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Abstract

The Ring-LWE over two-to-power cyclotomic integer rings has been
the hard computational problem for lattice cryptographic construction-
s. Its hardness and the conjectured hardness of approximating ideal-
SIVP for ideal lattices in two-to-power cyclotomic fields have been
the fundamental open problems in lattice cryptography and the com-
plexity theory of computational problems of ideal lattices. In this
paper we present a general theory of sublattice attack on the Ring-
LWE with not only the Gaussian error distribution but also general
error distributions. By the usage of our sublattice attack we prove
that the decision Ring-LWE over two-to-power cyclotomic integer rings
with certain polynomially bounded modulus parameters when degrees
dn = 2n−1 going to the infinity can be solved by a polynomial (in dn)
time algorithm for wide error distributions with widths in the range of
Peikert-Regev-Stephens-Davidowitz hardness reduction results in their
STOC 2017 paper. Hence we also prove that approximating ideal-
SIV Ppoly(dn) with some polynomial factors for ideal lattices in two-
to-power cyclotomic fields can be solved within quantum polynomial
time. Therefore the lattice cryptographic constructions can not be
based on the ”hardness” of Ring-LWE over two-to-power cyclotomic
integer rings even in the classical computational model.
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1 Introduction

1.1 SVP and SIVP

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, . . . ,bm over the ring of integers, where m ≤ n,
L := {a1b1 + · · · + ambm : a1 ∈ Z, . . . , am ∈ Z}. The volume vol(L) of
this lattice is

√
det(B ·Bτ ), where B := (bij) is the m× n generator matrix

of this lattice, bi = (bi1, . . . , bin) ∈ Rn, i = 1, · · · ,m, are base vectors of
this lattice. The length of the shortest non-zero lattice vectors is denoted by
λ1(L). The well-known shortest vector problem (SVP) is defined as follows.
Given an arbitrary Z basis of an arbitrary lattice L to find a lattice vector
with length λ1(L) (see [36]). The approximating shortest vector problem
SV Pf(m) is to find some lattice vectors of length within f(m)λ1(L) where
f(m) is an approximating factor as a function of the lattice dimension m
(see [36]). The Shortest Independent Vectors Problem (SIV Pγ(m)) is de-
fined as follows. Given an arbitrary Z basis of an arbitrary lattice L of
dimension m, to find m independent lattice vectors such that the maximum
length of these m lattice vectors is upper bounded by γ(m)λm(L), where
λm(L) is the m-th Minkowski’s successive minima of lattice L (see [36]). A
breakthrough result of M. Ajtai [5] showed that SVP is NP-hard under the
randomized reduction. Another breakthrough proved by Micciancio asserts
that approximating SVP within a constant factor is NP-hard under the ran-
domized reduction (see [36]). For the latest development we refer to Khot
[25]. It was proved that approximating SVP within a quasi-polynomial fac-
tor is NP-hard under the randomized reduction. For the hardness results
about SV P and SIV P we refer to [25, 26, 47].

1.2 Algebraic number fields

The Ring-LWE was introduced in [31] and has been the computational hard
problem for lattice cryptography. It was suggested in [31] that the Ring-LWE
over the integer ring Z[ξn] = Z[x]/(Φn(x)) of n-th cyclotomic fields, where
Φn(x) =

∏
gcd(n,j)=1(x − ξjn) is a cyclotomic polynomial, ξn is a primitive

n-th root of unity, can be used for lattice-based cryptographic construc-
tions. For example homomorphic encryption standard suggested in [3] was
based on Ring-LWE over two-to-power cyclotomic rings. Cyclotomic num-
ber fields was first originated from Kummers pioneering work on Fermats
last Theorem, we refer to [48]. In general an algebraic number field is a finite
degree extension of the rational number field Q. Let K be an algebraic num-
ber field and RK be its ring of integers in K. From the primitive element
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theorem there exists an element θ ∈ K such that K = Q[x]/(f) = Q[θ],
where f(x) ∈ Z[x] is an irreducible monic polynomial satisfying f(θ) = 0
(see [18, 7]). It is well-known there is a positive definite inner product on
K ⊗ C defined by < u, v >= Σd

i=1σi(u) ˜σi(v), where σi, i = 1, . . . , d, are d
embedings of K in C, and ṽ is complex conjugate. Sometimes we use ||u||tr
to represent (Σd

i=1σi(u) ˜σi(u))1/2. This is also the norm with respect to the
canonical embedding (see [31]). An ideal in RK is a subset of RK which
is closed under ring addition and multiplication by an arbitrary element
in RK. An ideal is a sub-lattice in RK of dimension deg(K/Q). For an
ideal I ⊂ RK, the (algebraic) norm of ideal I is defined by the cardinality
N(I) = |RK/I|, we have N(I · J) = N(I)N(J). For a principal ideal xRK

generated by an element x, then N(x) = N(xRK), we refer to [7, 17] for
the detail. The dual of a lattice L ⊂ K of rank deg(K/Q) is defined by
L∨ = {x ∈ K, trK/Q(ax) ∈ Z,∀a ∈ L}. An order O ⊂ K in a number field
K is a subring of K which is a lattice with rank equal to deg(K/Q). We
refer to [17, 18, 7] for number theoretic properties of orders in number fields.

Let ξn be a primitive n-th root of unity, the n-th cyclotomic polynomial
Φn is defined as Φn(x) =

∏n
j=1,gcd(j,n)=1(x− ξjn). This is a monic irreducible

polynomial in Z[x] of degree φ(n), where φ is the Euler function. The n-th
cyclotomic field is Q(ξn) = Q[x]/(Φn(x)). When n = p is an odd prime
Φp(x) = xp−1 +xp−2 + · · ·+x+ 1 and when n = pm, Φpm(x) = Φp(x

pm−1
) =

(xp
m−1

)p−1 + · · ·+xpm−1
+1. The ring of integers in Q(ξn) is exactly Z[ξn] =

Z[x]/(Φn(x)) (see Theorem 2.6 in [50]). Hence the cyclotomic number field
Q[ξn] is a monogenic field. The discriminant of the cyclotomic field (also
the discriminant of the cyclotomic polynomial Φn) is

(−1)
φ(n)
2

nφ(n)∏
p|n p

φ(n)
p−1

.

A polynomial f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X] satisfies

the condition of the Eisenstein criterion at a prime p, if p|ai for 0 ≤ i ≤ n−1
and p2 not dividing a0. A polynomial satisfying this condition is irreducible
in Z[x] from the Eisenstein criterion (see [7, 18]).
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1.3 Gaussian and discrete Gaussian

Set ρs,c(x) = e−π||x−c||
2/s2 for any vector c in Rn and any s > 0, ρs = ρs,0,

ρ = ρ1. The Gaussian distribution around c with width s is defined by its

probability density function Ds,c =
ρs,c(x)
sn , ∀x ∈ Rn.

1.3.1 Discretization

For any discrete subset A ⊂ Rn we set ρs,c(A) = Σx∈Aρs,c(x) andDs,c(A) =
Σx∈ADs,c(x). Let L ⊂ Rn be a dimension n lattice, the discrete Gaussian
distribution over L is the probability distribution over L defined by

∀x ∈ L, DL,s,c =
Ds,c(x)

Ds,c(L)
=
ρs,c(x)

ρs,c(L)
.

When c = 0, the discrete Gaussian distribution is denoted by DL,s. We
refer to [35] for the properties of discrete Gaussian distributions.

