
Blindly Follow:
SITS CRT and FHE for DCLSMPC of DUFSM

(Preliminary Version)

Shlomi Dolev and Stav Doolman

Department of Computer Science, Ben-Gurion University of the Negev, Israel

Abstract. A Statistical Information Theoretic Secure (SITS) system
utilizing the Chinese Remainder Theorem (CRT), coupled with Fully Ho-
momorphic Encryption (FHE) for Distributed Communication-less Se-
cure Multiparty Computation (DCLSMPC) of any Distributed Unknown
Finite State Machine (DUFSM) is presented. Namely, secret shares of the
input(s) and output(s) are passed to/from the computing parties, while
there is no communication between them throughout the computation.
We propose a novel approach of transition table representation and poly-
nomial representation for arithmetic circuits evaluation, joined with a
CRT secret sharing scheme and FHE to achieve SITS communication-less
within computational secure execution of DUFSM. We address the severe
limitation of FHE implementation over a single server to cope with a ma-
licious or Byzantine server. We use several distributed memory-efficient
solutions that are significantly better than the majority vote in replicated
state machines, where each participant maintains an FHE replica. A Dis-
tributed Unknown Finite State Machine (DUFSM) is achieved when the
transition table is secret shared or when the (possible zero value) coeffi-
cients of the polynomial are secret shared, implying communication-less
SMPC of an unknown finite state machine.

Keywords: Secure Multiparty Computation, Replicated State Machine,
Chinese Remainder Theorem

1 Introduction

The processing of encrypted information where the computation program is un-
known is an important task that can be solved in a distributed fashion using
communication among several participants, e.g., [14]. Unfortunately, this com-
munication reveals the participants to each other and requires a non-negligible
overhead concerning the communication between them. Computational secure
communication-less approaches can also be suggested, either for the case of
known automaton and global inputs, e.g., [12] or for the case of computational
security alone. Here, we present the first communication-less solution that is sta-
tistical information-theoretical secure, with (FHE-based) computational secure
scheme.

A major contribution to the area of distributed computing is the replicated
state machine introduced by Lamport [24]. The implementation of such a state
machine is usually based on a distributed consensus [23].

2 Shlomi Dolev and Stav Doolman

We propose a sharing scheme that is based on a secret shared transition
function or a unique polynomial over a finite ring for implementing e.g., Boolean
function, state machine transition, control of RAM, or control of Turing Machine.
Specifically, for any state machine, this polynomial encodes the information of
all the transitions from a state x and input y to the next state z. The information
may also contain the encoding of the output. Once the polynomial is adjusted,
it is described by an arithmetic circuit that can be evaluated distributively by
the SMPC participants. Each participant evaluates the arithmetic circuit using
the CRT SITS secret sharing scheme where the shares are FHE encrypted. Con-
sequently, the possibility for (value secured) additions and multiplications with
no communication is achieved. In the scope of this polynomial representation of
the transition function, the actual computed function is kept private by using
secret shares for all (zero and non-zero) coefficients of the polynomial, revealing
only a bound on the maximal degree k of the polynomial.

The CRT representation allows independent additions and multiplications of
the respective components of two (or more) numbers over a finite ring. In that
manner, we can compute arithmetic circuits in a distributed fashion, where each
participant performs calculations over a finite ring defined by the (relatively)
prime number they are in charge of. Thus, we accomplish a distributed poly-
nomial evaluation, where several participants do not need to communicate with
each other.

The transition function of a state machine may be represented by a bi-variate
polynomial from the current state and the input to the next state (and output).
Namely, a bi-variate polynomial can be defined by the desired points that define
the transition from the current state (x) and the input (y) to the next state (z),
which may encode the output too. Alternatively, a univariate polynomial can be
defined by using the most significant digits of (x + y) to encode the state (x)
and the least significant digits, to encode the input (y). The output state (z)
occupies the same digits of (x) that serve to encode the next state, while the rest
of the digits in (z) are zeros. Thus, the next input can be added to the previous
result and be used in computing the next transition, and so forth.

By using our suggested scheme, one can implement a more efficient version of
the famous replicated state machine (and Blockchain) with only a logarithmic-
sized memory compared to the legacy replicated state machine.

Naturally, several known error correction techniques that rely on features
of the Chinese Remainder Theorem (depicted in [20, 21]) can eliminate the
influence of Byzantine participants. These schemes are not designed to preserve
the fully homomorphic property of CRT secret sharing, just as the CRT threshold
secret sharing does not support additions and multiplications as the values can
exceed the global maximal value the (original, with no additional error-correcting
values) mutual primes can represent. Still, when using FHE, a computation can
be designed to never exceed this maximal value and be error corrected. Note
that FHE has a significant complications when executed over a single server,
as the server can be Byzantine, not following the algorithm it should execute

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 3

on the encrypted values, thus, a distributed secure multiparty computation is
preferred.

Related Work and Our Contribution. Recently, extensive work on com-
putationally secure communication-less computation has been done, see [15, 9]
and in references therein. However, the computation security is only based on
the belief that one-way functions exist [11]. Several other works in the scope of
perfect information-theoretically secure schemes were presented in [14, 16, 13, 5,
17]. Unfortunately, neither of them can compute all possible functions, and they
require either communication or a need for exponential resources to maintain
continuous functioning. Function secret sharing (FSS) is described in-depth in
[8], and provides an efficient solution for MPC. However, the suggested scheme
relies on secret keys and random masks that are applied to the inputs. While
both techniques reflect computational difficulty, there is no backup in the form
of SITS, in case the secret key is revealed or the Pseudo Random Generator
(PRNG) is not sufficient.

In this paper, we present an alternative to a replicated state machine with
no communication, while improving the communication overhead of the secret
shared random-access machine presented in [18] and the secret shared Turing
machine presented in [14].

This SITS within FHE approach can also be used in implementations for
distributed, efficient, databases [3], Accumulating Automata with no commu-
nication [16] or even for ALU operations in the communication-less RAM im-
plementation [18]. Another important application is in the scope of SMPC of
machine learning queries [10].
Paper Organization. The rest of the paper starts with background and set-
tings in the next section. Then in Sec. 3, we demonstrate the use of the CRT
to implement communication-less DUFSM that uses logarithmic memory with
relation to an equivalent replicated state machine, where each replica receives
the full input and executes a globally known transition-function/program. We
show that our CRT implementation is SITS, and can further prevent information
leakage by employing FHE for executing additions and multiplications. In Sec.
4 we present an implementation of DUFSM based on polynomial representa-
tion, where the transition function is encoded by a polynomial and kept private,
revealing only a bound on the polynomial maximal degree. The implemented
FSM is private in terms of SITS within FHE. Demonstration of the polynomial-
based FSM, in the scope of a string matching problem, appears in Sec. 5. Lastly,
concluding remarks are found in Sec. 6 and more details appear in Appendix A.

