
Formations for the Quantum Random Oracle

Aaram Yun

Department of Cyber Security, Ewha Womans University, Seoul, Korea
aaramyun@ewha.ac.kr

Abstract. In the quantum random oracle model, the adversary may make quan-
tum superposition queries to the random oracle. Since even a single query can
potentially probe exponentially many points, classical proof techniques are hard
to be applied. For example, recording the oracle queries seemed difficult.
In 2018, Mark Zhandry showed that, despite the apparent difficulties, it is in fact
possible to ‘record’ the quantum queries. He has defined the compressed oracle,
which is indistinguishable from the quantum random oracle, and records informa-
tion the adversary has gained through the oracle queries. It is a technically subtle
work, which we believe to be a challenging work to grasp fully.
Our aim is to obtain a mathematically clean, simple reinterpretation of the com-
pressed oracle technique. For each partial function, we define what we call the
formation and the completion of that partial function. The completions describe
what happens to the real quantum random oracle, and the formations describe
what happens to the compressed oracle. We will show that the formations are
‘isomorphic’ to the completions, giving an alternative proof that the compressed
oracle is indistinguishable from the quantum random oracle.

Keywords: quantum random oracle, compressed oracle, oracle recording, quan-
tum superposition query, formation, completion, partial function

1 Introduction

Classically, often it is easier to prove cryptographic security in the random oracle model
than in the standard model, because we may exploit various useful properties of the
random oracle. An adversary may make polynomially many queries, where each query
examines only one point. The reduction algorithm can record these queries, and also
program the random oracle to embed instances of hard problems which the reduction
algorithm has to solve.

On the other hand, in the quantum random oracle model, the adversary can make
quantum superposition queries. Each query may potentially inspect exponentially many
points, which makes recording and programming the quantum random oracle difficult,
apparently.

But, surprisingly, Zhandry showed that one can in fact record the adversarial quan-
tum random oracle queries [7]. He constructed something called a compressed oracle,
and showed that this compressed oracle can handle quantum random oracle queries, and
indeed records the queries, giving a very useful tool for proving security in the quantum
random oracle model.

Zhandry’s result is technically quite sophisticated. When the initial version [6] of the
paper was first uploaded to ePrint archive in 2018, it was generally received with aston-
ishment due to its powerful ideas, but it contained insufficient technical details, making
it difficult to understand, use, and even to verify. Later versions added the necessary de-
tails, and the proof is now clear and easy to verify. Also, many tried to understand, recon-
struct, and apply Zhandry’s results to other settings and applications (e.g. [3,4,1,5,2]).
But, despite all these, still we believe that it is a difficult and subtle work to grasp, and
the rationale of the construction is not very well understood.

The goal of this paper is to understand Zhandry’s compressed oracle technique. We
may say that Zhandry’s results can be considered as made of two parts.

1. Indistinguishability: from the adversarial point of view, the compressed oracle is
indistinguishable from the quantum random oracle.

2. Recordability: the state of the compressed oracle ‘records’ information the adver-
sary has gathered by its oracle queries.

In this paper, our main focus is on the indistinguishability. We are going to work with
partial functions, and we will define what we call the completion and the formation of
such a partial function. We may say that completions describe what happens to the real
quantum random oracle, and formations describe what happens to the compressed ora-
cle. We will show that once we introduce the formation of partial functions and express
the compressed oracle in terms of the formation, the whole mechanics of the compressed
oracle becomes isomorphic to that of the ordinary quantum random oracle. Due to this,
we get an alternative proof of the indistinguishability.

Table 1 summarizes some of the basic properties of the completion and the forma-
tion.

Table 1. Comparing basic properties of completions and formations

Properties of completions Properties of formations
(Theorem 4.4)

𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c

=
⎧
⎪
⎨
⎪⎩

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩c if 𝑝(𝑥) ≠ ⊥,

1√
𝑁

∑
𝑧
|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |𝑝 ∪ (𝑥, 𝑧)⟩c if 𝑝(𝑥) = ⊥.

(Theorem 6.2)

𝖢𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩f

=
⎧
⎪
⎨
⎪⎩

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩f if 𝑝(𝑥) ≠ ⊥,

1√
𝑁

∑
𝑧
|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |𝑝 ∪ (𝑥, 𝑧)⟩f if 𝑝(𝑥) = ⊥.

(Lemma 4.3)

|𝑝⟩c = 1√
𝑁

∑
𝑦
|𝑝 ∪ (𝑥, 𝑦)⟩c, if 𝑝(𝑥) = ⊥.

(Lemma 5.10)

|𝑝⟩f = 1√
𝑁

∑
𝑦
|𝑝 ∪ (𝑥, 𝑦)⟩f, if 𝑝(𝑥) = ⊥.

(Theorem 4.5)

⟨𝑝1|𝑝2⟩c =
⎧
⎪
⎨
⎪⎩

√
1

𝑁 !𝑝1△𝑝2 !
if 𝑝1, 𝑝2 are consistent,

0 if 𝑝1, 𝑝2 are inconsistent.

(Theorem 5.7)

⟨𝑝1|𝑝2⟩f =
⎧
⎪
⎨
⎪⎩

√
1

𝑁 !𝑝1△𝑝2 !
if 𝑝1, 𝑝2 are consistent,

0 if 𝑝1, 𝑝2 are inconsistent.

2

2 Preliminaries

2.1 Notations and conventions

For any nonnegative integer 𝑛, we define [𝑛] as the set {0, 1,… , 𝑛 − 1}. In this paper,
we will consider functions and partial functions from [𝑀] to [𝑁], where 𝑀 ,𝑁 are
exponentially large numbers. For concreteness, it would be all right to assume that 𝑀 =
2𝑚,𝑁 = 2𝑛 for some 𝑚, 𝑛 ≥ 0.

2.2 Partial functions

A partial function is a function where some function values might be undefined. When
a function value 𝑝(𝑥) is undefined, we denote that as 𝑝(𝑥) = ⊥. When 𝑝 is a partial
function from the domain 𝑋 to the codomain 𝑌 , we denote that as 𝑝 ∶ 𝑋 ⇀ 𝑌 . In this
case, 𝑋 is denoted by dom(𝑝), 𝑌 by cod(𝑝). We also define the preimage of 𝑝 as

pre(𝑝) ∶= {𝑥 ∈ dom(𝑝) | 𝑝(𝑥) ≠ ⊥}.

Similarly, the image of 𝑝 is defined as

img(𝑝) ∶= {𝑦 ∈ cod(𝑝) | 𝑦 ≠ ⊥ and 𝑦 = 𝑝(𝑥) for some 𝑥 ∈ dom(𝑝)}.

When pre(𝑝) = dom(𝑝), 𝑝 ∶ 𝑋 ⇀ 𝑌 is called total, and such a total 𝑝 can be written
as 𝑝 ∶ 𝑋 → 𝑌 . When we use variables for functions, perhaps not always but often, we
will use 𝑝, 𝑞, 𝑟 and 𝑠 to denote partial functions and 𝑓 , 𝑔 and ℎ to denote total functions.

We are going to identify a partial function with its (set-theoretic) graph, which is

{(𝑥, 𝑝(𝑥)) | 𝑝(𝑥) ≠ ⊥}.

Hence, we can apply set-theoretic operations to partial functions, and we are going to
take this viewpoint extensively in this paper. For example, when 𝑝 is a partial function,
then |𝑝| = | pre(𝑝)|. We are going to call this quantity |𝑝| as the rank of 𝑝.

Also, when 𝑝 and 𝑞 are partial functions, then 𝑞 ⊆ 𝑝means that 𝑝(𝑥) = 𝑞(𝑥)whenever
𝑞(𝑥) ≠ ⊥ (hence, especially 𝑝(𝑥) ≠ ⊥ in this case). When 𝑞 ⊆ 𝑝, then we say that 𝑞 is a
restriction of 𝑝, and 𝑝 is an extension of 𝑞.

Due to this identification of a partial function with its set-theoretic graph, the empty
set ∅ also naturally denotes the empty partial function, where ∅(𝑥) = ⊥ for any 𝑥 in the
domain.

Also, we have pre(𝑝) = {𝑥 |∃𝑦, (𝑥, 𝑦) ∈ 𝑝}, and img(𝑝) = {𝑦 |∃𝑥, (𝑥, 𝑦) ∈ 𝑝}.
We can certainly form new sets 𝑝 ∪ 𝑞, 𝑝 ∩ 𝑞 from two partial functions 𝑝, 𝑞. When

𝑝 ∪ 𝑞 is again a partial function, then we say that 𝑝 and 𝑞 are consistent, meaning that
𝑝(𝑥) = 𝑞(𝑥), whenever 𝑝(𝑥) ≠ ⊥ and 𝑞(𝑥) ≠ ⊥. When 𝑝 and 𝑞 are consistent, we denote
that by 𝑝 ♡ 𝑞. We say that 𝑝 and 𝑞 are inconsistent if they are not consistent. When 𝑝
and 𝑞 are inconsistent, we denote that as 𝑝 ♡⦚⦚ 𝑞. Unlike 𝑝∪ 𝑞, which is a partial function
only when 𝑝 ♡ 𝑞, 𝑝∩ 𝑞 is always a partial function, the ‘greatest common restriction’ of
𝑝 and 𝑞.

𝑝 △ 𝑞 is the symmetric difference of 𝑝 and 𝑞, which is (𝑝 ⧵ 𝑞) ∪ (𝑞 ⧵ 𝑝). When 𝑝 and
𝑞 are partial functions with 𝑝 ♡ 𝑞, then 𝑝 △ 𝑞 is a partial function.

3

Let us denote the rank-1 partial function {(𝑥, 𝑦)} by
[𝑥
𝑦
]
. For example, if 𝑝 ∶ {1, 2, 3} ⇀

{0, 1} is a partial function with 𝑝(1) = 0, 𝑝(3) = 1, then 𝑝 can be written as 𝑝 =
[1
0
]
∪
[3
1
]
.

Further, if {𝑥1,… , 𝑥𝑙} ⊆ [𝑁] and 𝑦1,… , 𝑦𝑙 ∈ [𝑁], then we define
[𝑥1 … 𝑥𝑙𝑦1 … 𝑦𝑙

]
∶=

[𝑥1𝑦1
]
∪⋯ ∪

[𝑥𝑙𝑦𝑙
]
.

