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(PSCs) are polar codes (PCs) with dynamically-frozen symbols and have a larger code minimum distance

than PCs with only statically-frozen symbols. A randomized nested PSC construction, where the low-

rate code is a PSC and the high-rate code is a PC, is proposed for successive cancellation list (SCL) and

sequential decoders. This code construction aims to perform lossy compression with side information,

i.e., Wyner-Ziv (WZ) coding. Nested PSCs are used in the key agreement problem with physical

identifiers and two terminals since WZ-coding constructions significantly improve on Slepian-Wolf

coding constructions such as fuzzy extractors. Significant gains in terms of the secret-key vs. storage

rate ratio as compared to nested PCs with the same list sizes are illustrated to show that nested PSCs

significantly improve on all existing code constructions. The performance of the nested PSCs is shown

to improve with larger list sizes, unlike the nested PCs considered. A design procedure to efficiently

construct nested PSCs and possible improvements to the nested PSC designs are also provided.

Index Terms

polar subcodes, sequential decoding, coding for privacy, physical unclonable functions (PUFs), list

decoding.

I. INTRODUCTION

A common secrecy problem considers the wiretap channel (WTC) [2]. The WTC encoder

aims to hide a transmitted message from an eavesdropper with a channel output correlated with

the observation of a legitimate receiver. There are various code constructions for the WTC that

achieve the secrecy capacity, e.g., in [3]–[7]. Some of these constructions use nested polar codes

(PCs) because PCs have a low encoding/decoding complexity, asymptotic optimality for various

problems [8], and good finite length performance if a successive cancellation list (SCL) decoder

in combination with an outer cyclic redundancy check (CRC) code are used [9]. Similarly, nested

PCs achieve the strong coordination capacity boundaries [10].

A closely related secrecy problem to the WTC problem is the key agreement problem with two

terminals that observe correlated random variables and have access to a public, authenticated,
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and one-way communication link, whereas an eavesdropper observes only the public messages

called helper data [11], [12]. There are two common models for key agreement: the generated-

secret (GS) model, where an encoder extracts a secret key from the sequence observed, and the

chosen-secret (CS) model, where a pre-determined secret key is given as input to the encoder,

respectively. The main constraint for this problem is that the code construction should not leak

information about the secret key (negligible secrecy leakage). Furthermore, a privacy leakage

constraint is introduced in [13] to leak as little information about the identifier as possible.

Similarly, storage in the public communication link can be expensive and limited, e.g., for

internet-of-things (IoT) device applications [14], [15]. The regions of achievable secret-key vs.

privacy-leakage (or key-leakage) rates for the GS and CS models are given in [13], while the

key-leakage-storage regions with multiple encoder measurements are treated in [16].

An important application of these key agreement models is the key agreement with physical

identifiers such as digital circuits that have outputs unique to the device that embodies them.

Examples of these physical identifiers are physical unclonable functions (PUFs) [17]–[19]. The

start-up behavior of static random access memories (SRAM) and the speckle pattern observed

from coherent waves propagating through a disordered medium can serve as PUFs that have

reliable outputs and high entropy [20], [21].

Optimal nested random linear code constructions for the lossy source coding with side infor-

mation problem, i.e., Wyner-Ziv (WZ) problem [22], are shown in [15] to be optimal also for

the key agreement with PUFs. Furthermore, WZ-coding constructions are proved in [15], [23] to

significantly improve on Slepian-Wolf (SW) coding [24] constructions used for key agreement.

Thus, nested PCs are designed in [15] for practical SRAM PUF parameters to illustrate that

nested PCs achieve rate tuples that cannot be achieved by using previous code constructions.

The finite length performance of the nested PCs designed in [15] without an outer CRC code is

not necessarily good due to small minimum distance of PCs. Therefore, we propose to increase

the code minimum distance by using PCs with dynamically-frozen symbols (DFSs), i.e., polar
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subcodes (PSCs) [25].

PSCs assign a set of dynamic freezing constraints such that linear combinations of other sym-

bols are assigned to DFSs, rather than zeros assigned to statically-frozen symbols (SFSs) for PCs.

The set of linear equations can be chosen such that the resulting codewords are a subcode of a

parent code with large code minimum distance such as extended Bose–Chaudhuri–Hocquenghem

(eBCH) codes [25]. Polar subcodes of eBCH codes require a large list size to approach the

maximum likelihood (ML) decoding performance. This is not desirable for the key agreement

problem with SRAM PUFs because, e.g., the list size of the nested PCs used in [15] is 8, which

suffices to approach the ML decoding performance, and a larger list size might result in a high

hardware cost. Therefore, we use a randomized PSC construction from [26] with two types of

DFSs. The first type of symbols are called type-A DFSs, eliminating the low-weight codewords,

and the second type are called type-B DFSs, hindering the correct path to be killed by the

decoding algorithm. The randomized construction has good performance for a list size of 8 and

its performance improves with larger list sizes, as illustrated below.

