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Abstract

Unclonable encryption, introduced by Broadbent and Lord (TQC’20), is an encryption scheme
with the following attractive feature: given a ciphertext, an adversary cannot create two cipher-
texts both of which decrypt to the same message as the original ciphertext.

We revisit this notion and show the following:

1. Reusability: The constructions proposed by Broadbent and Lord have the disadvantage
that they either guarantee one-time security (that is, the encryption key can only be
used once to encrypt the message) in the plain model or they guaranteed security in the
random oracle model. We construct unclonable encryption schemes with semantic security.
We present two constructions from minimal cryptographic assumptions: (i) a private-key
unclonable encryption scheme assuming post-quantum one-way functions and, (ii) a public-
key unclonable encryption scheme assuming a post-quantum public-key encryption scheme.

2. Lower Bound and Generalized Construction: We revisit the information-theoretic
one-time secure construction of Broadbent and Lord. The success probability of the adver-
sary in their construction was guaranteed to be 0.85n, where n is the length of the message.
It was interesting to understand whether the ideal success probability of (negligibly close
to) 0.5n was unattainable. We generalize their construction to be based on a broader class
of monogamy of entanglement games (while their construction was based on BB84 game).
We demonstrate a simple cloning attack that succeeds with probability 0.71n against a
class of schemes including that of Broadbent and Lord. We also present a 0.75n cloning
attack exclusively against their scheme.

3. Implication to Copy-Protection: We show that unclonable encryption, satisfying a
stronger property, called unclonable-indistinguishability (defined by Broadbent and Lord),
implies copy-protection for a simple class of unlearnable functions. While we currently
don’t have encryption schemes satisfying this stronger property, this implication demon-
strates a new path to construct copy-protection.
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1 Introduction

Quantum mechanics has led to the discovery of many fascinating cryptographic primitives [Wie83,
Aar09, BGS13, Zha19, AGKZ20, BI20, GZ20, ALP21, ALL+20] that are simply not feasible using
classical computing. A couple of popular primitives include quantum money [Wie83] and quantum
copy-protection [Aar09]. We study one such primitive in this work.

Inspired by the work of Gottesman [Got02] on tamper detection, Broadbent and Lord introduced
the beautiful notion of unclonable encryption [BL20]. This notion is an encryption scheme that has
the following attractive feature: given any encryption of a classical message m ∈ {0, 1}∗, modeled
as a quantum state, the adversary should be unable to generate multiple ciphertexts that encrypt
to the same message. Formally speaking, the unclonability property is modeled as a game between
the challenger and the adversary. The adversary consists of three algorithms, denoted by Alice,
Bob and Charlie. The challenger samples a message m uniformly at random and then sends the
encryption of m to Alice, who then outputs a bipartite state. Bob gets a part of this state and
Charlie gets a different part of the state. Then the reveal phase is executed: Bob and Charlie each
independently receive the decryption key. Bob and Charlie – who no longer can communicate with
each other – now are expected to guess the message m simultaneously. If they do, we declare that
the adversary succeeds in this game. An encryption scheme satisfies unclonability property if any
adversary succeeds in this game with probability at most negligible in the length of m. Note that
the no-cloning principle [WZ82] of quantum mechanics is baked into this definition since if it were
possible to copy the ciphertext, Alice can send this ciphertext to both Bob and Charlie who can
then decrypt this using the decryption key (obtained during the reveal phase) to obtain the message
m.

Broadbent and Lord proposed two novel constructions of unclonable encryption. The drawback
of their information-theoretic scheme is that it only guaranteed one-time security. This means that
the encryption key can only be used to encrypt one message, after which the key can no longer
be used to encrypt messages without compromising on security. On the other hand, their second
scheme does provides reusable security, albeit only in the stronger random oracle model. Another
(related) drawback is that their schemes were inherently private-key schemes, meaning that only
the entity possessing the private encryption key could compute the ciphertext.

1.1 Our Work

Reusability. We revisit the notion of unclonable encryption of [BL20] and present two construc-
tions. Both of our constructions guarantee semantic security; no information about the message is
leaked even if the key is reused. The first construction is a private-key scheme (the encryption key
is private) while the second construction is a public-key scheme (the encryption key is available to
everyone).

Theorem 1 (Informal). Assuming post-quantum one-way functions1, there exists a private-key
unclonable encryption scheme.

1A function f is one-way and post-quantum secure if given f(x), where x ∈ {0, 1}λ is sampled uniformly at random,
a quantum polynomial-time (QPT) adversary can recover a pre-image of f(x) with probability only negligible in λ.
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Theorem 2 (Informal). Assuming the existence of post-quantum public-key encryption schemes2,
there exists a public-key unclonable encryption scheme.

We clarify that we show reusability only against distinguishing attacks and not cloning attacks.
That is, the cloning attacker gets as input one ciphertext and in particular, does not get access to
an encryption oracle. However, we do note that in the public-key setting, we can assume that the
cloning adversary does not get access to the encryption oracle without loss of generality. Although
in the private-key setting, a more delicate argument and/or construction is required.

Our constructions only guarantee computational security, unlike the previous scheme of Broad-
bent and Lord. However, our assumptions are the best one can hope for: (a) a private-key unclonable
encryption scheme implies a post-quantum private encryption scheme (and thus, post-quantum one-
way functions) and, (b) a public-key unclonable encryption scheme implies a public-key encryption
scheme. There are candidates from lattices for both post-quantum one-way functions and post-
quantum public-key encryption schemes; for example, see [Reg09].

Lower Bound and Generalized Construction. The first construction of [BL20], conjugate
encryption, is based on the BB84 monogamy of entanglement game [TFKW13], whose adversarial
success probability is

(
1
2 + 1

2
√

2

)
≈ 0.85. In the hope of improving the bound, we present a simple

generalization of their construction by showing a transformation from a broader class of monogamy
games to unclonable encryption; whereas, [BL20] only showed the transformation for the BB84
monogamy game.

The optimal cloning adversary in conjugate encryption succeeds with probability 0.85n, whereas
the ideal value would be negligibly close to 0.5n, where n is the length of the messages, which
is attainable trivially without cloning. A natural question to ask is if we can present a different
analysis of their construction that gives the optimal bound. We show, in the theorem below, that
this is not the case.

Theorem 3 (Informal). In a generalized conjugate encryption scheme which encrypts every bit of
the message independently, a cloning adversary can succeed with probability at least 0.71n.

The adversary that achieves this bound is simple: Alice clones the ciphertext with high fidelity
using a generic cloning channel [BCMDM00]. After learning the key, Bob and Charlie both try to
honestly decrypt their state, and the output of the decryption matches the original message with
significant probability for both of them.

This adversarial construction inherently relies on the fact that the ciphertext (in qubits) is not
larger than the message (in bits). For unclonable encryption schemes with large ciphertext size, it
is infeasible to achieve a nontrivial bound using this technique.

The lower bound can be improved for conjugate encryption specifically using an adversary which
blindly guesses part of the key before the splitting phase:

Theorem 4 (Informal). In conjugate encryption scheme of [BL20], a cloning adversary can succeed
with probability 0.75n.

2An encryption scheme is said to be a post-quantum public-key encryption scheme if any quantum polynomial-time
(QPT) adversary can distinguish encryptions of two equal-length messages m0,m1 with only negligible probability.
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Implication to Copy-Protection. We show how to use unclonable encryption to build quantum
copy-protection [Aar09]. Roughly speaking, using a quantum copy-protection scheme, we can copy-
protect our programs in such a way that an adversarial entity cannot create multiple versions of this
copy-protected program. Recently, this notion has been revisited by many recent works [ALP21,
CMP20, ALL+20, KNY20, BJL+21].

However, despite the recent progress, to date, we don’t know of any provably secure construc-
tions of copy-protection. We show how to use unclonable encryption to construct copy-protection
for a specific class of point functions. This class consists of functions of the form fa,b(·), where b
is a concatenation of the verification key and a signature on 0, that take as input x and output b
if and only if x = a. This would not immediately yield a provably construction of copy-protection
since we need the underlying unclonable encryption to satisfy a stronger property called unclonable
indistinguishability property (see Definition 12) that are not currently satisfied by existing construc-
tions of unclonable encryption. Nonetheless, this gives a new pathway to demonstrating provably
secure constructions of quantum copy-protection.

Theorem 5 (Informal). Assuming the existence of unclonable encryption scheme satisfying unclonable-
indistinguishability property and post-quantum one-way functions, there exists a quantum copy-
protection scheme, satisfying computational correctness, for a special class of point functions.

The resulting copy-protection guarantees a weaker correctness property called computational cor-
rectness property; informally, this says that any quantum polynomial-time adversary cannot come
up with an input such that the copy-protected circuit is incorrect on this input. We note that such
a correctness notion has been studied previously in the context of obfuscation [BLMZ19] (under
the name computational functionality preservation). In addition to unclonable encryption, we use
a post-quantum digital signature scheme that can be based on post-quantum one-way functions.

Our construction is inspired by a construction of secure software leasing by Broadbent, Jeffery,
Lord, Podder and Sundaram [BJL+21]. Conceptually, we follow the same approach suggested in
their paper, except we replace the tool of quantum authentication codes [BCG+] with unclonable
encryption.

Coladangelo, Majenz, and Poremba [CMP20] also explore constructing copy-protection from un-
clonable encryption. They construct copy-protection for compute-and-compare programs3 (which
subsumes point functions) in the QROM. Hence, whether unclonable-indistinguishable secure en-
cryption can be constructed in the standard model is the key question in evaluating our contribution.

Concurrent Works. The work of Majenz, Schaffner and Tahmasbi [MST21] study various lim-
itations on unclonable encryption schemes. Specifically, they analyze lower bounds for the success
probability of the adversary in any unclonable encryption scheme. In contrast, our lower bound
targets specifically the conjugate encryption scheme of [BL20] and this allowed to present concrete
lower bounds.

3A compute and compare program implements a function CC[f, y] defined as:

CC[f, y](x) :=

{
1, f(x) = y

0, f(x) 6= y
.

Point functions can be considered a special case when f is the identity function.
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Hiroka, Morimae, Nishimaki and Yamakawa [HMNY21] show how to make the key reusable
for a different primitive called quantum encryption with certified deletion [BI20] using the same
conceptual idea but different tools. We note that unclonable encryption implies quantum encryption
with certified deletion if the certificate of deletion is allowed to be quantum. However, Hiroka et
al.’s result achieves classical certification of deletion, which makes our results are incomparable.

Acknowledgements We thank the TCC 2021 committee for pointing out a simpler cloning attack
against conjugate encryption.

1.2 Technical Overview

We present a high level overview of our techniques.

Naive Attempt: A Hybrid Approach. A naive attempt to construct an unclonable encryption
scheme with reusable security is to start with two encryption schemes.

• The first scheme is a (one-time) unclonable encryption scheme, as considered in the work
of [BL20]. We denote this scheme by otUE.