We are going to work in the Hilbert space spanned by |𝑝⟩ for partial functions 𝑝.
When 𝑝, 𝑞 are partial functions, we will define

|𝑝⟩○∪ |𝑞⟩ ∶=
{

|𝑝 ∪ 𝑞⟩ if 𝑝 ♡ 𝑞,
0 if 𝑝 ♡⦚⦚ 𝑞.

We will make this ○∪ a bilinear operator, by, well, extending the above definition
bilinearly. So, for example, if 𝑝 ♡ 𝑞 and 𝑝 ♡ 𝑟, then we have |𝑝⟩○∪ (|𝑞⟩ + |𝑟⟩) =
|𝑝 ∪ 𝑞⟩ + |𝑝 ∪ 𝑟⟩. We call this operator as the union product. Note that the union prod-
uct is commutative: 𝜙○∪ 𝜓 = 𝜓 ○∪ 𝜙 for any vectors 𝜙,𝜓 . This is because |𝑝⟩○∪ |𝑞⟩ =
|𝑝 ∪ 𝑞⟩ = |𝑞 ∪ 𝑝⟩ = |𝑞⟩○∪ |𝑝⟩, for any partial functions 𝑝, 𝑞. Similarly, the union product
is associative.

3 Quantum oracles

Here we define the notion of quantum oracles formally.

Definition 3.1. A quantum oracle is a tuple  = (𝐼 ,𝑂, 𝗊𝗎𝖾𝗋𝗒, |𝗂𝗇𝗂𝗍⟩), where 𝐼 and𝑂 are Hilbert spaces called the interface space and the oracle space, respectively, and

𝗊𝗎𝖾𝗋𝗒 ∶ 𝐼 ⊗𝑂 → 𝐼 ⊗𝑂

is a unitary operator. Finally, |𝗂𝗇𝗂𝗍⟩ ∈ 𝑂 is an element called the initial state of the
oracle, respectively.

The idea is that, the oracle interacts with an adversary 𝐴 whose state space can be
written as 𝑃 ⊗𝐼 , where 𝑃 is the private state space of 𝐴. The joint state space of
the adversary and the oracle is 𝑃 ⊗𝐼 ⊗𝑂, and the state is initialized as |𝗂𝗇𝗂𝗍𝑃 ⟩⊗
|𝗂𝗇𝗂𝗍𝐼⟩⊗ |𝗂𝗇𝗂𝗍𝑂⟩, for some |𝗂𝗇𝗂𝗍𝑃 ⟩ ∈ 𝑃 and |𝗂𝗇𝗂𝗍𝐼⟩ ∈ 𝐼 as specified by the adversary.
The adversarial computation can be written as a sequence of unitary operators 𝑈𝑖 ∶𝑃 ⊗𝐼 → 𝑃 ⊗𝐼 for 𝑖 = 0,… , 𝑡, and the operations 𝑈𝑖 ⊗𝐼𝑂 and 𝐼𝑃 ⊗ 𝗊𝗎𝖾𝗋𝗒
are performed alternatingly for 𝑖 = 0,… , 𝑡.

Definition 3.2. Given two quantum oracles 1 = (𝐼
1 ,𝑂

1 , 𝗊𝗎𝖾𝗋𝗒1, |𝗂𝗇𝗂𝗍1⟩) and 2 =
(𝐼

2 ,𝑂
2 , 𝗊𝗎𝖾𝗋𝗒2, |𝗂𝗇𝗂𝗍2⟩), a morphism 𝑓 ∶ 1 → 2 from 1 to 2 is a tuple 𝑓 =

(𝑓 𝐼 , 𝑓𝑂) satisfying the following.

1. 𝑓 𝐼 ∶ 𝐼
1 → 𝐼

2 and 𝑓𝑂 ∶ 𝑂
1 → 𝑂

2 are inner-product preserving linear maps.
In addition, we require 𝑓 𝐼 to be bijective: so 𝑓 𝐼 is a unitary transformation.

2. 𝑓𝑂(|𝗂𝗇𝗂𝗍1⟩) = |𝗂𝗇𝗂𝗍2⟩.

4

3. The following is a commutative diagram.

𝐼
1 ⊗𝑂

1 𝐼
1 ⊗𝑂

1

𝐼
2 ⊗𝑂

2 𝐼
2 ⊗𝑂

2

𝗊𝗎𝖾𝗋𝗒1

𝑓 𝐼⊗𝑓𝑂 𝑓 𝐼⊗𝑓𝑂

𝗊𝗎𝖾𝗋𝗒2

In other words, we have (𝑓 𝐼 ⊗ 𝑓𝑂) ◦ 𝗊𝗎𝖾𝗋𝗒1 = 𝗊𝗎𝖾𝗋𝗒2 ◦ (𝑓 𝐼 ⊗ 𝑓𝑂).
The mappings 𝑓 𝐼 and 𝑓𝑂 are called the converter and the transformer of the mor-
phism 𝑓 , respectively.

Composition of two morphisms 𝑓1 = (𝑓 𝐼
1 , 𝑓

𝑂
1) ∶ 1 → 2 and 𝑓2 = (𝑓 𝐼

2 , 𝑓
𝑂
2) ∶

2 → 3 are defined obviously: 𝑓2 ◦ 𝑓1 = (𝑓 𝐼
2 ◦ 𝑓 𝐼

1 , 𝑓
𝑂
2 ◦ 𝑓𝑂

1).

Definition 3.3. A morphism 𝑓 = (𝑓 𝐼 , 𝑓𝑂) ∶ 1 → 2 is called an isomorphism, if
𝑓 𝐼 and 𝑓𝑂 are both unitary transformations (bijective inner-product preserving linear
maps).

Remark 3.4. The definition of an isomorphism can be equivalently given by the exis-
tence of the inverse morphism.

When two oracles are isomorphic, in a sense this could mean that they are identical,
mathematically. But that does not necessarily mean that they are the same in all aspects.
For example, one oracle might have an efficient implementation, and the other oracle
might not, even though they are isomorphic. Now, let us take a look at some examples
of quantum oracles.

Example 3.5. The foremost example of a quantum oracle is the standard oracle 𝖲𝗍𝖮.
While the quantum random oracle is a uniform random function 𝐻 ∶ [𝑀] → [𝑁],
Zhandry in [7] observed that it is possible to initialize the oracle with the ‘uniform
superposition’

|𝗂𝗇𝗂𝗍⟩ = 1√
𝑁𝑀

∑
𝑓

|𝑓⟩ .

When this is measured before interacting with the adversary, we obtain the original
quantum random oracle model. But due to the principle of deferred measurement, it is
all right to leave it unmeasured. This purification of the quantum random oracle is called
the standard oracle. More specifically, the oracle state is 𝗍, which is the Hilbert space
spanned by |𝑓 ⟩ of all total functions 𝑓 ∶ [𝑀] → [𝑁], the interface space is [𝑀]⊗ [𝑁],
the query operator is defined as

𝖲𝗍𝖮 |𝑥⟩ |𝑦⟩⊗ |𝑓⟩ ∶= |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩⊗ |𝑓 ⟩ ,

with the initial state of the oracle as given above.
(As above example shows, we will often denote the query operator of a quantum

oracle by the name of the quantum oracle itself.)

5

Example 3.6. Another important example is the phase oracle 𝖯𝗁𝖮. It is identical to 𝖲𝗍𝖮
in all aspects, except the query operator:

𝖯𝗁𝖮 |𝑥⟩ |𝑢⟩⊗ |𝑓⟩ ∶= (−1)𝑢⋅𝑓 (𝑥) |𝑥⟩ |𝑢⟩⊗ |𝑓⟩ .

Theorem 3.7. If there exists a morphism 𝑓 ∶ 1 → 2, then, for any adversary 𝐴
outputting 0 or 1, there exists another adversary 𝐵 such that the following holds.

𝐏𝐫[𝐴1 () = 1] = 𝐏𝐫[𝐵2 () = 1].

The proof of this easy but somewhat tedious theorem is given in the Appendix, p. 17.

Remark 3.8. Theorem 3.7 does not necessary mean that 𝐵 is an efficient adversary, even
when 𝐴 is. But, when the converter 𝑓 𝐼 can be implemented efficiently, and if 𝐴 is an
efficient adversary, then 𝐵 also is.

Moreover, the order of the quantification can be reversed: for any 𝐵, there exists an
𝐴 so that the same equality as above holds. The proof may proceed similarly.

Remark 3.9. When there is a morphism 𝑓 = (𝑓 𝐼 , 𝑓𝑂) from1 = (𝐼
1 ,𝑂

1 , 𝗊𝗎𝖾𝗋𝗒1, |𝗂𝗇𝗂𝗍1⟩)
to 2 = (𝐼

2 ,𝑂
2 , 𝗊𝗎𝖾𝗋𝗒2, |𝗂𝗇𝗂𝗍2⟩), while the oracle space of 2 is 𝑂

2 , actually the state
vector of 2 resides in a subspace 𝑓𝑂(𝑂

1) ⊆ 𝑂
2 , and the rest of the oracle space 𝑂

2
is unused.

Definition 3.10. When there exists a morphism 𝑓 = (𝑓 𝐼 , 𝑓𝑂) ∶ 1 → 2, where the
interface spaces of 1 and 2 are the same and the converter 𝑓 𝐼 is the identity operator,
then we say that 1 is a suboracle of 2, and 2 is a superoracle of 1. In that case, the
morphism 𝑓 is called an embedding of 1 into 2.

Corollary 3.11. Suppose that 𝑓 = (𝑓 𝐼 , 𝑓𝑂) is an embedding from a suboracle 1 to
its superoracle 2. Then, the two oracles are completely indistinguishable: for any ad-
versary 𝐴, we have

𝐏𝐫[𝐴1 () = 1] = 𝐏𝐫[𝐴2 () = 1].

Proof. When we examine the proof of Theorem 3.7, we can see that 𝐵 is the same
adversary as 𝐴, as 𝑓 𝐼 is the identity operator. ⊓⊔

The following is a well-known result, merely translated in this language.

Theorem 3.12. 𝖲𝗍𝖮 and 𝖯𝗁𝖮 are isomorphic quantum oracles.