A. Identifier Output Models

We consider identifier outputs, such as biometric or physical identifier outputs, that are

independent and identically distributed (i.i.d.) according to a probability distribution over a

discrete alphabet. There are various ways to extract almost i.i.d. symbols from identifiers, one

of which is to apply transform-coding algorithms to decorrelate the raw identifier outputs, as in

[27]–[30]. Therefore, our identifier output models are realistic.

B. Summary of Contributions

We design codes for key agreement with PUFs by constructing nested PSCs in a randomized

manner. Nested codes have a broad use, e.g., in WTC and strong coordination problems, so the

proposed nested PSC constructions can be useful also for these problems. A summary of the
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main contributions is as follows, where the last three contributions are novel ones that are not

mentioned in the conference version of this work in [1].

• We propose a method to obtain nested PSCs used as a WZ-coding construction, which is a

binning method that can be useful for various information-theoretic problems. Furthermore,

we develop a step-by-step design procedure for the proposed nested PSC construction

adapted to the problem of key agreement with physical identifiers. We consider binary

symmetric sources (BSSs) and binary symmetric channels (BSCs). Ring oscillator (RO)

PUFs combined with transform coding [31] and SRAM PUFs [32], [33] are modeled by

these sources and channels.

• We design and simulate nested PSCs for practical source and channel parameters for SRAM

PUFs, as in [15]. We illustrate that all designed nested PSCs with sequential decoders for a

list size L of 8 achieve a significantly larger key vs. storage rate ratio than all previously-

proposed code constructions including nested PCs from [15] that approach its maximum

likelihood (ML) performance with an SCL decoder for L=8. Nested PSC performance is

illustrated to further improve with larger but reasonable list sizes such as 32 and 64.

• To take advantage of the significantly better performance of nested PSCs as compared to

nested PCs, we design and simulate nested PSCs to find the smallest list sizes for which at

least the same performance as being achieved by state-of-the-art code constructions can be

achieved. For a secret key size of 128 bits, block-error probability 10−6, and blocklength

1024 bits, we show that it suffices to have a list of size of L = 4 for nested PSCs rather

than L = 8 that is required by state-of-the-art nested PCs. Similarly, for the same design

parameters except that the blocklength is 2048 bits, nested PSCs are shown to require only

L = 6 rather than L = 8. These linear reductions in the list sizes suggest a linear hardware

cost gain for the (high-rate) PC as the effect of the list size on the complexity is known to

be approximately linear for PCs. The hardware cost gain due to smaller list sizes is known
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to be sublinear for (low-rate) PSCs, but the hardware cost of PSCs are considered to be

smaller than of PCs.

• We provide the average number of summation and comparison operations done in the

sequential decoders of the low-rate PSC and high-rate PCs that are designed for SRAM

PUFs by using our design procedure proposed for nested PSCs. The results illustrate that the

high-rate PCs dominate the overall complexity and their complexity depends significantly

on the list size, whereas the changes in the complexity of the low-rate PSCs with respect

to changing list sizes are negligible.

• The most promising and effective parameters, used in the proposed nested PSC design

procedure, that might be further optimized to improve the privacy, secrecy, reliability, storage

or hardware cost performance, are provided. These parameters and the methods suggested to

further optimize them are based on both numerous simulations conducted and fundamental

properties of PSCs.

C. Organization

This paper is organized as follows. In Section II, we describe the GS and CS models, and

evaluate the key-leakage-storage region for BSSs and BSCs. We propose a randomized nested

PSC construction and a design procedure adapted to key agreement with PUFs in Section III.

Significant key vs. storage rate ratio gains obtained from nested PSCs designed for practical

SRAM PUF parameters as compared to previously-proposed codes are illustrated in Section IV.

In Section V, we discuss how to improve the performance of the designed nested PSCs by tuning

the design parameters up. Section VI concludes the paper.

D. Notation

Upper case letters represent random variables and lower case letters their realizations. A

superscript denotes a string of variables, e.g., Xn =X1, X2, . . . , Xi, . . . , Xn, and a subscript i
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PX(·)

(S,W ) = Enc (Xn)

PY |X(·)

Ŝ = Dec (Y n,W )
W

Xn Y n

Enrollment Reconstruction

S Ŝ

Fig. 1. The GS model, where a secret is generated by the encoder.

denotes the position of a variable in a string. A random variable X has probability distribution

PX . Calligraphic letters such as X denote sets, set sizes are written as |X |. Hb(x)=−x log x−

(1−x) log(1−x) is the binary entropy function, where logarithms are to the base 2, and H−1b (·)

denotes its inverse with range [0, 0.5]. The star operation is defined as q ∗ p = (1 − 2p)q + p

with its inverse operation q =
(q ∗ p)− p

1− 2p
. A BSC with crossover probability p is denoted by

BSC(p). X ∼ Bern(α) is a binary random variable with Pr[X = 1] = α. For integers n ≥ 1

and j1, j2 ∈ {0, 1, . . . , n− 1}, {0, 1, . . . , n− 1} \ {j1, j2} denotes the set {0, 1, . . . , j1 − 1, j1 +

1, . . . , j2 − 1, j2 + 1, . . . , n − 1}. Given matrices V and V′, V⊗m = V ⊗ V⊗(m−1) represents

the m-th Kronecker power of matrix V for all m ≥ 1, where V⊗ V′ represents the Kronecker

product of the matrices V and V′ and we define that V⊗0 is equal to the value 1.