• The second scheme is a post-quantum encryption scheme guaranteeing reusable security but
without any unclonability guarantees4. We denote this scheme by E .

At a high level, we hope that we can combine the above two schemes to get the best of both worlds:
reusability and unclonability.

In more detail, using otUE and E , we construct a reusable unclonable encryption scheme, denoted
by rUE, as follows. Sample a decryption key kE according to the scheme E and set the decryption
key of rUE to be kE . The encryption procedure of rUE is defined as follows. To encrypt a message
m, first sample a key kotUE according to the scheme otUE. Output the rUE encryption of m to be
(CTotUE,CTE), where CTotUE is an encryption of m under the key kotUE and, CTE is an encryption
of the message kotUE under the key kE . To decrypt, first decrypt CTE using kE to obtain the message
kotUE. Using this, then decrypt CTotUE to get the message m.

How do we argue unclonability? Ideally, we would like to reduce the unclonability property of
rUE to the unclonability property of the underlying one-time scheme otUE. However, we cannot
immediately perform this reduction. The reason being that kotUE is still encrypted under the scheme
E and thus, we need to get rid of this key before invoking the unclonability property of otUE. To get
rid of this key, we need to invoke the semantic security of E . Unfortunately, we cannot invoke the
semantic security of E since the decryption key of E will be revealed to the adversary and semantic
security is trivially violated if the adversary gets the decryption key.

More concretely, Alice upon receiving (CTotUE,CTE) could first break CTE to recover kotUE and
then decrypt CTotUE using kotUE to recover m. Thus, before performing the reduction to rUE, we
need to first invoke the security property of E . Here is where we are stuck: as part of the security
experiment of the unclonability property, we need to reveal the decryption key of rUE, which is
nothing but kE , to Bob and Charlie after Alice produces the bipartite state. But if we reveal kE ,
then the security of E is no longer guaranteed.

4As an example, we could use Regev’s public-key encryption scheme [Reg09].
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Embedding Messages into Keys. To overcome the above issue, we require E to satisfy an
additional property. Intuitively, this property guarantees the existence of an algorithm that produces
a fake decryption key that has embedded inside it a message m such that this fake decryption key
along with an encryption of 0 should be indistinguishable from an honestly generated decryption
key along with an encryption of m.

Fake-Key Property: there is a polynomial-time algorithm FakeGen that given an
encryption of 0, denoted by CT0, and a message m, outputs a fake key fk such that
the distributions {(CTm, kPKE)} and {(CT0, fk)} are computationally indistinguishable,
where CTm is an encryption of m and kPKE is the decryption key of PKE.

One consequence of the above property is that the decryption of CT0 using the fake decryption key
fk yields the message m.

Using the above fake-key property, we can now fix the issue in the above hybrid approach.
Instead of invoking semantic security of E , we instead invoke the fake-key property of PKE. The
idea is to remove kotUE completely in the generation CTE and only use it during the reveal phase,
when the decryption key is revealed to both Bob and Charlie. That is, CTE is computed to be
an encryption of 0 and instead of revealing the honestly generated key kE to Bob and Charlie, we
instead reveal a fake key that has embedded inside it the message kotUE. After this change, we will
now be ready to invoke the unclonability property of the underlying one-time scheme.

Instantiation: Private-Key Scheme. We used a reusable encryption scheme E satisfying the
fake-key property to construct an unclonable encryption satisfying reusable security. But does a
scheme satisfying fake-key property even exist?

We present two constructions: a private-key and a public-key encryption scheme satisfying
fake-key property. We first start with a private-key encryption scheme. We remark that a slight
modification of the classical private-key encryption scheme using pseudorandom functions [Gol07]
already satisfies this property5. The encryption of a message m using the decryption key kE =

(k, otp) is CT = (r, PRFk(r) ⊕ m ⊕ otp), where r ∈ {0, 1}λ is chosen uniformly at random, λ is
a security parameter and PRF is a pseudorandom function. To decrypt a ciphertext (r, θ), first
compute PRFk(r) and then compute θ ⊕ PRFk(r)⊕ otp.

The fake key generation algorithm on input a ciphertext CT = (r, θ) and a message m, generates
a fake key fk as follows: it first samples a key k′ uniformly at random and then sets otp′ to be
θ⊕ PRFk′(r)⊕m. It sets fk to be (k′, otp′). Note that fk is set up in such a way that decrypting
CT using fk yields the message m.

Instantiation: Public-Key Scheme. We can present a construction of a public-key scheme
using functional encryption [BSW11, O’N10], a fundamental notion in cryptography. A functional
encryption (FE) scheme is an encryption scheme where the authority holding the decryption key
(also referred to as master secret key) is given the ability to issue functional keys, of the form skf
for a function f , such that decrypting an encryption of x using skf yields the output f(x).

5For the informed reader, this scheme can be viewed as a special case of a primitive called somewhere equivocal
encryption [HJO+16], considered in a completely different context.
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A first attempt to achieve fake-key property using FE is to design the fake key to be a functional
key associated with a function, that has the message m, hardwired inside it. This function is a
constant function that always ignores the input and outputs m. There are two issues with this
approach: firstly, the fake key is a functional key whereas the real key is the master secret key of the
functional encryption scheme. An adversary might be able to tell apart the fake key versus the real
key and thus, break the security. Secondly, a public-key functional encryption does not guarantee
function-hiding property – the function description could be evident from the description of the
functional key. This means that the adversary can read off the message m from the description of
the functional key.

The first issue can be solved by making sure that even the real key is a functional key associated
with the identity function. The second issue involves a little more work: instead of having m in
the clear in the description of the function, we instead hardwire encryption of m in the function
description. The decryption key for this ciphertext is encrypted inside the ciphertext of the FE
scheme. Thus, we have two modes: (a) in the first mode, we encrypt m using FE and the real
key is a functional key associated with the identity function (this function has a dummy ciphertext
hardwired inside it) and, (b) in the second mode, we encrypt k̂ using FE and the fake key is a
functional key associated with a function, which has a ciphertext c encrypting message m hardwired
inside it, that decrypts c using k̂ and outputs the result. This trick is not new and is inspired by
the Trojan technique [ABSV15] introduced in a completely different context.

In the technical sections, instead of presenting a public-key encryption satisfying fake-key prop-
erty using FE, we present a direct construction of public-key unclonable encryption scheme using
FE.

Implication to Copy-Protection. Next, we will show how to construct copy-protection for a
specific class of point functions from unclonable encryption. A point function fa,b(·) is represented as
follows: it takes as input x and outputs b if x = a, otherwise it outputs 0. Our approach is inspired
by a recent work by Broadbent et al. [BJL+21] who show how to construct a weaker version of
copy-protection (called secure software leasing [ALP21]) from quantum authentication codes.

A first attempt to construct copy-protection, using unclonable encryption, is as follows: to copy-
protect fa,b(·), output an unclonable encryption6 of b under the key a; that is, a is interpreted as the
decryption key of the unclonable encryption scheme. We treat the ciphertext as the copy-protected
version of fa,b(·). To evaluate this copy-protected state on input x, run the decryption of this
ciphertext with the key x. Output the result of the decryption algorithm.

If the input is x = a then, by the correctness of unclonable encryption, we get the output b.
However, if the input is not a, then we need the guarantee that the output is 0 with high probability.
Unfortunately, the properties of unclonable encryption fall short here. unclonable encryption does
not have any guarantees if the ciphertext is decrypted using an invalid key. It could very well be
the case that on input a′ 6= a, the output of the copy-protection algorithm is b, thus violating the
correctness guarantees.

We use digital signatures to enforce the correctness property of the copy-protection scheme. We
restrict our attention to a sub-class of point functions, where we interpret b to be the concatenation
of a verification key vk and a signature σ on 0. We subsequently modify the evaluation algorithm of

6It suffices to use a one-time unclonable encryption scheme [BL20] here.
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the copy-protection scheme to output (vk, σ′) if and only if the decryption algorithm of unclonable
encryption yields (vk, σ′) and moreover, σ′ is a valid signature on 0. This still does not guarantee
the fact that the copy-protection scheme satisfies correctness. The reason being that on an input
a′ 6= a, the output could still be a valid signature on 0. Fortunately, this satisfies a weaker but
still useful notion of correctness called computational correctness. This property states that an
efficient adversary should not be able to find an input such that the evaluation algorithm outputs
the incorrect value on this input. The reason why computational correctness holds is because it
would be infeasible for the adversary to find an input such that the program outputs a valid signature
on 0; if it did then it violates the unforgeability property of the underlying signature scheme.

We need to show that given the copy-protected program, say ρ, an adversary cannot output two
copies, say ρ1 and ρ2

7, such that both of them evaluate fa,b(·) with non-negligible probability. We
prove this by contradiction. To show this, we first observe that we can get rid of the signature in
the unclonable encryption ciphertext, by invoking the unclonable-indistinguishability property of
the unclonable encryption scheme. This is where we crucially use the stronger indistinguishability
property; this property allows us to change from one message to another message of our choice
whereas in the (weaker) unclonability security property, the challenger is the one choosing the
message to be encrypted.

Now, we argue that there has to be a copy, say ρ1 and evaluation algorithm E1 (note that
the adversary can choose the evaluation algorithms of its choice), such that when E1 evaluates ρ1

on the input k, where k is the UE key, then we get a valid signature σ on 0 with non-negligible
probability. Using ρ1 we can then construct a forger that violates the unforgeability property of the
digital signature scheme.

1.3 Structure of this Paper

In Section 2, we give preliminary background and definitions. In Section 3, we introduce natural
definitions for many-time secure unclonable encryption in both private-key and public-key settings,
as well as discuss the previous constructions given in [BL20]. We give a construction for the private-
key setting in Section 4 and for the public-key setting in Section 5. In Section 6, we present
a generalized unclonable encryption construction using monogamy games, and a lower bound for
conjugate encryption. Section 7 shows that an unclonable encryption scheme satisfying unclonable-
indistinguishable security (Definition 12) implies copy-protection.

2 Preliminaries

2.1 Notation

We denote the security parameter by λ. We denote by negl(.) an arbitrary negligible function and by
poly(.) an arbitrary function upper-bounded by a polynomial. We abbreviate probabilistic (resp.,
quantum) polynomial time by PPT (resp., QPT).

7Technically, this is incorrect since the two copies could be entangled and as written here, ρ1 and ρ2 are unentangled.
But this is done just for ease of presentation, our argument can be suitably adapted to the general case.
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We denote byM, K, and CT (orHCT ) the message space, the key space, and the ciphertext space,
respectively. The message and the key are classical throughout this work, whereas the ciphertext
can be classical or quantum, depending on the context. We sometimes use 0 to denote a string of
zeroes, the length of which will be clear from the context.

