Meet-in-the-Middle Attacks Revisited: Focusing
on Key-recovery and Collision Attacks

Xiaoyang Dong', Jialiang Hua', Siwei Sun?3,Zheng Li*,
Xiaoyun Wang?!, Lei Hu?3

! Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
xiaoyangdong@tsinghua.edu.cn, huajli8@mails.tsinghua.edu.cn
2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, China
3 University of Chinese Academy of Sciences, China
siweisun.isaac@gmail.com
* Faculty of Information Technology, Beijing University of Technology,
China lizhengcn@bjut.edu.cn

Abstract. At EUROCRYPT 2021, Bao et al. proposed an automatic
method for systematically exploring the configuration space of meet-
in-the-middle (MITM) preimage attacks. We further extend it into a
constraint-based framework for finding exploitable MITM characteristics
in the context of key-recovery and collision attacks by taking the subtle
peculiarities of both scenarios into account. Moreover, to perform attacks
based on MITM characteristics with nonlinear constrained neutral words,
which have not been seen before, we present a procedure for deriving
the solution spaces of neutral words without solving the corresponding
nonlinear equations or increasing the overall time complexities of the at-
tack. We apply our method to concrete symmetric-key primitives, includ-
ing SKINNY, ForkSkinny, Romulus-H+, Saturnin, Grgstl, WHIRLPOOL, and
hashing modes with AES-256. As a result, we identify the first 23-round
key-recovery attack on SKINNY-n-3n and the first 24-round key-recovery
attack on ForkSkinny-n-3n in the single-key model with extremely low
memories. Moreover, improved (pseudo) preimage or collision attacks on
round-reduced WHIRLPOOL, Grgstl, and hashing modes with AES-256 are
obtained. In particular, employing the new representation of the AES key
schedule due to Leurent and Pernot (EUROCRYPT 2021), we identify
the first preimage attack on 10-round AES-256.

Keywords: Meet-in-the-Middle - Three-subset MITM - Preimage at-
tack - Collision Attack - AES-256 - MILP

1 Introduction

The meet-in-the-middle (MITM) approach is a generic technique for cryptanaly-
sis of symmetric-key primitives, which was first introduced by Diffie and Hellman
in 1977 for attacking block ciphers [19]. Many variants of this technique can be
found in the literature [22,21,20,25,11]. Its basic idea is best illustrated by per-
forming an MITM attack on a block cipher deliberately made susceptible to this

2 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

type of attacks. Let Ex () be a block cipher whose block size is n-bit such that
C = Eg(P) = Fk,(Fk,(P)), where K = K;||K2, and K; and K> are inde-
pendent key materials. Therefore, for a given pair of plaintext-ciphertext pair
(P, C), the intermediate value V can be computed independently as Fg, (P) and
F I;;(C’) with independent guesses of K7 and Ks. The correct key guess nec-
essarily satisfies Fg, (P) = F I;;(C) Therefore, by searching collisions on the
intermediate values computed from P and C, one can reduce the search space
from 2161 = 2l HIK] to ol Kal+ K2 =n with time complexity 2151 4 252l The
remaining key space with 2/511+15z21=" candidates can be tested against several
known plaintext-ciphertext pairs to identify the unique secret key.

However, in practice, it is rare that a target cipher can be clearly separated
into two independent halves as the above doubly cascaded F' with indepen-
dent key materials. When a clear separation into two independent chunks is not
possible, a variant of the basic MITM strategy (known as three-subset MITM
attack) is available. This method was originally proposed by Bogdanov and Rech-
berger [13], applied to many ciphers [13,53,35,49], and was well summarized by
Isobe [33]. Again, let us briefly demonstrate this technique on an ill-designed
example with respect the three-subset MITM attack. Let Ex(-) be a block ci-
pher whose block size is n-bit such that it can be divided into three chunks as
C = Ex(P) = Hicy i, (G| 63 1 (Fiy || 5 (P))), where K = K || K || K and
K, Ks, K3 are independent. Moreover, some m-bit (m < n) information of a
state value inside G can be partially computed along the forward direction from
Fr, |k, (P) without the knowledge of K3, or computed along the backward di-
rection from HI_<;|| x, (C) without the knowledge of K. The three-subset MITM

attack partitions the search space with 215! = 21K1[+[Kz2[+Ksl elements into 272!
subspaces of equal size according to the value of |K3|. For each subspace, where
the value of |K3| is fixed, one can perform the basic MITM attack with partial
match to reduce the size of the search space from 2/K1I+IKsl o 2lKi[+[Ks[—m
with time complexity 215t 4 2155l Under our terminology, which will be in-
troduced in Section 2, one run of the basic version of the MITM attack with a
fixed K> is called one MITM episode. To identify the correct key, 215! episodes
has to be performed. Therefore, the overall time complexity can be estimated
as 21F21 (21Kl 4 olKsl 4 olKal+[Ks[=m) This technique has been applied to many
block ciphers [53,49,13,11,33,34].

Although the MITM technique was originally introduced for attacking block
ciphers, its development seems to be largely cultivated and promoted in the
cryptanalysis of hash functions. In 2008, Sasaki and Aoki successfully achieved
preimage attacks on several full versions of HAVAL by combining the MITM
approach with the local collision technique [50]. From then on, many MITM
preimage attacks together with their enhancements and improvements targeting
various hash functions emerged in the literature [4,51,29,58,5,40,3,31,59,1,48,7].
Along the way, several important techniques arise which significantly enhance
and enrich the MITM methodology, including the splice-and-cut technique [4],
the concept of initial structure [51], and (indirect-)partial matching [51,4]. Some
techniques are formalized as bicliques [39,12] and further perceived from differ-

Meet-in-the-Middle Attacks Revisited 3

ential views [40,26]. These developments in the context of cryptanalysis of hash
functions were finally found to be applicable in the MITM attacks on block ci-
phers. In [60], Wei et al. first applied the splice-and-cut technique to the MITM
attacks on block ciphers by connecting the plaintext and ciphertext states with
encryption or decryption oracles.

Despite that the principle of how to combine all these techniques in MITM at-
tacks is quite clear, to actually apply them in practice effectively and efficiently
is complicated, tedious, and error-prone. Recently, (semi) automatic tools are
developed to explore the configuration space of MITM attacks in a more sys-
tematic approach. In [49], Sasaki proposed an MILP-based method to search
for optimal independent key bits used in the three-subset MITM key-recovery
attacks on GIFT [6]. However, Sasaki’s model is not general enough and the pos-
sible positions of neutral words are prefixed. At EUROCRYPT 2021, the MITM
preimage attacks on AES-like hashing was throughly modeled as constrained op-
timization problems which were solved with MILP techniques [7]. This approach
outperforms previous work done manually, and many attacks on AES-like hash-
ing [48,61,41] are shown to have room to be further improved. However, this
method is described in a way specific to preimage attacks and do not translate
directly to MITM-based key-recovery or collision attacks.

Our contribution. We describe the MITM attacks ° in a unified way as MITM
attacks on the so-called closed computation path. This view has been long known
to our community. Nevertheless, we believe that our treatment is more formal
and general. In particular, by introducing some new concepts, we make the
description of MITM attacks more expressive and accurate.

Then, we focus our attention on MITM key-recovery and collision attacks on
block ciphers and hash functions. We identify the peculiarities specific to these
scenarios and show how to deal with them automatically. For the MITM char-
acteristics employed in key-recovery attacks, the degrees of freedom originated
from the states in the key schedule data path must not be depleted, while the de-
grees of freedom originated from the encryption data path must be used up. Also,
when searching for candidate configurations for the MITM key-recovery attacks,
we should avoid those configurations that lead to attacks requiring the full code-
book. We apply our methods to concrete block ciphers SKINNY and ForkSkinny.
and we identify the first 23-round attack on SKINNY-n-3n in the single-key model
with extremely low memory, penetrating one more round than the designers have
expected: We conclude that meet-in-the-middle attack may work up to at most
22 rounds [10, Sect. 4.2, page 22]. Interestingly, the characteristics we employed
in these attacks impose nontrivial constraints on the neutral words from the key
states, which has not been seen before. For collision attacks, they are based on a
generalized version of the t-cell partial target preimage attacks, where the words
of the target value fulfill ¢ (word-oriented) equations.

Finally, we perform MITM preimage and collision attacks on concrete hash
functions (e.g., Romulus-H+ [36], Saturnin [15], WHIRLPOOL [9], and Grgstl [27]).

5 We do not consider the Demirci-Selcuk MITM attacks [16,24,18,17] in this paper,
which is a quite different technique.

4 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

In the attacks on certain hash functions, we encounter some special MITM char-
acteristics where the neutral words are nonlinearly constrained. In previous work,
the neutral words are linearly constrained and thus the solution space of the
neutral words can be obtained efficiently by solving the corresponding system
of linear equations. For nonlinear equations, this approach would significantly
increase the complexities. We propose a technique that is applicable to both the
non-linearly and linearly constrained neutral words, overcoming this difficulty
without increasing the time complexity of the attacks. Based on this technique,
we improve the (pseudo) preimage attacks on round-reduced Grgstl-256 and
its output transformation by one round. For collision attacks, the first 6-round
classical collision attack on WHIRLPOOL is provided, breaking a 10-year record
for collision attacks on WHIRLPOOL in the classical setting. Also, we give the first
6-round collision attack and 8-round collision attack on the output transforma-
tions of Grgstl1-256 and Grgstl-512, respectively. Interestingly, we notice that
all competitive collision attacks on these AES-like hashings are based on the
rebound technique [45]. In addition, we offer the first third-party cryptanalysis
of Saturnin-Hash [15], a second round candidate of the NIST LWC project. A
summary of our results on concrete primitives is given in Table 1 and Table 2.

Table 1: Single-key attacks (SK) on SKINNY-n-3n and ForkSkinny-n-3n, where
ID and DS-MITM denote impossible differential and Demirci-Selguk MITM at-
tacks, respectively.

SKINNY

Version Rounds Data Time Memory Attack Setting Ref.

64.192 22 247,84 2183,97 274.84 1D SK [57]
23 252 2188 o8 MITM SK Sect. 4
22 296 2382.46 9330.99 DY MITM SK [56]

128-384 29 29222 237&48 2147.22 1D SK [57]
23 2104 9376 o8 MITM SK Sect. 4

ForkSkinny

64-192 24 252 2188 98 MITM SK Sect. A

128-384 24 2104 9376 o8 MITM SK Sect. A
24 21225 2124A5 297.5 D RK [8]

128-256 26 2127 22503 2160 D RK [8]

2 A Formal Description of the MITM Technique

We now formally describe the MITM attacks with the notations introduced by
Bao et al.’s work [7] in a more unified way. We encourage the readers to carefully
go through this section since it not only serves as a recall of Bao et al.’s work,
but also introduces some new terminologies that enhance the expressiveness and
accuracy of the descriptions of MITM attacks.

Meet-in-the-Middle Attacks Revisited 5

Table 2: A Summary of the results. Note that we only consider preimage and
collision attacks. Distinguishing attacks [37,42,52,14] are not included.

WHIRLPOOL
Target Attack Rounds Time Memory Setting Ref.
4 2120 916 Classic [45]
. 5 2120 964 Classic [28,42]
Collision 208
6 2 - Quantum [32]
Hash function 6 2248 9248 Classic ~ Sect. 6.2
5 2504 98 [48]
Preimage 5 9481.5 964 Classic [61]
6 9481 9256 [54]
5 9120 916 [45]
Compression function (Semi—) free-start 7 9184 98 Classic [42}
g8 2120 o8 [54]
Grgstl-256
64 _ =
Collision 3 ;120 964 Classic [io}
Hash function 5 [46]
. 5 9244.8 9230) [61]
Pseudo preimage 6 9252 5251 Classic Sect. C
Compression function Semi-free-start 6 2112 964 Classic [55]
Preimage 5 2 2 Classic [61]
Output Transformation & 6 2240 9152 Sect. C
Collision 6 2124 gl24 Classic ~ Sect. E.1
Grgstl-512
Hash function 5 2240 964 Quantum [23]
Compression function Collision 7 2152 956 Classic [52]
Output Transformation 8 2248 9248 Classic Sect. E.2
Hash function Pseudo preimage 8 25073 9507 Classic [61]
Saturnin-Hash
Compression function 6 2208 948
Compression function Preimage 7 2240 gl12 Classic Sect. D
Hash function 7 2248 gli2
SKINNY-128-384, Romulus-H+, and AES hashing mode
SKINNY-128-384-DM/MMO 23 2120 98 Sect. B
R 248 8
Romulus-H+ Preimage 23 2120 28 Classic Sect. B
AES-256 9 2 2 [7]
AES-256 10 2120 264 Sect. F

Given a computation path that forms a “closed loop”, the ultimate goal of
the meet-in-the-middle attack is to find a particular value for some intermediate
states with which the values for all the states involved in the computation path
can be determined, such that the values are compatible with the whole compu-
tation path (there are no conflicts between the values due to the involved com-
putation). Let us descend from the abstract highland and consider the closed
computation path shown in Figure 1. The upper segment of the computation
path constitutes an iterative block cipher with an iterative key schedule, and we

6 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

#SKSA
’:} I] I I]] {:‘
‘ Lg Lg Lg L LA LA — Key schedule
' Vw e i i 4o+ 4B Encryption
P U e I N B B
DA S RN P N BN

M Match = AN L AN T
L L~ o1 P

—0)
SPAl
N

} Public or Oracle computation }

Fig. 1: A high-level overview of the MITM attacks

assume that the states involved in the encryption data path and key schedule
data path contains n and 7 w-bit words respectively, which are typically visu-
alized as rectangles with n and 7 cells, respectively. The lower segment of the
computation path can be arbitrary. In our context, it can be an oracle of the
block cipher appearing in the upper segment of the computation path when we
consider an MITM key-recovery attack, or a simple exclusive-or of a given tar-
get value when we consider preimage attacks. Before we can perform an MITM
attack on the computation path, a configuration or an MITM characteristic has
to be identified.