II. PROBLEM FORMULATION

An identifier output is used to generate a secret key in the GS model, depicted in Fig. 1. The

source X , noisy measurement Y , secret key S , and storage W alphabets are finite sets. During

enrollment, the encoder Enc(·) observes an i.i.d. identifier output Xn and computes a secret key

S ∈ S and public helper data W ∈ W as (S,W ) =Enc(Xn). During reconstruction, the decoder
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PX(·)

W ′ = Enc (Xn, S ′)

PY |X(·)

Ŝ ′ = Dec (Y n,W ′)
W ′

Xn Y n

Enrollment Reconstruction

S ′ Ŝ ′

Fig. 2. The CS model, where a chosen secret is embedded into the encoder.

Dec(·) observes a noisy source measurement Y n of the source output Xn through a memoryless

measurement channel PY |X in addition to the helper data W . The decoder estimates the secret

key as Ŝ=Dec(Y n,W ).

Fig. 2 shows the CS model, where a pre-determined secret key S ′ ∈ S that is mutually

independent of (Xn, Y n) is embedded into the helper data as W ′ = Enc(Xn, S ′). The decoder

for the CS model estimates the secret key as Ŝ ′ = Dec(Y n,W ′). The CS model is illustrating

the cases where the encoder, such as a trusted entity or a manufacturer, chooses the secret key

according to other practical constraints. The CS model can be equivalently represented as the

GS model whose generated secret key S is summed in modulo-|S| with the pre-determined

secret key S ′, which is a Vernam cipher [34]. This representation of the CS model makes its

achievability proof straightforward given the achievability proof of the GS model [11], [13],

[21]. Since the analyses for the CS model follows straightforwardly from the analyses for the

GS model, it suffices to consider the GS model to illustrate the performance gains from nested

PSCs.

Definition 1. A key-leakage-storage tuple (Rs, R`, Rw) is achievable for the GS model if, given
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any ε > 0, there is some n≥1, an encoder, and a decoder such that Rs =
log |S|
n

and

PB , Pr[Ŝ 6= S] ≤ ε (reliability) (1)

1

n
I(S;W ) ≤ ε (secrecy) (2)

1

n
H(S) ≥ Rs − ε (key uniformity) (3)

1

n
log
∣∣W∣∣ ≤ Rw + ε (storage) (4)

1

n
I(Xn;W ) ≤ R` + ε (privacy). (5)

The key-leakage-storage region Rgs for the GS model is the closure of the set of achievable

tuples. ♦

We remark that the secrecy criterion given in (2) provides a weak secrecy guarantee due to the

normalization by the blocklength n. Given a code construction that achieves weak secrecy and

using information reconciliation and privacy amplification steps in combination with multiple

identifier output blocks, as described in [35], one can achieve strong secrecy, for which the

unnormalized secrecy leakage I(S;W ) is negligibly small. It is discussed in [15] that multiple

identifier blocks can be obtained, respectively, by using multiple PUFs in each device for key

agreement with physical identifiers and by using multiple biometrics for key agreement with

biometric identifiers. Thus, below we consider only weak secrecy for simplicity.

Theorem 1 ([13]). The key-leakage-storage region for the GS model is

Rgs =
⋃
PU|X

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ I(U ;Y ),

R` ≥ I(U ;X)− I(U ;Y ),

Rw ≥ I(U ;X)− I(U ;Y )
}

(6)
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where U is an auxiliary random variable, which should be optimized for given PX and PY |X ,

such that U−X−Y forms a Markov chain. Rgs is a convex set. It suffices to have |U|≤|X |+1.

Suppose the low-complexity transform-coding algorithm in [36] is applied to a PUF circuit

with continuous-valued outputs to obtain Xn that is almost i.i.d. according to a uniform Bernoulli

random variable, i.e., Xn ∼ Bernn(1
2
), and the channel PY |X is a BSC(pA) for pA ∈ [0, 0.5]. We

then obtain the following key-leakage-storage region for this identifier output model, which is

a result of optimizing the auxiliary random variable U defined in Theorem 1 for these PX and

PY |X by using Mrs. Gerber’s lemma [37].

Corollary 1 ([13]). The key-leakage-storage regionRgs,binary of the GS model for Xn ∼ Bernn(
1

2
)

and PY |X ∼ BSC(pA) is the union over all q ∈ [0, 0.5] of the bounds

0 ≤ Rs ≤ 1−Hb(q ∗ pA) (7)

R` ≥ Hb(q ∗ pA)−Hb(q) (8)

Rw ≥ Hb(q ∗ pA)−Hb(q). (9)

The rate tuples on the boundary of the region Rgs,binary are uniquely defined by the key vs.

storage rate ratio
Rs

Rw
. We therefore use this ratio as the metric to compare our nested PSCs

with previously-proposed nested PCs and other channel codes. A larger key vs. storage rate ratio

suggests that the code construction is closer to an achievable point that is on the boundary of

Rgs,binary, which is an optimal tuple.

