
XORBoost: Tree Boosting in the Multiparty
Computation Setting

Kevin Deforth1, Marc Desgroseilliers1, Nicolas Gama1, Mariya Georgieva1,
Dimitar Jetchev1, Marius Vuille1

Inpher

Abstract. We present a novel protocol XORBoost for both training gra-
dient boosted tree models and for using these models for inference in
the multiparty computation (MPC) setting. Similarly to [2], our pro-
tocol is the first one supporting training for generically split datasets
(vertical and horizontal splitting, or combination of those) while keeping
all the information about the features and thresholds associated with
the nodes private, thus, having only the depths and the number of the
binary trees as public parameters of the model. By using optimization
techniques reducing the number of oblivious permutation evaluations as
well as the quicksort and real number arithmetic algorithms from the re-
cent Manticore MPC framework [5], we obtain a scalable implementation
operating under information-theoretic security model in the honest-but-
curious setting with a trusted dealer. On a training dataset of 25,000
samples and 300 features in the 2-player setting, we are able to train
10 regression trees of depth 4 in less than 5 minutes per tree (using
histograms of 128 bins).

1 Introduction

Gradient boosting is a machine learning technique for regression and classifi-
cation problems that yields a prediction model in the form of an ensemble of
weak prediction models, typically decision trees [14]. XGBoost [1], [6] is currently
one of the most popular open-source libraries supporting gradient boosting for
various programming environments and architectures.

Multiparty computation (MPC) is a method for cryptographic computing
allowing several parties holding private data to evaluate a public function on
their aggregate data while revealing only the output of the function and nothing
else. Recent advances in the area make these protocols practical and suitable for
real-world applications among which machine and statistical learning [3], [4], [5],
[10], [12], [15], [16], [17], [21], [22], [24].

1.1 Prior work

Specific attempts have been made to adapt classical boosting methods to privacy-
preserving settings, both for training and inference [7], [13], [18], [19], [20].

In [7] and [13], frameworks based on federated learning and homomorphic
encryption are proposed that allow for training a boosting model on vertically
split datasets, that is, datasets where for each feature, all the data belongs to
a single party1. While this is suitable for applications where external private
features can be added to enhance the model performance, it does not cover hor-
izontally split data, that is, cases where private datasets with the same features
can be concatenated to build a larger dataset (a classical federated learning/edge
computing scenario). This limitation is not present in our work, where any data
partition type is supported.

A different method for training that does not require vertical splitting is
proposed in [19]. The protocol based on federated learning, secret-sharing and
homomorphic encryption reveals some information about the structure of every
tree: for every internal node, the feature and threshold leading to the maximum
reduction of the loss function are revealed. This potentially leaks sensitive in-
formation about the original data and that can be problematic for some use
cases. Even more information about the underlying data and the trained model
is revealed in [7].

Recent work on XGBoost inference based on fully-homomorphic encryption
(FHE) is studied in [20].

A solution based on secure enclaves is proposed in [18]. As such, the security
model is significantly different from the one considered here. Our approach is
based on information theoretic security as opposed to hardware security. Even
if measures are taken to obfuscate memory access and thus limit side channel
attacks in [18], the approach remains vulnerable to attacks targeting the secure
enclave.

Finally, in [2], a protocol is presented for training and evaluating classifica-
tion trees on data split horizontally or vertically (or any mixture thereof). The
authors implemented their protocol on the MP-SPDZ framework [15]. The authors
of [2] observe that the output of their chosen tree learning algorithm (C4.5 trees)
only depends on the relative order of the input, which allows to map the input
data to the integer domain in an arbitrary, but order-preserving manner and to
skillfully avoid costly privacy-preserving operations on fixed- or floating-point
numbers.

The gradient boosted tree model outlined in here is based on XGBoost [6] and
is inherently different from single classification and regression trees or random
forests. Whereas random forest trains many trees independently on subsampled
datasets, XGBoost constitutes an ensemble of learners by, at each step, adding to
the ensemble the tree with the greatest loss reduction. Furthermore the protocol
outlined in this paper leverages fixed-point arithmetic, which allows to compute
prediction weights accurately to train regression trees instead of being limited
to classification trees with categorical response variables.

1 The implementation of [7] has been extended to allow for horizontally split datasets
as well. However, we have not found any accompanying papers Homo SecureBoost
[25].

2

1.2 Our contributions

We present a generic algorithm to train and evaluate a gradient boosted tree
model based on [6] in the MPC setting. As previously mentioned, our method
supports any combination of horizontal and vertical splittings of the dataset.

In contrast to [19] and [7], the computing parties in our protocol learn only
the shape of the model, i.e., the tree depth and the number of trees.

The feature indices and the threshold values associated to the non-leaf nodes
as well as the weights (or prediction values) associated to the leaf nodes are all
secret-shared. We also ensure that during training, no information about the
first and second order statistics is revealed. Furthermore, during training and
prediction, it is impossible to deduce the path taken by any sample in a decision
tree. Similarly to [2], our protocol is built on generic primitives and can thus be
implemented on any MPC framework supporting these primitives.

We used the Manticore MPC framework which provides access to Boolean
arithmetic as well as arithmetic with real numbers represented using modu-
lar integers [5] or the prior floating-point numbers framework [4]. Manticore
is operating in semi-honest security model with an offline trusted dealer, with
full-threshold security across an arbitrary number of players. Furthermore all
communication between the trusted dealer and the players, as well as all com-
munication between the players during the online phase, is end-to-end encrypted.
This makes it secure against malicious external adversaries.

By building on top of Manticore’s representation of real numbers via modular
integers, our protocol is secure in the information-theoretic setting.

Similarly to [2], Manticore allows us to privately compute the permutation
sorting a given feature column. Applying these permutations is an expensive
operation and we introduce in section 3.2 a novel algorithm that allows to reduce
the number of permutation calls with respect to the naive algorithm.

The improvements presented in this paper allow to train a gradient boosted
tree model of moderate depth within a reasonable time frame (see Section 8).
These include the use of a very efficient sorting mechanism [5], the precompu-
tation of generator vectors to apply inverse permutations (Section 3.2), the use
of compressed instance vectors (Section 4.2) and storing permuted instance vec-
tors to reduce the number of times the permutation function is called. Taken
together, the number of permutation calls after an initial preprocessing phase is
2 +D per tree, with D the tree depth.

2 Background and Preliminaries

For a detailed review of XGBoost, we refer the reader to [6]. Consider a dataset X
of size N ×k and a response variable y (a vector of size N). We use X(j) to refer

to column j of X and Xi to refer to the ith row of X. Thus, X
(j)
i denotes the

ith element of the jth column.

