. In
that case, we must find 𝑡 ď max

`

𝑘2
𝑘 , 1

2
`

1´ 𝑘1
𝑘

˘˘

. This is easily obtained with a
trivial tree, that has only two subtrees: one is obtained by the product of 𝑘1 lists
(time 𝑘1

𝑘 ď 𝑘2
𝑘), and the other is an exhaustive search over all 𝑘 ´ 𝑘1 remaining

lists, in time 1
2
`

1´ 𝑘1
𝑘

˘

. There are no repetitions. Notice that this is actually
the optimal strategy for 𝑘 “ 3, 6 with 𝑘1 “ 𝑘2 “

𝑘
3 .

So we can now suppose that 𝑘1 ě 𝑘2. We notice that:

1
2

ˆ

1´ 𝑘1

𝑘

˙

ě
1
4

ˆ

1` 𝑘1 ´ 𝑘2

𝑘

˙

ðñ 1´ 2𝑘1

𝑘
ě

𝑘1 ´ 𝑘2

𝑘
ðñ 𝑘 ě 3𝑘1 ´ 𝑘2 .

43

𝑘

𝒯1, 𝑘1
ℓ1 “

𝑘´𝑘1´𝑘2
2𝑘 , 𝑢1 “ ℓ2 “

𝑘2
𝑘

ℓ𝑟
1 “

𝑘2
𝑘

No prefix
ℓ𝑙

1 “
𝑘´𝑘1´𝑘2

2𝑘
No prefix

𝒯2, 𝑘2
ℓ2 “

𝑘2
𝑘

No prefix

𝒯3
𝑘3 “ 𝑘 ´ 𝑘1 ´ 𝑘2

Fig. 12. Tree of Lemma 9.

So we next focus on the case 𝑘 ď 3𝑘1´ 𝑘2 and we try to obtain a complexity
𝑡 ď max

`

𝑘2
𝑘 , 1

4
`

1` 𝑘1´𝑘2
𝑘

˘˘

. The merging tree that we use is drawn on Figure 12.
We attach two subtrees of width 𝑘2 and 𝑘1 to the main branch, there remains a
subtree of width 𝑘´ 𝑘1 ´ 𝑘2 to explore exhaustively. We build the subtree 𝒯2 in
time 𝑘2

𝑘 , externally, by constructing the product of 𝑘2 lists. Then we repeat 𝒯1,
which builds a list of size ℓ1 “

𝑘´𝑘1´𝑘2
2𝑘 .

With our choice of parameters, we have to iterate:

1
2

ˆ

𝑘1

𝑘
´ ℓ1

˙

“
1
4𝑘
p2𝑘1 ´ 𝑘 ` 𝑘1 ` 𝑘2q “

1
4𝑘
p3𝑘1 ` 𝑘2 ´ 𝑘q

times, which is positive, since 𝑘 ď 3𝑘1 ´ 𝑘2 ď 3𝑘1 ` 𝑘2. In each iteration, we
build the subtree 𝒯1 in time ℓ1 and exhaust the subtree 𝒯3 with quantum search,
with the same time. Thus, the total time complexity is given by:

𝑡 “ max
ˆ

𝑘2

𝑘
,

1
2

ˆ

𝑘1

𝑘
` ℓ1

˙˙

“ max
ˆ

𝑘2

𝑘
,

1
4

ˆ

1` 𝑘1 ´ 𝑘2

𝑘

˙˙

.

Finally, in the case 3𝑘1`𝑘2 ď 𝑘, we notice that 3𝑘1 ď 𝑘 implies 1
2
`

1´ 𝑘1
𝑘

˘

ě
1
3 , as it happened before for the case 𝑘1 ď 𝑘2. Further, 1

2
`

1´ 𝑘1
𝑘

˘

ě 𝑘1
𝑘 . The

same strategy works: we build an intermediate subtree with a product of 𝑘1 lists,
in time 𝑘1

𝑘 , then look for a collision on it with a single quantum search in the
product of the 𝑘 ´ 𝑘1 remaining lists.

Thus, regardless the choice of 𝑘1 and 𝑘2, we can meet the time complexity
given by Equation (18).

Finally, we observe that the minimization over 𝑘1, 𝑘2 of this quantity gives
the formula of 𝛾𝑘 of Theorem 5, finishing the proof of the theorem:

min
𝑘1,𝑘2PN2

𝑘1`𝑘2ď𝑘

max
ˆ

𝑘2

𝑘
,

1
2

ˆ

1´𝑘1

𝑘

˙

,
1
4

ˆ

1` 𝑘1 ´ 𝑘2

𝑘

˙˙

“
𝑘 `

X

𝑘`6
7
\

`
X

𝑘`1
7
\

´
X

𝑘
7
\

4𝑘
.

(19)

44

And the minimum can be reached by choosing:
#

𝑘1 “
X 3𝑘

7
T

𝑘2 “
X 2𝑘

7
\

´
X

𝑘´1
7
\

`
X

𝑘´2
7
\

where
X 3𝑘

7
T

is the integer that is closest to 3𝑘
7 . We have obtained the tree structure

given in Figure 6 and Algorithm 1.4 and proven its optimality among merging
trees.

45

	Improved Quantum Algorithms for the k-XOR Problem