III. DESIGN OF NESTED PSCS

Polar codes convert a channel into polarized virtual bit channels by a polar transform. This

transform converts an input sequence Un with frozen and unfrozen bits to a length-n codeword.

A polar decoder processes a noisy codeword together with the frozen bits to estimate Un. Let

C(n,F , G|F|) denote a PC or a PSC of length n, where F is the set of indices of the frozen
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bits and G|F| is the sequence of frozen bits. In the following, we extend the nested binary PC

construction proposed in [38] for the WZ problem.

A. Polar Subcodes and Randomized Construction

PSCs are a generalization of PCs and they allow some frozen symbols to be equal to linear

combinations of other symbols [25]. Such symbols are referred as dynamically-frozen symbols

(DFSs). An (n = 2m, k) PSC is defined by an (n − k) × n constraint matrix V such that

the last non-zero elements of its rows are located in distinct columns ji ∈ {0, . . . , n − 1} for

0 ≤ i < n− k. The codewords of the polar subcode are obtained as

cn = un

1 0

1 1


⊗m

(10)

where the values G|F| of frozen symbols of un are calculated as

uji =

ji−1∑
s=0

Visus. (11)

Decoding of PSCs can be implemented by a successive cancellation (SC) algorithm, as well as

its list and sequential decoding generalizations [9], [39]. A simple way to obtain binary PSCs

with good performance under list or sequential decoding with small list sizes is to employ a

randomized construction introduced in [26]. The construction involves three types of frozen

symbols:

• The indices of statically-frozen symbols (SFSs), which are a special case of DFSs, are

selected as integers ji, for 0 ≤ i < n− k− tA− tB, of the least reliable virtual subchannels

of the polar transform, so the i-th row of V has 1 in position ji and 0, otherwise. This

corresponds to constraints uji = 0.

• The indices of type-B DFSs are selected as the integers ji, for n−k−tA−tB ≤ i < n−k−tA,

of the least reliable virtual subchannels that are not selected as SFSs. The i-th row of V has

1 in position ji and binary uniformly-randomly chosen values in positions s < ji. Type-B
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DFSs enforce the scores of incorrect paths in the Tal-Vardy decoding algorithm to decrease

fast, reducing the probability of the correct path being dropped from the list.

• The indices of type-A DFSs ji, for n−k−tA ≤ ji < n−k, are selected as the largest integers

in {0, 1, . . . , n − 1} \ {j0, . . . , jn−k−tA−1} that have the smallest Hamming weight, which

is defined as the number of non-zero bits in a sequence’s binary representation. The i-th

row of V has a 1 in position ji and binary uniformly-randomly chosen values in positions

s < ji. Type-A DFSs eliminate the low-weight codewords.

The number tA of type-A DFSs and the number tB of type-B DFSs should be chosen in general

via extensive simulations. For simplicity, we use the suggested parameters for L = 32 in [40],

i.e., we choose

tA = min{m, (n− k)} (12)

tB =max
{

0, min{(64− tA), (n− k − tA)}
}
. (13)

To obtain the reliabilities of the subchannels of the polar transform, we use the min-sum density

evolution algorithm [41] over a BSC(p), where the crossover probability p is a design parameter

to be optimized in general by simulations. One parameter used in the sequential decoder is the

priority queue size D [39], for which we use D = 1024.

B. Randomized Nested PSC Construction

PCs, including PSCs, provide a simple nested code design due to the control on the subsets of

codewords by changing the frozen bits. We first summarize the nested code construction method

proposed in [15] for PCs and then extend it to PSCs. We also provide a procedure to design

nested binary PSCs for key agreement with PUFs.

1) Nested PC Construction: For the GS model with source and channel models given in

Corollary 1, consider two PCs C1(n,F1, V ) and C(n,F , V ) with F = F1∪Fw and V = [V,W ],
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where V has length m1 and W has length m2 such that m1 and m2 satisfy [15]

m1

n
= Hb(q)− δ (14)

m1 +m2

n
= Hb(q ∗ pA) + δ (15)

for some distortion q ∈ [0, 0.5] as in (7)-(9) and any δ > 0.

We remark that (14) implies a vector quantization (VQ) code C1 that can achieve an average

per-letter distortion of at most q when n → ∞ since its code rate is greater than the rate-

distortion function I(X;Xq) = 1 − Hb(q) at distortion q, where Xn
q represents the quantized

version of the sequence Xn. Furthermore, (15) implies an error-correcting code (ECC) C that

can achieve a negligible error probability for a BSC(q ∗ pA) when n→∞ since its code rate is

smaller than the channel capacity I(Xq;Y ) = 1−Hb(q ∗ pA).

During enrollment, the encoder treats the uniform binary sequence Xn as a noisy observation

measured through a BSC(q). Decoder of the PC C1 quantizes Xn to a codeword Xn
q of C1.