3

2.1 Binary decision trees

A binary decision tree of depth D on the feature space Rk consists of 2D−1 inner

nodes (also called non-leaf nodes or split nodes) and 2D outer nodes (also called
leaf nodes). Associated to each inner node is a feature index (in {1, . . . , k}) and
a threshold. Associated to each leaf node is a weight value. We thus represent
a tree as

Tree = (TreeStructure, TreeWeights),

where

TreeStructure = ((j1, t1), . . . , (j2D−1, t2D−1)),

and

TreeWeights = (w1, . . . , w2D).

We further refine the TreeStructure to consist ofD layers at depth 0, 1, . . . , D−
1 and of size 20, 21, . . . , 2D−1 respectively. The evaluation of a tree on a sample
x = (x1, . . . , xk) is as the following recursive procedure:

eval(x, node) =

if node is a leaf(w) : return w

if node is a inner((j, t), nleft, nright) :

if xj < t return eval(x, nleft) else eval(x, nright).

And by extension eval(x, Tree) means to call eval on x and the root node
of Tree: In a prediction scenario when the Tree is fixed and the sample varies, we
often abbreviate the notation as Tree(x) seen as a Rk → R piecewise constant
function, and on training scenario where x is fixed and the Tree varies, we use
evalx(Tree), which continuously differentiable over the TreeWeights for each
TreeStructure.

If there are many samples, we write Tree(X) ∈ RN , to mean Tree evaluated
at each row of X. Given a tree ensemble {Tree(1), . . . , Tree(T)}, one obtains
predictions on X as

ŷ(T) =

T∑
t=1

Tree(t)(X) ∈ RN . (1)

In order to reduce overfitting during the boosting procedure, it is standard
to use a weighting coefficient η called the learning rate when updating ŷ with
the prediction from a new tree in 1.

2.2 Objective function

Gradient tree boosting is an iterative process using a current prediction ŷ(T) on
T trees to greedily (see [14] for a definition) grow a new T+1-th tree that most
reduces a certain objective function. For a given function loss : R×R→ R, such

4

as e.g. mean-squared error or logistic loss and fixed training set X, y, consider
the function

L(Tree(T+1)) =

N∑
i=1

loss(yi, ŷi
(T) +evalXi

(Tree(T+1))) +Reg(Tree(T+1)). (2)

The regularization function Reg is used to reduce overfitting by penalizing large
parameter values (similarly to Ridge and Lasso regression models). We use L2-
regularization on the leaf weights

Reg(Tree(t)) = γ|L|+ λ

2

∑
`∈L

w2
` ,

where λ and γ are fixed hyperparameters, L is the set of leaves of Tree(t) and
w` is the leaf weight for leaf ` ∈ L.

The overall goal is to find a tree that minimizes the objective function L.
Note that for a fixed TreeStructure the restriction of the objective function L
on the TreeWeights space is differentiable, convex in the case of logistic loss,
and even quadratic in the case of mean-square loss. The basic idea of the greedy
XGBoost algorithm is to recursively take a Tree (initially a single leaf), replace
one of its leaves by a fixed number of splits, and for each of these potential tree
structures, retain the one that shows the maximal gain on L, and repeat the
process until the tree is a full tree of depth D. Under the assumption that L is
equal or well-approximated by its second-order expansion at zero the gain on L
is estimated as

score(TreeStructure) =
1

2
grad(L)t · Hessian−1(L) · grad(L),

with gradient and hessian over the TreeWeights space, all evaluated in zero. In
the present case, the score formula simplifies into the following lemma, which
corresponds to equation 6 of [6], and a proof is also given in Appendix A:

Lemma 1. Let gi = ∂b loss(yi, ŷi
(T)) and hi = ∂2b loss(yi, ŷi

(T)) for 1 ≤ i ≤
N , we easily verify (see [6]) that:

score(TreeStructure) =
∑

leaves L

G2

H + λ
, (3)

where G =
∑
i∈L

gi and H =
∑
i∈L

hi.

Between each step, we update the tree structure by picking the split (feature
and threshold value) maximizing the score: since we split only one node at each
time, we only need to account for the contribution of the new left and right
leaves in the above score, the rest of the leaves remain constant.

5

Consider now splitting a node n, i.e. attaching two children nodes nleft and
nright to n. The gain associated to this split is the difference in loss resulting
from attaching these two children nodes:

gain = score(Gnleft
, Hnleft

, λ) + score(Gnright
, Hnright

, λ) (4)

− score(Gn, Hn, λ)− γ,

(where score(Gn, Hn, λ) = score(Gnleft
+Gnright

, Hnleft
+Hnright

, λ)). Note that
the gain needs to take into account −γ, since splitting a node results in an
increment of the total number of nodes.

2.3 MPC represenation of a tree

The TreeStructure is represented as follows: for every internal node n, the fea-
ture index jn is secret and is encoded as an additively secret-shared elementary
vector en of size k. As way of example, if we need to access the jnth column, we
can multiply the original dataset X with en. This technique is used throughout
to keep the tree structure private. The threshold tn is secret and is additively
secret-shared.
The TreeWeights are secret and are additively secret-shared.

3 Data Preprocessing Phase

Note that one of the challenges for splitting a node into a left child and a right
child in the overall xgboost training procedure is the need to maximize the gain.
A priori, this is done over one discrete variable (the feature) and one continuous
variable (the threshold corresponding to that feature). To discretize the search
for the threshold, we use histograms for the feature values. Computing these
histograms in privacy-preserving manner is challenging - it requires to obliviously
sort the feature vectors and extract the sorting permutations, as explained in
Section 3.1.

The sorting permutations are required later on in the training procedure
(see Algorithm 6). In Section 3.2 we introduce a novel algorithm, that allows to
reduce the number of times these permutations need to be applied, leading to a
significant gain in efficiency (O(log2B) instead of O(B) per feature, where B is
the number of bins in the histogram).

3.1 Sorting feature vectors and building histograms

The Manticore framework enables for efficient sorting of numerical vectors. It
does so by applying a dealer-generated, secret-shared uniformly random permu-
tation to the target vector, on which a variant of quicksort is applied (c.f. Section
5.2 of [5]). Throughout the computation, the input vector remains secret-shared
and nothing about the underlying data is revealed. As an output we receive the
sorted vector and / or the secret-shared sorting permutation and their inverses.

6

While the Manticore algorithm supports oblivious sorting of vectors with
repeated values, this method is not suited for categorical feature vectors, for
which refer the reader to section 6.

We now introduce some notation used throughout this paper.