2 Background and Settings

The focus of this section is to briefly review some of the key topics that serve as
the base of this work, see Appendix A for comprehensive details.

CRT Arithmetic. Let p1 < p2 < . . . < pk where pi are relatively prime and a
set of congruence equations a ≡ ai (mod pi) for 1 ≤ i ≤ k for k > 0 and where
ai are remainders. The original form of the Chinese Remainder Theorem (CRT)

4 Shlomi Dolev and Stav Doolman

states that this given set of congruence equations always has one and exactly
one solution modulo

∏k
1 pi.

The most important feature of the Chinese Remainder Theorem for our in-
terest, is the possibility of adding and multiplying two vectors of congruence
values independently. Namely, for performing fully homomorphic (addition and
multiplication) operations on CRT-based secret shares. Unlike perfectly secure
secret sharing (such as the schemes of Shamir [28] and Blakley [6]), CRT-based
secret sharing that supports homomorphic additions and multiplications (un-
like [2]) is only statistically secured. We use FHE to computationally mitigate
information leakage from the individual CRT share.

Secure Multiparty Computation. The effectiveness of a joint secure opera-
tion is detailed in [22], introducing a series of arithmetic calculations, done over
a finite field. The solution is perfect information-theoretic secure but requires
communication among the participants to support polynomial degree reduction
after a multiplication. Our CRT-based Secure Multiparty Computation is only
statistical information-theoretic secure, but at the same time uses significantly
less memory per participant and enables communication-less operations.

As mentioned in the CRT overview, the calculation results of each participant
can be collected and recovered into a unique result in ZK where K =

∏k
i=1 pi.

The task of reducing all the results into a single solution can be performed by
some known algorithms, such as Garner’s Algorithm [25], which we explicitly
use in our proposed algorithms.

Consider two n-bit numbers x, y that are multiplied distributively among k
parties. In this case, the series of calculations is only 1-multiplication-long, so the
result is bounded by 22n. We first find k primes whose product is large enough
(line 4), so the CRT recovery is possible. Then, we distribute all k primes to the
parties such that every party holds a different prime modulus (line 11). In this
example, we collect the calculation results synchronously. However, in a different
scenario, we might do it otherwise. Ultimately, we recover actual multiplication
results using Garner’s algorithm (line 13).

Example 1. The square of x = 14 can be distributively computed by a group of
3 parties. Each party calculates the multiplication of x with itself such that:

x (mod 5) = 4

x (mod 7) = 0

x (mod 11) = 3

⇒
4 · 4 ≡ 1 (mod 5)

0 · 0 ≡ 0 (mod 7)

3 · 3 ≡ 9 (mod 11)

⇒ x · x ≡ 196 (mod 385) (1)

Indeed, the result of Garner’s algorithm is y = 196 ∈ Z/385Z where:

y = 196 = 1 + 4 · 5 + 5 · (5 · 7) (2)

Which satisfies the following as expected:

y ≡ 1 (mod 5), y ≡ 0 (mod 7), y ≡ 9 (mod 11), (3)

We note that the result of the calculation did not exceed the size of Z/385Z.
Specifically, in the case the result of a calculation does overflow the ring bounds

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 5

Algorithm 1: Distributed Multiplication Example
input : integers x, y, number of parties n
output: the result of x · y

1 K ← 2|x|+|y| ; // define highest bound

// find k prime numbers whose product is greater than 22n

2 for bound← 2 to K do
3 primes = findPrimes(k, bound) ; // find k primes up to bound
4 if production(primes) > K then
5 break;

6 end
7 bound← bound + k ; // try find primes with higher bound

8 end

9 for i← 1 to k do
10 m← primes[i];
11 results[i]← sendParty(m, multiply, x, y) ; // x · y (mod m)

12 end

13 result← garner(primes, results);
14 return result

(the maximal product value of the moduli, 5 · 7 · 11 = 385 in this example),
we might experience an unexpected result in the recovery step. This result is
guaranteed to be the modulo reduction of the correct one in respect to the
moduli product value, thus it might still be useful. Nevertheless, this problem
can be resolved by adding more parties to the computation, or by choosing
larger primes. While both options increase the ring’s bounds, thus preventing
a calculation overflow, the first option is preferable as it has no penalty on the
total memory usage.

Therefore, in the general case where a distributed calculation is carried out
for some operator/function, one may follow the dealer-worker scheme. In this
scheme, there is a single party that is responsible for the assignment of jobs
and collection of the results while other parties, however, have no responsibility
besides the calculation itself. We denote the first party as the “dealer” in this
scheme and the other parties as “workers”. The following Alg. 2 and Alg. 3
respectively describe their procedures.

Initially, the dealer generates the appropriate primes (line 1) and distributes
them to the workers (line 5). Throughout the computation, the dealer manages a
queue that is shared with the workers in such a manner that every time an input
arrives, it is pushed to the queue (line 8) and popped in turn by the workers.
Later, we replace this method with a more complex secret sharing method. Yet,
thanks to this queue, the dealer can start and stop each worker asynchronously
(line 11), as opposed to the example before, and by that can be more efficient.
The dealer ultimately recovers the result using a recovery function of their choice
(line 13).

Unlike the dealer, the worker has a more straightforward procedure to run.
They merely receive the required parameters such as the unique modulus, the
operation to carry out, the value to begin with, and an input queue. Then,
they run indefinitely, while trying to apply the operation on every new input

6 Shlomi Dolev and Stav Doolman

Algorithm 2: Dealer Procedure
input : initial value x, an operation op, and a stream of inputs stm
output: result of op applied on x with all the inputs in stm

// generate primes for all the workers, K is chosen in advance to guarantee the
result does not overflow

1 primes← genPrimes(K);

// initialize an empty queue
2 q ← queue();

// start all workers with their modulo and the queue
3 for i← 1 to K do
4 m← primes[i];
5 workers[i]← startWorker(m, op, mod(x,m), q);

6 end

7 while hasNext(stm) do
// start pushing inputs to the queue

8 q.push(next(stm));

9 end

// stop all workers and collect their results
10 for i← 1 to K do
11 results[i]← stopWorker(workers[i]);
12 end

// recover the final result
13 return recover(primes, results)

Algorithm 3: Worker Procedure
input : modulus m, operation op, initial value x, and inputs queue q
output: result of op applied on x and all the inputs

1 while notSignaled() do
2 y ← tryPop(q);
3 x← op(x, y) (mod m);

4 end
5 return x

(line 3), until they are signaled to stop by the dealer (line 1). The operation is
always executed with respect to the unique modulus, such that there is no risk
of overflow, or exceeding the finite field by the computation. The computation’s
limit is defined by the maximal number that the CRT shares represent, thus
keeping the whole memory footprint small during the process.