Applying the inverse polar transform to Xn
q , the encoder calculates Un and its bits at indices Fw

are stored as the helper data W . Furthermore, the bits at the indices i ∈ {1, 2, . . . , n} \ F are

used as the secret key S that has a length of n−m1 −m2. During reconstruction, the decoder

of the PC C observes the helper data W and the binary noisy sequence Y n. The frozen bits

V = [V,W ] at indices F and Y n are input to the PC decoder to obtain the codeword X̂n
q .

Applying the inverse polar transform to X̂n
q , we obtain Ûn that contains the estimate Ŝ of the

secret key at the indices i ∈ {1, 2, . . . , n}\F . This nested PC construction is depicted in Fig. 3.

2) Nested PSC Construction: We next extend the nested PC construction to a nested PSC

construction and provide also exact design parameters. We observe from simulations that the

VQ performance of PSCs are entirely similar to the performance of PCs, so we use a PC as the

code C1 and use a PSC as the code C due to high gains obtained from PSCs in error correction

as compared to PCs. Let V′S be the constraint matrix for the code C1, i.e., V′S contains unit

vectors with 1s in positions F1. Then, we ensure that the low-rate PSC C has SFSs in indices
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PX Xn BSC(pA)

Y n

Polar

Decoder C1

Un

Helper Data

and Key

Extraction

S

W

Polar

Decoder C

Ûn

Key

Extraction

Ŝ

V W V
Polar

Transform

BSC(q ∗ pA)

Xn
q

Enrollment Reconstruction

Fig. 3. Nested PC construction for the GS model [15].

F1. Hence, the constraint matrix V of C is given by

V =



V′S

V′′S

VB

VA


(16)

where VA and VB are submatrices corresponding to type-A and type-B DFSs, respectively, and

V′′S corresponds to further SFSs of C. Denote F = FA ∪ FB ∪ FS as the union of the set of

indices for type-A DFSs, type-B DFSs, and all SFSs of C.

The simplest way to implement decoding of the low-rate PSC is to employ the SC algorithm,

which is originally proposed for PCs. For r = 0, . . . , n− 1, the SC algorithm decodes, with an



15

abuse of notation, as

ûr =



Whr if r ∈ Fw

r−1∑
s=0

Vir,sûs if r ∈ F \ Fw

arg max
u

W (r)
m (yn−10 , ûr−10 |u) if r /∈ F

(17)

where hr is the index of the helper symbol stored in ur, ir is the index of rows in V having

the last non-zero element in column r, W (r)
m is the transition probability function for the t-th

subchannel of the polarizing transformation. However, significantly better performance can be

obtained by employing list or sequential decoding, as discussed below.

Tal-Vardy list decoding algorithm [9] tracks at most L partial vectors ur−10 . At each phase

r this algorithm constructs the possible continuations ur0 of the partial vectors, subject to (11)

for r ∈ F , and keeps for further processing L continuations with the highest probabilities

W
(r)
m (yn−10 , ur−10 |ur). This can be implemented with a complexity O(Ln log n). The decoding

complexity can be substantially reduced by employing a stack decoder [42]. A stack decoder

stores in a priority queue, i.e., stack, the paths ur−10 of length r together with their score

M(ur−10 , yn−10 ), which can be chosen and calculated as given in [42] or as discussed below.

At each iteration, the path with the highest score is retrieved from the priority queue, its

valid continuations ur0 are constructed and pushed into the priority queue together with their

updated scores. Decoding terminates when a path of length n is retrieved from the priority

queue. The decoder ensures that paths of a length r are retrieved at most L times. Performance

and complexity of this method significantly depend on the the score function chosen. It was

suggested in [39] to choose it as

M(ur−10 , yn−10 ) = R(ur−10 , yn−10 )− E
[
R(vr−10 , yn−10 )

]
(18)
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where the expectation is taken over channel outputs yn−10 obtained by transmitting vn−10 and

R(ur0, y
n−1
0 ) =



0 if r = −1

R(ur−10 , yn−10 ) if (−1)urS
(r)
m (ur−10 , yn−10 ) ≥ 0

R(ur−10 , yn−10 )−
∣∣∣S(r)

m (ur−10 , yn−10 )
∣∣∣ if (−1)urS

(r)
m (ur−10 , yn−10 ) < 0

(19)

where S(r)
m (ur−10 , yn−10 ) are the modified log-likelihood ratios obtained via the min-sum recursion.

C. Proposed Design Procedure

We propose the following steps to design nested PSCs for source and channel models given

in Corollary 1 with a given blocklength n, secret-key size n − m1 − m2, and a block-error

probability PB. These steps provide exact design parameter choices for nested PSCs, decided

based on the simulation results over a large set of design parameters.

1) Apply the randomized PSC construction method described in Section III-A to construct

PSCs with rate
n−m1−m2

n
for a BSC(p) for a range of values in p ∈ (pA, 0.5].