– Given a permutation σ on N elements and a feature vector X(j) of size N ,
σ acts on X(j) by permuting the indices:

σ(X(j)) := (X
(j)
σ(i))

N
i=1.

We define the function apply permutation, that takes as input a secret-
shared vector v of size N, together with a list of r permutations σ1, . . . , σr
and returns a N × r matrix, whose j-th column corresponds to σj(v).

– We use πj as a label for the sorting-permutation of feature-column X(j), and
we use π−1j to denote the inverse permutation.

3.1.1 Bucket vectors As mentioned in the introduction of this section, we
restrict the possible choices of the thresholds by relying on histograms. More
specifically, given the number of bins B in the histogram and a feature vector
X(j), we only consider the B − 1 values

t
(j)
b := πj

(
X(j)

)
bbN/Bc+1

, b = 1, . . . , B − 1,

as possible threshold candidates for that feature.

Recall that an inner node of a decision tree consists of a feature-index j and
a threshold-value t, and that the evaluation of such a node for sample x is given
by xj < t.

As such, if we assume that all elements in feature column X(j) are unique,
we find that we have

π−1j (BVb) = X(j) < t
(j)
b , ∀ b = 1, . . . , B − 1, (5)

where we define BVb as the b-th bucket vector, such that

(BVb)i :=

{
1 if i ≤ b bN/Bc
0 otherwise,

∀ i = 1, . . . N. (6)

We call π−1j (BVb) the selector vector of the b-th bucket for feature j, because

it selects the first b bins of the histogram of feature vector X(j).

During training, it is convenient to keep a record of the path taken by the
samples in the training data. For this, we require all (B − 1)k selector vectors
π−1j (BVb) (c.f. section 4.2.1).

7

3.2 Bucket vectors and permutations

Naively, one would compute the selector vectors π−1j (BVb) for feature j and buck-
ets b = 1, . . . , B − 1, with B − 1 calls to apply permutation. Yet, it is possible
to do this with only log2B ones. This optimization is a major contribution of
the paper and leads to practical speedups.

For this, we first explain how to construct the bucket vectors BV1, . . . , BVB−1
from a set of publicly known generating vectors via Algorithm 1. We then lever-
age the commutative property between algorithm 1 and the function apply permutation,
to achieve an efficient generation of selector vectors in algorithm 2.

3.2.1 Generating bucket vectors For simplicity of the exposition and with-
out loss of generality, we assume that B is a power of two and divisor of N, thus
each bin of the histogram holds N/B samples.

First we define a helper function: for any j ∈ [1, log2B], and any b ∈ [0, B−1],
we define [b]j as the j-th significant bit of the binary expansion of b. Specifically,
we use 1-indexing for the bits and have

b =

log2 B∑
j=1

[b]j2
j−1, ∀ b = 0, . . . , B − 1.

We now define a binary matrix C ′ of dimension B × log2B, such that row i
corresponds to the binary expansion of B − i, with the least-significant bit on
the left, and the most significant bit on the right, e.g. we have

C ′i,j := [B − i]j , j = 1, . . . , log2B, ∀ i = 1, . . . , B

= ¬ [i− 1]j , j = 1, . . . , log2B, ∀ i = 1, . . . , B

Further we construct the N× log2(B) binary matrix C from C ′, by repeating
each row N/B times. Its columns are the generating vectors in algorithm 1:

C
(j)
i := C ′1+b(i−1)B/Nc,j , j = 1, . . . , log2B, i ∈ [1, N]. (7)

= [B − 1− b(i− 1)B/Nc]j , j = 1, . . . , log2B, i ∈ [1, N]. (8)

= ¬ [b(i− 1)B/Nc]j , j = 1, . . . , log2B, i ∈ [1, N]. (9)

For example, if N = 32 and B = 8 we have

Ct =

11110000111100001111000011110000
11111111000000001111111100000000
11111111111111110000000000000000

 .

8

Algorithm 1 bucket vector

Input: This algorithm generates a bucket vector and takes as input
– the public bucket index b ∈ [1, B − 1]
– The generating vectors {C(1), . . . , C(log2 B)} as defined in equation 7

Output: bth bucket vector BVb
1: res = 0N (the zero vector of size N)
2: for j = 1, . . . , log2B do
3: res = [b]j ? res∨C(j) : res∧C(j)

4: end for
5: return res

Lemma 2. Algorithm 1 yields the bth bucket vector BVb.

Proof. Let b ∈ [1, B − 1] an input for algorithm 1 and let resj be the state of
variable res in the j-th iteration of the for-loop on line 3 of algorithm 1, with
res0 = 0N the initial value. Now, let i ∈ [1, N] and let bi ∈ [0, B − 1], ri ∈
[0, N/B − 1], such that

i− 1 = bi ·N/B + ri.

By definition of BV (c.f. equation 6), it suffices to prove that we have

(reslog2 B)i = 1 ⇐⇒ bi < b. (10)

Recall that by definition (c.f. equation 7), for any j ∈ [1, log2B], we have

C
(j)
i = ¬ [bi]j . (11)

Substituting (11) in line 3 of the algorithm yields

(resj)i =

{
(resj−1)i OR ¬ [bi]j if [b]j = 1

(resj−1)i AND ¬ [bi]j else.
(12)

Note that whenever [bi]j = [b]j , we can substitute in equation 12:

(resj)i = (resj−1)i .

Hence, if we define jm as the maximal index such that [bi]jm 6= [b]jm , with the
convention of jm = 0, if bi = b, we find that(

reslog2 B

)
i

= (resjm)i . (13)

Finally, we can observe that equation 10 holds for each of the three possible
cases and conclude the proof:

case bi > b : we find 1 = [bi]jm > [b]jm = 0 and thus(
reslog2 B

)
i

(13)
= (resjm)i

(12)
= (resjm−1)i AND 0 = 0;

9

case bi = b : we have (
reslog2 B

)
i

(13)
= (res0)i = (0N)i = 0;

case bi < b : we find 0 = [bi]jm < [b]jm = 1 and thus(
reslog2 B

)
i

(13)
= (resjm)i

(12)
= (resjm−1)i OR 1 = 1.

�

3.2.2 Constructing Selector Vectors Since algorithm 1 only requires AND

and OR operations on the generating vectors C(1), . . . , C(log2 B), we find that the
function apply permutation and algorithm 1 are commuting, i.e. more specifi-
cally, for each sorting permutation πj , we have that the selector vector π−1j (BVb)
is given by

π−1j (BVb) = π−1j

(
bucket vector

(
b, {C(1), . . . , C(log2 B)}

))
= bucket vector

(
b, {π−1j (C(1)), . . . , π−1j (C(log2 B))}

)
Hence, if we define

Cj,m := π−1j

(
C(m)

)
, j = 1, . . . , k, m = 1, . . . , log2(B),

We can re-construct all (B − 1)k selection vectors via Algorithm 2 and only
require log2(B)k calls to apply permutation .