MITM Characteristics and Their Visualization. The MITM attack entails
the identification of several special states: the starting state #.S5C (see Figure 1)
in the encryption data path, the starting state #S5%5* in the key schedule data
path, the ending state #E* for the forward computation (the computation path
starting from (#SEC, #5%4) leading to #ET), and the ending state #E~ for
the backward computation (the computation path starting from (#SENC, #G¥Sh)
leading to #E~). Moreover, the cells of (#SEC #S¥54) are partitioned into
different subsets with different meanings. Let BENC, BKSA RENC RKSA A4+ and
M~ be some ordered subsets of N'={0,1,--- ,n—1} or N = {0,1,--- ,n — 1}
such that BENC N RENC — () BKSA N RESA — () GENC — A/ — BENC U RENC and
GXSA = N — B U R¥SA We will use these index sets to reference the cells of
the states. For example, for a 16-cell state #S and MT = [0,1,3], we have
LSIMF] = #8[0,1,3) = (#8[0], #5]1], #5[3)).

The cells (#SENC[BENC], 4 SKSABXSA]) | visualized as B cells, are called neutral
words of the forward computation, and the cells (#SEC[RENC], 4 S¥SARKSA]) | vi-
sualized as B cells, are called neutral words of the backward computation. The
initial degrees of freedom for the forward and backward computation are de-
fined as AT = |BEC| 4 |B¥SA| and A\~ = |RE¥| + |R*S*| respectively, that is, the
numbers of M cells and B cells in the starting states. In addition, E*[M™] are
visualized as M cells, and E~[M™] are visualized as B cells. Finally, #S®C¢[GF¢|
and #S5%*[G¥S4] are visualized as B cells.

+ +

We then define a sequence of I functions 7+ = (a7, --- , @) whose values
can be computed with the knowledge of the B cells (#SENC[GENC], 4 GKSA[GKSA])
and W cells (#SEVC[BENC) 4 S¥SA[BESA]) in the starting states, where

. ENC KSA BENC BKSA
rb 1 FE (9O BB g

Meet-in-the-Middle Attacks Revisited 7

is a function mapping (# SENC[GENC], #£GKSA[GKSA) | 4 GENC[BENC) Lt GRSA[BESA) {0 a
w-bit word ;" (#SENC[GENC], £ GKSA[GKSA] 4L GENCIRENC] ' GKSA[BKSAT) " Similarly, we
define a sequence of [~ functions w7~ = (7 ,---,m,_) whose values can be
computed with the knowledge of the B cells (#SEVC[GEC], #.S¥SA[GXSA]) and B
cells (#SENC[RENC] #GKSAIRKSA) 7+ and 7~ will be used to represent certain
constraints on the neutral words of the forward and backward computations,
respectively. A valid MITM characteristic satisfies the following property.

Property 1. For any fixed ¢ = (a1, ,a;+) €]F’Q”'l+ and ¢ = (by, -+ ,b-) €
F¥'1" | when the cells (#SEC[GENC], #S%SA[GKSA]) are fixed to an arbitrary con-
stant, and the neutral words for the forward computation and backward com-
putation paths fulfill the following systems of equations:

71'?_ (#SENC[QENC]’ #SKSA [gKSA]’ #SENC [BENC], #SKSA [BKSAD =a
71';'_ (#SENC [gENC]’ #SKSA [gI(SA]7 #SENC [BENC]7 #SKSA [BKSAD = as (1)
ﬂ_lJ; (#SENC [gENCL #SKSA [gI(SA]7 #SENC [BENCL #SKSA [BKSA]) — al+

and
71'; (#SENC [gENCL #SKSA [gKSA]’ #SEI\IC [lR(E‘.NC]7 #SKSA [RKSA]) — bl
7T2_ (#SENC [gENC}7 #SKSA [gKSA]7 #SENC [RENC]’ #SKSA [RKSA]) — b2 (2)
ﬂ_li (#SENC [gENC]7 #SKSA [gKSA]7 #SENC [r}z]:'ANC}7 #SKSA [RKSA}) — bl—

respectively, then the values of the cells #ET[M™] can be derived from the
starting states (#SH¢, #S5¥54) along the forward computation path without the
knowledge of the neutral words for the backward computation, and the values of
the cells # FE~[M™~] can be derived from the starting states (#S=¢, #S5%4) along
the backward computation path without the knowledge of the neutral words for
the forward computation. In short, computations for deriving #E~[M™] and
#E~[M™] can be carried out independently.

Let us talk more about Property 1. For any given (#SEVC[GENC], 4 SKSA[GKSA])
and ¢ = (a1, - ,a;+), the solution space of (#SEC[BENC], # S¥SA[BXSAT) induced
by Equation (1) is denoted by

B(#SENC [gENC]’ #SKSA [gKSA]’ C+).

Since there are AT = |B¢| 4 | B¥S| w-bit variables and [T equations, we expect
2w (AT =) golutions, and we call DoFT = A+ — T the degrees of freedom for the
forward computation. Similarly, the solution space of (#SENC[RENC] 4 GKSA[TRKSA])
induced by Equation (2) is denoted by R(F#SENC[GENC] 4 SKSA[GKSA] ¢). Since
there are A\~ = |REN¢| + |R¥S*| w-bit variables and [~ equations, we expect
2w (A" =17) solutions, and we call DoF~ = A~ — 1~ the degrees of freedom for the
backward computation.

Let F'™ be the function computing #E+[M™] from (#SE #5%54) that is,
#ET[MT] can be computed as

F+ (#SENC [gENC] , #SKSA [gKSA]’ #SENC [BENC]) #SKSA [BKSA], #SENC [z]zENC]7 #SKSA [RKSA])’

8 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

and similarly, #E~[M~] can be computed as
F~ (4.SEVC[GENC) 41 GKSA[GKSA) 1y GENC[[3ENC] _y GKSA[[GKSA] _yt GENC[RRENC] iy GKSA[0KSA)
Property 1 implies that

F- (Oé, z, #SENC [IR,ENC}7 #SKSA [RKSA]) — F~ (Oé, Y, #SENC [RENC], #SKSA [RKSAD

for any given z,y € B(#SHC[GENC], #£SKSA[GESA] [¢t) and a € IF‘QgENCngKSAl, Simi-
larly, for any w,v € R(F#SEVC[GENC], #.5%SA[GKSA] ¢—), we have
F+(OZ, #SENC[BENC], ?%&‘SfKSA[[))KSA}7 ’LL) — F+(OZ, #SENC[BENCL ?%.é}va(SA[BKSA}7 ’U).

Consequently, for any given (#SEC[GENC]) 4 SKSA[GRSA]) = o, and ¢, and ¢~, we
can perform a matching process given in Algorithm 1.

Algorithm 1: One MITM episode

Fix (#S™C[G™°], #S5**[G*")) to a constant «

Fix ¢*, and ¢~ to some constants

Fix 2* to be an element in B(#S™C[G™C], #5554 [G*S4] ¢ 1)
Fix u* to be an element in R(#S™°[G™C], #S**G**], ¢7)
L+]

for all (#SENC[BENCL#SKSA[BKSAD c B(#SENC[QENCL#SKSA[QKSA], C+) do
E+[M+] — F+(Oé,#SENC[BENC],#SKSA[BKSALU*)
8 | Insert ET[M™] into L

(S N

R

o for all (#SPC[RC), #SKAR¥H]) € R(#S™C[GHC], 45 [GF),) do
10 E~[M™] < F~(a,z*, #SPC[REC], 4G4 [RESA))

11 for E*[M™] in L matching with E~[M~] do

12 | Test for full match between E*[M™] and E~[M]

In real MITM attacks, Algorithm 1 will be performed multiple times for many
different «, ¢, and ¢~, each time is called one MITM episode. Variables that
remain constant within each episode are called episodic constants, and variables
remain constant in the whole life cycle of an attack (remaining constant across
different episodes) are called global constants. Thus global constants are always
episodic constants. The B cells used in [7] and this work capture the episodic
constants, whose values can change across different episodes.

Within each episode, (2)P°F " times of forward computation are carried out,
and (2%)P°F" times of backward computations are carried out, which are referred
to as forward threads and backward threads. Each forward thread and backward
thread within the same episode gives a pair of values for (#ET[MT], #E~[M™])
which are computed along the forward and backward computation paths from a
common value of the starting states (#S=C, #5%4) and thus can be tested for
match according to the computation connecting #E* and #E~ in the closed

Meet-in-the-Middle Attacks Revisited 9

loop. Note that testing pairs computed from different values of the starting point
(e.g., pairs formed from different episodes) is meaningless. In each episode, we

have (2@)PoF +DoF™ yoired threads. If the computation connecting #E+ [M*]

and #E~[M~] forms an m-cell filter, then there are about (2w)PeF " +DoF™—m
paired threads will pass the filter and be tested for a full match. We call DoM =
m the degrees of match or the strength of the filter. Finally, we emphasize again
that the MITM procedure given in Algorithm 1 is performed for some fixed
(#SENC [gENC]7 #SKSA [gKSA], C+, C_), and we say (#SENC [gENC]’ #SKSA [gKSA]’ C+, C_)
defines the context of the MITM episode.

Automatic Search for MITM Characteristics. For a given closed compu-
tation path shown in Figure 1, a configuration of the states #£SEC, #GXSA 4 B+
#E~, and the parameters BEC, BXSA RENC RESA A+ M~ DoFT, DoF~, wt,
7, and DoM satisfying Property 1 is called an MITM characteristic. At EURO-
CRYPT 2021, Bao et al. presented an MILP-based method for finding optimal
MITM characteristics for preimage attacks, and we refer the reader to [7] for
more details. Here, we only mention that an MILP characteristic can be visual-
ized with the following coloring scheme on the states of the closed computation
path and the ith cell of a state #S is encoded with a pair of 0-1 variables
(mfs, yz#s) in the MILP models according to the following rule:
B Gray (G), (xfﬁs,yl#s) = (1,1): known episodic constants.
B Red (R), (xfs,yfs) = (0,1): neutral words for backward computation or
dependent on B cells and neutral words for backward computation.
B Blue (B), (xfés,yl#s) = (1,0): neutral words for forward computation or
dependent on M cells and neutral words for forward computation.
O White (W), (xfﬁs, y;#s) = (0,0): dependent on M cells in the backward com-
putation or dependent on M cells in the forward computation.

3 Automatic MITM Key-recovery Attacks

We describe the MITM key-recovery attack on a block cipher based on Figure 1
with the lower segment being an encryption or decryption oracle. Before going
any further, we introduce some new notations. The initial degrees of freedom
from the encryption and key schedule data paths for the forward computation
are defined as Ay = [B™C| and M\, = |B¥S4|, respectively. Similarly, The initial
degrees of freedom from the encryption and key schedule data paths for the back-
ward computation are defined as Agye = |R¥€| and Mg, = |R¥54|, respectively.
Under these notations, we have AT = A + Mg, and A~ = Age + M-

For an MITM characteristic, we say that the degrees of freedom from the

encryption data path for the forward computation is used up if for any given
(# SENC[GENC] 4 GKSA[GKSR] ¢) we partition the solution space

B(#SENC [gENC]7 #SKSA [g}(SA]7 c+)

of (#SENC[BENC] 4 GKSA[BXSA]) due to Equation (1) into subspaces according to
the value of #S¥54[B*4] then each space contains exactly one element. That is,

10 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

the values of the W cells in #S®€ can be fully determined by the M cells in #S¥SA
for a given (#SEC[GENC]) 4 S¥SAGESA] ¢ 1), Similarly, we say that the degrees of
freedom from the encryption data path for the backward computation is used
up if the values of the m cells in #S™C can be fully determined by the B cells in
#SKSA for a given (#SENC [gEl\IC]7 #SKSA[QKSA], C_).

Now, Let us recall from Section 2 that the goal of the MITM attack is to find
a particular value for some intermediate states in the closed computation path
shown in Figure 1 with which the values for all the states involved in the compu-
tation path can be determined, such that the values derived are compatible with
the whole computation path. Specifically, in the context of MITM key-recovery
attacks, our goal can be formulated as follows.

Goal 1. Identify a value K for the key register hosting the master key, and a
value for one full state in the encryption data path, with which we can derive
the values of all states involved. We require that the values for all states are
compatible and K equals to the secret key hiding in the oracle.

The above goal indicates that in the MITM key-recovery attack, the full key
space must be (implicitly) tested, since a compatible assignment of values to
the states is not enough (unlike MITM preimage attacks), and we must identify
the unique secret key. Secondly, in the key-recovery attack, we prefer not to
exhaust the full codebook of the targeted cipher. These particularities result in
the following requirements for the MITM characteristic:

I. The degrees of freedom for the forward computation or backward computa-
tion from #S¥%* cannot be depleted (i.e., DoF" > 0 and DoF~ > 0), while
the degrees of freedom for both the forward computation and backward com-
putation from #S¥¢ should be used up.