2) Evaluate PB of constructed PSCs with the sequential decoder in [39] (or a list decoder as

in [9]) with list size L over a BSC for a range of crossover probabilities p̃ ∈ (pA, 0.5] to

obtain the crossover probability pc that results in the target PB. Assign the PSC that gives

the largest pc as the low-rate PSC C. Denote sp and spc, respectively, as p and pc values

corresponding to the code C. We remark that the design parameter p and the evaluation

parameter p̃ are not generally the same.

3) Using the inverse of the star operation, obtain the expected target distortion E[q] averaged

over all xn∈X n as E[q] =
spc − pA
1− 2pA

.

4) Obtain the reliabilities of virtual subchannels of the polar transform by using the min-sum

density evolution algorithm over a BSC(p̄1), where sp1 =
sp− pA

1− 2pA
.

5) Arrange the subchannel reliabilities obtained in Step 4 in a descending order. Consecutively

remove indices from the set F , starting from the most reliable subchannels, until an average
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distortion sq =
1

n

n∑
i=1

Xi ⊕ Xq,i of at most E[q] is achieved, where ⊕ denotes modulo-2

summation. Assign the remaining indices, i.e., the unremoved least reliable subchannel

indices, as the frozen symbol indices of the high-rate code C1 that are denoted as F1.

Step 4 suggests that the design parameter sp of C uniquely determines the design parameter sp1

for C1. The total number of DFSs of C is (tA + tB), as defined in Section III-A. Therefore, if

the difference between the rate of C1 and of C, i.e., ∆R , Hb(q ∗ pA) − Hb(q), is larger than
tA + tB
n

, then C1 is a PC because DFSs are the most reliable frozen symbols. The difference

n∆R is larger than (tA + tB) for the SRAM PUF parameters we consider in the next section as

∆R increases with increasing pA, which is consistent with our nested PSC construction where

the high-rate code is a PC.

Remark 1. This randomized nested PSC construction provides an additional degree of freedom

such that the same code, designed for a given set of parameters, can be used for different PB

values and for different crossover values pA by adapting the expected distortion level. A wide

range of applications can therefore be addressed by using the same nested PSC.

IV. PROPOSED NESTED PSCS FOR PUFS

Consider the scenario where we generate a secret key S with length n−m1−m2 =128 bits to

use it in the advanced encryption standard (AES). Suppose intellectual property (IP) in a field-

programmable gate array (FPGA) with an SRAM PUF should be protected so that the target

block-error probability PB is 10−6 [44]. SRAM PUF measurement channels PY |X are modeled

as a BSC(pA = 0.15) [32]. We apply the design procedure proposed in Section III-C for these

parameters to design Codes 1 and 2, which have blocklengths 1024 and 2048 bits, respectively,

and which are decoded by using sequential decoders for list sizes L = [8, 32, 64].

Code 1: Consider nested PSCs with blocklength n = 1024 bits. First, design PSCs of rate

128/1024 by applying Steps 1 and 2 given in Section III-C for L = 8 and obtain sp, which
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Fig. 4. Block-error probability of C over a BSC with crossover probabilities p̃ for Codes 1 and 2 of length 1024 and 2048

bits, respectively, with sequential decoders and corresponding spc values represented by a circle for list size L = 8, square for

L = 32, and pentagon for L = 64.

is found to be sp = 0.1863. Fig. 4 depicts the p̃ vs. PB curves for the code C with sequential

decoders for list sizes L = [8, 32, 64]. We observe PB =10−6 in Fig. 4 at crossover probabilities

of spc = [0.1988, 0.2096, 0.2130] such that we obtain E[q] = [0.0697, 0.0852, 0.0900] by Step 3 for

L = [8, 32, 64], respectively, where we apply sp found for L = 8 to all list sizes for simplicity.

Applying Step 4, we obtain the design parameter for the code C1 and evaluate the average

distortion sq by applying Step 5. Fig. 5 depicts the n − m1 vs. sq curves obtained by applying

Step 5. Code 1 achieves sq ≤ E[q] in Fig. 5 with minimum m2 = [553, 492, 474] bits of helper

data, sufficing to reconstruct a 128-bit secret key with PB = 10−6 for L = [8, 32, 64], respectively.
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Fig. 5. Average distortion sq with respect to n−m1 for Codes 1 and 2 with sequential decoders and corresponding E[q] values

represented by a circle for list size L = 8, square for L = 32, and pentagon for L = 64.

Code 2: Consider nested PSCs with the same parameters as in Code 1, except n = 2048

bits. The value of sp for this case is 0.2650. Fig. 4 shows that crossover probabilities of spc =

[0.2756, 0.2861, 0.2883] satisfy PB = 10−6, so the expected target distortions are

E[q] = [0.1795, 0.1944, 0.1975] for L = [8, 32, 64], respectively. Code 2 achieves sq ≤ E[q] in

Fig. 5 with minimum m2 = [578, 505, 490] bits, which should be stored as helper data to generate

a key size of 128 bits with PB = 10−6 for L = [8, 32, 64], respectively.