Algorithm 2 selector vector

Input: This algorithm takes as input:
– Public bucket index b ∈ [1, B − 1]
– Secret-shared generating vectors {Cj,1, . . . , Cj,log2 B} for feature j

Output: Secret-shared selection-vector π−1
j (BVb) for the first b bins of feature j

1: res = 0N (the zero vector of size N)
2: for m = 1, . . . , log2B do
3: res := [b]m ? res∨Cj,m : res∧Cj,m

4: end for
5: return res

4 Description of the XORBoost Training Algorithm

The input to the training algorithm is the feature matrix X as well as the
response vector y (both secret shared among the players).

To train an ensemble of a fixed number T of binary decision trees, we proceed
as follows: assuming that we have already trained the first t − 1 trees, to grow

10

the tth tree to a given depth D, we iterate by layers starting from layer zero,
that is, the root node. In each iteration, we ‘split‘ each leaf into a left and a right
child via a splitting criterion, that is, a pair of a feature index and a threshold
value, maximizing the gain.

For efficiency reasons, we have made the possible threshold values discrete by
introducing the histogram/buckets in the data preprocessing phase, i.e., oblivi-
ously sorting each feature as described in Section 3.1 and building the histograms
of Section 3.1.1.

To compute the optimal splitting criterion in plaintext, we simply iterate
over all possible splitting criteria (all feature indices and all bucket indices) and
select the optimal one. This yields a (B−1)×k gain matrix (of all possible gain
values).

To adapt this simple optimization procedure to the MPC setting, we com-
pute the optimal splitting criteria obliviously by first computing the gain matrix
obliviously and then computing (also obliviously) the (secret shared) feature se-
lector e and (secret shared) threshold selector t corresponding to the feature
index j and the bucket index b of the optimal splitting criterion. Subsequently,
pick the right generator vectors Cj,m for BVb and compute (again obliviously) the
preimage π−1j (BVb) of the bucket vector. This allows us to decide which samples
would go to the left child and to the right child, effectively splitting the node.
We now go into more detail for each of these steps.

Algorithm 3 xorboost train

Input: The training algorithm takes the following input:
– X - feature matrix of size N × k (secret shared)
– y - response vector of size N (secret shared)
– T - the size of the ensemble
– D - the depth of each binary decision tree

Output: A tree ensemble ensemble =
{
Tree(1), . . . , Tree(T)

}
. Each tree Tree(t) con-

sists of the following data:
– t

(t)
n - secret shared threshold selector for each non-leaf node n

– e
(t)
n - secret shared feature selector for each non-leaf node n

– w
(t)
` - secret shared weight for each leaf node `

– Tree(t)(X) - secret shared vector of predictions on the training data
1: ŷ0 := initialize(X, y)
2: ensemble = {}
3: for t = 1, . . . , T do

4: g(t−1) :=
(
∂b loss(yi, ŷ

(t−1)
i)

)
i∈[1,N]

5: h(t−1) :=
(
∂2
b loss(yi, ŷ

(t−1))
i

)
i∈[1,N]

6: Tree(t) := grow tree(g(t−1), h(t−1))
7: Add Tree(t) to ensemble

8: end for
9: return ensemble

11

4.1 Computing initial predictions

The computation of the first and second order statistics vectors g and h of the loss
function only depends on the response variable y and the current estimate ŷ(t).
Since the tree ensemble is initially empty, we must provide an initial estimate ŷ0

in order to grow the first tree. There are several possibilities for the initialization
of ŷ0:

– The zero vector.

– The constant vector with value α minimizing

N∑
i=1

loss(yi, α). For instance,

for L2 loss, this corresponds to α =
1

N

N∑
i=1

yi, and for logistic loss this cor-

responds to α = σ−1

(
1

N

N∑
i=1

yi

)
, where σ is the sigmoid function σ(x) =

1

1 + e−x
.

– Leveraging previous work on ridge regression (respectively logistic regres-
sion) [5], we can use its prediction to initialize the boosted trees model in
the case of L2 loss (respectively logistic loss). The aim here is to bootstrap
the gradient boosting procedure by starting with a better initial value for
ŷ0 and reducing the number of trees required to obtain a model with good
predictive power.

In all cases, we assume that we have defined a function initialize(X, y) that
will compute the initial predictions.

4.2 Oblivious permutations and computing gain matrices

We now explain how to efficiently apply oblivious permutations in order to com-
pute gains and weights. Recall from Section 3.1 that we have obliviously sorted
the feature columns of X by a set Π = (π1, . . . , πk) of k secret-shared sorting
permutations. The computation of the weights and the gain matrices includes
two types of secret-shared vectors: instance vectors and the already introduced
bucket vectors from Section 3.2.

4.2.1 Efficiently computing instance vectors. The main idea lies behind
manipulating secret-shares of the so-called instance vectors. Associated to each
node n ∈ N is an instance vector IVn, that is, the binary vector of size N
indicating which samples of the dataset X go through this node. To parallelize
computations and reduce complexity, we also store the permuted instance matrix
Π(IVn) - this is an N × k matrix.

When growing the tree, we will be working per layer. For a given depth d,
let Ld be the dth layer, that is, the set of the 2d nodes at depth d (L0 consists
of the Root only, L1 consists of the two children of the Root, etc.). Observe the
following two basic properties:

12

1.
∑
n∈Ld

IVn = 1N ,

2. IVn = IVnleft
+ IVnright

.

Since applying the function apply permutation to a vector of sizeN is costly,
we use an optimization technique to reduce the number of calls to this function
from O(2D) to O(D) (i.e., linear on the depth of the tree). More precisely, we
define the compressed instance vectors IVC

IVCd+1 :=
⊕
n∈Ld

IVnleft
,

where
⊕

is the logical XOR operator. Using Property 1. above, we see that the

⊕ operation in the definition is equivalent to ∨. This allows us to compute the
oblivious permutation matrix Π(IVnleft

) for the left child of a given node by
simply applying the AND operator between the permutation matrix for that node
with the compressed instance vector for that level, i.e., by combining the identity

IVnleft
= IVn ∧ IVCd+1 (14)

with the commutativity of permutations and logical operations. Thus,

Π(IVnleft
) = Π(IVn) ∧Π(IVCd+1) (15)

This explains the interest in IVC: instead of applying Π to each IVnleft
, we

can apply Π to IVCd+1 and compute Π(IVnleft
) using a significantly cheaper ∧

operation.

