
History Binding Signature?

Shlomi Dolev and Matan Liber

Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il

matanli@post.bgu.ac.il

Abstract. Digital signatures are used to verify the authenticity of digi-
tal messages, that is, to know with a high level of certainty, that a digital
message was created by a known sender and was not altered in any way.
This is usually achieved by using asymmetric cryptography, where a se-
cret key is used by the signer, and the corresponding public key is used
by those who wish to verify the signed data. In many use-cases, such as
blockchain, the history and order of the signed data, thus the signatures
themselves, are important. In blockchains specifically, the threat is forks,
where one can double-spend its crypto-currency if one succeeds to pub-
lish two valid transactions on two different branches of the chain. We
introduce a single private/public key pair signature scheme using verifi-
able random function, that binds a signer to its signature history. The
scheme enforces a single ordered signatures’ history using a deterministic
verifiable chain of signature functions that also reveals the secret key in
case of misbehaviors.

Keywords: Digital Signatures · Verifiable Secret Sharing · Verifiable
Random Functions.

1 Introduction

Digital signatures are used in a wide variety of applications, from signing software
distributions to verification of online transactions. In some countries, digital
signatures even have legal bindings [6]. One of the key features a digital signature
scheme provides, is preventing the signer from claiming to not have signed a
message, while a valid signature exists [10]. The fact that a signature provides
non-repudiation, i.e., cannot be denied to have been created by the signer, indeed
increases its value to the verifier. For example, in the case of digital currency, the
paid end of a transaction does not want the payer to deny ever signing, moreover
participating in the transaction. Yet in some cases, this is not enough, since the
signer can claim for the privacy loss of its private key, or in other cases, the
verifier may not know the signature was abused in other ways. Blockchain forks

? Partially supported by the Rita Altura Trust Chair in Computer Science, a grant
from the Ministry of Science and Technology, Israel & the Japan Science and Technol-
ogy Agency (JST), and the German Research Funding (DFG, Grant#8767581199)

2 Shlomi Dolev and Matan Liber

are a common example, where two versions of a transaction may be published
in two different branches of the chain, leading to double-spending. The general
case is where one signs a series of sequential data, where not only the origin of
the data is to be verified, but also the index of the data in the series. Since there
are many such cases where the signer can gain from successfully signing and
publishing different data versions for the same index in the series, we introduce
punishment for such behavior.

Previous work. In our previous work [5] we discussed a possible weakness
in permissioned blockchains. In such blockchains, a relatively small number of
players participate in the BFT algorithm [9] used to determine the next trans-
actions to be published on the blockchain. Those players are the permissioned
players (referred by us as nodes), whose copies of the public ledger represent the
current state of the blockchain. The permissionless players (referred by us as the
private users, or simply users) both view and submit transactions only through
the nodes.

It is known that Byzantine consensus can be achieved when up to one-third
of the nodes are faulty. Since this boundary is well known, an adversary may try
to overtake more nodes than the system can tolerate thus putting the blockchain
in a harmful position. We discussed a worst-case scenario where the adversary
may even completely destroy many of the nodes’ copies of the blockchain and
leading to the effective loss of the transactions history, resulting in the loss of
the balances of the users.

We suggested a solution that enables a trustless restoration of the blockchain
in such scenarios. The solution includes users saving their own transactions his-
tory (incoming transactions and payment transactions). The users present their
history of transactions (which we assume are signed in an undeniable collective
signature) to the nodes in case a ledger restoration is needed.

To prevent users from exploiting the lack of information the nodes hold after
an attack, and presenting a partial payments history (resulting in the restora-
tion of a balance greater than they previously had), our solution enforced two
conditions:

• The transactions are indexed with an increasing order to prevent skipping
payments in the presented history.
• Additional information Di is published alongside every transaction Ti to

prevent hiding a suffix of the payments history.