3 Replicated State Machine vs. CRT DFSM or DUFSM

In this section, we explore the different aspects of a CRT based SMPC that
utilizes the features mentioned before. We introduce our DFSM approach that
copes with several of the Replicated State Machine (RSM) drawbacks. Also, to
increase the privacy of the computation implied by this approach, we suggest
using a local Fully Homomorphic Encryption (FHE) based arithmetic circuit
that keeps the efficiency of memory while protecting the data.

Implementing the Transition Function with Secret Sharing. An Arith-
metic Circuit is based on additions and multiplications which support the im-
plementation of any Finite State Machine (FSM) transition function or table.

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 7

One convenient way to do so is by representing each bit in the circuit as a
vector of two different bits (just as a quantum bit is represented). Namely,
the bit 0 is represented by 01, and the bit 1 by 10. Consider each directed
edge in the transition function graph tuple representation being represented as
〈CurrentState, Input → NextState,Output〉. Then, given a (possibly secret
shared) transition function, this structure allows us to secret share the table
among different participants, possibly even padding it with additional never-used
tuples. CurrentState, Input, and NextState are represented by a sequence of
2-bits vectors. Thus, we double the logarithmic number of bits needed for the
binary representation, rather than using (optimized for small degree polynomial,
secret shares, and multiplication outcome) a linear number of bits in the unary
representation as used in [14].

Now, to blindly compute the next state and output, given the current state
and input, a participant multiplies each bit of the shared secret (2-bits vec-
tor representation) with the bits of each line of the transition table. Then,
they sum up the resulting 2-bits vector into a single bit. For example, for
the binary representation of the current state 110, the 2-bits vector represen-
tation is 101001. Consider this example of transition function representation:

〈010101, 01→ 010101, 442〉
〈010101, 10→ 101001, 065〉
〈101001, 01→ 101001, 542〉
〈101001, 10→ 010101, 324〉

(4)

Note that only two inputs are possible in
the example here, either 0, represented by 01,
or 1, represented by 10. Furthermore, the out-
put can be agreed to be represented in binary,
and express a number inside the finite ring of
the CRT secret sharing. For example, when
three participants are using the primes 3 < 11 < 19, then the finite ring being
used for the secret sharing is 627. While the states and inputs representations
are optimized for logical matching through arithmetic operations, the output
representation can benefit from being memory efficient.

In case the current secret shared state and inputs are 101001 and 01 respec-
tively, we find the next state and output by multiplication of every bit of the
2-bits vectors with each line of the table. Namely, the first two bits 10 of the cur-
rent state are multiplied by the first two bits 01 in the table, resulting in 1 ·0 = 0
and 0 · 1 = 0, obtaining together 00. Then, by summing the two resulting bits,
we get 0, which (blindly) indicates that there is no match. However, the third
line in the table yields a match, as a sum of 1 is obtained from the first two
bits (10 in the current state and 10 in the table), same for the next two bits 10
and the last two bits 01, altogether yielding the desired output. Finally, if the
input is 01, then the third line matches completely, as also the input matches
by yielding 1. Therefore, only the third line of the table yields results consisting
of only 1 bits that when are (blindly) multiplied among themselves result in 1.

In Alg. 4, we can see that by multiplying the resulting bits with the state
and input encoding (lines 9, 11), we ensure that only the fitting transition is
chosen as the rest become 0. Blindly summing up all results of all next states
and outputs (line 12) results in the desired (secret shared) next state and output.

8 Shlomi Dolev and Stav Doolman

Algorithm 4: Blindly Matching a Transition Tuple
input : transition table T , state current with length L and input i
output: next state and output

1 x← encode(current) ; // encode in the redundant form
2 y ← encode(i);
3 result← 0

4 foreach line in T do
5 xT ← line[0] ; // unpack each tuple
6 yT ← line[1];
7 sum← 1;

8 for i← 0 to 2L do
// perform multiplication with previous and current sum (i += 2)

9 sum← sum · (x[i] · xT [i] + x[i + 1] · xT [i + 1]);

10 end
11 sum← sum · (y[0] · yT [0] + y[1] · yT [1]);
12 result← result + sum · T [line] ; // accumulate conditioned next state

13 end
14 return decode(result)

Utilization of an FHE Mechanism. Nowadays, the concept of Fully Homo-
morphic Encryption (FHE) has become highly popular in the field of modern
cryptography. In a nutshell, FHE scheme is an encryption scheme that allows
the evaluation of arbitrary functions on encrypted data. The problem was first
suggested by Rivest, Adleman, and Dertouzos [26], and thirty years later, imple-
mented in the breakthrough work of Gentry [19]. A major application of FHE is
in cloud computing. This is because nowadays a user can store data on a remote
server that has more storage capabilities and computing power than theirs. How-
ever, the user might not trust the remote server, as the data might be sensitive,
so they send the encrypted data to the remote server and expect it to perform
some arithmetic operations on it, without learning anything about the original
raw data. In our case, an FHE scheme is employed to preserve the privacy among
the participants, each being a remote server, blindly following the computation
process.

The dealer’s procedure described in Alg. 5 is extended hereby to support FHE
behavior. The dealer now initializes an FHE context with which they encrypt
both the initial value and the incoming inputs (lines 6,11). From this point, they
continue in the same way as before (line 7,12), except for a decryption step at
the end (line 16) and scheduled bootstrapping steps during the computation. For
the sake of generality, the bootstrapping step is omitted but can be regarded as
the assignment of the first share of the input to be the share of the initial state.
After completing all of the decryptions, the results are reassembled by the CRT
into a single solution as shown before.