4.2.2 Computing gain matrices. Recall that computing gain (eqs. (4))
requires computing the quantities Gn and Hn for various nodes n and their
left and right children. These can conveniently be written in terms of instance
vectors and sorting permutations as follows:

Gn = π(g)t · π(IVn) and Hn = π(h)t · π(IVn), (16)

where π is any permutation on N letters (in particular, any of the sorting per-
mutation). Note that this expression does not depend on the choice of π.

We are now ready to compute the gain function to be used in the tree
growing algorithm. Since our goal is to bucket each feature value into one of
the B possible buckets, we only want to compute the gains corresponding to
B − 1 splittings at the bucket thresholds (thus, discretizing the possible splits,
as explained in Section 3.1.1). As we do this for any of the k input features, we
can conveniently package these gains into a (B − 1)× k matrix gains that can
be computed via (16) as

gainsn(i, j) = score(Gnleft
(i, j), Hnleft

(i, j), λ) +

+ score(Gnright
(i, j), Hnright

(i, j), λ)−
− score(Gnleft

(i, j) + Gnright
(i, j), Hnleft

(i, j) + Hnleft
(i, j), λ)− γ,

13

for i = 1, . . . , B − 1 and j = 1, . . . , k, where

Gnleft
= (Π(g)�Π(IVn))t · BM, Gnright

= (Π(g)�Π(IVn))t · ¬ BM,

and

Hnleft
= (Π(h)�Π(IVn))t · BM, Hnright

= (Π(h)�Π(IVn))t · ¬ BM,

where � denotes the Hadamard product (i.e., elementwise product) and BM is
the concatenation of the bucket vectors: BM = [BV1 | . . . | BVB−1] (a N -by-(B − 1)
matrix). See Section 2 for the definition of the score function and an explanation
of the gain terminology.

Algorithm 4 gain matrix

Input: This algorithm takes as input
– N×k matrices Π(g) and Π(h) for the first- and second-order statistics vectors
– Permutation matrix Π(IVn) for node n

Output: The (B − 1)× k gain matrix gainsn for node n
1: Gnleft = (Π(g)�Π(IVn))t · BM
2: Gnright = (Π(g)�Π(IVn))t · ¬ BM
3: Hnleft = (Π(h)�Π(IVn))t · BM
4: Hnright = (Π(h)�Π(IVn))t · ¬ BM
5: return score(Gnleft , Hnleft , λ) + score(Gnright , Hnright , λ) − score(Gnleft +

Gnright , Hnleft + Hnright , λ)− γ

Algorithm 4 summarizes the above computation. Note that in Step 5, we have
overloaded notation so that score(Gnleft

, Hnleft
, λ) is now a (B − 1)× k matrix.

Remark 1. By tracking a 0-1 matrix Xnan of missing values in the initial dataset,
we can adapt the algorithm to handle missing values. Let

Π(Xnan) = [π1(X(1)), . . . , πk(X(k))].

We can consider Π(IVn,nan) = Π(IVn) XORΠ(Xnan). We then obtain two gain
matrices, one where Gnleft

and Hnleft
are computed using Π(IVn,nan) instead of

Π(IVn) and another where it is Gnright
and Hnright

that use Π(IVn,nan). We can
then proceed to take the argmax over the concatenation of these two matrices.

4.3 Tree growing

The algorithm will split the layers until the desired depth D and compute the
leaf weights to obtain the predictions Tree(X). The threshold selectors tn and
feature selectors en are computed during the layer splitting while the weights
w = (w`)`∈LD

are computed once the tree has reached its full depth. We denote
by T = {tn : n ∈ [1, 2D − 1]} the set of thresholds of Tree and by E = {en : n ∈

14

[1, 2D − 1]} the set of feature selectors. The data {T,E} constitutes the tree
structure and is secret-shared.

Algorithm 5 grow tree

Input: As input, this algorithm takes
– First and second order statistic vectors g and h
– Depth D of the tree to grow

Output: A tree {T,E, w}
1: Π(g)← apply permutation(g)
2: Π(h)← apply permutation(h)
3: IVRoot ← 1N×1

4: Π(IVRoot)← 1N×k

5: T,E, {IV` : ` ∈ LD} ← split layer (1,T = ∅,E = ∅, Π(g), Π(h), {IVRoot}, {Π(IVRoot)}, D)
6: for ` ∈ LD do
7: w` ← privatedivide(−gT · IV`, hT · IV` + λ)
8: end for
9: Tree(X)←

∑
`∈LD

w` · IV`

10: return T,E, w = (w`)`∈LD , Tree(X)

Remark 2. For each split, one can track the value of the gain achieved. By veri-
fying that the gain is positive using a private compare function, one can prune
the tree of leaves which hold little explanatory power. This means computing the
weight for every internal node and updating the weight of a leaf if its ancestor
has negative gain. This can be determined using a private compare function.

4.4 Splitting a layer

We present a detailed description of the algorithm that, given the dth layer of a
tree, adds a new layer to a tree by splitting each node at depth d into a left and
right child node at depth d+ 1. Note that all the output data is secret-shared.

15

Algorithm 6 split layer at depth d

Input: d - current depth, T, E, Π(g), Π(h), {IVn : n ∈ Ld}, {Π(IVn) : n ∈ Ld}, D -
final depth

Output: T, E, {IVn : n ∈ Ld+1}, {Π(IVn) : n ∈ Ld+1}
1: for n ∈ Ld do
2: gainsn ← gain matrix(Π(g), Π(h), Π(IVn)) . Matrix of size (B − 1)× k
3: tn, en, b, j ← arg max(gainsn)
4: Selector← selector vector({Cm,j : 1 ≤ m ≤ log2B}, b)
5: IVnleft ← Selector ∧ IVn
6: IVnright ← ¬Selector ∧ IVn
7: end for
8: T← T∪{tn : n ∈ Ld}, E← E∪{en : n ∈ Ld}
9: {IVn : n ∈ Ld+1} ← {IVnleft : n ∈ Ld} ∪ {IVnright : n ∈ Ld}

10: IVC←
⊕

n∈Ld
IVnleft

11: Π(IVC)← apply permutation(IVC)
12: for n ∈ Ld do
13: Π(IVnleft)← Π(IVC) ∧Π(IVn)
14: Π(IVnright)← ¬Π(IVC) ∧Π(IVn)
15: end for
16: {Π(IVn) : n ∈ Ld+1} ← {Π(IVnleft) : n ∈ Ld} ∪ {Π(IVnright) : n ∈ Ld}
17: if d = D − 1 then
18: return T,E, {IVn : n ∈ LD}
19: else
20: return split layer (d+ 1, Π(g), Π(h), {IVn : n ∈ Ld+1}, {Π(IV)n : n ∈ Ld+1}, D)
21: end if

Note that the argmax only returns the secret-shared vectors t and e from
which we could compute b and j. This is purely for exposition since we can
obtain the right generator vectors Cj,m using e and matrix multiplication.