II. In the MITM characteristic, we require that there is at least one B cell
(episodic constant) in the plaintext state, which will be set to global constant
in the actual attack to avoid using the full codebook.

To ensure (I), we require the corresponding systems of equations of the MITM
characteristic given in Equation (1) and (2) to satisfy the following conditions.
For Equation (1), there are Iy, equations (without loss of generality, we assume
these are the first I5, equations) do not involve #SE¢[GE¥¢] and SENC[BEYC]. The
remaining I+ — s, equations are used to exhaust the degrees of freedom from the
encryption data path, and thus || = |[B™¢| = It — IJ5,. Under this, we have
DoF™ = Aig, — lgsy- In addition, for each constant (#.SEVC[GENC] 4 GKSA[GKSA] ¢ +)
and each solution for #S¥S4[B¥SA] of the first 5, equations, we can derive one
and only one solution for #S®C[B¥C] by solving the remaining equations. For
Equation (2), there are lgg, equations (without loss of generality, we assume
these are the first lgg, equations) do not involve #SEC¢[GEC| and SEYC[REC]. The
remaining [~ —lgg, equations are used to exhaust the degrees of freedom from the
encryption data path, and thus [Agye| = |RF¥¢| = 1~ — lgss. Under this, we have
DoF ™ = Agg — lgsa- In addition, for each constant (#SEVC[GENC], 4 GKSA[GXSA] ¢ =),
and each solution for #S¥SA[R¥SA] of the first Iz, equations, we can derive one
and only one solution for #SE[RE¥] by solving the remaining equations.

Meet-in-the-Middle Attacks Revisited 11

Requirement (I) may be less obvious than (IT), and we will explain it by
looking into the algorithmic framework given in Algorithm 2. But before we go
into the details, we emphasize that due to these peculiarities, almost all MITM
characteristics found by the the method presented in [7] are useless in the context
of key-recovery attacks.

Algorithm 2: The MITM key-recovery attack on block ciphers

1 Set |#S™°| independent gray cells to constants, which should contain all the
gray cells in the plaintext state

Collecting a structure of plaintext-ciphertext pairs and store them in a table
H, which traverses the non-constant cells in the plaintext

for #S**G*M € IE‘;““QKSA‘ do

N

w

4 Derive the the value of #S™°[G™°]
It
5 for ¢, = (a1, - ’al&) c Ty s do
6 for cigy = (b1, ,b,—) € Fy " do
KSA
7 L+]
8 fOr #SKSA[BKSA} c BKSA(#sKSA[gKSAL CIEA) dO
9 Derive the the value of #S™°[B*] and compute ET[MT]
along the forward computation path
10 | Insert #S*[B*"] into L indexed by ET[MT]
11 for #S"A[RFH) € RESA(4S%AGK ¢) do
12 Derive the the value of #S™°[R¥°] and Compute E~[M~]
along the backward computation path by accessing H
13 for #S**[B** € L[E~[M~]] do
14 Reconstruct the (guessed) key value K’ from #S**[B**],
#SKSA [RKSA], and #SKSA [gKSA}
15 Test K’ against several plaintext-ciphertext pairs

From now on, we use |#5S| denote the number of cells in a state #S. In
Line 1 of Algorithm 2, we set |#SE€| gray cells, including all the gray cells in
the plaintext state to global constants, where |#S%| denotes the number of cells
in #S®C, Since the gray cells in the plaintext states are set to global constant,
the attack will not use the full codebook. These |#SE| gray cells are not neces-
sarily within one single state along the computation path. Instead, they can be
distributed over multiple states. Moreover, we require that the values of these
cells can be set independently to arbitrary values without leading to a conflict
along the computation path (excluding the computations connecting the ending
states). When these constants are set, for any given key, we can derive the values
of all the states (including #S®), along the computation path (excluding the
computation connecting the ending states), which indicates that if the degrees

12 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

of freedom of #SEC are not exhausted, this constant setting process may lead
to conflicts, which is equivalent to setting more than |#SE€| cells of #SE¢ to
constants. Then, each MITM episode is performed within the context defined by
the outer loops surrounding the code segment from Line 8 to Line 15.

Complexity Analysis. In Line 2 of Algorithm 2, suppose there are ¢ gray cells
in the plaintext state, then the data complexity (2*)"¢. Suppose the states in
the encryption data and key schedule data paths contains n and n cells, respec-
tively, and the matching part forms an m-cell filter. According Algorithm 2, there
are (2“’)’7”_>‘K+SA_>‘1§A-(2“’)l;§f\-(2“’)11:5A = (2“’)ﬁ_(D°F++D°F7) MITM episodes, and in
cach episode (2%)PF +DoF ™ different, keys are tested, where (2)PoF " +DoF ™ —m
of them will pass the m-cell filter. Therefore, the overall time complexity can
be estimated as (Qw)ﬁ7D0F+7DOF+((2w)D0F+ + (Zw)DoF_ + (2w)D0F++D0F_7m)
which is approximately

)

(2w)ﬁ—min{DoF+,DoF7,m}. (3)

4 MITM Attacks on SKINNY and ForkSkinny

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [10]
based on the TWEAKEY framework [38]. In this section, we apply our method to
SKINNY-n-3n (The version with an n-bit block size, a 3n-bit key, and a 0-bit
tweak) with n € {64,128}. The overall structure of SKINNY-n-3n and its round

function are given in Figure 2.
-

]]

e— 51

ShiftRows

7

Fig. 2: The hight-level structure of SKINNY-n-3n and its round function (Thanks
to https://www.iacr.org/authors/tikz/).

o
N
w

-~
o
N
<

@
©
-
o
-
=

The internal state is viewed as a 4 x 4 square with 16 cells. In each round,
the state is updated with five operations: SubCells (SC), AddConstants (AC),
AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC). The key reg-
ister is arranged into three 4 x 4 squares denoted as T K7, T' Ko, and T K3 respec-
tively. Note that the in each round only the first two rows of the internal state

https://www.iacr.org/authors/tikz/

Meet-in-the-Middle Attacks Revisited 13

are affected by ART, and the MC operation is non-MDS and thus quite different
from the AES-like structures analyzed in [7]. Specifically, we have

a a®chd « B
b| a 1 [B] _[Bey®S

MC ol = b e and MC S 1= Ry . (4)
d adc 1 a®d

4.1 Programming the MITM Attacks on SKINNY-n-3n with MILP

Based on the analysis of Section 3, we show how to build the MILP model
for finding MITM characteristics of SKINNY-n-3n in the context of key-recovery
attacks. We employ the same encoding scheme from [7], where the ith cell of
a state #S is encoded with a pair of 0-1 variables (x?és,yl#s) according to
the rule given in Section 2. Firstly, due to the complexity estimation given by
Equation (3), min{DoF*, DoF~, DoM} should be maximized in our model. To

this end, we introduce an auxiliary variable vgyj, impose the constraints
{Ugbj S DOF+,’U0bj S DOF_, Uobj S DOM}

and set the objective function to maximize vgy;. In what follows, we describe the
constraints for the starting states, ending states, and the states in the compu-
tation paths with a special focus on what is different from Bao et al.’s work [7].
First of all, the tweakey schedule algorithm of SKINNY-n-3n only involves in-cell
operations and permutations changing the positions of the cells in the tweakey
register, which will not alter the color of a cell in our model (only their positions
are changed). Therefore, we will not discuss the constraints imposed solely by
the tweakey schedule algorithm in the following.

Constraints for the Starting States. As discussed in Section 3, we distinguish
the sources of degrees of freedom from the encryption data path (denoted by Agye
and Ag) and the key schedule data path (denoted by Mg, and Mg,), and the
initial degrees of freedom satisfies A* = Aie + Mdsa and A~ = Mgy + Agsa, Where
e = |BEC|, Maa = 1B, Agwe = [REY|, and Mg, = |R¥®4|. We introduce two
variables a; and f3; for each cell in (#S™€, #S¥54) where o; = 1 if and only if
(z#5,y7) = (1,0) and B; = 1 if and only if (7, y#%) = (0,1). Then we have
the following constraints:

+ ENC + KSA - ENC — _E KSA
)\ENC - E iai ’)\KSA - § iai ’ AENC - E iﬁi ’)‘KSA - 151 ’

and

ENC ENC

oS aBC > y#s BB >
ENC ENC ENC ENC

AT T LB >0 T ;D N

ENC ENC

Y77 B <1 o5 4 g <
KSA KSA

a5 — oSt > y?5T gk >0

1
KSA KSA
af STy 1 >0

7

KSA KSA
y#s - :c;#s +o54 >0

7)

7
KSA KSA
v ol < a5 <

(3 7

14 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

Constraints for the Ending States. We assume that the matching only hap-
pens at the MixColumns. Let (#E1[4j], #EF [4j+1], #E1[45+2], #E+[45+3])T
and (#E~[45], #E[4] + 1], #E~[4j + 2], #E~[47 + 3])T be the jth column of
the ending states #E+ and #E~ linked by the MC operation. Since MC is non-
MDS, its constraints are quite different from Bao et al.’s model for MDS matrix,
where there is a (X — 4)-cell filter if and only if X' > 5 out of 8 cells of the two
columns are B or B cells (see [7, Property 1, page 14]).

For the MC operation of SKINNY, there may exist an m-cell (m > 0) filter even
if X < 5. For example, according to Equation (4), if #E1[4j] =m, #E~[4] +
1] = m and all other cells are O, we still get a 1-cell filter due to #ET[4j] =
#E~[4j + 1]. We can enumerate all possible patterns and convert these local
constraints into linear inequalities using the convex hull computation method.
In Figure 3, we list some of the possible matching patterns with their filtering
strength measured in cells. We introduce a variable ; > 0 for the j-th columns

bl

Fig. 3: Some possible coloring patterns at the matching point

of #E* and #E~ such that there is a ~y;-cell filter due to the coloring patterns
of #E7 and #E~, then we get a DoM-cell filter at the matching point, where
DoM =}’ IR’ and should be positive according to the complexity analysis given
by Equation (3).

Constraints Imposed by the Computation Paths. Along the computation
paths leading to the ending states, the initial degrees of freedom are consumed
according to the MITM characteristic. Forward computation consumes the de-
grees of freedom of the neutral words for backward computation while backward
computation consumes the degrees of freedom of the neutral words for the for-
ward computation. The consumption of degrees of freedom is counted in cells.
Let 0, Onsy and gy, 0ggy be the accumulated degrees of freedom that have
been consumed in the backward and forward computation in the encryption
and key schedule data paths. Since the degrees of freedom from the encryption
data paths for both directions should be used up and the degrees of freedom
originated from the key schedule data path should not be exhausted, we require

)‘gwc - Ug\lc =0, Amc—0mc=0
DoFT = M5 —ogs > 1, DoF™ = Agy — Opgp > 1

According to the semantics of the colors, how a coloring pattern of the input
and output states of an operation consumes the degrees of freedom should be

Meet-in-the-Middle Attacks Revisited 15
be different for the forward and the backward computation paths. Therefore, we
will give two sets of rules for different directions of the computation.

XOR. The XOR operations exist in the ART and MC, and we can reuse the
XOR-RULE™ (for forward computation) and XOR-RULE™ (for backward compu-
tation) rules gvien in [7]. The coloring patterns and how the degrees of freedom
are consumed are visualized in Figure 4.

The The Tho The | The Tha The
The Tbe Tha %5 | Tha Tha Tha

(a) Forward computation (XORT-RULE) (b) Backward computation (XOR™-RULE)

T
’z“f’

Fig. 4: Rules for XOR, where a “*” means that the cell can be any color

AddRoundTweakey. ART is the operation that the first two rows of the three
tweakey states are XORed into the encryption data path. There are three XOR
operations and four input cells (three from the tweakey state and one from the
encryption data path) involved to produce an output cell. Certainly, we can use
the XOR-RULE three times to get the constraints. However, this approach misses
some important coloring patterns that may lead to better attacks. We take the
forward computation for example as shown in Figure 5. If we use XORT-RULE
three times successively as shown in Figure 5(a), when the B and B are the input
cells of the XOR, the output cell will be O, eventually leading to a O output cell.
However, if we change the order of the XOR operations as shown in Figure 5(b),
then B © B may produce a B cell by consuming one degree of freedom, leading
to a B output cell. To take this into account, we model the rule for three XORs
as a whole, named as 3-XORT-RULE, with Figure 5(c) as an example.

E’Dj :%im

I—>€BL>D—lI—>€}>I—i

-] B 5-m (1m)

(a) three XORs successively (b) change the three XORs’s order (c) 3-X0RT -RULE

Fig.5: The inaccuracy of modeling 3-XOR* by applying XORT successively

For the 3-X0R operation in the forward computation, we have the following
set of rules (denoted by 3-XORT-RULE):

16 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

» 3-XO0RT-RULE-1. If there are W cells but no O and MW cells in the input, the
output cell is B or B (partially cancel the impacts of the input B cells by
consuming Agye OF Aggp)-

» 3-XO0RT-RULE-2. If there are B and B cells but no O cells in the input, the
output cell is O or B (partially cancel the impacts from B on B by consuming
Agnc OF Agsy)-

» 3-XOR1T-RULE-3. If there arc W cells but no O and W cells in the input, the
output cell is B

» 3-XORT-RULE-4. If all the input cells are ®, then the output cell is m.