Equally, the participants (workers) are dealt with a plaintext modulus in
which they operate. By keeping the modulus in the clear, we do not leak any
meaningful information and aid the participant in carrying out the computation
with respect to their finite field. As before, after a worker is initialized, they start
receiving encrypted inputs and apply the operator to them (line 3). As opposed to
the operator application in a general field, these blind applications are expected

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 9

Algorithm 5: Dealer Extended FHE Procedure
input : initial value x, an operation op, and a stream of inputs stm
output: result of op applied on x with all the the inputs in stm

1 context← initFHE() ; // context allows encryption+decryption

2 primes← genPrimes(K);
3 q ← queue();
4 for i← 1 to K do
5 m← primes[i];
6 xEncrypted← encrypt(mod(x), context) ; // encrypt x (mod m)
7 workers[i]← startWorker(m, op, xEncrypted, q);

8 end

9 while hasNext(stm) do
10 y ← next(stm);
11 yEncrypted← encrypt(y, context) ; // encrypt incoming input
12 q.push(yEncrypted);

13 end

14 for i← 1 to K do
15 rEncrypted← stopWorker(workers[i]);
16 results[i]← decrypt(rEncrypted, context) ; // decrypt result

17 end

18 return recover(primes, results)

Algorithm 6: Worker Extended FHE Procedure
input : modulus m, operation op, encrypted initial value x, and encrypted inputs queue q
output: encrypted result of op applied on x and all the encrypted inputs

1 while notSignaled() do
2 y ← tryPop(q);
3 x← op(x, y);
4 x← blindMod(x,m) ; // can be implemented in several ways

5 end
6 return x

to be done in a finite field that is typically different from the binary field in
computers (e.g., 8 bits for BYTE or 32/64 for a computer WORD). Therefore,
the worker performs a dedicated balancing step after each iteration (line 4).
Namely, they perform a blind modulo reduction to the result, thus keeping it
inside the field. This step is possible due to a unique feature of FHE bitwise
calculations that allows a blind conditioned output. One popular library that
supports this feature is IBM’s HELib [29]. The idea behind this implementation
is based on an aggregation of the condition results. Namely, if one wishes to
blindly increment a number i by 1 in case it is negative, or otherwise, blindly
decrement it, they should first implement an indicator function:

I(x) =

{
1 x < 0

0 otherwise
(5)

Then, use this function in a context such that i’s value changes correctly:

F (x) = x+ 1 · I(x)− 1 · (1− I(x)) (6)

10 Shlomi Dolev and Stav Doolman

A suggested implementation is outlined in the following algorithm. Note that
line 3 creates an unknown bit and line 5 reflects a conditioned output based on
that bit. The subtraction is aggregated by using the differences computed in line
4.

Algorithm 7: Blind Modulo Reduction
input : encrypted integer x, modulus m
output: result of encrypted x (mod m)

1 levels← maxLevels(m) ; // max possible value i.e b (m−1)2

m c ≈ m

2 for j ← 0 to levels do
3 i← compare(x,m);
4 d← x− i;
5 x← xi · d + (1− i) · x;
6 end

Utilizing this feature is essential during the procedure of a worker in our
CRT based approach as the worker should be oblivious to the fact they carry
out the same procedure only on encrypted data. As long as they know how to
perform homomorphic operations such as additions and multiplications, while
staying within the boundaries of the computer’s binary representation, the ho-
momorphism of the operations over the CRT secret shares is preserved.

4 Polynomial Based CRT DUFSM

We present an alternative to further improve the secrecy of the transition func-
tion of the FSM that is based on polynomial representation.

Polynomial Interpolation in Finite Rings. It is often useful (e.g., [27])
to estimate the value of a function y = f(x) at a certain point x based on
some known values of the function, i.e., f(x0), f(x1), . . . , f(xn). These values are
evaluated at a set of n + 1 points a = x0, x1, . . . , xn = b in the range {a . . . b}.
One way to carry out this operation is to approximate the function f(x) by an
n-th degree polynomial:

f(x) ≈ Pn(x) = anx
n + an−1x

n−1+, . . . , a2x
2 + a1x+ a0 =

n∑
j=0

ajx
j (7)

Where the coefficients a0, . . . , an are obtained based on the n + 1 given points.
Specifically, to find the coefficients of Pn(x), we require the polynomial to pass
through all the points: {(xi, yi) = f(xi)|i = 0, . . . , n} so that the following n+ 1

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 11

linear equations hold:

Pn(x0) =

n∑
i=0

aix
i
0 = f(x0) = y0

Pn(x1) =

n∑
i=0

aix
i
1 = f(x1) = y1

...

Pn(xn) =

n∑
i=0

aix
i
n = f(xn) = yn

Fortunately, this polynomial Pn(x) can be obtained by the interpolation poly-
nomial in the Lagrange form. This polynomial is defined as a linear combination
denoted by:

Ln(x) =

n∑
i=0

yili(x) (8)

Where li(x) is the Lagrange basis polynomial of degree n, that together with
the other basis polynomials span the space of all n-th degree polynomials:

li(x) =

n∏
j=0,j 6=i

x− xj
xi − xj

=
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
(9)

Namely, when x = xj for j = 0, . . . , n, we get:

li(xj) = δij =

{
1 i = j

0 i 6= j
(10)

This way, the polynomial Ln(x) passes through all n+ 1 points, because:

Ln(x0) =

n∑
i=0

yili(x0) =

n∑
i=0

yiδi0 = y0 = f(x0)

Ln(x1) =

n∑
i=0

yili(x1) =

n∑
i=0

yiδi1 = y1 = f(x1)

...

Ln(xn) =

n∑
i=0

yili(xn) =

n∑
i=0

yiδin = yn = f(xn)

We observe that this polynomial is only an approximation of f(x) in certain
points. So, in fact, at any other point x 6= xj for j = 0, . . . , n, the polynomial
value is unpredictable.

12 Shlomi Dolev and Stav Doolman

Conceptually, polynomial interpolation in finite rings should not differ from
polynomial interpolation in general rings such as Z. That is because we can
use modular arithmetic instead of regular arithmetic, thus following a standard
interpolation algorithm. Nevertheless, there are some concerns to bear in mind.
First, in case we use the Lagrange interpolation, it is essential to choose the
parameter M > 0 of the ring Z/MZ wisely. Otherwise, the interpolation fails.
Since is not guaranteed that every number x ∈ Z/MZ is invertible (e.g, zero), and
the denominators in the basis polynomials are comprised of differences between
two numbers, the different divisions might not be possible. Therefore, for a set
of points {(xi, yi)|i = 0, . . . , n}, it is crucial to choose such ring Z/MZ, where
all the differences xi − xj are invertible.

Consider a set of points in the finite ring Z/KZ, such that K =
∏n

i pi for
relatively primes pi. To successfully interpolate this set of points using Lagrange’s
method, we need to verify that neither of the differences has a common factor
in {p1, . . . , pn}.

Lemma 1. If there exist i 6= j such that the difference d = xi − xj has a prime
factor pd ∈ {p1, . . . , pn} then Lagrange’s polynomial interpolation is not possible.

Proof. By contradiction, if such pd exists, then d = pi1
k1 , . . . , pd

kd , . . . , pin
kn

for kd > 0 and ki ≥ 0. In other words, the distance d can be represented as
d = pd

kd ·N for some N ≥ 1, and d = pd
kd ·N (mod pd) ≡ 0 holds. Thus, d is

not invertible although we assume it is. ut

We use the following Alg. 8 to choose the relatively primes p1, . . . , pk before
starting the interpolation process. We first find all the differences that might not
be invertible and factorize them (line 5). Once we have all the factors we have
to avoid, we find such primes that are coprime to these factors (line 12). Lastly,
we return the prime set whose product is large enough (line 15).