5 Prediction

Our inference protocol respects the same privacy requirements as our training
protocol: only the shape of the model is public knowledge (tree depth, number of
trees) everything else remains secret (threshold values, feature selectors, leaf- and
prediction-values). The data used to evaluate the model remains secret. Similar
to [2] we achieve this by evaluating the predicate of each node in the tree and
thus hiding the path taken. Previous work on private and secure decision tree
inference was done in [9] and [11] for passive and active security in two player
settings.

In order to improve efficiency, the communication intensive comparisons and
multiplications required for securely evaluating a tree are batched in Algorithm 7.
We give a brief explanation of the protocol for a batch of size one, i.e. a single
tree.

Recall that each non-leaf node consists of a feature selector and a threshold
value. To evaluate a non-leaf node with a sample x, the feature selector is used

16

to extract the feature of interest from x, which is then compared against the
threshold value. This can be achieved securely via a multiplication of the secret-
shared feature selector and the secret-shared sample x, followed by an oblivious
comparison with the threshold value, yielding a secret-shared Boolean that in-
dicates, if the left or the right subtree is to be evaluated next. Our iterative
algorithm 7 evaluates one layer at a time - starting from the bottom layer and
going up until reaching the root of the tree, each time obliviously selecting be-
tween secret-shared leaf-values and reducing the number of leaf candidates by a
factor of two. Note how multiplications and comparisons on lines one and two of
algorithm 7 have been batched to reduce the number of communication rounds.

Algorithm 7 xorboost predict batch

Input: The prediction function for a batch of trees takes as input:
– secret-shared data matrix X ′ of dimensions N ′ × k
– secret-shared tree ensemble of T trees, each tree Tree(t) of depth D and con-

sisting of
• threshold values {ttn : n ∈ [1, 2D − 1]}
• feature selectors {etn : n ∈ [1, 2D − 1]} : vectors of length k each
• prediction weights wt = (w`)`∈[1,2D] (leaf-values)

Output: Predictions Tree(t)(X ′) for t ∈ [1, T]

Extract the feature-values and compare them to the threshold values:
1: X ′(t,n) := X ′ · etn for all n ∈ [1, 2D − 1] and t ∈ [1, T]
2: βt,n := X ′(t,n) < ttn, for all n ∈ [1, 2D − 1] and t ∈ [1, T]

Re-arrange the leaf values and obliviously extract the correct candidate:

3: wt,2D−1+` = wt
` · 1N′×1, ` = 1, . . . , 2D, for all t ∈ [1, T]

4: for d = D, . . . , 1 do
5: wt,n = wt,2n+1 + βt,n · (wt,2n − wt,2n+1) for n = 1, ..., 2d−1 and t ∈ [1, T]
6: end for
7: return {wt,1 : t ∈ [1, T]}

Evaluating a gradient boosted tree model follows naturally: The tree-ensemble
is split into batches of reasonable sizes, which are evaluated independently. The
predictions for each batch are then multiplied with the learning parameter η (c.f.
section 2) and summed together with the initial prediction (c.f. section 4.1) as
outlined in algorithm 8.

17

Algorithm 8 xorboost predict

Input: The prediction function for the entire model takes as input:
– secret-shared data N ′ × k matrix X ′,
– Learning rate parameter η
– secret-shared initial prediction value ŷ0

– secret-shared tree ensemble of T trees, each tree Tree(t) of depth D and con-
sisting of
• threshold values {ttn : n ∈ [1, 2D − 1]}
• feature selectors {etn : n ∈ [1, 2D − 1]} : vectors of length k each
• prediction weights wt = (w`)`∈[1,2D] (leaf-values)

Output: secret-shared prediction vector ŷ := ŷ0 +
∑T

t=1 ηTree
(t)(X ′)

1: w1, . . . , wT := xorboost predict batch(X ′, Tree(1), . . . , Tree(T))
2: ŷ := ŷ0 + η

∑T
t=1 w

t

3: return ŷ

6 Categorical feature

Many datasets include categorical features which are informative and should be
handled adequately by the machine learning model. While the original xgboost
approach does not support categorical features, there has been development in
this area. For a survey of different ways to do this, see [23]. We develop here
an approach that is compatible with the work presented so far. Suppose given a
feature column X(j) with categorical values drawn from a set A. Tree splits for
this feature are induced by writing A as a disjoint union, A = A1

⋃
A2 and we

are interested in finding the split that produces the greatest reduction in loss.
By the main result of [8], the following procedure will find the best split if the
loss function is either L2 loss or logistic loss. It only considers |A| − 1 possible
splits.

– For each categorical value a ∈ A, compute ya =

∑
i,X

(j)
i

=a
yi∑

i,X
(j)
i

=a
1 the average

response variable over all samples for a.
– Order the categorical values according to the ya values, yielding a total order
< (breaking ties arbitrarily) on the set A.

– For every a ∈ A consider the split Sa with A1 = {a′|a′ ≤ a} and A2 =
{a′|a′ > a}.

Let πA be the sorting permutation for the values ya. Given the original one
hot encoded matrix M , we apply πA to its columns to obtain MA, the matrix
where the columns are sorted according to the values of ya. In the context of
categorical variables, the bucket vectors’ role is played by indicator vectors for
the splits Sa. These indicator vectors for the splits Sa can be computed as row
sums of the sorted matrix MA. If we let a be the bth categorical value according
to the total order <, we have:

18

BVb =
∑
j≤b

M
(j)
A =

{
1 if X(j) = a′, a′ ≤ a
0 otherwise,

∀ i = 1, . . . N.

7 Oblivious Trees

Oblivious trees use the same split for every node across a given layer, see for
example [23]. This means that the splits are no longer adaptive: they do not
depend on the instance sets at a given node. Concretely, the tree growing step
would proceed as follows, assuming the first and second order statistic vectors
have already been computed:

– Compute the gain matrix. Let α1 ≥ . . . ≥ αD be the D entries with maxi-
mum gain.

– For each αd, compute td and ed.
– Compute the leaf instance vectors and leaf weights.