2.2 Quantum Computing

Valid quantum states on a register X are represented by the set of density operators on the Hilbert
space HX , denoted by D (HX). A density operator ρ : HX → HX is defined a linear, positive semi-
definite operator with unit trace, i.e. Tr(ρ) = 1, where Tr is the trace operator. Density operators
represent mixed quantum states, and a pure state |ψ〉 ∈ HX is represented by |ψ〉〈ψ| ∈ D (HX).

Valid quantum operations from register X to register Y are represented by linear, completely
positive trace-preserving (CPTP) maps φ : D (HX) → D (HY ), also known as quantum channels.
Valid quantum measurements on register X with outcomes x ∈ X are represented by a positive
operator-valued measure (POVM) on D (HX), which is denoted by F = (Fx)x∈X , where Fx are
positive semi-definite operators satisfying

∑
x Fx = idX , with idX being the identity operator on

HX . The probability of measuring outcome x on state ρ equals Tr(Fxρ).
An EPR pair over n qubits is a fully entangled bipartite 2n-qubit state, defined as

|EPRn〉 =
1√
2n

∑
x∈{0,1}n

|xx〉,

where (|x〉)x∈{0,1}n is the standard basis.

Indistinguishability. We define two distributions D0 and D1 to be computationally indistin-
guishable, denoted by D0 ≈c D1, if any QPT distinguisher cannot distinguish the distributions D0

and D1.

Distance Measures. There are two common distance measures considered in the literature: trace
distance and fidelity. The fidelity of two quantum states ρ, σ ∈ D (HA) is a measure of similarity
between ρ and σ which is defined as

F (ρ, σ) =

(
Tr

(√√
ρσ
√
ρ

))2

.

If σ = |ψ〉〈ψ| is a pure state, the fidelity simplifies to F (σ, ρ) = 〈ψ|ρ|ψ〉. We use the following useful
fact: fidelity of two states does not increase under quantum operations. We state this fact from
[Nie96] as a lemma below:

Lemma 1 (Monotonicity of Fidelity). Let ρ, σ ∈ D (HX) and ϕ : D (HX) → D (HY ) be a CPTP
map. Then,

F (ϕ(ρ), ϕ(σ)) ≥ F (ρ, σ).
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The trace distance of two states ρ and σ, denoted by T (ρ, σ) is defined as follows:

T (ρ, σ) =
1

2
||ρ− σ||tr =

1

2
Tr

(√
(ρ− σ)†(ρ− σ)

)
.

Almost As Good As New Lemma. We use the Almost As Good As New Lemma8 [Aar04],
restated here verbatim from [Aar16].

Lemma 2 (Almost As Good As New). Let ρ be a mixed state acting on Cd. Let U be a unitary and
(Π0,Π1 = 1− Π0) be projectors all acting on Cd ⊗ Cd. We interpret (U,Π0,Π1) as a measurement
performed by appending an ancillary system of dimension d′ in the state |0〉〈0|, applying U and then
performing the projective measurement {Π0,Π1} on the larger system. Assuming that the outcome
corresponding to Π0 has probability 1− ε, i.e., Tr[Π0(Uρ⊗ |0〉〈0|U †)] = 1− ε, we have

T (ρ, ρ̃) ≤
√
ε

2
,

where ρ̃ is state after performing the measurement and then undoing the unitary U and tracing out
the ancillary system:

ρ̃ = Trd′
(
U †
(

Π0U (ρ⊗ |0〉〈0|)U †Π0 + Π1U (ρ⊗ |0〉〈0|)U †Π1

)
U
)

Corollary 1. Let Q be a QPT algorithm which takes as input a state ρ ∈ D (HA) and outputs a
classical string x ∈ X. Then, Q can be reimplemented as Q̃ which satisfies the following properties:

• On input ρ ∈ D (HA), Q̃ outputs ρ′ ⊗ |x′〉〈x′| ∈ D (HA)⊗D (HX) such that

Pr [x = x0 : x← Q(ρ)] = Pr
[
x′ = x0 : ρ′ ⊗ |x′〉〈x′| ← Q̃(ρ)

]
for any x0 ∈ X.

• For any state ρ0 ∈ D (HA) and a string x0 ∈ X satisfying

Pr [x = x0 : |x〉〈x| ← Q(ρ0)] ≥ 1− ε,

it holds that
Pr
[
x′ = x0 ∧ T (ρ′, ρ0) ≤ O(

√
ε) : ρ′ ⊗ |x′〉〈x′| ← Q̃(ρ0)

]
.

In other words, Q̃ has the same functionality as Q, and it also outputs a residual state ρ′ which is
close to ρ in trace distance provided that Q outputs the same string x ∈ X probability close to 1 on
input ρ.

Proof (sketch). By the deferred measurement principle, we can transform Q into the following form
without changing its functionality:

• It appends to ρ an ancillary system initialized at |0〉〈0|B.
8This is also known as the Gentle Measurement Lemma in the quantum information theory literature [Win99].
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• It applies a unitary U to the bipartite state ρ⊗ |0〉〈0|B to obtain ρAB.

• It performs a POVM on ρAB to measure |x〉〈x| ∈ D (HX) and output x. Let the residual state
be ρ̃AB after this measurement.

Q̃ performs the steps above, and then recovers ρ by applying U † to ρ̃AB and tracing out the ancillary
system. The analysis is essentially the same as that in Lemma 2, and we refer the reader to [Aar16]
for details.

2.3 Post-Quantum Digital Signatures

Post-quantum signature schemes with perfect correctness, defined below, can be constructed from
post-quantum secure one-way functions:

Definition 1 (Post-Quantum Signature Scheme). A post-quantum signature scheme over a message
spaceM is a tuple of PPT algorithms (Gen,Sign,Ver):

• Key Generation: Gen(1λ) takes as input a security parameter and outputs a pair of keys
(vk, sk).

• Signing: Sign(sk,m) takes as input the secret (signing) key sk and a message m ∈ M. It
outputs a signature σ.

• Signature Verification: Ver(vk,m, σ′) takes as input the verification key vk, a message
m ∈M and a candidate signature σ′. It outputs a bit b ∈ {0, 1}.

which satisfy correctness and unforgeability properties defined below:

• Correctness: For all messages m ∈M, we have

Pr[b = 1 : (vk, sk)← Gen(1λ), σ ← Sign(sk,m), b← Ver(vk,m, σ)] = 1.

• Post-Quantum (One-Time) Existential Unforgeability: For any QPT adversary A and
any message m ∈M, we have:

Pr[1← Ver(vk,m, σ′) : (vk, sk)← Gen(1λ), |σ′〉〈σ′| ← A(vk)] ≤ negl(λ).

Post-quantum digital signatures can be based on post-quantum one-way functions [Rom90].

2.4 Functional Encryption

A functional encryption scheme allows a user to decrypt an encryption of a message x using a
functional key associated with C to obtain the value C(x). The security guarantee states that the
user cannot learn anything beyond C(x). Depending on the number of functional keys issued in
the security experiment, we can consider different versions of functional encryption. Of interest to
us is the notion of single-key functional encryption where the adversary can only query for a single
functional key during the security experiment.

A public-key functional encryption scheme FE associated with a class of boolean circuits C is
defined by the following algorithms.
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• Setup, Setup(1λ, 1s): On input security parameter λ, maximum size of the circuits s for which
functional keys are issued, output the master secret key MSK and the master public key mpk.

• Key Generation, KeyGen(MSK, C): On input master secret key MSK and a circuit C ∈ C
of size s, output the functional key SKC .

• Encryption, Enc(mpk, x): On input master public key mpk, input x, output the ciphertext
CT.

• Decryption, Dec(SKC ,CT): On input functional key SKC , ciphertext CT, output the value
y.

Remark 1. A private-key functional encryption scheme is defined similarly, except that Setup(1λ, 1s)

outputs only the master secret key MSK and the encryption algorithm Enc takes as input the master
secret key MSK and the message x.

A functional encryption scheme satisfies the following properties.

Correctness. Consider an input x and a circuit C ∈ C of size s. We require the following to hold
for every Q ≥ 1:

Pr

[
C(x)← Dec(SKC ,CT) :

(mpk,MSK)←Setup(1λ,1s);
SKC←KeyGen(MSK,C);

CT←Enc(mpk,x)

]
≥ 1− negl(λ),

for some negligible function negl.

Single-Key Security. We only consider functional encryption schemes satisfying single-key se-
curity property. To define the security of a single-key functional encryption scheme FE, we define
two experiments Expt0 and Expt1. Experiment Expt0, also referred to as real experiment, is param-
eterized by a PPT stateful adversary A and a challenger Ch. Experiment Expt1, also referred to as
the simulated experiment, is parameterized by a PPT adversary A and a PPT stateful simulator Sim.

ExptFE,A,Ch0 (1λ):

• A outputs the maximum circuit size s.

• Ch executes FE.Setup(1λ, 1s) to obtain the master public key-master secret key pair (mpk,MSK).
It sends mpk to A.

• Challenge Message Query: After receiving mpk, A outputs the challenge message x. The
challenger computes the challenge ciphertext CT← Enc(mpk, x). Ch sends CT to A.

• Circuit Query: A upon receiving the ciphertext CT as input, outputs a circuit C of size s.
The challenger then sends SKC to A, where SKC ← KeyGen(MSK, C).

• Finally, A outputs the bit b.

ExptFE,A,Sim1 (1λ):
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• A outputs the maximum circuit size s.

• Sim, on input (1λ, 1s), outputs the master public key mpk.

• Challenge Message Query: A upon receiving a public key mpk, outputs a message x.
Sim, upon receiving 1|x| (i.e., only the length of the input) as input, outputs the challenge
ciphertext CT.

• Circuit Query: A upon receiving the ciphertext CT as input, outputs a circuit C of size s.
Sim on input (C,C(x)), outputs a functional key SKC .

• Finally, A outputs a bit b.

A single-key public-key functional encryption scheme is secure if the output distributions of the
above two experiments are computationally indistinguishable. More formally,

Definition 2. A single-key public-key functional encryption scheme FE is secure if for every large
enough security parameter λ ∈ N, every PPT adversary A, there exists a PPT simulator Sim such
that the following holds:∣∣∣Pr [0← ExptFE,A,Ch0 (1λ)

]
− Pr

[
0← ExptFE,A,Sim1 (1λ)

]∣∣∣ ≤ negl(λ),

for some negligible function negl.

Instantiations. A single-key public-key functional encryption scheme can be built from any
public-key encryption scheme [SS10, GVW12]. If the underlying public-key encryption scheme
is post-quantum secure then so is the resulting functional encryption scheme.

2.5 Quantum Copy-Protection

Below we present the definition of a copy-protection scheme, adapted from [BJL+21] and originally
due to [Aar09].