Consider a given FSM that is represented by a truth table. Namely, we are
interested in the relations between the different states and the possible inputs or
outputs. We suggest a (non-perfect) encoding scheme that allows us to represent
this FSM completely by polynomials. First, we encode the different states and
transitions in some grid-compatible representation, where a transition in that
context, is a 2-tuple e = (u, v) such that the state u has a valid input that leads
to v. One simple encoding is through positive integers representation. Given a
set of states V , and a set of transitions E, the 2-D point unique encoding of
them is calculated as follows in Alg. 9.

Since the y value of a point is comprised only of a state encoding, the decoding
process is simple. It is however not guaranteed for the x value, as it is comprised
of an encoded summation that might overlap other encoded values. One possible
way to deal with this, is to simply work on different scales, more specifically, we
use a factor f = 10t where t > 0 to choose the integers in line 1 from the range
{f+1 . . . |V |·f}. Also, considering that there might be many transitions to cause
an overflow between the scales, the parameter t needs to be bounded such that
t > log |E| and f = 10t > |E| holds.

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 13

Algorithm 8: Finding Interpolation Parameters in Z/KZ
input : set of points s = {(x1, y1), . . . , (xn, yn)} and a parameter k
output: sequence of appropriate k prime integers p1, . . . , pk or null

1 for i← 1 to n do
2 for j ← 1 to n do
3 difference← abs(s[i]− s[j]);
4 foreach f ∈ factorize(difference) do
5 factors.append(f);
6 end

7 end

8 end

9 for bound← 2 to K do
10 primes← findPrimes(k, bound);
11 if length(primes) < k or length(factors ∩ primes) > 0 then
12 continue;
13 end
14 if production(primes) > K then
15 return primes
16 end
17 bound← bound + k;

18 end
19 return null

Algorithm 9: FSM Encoding Procedure
input : V,E
output: A list of points P1 = (x1, y1), . . . , Pn = (xn, yn) where n = |E|

1 rangeV ← randRange(1, |V |) ; // generate numbers for each state
2 rangeE ← randRange(1, |E|) ; // generate numbers for each transition
3 points = [];
4 for i← 1 to |E| do
5 u, v ← unpack(E[i]) ; // unpack the states in transition
6 x← rangeV [indexOf(u, V)] + rangeE[i];
7 y ← rangeV [indexOf(v, V)];
8 points.append((x, y));

/* each point P is calculated such that P = (ru + re, rv) where ru, rv are the
random numbers chosen for states u, v and re is the random number chosen for
transition e */

9 end
10 return points

Evaluating Polynomial within FHE. Since the polynomials are both en-
crypted and already evaluated in a specific field, the only information a partici-
pant can learn stems from the encryption parameters and the finite field modulus
assigned to him beforehand. By keeping the modulus clear, we simplify the as-
signment process while not revealing any meaningful data to the participants,
as all the other data they receive is encrypted. The encryption parameters, how-
ever, including the public key, might hint at the computational security of the
scheme, in case the participant is interested in breaking it. The Homomorphic
Encryption Standard [1] may assist in choosing recommended parameters for
implementation.

In practice, the suggested process provides the participants with a reduced
polynomial in some finite field, but the actual operation does not consider that
fact. Fortunately, we can maintain the result in the respected finite field by

14 Shlomi Dolev and Stav Doolman

applying a blind modulo operation on each polynomial evaluation. This can be
done by the previous method described in Alg. 7.

Moreover, to successively evaluate the polynomial without consuming all
noise budget of the FHE scheme, one can utilize a bootstrapping method, thus
allowing the computation to carry on endlessly.

5 Blind String Matching via DUFSM Example

For the sake of simplicity and readability we consider the task of searching the
word “nano” in a (possibly unbounded streaming) large text. In fact any state
machine computation, where the current state is maintained only in (FHE CRT)
secret shared form can be supported, thus, eliminating the need of the computa-
tion delegating client, to protect the current state security and privacy (avoiding
single point of failure) and carrying the computation of the transition function.
This problem can be presented as a distributed computation problem, where we
send each participant text characters one after the other, and expect them to
yield a positive result if and only if the sequence “nano” was detected among the
received characters. We collect the negative or positive results from all partici-
pants and decide the correct result by using the majority, thus eliminating any
Byzantine errors. We observe that in this scenario, both the string to search and
the text itself are shared in clear-text for all participants, along with the string-
matching algorithm. The RSM solution reflects a “naive” (as repetition codes)
approach for error correction, where there are codes with equivalent Hamming
distance, such that in total they use a smaller number of bits [4]. In turn, we
consider a different scenario, where all inputs are kept secret and the algorithm
is unknown to the parties participating in the distributed computation.

One can build a simple automaton for that specific task, disregarding any
preprocessing operations as done in the Boyer Moore algorithm [7]. In this simple
automaton, there are only five states - an “empty” state denoted by ε, and four
other states, each of them representing a valid substring of “nano”. For the sake
of clarity, the transition table is detailed in Tab. 1.

Table 1: Transition Table
n a o other

ε n ε ε ε

n n na ε ε

na nan ε ε ε

nan n na nano ε

nano nano nano nano nano

For the sake of convenience, the state machine is also detailed in Fig. 1. Following
this data, we encode all the possible letters (inputs) as integers and later use them
to simulate a transition from one state to another. The most straightforward
method to use in this encoding is a map of each character to its real ASCII
value. However, there are a couple of concerns to note. First, the English alphabet
values are located in the ASCII table in a non-continuous manner. Namely, the

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 15

values have undesired gaps between them. This is a disadvantage for us, mainly
in case we create an interpolating polynomial for the state machine. Also, by
using the ASCII table, we limit ourselves to a single text encoding, solely for
the English language. We can work around this limitation by creating a map of
characters to values for every possible encoding. However, this solution might
be unscalable for different texts, as texts are encoded differently, and creating
as many tables as text encoding requires undesired preprocessing work.

A different hybrid method is to use these two techniques together. Namely,
we can define an encoding, where each character is mapped to an integer v
from the respected text encoding table, only this time, it is subtracted by an
offset value off, such that the minimum possible value vmin becomes vmin− off
= 1. In this way, although we do not eliminate the unwanted gaps, we minimize
each character value while allowing an application of this method for any text
encoding.