In terms of complexity, the main difference is that a single gain matrix is
computed for the whole tree as opposed to one gain matrix per internal node
in the original approach. This also means reducing the number of calls to the
(expensive) argmax function. The tradeoff is in the inference step: since the splits
are chosen all at once without taking into account previous splits, the reduction
in loss at each tree split stands to be lower than in the original fully adaptive
version of XGBoost. Oblivious trees can easily be adapted into the framework
developed so far in order to provide a tradeoff between inferential power and
computational complexity.

8 Benchmarks

All benchmarks have been done on a single n1-standard-8 (8 vCPUs, 30GB of
RAM, SSD drive, Intel Xeon CPU Skylake 2.00GHz) Google Compute Engine
virtual machine for 2 players. As such, all reported times do not take into account
network transfer time.

8.1 Parameter Scaling

In figure 1, we show the impact of varying the dataset size for the utilization
of network, memory and time. In figure 2, we show the impact of varying the
number of buckets as well as the tree depth on the same resources.

The benchmarks presented in Table 1 and Figure 3 are for a dataset of
N = 20K samples and k = 300 features, 2 players, and models with 5 trees.
Tree depth and number of buckets vary according to the table rows.

Referring to Table 1 we see the strong dependency on the depth and the
number of buckets. The total processing time remains reasonable to grow 5

19

Fig. 1: Network Size, RAM usage and Wall time for depth 4, 64 buckets, 10 trees,
N ∈ {5K, 25K, 100K} samples and k ∈ {10, 300} features.

trees. Figure 3 highlights that total wall-time hovers around a few minutes per
tree for depth 4 and total time grows more or less linearly with the number of
trees, as expected.

If we compare our results to [7], they are similar. We obtain a running time
of 22 minutes for 5 trees, dataset dimensions of 20K by 300, a tree depth of 4

20

Fig. 2: Network size, Memory and Wall time for a dataset of dimension 20K×300
and a model with 5 trees.

and 64 buckets. They obtain a running time of around 5 minutes for a single
tree with 30K samples, 25 features and a tree depth of 4. Delivering similar
performance while not revealing any information is a significant improvement.

Although our framework leverages a bucketing strategy to handle larger
datasets, Figure 4 presents a comparison with the main benchmarks of [2] where

21

RAM Communication Wall time

Depth Number of Offline(TD) Online(pp) Triples(pp) Network(pp) Offline(TD) Online(pp)
buckets GB minutes

3 1.2 2.24 17.4 14.7 5.61 6.23
4 16 1.41 2.70 31.8 23.5 9.98 10.6
5 1.95 3.64 60.0 40.5 18.2 19.9

3 1.27 2.44 17.8 15.1 5.78 6.58
4 32 1.51 2.95 32.4 24.2 10.4 11.3
5 2.43 3.98 61.3 41.8 18.4 20.8

3 1.35 2.64 18.4 15.6 6.05 7.18
4 64 1.94 3.26 33.6 25.3 10.7 12.8
5 3.38 4.42 63.7 44.0 18.7 23.4

3 2.10 2.93 19.4 16.6 6.41 8.41
4 128 3.81 3.89 35.8 27.3 11.2 14.4
5 6.53 6.53 68.3 48.0 20.4 28.7

3 5.50 5.51 21.3 18.3 6.93 10.1
4 256 10.9 11.0 40.1 31.0 12.5 19.6
5 NA NA NA NA NA NA

Table 1: Benchmarks for 20K samples, 300 features, 2 players and 5 trees.

no bucketing is possible. We use a tree depth of 1 and 2 features in order to use
the same parameters. For 8192 samples, end to end execution time is around 12
seconds and communication is 50MB for XORBoost compared to 35 seconds and
3.5GB for Table 1 in [2] for the passive security setting.

8.2 Division and argmax.

For each split node we need to compute a division and an argmax on a matrix
of size (B − 1) × k (which from a performance point of view is equivalent to
computing a division/argmax on a vector of size (B − 1) · k). Table 2 shows
execution times for a 2-player division for different sizes of input vectors. Input
vectors are 60-bit wide and the output has a relative precision of 50 bits compared
to the plaintext division (performed on double-precision floating-point).

Table 3 shows execution times for a 2-player argmax for different sizes of
input vectors.

RAM Communication Wall Time

Input size Offline(TD) Online(pp) Triples(pp) Network(pp) Offline(TD) Online(pp)
MB seconds

512 8.8 9.4 0.380 0.290 0.17 1.65
2048 13.8 14.1 1.411 1.099 0.21 1.71
16384 49.8 46.8 10.662 8.615 0.29 1.79
65536 176.6 110.3 42.381 34.383 0.72 2.35

Table 2: 2-player private division execution times and communication sizes

22

Fig. 3: Growth of RAM usage during the online phase and of total execution
time for 64 buckets and a tree depth of 4.

Fig. 4: Resource utilization without bucketing, comparison with (AEV) [2]

RAM Communication Wall Time

Input size Offline(TD) Online(pp) Triples(pp) Network(pp) Offline(TD) Online(pp)
MB seconds

512 8.5 9.7 0.057 0.031 0.13 1.68
2048 10.1 11.1 0.148 0.147 0.15 1.71
16384 16.2 17.9 0.758 1.032 0.29 1.78
65536 28.8 34.5 2.801 4.046 0.42 1.94

Table 3: 2-player private argmax execution times and communication sizes

8.3 Comparison with plaintext algorithms

We have also ascertained that minimal predictive power is lost with respect to
plaintext implementations. Since there is no unique minimum loss model, imple-

23

mentation decisions such as how the bucketing is performed result in different
models even when comparing only plaintext models. We compared the L2 loss
of the predictions made by XORboost and by several well-known plaintext imple-
mentations on the training dataset: scikit-learn (with and without bucketing),
xgboost, lightgbm. We ran a simulation with 50 different datasets generated
at random. If we let minLossi be the loss value achieved by the best model
and maxLossi be the loss achieved by the worst model for the ith dataset, then
maxLoss is on average 12% higher than minLoss. On average, XORboost is 6%
higher than minLoss. We conclude from this that XORBoost behaves similarly
to other gradient boosting implementations with respect to predictive power.

As an example, for a particular dataset, XORBoost achieved a loss of 58.1
(lower is better), while sklearn without histograms achieved 51.5, sklearn with
histograms achieved 56.1, lightgbm achieved 60.8 and xgboost achieved 61.9.

A Appendix: Gradient and Hessian of L

Proof. (Lemma 1) In a training context, the dataset X and y are constant, and
since we are doing a gradient descent to train the weights of Tree(T+1), so all
previous trees (structure and weights) Tree(1), . . . , TreeT are fixed, as well as
the structure of the current tree. The only free variables that remain are the tree
weights: (w1, ..., wL) associated to the leaves of Tree(T+1).