The first condition was enforced by making a transaction valid only if it included
index i + 1 when the previously approved transaction of the user was of index
i. The second condition was enforced by setting the additional information Di

to include a verifiable share of the user’s secret key s, used for signing transac-
tions. When a restoration process takes place, any user presenting a transactions
history up to an index m is forced to present a corresponding proof Pm, also
including a verifiable share of s.

The main idea is that any attempt to hide a suffix of the transactions history
results in publishing enough shares of s that enable the secret’s reconstruction.

History Binding Signature 3

Contribution. We leverage from the same incentive for honesty behavior to
make a chain of signatures both sequential and unique. We use verifiable random
functions to create a new signature function for every new index of data to sign.
The way the signature functions are made makes them both secure and binding,
thus, creating a unique sequence after the initial seed is determined.

Using this digital signature we achieve double-spending prevention, which,
in comparison to some other schemes such as [1], has the following properties:

• No need for a “centralized” bank, where coin issuing and verification is per-
formed against.

• Furthermore, there is no interactive per-coin “issuing” process at all, and
once the initial public key is accepted and published, yet we do rely on the
publicity of the transactions.

• This also means that there is no one secret, that if revealed, the whole system
breaks (such as the RSA secret of the bank).

• Given correct propagation/publicity of the transactions (as is the case in
blockchains, for example), framing can be done by all users.

• A user being framed for dishonesty also loses the privacy of its account
completely.

• Although our scheme results in a more “aggressive” outcome for a double-
spender, an honest user is not affected at all, and in an eco-system where this
possible penalty is known to all participants, we can expect fewer attempts
of undesired behavior.

The rest of the paper is structured as follows: In Section 2, we briefly de-
scribe verifiable secret sharing, verifiable secret public sharing (our variation of
VSS that was introduced in our previous work), and verifiable random function,
which are our building blocks for our new scheme. In Section 3, we introduce our
signature scheme, defining the key generation, signature, and verification algo-
rithms, as well as discuss the advantages of the scheme. In Section 4, we list the
conditions a signature scheme must meet, including unforgeability, security, and
correctness (both of the signature scheme itself and of the key-revealing property
of our scheme) and prove our scheme indeed meets them. Finally, in Section 5,
we conclude the scheme introduced in this paper and its possible usage, as well
as shortly discuss possible future lines of work.

2 Preliminaries

We describe the protocols of secret sharing and verifiable secret sharing that our
scheme is based on, as well as our variation of those protocols. We also describe
verifiable random functions, which we later incorporate with our previous work
to get our result.

2.1 Verifiable Secret Sharing

Shamir [13] introduced Shamir’s secret sharing (SSS) as a method to divide a
secret into parts (shares), which are generated by the secret owner (dealer), and

4 Shlomi Dolev and Matan Liber

distributed amongst a group of participants (shareholders). In a (t, n)-threshold
(t-out-of-n) secret sharing scheme, n participants, each holding a share, can re-
construct the secret only if t or more of them combine their shares. Moreover, any
group of strictly less than t shareholders (including the individual shareholders
themselves), learn nothing about the secret.

Verifiable secret sharing (VSS) was introduced by Chor, Goldwasser, Micali
and Awerbuch [2], as a secret sharing scheme where every participant can verify
that the secret shares are consistent. This is important for preventing a malicious
dealer from sending shares to different participants, which do not define a (single)
secret.

A (t, n)-threshold secret sharing scheme, consists of a probabilistic
polynomial-time algorithm (PPTA) ShareG and a polynomial-time algorithm
(PTA) RecoverG, for some global parameters G. The global parameters
G are clear from the context so we drop G from the notation. The al-
gorithm Share(s) → {(1, s1), (2, s2), . . . , (n, sn)} = S(s) takes a secret key
s as an input, and outputs n shares (1, s1), (2, s2), . . . , (j, sj), . . . , (n, sn)
where j is the share’s index and sj is the share’s value. The algorithms
Recover((a1, sa1

), (a2, sa2
), . . . , (at, sat

)) → s takes as an input any t valid dis-
tinct shares with share indices {a1, . . . , at} ⊆ [1, n], and outputs the original
secret s. Formally,