εstart

nan na

n

nano

n

other

other

n

aother

n
other

a

n

o

n, a, o, other

Fig. 1: Simple nano State Machine

Once we complete the en-
coding of the input, we move
to encode the states of this ma-
chine as integers. We choose to
do so using a set of integers,
with a constant distance d be-
tween them, such that the high-
est value of an input vmax holds
vmax < d. In that way, we guar-
antee that there are no overlaps
between states while computing
the transitions (recall the algo-
rithm of state and transition en-
coding, where we sum together
the encoding of a state with the
encoding of an input). Finally,
based on the simple state ma-
chine from before, we can build
an encoded FSM as portrayed in Fig. 2.

In regards to the range and factor parameters from Alg. 9 and for the sake
of readability, we demonstrate the automaton using a decimal base, while in
practice, binary base is more efficient. The five states above are encoded as
integers with a factor of f = 102 and a similarly a range of {1 . . . 5}, such that:
1 · 102 = 100, 2 · 102 = 200, 3 · 102 = 300, 4 · 102 = 400, 5 · 102 = 500. Also, all
inputs are encoded as integers in the range {1 . . . 29} to represent the English
alphabet and the punctuation signs such as spaces, dots, and newlines.

Again, following Alg. 9, we build a list of points, each representing a transition
in the state machine from one state to another with some input. We note that
this list is sparse, namely, it does not include invalid or non-existent transitions.
Therefore, when we apply the polynomial interpolation, invalid values will result

16 Shlomi Dolev and Stav Doolman

100start

400 300

200

500

14

{1 . . . 13} ∪ {15 . . . 29} {2 . . . 13} ∪ {15 . . . 29}

14

1
{1 . . . 13} ∪ [15 . . . 29}

14

{2 . . . 13] ∪ {16 . . . 29}

1

14

15

{1 . . . 29}

Fig. 2: The Encoded NANO State Machine

in invalid or unexpected results. See Appendix B for the complete list of encoded
points.

Next, following Alg. 8, we build an interpolating polynomial P (x) such that
P (x) ∈ Z/KZ[X]. Namely, besides that all the points detailed above fit into
the polynomial, all the polynomial’s coefficients are in Z/KZ for some relatively

primes p1, . . . , pk and a product K =
∏k

i pi.
As a result of a large number of encoded points, this polynomial has a high

degree. However, this is acceptable as it is only evaluated under some finite field
and there is no risk of overflowing or exceeding memory resources. As soon as we
finish the interpolation step, we immediately apply modulo reduction for each
participant and distribute the reduced polynomial to start the computation.

6 Concluding Remarks

Communication-less secure multi-party computation, where the servers that per-
form the computation are not aware of the other servers’ identity and location,
introduces a new facet of security, where colluding is much harder to be coordi-
nated. Efficiency is an obvious additional benefit as in many cases the (typical
quadratic) communication overhead is significantly more expensive than the local
computation. One more important aspect is that we no longer need to synchro-
nize the actions of the servers, as they may process their own (secret shared)
inputs whenever convenient before the eventual output collection. Our various
implementations demonstrate the practicality of our scheme.

Lastly, it is possible to integrate an error-correction encoding into our scheme
that copes with Byzantine participants. This includes increasing the size of the
mutual primes p1 < p2 < . . . < pk to avoid overflow of the computation with
respect to p1 · p2, . . . · pk, and adding more mutual primes q1 < q2 < . . . < ql
larger than pk, where l is a function of the maximal number of errors.

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 17

References

[1] Martin Albrecht et al. 2018. url: https://eprint.iacr.org/2019/939.
pdf.

[2] Charles Asmuth and John Bloom. “A modular approach to key safeguard-
ing”. In: IEEE Trans. Information Theory 29.2 (1983), pp. 208–210. doi:
10.1109/tit.1983.1056651. url: https://doi.org/10.1109/TIT.
1983.1056651.

[3] Hillel Avni, Shlomi Dolev, Niv Gilboa, and Ximing Li. “SSSDB: Database
with Private Information Search”. In: Feb. 2016, pp. 49–61. isbn: 978-3-
319-29918-1. doi: 10.1007/978-3-319-29919-8_4.

[4] Bharath Balasubramanian and Vijay K. Garg. “Fault tolerance in dis-
tributed systems using fused state machines”. In: Distributed Computing
27.4 (Aug. 2014), pp. 287–311. issn: 1432-0452. doi: 10.1007/s00446-
014-0209-4. url: https://doi.org/10.1007/s00446-014-0209-4.

[5] Dor Bitan and Shlomi Dolev. “Optimal-Round Preprocessing-MPC via
Polynomial Representation and Distributed Random Matrix (extended ab-
stract)”. In: IACR Cryptology ePrint Archive 2019 (2019), p. 1024. url:
https://eprint.iacr.org/2019/1024.

[6] G.R. Blakley. “Safeguarding cryptographic keys”. In: Proceedings of the
1979 AFIPS National Computer Conference. Monval, NJ, USA: AFIPS
Press, 1979, pp. 313–317.

[7] Robert S. Boyer and J. Strother Moore. “A Fast String Searching Algo-
rithm”. In: Commun. ACM 20.10 (Oct. 1977), pp. 762–772. issn: 0001-
0782. doi: 10.1145/359842.359859. url: https://doi.org/10.1145/
359842.359859.

[8] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai,
Nishant Kumar, and Mayank Rathee. Function Secret Sharing for Mixed-
Mode and Fixed-Point Secure Computation. Cryptology ePrint Archive,
Report 2020/1392. https://eprint.iacr.org/2020/1392. 2020.

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure Computation with Pre-
processing via Function Secret Sharing. Cryptology ePrint Archive, Report
2019/1095. https://eprint.iacr.org/2019/1095. 2019.

[10] Philip Derbeko and Shlomi Dolev. “PolyDNN Polynomial Representation
of NN forCommunication-less SMPC Inference”. In: Cyber Security Cryp-
tography and Machine Learning - Fifth International Symposium, CSCML
2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings. Vol. 12716. Lecture
Notes in Computer Science. Springer, 2021.

[11] Hagar Dolev and Shlomi Dolev. Toward Provable One Way Functions.
Cryptology ePrint Archive, Report 2020/1358. https://eprint.iacr.
org/2020/1358. 2020.

[12] Shlomi Dolev, Karim Eldefrawy, Juan Garay, Muni Venkateswarlu Ku-
maramangalam, Rafail Ostrovsky, and Moti Yung. “Brief Announcement:
Secure Self-Stabilizing Computation”. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing. Podc ’17. Washington,
DC, USA: Association for Computing Machinery, 2017, pp. 415–417. isbn:

https://eprint.iacr.org/2019/939.pdf
https://eprint.iacr.org/2019/939.pdf
https://doi.org/10.1109/tit.1983.1056651
https://doi.org/10.1109/TIT.1983.1056651
https://doi.org/10.1109/TIT.1983.1056651
https://doi.org/10.1007/978-3-319-29919-8_4
https://doi.org/10.1007/s00446-014-0209-4
https://doi.org/10.1007/s00446-014-0209-4
https://doi.org/10.1007/s00446-014-0209-4
https://eprint.iacr.org/2019/1024
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://eprint.iacr.org/2020/1392
https://eprint.iacr.org/2019/1095
https://eprint.iacr.org/2020/1358
https://eprint.iacr.org/2020/1358

18 Shlomi Dolev and Stav Doolman

9781450349925. doi: 10.1145/3087801.3087864. url: https://doi.
org/10.1145/3087801.3087864.