Definition 3 (Copy-Protection Scheme). Let F = F(λ) = {f : X → Y } be a class of efficiently
computable functions functions. A copy protection scheme for F is a pair of quantum algorithms
(CopyProtect,Eval) such that for some output space D (HZ):

• Copy Protected State Generation: CopyProtect(1λ, df ) takes as input the security param-
eter 1λ and a classical description df of a function f ∈ F (that efficiently computes f). It
outputs a mixed state ρf ∈ D (HZ).

• Evaluation: Eval(1λ, ρ, x) takes as input the security parameter 1λ, a mixed state ρ ∈ D (HZ),
and an input value x ∈ X. It outputs a bipartite state ρ′ ⊗ |y〉〈y| ∈ D (HZ)⊗D (HY ).

Correctness: Informally speaking, if an honestly generated copy-protected state ρf for a function
f ∈ F is honestly evaluated using Eval on any input x ∈ X, the output should be f(x). We defer
the formal definition of correctness to Section 2.6, where we define a weaker notion of computational
correctness specifically for point functions, which is the context we use copy-protection in throughout
Section 7.
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Security. Security in the context of copy-protection means that given a copy-protected program
ρf of a function f ∈ F , no QPT adversary can produce two programs that can both be used
to compute f . This is captured in the following definition adapted by the "malicious-malicious
security" definition given in [BJL+21]:

Definition 4 (Copy-Protection Security). A copy-protection scheme (CopyProtect,Eval) for a class
F of functions f : X → Y and a distribution D over F is δ(λ)-secure with respect to a family
of distributions

{
DfX
}
f∈F

over X if any QPT adversary (A,B, C) cannot succeed in the following

pirating experiment with probability greater than δ(λ) + negl(λ):

• The challenger samples a function f ← D and sends ρf ← CopyProtect(1λ, df ) to A.

• A applies a CPTP map to split ρf into a bipartite state ρBC , and sends the B (resp., C)
register to B (resp., C). No communication is allowed between B and C after this step.

• The challenger samples x← DfX and sends x to both B and C.

• B (resp., C) outputs9 yB ∈ Y (resp., yC ∈ Y ). The adversary wins if yB = yC = f(x).

Note that this definition is referred to as malicious-malicious security because the adversary is free
to choose the registers B,C as well as the evaluation algorithms used by B and C.

2.6 Copy-Protection of Point Functions

Point Functions: Let a and b be binary strings. The point function fa,b : {0, 1}|a| → {0, 1}|b| is
defined as

fa,b(x) =

{
b, x = a

0, x 6= a
.

Ordinarily, one would define the correctness property of a copy-protection scheme as follows: an
honest evaluation of f(x) using an honestly generated copy-protected state ρf for f succeeds with
small error for all x. For point functions, we define a weaker notion of correctness, which states that
it is computationally hard to find an input x which fails honest evaluation. In a bit more detail,
an adversary is given a copy-protected program for the point function fa,b. Firstly, if he uses this
program to honestly evaluate fa,b on input a, then he will obtain output b and the program will not
be destroyed. Secondly, if he does not have auxiliary information and he only uses Eval() to query
fa,b, then he will not come across an input that evaluates incorrectly except with small probability.
We formalize this second condition as a correctness experiment.

Definition 5 (Computational Correctness). A copy-protection scheme (CopyProtect,Eval) for a
class of point functions F = {fa,b : (a, b) ∈ X×Y }, where X = {0, 1}poly(λ) and Y = {0, 1}poly(λ),
satisfies computational (ε(λ), δ(λ))-correctness with respect to a probability distribution D over F if:

• For any fa,b ∈ F , we have:

Pr[ρ′ ⊗ |b〉〈b| ← Eval(1λ, ρ, a) ∧ T (ρ, ρ′) ≤ ε(λ) : ρ← CopyProtect(1λ, (a, b))] = 1,

9Since B and C cannot communicate, the order in which they use their share of the copy-protected program is
insignificant.
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where T (·, ·) denotes trace distance.

• No QPT adversary A can succeed in the following correctness experiment with probability
greater than δ(λ):

– The challenger samples fa,b ← D and computes ρ(0)
f ← CopyProtect(1λ, (a, b)).

– For i = 0, 1, . . . ,poly(λ); A sends an adaptive query xi ∈ X to the challenger, who
computes ρ(i+1)

f ⊗ |yi〉〈yi| ← Eval(1λ, ρ
(i)
f , xi) and sends yi ∈ Y back to A.

– A wins if there exists an index i ∈ {0, 1, . . . ,poly(λ)} such that xi 6= a and yi 6= 0.

Remark 2. To give more context on this definition, imagine a scenario where a software firm (Alice)
provides a copy-protected program ρf to a client (Bob). Computational correctness guarantees that
if the client follows the instructions provided by A, that is, if he only uses ρf as an input to the
algorithm Eval(), then he will get the correct output with overwhelming probability. This is true even
if ρf changes greatly after Bob evaluates the function f . However, ρf has no reusability guarantee
once Bob uses third party programs that modify ρf . Our definition is closely related to the notion of
"computational functionality preservation" defined in [BLMZ19] in the context of classical virtual-
black-box obfuscation, which states given an obfuscated program, a PPT adversary cannot find an
input which evaluates incorrectly. Note that the issue of the program being destroyed is specific to
the quantum setting.

Remark 3. Computational correctness is stronger than distributional correctness defined in [BJL+21],
which states that honest evaluation yields the correct output with probability close to 1, when the in-
put is sampled from some distribution over the input space, as long as the distribution is efficiently
samplable (in particular the uniform distribution). The reason is simple: a QPT adversary can
sample the query input from this distribution.

Definition 6 (Copy-Protection Security for Point Functions). A copy-protection scheme (CopyProtect,Eval)

for a class of point functions F = {fa,b : a ∈ X, b ∈ Y } is called secure if it is 1
2 -secure with

respect to
{
DfX
}
f∈F

, where

Pr[x = a : x← Dfa,bX ] =
1

2
,

Pr[x = a′ : x← Dfa,bX ] =
1

2|X| − 2

for all fa,b ∈ F and a′ 6= a. That is, Dfa,bX samples a with probability 1/2 and every other a′ 6= a

with equal probability.

Note that an adversary can trivially succeed in the pirating experiment for point functions with
probability 1/2 by always outputting 0 in both registers.

3 Private-Key and Public-Key Unclonable Encryption: Definition

We present the definitions of public-key and private-key unclonable encryptions, satisfying reusable
security. Before we present these definitions, we first define an unclonable encryption scheme bor-
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rowed from [BL20].

3.1 Unclonable Encryption

Definition 7 (Quantum Encryption of Classical Messages (QECM)). A QECM scheme UE is a
tuple of QPT algorithms (UE.Setup,UE.Enc,UE.Dec):

• Setup, UE.Setup(1λ): on input the security parameter λ, it outputs a key k ∈ K.

• Encryption, UE.Enc(k,m): on input a the key k and a message m ∈ M, it outputs a
ciphertext CT ∈ HCT .

• Decryption, UE.Dec(k,CT): on input a key k ∈ K and a ciphertext CT ∈ HCT , it outputs a
message m′ ∈M.

A public-key QECM is defined analogously.

Statistical Correctness: For any key k ∈ K and any message m ∈M we have

Pr
[
m′ = m : |CT〉〈CT| ← UE.Enc(k,m), |m′〉〈m′| ← UE.Dec(k,CT)

]
≥ 1− negl(λ).

We consider two types of security notions: indistinguishability and unclonability. The former
states that encryption hides the message in the absence of any knowledge of the key.

Indistinguishable Security:

Definition 8 ((One-Time) Indistinguishable Security). We say that a QECM otUE = (otUE.Setup, otUE.Enc, otUE.Dec)

is indistinguishable-secure if for any messages m1,m2 ∈M of equal length, the following holds:{
otUE.Enc(k,m1) : k ← otUE.Setup(1λ)

}
≈c
{
otUE.Enc(k,m2) : k ← otUE.Setup(1λ)

}
.

If we allow the encryption key to be reusable, we arrive at the notion of many-time indistinguisha-
bility, also known as semantic security.

Definition 9 (Semantic Security). A QECM (Setup,Enc,Dec) is said to satisfy semantic security
if it satisfies the following property: for sufficiently large λ ∈ N, for every (m

(0)
1 , . . . ,m

(0)
q ), (m

(1)
1 ,

. . . ,m
(1)
q ) such that |m(0)

i | = |m
(1)
i | for every i ∈ [q] and q = poly(λ),{

Enc
(
k,m

(0)
1

)
, . . . ,Enc

(
k,m(0)

q

)}
≈c
{
Enc

(
k,m

(1)
1

)
, . . . ,Enc

(
k,m(1)

q

)}
,

where k ← Setup(1λ).

Semantic security for public-key QECM is defined analogously.
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Definition 10 (Semantic Security for Public-Key QECM). A public-key QECM (Setup,Enc,Dec)

is said to satisfy semantic security if the following holds: for sufficiently large λ ∈ N, for every
m0,m1 of equal length,

{Enc(PK,m0)} ≈c {Enc(PK,m1)},

the distinguisher also receives as input PK, where PK is such that (PK,SK)← Setup(1λ).

Unclonable Security: Unclonable security states that a ciphertext cannot be cloned while pre-
serving its decryption functionality.

Definition 11 (Unclonable Security). We say that a QECM with message length n is t-unclonable
secure if a QPT cloning adversary (A,B, C) cannot succeed with probability more than 2−n+t +

negl(λ) in the cloning experiment defined below:

Cloning Experiment: The cloning experiment consists of two phases:

• In phase 1, the challenger samples a key k ← Setup(1λ) and a message m ∈ M uniformly
at random. He then computes ρCT and sends it to A, who applies to ρCT a CPTP map
φ : D (HA)→ D (HB)⊗D (HC) to obtain the bipartite state ρBC . She sends the B (resp., C)
register of this state to B (resp., C).

• In phase 2, B and C are not allowed to communicate. The key k is revealed to both of them.
Then, B (resp., C) applies a POVM Bk (resp., POVM Ck) to their register to measure and
output a message mB (resp., mC).

• The adversary wins iff mB = mC = m.

Remark 4. In this work, we only consider one-time unclonability, meaning the adversary is tasked
to create two ciphertexts out of one. A natural extension of this notion would be to require that an
adversary cannot create m+ 1 ciphertexts out of m.

Below is a stronger notion of security which implies both Definition 8 and Definition 11, which is
called unclonable-indistinguishable security10.

Definition 12 (Unclonable-Indistinguishable Security). We say that a QECM with message length
n is unclonable-indistinguishable secure if a QPT cloning-distinguishing adversary (A,B, C) cannot
succeed with probability more than 1/2 + negl(λ) in the cloning-distinguishing experiment defined
below:

Cloning-Distinguishing Experiment: The cloning experiment consists of two phases:

• In phase 1, A chooses two messages m0,m1 ∈ M and sends them to the challenger. The
challenger samples a key k ← Setup(1λ) and a bit b uniformly at random. The challenger then
computes ρ← Enc(k,mb) and sends ρ to A.