∀s.Share(s)→ S(s) =⇒ ∀T ′ ∈ {T ⊆ S(s)| |T | = t}, Recover(T ′) = s

To make this scheme verifiable, we introduce two additional PTAs. Com-
mit(c) → C that takes a random coefficient c generated by the user
and outputs a commit C for it, and Verify(s(i), C1, . . . , Ct−1, y) → res ∈
{ACCEPT,REJECT} that takes a share, commits for both of the polyno-
mial’s coefficients, and the public key of the user, and ACCEPTs if the share is
valid or REJECTs otherwise.

We use Feldman’s [7] verifiable secret sharing scheme to define:

• Share(s) = {(i, Pol(i) mod q)|1 ≤ i ≤ n} where Pol(x) = s +
t−1∑
j=1

cjx
j for

some random coefficients 0 < cj < q.
• Recover((a1, sa1

), . . . , (at, sat
)) = s using polynomial interpolation.

• Commit(c) = gc mod p
• Verify((i, si), C1, . . . , Ct−1, y) = ACCEPT ⇐⇒ gsi mod p =

g
s+

t−1∑
j=1

cji
j mod q

mod p = gs ·
t−1
Π
j=1

(gcj)i
j

mod p = y ·
t−1
Π
j=1

Cij

j mod p

Where p is prime, q is prime divisor of (p−1), g is a generator of a subgroup
of order q in the multiplicative group of Z∗p, such that 1 < g < p and the global
parameters G are p, q and g.

2.2 Verifiable Secret Public Sharing

In the classic secret sharing scenario, one generates shares of the secret s and
deals different shares to different parties. This implies that right away all of the

History Binding Signature 5

shares are in the hands of the parties, where each party holds only some of the
shares. Later, when reconstruction is required, the parties combine the shares
and reveal the secret.

In [5] we introduced the concept of Verifiable Secret Public Sharing (VSPS),
i.e., publicly publishing some (verifiable) shares of the secret. In our protocol for
enforcing the reveal of the current balance of a crypto-currency wallet, one grad-
ually publishes shares of the secret key s used for signing transactions. Restoring
the balance of the wallet also involves publishing a share of s. The key idea is
that for every transaction a new SSS polynomial is used, and an honest user
does not surpass the threshold for any single SSS instance (thus not revealing
s). On the other hand, a dishonest user is forced to publish enough shares corre-
sponding to one of the polynomials, so that the threshold is met, and anyone can
restore the signature key s, thus essentially stealing the crypto-currency wallet.

As mentioned in Section 1, we proposed adding additional information Di for
every transaction, containing some of the secret shares of s regarding a new poly-
nomial Poli(x) (as well as a share of Poli−1(x)). In addition, balance restoration
involves publishing a proof Pm′ , corresponding to the claimed latest m′th trans-
action. This proof contains an additional share, thus, resulting in the surpassing
of the threshold number of published shares needed for restoring s, corresponding
to Polm′(x) in case Dm was published in the past for some m > m′.

The suggested structure for such Di, Pi is:

• Di = (si(1), si−1(2), Ci1, Ci2, C(i−1)1, C(i−1)2) 1

• Pi = (si(v), Ci1, Ci2), for a random 2 < v ≤ q − 1.

In this case, we used a (3, 3)-threshold verifiable secret sharing scheme, meaning
Poli(x) = s+ ci1x+ ci2x

2, for some random coefficients 0 < ci1, ci2 < q.
One may notice that if the published transactions history is H̄(m) = {Di|1 ≤

i ≤ m}, then the total published shares are {si(1), si(2)|1 ≤ i ≤ m−1}∪{sm(1)}.
This means that publishing Pm′ results in exposing three shares of Polm′(x) if
m′ < m. Yet this publication keeps the number of exposed shares corresponding
Poli(x) under the scheme’s threshold for every 1 ≤ i ≤ m, if m′ = m, thus
keeping s safe.