[13] Shlomi Dolev, Juan Garay, Niv Gilboa, and Vladimir Kolesnikov. “Secret
Sharing Krohn-Rhodes: Private and Perennial Distributed Computation.”
In: Jan. 2011, pp. 32–44.

[14] Shlomi Dolev, Juan A. Garay, Niv Gilboa, Vladimir Kolesnikov, and Muni
Venkateswarlu Kumaramangalam. “Perennial secure multi-party compu-
tation of universal Turing machine”. In: Theor. Comput. Sci. 769 (2019),
pp. 43–62. doi: 10.1016/j.tcs.2018.10.012. url: https://doi.org/
10.1016/j.tcs.2018.10.012.

[15] Shlomi Dolev, Juan A. Garay, Niv Gilboa, Vladimir Kolesnikov, and Ye-
lena Yuditsky. “Towards efficient private distributed computation on un-
bounded input streams”. In: J. Mathematical Cryptology 9.2 (2015), pp. 79–
94. doi: 10.1515/jmc-2013-0039. url: https://doi.org/10.1515/
jmc-2013-0039.

[16] Shlomi Dolev, Niv Gilboa, and Ximing Li. “Accumulating automata and
cascaded equations automata for communicationless information theoreti-
cally secure multi-party computation”. In: Theor. Comput. Sci. 795 (2019),
pp. 81–99. doi: 10.1016/j.tcs.2019.06.005. url: https://doi.org/
10.1016/j.tcs.2019.06.005.

[17] Shlomi Dolev, Limor Lahiani, and Moti Yung. “Secret swarm unit: Reac-
tive k-secret sharing”. In: Ad Hoc Networks 10.7 (2012), pp. 1291–1305.
issn: 1570-8705. doi: https://doi.org/10.1016/j.adhoc.2012.03.
011. url: http://www.sciencedirect.com/science/article/pii/
S1570870512000613.

[18] Shlomi Dolev and Yin Li. “Secret Shared Random Access Machine”. In:
Algorithmic Aspects of Cloud Computing. Ed. by Ioannis Karydis, Spyros
Sioutas, Peter Triantafillou, and Dimitrios Tsoumakos. Cham: Springer
International Publishing, 2016, pp. 19–34.

[19] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In:
STOC ’09. Bethesda, MD, USA: Association for Computing Machinery,
2009, pp. 169–178. isbn: 9781605585062. doi: 10.1145/1536414.1536440.
url: https://doi.org/10.1145/1536414.1536440.

[20] Oded Goldreich, Dana Ron, and Madhu Sudan. “Chinese remaindering
with errors”. In: IEEE Trans. Information Theory 46.4 (2000), pp. 1330–
1338. doi: 10.1109/18.850672. url: https://doi.org/10.1109/18.
850672.

[21] R. Jaiswal. “Chinese Remainder Codes : Using Lattices to Decode Error
Correcting Codes Based on Chinese Remaindering Theorem”. In: 2007.

[22] Artur Jakubski. “Selected application of the Chinese Remainder Theo-
rem in multiparty computation”. In: Journal of Applied Mathematics and
Computational Mechanics 2016 (Jan. 2016), pp. 39–47. doi: 10.17512/
jamcm.2016.1.04.

https://doi.org/10.1145/3087801.3087864
https://doi.org/10.1145/3087801.3087864
https://doi.org/10.1145/3087801.3087864
https://doi.org/10.1016/j.tcs.2018.10.012
https://doi.org/10.1016/j.tcs.2018.10.012
https://doi.org/10.1016/j.tcs.2018.10.012
https://doi.org/10.1515/jmc-2013-0039
https://doi.org/10.1515/jmc-2013-0039
https://doi.org/10.1515/jmc-2013-0039
https://doi.org/10.1016/j.tcs.2019.06.005
https://doi.org/10.1016/j.tcs.2019.06.005
https://doi.org/10.1016/j.tcs.2019.06.005
https://doi.org/https://doi.org/10.1016/j.adhoc.2012.03.011
https://doi.org/https://doi.org/10.1016/j.adhoc.2012.03.011
http://www.sciencedirect.com/science/article/pii/S1570870512000613
http://www.sciencedirect.com/science/article/pii/S1570870512000613
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/18.850672
https://doi.org/10.1109/18.850672
https://doi.org/10.1109/18.850672
https://doi.org/10.17512/jamcm.2016.1.04
https://doi.org/10.17512/jamcm.2016.1.04

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 19

[23] Leslie Lamport. “Fast Paxos”. In: Distrib. Comput. 19.2 (Oct. 2006), pp. 79–
103. issn: 0178-2770. doi: 10.1007/s00446-006-0005-x. url: https:
//doi.org/10.1007/s00446-006-0005-x.

[24] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn:
0001-0782. doi: 10.1145/359545.359563. url: https://doi.org/10.
1145/359545.359563.

[25] Yongnan Li, Limin Xiao, Aihua Liang, Yao Zheng, and Li Ruan. “Fast
Parallel Garner Algorithm for Chinese Remainder Theorem”. In: Sept.
2012, pp. 164–171. isbn: 978-3-642-35605-6. doi: 10.1007/978-3-642-
35606-3_19.

[26] R.L. Rivest, L. Adleman, and M.L. Dertouzos. “On data banks and pri-
vacy homomorphisms”. In: Foundations on Secure Computation, Academia
Press. 1978, pp. 169–179.

[27] Tomas Sauer. “Polynomial interpolation of minimal degree”. In: Numerische
Mathematik 78 (Nov. 1997), pp. 59–85. doi: 10.1007/s002110050304.

[28] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979),
pp. 612–613. doi: 10.1145/359168.359176. url: http://doi.acm.org/
10.1145/359168.359176.

[29] Huiyong Wang, Yong Feng, Yong Ding, and Shijie Tang. “A Homomorphic
Arithmetic Model via HElib”. In: Journal of Computational and Theoret-
ical Nanoscience 14 (Nov. 2017), pp. 5166–5173. doi: 10.1166/jctn.