1.3.2 Width with the canonical embedding

The Gaussian distribution depends on coordinates and the norm. We need
to pay special attention to coordinates (or the basis with which coordinates
are obtained) and the norm used when we say the ”width” of a Gaussian
distribution. The ”canonical embedding’ was used to define the Gaussian
distribution on K ⊗R (see [31, 32, 41, 10]). We recall the analysis in [10].
Set Φ : K −→ H the canonical embedding defined on the number field
K = Q[x]/(f) where f is a degree n irreducible polynomial over Q and
α1, . . . , αn in C are n roots of f . We refer the definition of the space H
to Subsection 2.2 in [32]. Set Nf the inverse of the Vandermonde matrix

(αj−1
i )1≤i,j≤n and B the following matrix. Is1 0 0

0 1√
2
Is2

i√
2
Is2

0 1√
2
Is2

−i√
2
Is2


Here there are s1 real roots of f and 2s2 conjugate complex roots of f . Hence
s1 + 2s2 = n. Let r = (r1, . . . , rn) where r1, . . . , rn are n positive real num-
bers. If xi, i = 1, . . . , n, is sampled independently from the Gaussian distri-
bution with width ri, then coordinate vector with respect to the polynomial
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base 1, x, . . . , xn of K ⊗R from the Gaussian distribution with parameter
r (with respect to the canonical embedding Φ) is Nf ·B · (x1, . . . , xn)τ . Set

||Nf ||2 = max
||Nf ·x||
||x|| where x ∈ Rd takes all non-zero vectors. In the case

r = (σ′, . . . , σ′), if in the dual form of the Ring-LWE problem we set the
width of the Gaussian distribution with respect to the canonical embedding
is σ, then σ′ ≤ ||Nf ||2 ·max{|f ′(α1)|, . . . , |f ′(αn)|} ·σ. Here f ′ is the deriva-
tive of the defining equation f(x) of the number field.

1.4 Plain LWE, Ring-LWE, LWE over number field lattices
and module-LWE

Plain LWE

O. Regev proposed the plain LWE and lattice-based cryptographic con-
struction based on it in his paper [45]. We also refer to [46] for a survey.
Let n be the security parameter, q be an integer modulus and χ be an error
distribution over Zq. Let s ∈ Znq be a secret chosen uniformly at random.
Given access to d samples of the form

(a, [a · s + e]q) ∈ Znq × Zq,

or

(a,
1

q
[a · s + e]q) ∈ Znq ×R/Z,

where a ∈ Znq are chosen uniformly at random and e are sampled from the
error distribution χ, the search LWE is to recover the secret s. In general
χ is the discrete Gaussian distribution with the width σ. Here a · s = Σaisi
is the inner product of two vectors in Znq . Solving decision LWEn,q,d,χ is to

distinguish with non-negligible probability whether (A,b) ∈ Zn×dq × Zdq is
sampled uniformly at random, or if it is of the form (A,Aτ · s + e) where e
is sampled from the distribution χ. Here [a · s + e]q is the residue class in
the interval (− q

2 ,
q
2 ]. We refer to [46] for the detail and the background.

Ring-LWE

In [33] the algebraic structure of ring was first considered for the hard-
ness of computational problems of lattices, we also refer to [29, 30]. This
Ring-SIS (Short Integer Solution over Ring, see [33]) is an analogue of A-
jtai’s SIS problem. The one-wayness of some function was proved in [33]
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by assuming the hardness of some computational problems of ideal lattices
(cyclic lattices). In their Eurocrypt 21010 paper [31] the Ring-LWE was
proposed and then extended in [32]. We refer to the nice survey [40] for the
history of development, the theory and cryptographic constructions based on
Ring-LWE and Ring-SIS. In particular suggested homomorphic encryption
standard [3] was based on Ring-LWE over two-to-power cyclotomic integer
rings.

If the Znq in plain LWE is replaced by Pq = P/qP where P = Z[x]/(f),
f(x) is a monic irreducible polynomial of degree n in Z[x], this is the poly-
nomial learning with errors (PLWE). The inner product a · s = Σaisi is
replaced by the multiplication a · s in the ring Pq. The error distribution
χ is defined as the discrete Gaussian distributions with respect to the basis
1, x, x2, . . . , xn−1 (see [23, 10]). We refer to [49] for relations and reductions
between Ring-LWE and PLWE.

If the Znq is replaced by (RK)q = RK/qRK where RK is the ring
of integers in an algebraic number field K of degree n, this is the Ring-
LWE, learning with errors over the ring RK. The secret s is in the dual
(RK

∨)q = RK
∨/qRK

∨ and a ∈ RKq is chosen uniformly at random. The
inner product a · s = Σaisi is replaced by the multiplication a · s in (RK

∨)q.
The error e is in (RK

∨)q = RK
∨/qRK

∨. In this case the width of error
distribution is defined by the trace norm on K ⊗R via the canonical em-
bedding (see [31, 10]). This is called the dual form of Ring-LWE problem .
When s ∈ (RK)q and e ∈ (RK)q are assumed it is called the non-dual form
of Ring LWE problem. As indicated in [41] page 10 in monogenic case a
”tweak factor” f ′(θ) can be used to make two versions equivalent.

LWE over number field lattice

Learning with errors over a number field lattice was introduced in [42].
Let L ⊂ K be a rank deg(K) lattice and

OL = {x ∈ K : x · L ⊂ L}.

Then OL is an order.
L∨q = L∨/qL∨.

Then OL ·L∨ ⊂ L∨. Set OL
q = OL/qOL and (L∨)q = L∨/qL∨. The secret

vector s is in (L∨)q and a is in OL
q. Here we notice that O · L∨ ⊂ L∨.

Then the error e ∈ (L∨)q. Samples from LWE over number field lattice L is
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(a,b) ∈ OL
q × (L∨)q, where a is uniformly chosen in OL

q, the error vector
e is chosen in (L∨)q according to a Gaussian distribution with the width σ,
then b ∈ L∨)q is from the LWE equation. The decisional LWE over L is to
distinguish these samples from uniformly chosen (a,b) ∈ OL

q × (L∨)q. For
the detail and hardness reduction we refer to [42]. We refer to [11] for the
sublattice attack on LWE over number field lattices.

Module-LWE

Let M = RK
d, for s ∈ (RK

∨
q )d, and an error distribution ψ over

K⊗R, we sample the module learning with error distribution A
(R)
d,q,s,ψ over

RK
d × T(RK

∨) by outputting (a, < a, s > +1
q e mod RK

∨), where a ←−
U(RK

d
q) and e ←− ψ. The decision module learning with errors problem

Module-LWE over M is to distinguish uniform samples U(RK
d ×T(RK

∨)

and samples from A
(R)
d,q,s,ψ. Here ψ is the Gaussian distribution with width σ.

We refer to [4] for the detail.

1.5 Hardness reduction

The reduction results from approximating ideal-SIV Ppoly(d) (or approxi-
mating ideal-SV Ppoly(d)) to Ring-LWE were first given in [31, 32] for search
version and then a general form from to decision version was proved for ar-
bitrary number fields in [43]. We refer to [43] Corollary 6.3 for the following
hardness reduction result.

Hardness reduction for decision Ring-LWE. Let K be an arbi-
trary number field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let
q = q(n) be an integer such that αq ≥ 2ω(1). Then there exists a polynomial-
time quantum reduction from K − SIV Pγ to average-case, decision R −
LWEq,Υα, for any γ = max{ η(I)·2

α·ω(1) ,
√

2n
λ1(I)} ≤ max{ω(

√
nlogn/α),

√
2n}.

Here K−SIV Pγ is the Shortest Independent Vector Problems for any frac-
tional ideal lattice in K. I is any ideal lattice and η(I) is the smoothing
parameter of I.