2.3 Verifiable Random Functions

Verifiable random functions were introduced by Micali, Rabin, and Vadhan [12].
Using a verifiable random function (VRF), given an input x, the holder of a
secret key s can compute the value of the pseudo-random function Fs(x) and a
proof ps(x).

Using the proof and the public key y = gs everyone can check that the value
x′ = Fs(x) was indeed computed correctly, yet this information cannot be used
to find the secret key s.

An implementation by Yevgeniy Dodis and Aleksandr Yampolskiy [4] defines:

1 D1 = (s1(1), C11, C12)

6 Shlomi Dolev and Matan Liber

• Fs(x) = e(g, g)
1

x+s

• ps(x) = g
1

x+s

Where e(·, ·) is a bilinear map.

Verification of Fs(x) is done by checking that:

1. e(gxy,ps(x)) = e(g, g)(x+s)· 1
x+s = e(g, g)

2. e(g,ps(x)) = e(g, g)1·
1

x+s = Fs(x)

One may notice that x itself is not used, only in an encrypted form in the
verification process, namely, it is only a function of gx and ps(x).

3 History Binding Signature

A history binding signature scheme should bind a signer to the previously pub-
lished signatures created in the past. Such a scheme is characterized by having
the following properties:

• A unique per-index signature function.

• Enabling verification that a message was signed by the signature function
corresponding to the claimed signature index.

• Holding two signatures of different messages V 6= V ′ that were signed using
the same signature function can be used to expose the signer’s secret key.

• Enabling verification that a signature will enable exposing the secret key of
the signer in case of misbehavior.

In general, a history binding signature scheme is defined by the
Key Generation, Signingi and Verifyi algorithms.

• Key Generation(1n) randomly generates a private/public key pair (sk,pk).

• Signingi(m) computes:

1. A signature si(m) on the message.

2. A commitment Ci indicating the signature enables the exposure of the
secret key in case of misbehavior.

3. A non-interactive zero knowledge proof psk that the signature was com-
puted correctly.

4. For a total signature of Signi(m) = (si(m), C,psk).

• Verifyi(m
′, (s′i, C,p

′)) returns ACCEPT if and only if the following checks
pass:

1. The zero knowledge proof verification.

2. The commitment verification.

History Binding Signature 7

Verifiable Secret Public Sharing as a Signature. We use a similar mathe-
matical technique as the one used in VSPS, but for a different usage - enforcing
a unique sequential signature history. In other words, we prevent publishing a
signature for some message V ′i , where a signature for a different message Vi 6= V ′i
was previously published. To achieve our desired goal we use a variant of the ad-
ditional information Di from our VSPS as a digital signature for Vi, and describe
how the Key Generation, Signingi and Verifyi algorithms are to be implemented.

• Key Generation(1n) randomly generates:
1. A secret key sk = (s, c0) ∈R Z∗q × Z∗q .
2. A corresponding public key pk = (y, C0) = (gs, gc0) ∈ 〈g〉 × 〈g〉.

• Signingi(Vi) computes:
1. The new random coefficient ci = Fs(ci−1) and the corresponding new

polynomial Poli(x) = s+ cix = s+ Fs(ci−1)x.
2. The proof for the new coefficient ps(ci−1).
3. The commitments for the previous and new coefficients Ci = gci =
gFs(ci−1) mod q, Ci−1 = gci−1 .

4. The corresponding share sHi (Vi) = Poli(H(Vi)) mod q.
5. For a total signature Signi(Vi) = (sHi (Vi), Ci, Ci−1,ps(ci−1)).

• Verifyi(V
′
i , (s

′
i, C
′
i, C
′
i−1,p

′)) returns ACCEPT if and only if the following
checks pass:

1. e(C ′i−1y,p
′)

?
= e(g, g).

2. ge(g,p
′) mod q ?

= C ′i.

3. gs
′
i mod p

?
= y · C ′H(V ′i)

i mod p.
where H(·) is a publicly-known collision resistant hash function.