10We slightly deviate from [BL20] in defining unclonable-indistinguishable security. We have the adversary choose
two messages whereas they require one of the messages to be a uniformly random message. We anticipate that the
two definitions may be equivalent.
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• In phase 2, A has a ciphertext ρ to which she applies a CPTP map φ : D (HA) → D (HB)⊗
D (HC) to split it into two registers (B,C). She then sends the B and C registers to B and
C, respectively.

• In phase 3, the key k is revealed to both B and C. Then, B (resp., C) applies a POVM Bk

(resp., POVM Ck) to their register to measure and output a bit bB (resp., bC).

• The adversary wins iff bB = bC = b.

Instantiations. The work of Broadbent and Lord [BL20] presented two constructions of one-time
unclonable encryption, that is, constructions satisfying Definition 8 and Definition 11. Their first
construction, "conjugate encryption", which encrypts messages of constant length n, is information-
theoretic and n log2(1+1/

√
2)-unclonable secure. This scheme upper-bounds the success probability

of a cloning adversary by 1/2 + 1/2
√

2 ≈ 0.85 in the single-bit message (n = 1) case.

The second construction, "F−conjugate encryption", is based on computational assumptions. It
uses post-quantum pseudo-random functions but is only shown to be secure in the random ora-
cle model. Nonetheless, it satisfies multi-message security and log2(9)-unclonable security for long
messages. Their analysis for this scheme does not provide an unclonability bound for the single-bit
message case.

There is no known construction of an unclonable-indistinguishable secure scheme that we know
of. For instance, no qubit-wise encryption scheme, including conjugate-encryption and generalized
conjugate encryption (Section 6.1) can satisfy that definition for messages of length n ≥ 2, since the
cloning-distinguishing adversary can send one half of the ciphertext to B and the other half to C.

Conjugate Encryption Upper and Lower Bounds [BL20] shows that in their conjugate en-
cryption scheme a cloning adversary can succeed with probability at most (1/2 + 1/2

√
2)n, which

is based on BB84 monogamy-of-entanglement (MOE) game analyzed in [TFKW13]. Their proof
technique can be generalized to a class of MOE games, which we call real-orthogonal monogamy
games, to potentially obtain better security in the event that a monogamy game with a better value
exists in this class.

Arbitrary pure single-qubit states on the xz plane of the Bloch Sphere can be cloned with fidelity
f := (1/2 + 1/2

√
2) ≈ 0.85 [BCMDM00]. Since every ciphertext lies on the xz plane in conjugate

encryption, a cloning adversary (for each qubit) clone the ciphertext with fidelity f . In phase 2, both
B and C will decrypt their register, hence each having fidelity f to the message |m〉〈m|. By union
bound, this implies that they both outputm with probability at least (2f−1)n ≈ 0.7n. In the single-
bit message case, this means that the scheme of [BL20], and a class of similar constructions, can be
violated by an adversary with probability 0.7. Conjugate encryption in particular can be attacked
with probability 0.75 for single-bit messages. For details regarding these upper-lower bounds, see
Section 6.1 and Section 6.2.
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3.2 Private-Key and Public-key Unclonable Encryption

Having established the preliminaries, we are ready to present the definitions of one-time unclonable
encryption as well as reusable unclonable encryption in the private-key and public-key settings.

Definition 13. A QECM otUE = (otUE.Setup, otUE.Enc, otUE.Dec) is called a one-time unclon-
able encryption scheme if it satisfies one-time indistinguishable security (Definition 8) as well as
unclonable security (Definition 11).

Definition 14. A QECM (Setup,Enc,Dec) is called a private-key unclonable encryption scheme
if it satisfies the properties of (reusable) semantic security (Definition 9) and unclonable security.

Definition 15. A public-key QECM (Setup,Enc,Dec), is called a public-key unclonable encryp-
tion scheme if it satisfies public-key semantic security (Definition 10) and unclonable security.

For a construction of public-key encryption using functional encryption, see Section 5.

4 Private-Key Unclonable Encryption (PK-UE)

We present a construction of (reusable) private-key unclonable encryption in this section. One of
the tools required in our construction is a private-key encryption with fake-key property. We first
define and construct this primitive.

4.1 Private-Key Encryption with Fake-Key Property

We augment the traditional notion of private-key encryption with a property, termed as fake-key
property. This property allows an authority to issue a fake decryption key fk, as a function of
m along with an encryption of m, denoted by CT, in such a way that a QPT distinguisher will
not be able to distinguish whether it received the real decryption key or a fake decryption key. A
consequence of this definition is that, the decryption algorithm on input the fake decryption key fk
and CT should yield the message m.

Definition 16 (Fake-Key Property). We say that a classical encryption scheme (Setup,Enc,Dec)

satisfies the fake-key property if there exists a polynomial time algorithm FakeGen : CT ×M→ K
such that for any m ∈M,

{(ctm ← Enc(k,m), k)} ≈c
{(
ct0 ← Enc(k, 0), fk ← FakeGen(ct0,m)

)}
, (1)

where k ← Setup(1λ).

Note that in particular, the fake-key property requires that Dec(fk, ct0) = m.

Theorem 6. Assuming the existence of post-quantum pseudorandom functions, there exists a clas-
sical private-key encryption scheme (PKE) that satisfies the fake-key property.

Proof. Let {PRFk : {0, 1}` → {0, 1}n : k ∈ {0, 1}λ} be a class of post-quantum pseudo-random
functions, where ` is set to be λ and n is the length of the messages encrypted.

Consider the following scheme:
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• Setup, Setup(1λ): on input λ, it outputs (k, otp), where k ← {0, 1}λ and otp ← {0, 1}n are
uniformly sampled.

• Encryption, Enc((k, otp),m): on input key (k, otp), message m ∈ {0, 1}n, it outputs ct =

(ct1, ct2), where CT1 = r and ct2 = PRFk(r) ⊕ m ⊕ otp with r ← {0, 1}` being uniformly
sampled.

• Decryption, Dec((k, otp), ct): on input (k, otp), ciphertext ct parsed as (ct1, ct2), output µ,
where µ = ct2 ⊕ PRFk(ct1)⊕ otp.

• Fake Key Generation, FakeGen(ct0,m): on input ciphertext ct0 parsed as (ct01, ct
0
2), message

m, it outputs the fake decryption key fk = (k′, otp′), where k′ ← {0, 1}λ is uniformly sampled
and otp′ = ct02 ⊕ PRFk′(ct01)⊕m.
// Note: this choice of otp′ yields Dec((k′, otp′), ct0) = m.

Correctness and Semantic Security: Correctness can easily be checked. Semantic security
follows from the security of pseudorandom functions using a standard argument.

Fake-Key Property. Note that given {ct, (k, otp)} ∈ C × K, one can perform the reversible
operation:

{(ct1, ct2), (k, otp)} −→ {(ct1, ct2 ⊕ otp⊕ PRFk(r)), (k, otp)} .

Thus, the fake-key property (eq. (1)) can be rewritten as:

{(ctm ← Enc((k, otp),m), k)} ≈c {
(
ct0 ← Enc((k, otp), 0), fk ← FakeGen(ct0,m)

)
}

⇐⇒ {(r, PRFk(r)⊕m⊕ otp), (k, otp)} ≈c {(r, PRFk(r)⊕ otp), (k′, otp′)}
⇐⇒ {(r,m), (k, otp)} ≈c {(r, PRFk(r)⊕ otp⊕ otp′ ⊕ PRFk′(r)), (k′, otp′)}
⇐⇒ {(r,m), (k, otp)} ≈c {(r,m), (k′, otp′)}
⇐⇒ {(r,m), (k, otp)} ≈c {(r,m), (k′, PRFk(r)⊕m⊕ otp)}
⇐⇒ {(r,m), (k, otp)} ≈c {(r,m), (k, PRFk′(r)⊕m⊕ otp)}, (2)

where in the last step we swapped k and k′, which is allowed since they are independently sampled.
Therefore, observing in eq. (2) that k doesn’t occur in the second part of the key, the fake-key
property reduces to the following:

{((r,m), otp)} ≈c {((r,m), otp⊕m⊕ PRFk′(r))},

which follows11 from the fact that otp is sampled independently from r,m, and k′.

11Note that this proof in fact demonstrates perfect (information-theoretic) fake-key property, even though we only
need computational fake-key property in our construction.
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4.2 Construction

We first describe the tools used in our construction of PK-UE scheme.

Tools. Let PKE be a post-quantum private-key encryption scheme with fake-key property (defined
in Section 4.1) and let UE be a one-time unclonable encryption scheme (defined in Section 3.1).

We present the construction of a PK-UE scheme below, which combines these tools such that it
inherits semantic security from the first and unclonability from the second.

Setup, Setup(1λ): on input a security parameter λ, it outputs kPKE , where kPKE ← PKE.Setup(1λ).

Encryption, Enc(kPKE ,m): on input a key kPKE , messagem, it first generates kUE ← UE.Setup(1λ)

and outputs ct = (ct1, ct2), where ct1 ← PKE.Enc(kPKE , kUE) and ct2 ← UE.Enc(kUE ,m).

Decryption, Dec(kPKE , ct): on input the decryption key kPKE , ciphertext ct, it computes µ =

UE.Dec(kUE , ct2), where kUE = PKE.Dec(kPKE , ct1). Output µ.

Correctness follows from the correctness of the unclonable encryption scheme and the private-key
encryption scheme. The semantic security follows from a standard hybrid argument and hence we
omit the details; informally speaking, we first invoke the security of the underlying PKE scheme to
replace the message under PKE to be 0 and then we invoke the indistinguishability security of UE
to replace the message m. We perform this for all the q messages, where q = poly(λ) is the number
of messages chosen by the adversary in the semantic security experiment.

4.2.1 Unclonable Security

Suppose that for a parameter t, the proposed scheme is not t-unclonable secure; meaning there exists
an adversary A which breaks the corresponding cloning experiment (Hybrid 1) with probability
p = 2−n+t + 1

poly(λ) . We define another experiment Hybrid 2, which we claim the adversary breaks
with probability p− negl(λ).

Hybrid 1: The cloning experiment for PKE, the PK-UE scheme proposed above.

Hybrid 2:

• In phase 1, the challenger samples kPKE ← PKE.Setup(1λ) and kUE ← UE.Setup(1λ), then
sends (ct0 ← PKE.Enc(kPKE , 0), ct2 ← UE.Enc(kUE ,m)) to the adversary A, who then applies
a CPTP map φ : D (HA)→ D (HB)⊗D (HC) to split it into two registers (B,C).

• In phase 2, the challenger reveals fk ← FakeGen(ct0, kUE) to both B and C, who then need to
output mB = mC = m in order to win the experiment.