Approximating SV P and SIV P restricted to ideal lattices in number
fields with degrees going to the infinity are called approximating ideal-SV P
and ideal-SIV P , we refer to [19, 20, 21, 44, 28, 37] for the latest development
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on this topic.

1.6 Known attacks

The famous Blum-Kalai-Wasserman (BKW) algorithm in [6] was improved
in [1, 27]. On the other hand some provable weak instances of Ring-LWE
was given in [22, 23, 16] and analysed in [10, 41]. As showed in [41, 10]
these instances of Ring-LWE can be solved by polynomial time algorithms
main because the widths of Gaussian distributions of errors are too small
or Gaussian distributions of errors are too skew. In [13] these attacks were
improved for these modulus parameters which are factors of f(u), where f
is the defining equation of the number field and u is an arbitrary integer.
However the Gaussian distribution is still required to be narrow such that
this type of attack can be succeed. We refer to [2] for the dual lattice attack
to LWE with small secrets and refer to [19, 20, 21, 28, 37] for the latest
development in algorithms on approximating ideal-SVP.

2 Sublattice attacks

Sublattice attacks was proposed in [11] and extended in [12]. It achieves suc-
cessful attacks on Ring-LWE with wide Gaussian error distributions. How-
ever it works even for other wide error distributions provided that suitable
sublattice pairs can be constructed. It is a theory in essence and not an
algorithm. The main point of the sublattice attack as follows. For the deci-
sion Ring-LWE with arbitrarily polynomially bounded width Gaussian error
distributions over some number field sequences Kn including two-to power
cyclotomic fields, for some large polynomially bounded modulus parameters
(depending on the width bound), by constructing suitable sublattices Ln
in the cycolotomic integer rings RKn , the samples from the Ring-LWE e-
quations can be distinguished from the uniform distribution in the quotient
RKn/Ln very efficiently. From this point of view we believe that the learn-
ing with errors problem over algebraically-structured objects perhaps can
be solved within polynomial times in many settings.

2.1 The motivation of sublattice attacks

In previous attacks on Ring-LWE, when polynomially bounded many sam-
ples (a,b) ∈ RK/qRK × RK/qRK are given, only the distributions of

8



these samples over RK/I for some ideals satisfying qRK ⊂ I ⊂ RK and
|RK/I| ≤ poly(d) have been checked. This is not natural and not sufficient.
We need to check the distributions of samples in RK/L where L takes over
all sublattices satisfying

qRK ⊂ L ⊂ RK

and
|RK/L| ≤ poly(d).

This is the motivation of sublattice attack in our previous paper [11]. In
general when the learning with error problems with algebraic structures are
used to improve the efficiency, sublattice attacks as above to analysis the
distributions of samples over M/L should be considered, where M is module
over which the module-LWE is defined and L takes over all sublattices of
M satisfying

qM ⊂ L ⊂M

and
|M/L| ≤ poly(d).

The previous attacks where L is restricted to ideals or sub-modules are spe-
cial, not natural and not sufficient to guarantee the security, we refer to our
next paper [15].

The basic point here is as follows. When we want to use the algebraic
structure to improve the efficiency of lattice-based cryptographic construc-
tions. The adversary is not so restricted to only check the distributions of
samples over algebraic-structured object, the adversary can attack the prob-
lem by using lattices without any algebraic structure. In 2019 we proposed
the sublattice attack on LWE over number field lattices and suggested some
conditions such that sublattice attack can success in [11]. In the sublattice
attacks presented in [12] and this paper the sublattice pair with an ideal is
introduced the sublattice attacks from sublattice pairs with ideals are giv-
en. The adversary can indeed distinguish the Ring-LWE equation samples
from the samples uniform distributed in RK/L when sublattices are care-
fully constructed.

2.2 Sublattice pairs with ideals are needed

When L is just a sublattice of RK satisfying |RK/L| ≤ poly(d), for an
uniformly distributed a ∈ RK, a · L ⊂ L is not valid. We even proved in
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[12] if L1 · L2 ⊂ L3 where

|RK/Li| ≤ poly(d),

where i = 1, 2, 3, then the length λ1(L∨3 ) of the shortest nonzero lattice
vectors in the dual L∨3 can not be very small. Hence we need to find an
ideal Q ⊂ L satisfying |RK/Q| ≤ poly(d), then s satisfies s ∈ Q with a
probability 1

poly(d) . Therefore we have a · s ∈ Q ⊂ L with a probability
1

poly(d) of secrets for uniformly distributed a ∈ RK. Hence if e ∈ L is
satisfied with a probability

Prob(e ∈ L) ≥ dc

|RK/L|

where c is a fixed positive integer, we can distinguish samples b from Ring-
LWE equations and uniformly distributed samples.

The condition

Prob(e ∈ L) ≥ Prob(e ∈ L1) ≥ dc

|RK/L|

is achieved by an auxiliary sublattice L1 ⊂ L from the probability compu-
tation about Prob(e ∈ L1) in Theorem 4.1. Hence we need sublattice pairs
(L1,L) with ideals Q to mount our sublattice attack.

2.3 Construction of sublattice pairs

We consider the decisional Ring-LWE over two-to-power cyclotomic integers
with width satisfying σ ≤ dC where C is an arbitrary fixed positive integer.
The sublattice pair (L1,L) with an ideal Q will be constructed as follows.
We take polynomially bounded modulus parameters qm such that q ≡ 1 mod
2m−1. Hence qm is completely split in each two-to-power cyclotomic field of
degree 2m−1 in the sequence. In general both sublattices L1 and L are of
the form

{y : Tr(xi,y) ≡ 0modq,y ∈ RKm}, (1)

where xi’s are fixed elements in RKm . Notice that these sublattices only
depend on the residue classes of xi’s in RKm/qmRKm .

In the two-to-power cyclotomic field case, L is defined by one vector

x = ΣC1
i=1mixi,
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where xi are fixed elements in RKm with fixed bounded norm, mi’s are inte-
gers and C1 is a fixed positive integer. We need this x satisfies |RKm/L| =
qm. Since the cyclotomic fields are monogenic this is not a strong restriction
on x. The sublattice L1 defined by

{y : Tr(xi,y) ≡ 0modq,y ∈ RKm , i = 1, . . . , C1}

is a sublattice of L. Since x2m−1
+1 can be factorized to linear factors module

qm, we take x contains exactly 2m−1−C2 factors and Q is generated by qm
and the product of the remaining C2 factors. Here C2 is a fixed positive
integer when m goes to the infinity. Then sublattice pairs with ideals can
be constructed. The requirement

Prob(e ∈ L1) ≥ dc

|RK/L|

is satisfied from Theorem 4.1 Theorem 4.2 and Theorem 6.1, the condition
σ ≤ dC the upper bound on norms of xi’s and the number of xi’s, and
a suitable large polynomially bounded modulus parameter. Therefore the
modulus parameter can be taken depending on 2m−1 and the fixed positive
integers C,C1, C2, when m goes to the infinity, such that a sublattice pair
with an ideal can be constructed.

The existence of the desired x with a fixed positive integer C1 and bound-
ed norm xi’s when m goes to the infinity is equivalent to some bounded
(when m goes to the infinity) finite term linear recurrence relations on some
degree 2m−1 −C2 factors of x2m−1 + 1. We refer to Section 6 and the proof
of Theorem 3.2 for the detail. Hence from the view of the sublattice attack
the hardness of decision Ring-LWE in some number fields is essentially an
algebraic problem.