Proof. The isomorphism 𝑓 = (𝑓 𝐼 , 𝑓𝑂) from 𝖲𝗍𝖮 to 𝖯𝗁𝖮 is simple: 𝑓𝑂 is the identity
operator, and 𝑓 𝐼 |𝑥⟩ |𝑦⟩ ∶= |𝑥⟩𝐻⊗𝑛 |𝑦⟩, where 𝐻⊗𝑛 is the Hadamard transformation.
It can be easily verified that this 𝑓 is an isomorphism between 𝖲𝗍𝖮 and 𝖯𝗁𝖮. ⊓⊔

Remark 3.13. Since the converter of the isomorphism between 𝖲𝗍𝖮 and 𝖯𝗁𝖮 is not the
identity, obviously they are not indistinguishable oracles.

6

4 Completion of a partial function

We will consider ourselves with partial functions [𝑀] ⇀ [𝑁].

Definition 4.1. When 𝑝 ∶ [𝑀] ⇀ [𝑁] is a partial function, we define its completion
|𝑝⟩c as follows.

|𝑝⟩c ∶= 1√
𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑓⟩

where the running variable 𝑓 is over total functions 𝑓 ∶ [𝑀] → [𝑁] whose restriction
is 𝑝.

We call |𝑝⟩c the completion of 𝑝, because it is a linear combination of all possible
‘completions’ of 𝑝 to total functions, scaled to be a unit vector.

We can consider the corresponding ‘bra’ vector ⟨𝑝|c, and form the inner product
⟨𝑝|c|𝑞⟩c. Abbreviating and simplifying this ugly notation, we will write the inner product
as ⟨𝑝|𝑞⟩c. Note that this notation will never be used for denoting the product of the
simple bra vector ⟨𝑝| and the completion |𝑞⟩c. (For many cases, that does not even make
sense, because |𝑞⟩c is a linear combination of kets of total functions, while ⟨𝑝| is a bra
vector of a partial function. But, when 𝑝 is total, we will have to use (⟨𝑝|)|𝑞⟩c or ⟨𝑝| |𝑞⟩c,
unfortunately.)

Intuitively, we may say that the completion |𝑝⟩c of a partial function represents the
state of the oracle where values corresponding to the partial function 𝑝 is determined,
and the rest is completely undetermined.

Example 4.2. We have
|∅⟩c = 1√

𝑁𝑀

∑
𝑓

|𝑓⟩ .

So, the completion of the empty partial function is the ‘uniform superposition’ of all
total functions, which is the initial state of both 𝖲𝗍𝖮 and 𝖯𝗁𝖮.

Here is a very basic fact about the completion.

Lemma 4.3. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], if 𝑝(𝑥) = ⊥, we have

|𝑝⟩c = 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩c

.

Proof. We have
|𝑝⟩c = 1√

𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑓⟩

= 1√
𝑁

∑
𝑦∈[𝑁]

1√
𝑁𝑀−|𝑝|−1

∑

𝑓⊇𝑝∪
[𝑥
𝑦
]|𝑓⟩

= 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩c

. ⊓⊔

7

We can express the evolution of the random oracle state by completions of par-
tial functions. The next theorem describes this precisely. The proof can be obtained
by straightforward manipulation of the definition, which will be given in the Appendix,
p. 18.
Theorem 4.4. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], we have

𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c =
⎧
⎪
⎨
⎪⎩

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩c if 𝑝(𝑥) ≠ ⊥,
1√
𝑁

∑
𝑧∈[𝑁]

|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |||𝑝 ∪
[𝑥
𝑧
]⟩c

if 𝑝(𝑥) = ⊥.

So, we can see that completions can be used to describe the state of the standard
oracle. In fact, while in the definition of 𝖲𝗍𝖮 and 𝖯𝗁𝖮, the oracle space is given as 𝗍,
the Hilbert space which is the span of all |𝑓⟩ for total functions 𝑓 ∶ [𝑀] → [𝑁], the
state vector stays in the proper subspace spanned by the completions |𝑝⟩c.

Therefore, let us define 𝖱𝖲𝗍𝖮, which is the restricted standard oracle, whose oracle
space is 𝖼, which is the span of all completions |𝑝⟩c of partial functions 𝑝 ∶ [𝑀] ⇀
[𝑁], and the query operator is given as in Theorem 4.4. This is a suboracle of 𝖲𝗍𝖮,
with an obvious embedding 𝜄 ∶ 𝖱𝖲𝗍𝖮 → 𝖲𝗍𝖮, whose transformer is the inclusion map𝖼 → 𝗍. By Corollary 3.11, 𝖱𝖲𝗍𝖮 and 𝖲𝗍𝖮 are completely indistinguishable.

Completions of partial functions are not in general orthogonal to each other. Let us
compute their inner products.

Theorem 4.5. For any partial functions 𝑝1, 𝑝2, we have

⟨𝑝1|𝑝2⟩c =
⎧
⎪
⎨
⎪⎩

√
1

𝑁 |𝑝1△𝑝2|
if 𝑝1 ♡ 𝑝2,

0 if 𝑝1 ♡⦚⦚ 𝑝2.

Proof. For any two partial functions 𝑝1, 𝑝2, we have

⟨𝑝1|𝑝2⟩c = 1√
𝑁𝑀−|𝑝1|

√
𝑁𝑀−|𝑝2|

∑
𝑓1⊇𝑝1
𝑓2⊇𝑝2

⟨𝑓1|𝑓2⟩

= 1√
𝑁𝑀−|𝑝1|

√
𝑁𝑀−|𝑝2|

∑
𝑓⊇𝑝1∪𝑝2

⟨𝑓 |𝑓⟩

So, if 𝑝1 ♡⦚⦚ 𝑝2, then ⟨𝑝1|𝑝2⟩c = 0.
On the other hand, if 𝑝1 ♡ 𝑝2, then 𝑝1 ∪ 𝑝2 is a partial function, and

⟨𝑝1|𝑝2⟩c = 1√
𝑁𝑀−|𝑝1|

√
𝑁𝑀−|𝑝2|

∑
𝑓⊇𝑝1∪𝑝2

⟨𝑓 |𝑓⟩

= 𝑁𝑀−|𝑝1∪𝑝2|
√
𝑁𝑀−|𝑝1|

√
𝑁𝑀−|𝑝2|

=
√

𝑁 |𝑝1|+|𝑝2|

𝑁2|𝑝1∪𝑝2|
=
√

𝑁 |𝑝1∩𝑝2|

𝑁 |𝑝1∪𝑝2|

=
√

1
𝑁 |𝑝1△𝑝2|

. ⊓⊔

8

Since the oracle state of the standard oracle can be represented by completions of the
partial functions, we may hope that we can manipulate, or even record the completions
by manipulating the partial functions. In a sense, that is true. But there are obvious
differences between how partial functions behave and how their completions behave.
For one thing, ⟨𝑝1|𝑝2⟩ = 0 whenever 𝑝1 ≠ 𝑝2, even when 𝑝1 and 𝑝2 are consistent so
⟨𝑝1|𝑝2⟩c ≠ 0.

Therefore, for each partial function 𝑝, we need to construct something which behaves
similar to |𝑝⟩c. We are going to do that in the next section.

5 Formation of a partial function

Definition 5.1. Suppose 𝑝 ∶ [𝑀] ⇀ [𝑁] is a partial function. We define its formation,
|𝑝⟩f as follows.

|𝑝⟩f ∶=
(

1√
𝑁

)|𝑝| ∑
pre(𝑞)⊆pre(𝑝)

(1 −𝑁)|𝑝∩𝑞|
(
− 1√

𝑁

)|𝑞|
|𝑞⟩ .

Here, 𝑞 runs over all possible partial functions 𝑞 ∶ [𝑀] ⇀ [𝑁] with pre(𝑞) ⊆ pre(𝑝).

Similar to completions, we will write the inner product of formations as ⟨𝑝|𝑞⟩f.
We will soon see that the formation |𝑝⟩f ‘behaves’ essentially the same as the com-

pletion |𝑝⟩c. But first, let us have some examples.

Example 5.2. For the empty partial function ∅, if pre(𝑞) ⊆ pre(∅), then 𝑞 = ∅. So,

|∅⟩f =
(

1√
𝑁

)|∅|
(1 −𝑁)|∅|

(
− 1√

𝑁

)|∅|
|∅⟩ = |∅⟩ .

Example 5.3. For any rank-1 partial function
[𝑥
𝑦
]
, we have

|||
[𝑥
𝑦
]⟩f =

(
1√
𝑁

)1⎛
⎜
⎜⎝
(1 −𝑁)1

(
− 1√

𝑁

)1
|||
[𝑥
𝑦
]⟩

+ (1 −𝑁)0
(
− 1√

𝑁

)0

|∅⟩

+
∑
𝑧≠𝑦

(1 −𝑁)
||||
[𝑥
𝑦
]
∩
[𝑥
𝑧
]||||
(
− 1√

𝑁

)1
|||
[𝑥
𝑧
]⟩⎞⎟
⎟⎠

= 1√
𝑁

(
(1 −𝑁)

(
− 1√

𝑁

)
|||
[𝑥
𝑦
]⟩

+ |∅⟩ +
∑
𝑧≠𝑦

(
− 1√

𝑁

)
|||
[𝑥
𝑧
]⟩
)

=
(
1 − 1

𝑁

)|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧≠𝑦

|||
[𝑥
𝑧
]⟩

= |||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧

|||
[𝑥
𝑧
]⟩
.

9

In fact, we can decompose the formation using the union product.