Claim 1. If A wins in Hybrid 2 with probability p′, then |p− p′| = negl(λ).
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Proof. Assume to the contrary that |p−p′| ≥ 1
poly(λ) . We will describe an adversary Ã which breaks

the fake-key property of PKE.

Given (ct∗, k∗PKE), Ã samples kUE ← UE.Setup(1λ), computes ctm ← UE.Enc(kUE ,m) and sends
(ct∗, ctm) to A, who then applies a CPTP map φ : D (HA) → D (HB) ⊗ D (HC) to split it into
two registers (B,C). In phase 2, Ã reveals k∗PKE to B and C. Observe that depending on whether
the key k∗PKE is real or fake, we are either in Hybrid 1 or Hybrid 2. Hence, by assumption Ã can
distinguish the two cases, breaking the fake-key property.

Now that we know A breaks Hybrid 2 with probability at least p − negl(λ), we can construct an
adversary ˜̃A that breaks the unclonability experiment of UE:

• In Phase 1, the challenger samples kUE ← UE.Setup(1λ) and sends ctm ← UE.Enc(kUE ,m) to
˜̃A. Then, ˜̃A samples kPKE ← PKE.Setup(1λ) and computes ct0 ← PKE.Enc(kPKE , 0). After
that, ˜̃A runs A on input (ct0, ctm) to obtain bipartite state ρBC ∈ D (HB)⊗D (HC), which she
sends to ˜̃B and ˜̃C. In addition, ˜̃A samples a randomness r for the algorithm PKE.FakeGen()

and sends r to both ˜̃B and ˜̃C.

• In phase 2, the challenger reveals kUE to both ˜̃B and ˜̃C. Then, ˜̃B runs B on his register12,
revealing fk as the key, to obtain and output mB, where fk ← FakeGen(ct0, kUE) is sampled
using randomness r. Similarly, ˜̃C obtains and outputs mC by running C on his register (C),
revealing fk as the key, where fk is generated using randomness r so that it matches what is
generated by B.

Because the view of the adversary (A,B, C) run as a subprotocol in this experiment matches
exactly that in Hybrid 2, we conclude that ˜̃A breaks the unclonability experiment of UE with
probability p′, meaning UE is not t−unclonable secure.

Therefore, we just proved the following theorem.

Theorem 7. Assuming UE is a one-time unclonable encryption scheme with t-unclonable security,
the encryption scheme constructed above is a private-key unclonable encryption scheme with t-
unclonable security.

Corollary 2. The private-key unclonable encrpytion scheme proposed above is n log2(1 + 1√
2
)-

unclonable secure, where n is the message length.

5 Public-Key Unclonable Encryption

We now focus on constructing unclonable encryption in the public-key setting using functional
encryption. We adopt the Trojan technique of [ABSV15], proposed in a completely different context,
to prove the unclonability property.

We describe all the tools that we use in the scheme below.
12That is, the B register of ρBC .
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Tools.

• A one-time unclonable encryption scheme, denoted by UE = (Setup,Enc,Dec).

• A post-quantum secure symmetric-key encryption scheme with pseudorandom ciphertexts,
denoted by SKE = (Setup,Enc,Dec). That is, this scheme has the property that the ciphertexts
are computationally indistinguishable from the uniform distribution. Such a scheme can be
constructed from one-way functions13.

• A post-quantum secure single-key public-key functional encryption scheme, denoted by FE =

(Setup,KeyGen,Enc,Dec). Such a scheme can be instantiated using [SS10, GVW12]. See
Section 2.4.

5.1 Construction

We denote the public-key unclonable encryption scheme that we construct as PBKUE = (PBKUE.Setup,

PBKUE.Enc,PBKUE.Dec). We describe the algorithms below.

Setup, Setup(1λ): On input a security parameter λ, compute (FE.MSK,FE.mpk)← FE.Setup(1λ).
Compute FE.sk ← FE.KeyGen(FE.MSK, F [ct]), where ct $←− {0, 1}poly(λ) and F [ct] is the following
function:

F [ct](b,K,m) =

{
Dec(K, ct) if b = 0,

m, otherwise

Set the secret key to be k = FE.sk and the public key to be pk = FE.mpk.

Encryption, Enc(pk,m): On input key pk, message m, it first generates kUE ← UE.Setup(1λ),
and outputs ct = (ct1, ct2), where ct1 ← FE.Enc(FE.mpk, (1,⊥, kUE) and ct2 ← UE.Enc(kUE ,m).

Decryption, Dec(k, ct): On input k, ciphertext ct = (ct1, ct2), first compute FE.Dec(FE.sk, ct1)

to obtain k∗UE . Then, compute UE.Dec(k∗UE , ct2) to obtain m∗. Output m∗.

The correctness follows from the correctness of the underlying UE and FE schemes. As in the
private-key setting, the semantic security follows by a standard argument and hence, we omit the
details.

5.1.1 Unclonable Security

We show that our construction achieves the same unclonable security as the underlying one-time
scheme UE. Formally, we prove the following theorem.

Theorem 8. If UE is t-unclonable secure, then PBKUE is also t-unclonable secure.
13The scheme is quite simple and presented in [Gol07]: suppose PRF : {0, 1}λ → {0, 1}` is a pseudorandom function.

To encrypt a message x ∈ {0, 1}` using a symmetric key k, compute (r,PRF(k, r) ⊕ x), where r $←− {0, 1}λ. From
the security of pseudorandom functions, it follows that the ciphertext is computationally indistinguishable from the
uniform distribution.
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Proof. Suppose that there exists an adversary (A,B, C) which succeeds in the cloning experiment
of PBKUE with probability p = 2−n+t + 1

poly(λ) . Through a sequence of hybrid experiments, we will
construct an adversary which breaks the t-unclonability of UE.

Hybrid 1: This corresponds to the cloning experiment of PBKUE.

Hybrid 2: Same as Hybrid 1, except ct in PBKUE.Setup(), instead of being randomly sampled,
is generated as ct← SKE.Enc(kSKE , kUE), where kSKE ← SKE.Setup(1λ).

Claim 2. (A,B, C) succeeds in Hybrid 2 with probability at least p− negl(λ).

Proof. Hybrids 1 and 2 are computationally indistinguishable by the pseudorandom ciphertext
property of SKE. Indeed, an adversary given a random text r or a real ciphertext ct can run the
cloning experiment with (A,B, C) to distinguish both the hybrids, hence distinguishing r and ct.

Hybrid 3: Same as Hybrid 2, except ct1 in PBKUE.Enc(), is generated as ct1 ← FE.Enc(FE.mpk,

(0, kSKE ,⊥)).

Claim 3. (A,B, C) succeeds in Hybrid 3 with probability at least p− negl(λ).

Proof. Hybrids 2 and 3 are indistinguishable by the (selective) security of FE. Indeed, suppose that
Hybrids 2 and 3 can be distinguished by (A,B, C), and consider the following adversary A′ which
breaks the (selective) security of FE:

• The challenger runs (FE.mpk,FE.MSK)← FE.Setup(1λ).

• A′ runs kUE ← UE.Setup(1λ) and kSKE ← SKE.Setup(1λ), then sets m0 = (1,⊥, kUE) and
m1 = (0, kSKE ,⊥). Then, A′ sends (m0,m1) to the challenger.

• The challenger chooses a random bit b sends back FE.mpk and ctb1 ← FE.Enc(FE.mpk,mb).

• A′ implements the function f̃ := F [SKE.Enc(kSKE , kUE)] and makes a query to the challenger
to receive FE.sk ← FE.KeyGen(FE.MSK, f̃). This query is valid since f̃(m0) = f̃(m1) = kUE .

• Now A′ can perform a simulation, which matches Hybrid 2 with adversary (A,B, C) when
b = 0, and Hybrid 3 with adversary (A,B, C) when b = 1. This will let A′ to distinguish the
cases b = 0 and b = 1, breaking FE security. After sampling a random message m← {0, 1}n,
A′ has everything she needs to perform the simulation. Note that even though she doesn’t
know FE.MSK, she has learned FE.sk, which is the only time FE.MSK is used.

Having established that (A,B, C) succeeds in Hybrid 3 with probability p− negl(λ), we will now
construct an adversary ( ˜̃A, ˜̃B, ˜̃C) that succeeds in the cloning experiment of UE with probability
p− negl(λ), contradicting the t-unclonable security:

• The challenger samples kUE ← UE.Setup(λ) andm← {0, 1}n, then sends ct2 ← UE.Enc(kUE ,m)

to ˜̃A.
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• In Phase 1, ˜̃A samples (FE.MSK,FE.mpk) ← FE.Setup(1λ) and kSKE ← SKE.Setup(1λ). She
then computes ct1 ← FE.Enc(FE.mpk, (0, kSKE ,⊥)). At the end of the phase ˜̃A runs A on
input ct∗ = (ct1, ct2) to have ˜̃B and ˜̃C receive bipartite state ρBC ∈ D (HB)⊗D (HC). ˜̃A also
samples a random string r for SKE.Enc and sends a copy of r attached to the corresponding
registers to both ˜̃B and ˜̃C.

• In Phase 2, the challenger reveals kUE to both ˜̃B and ˜̃C. ˜̃B computes ct← SKE.Enc(kSKE , kUE)

(using randomness r), and FE.sk ← FE.KeyGen(FE.MSK, F [ct]). Then, he runs B on the B
register of ρBC , revealing FE.sk) as the key, to obtain output mB, which he outputs as is.
Similarly, ˜̃C runs C to obtain and output mC .

Described above, ( ˜̃A, ˜̃B, ˜̃C) perfectly simulates the challenger of Hybrid 3 against (A,B, C). There-
fore, the success probability of ( ˜̃A, ˜̃B, ˜̃C) is p− negl(λ).

6 Additional Results on Unclonable Encryption

6.1 Generalized Conjugate Encryption

The conjugate encryption scheme of [BL20] uses the BB84 monogamy-of-entanglement (MOE) game
studied in [TFKW13]. The success probability of a cloning adversary exactly equals that of a MOE
adversary restricted in state preparation. In this section we make the observation that their proof
easily extends to a class of unclonable encryption schemes based on a class of MOE games, which
we define below:

Definition 17 (Real Orthogonal Basis). Let (|x〉〈x|)x∈X be the standard basis for D (HX), with
X = {0, 1, . . . ,dimHX − 1}. An orthonormal basis β = (|ψx〉〈ψx|)x∈X for D (HX) is called real
orthogonal if there exist real coefficients {αxx′}x,x′∈X such that

|ψx〉 =
∑
x′∈X

αxx′ |x′〉

for all x ∈ X.

The following lemma, which is the main fact used to generalize conjugate encryption, states that
an EPR pair defined in a real-orthogonal basis does not depend on the basis. It follows easily by
properties of orthogonal matrices.