3 Our contribution

3.1 Sublattice pair with an ideal

Let K = Q[x]/(f(x)) = Q[θ] be a degree d extension field of the rational
field Q, where f is a monic irreducible polynomial in Z[x] and θ ∈ C is a
root of f . Let RK be its ring of integers. We consider the non-dual Ring-
LWE over RK with a modulus parameter q.
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Definition 3.1. We assume that the modulus parameter q satisfies
dC1 ≤ q < dC2 where C1 and C2 are two fixed positive integers. Let Li ⊂ RK

be a sublattice in RK for i = 1, 2 and Q ⊂ RK is an ideal. They satisfy the
following properties.
1) qRK ⊂ Li ⊂ RK for i = 1, 2 and qRK ⊂ Q ⊂ RK;
2) L1,L2,Q are polynomially indexed in RK, that is, there exists a fixed
positive integer C3 such that |RK/Li| ≤ dC3 for i = 1, 2 and |RK/Q| ≤ dC3;
3) Q ⊂ L2 and L1 ⊂ L2;
4) The probability Prob(e ∈ L1) that e ∈ L1 satisfies the inequality Prob(e ∈
L1) ≥ dC4

|RK/L2| where C4 is a fixed positive integer. We call (L1,L2) a sub-
lattice pair with the ideal Q for the Ring-LWE over K with the modulus
parameter q.

In general if we can construct such lattice pair with an ideal for a Ring-
LWE over RK with the polynomially bounded modulus parameter q, then
the decision version of this Ring-LWE can be solved by a polynomial in d
time algorithm. Moreover we notice that the error distribution is only in-
volved in 4), it is not assumed Gaussian. The property 4) is sufficient for a
polynomial time attack on the general Ring-LWE with an error distribution
satisfying the property 4).

3.2 Main results

The following result is for the Ring-LWE with general error distributions
over general number fields with a sublattice pair defined as above.

Theorem 3.1. We consider the decision Ring-LWE over RK with a gen-
eral error distribution and a modulus parameter q satisfying dC1 ≤ q < dC2

where C1 and C2 are two fixed positive integers. Suppose that there exist-
s a sublattice pair with an ideal as above. Then the decision Ring-LWE
over RK with the modulus parameter q can be solved within time complexity
O(d4C2C3).

Let Kn = Q[x]/(fn) = Q[ξ2n ], where fn = x2n−1
+1, dn = φ(2n) = 2n−1,

and ξ2n is a primitive 2n-th root of unity. This is a monogenic number field.
It is easy to verify that the boundness ||ξj2n ||tr ≤

√
d for any integer j and

the boundness of the size of ”tweak factors” |f ′(ξj2n)| ≤ d where ξj2n takes
over all 2n-th roots of unity. We can construct sublattice pairs with ideals
for two-to-power cyclotomic number fields. Then from Theorem 3.1 the fol-
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lowing result can be proved.

Theorem 3.2. Let C be an arbitrary fixed positive integer. We consid-
er the non-dual decision Ring-LWE over RKn = Z[ξ2n ]. Suppose that the

width σ of the error distribution over RKn satisfies
√
dn

λ1(Z[ξ2n ]∨) ≤ σ ≤ dCn .
Then there exists a sequence of polynomially bounded modulus parameters
qn ≤ poly(dn) only depending on dn and C such that the the decision Ring-
LWE over Z[ξ2n ] with the modulus parameter qn can be solved in polynomial
time (in dn).

Corollary 3.1. Let C be an arbitrary fixed positive integer. We consider
the dual decision Ring-LWE over RKn

∨ = Z[ξ2n ]∨. Suppose that the width

σ of the error distribution over RKn
∨ satisfies

√
dn

λ1(Z[ξ2n ]) ≤ σ ≤ dCn . Then
there exists a sequence of polynomially bounded modulus parameters qn only
depending on dn and C such that the the decision Ring-LWE over Z[ξ2n ]∨

with the modulus parameter qn can be solved in polynomial time (in dn).

From the hardness reduction result Theorem 6.2 and Corollary 6.3 in
[43] we have the following result.

Corollary 3.2. Let Kn, dn = 2n−1, be the sequence of two-to-power
cyclotomic fields with their degrees dn −→∞. Then there exists a fixed pos-
itive integer c such that approximating SIV Pdcn with approximating factor dc

for ideal lattices in Kdn can be solved by a polynomial (in dn) time quantum
algorithm.

The similar results in the case of two-to-power cyclotomic fields and more
general fields were proved in our preprint [13, 14] in 2019.

Corollary 3.3. Let C be an arbitrary fixed positive integer and m be a
fixed positive integer. We consider the Module-LWE over RKn

m = Z[ξ2n ]m.

Suppose that the width σ of the error distribution satisfies
√
dn

λ1(Z[ξ2n ]) ≤ σ ≤
dCn . Then there exists a sequence of polynomially bounded modulus param-
eters qn only depending on dn and m,C such that the the decision Module-
LWE over Z[ξ2n ]m with the modulus parameter qn can be solved in polynomial
time (in dn).
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3.3 Practical sublattice attack

In this paper by using the construction of sublattice pairs with ideals, we
prove that for the decision Ring-LWE over Z[ξ2m ] with Gaussian error dis-

tribution of width σ satisfying
√
dm

λ1(Z[ξ2m ]∨) ≤ σ ≤ d
C
m, where dm = 2m−1 and

C is an arbitrary fixed positive integer. There exists a sequence of polyno-
mially bounded modulus parameters qm ≤ poly(dm) only depending on dm
and C such that the the decision Ring-LWE over Z[ξ2m ] with the modulus
parameter qm can be solved in polynomial time (in dm). For practical lattice
cryptographic constructions based on Ring-LWE over the concrete two-to-
power cyclotomic integer ring Z[ξ2m ] , we suggest to find suitable sublattice
pairs with ideals as required in Theorem 3.2, and then to test samples in
Z[ξ2m ]/L2, where L2 is the large sublattice in Z[ξ2m ] of the sublattice pair
with ideal constructed according to the width and the requirement in the
proof of Theorem 3.2.

3.4 Cryptographic and algorithmic implications

We prove that the decision Ring-LWE over two-to-power cyclotomic integer
rings can be solved within classical polynomial time even for error distri-
butions with the widths in the range of Peikert-Regev-Stephens-Davidowitz
hardness reduction results in Corollary 3.2. This is a serious difficulty in
lattice-based cryptographic constructions based on Ring-LWE over two-to-
power cyclotomic integers. For the complexity theory of computational
problems of ideal lattices, our main result Corollary 3.2 and the main results
in [13, 14] indicate that approximating ideal-SIV P problems with a poly-
nomial factor for cyclotomic fields are easy in quantum computation model.
We refer to other proofs of this kind of results in our preprints [13, 14] in
2019.

4 Probability computation

We need the following computation of probability in Theorem 3.2.

Theorem 4.1. Let L be a rank d number field lattice in a degree d
number field K. Let L1 be rank d sublattice of L∨ satisfying that qL∨ ⊂
L1 ⊂ L∨ and the cardinality |L∨/L1| is polynomially bounded. Suppose

that the width of the Gaussian distribution of errors e satisfying
√
d

λ1(L) ≤
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σ ≤
√
c1√

πλ1(L∨1 )
and moreover there are at least |L

∨/L1|
qc2 lattice vectors in L∨1

satisfying ||x||tr ≤
√
c1√
πσ

, where c1 and c2 are fixed positive real numbers.

Then the probability e ∈ L1 is

Prob(e ∈ L1) =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

It satisfies

Prob(e ∈ L1) ≥ 1

ec1qc2

when q is sufficiently large.