Theorem 5.4. Suppose 𝑝1, 𝑝2 ∶ [𝑀] ⇀ [𝑁] are arbitrary partial functions with dis-
joint preimages: pre(𝑝1) ∩ pre(𝑝2) = ∅. Then,

|𝑝1 ∪ 𝑝2⟩f = |𝑝1⟩f ○∪ |𝑝2⟩f.
Proof. When 𝑝1 and 𝑝2 have disjoint preimages, then any partial function 𝑞 with pre(𝑞) ⊆
pre(𝑝1 ∪ 𝑝2) can be uniquely written as 𝑞 = 𝑞1 ∪ 𝑞2, with pre(𝑞1) ⊆ pre(𝑝1) and
pre(𝑞2) ⊆ pre(𝑝2). So,

|𝑝1 ∪ 𝑝2⟩f =
(

1√
𝑁

)|𝑝1∪𝑝2| ∑
𝑞1,𝑞2

(1 −𝑁)|(𝑝1∪𝑝2)∩(𝑞1∪𝑞2)|
(
− 1√

𝑁

)|𝑞1∪𝑞2|
|𝑞1 ∪ 𝑞2⟩

=

(
1√
𝑁

)|𝑝1|+|𝑝2| ∑
𝑞1,𝑞2

(1 −𝑁)|𝑝1∩𝑞1|+|𝑝2∩𝑞2|
(
− 1√

𝑁

)|𝑞1|+|𝑞2|
|𝑞1⟩○∪ |𝑞2⟩

=

(
1√
𝑁

)|𝑝1|⎛
⎜
⎜⎝

∑
𝑞1

(1 −𝑁)|𝑝1∩𝑞1|
(
− 1√

𝑁

)|𝑞1|
|𝑞1⟩

⎞
⎟
⎟⎠

○∪

(
1√
𝑁

)|𝑝2|⎛
⎜
⎜⎝

∑
𝑞2

(1 −𝑁)|𝑝2∩𝑞2|
(
− 1√

𝑁

)|𝑞2|
|𝑞2⟩

⎞
⎟
⎟⎠

= |𝑝1⟩f ○∪ |𝑝2⟩f. ⊓⊔

Corollary 5.5. Suppose 𝑝 ∶ [𝑀] ⇀ [𝑁] is any partial function and 𝑝(𝑥) = ⊥. Then,
for any 𝑦 ∈ [𝑁], we have

|||𝑝 ∪
[𝑥
𝑦
]⟩f = |||𝑝

⟩f
○∪

(
|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)
.

Corollary 5.6. Suppose 𝑝 ∶ [𝑀] ⇀ [𝑁] is a partial function. Then, we have

|𝑝⟩f = ○∪
𝑥∈pre(𝑝)

(
|||
[𝑥
𝑝(𝑥)

]⟩
+ 1√

𝑁
|∅⟩ − 1

𝑁
∑

𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)
.

It turns out that formations of partial functions give us the correct inner product.

Theorem 5.7. For any partial functions 𝑝1, 𝑝2, we have

⟨𝑝1|𝑝2⟩f =
⎧
⎪
⎨
⎪⎩

√
1

𝑁 |𝑝1△𝑝2|
if 𝑝1 ♡ 𝑝2,

0 if 𝑝1 ♡⦚⦚ 𝑝2.
.

Especially, we have ⟨𝑝1|𝑝2⟩f = ⟨𝑝1|𝑝2⟩c.

10

The proof of Theorem 5.7 can be obtained by combinatorial arguments and multiple
applications of the binomial theorem, which will be given in the Appendix, p. 19.

Now, let us define a few more Hilbert spaces. Let 𝗉 be the Hilbert space spanned
by |𝑝⟩ of partial functions 𝑝. And let 𝖿 be the Hilbert space spanned by the formations
|𝑝⟩f of partial functions.

Recall that we have already defined 𝖼 and 𝗍. 𝖼 is the Hilbert space spanned by
the completions |𝑝⟩c, and 𝗍 is the Hilbert space spanned by |𝑓⟩ of total functions 𝑓 .

We want to relate formations and completions. For this, we need to define the for-
mation and the completion as linear mappings.

Let us define the linear mapping K ∶ 𝖿 → 𝖼 by first defining K |𝑝⟩ ∶= |𝑝⟩c for
any partial function 𝑝, and then extending K linearly to all linear combinations of partial
functions. (And then restricting the resulting mapping K ∶ 𝗉 → 𝖼 to 𝖿 .) Similarly,
let us define Φ ∶ 𝗉 → 𝗉 by first defining Φ |𝑝⟩ ∶= |𝑝⟩f for any partial function 𝑝,
and extending Φ linearly to all linear combinations of partial functions.

Theorem 5.8. For any partial function 𝑝, we have

K|𝑝⟩f = |𝑝⟩c

and

Φ|𝑝⟩f = |𝑝⟩f.

The proof of Theorem 5.8 is again based on combinatorial arguments and the bino-
mial theorem, which will be given in the Appendix, p. 21.

Corollary 5.9. The linear mapping K ∶ 𝖿 → 𝖼 is an isomorphism of the Hilbert
spaces: it is a unitary transformation, so it preserves the inner product and is bijective.
For any partial function 𝑝, the mapping K satisfies

K|𝑝⟩f = |𝑝⟩c,

and the inverse mapping K−1 satisfies

K−1|𝑝⟩c = |𝑝⟩f.

Also, Φ ∶ 𝗉 → 𝗉 is a projection onto the subspace 𝖿 .

Proof. Theorem 5.7 and Theorem 4.5 immediately implies that K preserves inner prod-
uct. As for the injectivity, suppose

∑
𝑝 𝛼𝑝|𝑝⟩f ∈ ker(K). Then,

K

(∑
𝑝
𝛼𝑝|𝑝⟩f

)
=
∑
𝑝
𝛼𝑝|𝑝⟩c = 0.

11

Then, for any partial function 𝑞, we have

0 = ⟨𝑞|c
(∑

𝑝
𝛼𝑝|𝑝⟩c

)

=
∑
𝑝
𝛼𝑝⟨𝑞|𝑝⟩c

=
∑
𝑝
𝛼𝑝⟨𝑞|𝑝⟩f

= ⟨𝑞|f
(∑

𝑝
𝛼𝑝|𝑝⟩f

)
.

Since this holds for any ⟨𝑞|f, we have
∑

𝑝 𝛼𝑝|𝑝⟩f = 0 in 𝖿 .
Finally, the surjectivity directly comes from the definition of 𝖿 and 𝖼. ⊓⊔

The formation also satisfies the same identity as the completion. Compare the fol-
lowing Lemma 5.10 with Lemma 4.3.

Lemma 5.10. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], if 𝑝(𝑥) = ⊥, then we have

|𝑝⟩f = 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f

.

Proof. This can in fact be proved by direct computation, but we may use the isomor-
phism K to ‘lift’ Lemma 4.3 to 𝖿 as follows. We have

K

(
|𝑝⟩f − 1√

𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f

)

= |𝑝⟩c − 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩c

= 0

So, |𝑝⟩f − 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f ∈ ker(K). Since K is an isomorphism, ker(K) = 0.

Therefore we get
|𝑝⟩f − 1√

𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f = 0. ⊓⊔

We will also provide an alternative proof based on direct computation in the Ap-
pendix, p. 25.

Remark 5.11. Due to the isomorphism K, we may observe that Lemma 4.3 can be gen-
eralized further: for any linear relation between completions, there is a corresponding
linear relation between formations, and vice versa.

12

6 Formation and the quantum random oracle

Recall that Zhandry defines the compressed standard oracle query operation 𝖢𝖲𝗍𝖮 as

𝖢𝖲𝗍𝖮 ∶= 𝖽𝖾𝖼𝗈𝗆𝗉 ◦ 𝖢𝖲𝗍𝖮′ ◦ 𝖽𝖾𝖼𝗈𝗆𝗉.

Here, 𝖢𝖲𝗍𝖮′ |𝑥𝑦⟩⊗ |𝑝⟩ = |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩ for any partial function 𝑝. Note that when
𝑝(𝑥) = ⊥, by definition 𝑦⊕𝑝(𝑥) = 𝑦⊕⊥ = 𝑦. Also, 𝖽𝖾𝖼𝗈𝗆𝗉, ‘decompression’, is defined
as1

𝖽𝖾𝖼𝗈𝗆𝗉 |𝑥𝑦⟩⊗ |𝑝⟩ = |𝑥𝑦⟩⊗ 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 |𝑝⟩ ,
and, finally we need only to define 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 for each 𝑥.

When 𝑝(𝑥) = ⊥, it is defined as

𝖽𝖾𝖼𝗈𝗆𝗉𝑥 |𝑝⟩ = 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩
.

The rest of the cases are given as follows2: when 𝑝′(𝑥) = ⊥,

𝖽𝖾𝖼𝗈𝗆𝗉𝑥

(
1√
𝑁

∑
𝑦
(−1)𝑧⋅𝑦|||𝑝

′ ∪
[𝑥
𝑦
]⟩
)

∶= 1√
𝑁

∑
𝑦
(−1)𝑧⋅𝑦|||𝑝

′ ∪
[𝑥
𝑦
]⟩

for 𝑧 ≠ 0.

𝖽𝖾𝖼𝗈𝗆𝗉𝑥

(
1√
𝑁

∑
𝑦

|||𝑝
′ ∪

[𝑥
𝑦
]⟩
)

∶= |𝑝′⟩ .

For our purposes, there are three things to mention about the 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 operator.
More details can be found at [7].

1. It is a well-defined unitary operator.
2. It is an involution: 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 ◦ 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 is the identity operator.
3. It can be easily checked that, when 𝑝(𝑥) = ⊥,

𝖽𝖾𝖼𝗈𝗆𝗉𝑥
|||𝑝 ∪

[𝑥
𝑦
]⟩

= |||𝑝 ∪
[𝑥
𝑦
]⟩

+ 1√
𝑁

|𝑝⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||𝑝 ∪
[𝑥
𝑧
]⟩
.

This form turns out to be more useful to us than the form in the original definition.

Now, we see that the decompression has a very clean form when expressed in terms
of the formation.

Lemma 6.1. For any partial function 𝑝, we have

𝖽𝖾𝖼𝗈𝗆𝗉𝑥|𝑝⟩f =
⎧
⎪
⎨
⎪⎩

1√
𝑁

∑
𝑦∈[𝑁]

|𝑝⟩f ○∪ |||
[𝑥
𝑦
]⟩
, if 𝑝(𝑥) = ⊥,

|𝑝′⟩f ○∪ |||
[𝑥
𝑝(𝑥)

]⟩
, if 𝑝 = 𝑝′ ∪

[𝑥
𝑝(𝑥)

]
with 𝑝′(𝑥) = ⊥.

1 Zhandry’s original notation in [7] was 𝖲𝗍𝖽𝖣𝖾𝖼𝗈𝗆𝗉.
2 Zhandry in [7] considers some implementational details, so defines an additional operator
𝖨𝗇𝖼𝗋𝖾𝖺𝗌𝖾. We work at a slightly more abstract level of partial functions instead of databases, so
we will omit that.