When looking at our general definition we may notice that this implementation
defines:

• (sk,pk) = ((s, c0), (y, C0))
• si(m) = sHi (m)
• C = (Ci, Ci−1)
• psk = ps(ci−1)
• The first and second checks as the zero-knowledge proof verification.
• The third check as the commitment verification.

Advantages. One may look at Di, as suggested in our previous scheme, as a
digital signature on the current transaction. Although Di did not incorporate
the data of the actual transaction Ti, it could easily be changed to do so. This
can be done by evaluating the polynomials Poli(x) in H(Ti) instead of some
constant number such as 1 or 2. This, however, is not sufficient, since every new
polynomial is defined by random coefficients, that are up to the user to decide.
To link a polynomial to a predefined index, one can use multiple pre-ordered
secret/public key shares [8]. Using VRF, we replace the method for creating
the next polynomial from a random one to a deterministic (and verifiable) one

8 Shlomi Dolev and Matan Liber

Fig. 1. By using the previous polynomial coefficient as the input for the verifiable
random function, we get a unique chain of signature functions.

and achieve the enforcement of the order of the signatures with a single key pair.
The fact that there can only be one valid Poli(x) per participant (enforced using
Fs(·)) replaces the verification the nodes perform (by keeping track of the user’s
transaction index).

4 Conditions for a Valid Signature

We list the conditions for a valid signature scheme and then prove our scheme
meets them:

(a) Unforgeability: for every i ∈ N and for every message V to sign, only the
holder of sk can generate a valid signature Signi(V).

(b) Security: by viewing H̄(m) = {Signi(Vi)|1 ≤ i ≤ m} for any m ∈ N, one
does not learn additional information on sk.

(c) Correctness (signing): Verifyi(Vi,Signi(Vi))=ACCEPT.
(d) Correctness (key-revealing): if one views H(m) = H̄(m)∪Signm′(V ′m′) for

some m′ < m and V ′m′ 6= Vm′ such that Signm′(Vm′)∈ H̄(m), then it can
recover the secret signing key and forge valid signatures.

4.1 Unforgeability

Lemma 1. For every i ∈ N and for every message V to sign,
only the holder of sk can generate a signature Signi(V

′), such that
Verifyi(V

′,Signi(V))=ACCEPT.

Proof. We point out that if one tries to forge a signature, i.e., generate a valid
signature Sign ′i(V

′)= (s′i, C
′
i, C
′
i−1,p

′) for a message V ′, without knowing sk, it
must pass all three checks of Verifyi(). The first check is identical to the first one
in the VRF verification process. In the second check, instead of verifying that
e(g,ps(ci−1)) = Fs(ci−1), we verify that ge(g,ps(ci−1)) mod q = gFs(ci−1) mod q.
One may notice that the value Fs(ci−1) = ci is never published, yet Ci =
gFs(x) mod q is enough for this verification. The purpose of the third check is to
verify the validity of the share, which is the signature, using Feldman’s scheme.
This check also ensures that the signature contributes to the exposure of the

History Binding Signature 9

secret key sk in case of misbehaviors. For one to pass check 1 and 2, it would
mean breaking [4], and relying on this VRF scheme’s own unforgeability, we
declare ours is safe as well. ut

Man-in-the-Middle Attack. In order to successfully execute such an attack,
one needs to generate sHi (V ′i) for some V ′i 6= Vi. Under the assumption that H
is second-preimage resistant, such an attack requires evaluating the polynomial
Poli(x) in a new point H(V ′i) 6= H(Vi).

Lemma 2. An adversary that views only Poli(V) for some i ∈ N, where
Poli(0) = s, cannot evaluate Poli(V

′), for any V ′ 6= V .