Proof. We calculate the probability Prob(e ∈ L1) of the condition e ≡ 0
mod L1. It is clear

Prob(e ∈ L1) =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

Set Y3(0) =
Σx∈L∨e

−π( ||x||trσ )2

σn and Y4(0) =
Σx∈L1

e−π(
||x||tr
σ )2

σn . From the
Poisson summation formula (see [35]) we have

Y3(0) =
1

det(L∨)
Σx∈Le

−π(||x||trσ)2 .

and

Y4(0) =
1

det(L1)
Σx∈(L1)∨e

−π(||x||trσ)2 .

Since σ ≥
√
d

λ1(L) then Σx∈L−0e
−π(||x||trσ)2 ≤ 1 + 1

2d
from Lemma 3.2 in [35].

For lattice vectors x ∈ L∨1 satisfying

||x||tr ≤
√
c1√
πσ

we have
e−π(||x||trσ)2 ≥ e−c1 .

Hence Prob(e ∈ L1) ≥ 1
|L∨/L1|(1 + 1

ec1 ·
|L∨/L1|
qc2 ). The conclusion follows

directly.
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From Theorem 4.1 we give a general criterion about the existence of
sublattice pairs with ideals for the Ring-LWE with the wide Gaussian error
distribution.

Theorem 4.2. Let Kn = Q[x]/(fn) = Q[θn] be a sequence of degree
dn monogenic extension fields of the rational field Q and {fn} ∈ Z[x] be
a sequence of monic irreducible degree dn polynomials. We consider the
non-dual Ring-LWE over RKn with the Gaussian error distribution of width√

dn
λ1(RKn

∨)
≤ σ ≤ dC3

n . Let qn be a sequence of modulus parameters satisfy-

ing dC1
n ≤ qn < dC2

n . Suppose that f1
n(θn)f2

n(θn) ∈ qnRKn, where f1
n and

f2
n are two polynomials in Z/qnZ[x], and deg(f1

n) ≤ C where C is a fixed
positive integer when dn goes to the infinity. Suppose that f2

n is in the for-
m f2

n = Σs
i=1mix

i
n where s is a fixed positive integer (when dn goes to the

infinity) satisfying sC3 < C1, m1, . . . ,ms are in Z/qnZ, and x1
n, . . . ,x

s
n are

elements in RKn satisfying
1) Tr(xin · y) ≡ 0 mod qn for i = 1, . . . , s, and y ∈ RKn define a sublattice
L1 of RKn satisfying |RKn/L1| = qsn;
2)

∏s
i=1 s

s||xin||tr ≤ dC1−sC3−C4
n where C4 is a fixed positive real number.

Set Q the ideal generated by qn and f1
n and L2 the sublattice of RKn defined

by Tr(f2
n · y) ≡ 0 mod qn.

3) We assume the index |RKn/L2| = qn.
Then (L1, L2) is a sublattice pair with the ideal Q for this Ring-LWE.

Proof. It is clear for each element qh1 + f1
nh2 ∈ Q, where hi ∈ RKn ,

Tr((f2
n(qnh1 + f1

nh2)) = Tr(qnf
2
nh1 + f1

nf
2
nh2) ≡ 0 mod qn, since f1

nf
2
n ∈

qnRKn . Then Q ⊂ L2. Since f2
n = Σs

i=1mix
i
n is a linear combination

of x1
n, . . . ,x

s
n with integer coefficients, then Tr(xin · y) ≡ 0 mod qn, for

i = 1, . . . , s, implies that Tr(f2
ny) ≡ 0 mod qn. Then L1 ⊂ L2. The

probability Prob(e ∈ L1) that e ∈ L1 can be lower bounded by Theorem 4.1

since xsn
qn

, i = 1, . . . , s are in L∨1 . The inequality Prob(e ∈ L1) ≥ d
C4
n

|RKn/L2|
follows from the conditions 1), 2) and 3). Here the key point of applying
Theorem 4.1 is as follows. The number of x ∈ L1 satisfying the condition

||x||tr ≤
√
c1√
πσ

can be counted directly and at least qs

dw where w is a fixed positive integer
depending on s, C and

∏s
i=1 s

s||xin||tr.

16



5 Number theory

The following proposition is useful in this paper. Please refer to [18, 7] for
the proof.

Proposition 5.1. Let K = Q[α] be a number field of degree n and
f(T ) ∈ Q[T ] = anT

n + an−1T
n−1 + · · ·+ aT + a0 be the minimal polynomial

of α. Write

f(T ) = (T − α)(cn−1T
n−1 + · · ·+ c1(α)T + c0(α))

where cj(α) = Σn
i=j+1aiα

i−j−1. The dual base of {1, α, α2, . . . , αn−1} relative
to the trace product is

{c0(α)

f ′(α)
,
c1(α)

f ′(α)
, . . . ,

cn−1(α)

f ′(α)
}

.
Proposition 5.2. Let K = Q[θ] be a number field, where θ is an alge-

braic integer whose monic minimal polynomial is denoted by f(X). Then for
any prime p not dividing |RK/Z[θ]| one can obtain the prime decomposition
of pRK as follows. Let f(X) ≡

∏g
i=1 fi(X)ei mod p be the decomposition

of f(X) module p into irreducible factors in Fp[X] where fi are taken to be
monic. Then

pRK =
g∏
i=1

Pei
i ,

where
Pi = (p, fi(θ)) = pRK + fi(θ)RK.

Furthermore the residual index of Pi is equal to the degree of fi.

The main construction in Theorem 3.2 is as follows. There should be
many very short lattice vectors in the dual L∨1 of the number field lat-
tice L1 satisfying qRKd

⊂ L1 ⊂ RKq . Let x1, . . . ,xt are t elements in
RK

∨/qRK
∨, we define a number field lattice L(x1, . . . ,xt) by the equa-

tions Tr(xi · y) ≡ 0 mod q, where y ∈ RK, and i = 1, . . . , t. It is ob-
vious qRK ⊂ L(x1, . . . ,xt) ⊂ RK. Moreover it is clear the definition of
L(x1, . . . ,xt) only depends on the residue classes of xi’s in RK

∨/qRK
∨.

Proposition 5.3. The vectors x1
q , . . . ,

xt
q are in the dual lattice

L(x1, . . . ,xt)
∨ ⊂ RK

q
.
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If a ∈ RK/qRK is an invertible element, then there is a Z/qZ linear iso-
morphism from L(x1, . . . ,xt) to L(a−1x1, . . . ,a

−1xt) defined by y −→ ay.
In particular the cardinalities of

RK/L(x1, . . . ,xt)

and
RK/L(a−1x1, . . . ,a

−1xt)

are the same.

Proof. The first conclusion is direct from the definition. The second
conclusion is a simple computation.

Proposition 5.4 (from Theorem 2.13 in [50]). Suppose that p is an
odd prime and f is the smallest positive integer such that pf ≡ 1 mod 2n.
Then p splits to 2n−1

f distinct prime ideals in Q(ξ2n) and each has residue
degree f .

Proposition 5.5. Let C be the following circulant matrix over a finite
ring R as follows 

c0 c1 · · · cn−2 cn−1

cn−1 c0 · · · cn−3 cn−2

· · · · · · · · · · · · · · ·
c1 c2 · cn−1 c0


Let ω be a n-th root of unity in R. Set v = (1, ω, ω2, . . . , ωn−1)τ . Then

C · v = (c0 + c1ω + c2ω
2 + · · ·+ cn−1ω

n−1)v.

Proof. It is easy to verify the following identity (ci, ci+1, . . . , cn−1, c0, . . . , ci−1)·
v = ci + ci+1ω + · · ·+ cn−1ω

n−i−1 + c0ω
n−i + · · ·+ ci−1ω

n−1 = (c0 + c1ω +
· · ·+ cn−1ω

n−1) · ωn−i. The conclusion follows directly.