13

Also, when 𝑝(𝑥) = ⊥, then

𝖽𝖾𝖼𝗈𝗆𝗉𝑥

(
|𝑝⟩f ○∪ |||

[𝑥
𝑦
]⟩)

= |||𝑝 ∪
[𝑥
𝑦
]⟩f

.

Proof. When 𝑝(𝑥) = ⊥, we know

𝖽𝖾𝖼𝗈𝗆𝗉𝑥
|||𝑝 ∪

[𝑥
𝑦
]⟩

= |||𝑝 ∪
[𝑥
𝑦
]⟩

+ 1√
𝑁

|𝑝⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||𝑝 ∪
[𝑥
𝑧
]⟩
.

Note that this identity can be expressed using the union product.

𝖽𝖾𝖼𝗈𝗆𝗉𝑥

(
|𝑝⟩○∪ |||

[𝑥
𝑦
]⟩)

= |𝑝⟩○∪
(
|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)
.

Because this applies to any 𝑝with 𝑝(𝑥) = ⊥, and because if 𝑝(𝑥) = ⊥ and pre(𝑞) ⊆ pre(𝑝)
then 𝑞(𝑥) = ⊥, we have

𝖽𝖾𝖼𝗈𝗆𝗉𝑥

(
|𝑝⟩f ○∪ |||

[𝑥
𝑦
]⟩)

= |𝑝⟩f ○∪
(
|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)

= |||𝑝 ∪
[𝑥
𝑦
]⟩f

.

This proves the last identity. Now, since 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 is an involution, we have

𝖽𝖾𝖼𝗈𝗆𝗉𝑥
|||𝑝 ∪

[𝑥
𝑦
]⟩f = |𝑝⟩f ○∪ |||

[𝑥
𝑦
]⟩
.

This proves the second case of the first identity. Finally, the first case can be proved by
using Lemma 5.10:

𝖽𝖾𝖼𝗈𝗆𝗉𝑥|𝑝⟩f = 𝖽𝖾𝖼𝗈𝗆𝗉𝑥
1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f

= 1√
𝑁

∑
𝑦∈[𝑁]

𝖽𝖾𝖼𝗈𝗆𝗉𝑥
|||𝑝 ∪

[𝑥
𝑦
]⟩f

= 1√
𝑁

∑
𝑦∈[𝑁]

|𝑝⟩f ○∪ |||
[𝑥
𝑦
]⟩
. ⊓⊔

The following Theorem 6.2 shows that the behavior of |𝑝⟩f with respect to 𝖢𝖲𝗍𝖮 is
exactly the same as the behavior of |𝑝⟩c with respect to 𝖲𝗍𝖮.

Theorem 6.2. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], we have

𝖢𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩f =
⎧
⎪
⎨
⎪⎩

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩f if 𝑝(𝑥) ≠ ⊥,
1√
𝑁

∑
𝑧∈[𝑁]

|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |||𝑝 ∪
[𝑥
𝑧
]⟩f

if 𝑝(𝑥) = ⊥.

14

Proof. Let us prove the first case. When 𝑝(𝑥) ≠ ⊥, we can write 𝑝 as 𝑝 = 𝑝′ ∪
[𝑥
𝑝(𝑥)

]
for

some 𝑝′ with 𝑝′(𝑥) = ⊥. Then,

𝖢𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩f = 𝖽𝖾𝖼𝗈𝗆𝗉𝖢𝖲𝗍𝖮′ 𝖽𝖾𝖼𝗈𝗆𝗉 |𝑥𝑦⟩⊗ |𝑝⟩f

= 𝖽𝖾𝖼𝗈𝗆𝗉𝖢𝖲𝗍𝖮′ |𝑥𝑦⟩⊗ |𝑝′⟩f ○∪ |||
[𝑥
𝑝(𝑥)

]⟩

= 𝖽𝖾𝖼𝗈𝗆𝗉 |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |||𝑝
′⟩f ○∪ |||

[𝑥
𝑝(𝑥)

]⟩

= |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |||𝑝
′ ∪

[𝑥
𝑝(𝑥)

]⟩f

= |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩f.
Now, as for the second case, when 𝑝(𝑥) = ⊥,

𝖢𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩f = 𝖽𝖾𝖼𝗈𝗆𝗉𝖢𝖲𝗍𝖮′ 𝖽𝖾𝖼𝗈𝗆𝗉 |𝑥𝑦⟩⊗ |𝑝⟩f

= 𝖽𝖾𝖼𝗈𝗆𝗉𝖢𝖲𝗍𝖮′ |𝑥𝑦⟩⊗ 1√
𝑁

∑
𝑧
|𝑝⟩f ○∪ |||

[𝑥
𝑧
]⟩

= 1√
𝑁

∑
𝑧
𝖽𝖾𝖼𝗈𝗆𝗉 |𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |𝑝⟩f ○∪ |||

[𝑥
𝑧
]⟩

= 1√
𝑁

∑
𝑧∈[𝑁]

|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |||𝑝 ∪
[𝑥
𝑧
]⟩f

.
⊓⊔

Remark 6.3. In Lemma 6.1 and Theorem 6.2, we can see that the operator 𝖽𝖾𝖼𝗈𝗆𝗉𝑥 de-
compresses the formation |𝑝⟩f into the form |𝑝′⟩f ○∪ |||

[𝑥
𝑦
]⟩

which is amenable for querying,
and later compresses it back to the formation |𝑝⟩f, for correct entanglement and adver-
sarial computation.

Remark 6.4. We may observe an interesting feature of the 𝖢𝖲𝗍𝖮 oracle: while it is nec-
essary to extend the XOR operation to define 𝑦 ⊕ ⊥ = 𝑦, in order to define 𝖢𝖲𝗍𝖮 as
a unitary operator, the above analysis shows that in fact, despite all quantum superpo-
sitions, that degenerate case never happens. Hence, the only reason why the definition
𝑦 ⊕ ⊥ = 𝑦 is needed is purely for implementation.

At the same time, this is to be expected in the light of the isomorphism, because,
due to Theorem 6.2 and Theorem 4.4, we have 𝖢𝖲𝗍𝖮 = (𝐼 ⊗K−1) ◦ 𝖲𝗍𝖮 ◦(𝐼 ⊗K), and
the degenerate case 𝑦 ⊕ ⊥ = 𝑦 never happens for 𝖲𝗍𝖮, obviously.

Based on the above, let us define the compressed standard oracle 𝖢𝖲𝗍𝖮 formally as
a quantum oracle. It is (

[𝑀]⊗ [𝑁],𝖿 ,𝖢𝖲𝗍𝖮, |∅⟩f
)
.

7 Indistinguishability of the compressed oracle

We may observe the following:

15

Theorem 7.1. There exists an isomorphic embedding from the compressed standard
oracle 𝖢𝖲𝗍𝖮 to the restricted standard oracle 𝖱𝖲𝗍𝖮.

Proof. The embedding is simply (𝐼 ,K). Theorem 4.4 and Theorem 6.2 show that the
query operators of both oracles have the identical form. Corollary 5.9 shows that the
mapping K is a unitary transformation which maps the formation to the corresponding
completion. We can verify that the morphism (𝐼 ,K) is indeed an isomorphism and an
embedding. ⊓⊔

Now, we are ready to prove the indistinguishability of the compressed standard ora-
cle.

Theorem 7.2. The compressed standard oracle 𝖢𝖲𝗍𝖮 is completely indistinguishable
from the standard oracle 𝖲𝗍𝖮.

Proof. This is essentially a corollary: since 𝖢𝖲𝗍𝖮 is a suboracle of 𝖱𝖲𝗍𝖮, and 𝖱𝖲𝗍𝖮 is a
suboracle of 𝖲𝗍𝖮, it follows that𝖢𝖲𝗍𝖮 is a suboracle of 𝖲𝗍𝖮. Then the indistinguishability
directly follows from Corollary 3.11. ⊓⊔

Remark 7.3. In the standard oracle of Zhandry, the uniform distribution of the quantum
random oracle is purified to the ‘uniform superposition’ |∅⟩c = 𝑁−𝑀 ∑

𝑓 |𝑓⟩, which can
be efficiently implemented by the formation |∅⟩f = |∅⟩. We can observe that any non-
uniform distribution of the oracle which can be purified and then efficiently implemented
by a linear combination of formations can be ‘compressed’, exactly like the case of the
uniform distribution.

8 Conclusion

The goal of this paper is to understand Zhandry’s compressed oracle technique. While
Zhandry’s construction and the proof is simple and straightforward, still it is a very
subtle and technically demanding work. We believe that our viewpoint in terms of the
formation of a partial function is a natural way to understand the compressed oracle, and
could be potentially useful in applying the technique and extending it to other settings.

Acknowledgements This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1A2C1010690).
The author would like to thank Minki Hhan for many fruitful discussions on the quantum
random oracle.

References

1. Chung, K.M., Fehr, S., Huang, Y.H., Liao, T.N.: On the compressed-oracle technique, and post-
quantum security of proofs of sequential work. Cryptology ePrint Archive, Report 2020/1305
(2020), https://eprint.iacr.org/2020/1305

2. Czajkowski, J.: Quantum indifferentiability of SHA-3. Cryptology ePrint Archive, Report
2021/192 (2021), https://eprint.iacr.org/2021/192

16

https://eprint.iacr.org/2020/1305
https://eprint.iacr.org/2021/192

3. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and game-playing
proofs for quantum indifferentiability. Cryptology ePrint Archive, Report 2019/428 (2019),
https://eprint.iacr.org/2019/428

4. Hosoyamada, A., Iwata, T.: 4-round Luby-Rackoff construction is a qPRP. In: Galbraith, S.D.,
Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921,
pp. 145–174. Springer (2019)

5. Unruh, D.: Compressed permutation oracles (and the collision-resistance of sponge/SHA3).
Cryptology ePrint Archive, Report 2021/062 (2021), https://eprint.iacr.org/2021/
062

6. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability.
Cryptology ePrint Archive, Report 2018/276 (2018), https://eprint.iacr.org/2018/
276, the original ePrint Archive version

7. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiabil-
ity. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 11693, pp. 239–268. Springer
(2019)

A Missing proofs

Theorem 3.7. If there exists a morphism 𝑓 ∶ 1 → 2, then, for any adversary 𝐴
outputting 0 or 1, there exists another adversary 𝐵 such that the following holds.