» 3-XORT-RULE-5. If there is at least one O cell in the input, the output is 0.

We introduce variables dgy and dgg, to denote the consumed degrees of free-
dom due to 3-XORT-RULE. For example, dg = 1 means that we consume one
degree of freedom from Agy. by applying the rule. In order to use up all the
degrees of freedom from #SC¢ we should consume Mgy first whenever possi-
ble. As shown in Figure 6, when there are degrees of freedom in the encryption
path, i.e., B cells, the consumption of degree of freedom is always from Agyc, i.e.,
Ognc = 1 and dzg, = 0.

Let #a, #b, #c, #d be the input cells and #e be the output cell. Then, the set
of rules 3-XORT-RULE restricts (x#a, y#Ha g#b y#b gt y#e g#d g #d gite g e
Senc) and (z#a y#a gp#b y#b pite yite pad y#d gpite y#e §.,) to subsets of Fil,
which can be described by a system of linear inequalities by using the convex
hull computation method. Some valid coloring patterns due to 3-XOR™-RULE are
given in Figure 6. Note that 3-XOR™-RULE can be obtained from 3-XOR'-RULE
by exchanging the B cells and B cells, since the meanings of B and B are dual for
the forward and backward computations.

KSA
{ |]]
_ 7—1. 7—1. _ 7—1. 7—1.
ENC{ Sanc=0 Sanc=1 Sene=1 Sene=0 Sene=0 Sene=0
e, o 5o, = =

=0 5, =0 5, =0 =0 5o, =1

Oksa KSA KSA KSA KSA KSA

R e T
be b b b B b

Sysp=1 50, =0

Y ¥

OEER
0

Fig. 6: 3-X0RT-RULE, where a “*” means that the cell can be any color
MixColumn. Since MC contains only XOR operations, we can use XOR-RULE to
generate the set of rules MC-RULE for MC. According to Equation (4), there exists
one equation that XORs three cells together to get one cell. We use a similar
approach we employed for 3-X0RT-RULE and 3-XOR™-RULE to handle this special
equation. Finally, we get the valid propogations of the coloring patterns and list
some of them in Figure 7. Note that there are no key additions involved in MC,
and thus all the consumed degrees of freedom are from Ay and Agyc.

Meet-in-the-Middle Attacks Revisited 17

. . . . -l -10 | -1 | = B -1
g | el ol : MC L@l L Ee e e
O | O | -0 | WM-OL | B8-O -0 . -0 . -0 . -0 : -0
s Bl Oel]: Nel: B [} B ENROE ECHEREE B N

3 3 3 3 WINE WRSINE WESTNE WERT By N
ol in H % E MC | e e |l L EJHe
1] . -0} . -1 . 1] . = -1 . -0 . -1 . -1 . -2
|| :] : || : || : || | | : | | : | | : | | :]

(a) Forward computation et -RULE) (b) Backward computation (MC ™ -RULE)

Fig. 7: MC-RULE

4.2 The MITM Key-recovery Attack on SKINNY-n-3n

Solving the model built in Section 4.1, we identify a 23-round MITM charac-
teristic as shown in Figure 8. The starting states are #S%™°¢ = Y] and the three
tweakey words # 5% = (TKF)7 TKél), TK:gl)). The matching process happens
at the MC operation between the ending states #ET = Zi5 and #E~ = X;s.
There are 3 B cells and 3 B cells in #S** providing Mg, = Mgy = 3 cells of
initial degrees of freedom originated from the key schedule data path. For # S,
Y} provides Agye = 8 and Mgy = 1 cells of initial degrees of freedom from the
encryption data path. The A = 1 cells of degrees of freedom is used up when
computing X; from Y; by XORing the subtweakey. In the forward computation,
the Agye = 8 cells of degrees of freedom are used up when computing Yy from
Y;. For the forward computation, we require TKfﬁ) [7] @ TKéG) [7] @ TKéG) [7]
and TK§8) 1] & TKég)[l] P TKéS) [1] to be constants, consuming ogg, = 2 cells
of degrees of freedom originated from the key schedule data path. Hence, we
get DOF™ = Mgy — 0gsa = 1. Similarly, we get DoF™ = M, — o, = 1. At
the matching point, we have DoM = 2 from the first two column of #E+ and
#E~ with Equation (4). The 23-round key-recovery attack is given in Algo-
rithm 3. The data and memory complexity is bounded by Line 2, which is 2104
for SKINNY-128-384 and 252 for SKINNY-64-192. According to Equation (3), the
time complexity is about 2376 for SKINNY-128-384 and 2'88 for SKINNY-64-192.

Remark. The designers of SKINNY claimed that: “We conclude that meet-in-
the-middle attack may work up to at most 22 rounds (see [10], Sect. 4.2, page
22)”. Our attack penetrates one more round than expected and is the first 23-
round single-key attack on SKINNY-128-384 and SKINNY-64-192. Using the same
method, we also analyze ForkSkinny (see Supplement Material A). In addition,
we report on some results on Romulus-H+ as a by-product of the analysis of
SKINNY (see Supplement Material B).

5 Exploiting Nonlinearly Constrained Neutral Words in
MITM Attacks and Its Applications

According to Property 1 in Section 2, in order to compute the allowable values for
the neutral words, one has to solve two systems of equations, i.e., Equation (1)

Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

18

nitial +3@ +3W

(Wt (8)
TK TK
(" i —HH i R e i — i i

(1) (6)
TK TK,
i R ——— il i3 i i B i
(1) (6)
0 — i K i I — HH
-1m
Yo Zo Yy Z1 Y- Z3 X4 Yy

X X X Y- zZ X
OﬂOEd& 0 . round 1 2 wOCin 2 2 3 ﬂOE%& 3 round 4 round 5 round 6 round 7

o = i R it i it it

(8)
I i = i A it i it it
(8)
B i R e R it it i it

EEEEEEE R EEEC EEEROaRE

Z12 X313
round 8 round 9 round 10 round 11 round 12 “match Tound 13 round 14 round 15

(19) (21)
HH jidd e HE—

(19) (21)
HH i G — i

(19) (21)
K gith I - i
-10 -1m
1213|1415
o d . f 'y g N oE f N U N L ENE SR

round 16 round 17 round 18 round 19 round 20 round 21 round 22

=]
=
N
w

~
o
o
~

o)
©

1011

B forward B backward @ constant O uncertain

Fig.8: An MITM key-recovery attack on 23-round SKINNY-n-3n

Meet-in-the-Middle Attacks Revisited 19

Algorithm 3: The MITM key-recovery attack on SKINNY-n-3n

X0[3,9,13] < 0, X1[0,2,8,10,13] < 0, X2[1,3,9,11] - 0, Ya[5] « 0,
X3[0,8] <~ 0, Y4[3] + 0

jary

2 Collecting structure of plaintext-ciphertext pairs and store them in table H,
which traverses the non-constant 16-3=13 cells in the plaintext
3 for All possilbe values of the B cells in (TKfO),TKéO)7 TK§0>) do
4 for (al,az,bl,bz) EF%w do
Yo[3] « TK V3] & TKSV[3] & TKSV[3], Y09, 13] + X,[9,13],
20[3,].17 12] < Y0[3,9, 13}, X1[12] — X1[0] D Zo[lQ], X1[7] < Z()[S]7
6 Derive the solution space of the B cells in the TK by
TEO M e TS M e TK®P 7] = a
TK®O N @ TEP 1] @ TKP 1] = as
7 Derive the solution space of the B cells in the TK by
TKM 4 @ TK 4] @ TK [4] = by
TKPY 6] @ TKV 6] @ TKS [6] = by
8 Initialize L to be an empty hash table
9 for the value in the solution space of B cells in TK do
10 Compute X13[8] along the backward computation path:
X1 — Xo = Ex(Xo) — Xi3 by accessing H
11 | Insert relative information into L indexed by X13[8]
12 for the value in the solution space of B cells in TK do
13 Compute Z12[4] and Z12[8] along the forward computation path:
X1 = Z12
14 for Candidate keys in L[Z12[4] ® Z12[8]] do
15 L Test the guessed key with several plaintext-ciphertext pairs

and (2). In previous MITM preimage attacks [48,7], the two systems of equa-
tions are linear (or can be reduced to linear equations involving certain cells not
from the starting states that implicitly define the spaces of the neutral words).
Hence, it is easy to derive the solution spaces B(# SEVC[GENC], # SXSA[GKSA] ¢T)
and R(F#SENC[GENC] 4 SKSA[GKSA] ¢—) by solving the systems of equations, whose
cost can be ignored compared with the overall complexity. However, in practice,
we encounter many interesting MITM characteristics with nonlinear constrained
neutral words, and there is no efficient method for solving them. We present a
table based technique in Algorithm 4 which can be applied in attacks relying
on such MITM characteristics without solving the equations or increasing the
overall time complexities.

Algorithm 4 obtains the solution spaces of the neutral words for all possible
¢t and ¢~ under a given value of (#SEC[GENC]) 4 S¥SAGKSA]) with time complex-

20 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

Algorithm 4: Computing the solution spaces of the neutral words
Input: (#SENC [gENC] #SKSA[gKSA]) c F;J-(lgE"C\Jr\gKSAl)

Output: V, U

Ve[, U<«[]

for (#SENC[BENC] #SKSA[BKSAD c F;}.(‘BEN%HBKSA') do
L U 4 7r+(#SENC[gENC]7 #SKSA[QKSAL #SENC[BENC]’ #SKSA[BKSA]) by Equation 1

=

W N

Insert (#S™° [BENCL 44,5 [BKSA]) to V at index ©
for (#SENC[RENC] #SKSA[RKSA]) c F;(‘RENCH'RKSAD do

5
6 u — ﬂ_f(#SENC [gENCL #SKSA [gKSA]’ #SENC [RENC]’ #SKSA[RKSAD by Equation 2
7 Insert (#SEC[R™C], #S*4R*A]) into U at index u

ity (29)*" + (2¥)*" and memory complexity (2¢)*" + (2¥)*". After running
Algorithm 4, V[v] stores the solution space of

7T+ (#SENC [gENC}7 #SKSA[gKSA], #SENC [BENC]7 #SKSA[BKSA]) =,

which consists about 20" =1") — 9uwDoF" yijueg for the neutral words for

the forward computation. Similarly, under each index u of U, there are about
ouw (AT =17) — 9wDoF™ yalues for the neutral words for the backward computa-
tion. Algorithm 4 can be plugged into the procedure for MITM attacks to deal
with MITM characteristics with nonlinearly constrained neutral words. For ex-
ample, applying the technique to the MITM preimage attack gives Algorithm 5.
Next, we show the time complexity is not increased.

Complexity Analysis. In each MITM episode within the context defined by the
“For” loops surrounding the code segment from Line 6 to Line 14 of Algorithm 5,
we test 20 (DOFT+DoF ™) 1ageases and we expect 2w (DoFT+DoF™—m) of tham to
pass the m-cell filter, and averagely, there are about 2@ (DoF " +DoF™—h) reimages
passing the check at Line 13 for each episode. The time complexity to perform
one MITM episode is

w\DoFT w\DoF ™ w\DoFT oF ™ —m
(2)DF +(2)DF +(2)DF+DF) (5)

Then, we estimate the size of G in Line 1 of Algorithm 5, which determines
the number of MITM episodes performed. Suppose |G| = (2¥)*, to produce
one preimage, we require that (2@)7 . (2w)!"H . (2w)PoFT+DoF™ — (qu)h o
x =h— (AT 4+ X7). Hence, we consider two situations depending on A* + A~.
e A + X\~ > h: In this case, we set = 0, then |G| = 1. At Line 3 and
Line 4 of Algorithm 5, we only need to traverse (2“’)h*(D°F++D°F_) values of
(ct,c)e F;”'l++w'l_,where h—(DoFT+DoF~) <IT+I~ dueto AT +\~ > h,
to find the preimage. Then, together with Equation (5), we have the overall
time complexity:

(Qw))\+ + (Qw))\’ + (2w)h—min(DoF+, DoF ™, m).

Meet-in-the-Middle Attacks Revisited 21

Algorithm 5: The framework of the MITM preimage attack on AES-
like hashing with non-linearly constrained neutral words

1 fOI‘ (#SENC[QENCL#SKSA[QKSA]) c G g FTQM(‘QENClJr‘gKSAD do

2 Call Algorithm 4 to build V, U

3 for cJ”:(al,---,CLZJF)E]F’Z"‘I+ do

a for ¢™ = (b1, - ,b-) €FYY do

5 L+]

6 for (#S™C[B™] #S*AB*4)) € V[ct] do

7 Compute ET[M™] along the forward computation path
8 | Insert (#SEC[BEC], #S5*54[B*Y]) into L indexed by Et[M™]
9 for (#S™C[RFA, #S*AR*A) € Uc™], do
10 Compute E~[M™] along the backward computation path
11 for (#S™C°[B™C], #S*4[B*A) € L[E~[M™]] do

12 Reconstruct the (candidate) message X

13 if X is a preimage then

14 L Output X and Stop.

e AT+ A7 < h:Set z=h— (AT + A7), and we need to build 2 V and U in
Line 2 of Algorithm 5. Hence, we get the overall complexity:

(Qw)hf)*' + (2w)h7)_ + (2w)h7min(DoF+, DoF ™, m)_ (6)
Moreover, the memory complexity for both situations is
(2w)A+ + (2w))_ + (Qw)min(DoF+, DoF_). (7)

We apply Algorithm 5 to Grgstl-256, and Saturnin-Hash, and we obtain
some improved cryptanalytic results, which are given in the Supplementary Ma-
terials C and D.