A. Rate Region Performance

We evaluate the key-leakage-storage region Rgs,binary for pA = 0.15 and plot its storage-key

(Rw, Rs) projection in Fig. 6. Furthermore, we plot in Fig. 6 the tuples achieved by Codes 1
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Fig. 6. Storage-key rates for key generation with crossover probability pA = 0.15. The block-error probability satisfies

PB ≤ 10−6 and the key length is 128 bits for all code points. The dashed line represents Rw + Rs = H(X) = 1 bit/symbol.

All codes with Rw = 1 bit/symbol are ECCs. The PC on the dashed line is a syndrome-coding construction.

and 2, previous nested PCs given in [15], the syndrome-coding (or SW-coding) construction

proposed in [43], and the classic constructions that are code-offset fuzzy extractors (COFE) [45]

and the fuzzy commitment scheme (FCS) [46].

We observe from Fig. 6 that Code 1 with L = 8 achieves a key vs. storage rate ratio of

0.2315, improving on the nested PC 1 ratio of 0.1969 achieved in [15] with the same list size.

This result illustrates that nested PSCs achieve the best key vs. storage ratio in the literature

for the same list size. Another way to compare state-of-the-art nested PCs and proposed nested

PSCs is to find the minimum list size L required by nested PSCs to achieve the same storage
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rate performance as being achieved by nested PCs. By following the design procedure given in

Section III-C individually for all list sizes smaller than L = 8, we obtain that L = 4 suffices

for nested PSCs to achieve a storage rate smaller than achieved by nested PCs for the design

parameters of Code 1. We observe PB = 10−6 at crossover probability of spc = 0.1885, i.e., we

have E[q] = 0.0551, for nested PSCs with L = 4. Code 1 with L = 4 achieves sq = E[q] at

m2 = 615 bits of helper data, which is smaller than the amount 650 bits of helper data required

by nested PCs with L = 8 for the design parameters of Code 1 [15]. Furthermore, increasing the

list size of Code 1 to L = 32 allows to achieve a key vs. storage rate ratio of 0.2602, which is a

substantial gain as compared to L = 8 case. A further increase in the list size does not improve

the achieved ratio significantly as, e.g., Code 1 with L = 64 achieves 0.2698. This result might

be due to the choice of the numbers tA and tB of type-A and type-B DFSs adapted to L = 32,

so one might improve the performance of larger list sizes by choosing different tA and tB.

Code 2 with L = 8 achieves a
Rs

Rw
ratio of 0.2215, better than 0.2095 achieved by the nested

PC 2 proposed in [15]. The ratio increases to 0.2535 and 0.2612 by increasing the list size to

L = 32 and L = 64, respectively. Thus, the largest
Rs

Rw
ratio in the literature for SRAM PUFs

is achieved by Code 1, for which we have n = 1024 bits, with L = 64. Its performance might

be improved also by optimizing tA and tB. Furthermore, the minimum list size L required by

nested PSCs to achieve the same storage rate as achieved by nested PCs with L = 8 for the

design parameters of Code 2 is found to be L = 6. The block-error probability PB = 10−6 is

achieved at crossover probability of spc = 0.2720, i.e., we have E[q] = 0.1743, for nested PSCs

with L = 6. Code 2 with L = 6 achieves sq = E[q] at m2 = 604 bits of helper data, which is

slightly smaller than the amount 611 bits of helper data required by nested PCs with L = 8 for

the design parameters of Code 2 [15].

The decoding complexity of the sequential decoding algorithm in [39] depends on the quality

of the measurement channel, which depends on pA for our model. It is upper bounded by the

complexity O(Ln log2 n) of the SCL decoder, where L is the maximal number of times the
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TABLE I

THE AVERAGE NUMBER OF SUMMATION AND COMPARISON OPERATIONS DONE FOR Code 1 WITH SEQUENTIAL DECODERS.

L = 4 L = 8 L = 32 L = 64

spc = 0.1885 spc = 0.1988 spc = 0.2096 spc = 0.2130

High-rate Summation Count 12957.9 18596.4 39404.0 51431.1

PC Comparison Count 9964.7 14161.5 29576.1 38358.0

Low-rate Summation Count 6481.1 6512.3 6612.5 6681.3

PSC Comparison Count 6152.6 6176.4 6258.3 6315.3

decoder is allowed to visit each phase (equivalent to the list size in the Tal-Vardy SCL decoding

algorithm [9] used for nested PCs), but it converges to O(n log2 n) fast with a channel bit error

rate approaching 0, e.g., when pA→0 for our model by using methods, e.g., in [29], [47], [48].

We list the average number of summation and comparison operations done with the sequential

decoder of [39] for Codes 1 and 2 in Tables I and II, respectively. We remark that the low-rate

PSCs are averaged over 108 iterations and the high-rate PCs are averaged over 20000 iterations.