𝐏𝐫[𝐴1 () = 1] = 𝐏𝐫[𝐵2 () = 1].

Proof. Suppose 1 = (𝐼
1 ,𝑂

1 , 𝗊𝗎𝖾𝗋𝗒1, |𝗂𝗇𝗂𝗍1⟩), 2 = (𝐼
2 ,𝑂

2 , 𝗊𝗎𝖾𝗋𝗒2, |𝗂𝗇𝗂𝗍2⟩), and a
morphism 𝑓 = (𝑓 𝐼 , 𝑓𝑂) between them are given.

Let 𝐴 be an adversary interacting with 1 whose computation can be described by
a sequence of unitary operators 𝑈𝑖 ∶ 𝑃 ⊗ 𝐼

1 → 𝑃 ⊗ 𝐼
1 for 𝑖 = 0,… , 𝑡, with

the initial state |𝗂𝗇𝗂𝗍𝑃1 ⟩ ⊗ |𝗂𝗇𝗂𝗍𝐼1⟩ ∈ 𝑃 ⊗ 𝐼
1 . Also assume that the final output of 𝐴

is obtained by a projective measurement with respect to an orthogonal set of projectors
{𝑃0,𝑃1} on 𝑃 ⊗𝐼

1 .
Then, let 𝑈 ′

𝑖 be the unitary operator defined by (𝐼 ⊗ 𝑓 𝐼) ◦ 𝑈𝑖 ◦ (𝐼 ⊗ (𝑓 𝐼)†). Also,
we define two projectors 𝑃0,𝑃1 on 𝑃 ⊗𝐼

2 by 𝑃𝑏 ∶= (𝐼 ⊗ 𝑓 𝐼) ◦ 𝑃𝑏 ◦ (𝐼 ⊗ (𝑓 𝐼)†) for
𝑏 = 0, 1.

Now, let𝐵 be the adversary with the sequence𝑈 ′
0,… ,𝑈 ′

𝑡 , and the initial state |𝗂𝗇𝗂𝗍𝑃2 ⟩⊗
|𝗂𝗇𝗂𝗍𝐼2⟩, where |𝗂𝗇𝗂𝗍𝑃2 ⟩ = |𝗂𝗇𝗂𝗍𝑃1 ⟩, |𝗂𝗇𝗂𝗍𝐼2⟩ = 𝑓 𝐼 (|𝗂𝗇𝗂𝗍𝐼1⟩), with the final output obtained by
the projective measurement with respect to 𝑃0,𝑃1.

Let |Φ1⟩ be the final state of the joint system of 𝐴 and 1, and let |Φ2⟩ be the final
state of the joint system of 𝐵 and 2.

Now, the following is a commutative diagram.

17

https://eprint.iacr.org/2019/428
https://eprint.iacr.org/2021/062
https://eprint.iacr.org/2018/276

∗ ∗ ∗ ∗ … ∗

∗ ∗ ∗ ∗ … ∗

𝑈0⊗𝐼

𝐼⊗𝑓 𝐼⊗𝑓𝑂

𝐼⊗𝗊𝗎𝖾𝗋𝗒1

𝐼⊗𝑓 𝐼⊗𝑓𝑂

𝑈1⊗𝐼

𝐼⊗𝑓 𝐼⊗𝑓𝑂

𝐼⊗𝗊𝗎𝖾𝗋𝗒1

𝐼⊗𝑓 𝐼⊗𝑓𝑂

𝑈𝑡⊗𝐼

𝐼⊗𝑓 𝐼⊗𝑓𝑂

𝑈 !
0⊗𝐼 𝐼⊗𝗊𝗎𝖾𝗋𝗒2 𝑈 !

1⊗𝐼 𝐼⊗𝗊𝗎𝖾𝗋𝗒2 𝑈 !
𝑡⊗𝐼

So, when we chase this diagram, starting from top left, with the element |𝗂𝗇𝗂𝗍𝑃1 ⟩ ⊗
|𝗂𝗇𝗂𝗍𝐼1⟩⊗ |𝗂𝗇𝗂𝗍𝑂1 ⟩, the diagram relates the joint states of 𝐴 and 1, and 𝐵 and 2. Espe-
cially, via the rightmost arrow, we can see that

|Φ2⟩ = 𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂 |Φ1⟩ .

Then,

𝑃1 ⊗ 𝐼 |Φ2⟩ = (𝐼 ⊗ 𝑓 𝐼 ⊗ 𝐼)(𝑃1 ⊗ 𝐼)(𝐼 ⊗ (𝑓 𝐼)† ⊗ 𝐼)(𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂) |Φ1⟩
= (𝐼 ⊗ 𝑓 𝐼 ⊗ 𝐼)(𝑃1 ⊗ 𝐼)(𝐼 ⊗ 𝐼 ⊗ 𝑓𝑂) |Φ1⟩
= (𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂)(𝑃1 ⊗ 𝐼) |Φ1⟩

Since 𝑓 𝐼 , 𝑓𝑂 are both inner-product preserving, so is 𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂. Since |Φ2⟩ =
𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂 |Φ1⟩ and 𝑃1 ⊗ 𝐼 |Φ2⟩ = (𝐼 ⊗ 𝑓 𝐼 ⊗ 𝑓𝑂)(𝑃1 ⊗ 𝐼) |Φ1⟩, we have

⟨Φ2|𝑃1 ⊗ 𝐼 |Φ2⟩ = ⟨Φ1|𝑃1 ⊗ 𝐼 |Φ1⟩ .

Now, we can compute

𝐏𝐫[𝐵2 () = 1] = ⟨Φ2|𝑃1 ⊗ 𝐼 |Φ2⟩
= ⟨Φ1|𝑃1 ⊗ 𝐼 |Φ1⟩
= 𝐏𝐫[𝐴1 () = 1]. ⊓⊔

Theorem 4.4. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], we have

𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c =
⎧
⎪
⎨
⎪⎩

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩c if 𝑝(𝑥) ≠ ⊥,
1√
𝑁

∑
𝑧∈[𝑁]

|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |||𝑝 ∪
[𝑥
𝑧
]⟩c

if 𝑝(𝑥) = ⊥.

Proof. The proof is straightforward. Let us first prove the case 𝑝(𝑥) ≠ ⊥.

𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c = 𝖲𝗍𝖮 |𝑥𝑦⟩⊗ 1√
𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑓⟩

= 1√
𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

𝖲𝗍𝖮 |𝑥⟩ |𝑦⟩⊗ |𝑓⟩ .

Since 𝑝(𝑥) ≠ ⊥ and 𝑓 ⊇ 𝑝, 𝑓 (𝑥) = 𝑝(𝑥) ≠ ⊥. So,

𝖲𝗍𝖮 |𝑥⟩ |𝑦⟩⊗ |𝑓⟩ = |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑓⟩ .

18

Then,
𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c = 1√

𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑓⟩

= |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ 1√
𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑓⟩

= |𝑥⟩ |𝑦 ⊕ 𝑝(𝑥)⟩⊗ |𝑝⟩c.
The proof of the second case can be done by combining the first case and Lemma 4.3.
When 𝑝(𝑥) = ⊥,

𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |𝑝⟩c = 𝖲𝗍𝖮 |𝑥𝑦⟩⊗ 1√
𝑁

∑
𝑧

|||𝑝 ∪
[𝑥
𝑧
]⟩c

= 1√
𝑁

∑
𝑧
𝖲𝗍𝖮 |𝑥𝑦⟩⊗ |||𝑝 ∪

[𝑥
𝑧
]⟩c

= 1√
𝑁

∑
𝑧
|𝑥⟩ |𝑦 ⊕ 𝑧⟩⊗ |||𝑝 ∪

[𝑥
𝑧
]⟩c

. ⊓⊔

Theorem 5.7. For any partial functions 𝑝1, 𝑝2, we have

⟨𝑝1|𝑝2⟩f =
⎧
⎪
⎨
⎪⎩

√
1

𝑁 |𝑝1△𝑝2|
if 𝑝1 ♡ 𝑝2,

0 if 𝑝1 ♡⦚⦚ 𝑝2.
.

Especially, we have ⟨𝑝1|𝑝2⟩f = ⟨𝑝1|𝑝2⟩c.

Proof. For any partial functions 𝑝1, 𝑝2,

⟨𝑝1|𝑝2⟩f =
(

1√
𝑁

)|𝑝1|(
1√
𝑁

)|𝑝2| ∑
𝑞1,𝑞2

(1 −𝑁)|𝑝1∩𝑞1|
(
− 1√

𝑁

)|𝑞1|

⋅ (1 −𝑁)|𝑝2∩𝑞2|
(
− 1√

𝑁

)|𝑞2|
⟨𝑞1|𝑞2⟩

=

(
1√
𝑁

)|𝑝1|+|𝑝2|∑
𝑞
(1 −𝑁)|𝑝1∩𝑞|+|𝑝2∩𝑞|

(1
𝑁

)|𝑞|
,

where 𝑞 runs over all partial permutations with pre(𝑞) ⊆ pre(𝑝1) ∩ pre(𝑝2).
Let us define two sets 𝐸,𝑈 as follows.

𝐸 = {𝑥 ∈ pre(𝑝1) ∩ pre(𝑝2) | 𝑝1(𝑥) = 𝑝2(𝑥)},
𝑈 = {𝑥 ∈ pre(𝑝1) ∩ pre(𝑝2) | 𝑝1(𝑥) ≠ 𝑝2(𝑥)}.