6 Ring-LWE and linear recurrence relations

From Theorem 4.2 the explicit construction of sublattice pairs with an ideal
is equivalent to the problem about the special formation of some elements
in the ideal I in the quotient ring Rq = Fq[x]/(xd+ 1), where the dimension
of Rq/I over Fq is upper bounded by a positive integer. This is equiva-
lent to a problem about the form of codewords in some nega-cyclic codes
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in Fq[x]/(xd + 1) with constant codimension over large but polynomially
bounded finite fields Fq. In coding theory and practice cyclic codes and
quasi-cyclic code over small finite fields have been studied extensively. We
refer to [15] for this problem and sublattice attacks on other number field
sequences.

From Proposition 5.4 the two-to-power cyclotomic polynomial x2n−1
+ 1

mod p where p is an odd prime satisfying that p ≡ 1 mod 2n, has 2n−1

distinct roots in Fp = Z/pZ, these are primite 2n-th root of unity in Fp.
Set a such a primitive 2n-th root of unity in Fp, then all primitive 2n-th
roots are the form aj mod p where j takes over all odd positive integer in
the range 1 ≤ j ≤ 2n − 1. Then we have

x2n−1
+ 1 ≡

∏
1≤j≤2n,jodd

(x− aj).

From Theorem 4.2 again when fn(x) = x2n−1
+ 1, d = 2n−1 goes to

the infinity if we can find d −H1 factors among x − a, x − a3, x − a5, . . . ,
x−a2n−1, where H1 is a fixed positive integer not depending on n, such that
the product Fn = u(x)

∏d−C
i=1 (x−aji), where u(x) is a degree u polynomial in

Fp[x] such that u(aj)’s are not zero in Fp for j = 1, 3, . . . , 2n − 1, satisfying
the following condition, then the desired f1 and f2 in Theorem 3.2 can be
constructed.

Condition A. There exists a polynomial Tn(x) ∈ Fp[x] such that
1.The degree of Tn is bounded, that is, deg(Tn) ≤ H2, where H2 is a fixed
positive integer;
2. TnFn is not zero in Fp[x]/(fn(x));
3.TnFn can be expressed as a linear combination over Fp of bounded number

H3 of terms xli , where li ∈ {0, 1, . . . , x2n−1}. That is

Tn(x)Fn(x) = ΣH3
i=1mix

li ,

where 1 ≤ li ≤ 2n−1 and H3 is a fixed positive integer.

The condition 3 is equivalent to a linear recurrence relation of the co-
efficients of Fn. The condition 2 is equivalent to a non-trivial linear re-
currence relation that Tn can not contain all factors x − aj′ where j′ takes
over all elements of the set C = {1, 3, . . . , 2n − 1} − {j1, . . . , jd−C}. When
such Fn is constructed, we take f2(x) in Theorem 3.1 as Tn(x)Fn(x). Then
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f1(x) ≡
∏
j′iC

(x − aj′i) mod p. It is easy to verify that f1(ξ2n) and f2(ξ2n)

satisfy the condition of Theorem 3.2, if Tr(Fn(ξ2n)Tn(ξ2n) · x) ≡ 0 mod p
for x ∈ RKn , defines an index p sublattice in RKn . This will be achieved
by the property m1, . . . ,mH3 are not zero in Fp.

Let Kn = Q[x]/(fn(x)) = Q[θn], where fn is a monic irreducible poly-
nomial in Z[x] with degrees dn = deg(fn) goes to the infinity, be a sequence
of monogenic number fields. The ring of integers in number field Kn is de-
noted by RKn . We observe that the following conditions are satisfied for
the cyclotomic number fields.

Condition B. ||θn||tr ≤ dC1
n where C1 is a fixed positive integer;

Condition C. |f ′n(θn,j | ≤ dC2
n , where θn,j , j = 1, 2, . . . , dn are dn roots

of fn in the complex number field, and C2 is a fixed positive integer.

Theorem 6.1.Let Kn = Q[x]/(fn(x)), where fn is a monic irreducible
polynomial in Z[x] with degrees dn = deg(fn) goes to the infinity, be a se-
quence of monogenic number fields satisfying the above Condition B and C.
We consider the decision dual Ring-LWE over RKn

∨ and suppose that the

width of the Gaussian distribution of errors satisfies
√
dn

λ1(RKn ) ≤ σ ≤ dC3
n ,

where C3 is a fixed positive integer. Let dC4
n ≤ pn ≤ dC5

n be a sequence of
polynomially bounded prime modulus parameters, where C4 and C5 are two
fixed positive integers. If there exists a non-zero

Fn(x) = xdn+u−H1 + adn−H1−1 + · · ·+ a0

of Fpn [x]/(fn(x)) satisfying FnGn = 0 in Fpn [x]/(fn(x)), where Gn is a
polynomial satisfying deg(Gn) ≤ H4, H4 is a fixed positive integer. Suppose
that
1) For each n, Fn satisfies Condition A;
2) Tr(θlin · x) ≡ 0 mod pn, x ∈ RKn, i = 1, . . . ,H3 define an index pH3

n

sublattice Ln.1 of RKn;
3) Tr(Tn(θn)Fn(θn) · x) ≡ 0 mod pn defines an index pn sublattice Ln,2 of
RKn;
4) HH3

3

∏H3
i=1 ||θlin ||tr ≤ dnC4 −H3C1 − C2 − C6 where C6 is a fixed positive

integer.

Then (L1,n,Ln,2) is a sublattice pair with an ideal Qn = (pn, Gn(θn))
to the dual Ring-LWE over RKn

∨. Moreover Condition A means a bound-
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ed (by H2) term non-trivial linear recurrence relation on the coefficients
adn−H1−1, . . . , a0.

Proof. Set Tn(x) = cH2x
H2 + cH2−1x

H2−1 + · · · + c1x + c0. Then the
coefficient of xdn+u−H1−i, 1 ≤ i ≤ dn −H1 −H2, in Tn(x)Fn(x) is

c0adn+u−H1−i + c1adn+u−H1−i−1 + · · ·+ cH2adn+u−H1−H2−i.

If these coefficients c0adn+u−H1−i+c1adn+u−H1−i−1+· · ·+cH2adn+u−H1−H2−i ≡
0 mod pn, are vanished except the first H3 terms or last H3 terms, then the
condition 3 in Condition A is automatically satisfied. The condition 2 in
Condition A means that such linear recurrence relations do not lead to a
factor fn in TnFn. The other conclusions follows from Theorem 3.2 and
Condition C about ”tweak factors” between dual and non-dual version di-
rectly.

From Theorem 6.1 the existence of a sublattice pair with an ideal for the
dual Ring-LWE over monogenic number fields satisfying Condition B+C can
be proved from a non-trivial bounded term linear recurrence relation in Fpn

for the coefficients of some dn −H1 degree factor Fn(x) of fn(x) ∈ Fpn [x],
where H1 is a fixed positive integer when dn goes to the infinity. Hence from
Theorem 3.1 decision dual Ring-LWE can be solved in (classical) polynomi-
al time if such a non-trivial bounded term linear recurrence relation can be
constructed. These linear recurrence relations are not so difficult for mono-
genic number fields. Hence the decision dual Ring-LWE over monogenic
number fields are not so hard from the view of our sublattice pair attack.