Proof. Assume, for the sake of contradiction, that there exists v′ 6= v, s.t., an
adversary can evaluate Poli(v

′). For a (2, n)-threshold, where n = max(v, v′)
(w.l.o.g n ≥ 2) SSS, that uses Poli(x) as random polynomial for the shares
generation, a party that holds the vth share Poli(v), generate Poli(v

′). This
party can invoke Recover with Poli(v) and Poli(v

′) as inputs, and reconstruct
s, they can break the scheme, although it is a single party (strictly less than 2).
It is a contradiction since we know SSS is information-theoretically secure [13].

ut

4.2 Security

We analyze the security of the scheme by going over the published values, a
signer, with the secret signing key sk, publishes.

Lemma 3. For any m ∈ N and for every V1, . . . , Vm, a user that publishes
H̄(m) does not reveal any information about the secret key sk.

Proof. If an honest signer created a sequential signature history on the messages
V1, . . . , Vm for some m ∈ N, the following values were published:

• The public key pk= (gs, gc0)
• The commitments Ci = gci for the coefficients of Poli(x), 1 ≤ i ≤ m.
• One share s+ ci · H(Vi) of each polynomial Poli(x), 1 ≤ i ≤ m.

Under the Discrete Logarithm Problem (DLP) [11,3], we may assume pk and
the commitments Ci, 1 ≤ i ≤ m give no additional information on s, c0, ci,
1 ≤ i ≤ m accordingly. The shares {s+ ci ·H(Vi)|1 ≤ i ≤ m} each correspond to
a different polynomial Poli(x). Since no two shares of a single polynomial are
published, s cannot be reconstructed using Recover. The use of multiple secret
sharing polynomials gives the adversary a view of the form Mx = b for:

M =

1 H(V1) 0 . . . 0 0
1 0 H(V2) . . . 0 0
...

...
...

...
...

...
1 0 0 . . . H(Vm−1) 0
1 0 0 . . . 0 H(Vm)

m×m+1

x =

x1
x2
...
xm
xm+1

m+1×1

b =

sH1 (V1)
sH2 (V2)

...
sHm−1(Vm−1)
sHm(Vm)

m×1

10 Shlomi Dolev and Matan Liber

Since |Rank(M)| = m but this system represents m + 1 equations, one cannot

distinguish between the real solution x =

s
c1
...

cm−1
cm

m+1×1

, and the other q−1 solutions.

ut

4.3 Correctness (signing)

Lemma 4. For every Vi and a valid signature Signi(Vi), Verifyi(Vi,Signi(Vi))
can be computed and accepts.

Proof. We defined our Verifyi(V
′
i , (s

′
i, C
′
i, C
′
i−1,p

′)) to return ACCEPT if and
only if the following checks pass:

1. e(C ′i−1y,p
′)

?
= e(g, g).

2. ge(g,p
′) mod q ?

= C ′i.

3. gs
′
i mod p

?
= y · C ′H(V ′i)

i mod p.

If an honest user, that holds sk and uses Signi(Vi) to sign Vi, then:

• V ′i = Vi.
• s′i = sHi (Vi)
• C ′i = Ci = gci .
• C ′i−1 = Ci−1 = gci−1 .
• p′ = ps(ci−1).

Then all 3 checks of Verifyi pass since:

1. e(Ci−1y,ps(ci−1)) = e(gci−1gs,ps(ci−1)) = e(g, g).
2. ge(g,ps(ci−1)) mod q = gFs(ci−1) mod q = gci = Ci.

3. gs
H
i (Vi) mod p = gs+ciH(Vi) mod q = gs · (gci)H(Vi) = y · CH(Vi)

i mod p.

We notice that conditions 1 and 2 can be verified since y, Ci−1,ps(ci−1) and
Ci are published and condition 3 can be verified since sHi (Vi) is published as well
(and we recall that g, p, q and H(·) are public parameters). ut

4.4 Correctness (key-revealing)

We built our scheme in order to prevent a signer from releasing two signatures,
corresponding to the same signing index, for two different messages V 6= V ′. We
shall now describe such a scenario and show that this leads to the exposure of
the signer’s secret key sk.