Let 𝐴,𝐵 be disjoint subsets of 𝐸, where 𝑥 ∈ 𝐴 iff 𝑞(𝑥) = 𝑝1(𝑥) = 𝑝2(𝑥), and
𝑥 ∈ 𝐵 iff 𝑞(𝑥) ≠ 𝑝1(𝑥), 𝑝2(𝑥). Also, let 𝐶 ,𝐷,𝐹 be disjoint subsets of 𝑈 , where 𝑥 ∈ 𝐶

19

iff 𝑞(𝑥) = 𝑝1(𝑥), 𝑥 ∈ 𝐷 iff 𝑞(𝑥) = 𝑝2(𝑥), and 𝑥 ∈ 𝐹 iff 𝑞(𝑥) ≠ 𝑝1(𝑥), 𝑝2(𝑥). We can
see that, selecting 𝑞 is equivalent to selecting 𝐴,𝐵,𝐶 ,𝐷,𝐹 and 𝑞|𝐵 , 𝑞|𝐹 . Let 𝑎 = |𝐴|,
𝑏 = |𝐵|, 𝑐 = |𝐶|, 𝑑 = |𝐷|, 𝑓 = |𝐹 |. Note that |𝑝1 ∩ 𝑞| = 𝑎 + 𝑐, |𝑝2 ∩ 𝑞| = 𝑎 + 𝑑,
and |𝑞| = 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒. Also, for any given 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , the number of 𝑞’s with
|𝐴| = 𝑎, |𝐵| = 𝑏, |𝐶| = 𝑐, |𝐷| = 𝑑, |𝐹 | = 𝑓 is

(|𝐸|
𝑎

)(|𝐸| − 𝑎
𝑏

)(|𝑈 |
𝑐

)(|𝑈 | − 𝑐
𝑑

)(|𝑈 | − 𝑐 − 𝑑
𝑓

)
(𝑁 − 1)𝑏(𝑁 − 2)𝑓 .

So,

⟨𝑝1|𝑝2⟩f =
(

1√
𝑁

)|𝑝1|+|𝑝2| ∑
𝑎+𝑏≤|𝐸|

∑
𝑐+𝑑+𝑓≤|𝑈 |(|𝐸|

𝑎

)(|𝐸| − 𝑎
𝑏

)(|𝑈 |
𝑐

)(|𝑈 | − 𝑐
𝑑

)(|𝑈 | − 𝑐 − 𝑑
𝑓

)
(𝑁 − 1)𝑏(𝑁 − 2)𝑓

⋅ (1 −𝑁)(𝑎+𝑐)+(𝑎+𝑑)
(1
𝑁

)𝑎+𝑏+𝑐+𝑑+𝑓

=

(
1√
𝑁

)|𝑝1|+|𝑝2| ∑
𝑎+𝑏≤|𝐸|

(|𝐸|
𝑎

)(|𝐸| − 𝑎
𝑏

)
(𝑁 − 1)𝑏(1 −𝑁)2𝑎

(1
𝑁

)𝑎+𝑏

∑
𝑐+𝑑+𝑓≤|𝑈 |

(|𝑈 |
𝑐

)(|𝑈 | − 𝑐
𝑑

)(|𝑈 | − 𝑐 − 𝑑
𝑓

)
(𝑁 − 2)𝑓 (1 −𝑁)𝑐+𝑑

(1
𝑁

)𝑐+𝑑+𝑓

=

(
1√
𝑁

)|𝑝1|+|𝑝2| ∑
𝑎+𝑏≤|𝐸|

(|𝐸|
𝑎

)(|𝐸| − 𝑎
𝑏

)(
(1 −𝑁)2

𝑁

)𝑎(𝑁 − 1
𝑁

)𝑏

∑
𝑐+𝑑+𝑓≤|𝑈 |

(|𝑈 |
𝑐

)(|𝑈 | − 𝑐
𝑑

)(|𝑈 | − 𝑐 − 𝑑
𝑓

)(1 −𝑁
𝑁

)𝑐(1 −𝑁
𝑁

)𝑑(𝑁 − 2
𝑁

)𝑓
.

In the above, the first summation can be simplified using the binomial theorem.

∑
𝑎+𝑏≤|𝐸|

(|𝐸|
𝑎

)(|𝐸| − 𝑎
𝑏

)(
(1 −𝑁)2

𝑁

)𝑎(𝑁 − 1
𝑁

)𝑏

=
|𝐸|∑
𝑎=0

(|𝐸|
𝑎

)(
(1 −𝑁)2

𝑁

)𝑎 |𝐸|−𝑎∑
𝑏=0

(|𝐸| − 𝑎
𝑏

)(𝑁 − 1
𝑁

)𝑏
1|𝐸|−𝑎−𝑏

=
|𝐸|∑
𝑎=0

(|𝐸|
𝑎

)(
(1 −𝑁)2

𝑁

)𝑎(𝑁 − 1
𝑁

+ 1
)|𝐸|−𝑎

=
(
(1 −𝑁)2

𝑁
+ 𝑁 − 1

𝑁
+ 1

)|𝐸|

= 𝑁 |𝐸|.

20

The second summation can be simplified similarly.

∑
𝑐+𝑑+𝑓≤|𝑈 |

(|𝑈 |
𝑐

)(|𝑈 | − 𝑐
𝑑

)(|𝑈 | − 𝑐 − 𝑑
𝑓

)(1 −𝑁
𝑁

)𝑐(1 −𝑁
𝑁

)𝑑(𝑁 − 2
𝑁

)𝑓

=
(1 −𝑁

𝑁
+ 1 −𝑁

𝑁
+ 𝑁 − 2

𝑁
+ 1

)|𝑈 |

= 0|𝑈 |

Then,

⟨𝑝1|𝑝2⟩f =
(

1√
𝑁

)|𝑝1|+|𝑝2|
𝑁 |𝐸|0|𝑈 |.

The above calculation is based on the binomial theorem, which expands (𝑋 + 𝑌)𝑛
as

∑
𝑖
(𝑛
𝑖

)
𝑋𝑖𝑌 𝑛−𝑖. So, when 𝑛 = 0, (𝑋 + 𝑌)𝑛 = 1. Therefore, in this case, 00 = 1.

Now, if 𝑈 ≠ ∅, then ⟨𝑝1|𝑝2⟩f = 0. This case occurs exactly when 𝑝1 ♡⦚⦚ 𝑝2.
On the other hand, if 𝑝1, 𝑝2 are consistent, then 𝑈 = ∅, and 𝑁 |𝐸| = 𝑁 |𝑝1∩𝑝2|. Then,

⟨𝑝1|𝑝2⟩f =
(

1√
𝑁

)|𝑝1|+|𝑝2|
𝑁 |𝑝1∩𝑝2|

=

(
1√
𝑁

)|𝑝1∩𝑝2|+|𝑝1∪𝑝2|
𝑁 |𝑝1∩𝑝2|

=
√

𝑁 |𝑝1∩𝑝2|

𝑁 |𝑝1∪𝑝2|
=
√

1
𝑁 |𝑝△𝑞| ,

which is exactly ⟨𝑝1|𝑝2⟩c. ⊓⊔

Theorem 5.8. For any partial functions 𝑝, we have

K|𝑝⟩f = |𝑝⟩c

and
Φ|𝑝⟩f = |𝑝⟩f.

Proof. Let us prove the first identity. We have

K|𝑝⟩f =
(

1√
𝑁

)|𝑝|∑
𝑞
(1 −𝑁)|𝑝∩𝑞|

(
− 1√

𝑁

)|𝑞|
|𝑞⟩c

=

(
1√
𝑁

)|𝑝|∑
𝑞
(1 −𝑁)|𝑝∩𝑞|

(
− 1√

𝑁

)|𝑞|
1√

𝑁𝑀−|𝑞|

∑
𝑓⊇𝑞

|𝑓⟩

=

(
1√
𝑁

)|𝑝|+𝑀 ∑
𝑓

(∑
𝑞
(1 −𝑁)|𝑝∩𝑞|(−1)|𝑞|

)
|𝑓 ⟩

21

Here, we have switched the order of the summations. Now, 𝑓 runs over all total
functions, and 𝑞 runs over all partial functions with 𝑞 ⊆ 𝑓 , pre(𝑞) ⊆ pre(𝑝).

So, first we need to compute
∑
𝑞
(1 −𝑁)|𝑝∩𝑞|(−1)|𝑞|.

Since 𝑞 ⊆ 𝑓 , choosing 𝑞 is equivalent to choosing pre(𝑞).
Let 𝐸 and 𝑈 be defined as

𝐸 ∶= {𝑥 ∈ pre(𝑝) | 𝑝(𝑥) = 𝑓 (𝑥)}, 𝑈 ∶= {𝑥 ∈ pre(𝑝) | 𝑝(𝑥) ≠ 𝑓 (𝑥)}.

When choosing pre(𝑞), let us define 𝐴 ∶= pre(𝑞)∩𝐸, 𝐵 ∶= pre(𝑞)∩𝑈 . So, choosing
𝑞 is equivalent to choosing 𝐴 ⊆ 𝐸, 𝐵 ⊆ 𝑈 . Let 𝑎 = |𝐴|, 𝑏 = |𝐵|. Then, |𝑝 ∩ 𝑞| = 𝑎,
|𝑞| = 𝑎 + 𝑏. So, ∑

𝑞
(1 −𝑁)|𝑝∩𝑞|(−1)|𝑞|

=
|𝐸|∑
𝑎=0

|𝑈 |∑
𝑏=0

(|𝐸|
𝑎

)(|𝑈 |
𝑏

)
(1 −𝑁)𝑎(−1)𝑎+𝑏

=
|𝐸|∑
𝑎=0

(|𝐸|
𝑎

)
(𝑁 − 1)𝑎 ⋅

|𝑈 |∑
𝑏=0

(|𝑈 |
𝑏

)
(−1)𝑏

= 𝑁 |𝐸| ⋅ 0|𝑈 |

Here, if 𝑈 ≠ ∅ then 0|𝑈 | = 0, and when 𝑈 = ∅, then 𝑝 ⊆ 𝑓 , and 𝐸 = pre(𝑝). In this
case, 𝑁 |𝐸|0|𝑈 | = 𝑁 |𝑝|. So,

K|𝑝⟩f =
(

1√
𝑁

)|𝑝|+𝑀 ∑
𝑓⊇𝑝

𝑁 |𝑝| |𝑓⟩

= 1√
𝑁𝑀−|𝑝|

∑
𝑓⊇𝑝

|𝑓⟩

= |𝑝⟩c.
Let us prove the second identity. We have

Φ|𝑝⟩f =
(

1√
𝑁

)|𝑝|∑
𝑞
(1 −𝑁)|𝑝∩𝑞|

(
− 1√

𝑁

)|𝑞|
|𝑞⟩f

=

(
1√
𝑁

)|𝑝|∑
𝑞
(1 −𝑁)|𝑝∩𝑞|

(
− 1√

𝑁

)|𝑞|

⋅

(
1√
𝑁

)|𝑞|∑
𝑟
(1 −𝑁)|𝑞∩𝑟|

(
− 1√

𝑁

)|𝑟|
|𝑟⟩

=

(
1√
𝑁

)|𝑝|∑
𝑟

(∑
𝑞
(1 −𝑁)|𝑝∩𝑞|+|𝑞∩𝑟|

(
− 1
𝑁

)|𝑞|
)(

− 1√
𝑁

)|𝑟|
|𝑟⟩ .