For a sample i ∈ [1, N] and a leaf j ∈ [1, L], let δi∈nj
be the Kronecker symbol

of the partition induced by the structure of Tree(T+1):

δi∈nj
=

{
1 iff. Tree(xi) ends in leaf nj
0 otherwise.

For all sample i ∈ [1, N], the evaluation function rewrites as:

evalxi
(Tree(T+1)) =

2d∑
j=1

wjδi∈nj

in particular, this implies:

∂evalxi

∂wj
(w1, ..., w2d) = δi∈nj

is constant.

Applying it to the loss function L of Eq (2), and since yi, ŷi
(T) are all constent,

we deduce:

∂L
∂wj

=

N∑
i=1

∂b loss(yi, ŷi
(T) + evalxi

(Tree(T+1))) · ∂evalxi

∂wj
(Tree(T+1)) +

∂Reg

∂wj

=

N∑
i=1

∂b loss(yi, ŷi
(T) + evalxi

(Tree(T+1))) · δi∈nj
+ λwj .

24

And thus, the second derivative across wi and wk, we get:

∂2L
∂wj∂wk

=

N∑
i=1

∂2b loss(yi, ŷi
(T) + evalxi

(Tree(T+1))) · δi∈nj
δi∈nk

+ λδj,k.

All second derivatives across 2 different variables are zero, so the hessian of
L is a pure Diagonal. Applied to the zero weights (i.e. evalxi(Tree

(T+1) = 0),
the gradient and hessian are:

∂L
∂wj

(0, . . . , 0) =

N∑
i=1

giδi∈nj
= G

∂2L
∂w2

j

(0, . . . , 0) =

N∑
i=1

hiδi∈nj
+ λ = H + λ

which concludes the proof of Lemma 1.

References

1. XGBoost: eXtreme Gradient Boosting. https://github.com/dmlc/xgboost
2. Abspoel, M., Escudero, D., Volgushev, N.: Secure training of decision trees

with continuous attributes. Cryptology ePrint Archive, Report 2020/1130 (2020),
https://eprint.iacr.org/2020/1130

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: European Symposium on Research in Computer Se-
curity. pp. 192–206. Springer (2008)

4. Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-
precision privacy-preserving real-valued function evaluation. IACR Cryptology
ePrint Archive 2017, 1234 (2017)

5. Carpov, S., Deforth, K., Gama, N., Georgieva, M., Jetchev, D., Katz, J., Leontiadis,
I., Mohammadi, M., Sae-Tang, A., Vuille, M.: Manticore: Efficient framework for
scalable secure multiparty computation protocols. Cryptology ePrint Archive, Re-
port 2021/200 (2021), https://eprint.iacr.org/2021/200

6. Chen, T., Guestrin, C.: XGBoost, a scalable tree boosting system. In: Proceedings
of the 22 ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, San Francisco, California, United States, August, 2016.
pp. 785–794. ACM (2016)

7. Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Yang, Q.: Secureboost: A lossless fed-
erated learning framework. CoRR abs/1901.08755 (2019), http://arxiv.org/
abs/1901.08755

8. Chou, P.: Optimal partitioning for classification and regression trees. IEEE trans-
actions on pattern analysis and machine intelligence 13(4), 340–354 (1991)

9. Cock, M.D., Dowsley, R., Horst, C., Katti, R., Nascimento, A.C.A., Newman,
S.C., Poon, W.S.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. Cryptology
ePrint Archive, Report 2016/736 (2016), https://eprint.iacr.org/2016/736

25

https://github.com/dmlc/xgboost
https://eprint.iacr.org/2020/1130
https://eprint.iacr.org/2021/200
http://arxiv.org/abs/1901.08755
http://arxiv.org/abs/1901.08755
https://eprint.iacr.org/2016/736

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference. pp. 643–
662. Springer (2012)

11. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure mpc over rings with applications to private
machine learning. Cryptology ePrint Archive, Report 2019/599 (2019), https:

//eprint.iacr.org/2019/599
12. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives for

MPC over mixed arithmetic-binary circuits. In: 40th Annual International Cryp-
tology Conference, CRYPTO. Lecture Notes in Computer Science, vol. 12171, pp.
823–852 (2020)

13. Feng, Z., Xiong, H., Song, C., Yang, S., Zhao, B., Wang, L., Chen, Z., Yang,
S., Liu, L., Huan, J.: Securegbm: Secure multi-party gradient boosting. CoRR
abs/1911.11997 (2019), http://arxiv.org/abs/1911.11997

14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics, Springer New York Inc., New York, NY, USA (2001)

15. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In: CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1575–1590 (2020)

16. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 830–842 (2016)

17. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EU-
ROCRYPT 2018. Lecture Notes in Computer Science, vol. 10822, pp. 158–189
(2018)

18. Law, A., Leung, C., Poddar, R., Popa, R.A., Shi, C., Sima, O., Yu, C., Zhang, X.,
Zheng, W.: Secure collaborative training and inference for xgboost (2020)

19. Liu, Y., Ma, Z., Liu, X., Ma, S., Nepal, S., Deng, R.H.: Boosting privately:
Privacy-preserving federated extreme boosting for mobile crowdsensing. CoRR
abs/1907.10218 (2019), http://arxiv.org/abs/1907.10218

20. Meng, X., Feigenbaum, J.: Privacy-preserving xgboost inference. CoRR
abs/2011.04789 (2020), https://arxiv.org/abs/2011.04789

21. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine
learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 35–
52. ACM (2018). https://doi.org/10.1145/3243734.3243760, https://doi.org/10.
1145/3243734.3243760

22. Mohassel, P., Zhang, Y.: SecureML: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017. pp. 19–38. IEEE Computer Society (2017).
https://doi.org/10.1109/SP.2017.12, https://doi.org/10.1109/SP.2017.12

23. Prokhorenkova, L., Gusev, G., A. Vorobev, A. Dorogush, A.G.: CatBoost: unbi-
ased boosting with categorical features. In: Proceedings of the Advances in Neural
Information Processing Systems 31 NEURIPS (2018)

24. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies 2019(3),
26–49 (2019)

25. WeBank: FATE: an industrial grade federated learning framework, https://fate.
fedai.org/, (accessed March 2, 2021)

26

https://eprint.iacr.org/2019/599
https://eprint.iacr.org/2019/599
http://arxiv.org/abs/1911.11997
http://arxiv.org/abs/1907.10218
https://arxiv.org/abs/2011.04789
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://fate.fedai.org/
https://fate.fedai.org/

	XORBoost: Tree Boosting in the Multiparty Computation Setting