Lemma 5. A dishonest user that publishes H(m) = H̄(m)∪Signm′(V ′m′) for
some m′ < m and V ′m′ 6= Vm′ such that Signm′(Vm′)∈ H̄(m) enables the exposure
of sk and the forgery of valid signatures on its behalf.

History Binding Signature 11

Proof. Let us assume a signer, holding a secret signing key sk, published a se-
ries of sequential signatures H̄(m) = {Signi(Vi)|1 ≤ i ≤ m} for some m ∈ N.
This means that {sHi (Vi)|1 ≤ i ≤ m} was published. If the signer publishes
a different signature Signm′(V

′
m′) for some m′ < m and V ′m′ 6= Vm′ such

that Signm′(Vm′)∈ H̄(m), this results in the publication of sHm′(V
′
m′) as well.

This means that regarding Polm′(x), there are two different published shares
sHm′(V

′
m′) 6= sHm′(Vm′) (due to the fact that V ′m′ 6= Vm′ and H(·) is collision

resistant).
Those two shares can be used using SSS Recover to find Polm′(x) = s +

cm′x. By holding those two values (s and cm′), one can recover cm = Fs(cm) =
Fs(Fs(cm−1)) = . . . = Fm−m′

s (cm′). This is sufficient to generate cm+1 = Fs(cm)
and together with the value of s, define Polm+1(x) = s+ cm+1x. We notice this
also enables one to generate a corresponding proof ps(cm), and in total begin
signing on behalf of the original owner of sk.

Fig. 2. Publishing a signature corresponding to a different value V ′
m′ where a signature

for Vm was already published results in the exposure of s.

We notice that our scheme uses [7] idea for generating verifiable shares (sig-
natures). This prevents one from publishing a signature Signi(Vi) that passes
our suggested Verifyi but does not enable the others to sign on its behalf in case
a different Signi(V

′
i) is published. ut

5 Conclusion and Future Work

We introduced a digital signature scheme based on verifiable secret sharing,
where a share of the secret acts as the signature. We used verifiable random
functions to create a random, but verifiable, chain of signature functions, each
corresponding to an index in the signing chain. This property enables the scheme
to provide additional incentive for honesty behavior, by exposing the secret key
of the signer if the chain of signatures is abusively forked. This scheme may
be used in blockchains, to prevent forks in the public ledger and generally in

12 Shlomi Dolev and Matan Liber

scenarios where the reliability of the source and uniqueness of versions of data
are required.

References

1. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Conference on the
Theory and Application of Cryptography. pp. 319–327. Springer (1988)

2. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985). pp. 383–395. IEEE (1985)

3. Coppersmith, D., Odlzyko, A.M., Schroeppel, R.: Discrete logarithms ingf (p).
Algorithmica 1(1-4), 1–15 (1986)

4. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys.
In: International Workshop on Public Key Cryptography. pp. 416–431. Springer
(2005)

5. Dolev, S., Liber, M.: Toward self-stabilizing blockchain, reconstructing totally
erased blockchain (preliminary version). In: International Symposium on Cyber
Security Cryptography and Machine Learning. pp. 175–192. Springer (2020)

6. Dumortier, J.: Regulation (eu) no 910/2014 on electronic identification and trust
services for electronic transactions in the internal market (eidas regulation). In:
EU Regulation of E-Commerce. Edward Elgar Publishing (2017)

7. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science (sfcs 1987). pp.
427–438. IEEE (1987)

8. Kubiak, P., Kuty lowski, M.: Preventing a fork in a blockchain – david fighting
goliath. In: Proceedings of the IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom 2020). IEEE (2020)

9. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 382–401 (1982)

10. McCullagh, A., Caelli, W.: Non-repudiation in the digital environment (2000)
11. McCurley, K.S.: The discrete logarithm problem. In: Proc. of Symp. in Applied

Math. vol. 42, pp. 49–74. USA (1990)
12. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th annual

symposium on foundations of computer science (cat. No. 99CB37039). pp. 120–
130. IEEE (1999)

13. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

	History Binding Signature