Lemma 6.1 We consider the modulus parameter pn ≡ 1 mod 2n and
a ∈ Fpn is a primitive 2n-th root of unity in Fpn as above. Set

Fn,ii,ti =
x2n−1 − a2n−1

x2ti − aji2ti
,

where ji’s are odd positive integers, ti’s are smaller than a fixed positive
integer. Let

Fn(x) = wj1Fn,j1,t1 + · · ·+ wH1Fn,jH1
,tH1

be a linear combination of H1 non-zero polynomials Fn,j1,t1 , Fn,j2,t2 , . . . ,
Fn,jH1

,tH1
∈ Fpn [x]/(fn(x)) with invertible elements w1, . . . , wjH1

∈ RKn/pnRKn.

We assume that one root ω of one denominator x2t1 − aj12t1 is not root of

other denominators x2t2 − aj22t2 , . . . , x2
tH1 − aj12

tH1 . Then Fn(x) is a non-
zero element in Fpn [x]/(fn(x)). If Tn(x) is a polynomial in Fpn [x] such that
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Tn(ω) is not zero in Fpn, then Tn(x)Fn(x) is not zero in Fpn [x]/(fn(x)).

Proof. ω is not a root of Fn,j1,t1(x). However it is a root of al-
l Fn,j2,t2 , Fn,j3,t3 , . . . , Fn,jH1

,tH1
in Fpn since ω is not a root of denominators

x2t2 − aj22t2 , . . . , x2
tH1 − aj12

tH1 . Then this root is not a root of Fn(x) and
Fn is not zero in Fpn [x]/(fn(x)).

On the other hand, if Tn(x) is a polynomial in Fpn [x] such that Tn(ω)
is not zero in Fpn , then Tn(x)Fn(x) is not zero in Fpn [x]/(fn(x)). Actually
we have Tn(ω)Fn(ω) = wj1Tn(ω)Fn,j1,t1(ω). This is not zero in Fpn . Hence
Tn(x)Fn(x) can not have all a, a3, . . . , a2n−1 as its roots. This leads to non-
trivial linear recurrence relations.

If we want a linear recurrence relation on a degree 2n−1 − 1 factor

Fn,j(x) =
x2n−1 − aj2n−1

x− aj
= x2n−1−1+ajx2n−1−2+· · ·+aj(2n−1−2)x+aj(2

n−1−1)

of fn(x), where j is a positive odd number 1 ≤ j ≤ 2n − 1, it is a trivial
linear recurrence relation. Suppose that we have a Tn(x) = cH2x

H2 + · · ·+c0

satisfying the linear recurrence relation

c0a
j(2n−1−i−1) + c1a

j(2n−1−i−2) + · · ·+ cH2a
j(2n−1−i−1−H2) = 0,

then Tn(aj) = 0. Hence this linear recurrence relation leads to a factor
x2n−1

+ 1 of Tn(x)Fn(x). This is a trivial linear recurrence relation.

We observe the case of the linear combination of several degree 2n−1− 1
factors Fn(x) = w1Fn,j1 + · · · + whFn,jh , where w1, . . . , wh ∈ Fpn . Suppose
that there exists an odd positive integer j0 in the range 1 ≤ j0 ≤ 2n − 1
satisfying that jl − j0 can be divisible by 2n−C , where C is a fixed positive
integer and l = 1, . . . , h. We want to check a linear recurrence relation Tn(x)
on this Fn(x) using 2C coefficients. First of all the coefficient of Fn(x) is of
the form

(w1a
(j1−j0)i + · · ·+ wha

(jh−j0)i)aj0i,

where i takes positive integers from 1 to 2n−1 − 1. We observe that

w1a
(j1−j0)i + · · ·+ wha

(jh−j0)i

is of period 2C from the condition than ji − j0 can be divisible by 2n−C .
Hence a linear recurrence relation Tn(x) on these coefficients (w1a

(j1−j0)i +
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· · ·+wha
(jh−j0)i)aj0i corresponds to a non-zero solution of the following cir-

culant 2C × 2C matrix C over Fpn .


Σh
l=1wi Σh

l=1wla
jl−j0 · · · Σh

l=1wla
(jl−j0)(2C−1)

Σh
l=1wla

(jl−j0)(2C−1) Σh
l=1wl · · · Σh

l=1wla
(jl−j0)(2C−2)

· · · · · · · · · · · ·
Σh
l=1wla

jl−j0 Σh
l=1wla

2(jl−j0) · · · Σh
l=1wl


If c′ = (c′

2C−1
, c2C−2, . . . , c

′
0)τ is a non-zero solution of the equation

C · c′ = 0, set ci =
c′i
aj0i

, then Tn(x) = Σ2C−1
i=0 cix

i is such a linear recur-
rence relation.

Set ω ∈ Fpn a primitive 2C-th root of unity in Fpn , when pn ≡ 1 mod

2C . Then 2C vectors (1, ωi, ω2i, . . . , ω((2C−1)i)τ , i = 0, 1, . . . , 2C−1 are linear

independent and span the space F2C
pn . From Proposition 5.5 over Fpn the lin-

ear space span(C) spanned by the rows of C is orthogonal to these vectors

(1, as, . . . , as(2
C−1)) where s takes over all integers which can be divisible

by 2n−C and not of the form j0 − jl, l = 1, . . . , h. From Proposition 5.5
over Fpn again, the dimension of span(C) is h, then span(C) is the linear

span of h vectors (1, aj0−jl , . . . , a(j0−ji)(2C−1)), l = 1, . . . , h. Unfortunately

h vectors (1, ajl−j0 , . . . , a(jl−j0)(2C−1)), l = 1, . . . , h are in the linear space
span(C) spanned by the rows of C. Hence we conclude that Tn(ajl) = 0 in
Fpn for l = 1, . . . , h. Then only a trivial linear recurrence relation such that
Tn(x)Fn(x) containing fn(x) as a factor can be found in this case.

7 Proofs of main results

Proof of Theorem 3.1. First of all the probability that uniformly chosen
a ∈ RK/qRK is in the ideal Q/qRK is at least 1

dC3
from the condition 2 of

the sublattice pair with the ideal Q. We take the dC samples (a,b)’s from the
Ring-LWE equation satisfy a ∈ Q/qRK. This can be achieved within time
complexity O(d2(C+C3)) by checking the algebraic condition a ∈ Q/qRK

when Q is explicitly given.

Since a ∈ Q/qRK then a ·s ∈ Q/qRK ⊂ L2/qRK for arbitrary unknown
secret s from the condition 3) of the sublattice pair. Hence for the dC samples
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(a,b)’s from the Ring-LWE equation satisfy a ∈ Q/qRK, the probability
that b ∈ L2 is bigger than the probability Prob(e ∈ L1), since L1 ⊂ L2 and
a ·s+e ∈ L2 from the fact a ·s ∈ L2. Then for these dC samples (a,b)’s from
the Ring-LWE equation satisfy a ∈ Q/qRK, the probability that b ∈ L2 is
bigger than

Prob(e ∈ L1) ≥ dC4

|RK/L2|
≥ 2

|RK/L2|
.

One the other hand we look at (a,b) uniformly distributed samples in

RK/Q×RK/L2.

For any fixed first coset, the second components b’s have to be equally dis-
tributed in RK/L2. Therefore by checking the algebraic condition b ∈ L2 for
these dC samples (a,b)’s from the Ring-LWE equation satisfy a ∈ Q/qRK,
we can distinguish from these uniformly chosen (a,b) within time complex-
ity O(d4C3).

Another proof can be given as follows. We consider the secret s ∈ Q,
this happens with a probability at least 1

dC3
. For such a secret, given dC

samples (a,b), we have
a · s ∈ Q ⊂ L2.