Tables I and II show that increasing the list size L or the blocklength n significantly increases

the decoding complexity for high-rate PCs. However, for the low-rate PSCs, increasing the

list size L does not increase the decoding complexity significantly, whereas increasing the

blocklength n has a similar effect on the decoding complexity as for high-rate PCs. Furthermore,

low-rate PSCs have significantly lower decoding complexities than of high-rate PCs with the

same L and n. Therefore, the complexity of a high-rate PC depends significantly on the list

size and dominates the overall complexity of a nested PSC that is designed for the parameters

chosen to protect IP in an FPGA by using SRAM PUFs.
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TABLE II

THE AVERAGE NUMBER OF SUMMATION AND COMPARISON OPERATIONS DONE FOR Code 2 WITH SEQUENTIAL DECODERS.

L = 6 L = 8 L = 32 L = 64

spc = 0.2720 spc = 0.2756 spc = 0.2861 spc = 0.2883

High-rate Summation Count 35491.2 40893.7 89803.8 108000.0

PC Comparison Count 29502.2 33904.0 73957.6 88358.1

Low-rate Summation Count 13825.7 13875.3 14185.9 14310.1

PSC Comparison Count 13380.9 13422.4 13685.8 13791.6

V. DISCUSSIONS ON FURTHER IMPROVEMENTS

Optimal design of error-correcting PSCs is known to be a challenging task [26]. We propose in

Section III-B a nested PSC construction with the aim to minimize the amount of public storage

for given blocklength, low-rate code rate, channel model, (sequential) decoders, and block-error

probability. Therefore, there are additional design parameters in our construction as compared

to error-correcting PSC constructions and the joint effects of all design parameters on both the

low-rate PSC and the high-rate PC should be revealed. We remark that our insights might differ

from the insights gained from error-correcting PSC designs since we consider the joint effects of

all parameters on a closely related but different problem, i.e., nested PSC design with minimum

public storage rate. We next list the main insights gained from our numerous nested PSC designs,

which might be useful to improve the overall nested PSC performance illustrated above.

The main parameters that can be optimized for the low-rate PSC design are, respectively, the

numbers tA and tB of type-A and type-B DFSs, as mentioned above. We choose the parameters

as in (12) and (13) that are the suggested values for error-correcting PSC designs with L = 32.

Our simulation results suggest that these values perform well also for other list sizes considered

in this work, such as L = 8 and 64. However, it seems to be possible to improve the overall
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performance for small list sizes, which can provide a slight performance gain also for L = 8.

Thus, more analyses are required to provide better value suggestions for tA and tB for nested

PSC designs, especially for small list sizes. Furthermore, for all list sizes considered in Tables I

and II, we use the same crossover probability value sp that is obtained by applying the proposed

design procedure for L = 8. We observe that varying sp does not bring a significant overall

performance gain when (12) and (13) are used to determine tA and tB, respectively. However, it

might be the case that joint optimization of (tA, tB, sp) for each list size separately might result

in overall performance gains.

A simple change that can reduce the hardware cost is to allow the list sizes for the low-rate

PSC and high-rate PC to be different, unlike above. This additional degree of freedom enables

adaptation to different hardware cost constraints imposed to enrollment and reconstruction im-

plementations. For some applications, this change might not be possible. For instance, if a PUF

is used in a mobile device for private device authentication or data encryption/decryption, then

it might be preferred to use the same (sequential) decoder during enrollment and reconstruction

not to increase the total hardware area required in the mobile device.

The design procedure proposed in Section III-C uses the expected target distortion E[q]

averaged over all realizations xn ∈X n as the design parameter for the high-rate PC. However,

for applications such as secret-key agreement with PUFs it is vital to provide the reliability

guarantee for each PUF sequence xn, which requires a worst-case reliability guarantee. Thus,

it is illustrated in [15] that by replacing the expected target distortion E[q] with the maximum

distortion for, e.g., 99.99% of all realizations xn of Xn, the same reliability guarantee can

be provided with small additional public storage. Thus, the same idea can be included in the

nested PSC design procedure proposed above to ensure that, e.g., 99.99% of all PUFs satisfy

the reliability constraint.
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VI. CONCLUSION

We proposed a randomized nested polar subcode construction, which can be useful for nu-

merous information-theoretic problems. We provided a design procedure to use a polar subcode

as an error-correcting code and a polar code as a vector quantizer such that the codes are nested.

Nested polar subcodes are designed for the source and channel models used for SRAM PUFs to

illustrate significant gains in terms of the key vs. storage rate ratio as compared to previous code

designs including state-of-the-art nested polar codes. The minimum list sizes required by nested

polar subcodes to perform better than state-of-the-art nested polar codes were also provided to

illustrate that one can gain in hardware cost by using nested polar subcodes as compared to

nested polar codes for the same design parameters due to the list size reductions. The gains

from reduced list sizes were characterized for nested polar subcodes in terms of the average

number of summation and comparison operations done in the sequential decoders. By analyzing

simulation results and using the properties of PSCs, we proposed methods to further optimize

the most promising and effective design parameters, which can lead to improvements in the

privacy, reliability, secrecy, storage or hardware performance of designed nested polar subcodes.

In future work, we will propose new code constructions that can perform close to the finite-length

bounds one can straightforwardly calculate by combining the separate finite-length bounds for

error correction and for vector quantization, which are valid also for nested code constructions

considered.
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