6 MITM-based Collision Attacks and Its Applications

Suppose that there is an algorithm that can produce a different t-cell partial
target preimage. Then we expect to find a collision by running the algorithm
2w (h=1)/2 times to identify a collision on the h-cell hash value. At FSE 2012 [44],
Li, Isobe, and Shibutani employed this strategy to convert the MITM-based
partial target preimage attacks into pseudo collision attacks. First, we consider
a generalization of partial target preimage attacks.

Let T be the space of all possible values of the output of the hash function.
For a predefined partition of T into (2%)* subspaces with an equal size. We call
an algorithm a t-cell partial target preimage attack if it can produce a message

22 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

whose hash value is a random element in a given subspace. For example, an al-
gorithm generating a message such that the first word of its hash value is always
0 is a 1-cell partial target preimage attack. An algorithm generating a message
such that the XOR of the first and second words of its hash value is always 0 is
also a 1-cell partial target preimage attack. Given an MITM characteristic, the
framework for a collision attack is described in Algorithm 6. Note that the call to
Algorithm 6 can be replaced by an ordinary equation solving procedure to save
the memory if the involved equations are linear or easy to solve. To be clear on
how to set the objective functions in our MILP models, we need to understand

how the complexity of the attack is related to the parameters specified in the
MITM characteristic.

Algorithm 6: The framework of the MITM collision attack on AES-like
hashing with non-linearly constrained starting states

=

Setting the selected t cells of #71 to constants

2 H<«+[]

3 for (#SENC[QENCL #SKSA [gKSA]) c G g F;U‘(\QENC|+\QKSAD do

4 V+I[,U«+][]

5 Call Algorithm 4 to populate V and U

6 for c“':(a1,~-~,alJ,)e]F“Q"'l+ do

7 for ¢™ = (b1, - ,b-) €FYY do

8 L+]

9 for (#S™°[B™C], #S*B*A)) € V[ct] do

10 Compute ET[M™] along the forward computation path
11 | Insert (#S™°[B¥C), #S*[B*"]) into L indexed by ET[M™]
12 for (#S™C[R¥*), #S*4R*)) € U[c7], do

13 Compute E~[M™] along the backward computation path
14 for (#S™°[B™C], #S*AB*A)) € L[E~[M™]] do

15 Reconstruct the (candidate) message X

16 if X is a t-cell partial target preimage then

17 Insert X into H indexed by the hash value of X
18 Stop when there is a collision

Complexity Analysis. In the MITM ¢-cell partial target preimage attack, if
the matching process results in an m-cell filter, then we have m < t, because
the matching information is derived from the known cells of the target T'. To
determine the overall complexity of the algorithm, we need to determine how
many MITM episodes (Line 9 to 18 of Algorithm 6) are required. According to
the analysis of Algorithm 4 in Section 5, the time complexity for building U

Meet-in-the-Middle Attacks Revisited 23

and V is (2°)*" + (2%)*". In each MITM episode within the context defined
by the “For” loops surrounding the code segment from Line 9 to Line 18, we
test 2w (DOFT+DoF ™) 1agaaoes and we expect 20 (POF T +DoF™—m) of them to pass

the m-cell filter, and averagely, there are about gu-(DoF " +DoF ™ —1) messages are
inserted into the hash table H. Therefore, we need about (2%) "z ~(DoF " +DoF~—)
episodes to produce one collision. The time to perform one MITM episode is

(zw)DoF+ + (zw)DoF_ + (Qw)DoF++D0F_7m + (zw)DoF‘*'JrDoF_ft. (8)

Suppose in Line 3 of Algorithm 6 we have G = 2**. Then, (2%)* - (21”)l+ S(2w)
matching episodes are performed. Hence, we have

(2w)m . (2w)l+ . (2w)l’ — (2w)%7(DoF++DoF’7t).
We get « = g — (AT 4+ A = %) Hence, we consider two situations:

e AT+ A7 > %: In this case, we set x = 0. At Line 6 and Line 7 of
Algorithm 6, we only need to traverse (2)"“z"~(DoF"+DoF™ 1) yalyes of
(ct,c7)e By 4! where 2=t — (DoF* + DoF~ —t) < It + 1~ due to
AT+ > %, to find the collision. Then, together with Equation 8, we
have the overall time complexity:

e+
Wl
—

+ (Qw)%fmin{DoF'*'f%, DOF_fé, m—x,

@) + (2)* 9)

o M+ AT < B Set o =2 — (AT + A7 — 1), and we need to build 2 V and
U in Line 5 of Algorithm 6. Hence, we get the overall complexity:

SRy

(20) 37T 4 (20) 30T o (g BminPerT s PR R ek) (1)

. . . h _mi +_t —_1t _t t .
which is approximately (2%)2 min{DoF™ 3, DoF™—3, m=3, 3} gince we al-

ways have DoF < At and DoF~ < A~.

The memory complexity in both situations is

h—t

+ - min{DoFt ,DoF~ w
(211))/\ +(2w))\ +(2w) {DoF™ ,DoF }+(2) 5

(11)

where the (2“’)% is to store the t-cell partial target preimages in H. Conse-
quently, for an attack efficient than the trivial birthday attack, we have min{DoF ™
— L DoF~ =4 m—L L1>0, M <Land A" <2 or

DoF* > L, DoF~ >

% <m<t

A< A<k

24 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

6.1 Automatic Search for MITM-based Collision Attacks

First of all, The objective function of the model is to maximize
t t t
)

; + 1 +
min(DoF 2,DoF 5™~ 513
according to Equation (10). In what follows, we only discuss the main partic-
ularity of MITM-based collision attacks, which lies in the matching part. To
be more specific, the degree of match (DoM) is derived differently from other
attacks discussed in the work. To be concrete, we consider AES-like hashings
like WHIRLPOOL and Grgstl, which includes the MixColumn(MC) or MixRows(MR)
operation in their last rounds. To determine the degree of match, we consider
two situations according to the position where the match happens.

The matching point is placed at the last round. Suppose that the MDS
matrix of the MC operation at the matching point operates on k cells, which
links the state Z in the last round to the XOR sum of the input state X of
the first round and the target T, i.e., MC(Z) = X @ T. Suppose that from the
forward and backward computation « B cells and 5 B cells are known. Without

loss of generality, we assume (Z[0],---,Z[a — 1])T of Z is known as W, and
(X[0],---,X[B—1])T of X is known as m. From
Z[0] X[0] @ T[0]
: X[1] @ T[1]
Mc- | zla—1 | = : ,
: X[B-1@T[B—1]
Zlk — 1] :
we get (3 linear equations with k variables Z[0], Z[1],- - , Z[k —1] on the left, and
2/ variables X[0],---, X[8—1], T[0],--- ,T[5 — 1] on the right. There are k — «
unknowns Z|a], -+, Z[k — 1] on the left. Hence, if 8 > k — a, we can represent

the k — « unknowns by other variables by consuming k — « linear equations. At
last, we have X' = § — (k — «) linear equations left:

C(Z[0),- -, Zlar— 1)) = $2(X[0], -+, X[B — 1)) & @1(T[0], - -- , T[B — 1]),
&Z[0], - Zla—1]) = ¢o(X[0], - X[B — 1)) & @a(T0]. - -, T[B — 1), -

. 12
s (Z[0], -+, Zla — 1)) = ¢ (X[0], -+, X[B — 1)) @ s(T[0], - - , T[B — 1)),

where (;(+), ¢:(-), wi(-) are linear equations. By assigning t < ¥ =+ a —k
conditions on the target T in the Equation (12):

e (T[], -+, T[B —1]) = 71,
2(T0],- -+, T[B — 1]) = 72,
. (13)
(T[], TIB = 1)) =m0,
where 7 = (1q,-+ ,7) € F¥'!, we get a t-cell filter:
CI(Z[O]v"' 7Z[O‘ - 1]) = ¢1(X[0]7"' 7X[B_ 1]) @ 71,

C2(Z[0],- -+, Z[a — 1]) = ¢2(X[0], - -+ , X[B — 1]) ® T2,

G (200),+ -, Z[a = 1]) = ¢5(X[0],- -, X[B—1]) @ 7t

Meet-in-the-Middle Attacks Revisited 25

In summary, we have the constraints DoF =t < Y =84+ a—kand 8+ a > k.
Therefore, in the MILP model for this case, we can ignore the coloring infor-
mation of T'. After identifying an MITM characteristic with configurations for
(a, B,m,t), the t conditions on T' can be derived accordingly with Equation (13).

ue T Mc—t
a N,
'
Z W \ T Z wc! MC1(T) T
X X
(a): Generating T is covered in the forward computation (b): Generating T’ is covered in the backward computation
W forward W vackward [constant [Juncertain [prefixed

Fig. 9: The matching point is not placed at the last round.

The matching point is not at the last round. In this case, the XOR of
the target T' can happen in the forward computation (see Figure 9(a)) or in the
backward computation (see Figure 9(b)). The yellow cells are prefixed constants,
which can be represented as 0-1 variables in the same way as the Gray (G) cells:
If the ith cell of T is yellow, then (z7,yl) = (1,1). Other cells of T are White
(W), encoded as (mJT,yJT) = (0,0).

In the case shown in Figure 9(a), the rules of xoring the tag T is the same
to the XORT-RULE by regarding the O cells as B cells. Moreover, we require that
the O cells in T align with the ® cells in X as shown in Figure 9(a). Hence, the
constraint 7 < xX is added to avoid the transition O @ O — O. Therefore, for
the number ¢ of conditions imposed on T', we have t =}, xT.

In the case of Figure 9(b), we consider the positions of O cells in MC™(T)).
The rules of xoring the tag T is the same to the XORT-RULE by regarding the O
cells as @ cells. In addition, we require that the O cells in MC™1(T') align with the

-1
B cells in Z. Hence, the constraint y?c S < yZ is added to avoid the transition
0@ 0O — O. Therefore, for the number ¢ of conditions imposed on T', we have

t=>", yglcil(T).

6.2 Collision Attacks on WHIRLPOOL and Grgstl

The WHIRLPOOL hash function [9], designed by Barreto and Rijmen, is an ISO/TEC
standard. Its compression function is built by plug an AES-like cipher into the
Miyaguchi-Preneel construction. During the last 20 years, WHIRLPOOL has with-
stood extensive cryptanalysis [45,42,32,54] and the best collision attack in the
classical setting reaches 5 rounds [28,42]. Recently, Hosoyamada and Sasaki in-
troduced a quantum collision attack on 6-round WHIRLPOOL [32].

In this section, we give the first 6-round collision attack on WHIRLPOOL in the
classical setting, breaking the 10-year record for collision attacks on WHIRLPOOL.

26 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

SB MR sB [MR

Xo Zo X, Z1
10 M +20 B

Fig.10: An MITM attack on 6-round WHIRLPOOL

Applying the automatic model of MITM collision attack to WHIRLPOOL, we find
a new 6-round MITM characteristic shown in Figure 10. We apply Algorithm
6 to WHIRLPOOL based on this MITM characteristic. The starting state is Xs.
Then, we have AT = 10 and A\~ = 20, w = 8. According to Property 1, we have
It =8and ¢t = (a1,---,ag) € F3*%; 1= =16 and ¢~ = (by,--- ,b1g) € F5*1E.
Then we build similar equations to Equation (14), (15), (16) in the attack on
Grgstl in Section C. Therefore, we call Algorithm 4 to build V and U. DoFt =
A —1T=2,DoF~ =X~ -1~ =4,t=m =2 and h = 64. The time complexity
is (28)6—2‘1—(10—§)_1_(28)%—(20—%)+(28)%—min{2—§, 4-3,2-3, 3} o 9248 according
to Equation (10), and the memory complexity is about 224¥. We also apply the
method to Grgstl, and the results are given in Supplementary Material E.

7 Conclusion and Open Problems

Taking Bao et al’s work (EUROCRYPT 2021) on automatic MITM preimage
attacks as a starting point, we formulate the MITM attacks in a more formal,
expressive, and accurate way. Based on this formulation, we investigate the pe-
culiarities of MITM-based key-recovery attacks on block ciphers and collision
attacks on AES-like hash functions and model them in the constraint program-
ming paradigm. Now, we have a fairly powerful tool for finding exploitable MITM
characteristics in key-recovery, (pseudo) preimage, and collision attacks on word
oriented designs. Moreover, we present a generic procedure for dealing with non-
linearly constrained neutral words without increasing the overall time complex-
ities of the attacks relying on them. We apply our method to concrete keyed
and unkeyed primitives, leading to attacks improving the state-of-the-art. At
this point, we would like propose an open problem: Is it possible to search for
bit-level MITM characteristics automatically, and to what extent it can improve
the current cryptanalytic results?

Meet-in-the-Middle Attacks Revisited 27

References

10.

11.

12.

13.

14.

15.

Riham AlTawy and Amr M. Youssef. Preimage attacks on reduced-round Stri-
bog. In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 2014,
Proceedings, volume 8469, pages 109-125. Springer, 2014.

Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizar. Forkcipher: A new primitive for authenticated encryption
of very short messages. In ASTACRYPT 2019, Proceedings, Part II, pages 153-182,
2019.

Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preim-
ages for step-reduced SHA-2. In Mitsuru Matsui, editor, ASTACRYPT 2009, Pro-
ceedings, volume 5912, pages 578-597. Springer, 2009.

Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5
and more. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors,
SAC 2008, Revised Selected Papers, volume 5381, pages 103—-119. Springer, 2008.

Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against re-
duced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO 2009, Proceedings,
volume 5677, pages 70-89. Springer, 2009.

Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small Present - towards reaching the limit of
lightweight encryption. In Wieland Fischer and Naofumi Homma, editors, CHES
2017, Proceedings, volume 10529, pages 321-345. Springer, 2017.

Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun, and
Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks on AES-
like hashing. Cryptology ePrint Archive, Report 2020/467, 2020. https://eprint.
iacr.org/2020/467.

Augustin Bariant, Nicolas David, and Gaétan Leurent. Cryptanalysis of Forkci-
phers. TACR Trans. Symmetric Cryptol., 2020(1):233-265, 2020.

Paulo S. L. M. Barreto and Vincent Rijmen. The WHIRLPOOL Hashing Function,
2000. Revised in 2003.

Christof Beierle, Jérémy Jean, Stefan Kolbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
Proceedings, Part 1I, pages 123—153. Springer, 2016.

Eli Biham, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on IDEA
with at least 6 rounds. J. Cryptol., 28(2):209-239, 2015.

Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In ASIACRYPT 2011, Proceedings, pages 344-371,
2011.

Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher KTANTAN. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, SAC 2010, Revised Selected Papers,
volume 6544, pages 229-240. Springer, 2010.

Christina Boura, Anne Canteaut, and Christophe De Canniére. Higher-order differ-
ential properties of Keccak and Luffa. In Antoine Joux, editor, FISE 2011, Revised
Selected Papers, volume 6733, pages 252—-269. Springer, 2011.

Anne Canteaut, Sébastien Duval, Gagtan Leurent, Maria Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. TACR Trans. Symmetric Cryp-
tol., 2020(S1):160-207, 2020.

https://eprint.iacr.org/2020/467
https://eprint.iacr.org/2020/467

28

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

Hiiseyin Demirci and Ali Aydin Selguk. A meet-in-the-middle attack on 8-round
AES. In Kaisa Nyberg, editor, FSE 2008, Revised Selected Papers, volume 5086,
pages 116—126. Springer, 2008.

Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-middle
and impossible differential attacks. In Matthew Robshaw and Jonathan Katz, ed-
itors, CRYPTO 2016, Proceedings, Part II, volume 9815, pages 157-184. Springer,
2016.

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, FEUROCRYPT 2013, Proceedings, volume 7881,
pages 371-387. Springer, 2013.

Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanalysis
of the NBS data encryption standard. Computer, 10(6):74-84, 1977.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key recovery attacks
on 3-round Even-Mansour, 8-step LED-128, and full AES. In Kazue Sako and
Palash Sarkar, editors, ASTACRYPT 2013, Proceedings, Part I, volume 8269, pages
337-356. Springer, 2013.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Cryptanalysis of iter-
ated Even-Mansour schemes with two keys. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 201/, Proceedings, Part I, volume 8873, pages 439-457.
Springer, 2014.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on Feistel
structures with improved memory complexities. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Proceedings, Part I, volume 9215, pages 433—
454. Springer, 2015.

Xijaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on AES-like hashing with low quantum random access
memories. In Shiho Moriai and Huaxiong Wang, editors, ASTACRYPT 2020, Pro-
ceedings, Part I, volume 12492, pages 727-757. Springer, 2020.

Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on
8-round AES-192 and AES-256. In Masayuki Abe, editor, ASTACRYPT 2010,
Proceedings, volume 6477, pages 158-176. Springer, 2010.

Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-middle
attacks on reduced-round DES. In INDOCRYPT 2007, Proceedings, pages 86—100,
2007.

Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order differ-
ential meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In Rosario
Gennaro and Matthew Robshaw, editors, CRYPTO 2015, Proceedings, Part I,
volume 9215, pages 683—-701. Springer, 2015.

Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schléffer, and Sgren S. Thomsen. Grgstl - a SHA-3
candidate. In Symmetric Cryptography, 2009.

Henri Gilbert and Thomas Peyrin. Super-Sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE 2010, Revised Selected Papers, pages 365-383,
2010.

Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-
in-the-middle preimage attacks: First results on full Tiger, and improved results
on MD4 and SHA-2. In ASIACRYPT 2010, Proceedings, pages 56—75, 2010.
Shoichi Hirose. Some plausible constructions of double-block-length hash functions.
In Matthew J. B. Robshaw, editor, F'SE 2006, Revised Selected Papers, volume
4047, pages 210-225. Springer, 2006.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Meet-in-the-Middle Attacks Revisited 29

Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved preimage attack for 68-
step HAS-160. In Dong Hoon Lee and Seokhie Hong, editors, ICISC 2009, Revised
Selected Papers, volume 5984, pages 332—348. Springer, 2009.

Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum com-
puters by using differential trails with smaller probability than birthday bound. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Proceedings, Part
11, volume 12106, pages 249-279. Springer, 2020.

Takanori Isobe. A single-key attack on the full GOST block cipher. J. Cryptol.,
26(1):172-189, 2013.

Takanori Isobe and Kyoji Shibutani. Security analysis of the lightweight block
ciphers XTEA, LED and Piccolo. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP 2012, Proceedings, volume 7372, pages 71-86. Springer, 2012.
Takanori Isobe and Kyoji Shibutani. Generic Key Recovery Attack on Feistel
Scheme. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Proceed-
ings, Part I, volume 8269, pages 464-485. Springer, 2013.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Ro-
mulus for Round 3. NIST Lightweight Crypto Standardization process (Round 2),
2020.

Jérémy Jean, Maria Naya-Plasencia, and Thomas Peyrin. Improved rebound attack
on the finalist Grgstl. In Anne Canteaut, editor, F'SE 2012, Revised Selected Papers,
volume 7549, pages 110-126. Springer, 2012.

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ci-
phers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Proceedings, Part II, volume 8874, pages 274-288. Springer,
2014.

Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for preimages: Attacks on Skein-512 and the SHA-2 family. IACR Cryptology
ePrint Archive, 2011:286, 2011.

Simon Knellwolf and Dmitry Khovratovich. New preimage attacks against reduced
SHA-1. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, Pro-
ceedings, volume 7417, pages 367-383. Springer, 2012.

Stefan Ko6lbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient Short-Input Hashing for Post-Quantum Applications. TACR
Trans. Symmetric Cryptol., 2016(2):1-29, 2016.

Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schléffer. Rebound distinguishers: Results on the full WHIRLPOOL com-
pression function. In ASIACRYPT 2009, Proceedings, pages 126-143, 2009.
Gagtan Leurent and Clara Pernot. New Representations of the AES Key Schedule.
Cryptology ePrint Archive, Report 2020/1253, 2020. https://eprint.iacr.org/
2020/1253.

Ji Li, Takanori Isobe, and Kyoji Shibutani. Converting meet-in-the-middle preim-
age attack into pseudo collision attack: Application to SHA-2. In Anne Canteaut,
editor, FiSE 2012, Revised Selected Papers, volume 7549, pages 264—286. Springer,
2012.

Florian Mendel, Christian Rechberger, Martin Schléffer, and Sgren S. Thomsen.
The rebound attack: Cryptanalysis of reduced WHIRLPOOL and Grgstl. In FSE
2009, Revised Selected Papers, pages 260-276, 2009.

Florian Mendel, Vincent Rijmen, and Martin Schlaffer. Collision attack on 5 rounds
of Grgstl. In FSE 2014, Revised Selected Papers, pages 509-521, 2014.

https://eprint.iacr.org/2020/1253
https://eprint.iacr.org/2020/1253

30

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

61.

Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

National Institute of Standards and Technology (NIST). Lightweight cryptogra-
phy (LWC) standardization process, 2020. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-2-Candidates.

Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and an
application to WHIRLPOOL. In Antoine Joux, editor, F'SE 2011, Revised Selected
Papers, volume 6733, pages 378-396. Springer, 2011.

Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle attacks:
Application to GIFT. In Atsuo Inomata and Kan Yasuda, editors, IWSEC 2018,
Proceedings, volume 11049, pages 227-243. Springer, 2018.

Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In
Josef Pieprzyk, editor, ASTACRYPT 2008, Proceedings, volume 5350, pages 253—
271. Springer, 2008.

Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than ex-
haustive search. In Antoine Joux, editor, FEUROCRYPT 2009, Proceedings, volume
5479, pages 134-152. Springer, 2009.

Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active
super-sbox analysis: Applications to ECHO and Grgstl. In ASTACRYPT 2010,
Proceedings, pages 38-55, 2010.

Yu Sasaki, Lei Wang, Yasuhide Sakai, Kazuo Sakiyama, and Kazuo Ohta. Three-
subset meet-in-the-middle attack on reduced XTEA. In AFRICACRYPT 2012,
pages 138—154. Springer, 2012.

Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental se-
curity requirements on WHIRLPOOL: Improved preimage and collision attacks. In
Xiaoyun Wang and Kazue Sako, editors, ASTACRYPT 2012, Proceedings, volume
7658, pages 562-579. Springer, 2012.

Martin Schlaffer. Updated differential analysis of Grgstl. In Grgstl website, 2011.
Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the Demirci-Selguk meet-in-the-middle attack with constraints. In
Thomas Peyrin and Steven D. Galbraith, editors, ASTACRYPT 2018, Proceedings,
Part II, volume 11273, pages 3-34. Springer, 2018.

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible differential
cryptanalysis of reduced-round SKINNY. In Marc Joye and Abderrahmane Nitaj,
editors, AFRICACRYPT 2017, Proceedings, volume 10239, pages 117-134, 2017.

Lei Wang and Yu Sasaki. Finding preimages of Tiger up to 23 steps. In Seokhie
Hong and Tetsu Iwata, editors, FSE 2010, Revised Selected Papers, volume 6147,
pages 116—133. Springer, 2010.

Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo Sakiyama.
Second preimage attacks on step-reduced RIPEMD/RIPEMD-128 with a new
local-collision approach. In Aggelos Kiayias, editor, CT-RSA 2011, Proceedings,
volume 6558, pages 197-212. Springer, 2011.

Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN (poster). In Udaya
Parampalli and Philip Hawkes, editors, ACISP 2011, Proceedings, volume 6812,
pages 433-438. Springer, 2011.

Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(pseudo) preimage attack on round-reduced Grgstl hash function and others. In
FSE 2012, Revised Selected Papers, pages 127—-145, 2012.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates

Meet-in-the-Middle Attacks Revisited 31
Supplementary Material

A MITM attacks on Round-reduced ForkSkinny-n-3n

ForkSkinny, designed by Andreeva et al. [2], is the internal primitive of ForkAE, a
2nd round candidate in the NIST lightweight authenticated encryption standard-
ization process [47]. The construction of ForkSkinny is shown in Figure 11. The
encryption of ForkSkinny is split into two steps. The first r;,;; rounds process
the input message with the round function of Skinny under modified constants.
Then, the encryption procedure is forked, into ForkSkinny, and ForkSkinny,
where two copies of the output from the first stage are separately processed by
the two forks with rg and r; rounds, respectively. The tweakeys are generated by
the tweakey schedule for in total 7;,,;; + ¢ + 1 rounds, and used sequentially in
the initial step, ForkSkinny, and ForkSkinny;, for instance, the last r; round
tweakeys are applied in ForkSkinnyj.

D RF [—----—— RF — (!

M —+ RF —----—RF

H——— o

RF —— RF
IHEP

Fig. 11: The ForkSkinny framework [2].

Note that there are varies ways [8] to reduce ForkSkinny, however, the au-
thors suggested that the number of rounds to be reduced should be the same
before the fork®, and in each of the branches. Hence, for the original versions
of ForkSkinny-128-384 with r;,;; = 25, rg = r1 = 31 and ForkSkinny-64-192
with 7 = 17,70 = 71 = 23, we reduce them to a 24-round ForkSkinny-128-384
with 7 = 25—16 = 9,79 = r; = 31-16 = 15, and a 24-round ForkSkinny-64-192
with e = 17T—8 =9, 719 = r1 = 23—8 = 15, to launch the MITM key-recovery
attacks.

In the first branch ForkSkinnyg, there is no matching point as shown in
Figure 12 and the matching point happens between Z;3 and X4 in the second
branch ForkSkinnyy, as shown in Figure 13. The degrees of freedom for blue cells
and red cells are both 1 cell and the matching point provides a filter of 1 cell. We

S https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/

https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/

32 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

apply similar attack procedures to Algorithm 3 to perform the 24-round attack
on ForkSkinny-n-3n. The data complexity is 27 ~3* and the time compleixty is
23n=w These are the first single-key attacks on reduced ForkSkinny. Note that
the NIST submission of ForAE only suggests a 128-bit key, hence, our attacks do
not affect the security of ForAE and ForkSkinny.

B MITM Attacks on Round-reduced Romulus-H+

Romulus-H+ [36] is a lightweight hash, which adopts Hirose’s Double-Block-
Length (DBL) compression function [30] plugged into the Merkle-Damgard with
permutation domain extender as shown in Figure 14. The underline block cipher
is SKINNY-128-384.