The probability that b ∈ L2 is bigger than the probability Prob(e ∈ L1) that
e ∈ L1 since L1 ⊂ L2. Then for these dC samples (a,b)’s, the probability
that b ∈ L2 is bigger than

Prob(e ∈ L1) ≥ dC4

|RK/L2|
≥ 2

|RK/L2|
.

This can be distinguished from the uniformly distributed dC samples.

Proof of Theorem 3.2. We consider the two-to-power cyclotomic
field Kn = Q[ξ2n ] = Q[x]/(fn), fn = x2n−1

+ 1. Let pn be an sufficient-
ly large polynomially bounded odd prime number satisfying pn ≡ 1 mod
2n, where we will control its size later. From Proposition 5.4 there exists a
a ∈ Z/pZ = Fp such that a2n−1

+1 ≡ 0 mod p. Hence it is easy to verify that

aj ∈ Fpn , where j is an odd positive integer, satisfies (aj)2n−1 ≡ −1 mod pn.
There are dn = 2n−1 such odd positive integers and the ideal pnRKn is com-
pletely splits to the product of dn prime ideals (pn, x−aj), j = 1, 3, . . . , 2n−1.
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We use non-zero elements of the forms

Fn(x) = w1Fn,j1(x) + · · ·+ whFn,jh(x) ∈ Fpn [x]/(fn(x)),

where w1, . . . , wh are h constants in Fpn , and there exists an odd positive
integer j0 in the range 1 ≤ j0 ≤ 2n−1 satisfying that jl− j0 can be divisible
by 2n−C , C is a fixed positive integer and l = 1, . . . , h to construct linear
recurrence relations of period 2C + 1. As indicated in Lemma 6.1 Fn(x) is
a non-zero element in Fpn [x]/(fn(x)) and contains a factor of fn(x) with
degree bigger than or equal 2n−1 − C from Lemma 6.1. Hence the element
Gn(x) in Theorem 6.1 can be constructed directly from these primitive 2n-th
roots of unity in Fpn .

Set
A0 = Σh

l=1wi,

A1 = Σh
l=1wla

jl−j0 ,

· · · ,

A2C−1 = Σh
l=1wla

(jl−j0)(2C−1).

Comparing with the argument in the previous section, we use 2C + 1 coeffi-
cients. The 2C × (2C + 1) matrix D defining the linear recurrence relation
is as follows.


A0 A1 · · · A2C−1 A0

A2C−1 A0 · · · A1 A2C−1

· · · · · · · · · · · ·
A1 A2 · · · A0 A1


It is clear that for a non-zero vector c = (c2C−1, . . . , c1, c0)τ satisfying

C · c = 0,

where C is the following matrix as in Section 5.


A0 A1 · · · A2C−1

A2C−1 A0 · · · A1

· · · · · · · · · · · ·
A1 A2 · · · A0


The vector u = (u2C , u2C−1, . . . , u0, u1)τ satisfying
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u2C + u0 = c2C−1,

u2C−1 = c2C−2,

· · · · · · ,

u1 = c0.

is a solution of
D · u = 0.

Set u′i = ui
aj0i

as in Section 5, the polynomial T ′n(x) = Σ2C
i=0u

′
ix
i is a linear

recurrence on Fn(x). Though Tn(ajl) = 0 for l = 1, 2, . . . , h. From the above
relation we can choose suitable u2C and u0 such that

T ′n(ajl) 6= 0

for l = 1, 2, . . . , h. Hence we get a non-trivial linear recurrence relation of
period 2C + 1.

The conditions 1) and 2) in Theorem 6.1 are satisfied automatically s-
ince pn is a prime number and the formation of Tn(x)Fn(x). Since we only
require that pn is a prime number satisfying pn ≡ 1 mod 2n, we can find
a sufficiently large polynomially bounded prime number pn satisfying the
condition 3) and 4) in Theorem 6.1. Hence sublattice pairs claimed in The-
orem 6.1 can be constructed. The degree of Gn(x) is denoted by t1 and
the number of terms in the Tn(x)Fn(x) is denoted by t2. From the above
argument these two numbers can be independent of pn when a suitable h
and C are fixed.

8 The algorithm

We give the algorithm combining Theorem 3.1 and Theorem 3.2.

From given C1, C2 in Conditions B and C, in the case of two-to-power
cyclotomic polynomial fn(x) = x2n−1

+ 1, C1 = C2 = 1, and given C3 de-
termining the width of the error distribution, fix t1 and t2 as in the proof
of Theorem 6.1, we calculate a large C4 to satisfy the condition 3) and 4)
in Theorem 6.1. Then for an polynomially bonded prime number dC4

n ≤ pn
satisfying pn ≡ 1 mod 2n we execute the following algorithm.
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Step 1. Find a non-trivial linear recurrence relation T ′n(x) as in the
proof of Theorem 6.1. Set y = T ′n(x)(Fn(x). Find Gn(x) as in Theorem 6.1.
Set Qn the ideal generated by Gn(x) and pn. This can be done within time
complexity O(22t3).

Step 2. Define the sublattice L2 ⊂ RKn by Tr(x · y) ≡ 0 mod pn for
x ∈ RKn and the auxiliary sublattice L1 ⊂ RKn by Tr(x · ξji2n) ≡ 0 mod
pn for x ∈ RKn , where ji are the degrees of monomials xji appearing in the
polynomial Tn(x)′Fn(x).

Step 3. For given polynomially bounded many samples (a1,bi), i =

1, . . . , p2+t1
n , we find at least p

2+t1
n

p
t1
n

samples ai’s which are in the ideal Qn. It

is within the time O(p2t1
n ).

Step 4. For these p2
n samples (a,b)’s with the first component a ∈ Qn

we check the probability b ∈ L2. If these samples are not from the Ring-
LWE equation this probability is 1

|RKn/L2| = 1
pn

. If it is from the Ring-LWE

equation, this probability is bigger than the probability Prob(e ∈ L1) that
e ∈ L1. Since

Prob(e ∈ L1) ≥ 2

|RK/L2|
,

we can distinguish within time complexity O(p8
n).

Important notice for implementation. To implement this algorithm
we need to construct the sublattice pair with the ideal explicitly. Then we
choose a secret in the ideal and to test samples from the Ring-LWE equa-
tions module the sublattice L2. Here a large polynomially bounded module
parameter should be chosen according to the requirement of Theorem 3.2.

9 Conclusion

In this paper we propose a general theory of sublattice pair attacks on the
Ring-LWE with arbitrary error distributions. This sublattice pair attack
is applied to the Ring-LWE with Gaussian error distributions over two-to-
power fields. Then it is proved that for two-to-power cyclotomic fields such
sublattice pairs can be constructed and hence sublattice attacks from sub-
lattice pairs can be achieved. We prove that the decision Ring-LWE over
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two-to-power fields with wide error distributions of widths in the range of
Peikert-Regev-Stephens-Davidowitz hardness reduction results can be solved
by a polynomial time algorithm. Then from the hardness reduction results
the approximating ideal-SIV Ppoly(d) with some polynomial factors for ide-
al lattices in two-to-power cyclotomic fields can be solved within quantum
polynomial time. Therefore lattice based cryptographic constructions can
not be based on the ”hardness” of the present form Ring-LWE over two-
to-power cyclotomic integers even in the classical computation model. The
further sublattice attacks on Ring-LWE over general cyclotomic fields with
wide errors will be presented in [15]. Practical sublattice attack can be
adapted from the construction of sublattice pairs with ideals according to
the width and the construction in the proof of Theorem 6.1 and Theorem
3.2. The optimization of the lower bounds in Theorem 4.1 and Theorem 6.
1 and the better polynomially bounded modulus parameters will be given
in [15].
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