Lemma 3. If β = (|ψx〉〈ψx|)x∈X is a real orthogonal basis, then∑
x∈X
|ψxψx〉 =

∑
x∈X
|xx〉 (3)

and hence ∑
x,x′∈X

|x〉〈x′| ⊗ |x〉〈x′| =
∑

x,x′∈X
|ψx〉〈ψx′ | ⊗ |ψx〉〈ψx′ |
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by taking the outer product of each side by itself in eq. (3).

Proof. By definition of a real orthogonal basis, the basis transition matrix M = (αxx′)x,x′∈X is an
orthogonal matrix, and so is MT . Thus, the columns of M like its rows form an orthonormal basis,
meaning ∑

x∈X
αxx′αxx′′ = δx′x′′ (4)

for all x′, x′′ ∈ X. Hence,

∑
x∈X
|ψxψx〉 =

∑
x∈X

(∑
x′∈X

αxx′ |x′〉

)(∑
x′′∈X

αxx′′ |x′′〉

)
=

∑
x,x′,x′′∈X

αxx′αxx′′ |x′x′′〉

=
∑

x′,x′′∈X
δx′x′′ |x′x′′〉

=
∑
x∈X
|xx〉

Corollary 3. If X = {0, 1}n and β = (|ψx〉〈ψx|)x∈X is a real orthogonal basis for D (HX), then

|EPRn〉〈EPRn| =
∑

x,x′∈X
|ψx〉〈ψx′ | ⊗ |ψx〉〈ψx′ |.

Definition 18 (Real-Orthogonal Monogamy Game14). Let X = {0, 1}n. A real-orthogonal monogamy
game (ROMG) G of order n is defined by the Hilbert space HA of n-qubit states and a collection of
real orthogonal bases

(
βθ =

(
|ψθx〉〈ψθx|

)
x∈X

)
θ∈Θ

. An adversary for G is defined by finite-dimensional

Hilbert states HB and HC , a tripartite state ρABC ∈ D (HA) ⊗ D (HB) ⊗ D (HC), along with two
collections of POVMs:

((
Bθ
x

)
x∈X

)
θ∈Θ

and
((
Cθx
)
x∈X

)
θ∈Θ

. The value of G, denoted by pG, is the
maximimum value the following expression can take for an optimal adversary:

pwin =
1

|Θ|
∑
θ∈Θ

Tr
(

ΠθρABC

)
,

14An example of a real-orthogonal game is studied in the context of coset states in [CLLZ21]. For a fixed subspace
A of Fn2 with dimension n/2, the coset states

|As,s′〉 :=
1√
|A|

∑
a∈A

(−1)〈s
′,a〉|a+ s〉

form a real-orthogonal basis for the n-qubit Hilbert space, where s and s′ range over the cosets of A and A⊥,
respectively.
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so that

pG = max
ρABC∈D(HA)⊗D(HB)⊗D(HC)(

(Bθx)x∈X
)
θ∈Θ(

(Cθx)x∈X
)
θ∈Θ

pwin,

where

Πθ =
∑
x∈X
|ψθx〉〈ψθx| ⊗Bθ

x ⊗ Cθx.

pwin is the probability that (B, C) (the adversary) win in a monogamy game where:

• B and C, who are far away from each other, prepare a tripartite state ρABC and send the A
register to A. B keeps the B register and C keeps the C register of this state.

• A samples θ ∈ Θ uniformly at random and measures her register in basis βθ to obtain x ∈ X.
She then sends θ to both B and C.

• B and C guess the value x, and they win if they are both correct.

Theorem 9. Let G be a ROMG of order n with value pG = 2−n+t + negl(λ), then there exists
an unclonable encryption scheme otUEG with (constant) message length n, which is t-unclonable
secure.

Proof. We will construct a generalized conjugate encryption scheme otUEG = (Setup,Enc,Dec) such
that the success probability of a cloning adversary equals that of a ROMG adversary, which is
bounded by pG. The same construction and analysis is done by [BL20] for the case of conjugate
encoding [Wie83], where G is the BB84 game and (βθ) are the Wiesner bases.1516

Setup: On input security parameter 1λ, Setup uniformly samples a key (θ, r)← Θ× {0, 1}n.

Encryption: On input m ∈M and (Θ, r) ∈ K, Enc outputs the pure state ρ = |ψθ(m⊕r)〉〈ψ
θ
(m⊕r)|.

Decryption: On input ciphertext ρct and key (θ, r), Dec measures ρct in the basis βθ to obtain
x, then outputs x⊕ r.

15The BB84 game of order n is defined as follows: βθ =
(
|ψθx〉〈ψθx|

)
x∈X , where

|ψθx〉 =
n⊗
j=1

Hθj |xj〉

and H denotes the single-qubit Hadamard gate.
16In [BL20], conjugate encryption is defined as having message length n = λ. We present n to be a constant instead

so that in the definition of t-unclonable security, the winning probability of a cloning adversary, which is negligible
in n, is not negligible in λ.
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(One-Time) Indistinguishable Security: It suffices to show that for any message, the view
of an adversary with no knowledge of the key (θ, r) equals the completely mixed state, which can
easily be done as

1

2λ|Θ|
∑
θ,r

|ψθ(m⊕r)〉〈ψ
θ
(m⊕r)| = Eθ

1

2λ

∑
x

|ψθx〉〈ψθx| = Eθ(id/2λ) = (id/2λ).

t-unclonable security: Let (A,B, C) be a cloning adversary which uses the splitting CPTP map
φ : D (HA)→ D (HB)⊗D (HC) as well as POVMs

(
B(θ,r)

)
θ,r∈{0,1}λ and

(
C(θ,r)

)
θ,r∈{0,1}λ . We will

construct a ROMG adversary A′ for G that succeeds with the same probability. It uses the same
Hilbert spaces HB, and HC , and it uses POVMs (B′)θ, (C ′)θ, defined as

(B′)θx =
1

2λ

∑
r∈{0,1}λ

B
(θ,r)
x⊕r , (C ′)θx =

1

2λ

∑
r∈{0,1}λ

C
(θ,r)
x⊕r .

Finally, the tripartite state ρABC is defined below using Corollary 3:

ρABC = (idA ⊗ φ) |EPRλ〉〈EPRλ|

= (idA ⊗ φ)
1

2λ

∑
s,u∈{0,1}λ

|s〉〈u| ⊗ |s〉〈u|

= (idA ⊗ φ)
1

2λ

∑
s,u∈{0,1}λ

|ψθs〉〈ψθu| ⊗ |ψθs〉〈ψθu|

=
1

2λ

∑
s,u∈{0,1}λ

|ψθs〉〈ψθu| ⊗ φ
(
|ψθs〉〈ψθu|

)
.

The success probability of A′ is then given by

pG ≥
1

|Θ|
∑
θ∈Θ

∑
x∈{0,1}λ

Tr
[(
|ψθx〉〈ψθx| ⊗ (B′x)θ ⊗ (C ′x)θ

)
ρABC

]
=

1

22λ|Θ|
∑
θ∈Θ

∑
x,r,s,u∈{0,1}λ

Tr
[(
|ψθx〉〈ψθx| ⊗B

(θ,r)
x⊕r ⊗ C

(θ,r)
x⊕r

)(
|ψθs〉〈ψθu| ⊗ φ

(
|ψθs〉〈ψθu|

))]
=

1

22λ|Θ|
∑
θ∈Θ

∑
x,r∈{0,1}λ

Tr
[(
B

(θ,r)
x⊕r ⊗ C

(θ,r)
x⊕r

)
φ
(
|ψθx〉〈ψθx|

)]
(5)

= Em,θ,rTr
[(
B(θ,r)
m ⊗ C(θ,r)

m

)
φ
(
|ψθm⊕r〉〈ψθm⊕r|

)]
(6)

After putting x = m⊕ r in (5), we see that (6) above equals the winning probability of (A,B, C) in
the cloning experiment, and it is bounded by pG = 2−n+t + negl(λ) which suffices for the proof.

We are not aware of a MOE game with value provably less than (1/2 + 1/2
√

2)n, nor are we aware
of a proof that it does not exist. Nevertheless, any advancement on this front will give insight to
optimal unclonable-security by Theorem 9.
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6.2 A Lower Bound for Conjugate Encryption.

A natural question to explore is whether 0-unclonable security17 is possible, even for single-bit
messages, since 0-unclonable security means that a cloning adversary (A,B, C) does not benefit
from cloning the ciphertext at all, and hence cannot do better than the trivial strategy of giving
the ciphertext to B and having C randomly guess the message. In this section we show that the
conjugate encryption of [BL20] is not 0−unclonable secure. To show this, we note that the valid
ciphertexts in conjugate encryption for one-bit messages all lie on the xz-plane of the Bloch Sphere,
i.e. they do not have an imaginary phase in the computational basis. Besides, encrypting multi-bit
messages is done simply by encrypting each bit separately. The following lemma, which refers to
the optimal equatorial cloner studied in [BCMDM00], will take advantage of this fact:

Lemma 4. Let D = D (H2) denote the space of one-qubit states. Then, there exists a cloning map
Φ : D → D ⊗D such that F (ρ,TrC(Φ(ρ))) ≥ 1/2 + 1/2

√
2 and F (ρ,TrB(Φ(ρ))) ≥ 1/2 + 1/2

√
2 for

any ρ which is a valid ciphertext of a single-bit message in generalized conjugate encryption, where
TrX is the partial trace operation of tracing out the X register.

The following result, then is imminent:

Theorem 10. Let G be a real-orthogonal monogamy game of order n which is an n-fold parallel
repetition of a real-orthogonal monogamy game of order 1, i.e. the basis states are of the form

|ψθx〉〈ψθx| =
n⊗
i=1

|ψθixi〉〈ψ
θi
xi |,

where Θ = (Θ̃)n, θ = (θ1, . . . , θn), and
(
|ψθib 〉〈ψ

θi
b |
)
b∈{0,1}

is a real-orthogonal basis of the one-qubit

Hilbert space for any θi ∈ Θ̃.

Then, the generalized conjugate encryption otUEG as defined in the proof of Theorem 9 is not
(cn)-unclonable secure for any constant c < 1/2.

Proof. It suffices to construct a cloning adversary adversary (A,B, C) which succeeds with proba-
bility 2−n/2. At a high level, we do the following: since every qubit is encrypted individually, B and
C will independently guess each qubit of the message.

By Lemma 4, there exists a cloner Φ : D (H2)→ D (H2)⊗D (H2) which clones every qubit of a
valid ciphertext ρCT with fidelity f = 1/2 + 1/2

√
2. Given a ciphertext ρCT in phase 1, A will use

the map Φ⊗n to split it into two registers of n-qubits, so that if ρB = TrC(Φ⊗n (ρCT)) =
⊗n

i=1 ρB,i
is the local view of B, then F (ρB,i, ρCT,i) ≥ f (similarly for C).