2017.6690.

https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-642-35606-3_19
https://doi.org/10.1007/978-3-642-35606-3_19
https://doi.org/10.1007/s002110050304
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1166/jctn.2017.6690
https://doi.org/10.1166/jctn.2017.6690

20 Shlomi Dolev and Stav Doolman

Acronyms

ASCII American Standard Code for Information Interchange.

CRT Chinese Remainder Theorem.

DCLSMPC Distributed Communication-less Secure Multiparty Computation.
DFSM Distributed Finite State Machine.
DUFSM Distributed Unknown Finite State Machine.

FHE Fully Homomorphic Encryption.
FSM Finite State Machine.
FSS Function Secret Sharing.

MPC Multiparty Computation.

PRNG Pseudo Random Generator.

RSM Replicated State Machine.

SITS Statistical Information Theoretic Secure.
SMPC Secure Multiparty Computation.

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 21

A Appendix A

Background. The focus of this section is to briefly review some of the key topics
that serve as the base of this work.

Finite Rings and Finite (Galois) Fields. We first introduce the type of field
that has a finite number of elements. This number is a power pn of some prime
number p. In fact, for any prime number p and any natural number n there exists
a unique field of pn elements that is denoted by GF (pn) or by Fpn . Conveniently,
all standard operations such as multiplication, addition, subtraction, and division
(excluding division by zero) are defined and satisfy the rules of arithmetic, just as
the corresponding operations on rational and real numbers do. This type of field
helps quite often to think and calculate, in terms of integers, modulo another
number.

Definition 1. Fix an integer n. The integers modulo n denoted Z/nZ, is the set
of numbers 0, 1, 2, . . . , n − 1, with addition and multiplication defined by taking
the remainder upon division by n.

We are specifically interested in reducible integers n such that n = p1, . . . , pk
for some k > 0 primes. A key observation here is that when all the pi are co-
prime (referred to as relatively prime sometimes) then any number modulo n
that is divided by these pi gives us a unique sequence of residues. Formally,
this observation is a restatement of the Chinese Remainder Theorem which is
explained below.

CRT Arithmetic. Let p1 < p2 < . . . < pk where pi are relatively prime and a
set of congruence equations a ≡ ai (mod pi) for 1 ≤ i ≤ k for k > 0 and where
ai are remainders. The original form of the Chinese Remainder Theorem (CRT)
states that this given set of congruence equations always has one and exactly
one solution modulo

∏k
1 pi.

Similar to our previous notation, this theorem is often restated as:

Z/aZ ∼= Z/p1Z× · · · × Z/pkZ (11)

This means that by doing a sequence of arithmetic operations in Z/aZ one may
do the same computation independently in each Z/piZ and then get the result
by applying the isomorphism from the right to the left. We refer to this operation
as the recovery process later on.

Example 2. The integer m = 14 can be represented as a set of these congruence
equations:

14 ≡ 2 (mod 3), 14 ≡ 4 (mod 5),
14 ≡ 0 (mod 7), 14 ≡ 3 (mod 11)

(12)

More significantly,m = 14 is the exact and only solution modulo 3·5·7·11 = 1155.

This feature of CRT allows us to represent big numbers using a small array
of integers. Namely, when performing arithmetic operations on big numbers this
feature assists in preserving memory resources.

22 Shlomi Dolev and Stav Doolman

Byzantine Fault Tolerance. The assumption that every participant in a dis-
tributed system correctly follows the algorithm may not hold in reality. Either
because of faults or malicious takeovers. Therefore, distributed systems are often
designed to tolerate a part (typically less than 1

3) of the participants that are
acting as if controlled by a malicious adversary. These participants are called
Byzantine participants.

Secure Multiparty Computation. To further demonstrate the effectiveness
of a joint operation as detailed in [22], consider a series of arithmetic calculations,
done over t-bits numbers in the form of b1, . . . , bt. The additions in this series
might add up to 1 bit between each calculation, but the multiplications might
double the number of bits. Thus, if the whole operation is completed individually
by a single party, it might require up to t2 bits in the worst case. However, if
we use the CRT representation and split the moduli into several parties, we
keep performing each calculation individually but achieve a bounded number of
bits per party (bound as large as implied by the largest modulus). Namely, to

support calculations of up to t2 bits, i.e numbers up to 2t
2

, it is sufficient to
setup k parties and k primes (moduli) p1, . . . , pk that:

2t
2

<

k∏
i=1

pi (13)

This observation leads to the conclusion that we can decide whether to use
a few large primes or many small primes to carry out the same series of calcu-
lations. This decision might change according to the availability of more parties
and the number of memory resources we wish to consume.

As previously explained, the calculation result of each participant can be
collected and recovered into a unique result in ZK where K =

∏k
i=1 pi.

Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM 23

B Appendix B

Polynomial Points.

Table 2: Encoded Points
(101,100) (201,300) (301,100) (401,300) (501,500)

(102,100) (202,100) (302,100) (402,100) (502,500)

(103,100) (203,100) (303,100) (403,100) (503,500)

(104,100) (204,100) (304,100) (404,100) (504,500)

(105,100) (205,100) (305,100) (405,100) (505,500)

(106,100) (206,100) (306,100) (406,100) (506,500)

(107,100) (207,100) (307,100) (407,100) (507,500)

(108,100) (208,100) (308,100) (408,100) (508,500)

(109,100) (209,100) (309,100) (409,100) (509,500)

(110,100) (210,100) (310,100) (410,100) (510,500)

(111,100) (211,100) (311,100) (411,100) (511,500)

(112,100) (212,100) (312,100) (412,100) (512,500)

(113,100) (213,100) (313,100) (413,100) (513,500)

(114,200) (214,200) (314,400) (414,200) (514,500)

(115,100) (215,100) (315,100) (415,500) (515,500)

(116,100) (216,100) (316,100) (416,100) (516,500)

(117,100) (217,100) (317,100) (417,100) (517,500)

(118,100) (218,100) (318,100) (418,100) (518,500)

(119,100) (219,100) (319,100) (419,100) (519,500)

(120,100) (220,100) (320,100) (420,100) (520,500)

(121,100) (221,100) (321,100) (421,100) (521,500)

(122,100) (222,100) (322,100) (422,100) (522,500)

(123,100) (223,100) (323,100) (423,100) (523,500)

(124,100) (224,100) (324,100) (424,100) (524,500)

(125,100) (225,100) (325,100) (425,100) (525,500)

(126,100) (226,100) (326,100) (426,100) (526,500)

(127,100) (227,100) (327,100) (427,100) (527,500)

(128,100) (228,100) (328,100) (428,100) (528,500)

(129,100) (229,100) (329,100) (429,100) (529,500)

	Blindly Follow:SITS CRT and FHE for DCLSMPC of DUFSM(Preliminary Version)