Applying the chunk separation given in Figure 8, we can find the preimage
of SKINNY-128-384 with DM/MMO-modes in time 2'28=8 = 2129 Then, for the 23-
round preimage attack on the compression of Romulus-H+, we place the preimage
attack of SKINNY-128-384-DM at the upper block of Romulus-H+ and leave the
partial target of the lower block to be satisfied randomly. Hence, the totally
complexity is 21201128 = 2248 Qur preimage attack does not impact the security
of Romulus-H+, since the authors only claimed 128-bit security.

C MITM Pseudo Preimage attacks on reduced Grgst1-256

Grgstl is a SHA3 finalist hash function. It comes with two versions: Grgst1-256
and Grgstl-512, with the trailing digits signifying the sizes of the outputs in bits.
The structure of Grgstl-7 with two message blocks is depicted in Figure 15,
where P and @) are two n-bit AES-like permutations. Before it outputs the hash
value, an output transformation based on P and a truncation {2 : F§ —]F;’/ % are
applied to hg. We refer the reader to [27] for more details of the design. There

have been quit a few papers studying the security of Grgstl [46,61,52], etc.

Attacks on Output Transformation. Asshown in Figure 16, we give a new 6-
round chunk seperation for preimage attack on 6-round output transformation of
Grgst1-256. For output transformation of Grgst1-256, there is no key schedule
and the neutral words are all from the internal state.

The index of each cell of state X is given in Figure 16. The starting point is
X3. We have BB = {0,2,6,9, 10, 11, 15, 34, 36, 38}, REY = {21,22, 23, 24, 26, 30,
31,40, 41,42, 44,49,50,51, 53, 58,59, 60,62}, GF" = N — BEYC U RENC, Then, we
have At =10 and A~ =19, w = 8.

According to Property 1, we have It = 8 and ¢t = (ay, -+ ,ag) € F3*5. For
arbitrary given (X3[G™¢|, X3[B¥C]), we compute ¢t with Equation (14), (15)
and (16), where the cells of “-” are ignored. Similarly, we have I~ = 16 and
¢ = (b1, ,big) € F5*'6. Therefore, we can call Algorithm 4 to build V and
U.DoFt = AT —iT =2 and DoF~ = A~ -1~ =3.

33

Meet-in-the-Middle Attacks Revisited

initial +6 @ +3 W

(5)
B

[¢o]
B

i

L

Xo
round O

e
Y Zo X1

round 1

g iR
Y- Z1 X9

Y-
round 2

)

X3
round 3

g
Y3 Z3 X

Y,
%OCDM

=

(5)
—— T

-20

X5

Zy
4 round 5

- -l
Y Zx

round

L

(<]
——H
- -

6 round 7

round 8

. .
EEEE

mO“HWH round 9

i

round 10

HEH

round 11

i i

i

round 12

o e

round 13

Z13 X14

FHE:

round 14

<

round 15

e

round 16

it

m forward

itk

round 17

round 18

ittt i

round 19

m backward

gt

i g g

round 20

round 21

= constant

B

O

round 22

round 23

O uncertain

Fig. 12: Fork I: MITM key-recovery attack on 24-round ForkSkinny-n-3n

Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

34

initial +6 @ +3 W

I

e

i

L

(5)
—— T

(<]
——

-20

Xo
round O

round 1

Y-
round 2

)

Y Zo X1 Y- Z1 X9 Y- Z3 X

X3
roun

Y,
3 %OCD%

Zg4 X5
4 roun

5 round 6

Y Zx

(27)
L

.

round 8

IR
3 & B |

fork2

round 9

L & &

round 10

i

round

(27)
——

11 round 12

-10

E-E S

Z13 X14

round 13 match round 14

et B

round 15

(35)
L

(37)
B

i

i

i

(35)
——

(37)
——fE

-10 -1
it e R g R R
round 16 round 17 round 18 round 19 round 20 round 21 round 22 round 23
m forward m backward @ constant O uncertain

Fig. 13: Fork II: MITM key-recovery attack on 24-round ForkSkinny-n-3n

Meet-in-the-Middle Attacks Revisited 35

1] - | i - |

RN B B

S

M1 M[2) Mim]

: ' i
Mgl Wb H;Ea;TJ
Fig. 14: Romulus-H+ [306]

))
ho = IV 51 ha [p] ha [p] @
il L] L

Fig. 15: Grgstl-n/2 with two message blocks

Zy[0] Zg[8] - - Z3[32] - - - X3[0] X3[8] - - X3[32] - - -
Zy[1] Zo[9] - - Z3[33] - - - X3[1] X3[9] - - X3[33] - - -
Z3[2] Z3[10] - - Z3[34] - - - X3[2] X3[10] - - X3[34] - - -
Z2[3] Za[11] - - Z3[35] - - - | _ L.—1 | X3[3] X3[11] - - X3[35] - - - (14)
Z3[4] Z3p[12] - - Z3[36] - - - X3[4] X3[12] - - X3[36] - - -
Z3[5] Z3[13] - - Z3[37] - - - X3[5] X3[13] - - X3[37] - - -
Z5[6] Zo[14] - - Z5[38] - - - X3[6] X3[14] - - X3[38] - - -
Zy[7] Z3[15] - - Z5(39] - - - X3[7] X3[15] - - X3[39] - - -
X2[0] X3[8] - - X2[32] - - - Z3[0] Zo[8] - - Zg[32] - - -
- X2[9] X2[17] - - Xo[41] - - Za[1] Zo[9] - - Z3[33] - - -
- - Xo[18] X3[26] - - X2[50] - Z3[2] Z3[10] - - Zo[34] - - -
SR - - - X2[27] X[35] - - X2[59] | _ gg—1 [Z2([3] Z2[11] - - Z3[35] - - - (15)
Xo[4] - - - X2[36] Xo[44] - - Zy[4] Z[12] - - Z5[36] - - -
- Xo[13] - - - Xo[45] Xo[53] - Zg[5] Z9[18] - - Zo[37] - - -
- - Xg22] - - - Xg[54] X3[62] Zy[6] Zg[14] - - Z5[38] - - -
X2[71 - - Xg31] - - - Xg[63] Zy[7] Z3[15] - - Z5[39] - - -
- - - - - - - ag X2[0] X2[8] - - Xg32] - - -
- - - - - - a7y - - Xg[9] Xp[17] - - Xg[a1] - -
.- - - < ag - - - o X5[18] Xo[26] - - Xo[50] -
- - - - a5 - - . - - - Xg[27] X3[35] - - X2[59] (16)
- - - ag - - - - Xal4] - - - X2[36] Xg[44] - -
- - ag - - - - - - Xo[13] - - - X5[45] Xo[53] -
- ag - - - - - - - - Xg[22] - - - Xg[54] X3[62]
ay - - - - - - - Xa[7] - - Xo[31] - - - X2[63]

We call Algorithm 5 to perform the MITM preimage attack on the 6-round
output transformation of Grgst1-256. As shown in Figure 16, h = 32 cells, m = 2
cells. According to Equation (6), the time complexity is

(28)32—10 + (28)32—19 + (28)32—min(27 3, 2) ~ 2240- (17)
The memory complexity is
(28)10 + (28)19 + (28)1’1’111’1(27 3) ~ 2152. (18)

Pseudo Preimage Attacks on the Hash Function. At FSE 2012, Wu et al.
[61] converted the preimage attack on Grgst1-256’s output transformation into

36 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

1T | 1T
I I
I SB MC sB [H ue
s SR H .
H rom
[TTT

Xo Zo X Zy
sl +10 M

X3
Starting point

" :
T SB MC
SR
]

Zs match Ws

X4

Fig. 16: Preimage attack on 6-round output transformation of Grgst1-256

pseudo preimage attack on Grgstl-256 hash function. Suppose given 256-bit
target T', we have find 2% preimages for the output transformation, i.e., we find
27 X that meet P(X) ® X = ||T. Wu et al. try to find the pseudo preimage
(H, M) of Grgst1-256 hash function that meets (H' = H ¢ M):

(PH)YoH) ® QM) M)® X =0. (19)

We set = 10, and the time complexity to find 2'° preimages X for the output
transformation is 22°Y. We store the 219 X in table L;. Firstly, we select 2251 M
and compute Q(M) @ M and check Ly to find 10-bit partial collisions with X.
Hence, we find 22°110/210 = 2251 (Q(M) @ M, X) pairs with a 10-bit zero in
Q(M)®M @ X and store them in table Lo. Next, we find partial target preimages
for P(H') @ H' with 10-bit fixed zero as partial target. We reuse Figure 16 to
find H'. We can just fix T'[55] = T'[56] = 0 (just assume the 10-bit fixed zero bits
are among the two bytes). We find 22°! such H' with time complexity of 225!
according to Equation (6)7. We use P(H') @ H’ to check Lo, and it is expected
to find 22514251 /251210 — 1 collision, which is just the pseudo preimage (H, M)
for Grgst1-256 hash function. The time complexity is 2252 with memory 22°1.

D MITM Attacks on Round-reduced Saturnin-Hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut
et al. [15]. Now, it is among the 2nd round candidates of the ongoing NIST
Lightweight cryptography (LWC) standardization process [47]. Based on a 256-
bit block cipher with 256-bit key, two authenticated ciphers and a hash function
are designed. In this section, we focus on its hash function, called Saturnin-Hash.

T With h =2, m = 2, DoF" = 2 and DoF~ = 3, we have (2%)"™n(PoF", DoF ™, m) _
1, which means we get one partial target preimage with one computation of
Grgst1-256 on average.

Meet-in-the-Middle Attacks Revisited 37

. "
i SB T MC AK
P —> —_—> _—> &)
AK
AK
—) *) ~><— <«
Match
SB T MC AK
<« D K’
X2 Y2 Z2

Wa

SB T MC AK
<« <« <« <@
X3 Y3 Z3 Ws T
AK
<— <— <—€B
SB
—»
Start

Ll%lllﬁ

forward backward constant uncertain

E
X

Fig.17: The 7-round MITM attack on Saturnin-Hash

A T-round preimage attack on Saturnin-Hash. We first give a 7-round
chunk separation on the compression of Saturnin-Hash as shown in Figure 17,
the operations in round function work on 4 x 4 square of 16-bit “supernibbles”.
The arrangement of “supernibbles” is

The SB operation applies 16-bit Super-Sbox S to each supernibble. T is
the transposition. MC is Super-Mixcolumns, which acts as the same role to the
Mixcolumns of AES. Saturnin has a very simple key-schedule. In even rounds,
the 256-bit key K is XORed to the internal state; in odd rounds, it is rotated
by 5 supernibble-positions to get K’.

The starting states are X5 and K’. We have At = 7 and A~ = 5. In the
backward direction, we apply the property of XOR then MixColumns (XOR-MC)
by Bao et al. [7] to ignore the state W3 and Wj.

38 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

Then, from X5 to Z4, we have

X5[8} @ K’[8] ay

1 X591 @ K'[9 as
ME X FI[O% ® K’HO] = a (20)

X5[11] @ K'[11] Z4[11]
From X, to Z3, we have
K[l?] aq
_ K13 a

MC | v E@ ;([14] =17 (21)

KI15] ag

Since the blue cells in K’ and K are linear dependent and X;5[8] is a constant,
there are 7+1+1=9 variables in Equation (20) and (21). Combined with non-
linear equation SB(X4[14]) = Z4[11], we build a non-linear equations system (8
equations) to get the space of blue neutral values. To avoid solving the non-linear
system, we apply the table-based method to compute the solution space of the
blue words by Algorithm 4. We have It = 6, ¢t = (ay,--- ,a6) € F5*® and
DoFt = AT -1t =1.

The neutral values for red cells are easy to obtain by solving a linear system
of equations from Zs to Xg. We have A\~ = 5,17 =4, ¢~ = (by, -+ ,by) € F30%4
and DoF~ = A~ — [~ = 1. From the matching point (Z; to W7), we get a filter
of DoM = 3 cells. Accordint to Equation (6), we have time complexity

(216)16—7 + (216)16—min(1, 1, 3) ~ 2240. (22)
The memory complexity is
(216)7 4 (216)min(1, 1) ~ 2112. (23)

Converting the preimage attack on the compression function into an attack
on Saturnin-hash, we get the time complexity 22°6=8 = 2248 Since the au-
thors of Saturnin-hash only claimed a security of 2224, our attack does not
impact the security Saturnin-hash, but only gives a better understanding on
Saturnin-hash against MITM attack.

A 6-round preimage attack on Saturnin-Hash. As shown in Figure 18,
different from 7-round attack, we only need to solve linear equation systems to
generate the blue and red neutral values. In detail, we construct linear equation
systems when computing the blue cells from X, to Z3 and from X3 to Zs. Totally,
we have 12 blue cells in X4 and K as variables and 9 equations. So the degrees
of freedom of blue neutral values are 4 cells. Similarly, we get 3 cells of degrees of
freedom for red neutral values. In the matching point, we use tricks for matching
the ending states by Bao et al. The matching point is decomposed as Figure 19.
There are 3 cells of filter in the matching point. Hence, the complexity of the 6-
round attack on the compression function of Saturnin-Hash is 22°6—3%16 — 2208
which is lower than 2224,

Meet-in-the-Middle Attacks Revisited 39

SB

T MC AK
K’

Wo

MC AK
D K
Match T

SB

cec:

Y1 Wy

Zo
Z1
MC AK
D K’
Yo Z2 Wa T
Z3
Z4

SB

£

SB

-]
o

X3 Y3

SB

-
-

MC AK
K’
Start
%

X4 Yy

forward backward constant uncertain

Fig. 18: The 6-round MITM attack on Saturnin-Hash

ﬂ ‘ @ . ﬁ @
Z, ‘ A K w{ X,

Fig. 19: Matching in the 6-round MITM attack on Saturnin-Hash

E Conllision Attacks on Round-reduced Grgstl

E.1 Collision attack on 6-round Grgstl-256’s output transformation

With the automatic model of MITM collision attack in Sect. 6.1, we find a new
6-round chunk seperation as shown in Figure 20. Based on it, we give the 6-
round collision attack on the output transformation of Grgst1-256. The starting
point is X3 and AT = A~ = 10. From Z; and X5, we get [T = [~ = 8. Hence,
DoFT = A —1t =2 DoF~ =X —1- =2, m =1, and t = 1. By applying
Algorithm 6, we have time complexity according to Equation (9).