In phase 2, after the key k is revealed, B and C each apply Dec(k, .) to their register, which can
be applied qubit-wise. Since fidelity cannot decrease with quantum operations Lemma 1, the lo-
cal view of ρ′B,i of B after decrypting has fidelity at least f to |mi〉〈mi| = Dec(k, ρct), meaning
〈mi|ρ′B,i|mi〉 ≥ f (similarly for C).

17[BL20] show that 0-unclonable security implies unclonable-indistinguishable security, making this question more
interesting.
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Next, B and C measure their register in the standard basis. By definition of fidelity, then Pr[mB,i =

mi] ≥ f and Pr[mC,i = mi] ≥ f . By union bound, this implies Pr[mB,i = mC,i = mi] ≥ 2f − 1 =

2−1/2. Since every bit of the message m is independent, it follows that Pr[mB = mC = m] ≥
(2f − 1)n = 2−n/2 as desired.

The bound in Theorem 10, which states that a cloning adversary cannot succeed with probability
greater than 0.71n, applies to conjugate encryption of [BL20]. Yet, there is an even simpler cloning
attack which targets this scheme specifically and succeeds with probability 0.75n.

Theorem 11. Conjugate encryption is not (cn)-unclonable secure for any c < 1− log2(3/4).

Proof. Consider the following cloning adversary (A,B, C): given a ciphertext ρ = Enc((θ, r),m) =

Hθ|m〉〈m|Hθ, A samples θ′ $←− {0, 1}n and measures ρ in the Wiesner basis Hθ′ to obtain a classical
string x ∈ {0, 1}n, which she sends to both B and C. After the key (θ, r) is revealed, B and C each
output m′ := x ⊕ r. For each i, we have m′i = mi with probability 1 conditioned on θ′i = θi, and
m′i = mi with probability 1/2 conditioned on θ′i 6= θi. Therefore, the success probability of this
adversary is given by

Pr
[
m′ = m

]
=

n∏
i=1

Pr
[
m′i = mi

]
=

n∏
i=1

(
1

2
Pr
[
m′i = mi | θ′i = θi

]
+

1

2
Pr
[
m′i = mi | θ′i 6= θi

])
=

(
3

4

)n

7 Construction of Copy-Protection from Unclonable Encryption

In this section, we present an application of unclonable encryption by showing that the existence of
an unclonable-indistinguishable secure scheme (see Definition 12) implies a copy-protection scheme
over a special class of point functions. unclonable-indistinguishable security seems to be a stronger
notion than unclonable security, and it remains open question whether it is possible.
The main drawback of our construction is that the copy-protected program ρf for the point function
fa,b is reusable only if it is used to evaluate the function on the "correct" input a. When f is
evaluated on inpnuts x 6= a, our scheme does not guarantee that ρf will not be destroyed.

Construction: Let (Gen, Sign,Ver) be a post-quantum signature scheme, and let UE be an unclonable-
indistinguishable secure unclonable-encryption scheme encrypting n-bit messages, where n is the size
of a signature created by Sign(). We construct a copy-protection scheme (CopyProtect,Eval) for the
family F = {fk,(vk||σ) : k ← UE.Setup(1λ), (vk, sk) ← Gen(1λ), σ ← Sign(sk, 0)} of point functions.
Let X,Y denote the domain and codomain of f ∈ F .

• Copy-Protected State Generation: On input the security parameter 1λ and description
(a, b) of a function fa,b ∈ F , CopyProtect does the following:

– Parse a as k and b as vk||σ.
– Compute ρ← UE.Enc(k, σ).
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– Output ρ̃ = ρ⊗ |vk〉〈vk|.

• Evaluation: On input the security parameter 1λ, a value x ∈ X and a copy-protected state
ρ̃, Eval does the following:

1. Measure the second register of ρ̃ to obtain the state ρ⊗ |vk〉〈vk|
2. Compute σ′ ← UE.Dec(x, ρ) and δ ← Ver(vk, 0, σ′).

3. If δ = 0, set y = 0; if δ = 1, set y = vk||σ′. Output |vk〉〈vk| ⊗ |y〉〈y|.

Using Corollary 1, we can reimplement the second and third steps above so that Eval outputs
a state (ρ′ ⊗ |vk〉〈vk|)⊗ |y〉〈y|, where ρ′ is close to ρ on correct inputs. We assume that Eval
does this for reusability purposes.

Computational Correctness: Our construction satisfies computational correctness (Definition 5).
In order to find an input that evaluates incorrectly, an adversary must be able to forge a signature
using only the verification key vk. We formalize this argument below:

Claim 4. Assuming unclonable-indistinguishability property of UE and the unforgeability prop-
erty of the unique signature scheme, (CopyProtect,Eval) satisfies computational (negl(λ), negl(λ))-
correctness.

Proof. The first bullet point of the computational correctness property follows from the statistical
correctness of UE and Corollary 1. This is because when the function is evaluated with the correct
key (a = k), the decryption succeeds with probability 1− negl(λ), which implies that it is (almost)
reversible.

We prove the second bullet via proof by contradiction. Consider the following hybrid experiments:

Hyb1: This corresponds to the real correctness experiment, where the adversary receives as input a
copy-protection of the point function fa,b and needs to find a value x′ 6= a such that the evaluation
of the copy-protected state on the input x′ yields a non-zero value. Let the success probability of
A in this experiment be ε1.

Hyb2: This hybrid is identical to Hyb1, except that we change the way we are computing the UE

ciphertext. Instead of computing ρ← UE.Enc(k, σ), we compute ρ← UE.Enc(k, 0). Let the success
probability of A in this experiment be ε2.

We first argue that |ε1 − ε2| ≤ negl(λ). To prove this, we will construct an adversary A′ which
tries to break the one-time indistinguishable security of UE:

• A′ samples (vk, sk) ← Gen(1λ) and computes σ ← Sign(sk, 0). She then sends two messages
m0 = σ and m1 = 0 to the challenger.

• The challenger samples k ← UE.Setup(1λ) and a uniformly random bit b. He sends ρCT ←
UE.Enc(k,mb) to A′.
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• A′ sets ρ(0)
f = ρCT ⊗ |vk〉〈vk| and simulates the correctness experiment corresponding to

fk,(vk||σ) by running A and playing the role of the challenger in that experiment. She outputs
1 if A succeeds; otherwise, she outputs 0.

If b = 0, then mb = σ and the view of A is Hyb1. Hence, A′ outputs 1 with probability ε1.
On the other hand, if b = 1, then mb = 0 and the view of A is Hyb2, so that A′ outputs 1 with
probability ε2.
Therefore, by one-time indistinguishable security of UE, it follows that |ε1 − ε2| ≤ negl(λ).

Secondly, we argue that ε2 ≤ negl(λ) by constructing an adversary Forger which tries to break
the unforgeability property of the signature scheme:

• The challenger samples (vk, sk)← Gen(1λ) and sends vk to Forger.

• Forger samples k ← UE.Setup(1λ) and computes ρCT ← UE.Enc(k, 0). He sets ρ(0)
f = ρCT ⊗

|vk〉〈vk| and simulates Hyb2 by running A and playing the role of the challenger in that
experiment. If there exists a query xi such that the answer yi = vk′||σ′ to that query satisfies
yi 6= 0, then Forger outputs σ′; otherwise, Forger outputs 0.

With probability ε2, A will succeed in the experiment Hyb2, and A′ will output σ′ such that
yi = vk′||σ′, where ρ(1)

f ⊗ |yi〉〈yi| ← Eval(1λ, ρ
(i)
f , xi) for a query xi.

Note that in our construction, even though the states
(
ρ

(j)
f

)poly(λ)

j=0
could be different, they

preserve the initial verification key vk. Hence, Eval always runs signature verification using vk.
Therefore, Forger outputs a valid signature σ′ on 0 with probability ε2, so it is negligible by the
unforgability of the signature scheme.

Copy-Protection Security:

Claim 5. The construction above is a secure copy-protection scheme assuming the one-time existen-
tial unforgeability property of the signature scheme (Gen, Sign,Ver) and the unclonable-indistinguishable
security of the unclonable encryption scheme UE.

Proof. Suppose there exists an adversary (A,B, C) that breaks the copy-protection security of our
construction (see Definition 6). Let Hyb1 be the corresponding pirating experiment, where the
challenger always sends x = k (in the original pirating experiment, he sends this input only half
the time). It follows that with non-negligible probability p, both B and C output (vk||σ) in Hyb1.
In other words, given a copy-protected program ρf for a point function fk,(vk||σ), A can prepare a
bipartite state on registers B and C such that on input k, both B and C output σ with probability
p. (We ignore vk in the output for simplified notation in this proof.)

We define a new experiment Hyb2, which is identical to Hyb1 except when the challenger is comput-
ing the copy-protected state ρf = UE.Enc(k, σ)⊗|vk〉〈vk|, he insteads computes ρ′f = UE.Enc(k, 0)⊗
|vk〉〈vk| and sends it to A.
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We first argue that in Hyb2, the probability that either B or C outputs σ is negligible in λ. This
follows from the fact that if w.l.o.g. B outputs σ with non-negligible probability, then there exists
an adversary Forger which breaks the unforgeability of the signature scheme:

• Forger Given the security parameter 1λ and vk such that (vk, sk)← Gen(1λ), Forger samples
a key k ← UE.Setup(1λ) and computes ρ← UE.Enc(k, 0).

• Forger then runs (A,B, C) by sending ρ′f = ρ ⊗ |vk〉〈vk| to A and simulating the experi-
ment Hyb2. It outputs the output of B, which is a valid signature on 0 with non-negligible
probability.

Now we construct a cloning-distinguishing adversary (A′,B′, C′) which breaks the unclonable-
indistinguishable security of UE:

• In phase 1, A′ samples (vk, sk) ← Gen(1λ) and computes σ ← Sign(sk, 0). She then sends
messages m0 = σ and m1 = 0 to the challenger.

• In phase 2, the challenger computes ρCT = UE.Enc(k,mb) for k ← UE.Setup(1λ) and a uni-
formly random bit b. He sends ρCT to A′.

• A′ runs A by sending ρCT ⊗ |vk〉〈vk| as the copy-protected program and to create a bipartite
state over registers B,C. She sends the B ( resp., C) register to B′ (resp., C′).

• In phase 3, the key k is revealed to B′ and C′. B′ then runs B as if xB = k in the pirating
experiment, similarly for C′. Note that if b = 0, the view of B and C is exactly Hyb1 and if
b = 1 it is Hyb2. Let the output of B and C be yB and yC , respectively. In the end, B′ (resp.,
C′) outputs the bit bB = 0 if and only if yB = σ (resp., yC = σ).

The probability that B′ and C′ simultaneously predict the bit b correctly is given by

1

2
(Pr[yB = yC = σ | b = 0] + Pr[yB 6= σ ∧ yC 6= σ | b = 1]) ≥ 1

2
(p+ 1− negl(λ)) ≥ 1

2
+
p

2
− negl(λ),

thus breaking the unclonable-indistinguishable security.
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