(28)10 + (28)10 + (28)3—22—min{2—%, 2-3, 1-3, 3} o, 9124 (24)

The memory complexity is about 2'24 according to Equation (11).

40 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

T 1T
T T
SB MC SB — MC

i

Xo Zo X1 Z
+10 M +10

0
T
2

SR SR [s 5 |11 |19 27 35| a3 51 50
2
s
5
7

5
Starting point

ik "
| sB e
[sr
X5

B] (=] |]

rd backward constant uncertain prefixed ignored

Fig.20: The Meet-in-the-Middle attack on 6-round output transformation of
Grgst1l-256

E.2 Collision attack on 8-round Grgstl-512’s output transformation

As shown in Figure 21, the starting state is W5. Here, since in the computation
from W3 to Zs, the degrees of freedom of the blue bytes are reduced from 31
bytes to 31 — 17 = 14 bytes. By solving a linear system of equations, we can
obtain the space of (AT =) 14 bytes with fixed gray constants. For each value of
the 14 bytes, we apply the table-based method of computing the solution space of
the neutral words (Algorithm 4), where IT = 12 and ¢t = (ay,--- ,a12) € F§*'2.
Hence, DoF™ = AT — [t = 2. Similarly, we have A\~ = 42 — 26 = 16, [~ = 14
and ¢ = (b1, - ,b14) € FgXM. Hence, DoF~ = A= — [~ = 2. In addition, we
have m = 2 and ¢t = 2. By applying Algorithm 6, we have the time complexity
according to Equation (10)

2

(28)%7(1475) + (28)62—47(167%) + (28)%7min{27%, 2-3,2-2, 3y 9248 (25)

The memory cost is 2248 to store the partial target preimages.

F Preimage Attacks on Some Hashing Modes with
10-round AES-256

At EUROCRYPT 2021, Bao et al. [7] introduced the MITM preimage attacks on
8-/9-/9-round AES-128/-192/-256 in PGV hashing modes. At EUROCRYPT
2021, Leurent and Pernot [43] introduced new representations of the AES key
schedules. Taking the new representations into account, we introduce an updated
automatic model for MITM preimage attacks on AES hashing modes. Finally, we
find an MITM preimage attack on 10-round AES-256 as shown in Figure 22 and
improve the best previous attack by one round.

As shown in Figure 22, K; = A71(S;) with i = 0,1,2,4,5. From Figure 23,
we derive A~! given in Equation (30). In the new representation of AES-256’s

Meet-in-the-Middle Attacks Revisited 41

X2 Zs Y| Wa

X3 Zs =t | W3+42.+31.

X4 Zy Wi _om

&
N
5

—14

X
X
Fluannnnns|

X7 Z7 match Wz

B forward M backward B constant [J uncertain
[prefixed ignored

NNNNNNNN
NNNNNNNN
NNNNNNNN
BRNNRNNREY

Fig.21: The Meet-in-the-Middle attack on 8-round output transformation of
Grgstl-512

42 Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

.Kil
i sBY SRO Vel AKO
SB SR MC AK
<« <« «— l«—@ KO
AK T
sBl srl Mcl AK! K, 5
SB SR MC AK At
<« « <« l«—@ K
T K-L KO
s 2 S R2 2 A2 e S,
SB SR MC AK ATt
E— —> —) K2
Start
| aEEs
s B3 s 3 pViek] AK3 K S,
SB SR MC AK At
—_— —_—> —_—> D K3
K3 K4
spt srt Viesd Axcd K. 5.
sB SR MC AK ATt
e e — <7 K*
Start
K® KS
s 5 SRS JVeel) K5 e 5
SB SR MC AK ATl
E— —> —) K5
‘ KT K8
:1 s RO hVeell ARO i Ss
SB SR MC AK At
—_— R — R — D K6
‘ K9 K10
SspT SR Veell AKT
SB SR MC AK K;
e I — <7 K7
o[s[12]16]20]24]28
| FEEEEEE
3 3 2 [6 [10]14]18]22]26 30
SB SR A C AK
3|7 [11]|156[19]23|27|31
SB SR MC AK
— —>| —>< <« K&
Match 1 5
;
of[1[2]a]4a]s]6]7
sB9 SsRY h¥eeld
s [o [10]11[12[13]1415
SB SR AK
<~ -~ (—® K9 16(17|18[19|2021{22|23
T 2425|2627 |28 29{30 31
-} (=] |
forward backward 1 com stant tai

Fig.22: An MITM attack on 10-round AES-256

key schedule shown in Figure 24, the starting state is Ss, where there are 19 blue
cells, 1 red cells and 12 gray cells. We have the following equations:

S(Ss[1]) @ S5[2] = ax

S(S3(8]) ® S3[9] = a2

S(S3[24]) @ S3[25] = aa (26)
S(53[0]) ® Ss[1] = as

S(o3 [30}) @753 [31] = ag

8(53[6]) @ S3[7] = ar,

and

Igz [4] = §2[12] @75’2 [24] :7S3[18] @753[6] = ag,

K3[5] = S2[4] @ S3[16] = S3[10] & S3[30] = ae,

K»[9] = S2[16] @ S2[30] = S3[30] & S3[4] = a0, _ _ _ _

K>[3] = S2[0] @ S2[14] @ S2[20] @ S2(26] = S3[14] @ S5[20] @ S3[26] @ 8(S3(7]) © S3[0] = a11,
(27)

where the blue symbols are blue cells and black symbols are gray cells.

43

Meet-in-the-Middle Attacks Revisited

mmv\ &3] mm&

mw\ P mﬁv\

mmv\ <] onv\

ov\ D ﬂﬁv\

mH@\ D mmw\ D N.Nw\ D Hmo\
mv\ & N.v\ P :v\ P mHv\
wmv\

NH&

wmv\ D omv\

oﬁv\ P wﬁv\

mmv\ &) Hmv\

bv\ D mﬁv\

@H@\ D ON&. D wm& D wm&.
o&@w&@wv\@mﬁv\
mmv\

nﬁv\

bmw\ D Hmm\

:v\ P mﬁv\

omv\ &) wmv\

vv\ (<3} NHV\

LIy @ T8y @ ey @ 62y
ﬁ&@m&m@@v\@mﬁv\
omv\

wﬁv\

wm& D wm&.

wv\ P NR«

Hmv\ P mmv\

mv\ (<3} mﬂv\

STy @ Tey @ 92y P 0Ly
Nv\ P @v\ (&) on\ P wﬁ«
Hmv\

mﬁv\

% ® iy
O © Y © Ly O My
Sy @ Ly & Ty Ty
wN.&

/
va\

9oy © 0%y

cH\& a5} dwv\

B © Ty

D

O © 0%y © Ty O 8%y
04 & Ty & Sy By
mm&

oy © oy
TH O
9% © 5%y
e
S © Ty O Ty O 5%y
ww\@ﬁ@@@ﬁ
il
/

Sy @ Ely

STy @ oy @ 9%y @ 0%y
mw D% DOy DTy
T€.

of
A

In Figure 22, the subkeys meet K 1[12] & K°[12] = ag and K~'[6]® K°[6] =

Fig.23: A new representation of AES-256’s key schedule from Leurent and Per-
ag. From Equation (30), we have

not [43]

]

TS
0 &,

(A}
M_[s_&u
MQS@
N D —
o 52
RIS
Il
= |
N
Y1l -~ , O
I 0wl
ﬂ___Kﬂ
=L
N O
— 4 O 4
=T 5
RSN

|

Then, we have

(28)

& »
B 2
3 3
I I
QWM x
sy
5 S
® ol%
) =(o
=, — 0
hra &
0 ,Qmo
® &
= b
= S\ =
w0 A f
Slg o
S me
ol ™ o
1) 0) w
))
= 73}
) i)
ey 5
a @
2 =
@)
e
@
)
==
S
d
o
b
o
8,
e
@
23
2
7]
—_——

where the blue symbols are blue cells and black symbols are gray cells.

(29)

— Q14

- a5 —

— a; — —
a7 — — =

|

Xiaoyang Dong, Jialiang Hua, Siwei Sun,Zheng Li, Xiaoyun Wang, Lei Hu

44

(30)

0 CCCCCOOO000C0OOOONCOOOOOOHOOOO000
OCHOOOOCCOOHOOOOOOOOO0O00000OOCOOOO000
C00O000O000O000O00OOOOHOOOHOOOOOOOOO
COHO0OO0O0OHOOOO0O0O0O0O0OO0O00O0O0000C0O0O0O0000
[cX=N-N-N-NoN-N-NoN-NoNoN-NoNoNeNoNoNo it No R - RoX=J-R-N-N-N-N-l-]
COO0HOOOCOOOO0OO0OOOOO000000COO00000
C00O000O00LO000O00OOHOOOHOOO-HOOOHOOO
HO0O0OO0OHOOOHOOOHOOOO0O0OO0O0O0OO0O0OOOO0OO0O0O0O
CO00O0O0CCO0C0000000CO0O0HO0O00O0OCOHOOOOO
COHO0O0O0COOCOHOOOOOOOO00000OOCOOOOO00
C00000O000O000O000O0OROHOOO~OOOOO0O00
CO0OHOOOHOOOOOO0O0O0OO0O0O0OO0O000O00C0O00OO0000
CO00O00CCO0C000000OHO0OO0O0O0O0O0OCO0O0OO000
EE=X=R=N-Nol-J-Nol-N-NoR-N-RoR-l-NoN-l-NoN-R-RoN-N-NoN oo Nl
C00O000O000O000O000OOHOOOHOOOHOOOHOO
OCHOOOHOOOHOOOHOOOOOO0O0O0OO0O0OCOOOOO0O
CO00O0CCO0C0000000CO000OHO0O0O0OCOOH0OOOO
COO0HOOOCOOCOOHOOOOOOOOOO00OOOCOOOOO00
C00O000O000000O000OHOOOHOO0OOOOOOOO0
HOOOHOOOOO0O0O0O0O0O0O0O0O0O0O0O0000C0O0O0O0000
CO00O0CCO0C0000000COHOO0O0O0O0O0OCO0O00OO000
0OHOOOOCOCOOO00OOO0OOOOO00000O0COOOO000
C00000O000000000OOOHOOOHOOOHOOO =0
COH0O00OHOOOHOOO-HOO0O0O0OO0O000O0OC0O00OO0000
CO00O0CCO0C000000OHO0OO0O0O00OO-HOO0OOOOO
HOO0O0O0OCOCOHOOOOOOOOOOOOO0OOOCOOOOO00
C00000O000000O000OOHOOOHOOOOOOOOOO
OCHOOOHOOOOO0O0O0O0O0O0OO0O0O0O0O0000C0O00O0000
C0O00O00CCO0C0000000CO00OHO0O0O0O0OCO0O0OO000
COHO0O0OCOO0OC00000OO0OO000000COOOO000
C00000O0000000000OROHOO0O~HOO0O-HOO O~
C0O0OHOOOHOOOHOOOHOOOO0O0O0O0OOOOOOOOOO

Il
—
|

<

*/
*/
*/

.,a17) whose V[X] is of about 2'% values.

11 for All values of B in #AK?, #AK" and #SB°[2,6] do

*/

(a12,a13, a4, a1s, aie, a17), and store the blue bytes of S3 in

Vlaiz, a1s, ..

(S3[2], Ss[8], S3[16], S3[24], S3[0], S3[31], S3[7], S3[18], S3[10], S3[4], S3[26])

for all values of the one red byte in S3 do

/* All blue and gray bytes in S3 are known.
1

(alg, ai13, ..

.,a17], there are 2'® blue values on average.

—1
Sg*)SQA)Sli——)KlﬁK

o 1117]

The MITM preimage attack on 10-round AES-256
1 Ss[5,11,13,14, 15,19, 21,22, 23,27, 28, 29] « 0,

2 (a1, a2,as,as,as,as, ar,as, ag, a0, a1) < 0,

3 V<]

and there is one byte filter in the matching phase.

/* use the trick by Bao et al.’s [7] in the matching point
For each match, test the full preimage.

considered, which is derived following the path:

Compute forward to the matching point to match

/* When computing Equation (29), only blue bytes in K' are

L Compute backward to the matching point, store it in L]

for each value in V[X] do

Compute Equation (28) and (29) to get the 6-byte value

Deduce the 11-byte values from Equation (26) and (27):

/* In V[a12,a13, ..

do

4 for 8-byte blue values (S3[1], S3[9], S3[17], S3[25], S3[30], S3[6], S3[20], S3[12])

Algorithm 7

5
6
7
8

10 Randomly pick one X

12
13
14
15
16
17

Sao

	Meet-in-the-Middle Attacks Revisited: Focusing on Key-recovery and Collision Attacks