22

In the above, we have switched the order of the summations. 𝑟 runs over all partial
functions with pre(𝑟) ⊆ pre(𝑝), and 𝑞 runs over all partial functions with pre(𝑟) ⊆
pre(𝑞) ⊆ pre(𝑝).

Let us first compute the sum involving 𝑞:

∑
𝑞
(1 −𝑁)|𝑝∩𝑞|+|𝑞∩𝑟|

(
− 1
𝑁

)|𝑞|
.

We define sets 𝐸 and 𝑈 as

𝐸 ∶= {𝑥 ∈ pre(𝑟) | 𝑝(𝑥) = 𝑟(𝑥)}, 𝑈 ∶= {𝑥 ∈ pre(𝑟) | 𝑝(𝑥) ≠ 𝑟(𝑥)}.

We will choose subsets 𝐴 ⊆ 𝐸, 𝐵,𝐶 ⊆ 𝑈 , 𝐷,𝐹 ⊆ pre(𝑝) ⧵ pre(𝑟) so that

𝑞(𝑥) = 𝑝(𝑥) = 𝑟(𝑥) if 𝑥 ∈ 𝐴
𝑞(𝑥) ≠ 𝑝(𝑥) = 𝑟(𝑥) if 𝑥 ∈ 𝐸 ⧵ 𝐴
𝑞(𝑥) = 𝑝(𝑥) ≠ 𝑟(𝑥) if 𝑥 ∈ 𝐵
𝑞(𝑥) = 𝑟(𝑥) ≠ 𝑝(𝑥) if 𝑥 ∈ 𝐶
𝑞(𝑥) ≠ 𝑝(𝑥) ≠ 𝑟(𝑥) if 𝑥 ∈ 𝑈 ⧵ (𝐵 ∪ 𝐶)
𝑞(𝑥) = 𝑝(𝑥) if 𝑥 ∈ 𝐷
𝑞(𝑥) ≠ 𝑝(𝑥) if 𝑥 ∈ 𝐹 .

Let 𝑎 = |𝐴|, 𝑏 = |𝐵|, 𝑐 = |𝐶|, 𝑑 = |𝐷|, 𝑓 = |𝐹 |. Choosing 𝑞 is equivalent to choosing
𝐴,𝐵,𝐶 ,𝐷,𝐹 , 𝑞|𝐸⧵𝐴, 𝑞|𝑈⧵(𝐵∪𝐶), and 𝑞|𝐹 . So, for any given 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , the number of
𝑞s satisfying these is
(|𝐸|

𝑎

)(|𝑈 |
𝑏

)(|𝑈 | − 𝑏
𝑐

)(|𝑝| − |𝑟|
𝑑

)(|𝑝| − |𝑟| − 𝑑
𝑓

)
(𝑁−1)|𝐸|−𝑎(𝑁−2)|𝑈 |−𝑏−𝑐(𝑁−1)𝑓 .

Also, in this case, |𝑝 ∩ 𝑞| = 𝑎 + 𝑏 + 𝑑, |𝑞 ∩ 𝑟| = 𝑎 + 𝑐, |𝑞| = |𝑟| + 𝑑 + 𝑓 . Then,

∑
𝑞
(1 −𝑁)|𝑝∩𝑞|+|𝑞∩𝑟|

(
− 1
𝑁

)|𝑞|

=
∑
𝑎≤|𝐸|

∑
𝑏+𝑐≤|𝑈 |

∑
𝑑+𝑓≤|𝑝|−|𝑟|

(|𝐸|
𝑎

)(|𝑈 |
𝑏

)(|𝑈 | − 𝑏
𝑐

)(|𝑝| − |𝑟|
𝑑

)(|𝑝| − |𝑟| − 𝑑
𝑓

)

⋅ (𝑁 − 1)|𝐸|−𝑎+𝑓 (𝑁 − 2)|𝑈 |−𝑏−𝑐 ⋅ (1 −𝑁)(𝑎+𝑏+𝑑)+(𝑎+𝑐)
(
− 1
𝑁

)|𝑟|+𝑑+𝑓

=
∑
𝑎≤|𝐸|

(|𝐸|
𝑎

)
(𝑁 − 1)|𝐸|−𝑎(1 −𝑁)2𝑎

⋅
∑

𝑏+𝑐≤|𝑈 |

(|𝑈 |
𝑏

)(|𝑈 | − 𝑏
𝑐

)
(𝑁 − 2)|𝑈 |−𝑏−𝑐(1 −𝑁)𝑏+𝑐

⋅
∑

𝑑+𝑓≤|𝑝|−|𝑟|

(|𝑝| − |𝑟|
𝑑

)(|𝑝| − |𝑟| − 𝑑
𝑓

)
(𝑁 − 1)𝑓 (1 −𝑁)𝑑

(
− 1
𝑁

)|𝑟|+𝑑+𝑓
.

23

The first sum is

|𝐸|∑
𝑎=0

(|𝐸|
𝑎

)
(𝑁 − 1)|𝐸|−𝑎(1 −𝑁)2𝑎 = ((𝑁 − 1) + (1 −𝑁)2)|𝐸| = (𝑁(𝑁 − 1))|𝐸|.

The second sum can be simplified as

|𝑈 |∑
𝑏=0

(|𝑈 |
𝑏

)
(1 −𝑁)𝑏

|𝑈 |−𝑏∑
𝑐=0

(|𝑈 | − 𝑏
𝑐

)
(𝑁 − 2)|𝑈 |−𝑏−𝑐(1 −𝑁)𝑐

=
|𝑈 |∑
𝑏=0

(|𝑈 |
𝑏

)
(1 −𝑁)𝑏((𝑁 − 2) + (1 −𝑁))|𝑈 |−𝑏

=
|𝑈 |∑
𝑏=0

(|𝑈 |
𝑏

)
(1 −𝑁)𝑏(−1)|𝑈 |−𝑏

= (−𝑁)|𝑈 |.

The last sum can be simplified as

(
− 1
𝑁

)|𝑟| |𝑝|−|𝑟|∑
𝑑=0

(|𝑝| − |𝑟|
𝑑

)
(1 −𝑁)𝑑

(
− 1
𝑁

)𝑑 |𝑝|−|𝑟|−𝑑∑
𝑓=0

(|𝑝| − |𝑟| − 𝑑
𝑓

)
(𝑁 − 1)𝑓

(
− 1
𝑁

)𝑓

=
(
− 1
𝑁

)|𝑟| |𝑝|−|𝑟|∑
𝑑=0

(|𝑝| − |𝑟|
𝑑

)
(1 −𝑁)𝑑

(
− 1
𝑁

)𝑑(1 −𝑁
𝑁

+ 1
)|𝑝|−|𝑟|−𝑑

=
(
− 1
𝑁

)|𝑟| |𝑝|−|𝑟|∑
𝑑=0

(|𝑝| − |𝑟|
𝑑

)(𝑁 − 1
𝑁

)𝑑(1
𝑁

)|𝑝|−|𝑟|−𝑑

=
(
− 1
𝑁

)|𝑟|(𝑁 − 1
𝑁

+ 1
𝑁

)|𝑝|−|𝑟|

=
(
− 1
𝑁

)|𝑟|
.

Combining these, we see that

∑
𝑞
(1 −𝑁)|𝑝∩𝑞|+|𝑞∩𝑟|

(
− 1
𝑁

)|𝑞|
= (𝑁(𝑁 − 1))|𝐸|(−𝑁)|𝑈 |

(
− 1
𝑁

)|𝑟|

= (1 −𝑁)|𝐸|(−𝑁)|𝐸|+|𝑈 |
(
− 1
𝑁

)|𝑟|

= (1 −𝑁)|𝑝∩𝑟|(−𝑁)|𝑟|
(
− 1
𝑁

)|𝑟|

= (1 −𝑁)|𝑝∩𝑟|.

24

Putting this result back into the sum we were calculating,

Φ|𝑝⟩f =
(

1√
𝑁

)|𝑝|∑
𝑞
(1 −𝑁)|𝑝∩𝑞|

(
− 1√

𝑁

)|𝑞|
|𝑞⟩f

=

(
1√
𝑁

)|𝑝|∑
𝑟

(∑
𝑞
(1 −𝑁)|𝑝∩𝑞|+|𝑞∩𝑟|

(
− 1
𝑁

)|𝑞|
)(

− 1√
𝑁

)|𝑟|
|𝑟⟩

=

(
1√
𝑁

)|𝑝|∑
𝑟
(1 −𝑁)|𝑝∩𝑟|

(
− 1√

𝑁

)|𝑟|
|𝑟⟩

= |𝑝⟩f,

which proves the second identity. ⊓⊔

Lemma 5.10. For any partial function 𝑝 ∶ [𝑀] ⇀ [𝑁], if 𝑝(𝑥) = ⊥, then we have

|𝑝⟩f = 1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f

.

Proof. Here we give an alternative proof of Lemma 5.10 based on direct computation.

1√
𝑁

∑
𝑦∈[𝑁]

|||𝑝 ∪
[𝑥
𝑦
]⟩f

= 1√
𝑁

∑
𝑦∈[𝑁]

|𝑝⟩f ○∪
(
|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)

= |𝑝⟩f ○∪ 1√
𝑁

∑
𝑦∈[𝑁]

(
|||
[𝑥
𝑦
]⟩

+ 1√
𝑁

|∅⟩ − 1
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)

= |𝑝⟩f ○∪
(

1√
𝑁

∑
𝑦∈[𝑁]

|||
[𝑥
𝑦
]⟩

+ 1
𝑁

∑
𝑦∈[𝑁]

|∅⟩ − 1
𝑁
√
𝑁

∑
𝑦,𝑧

|||
[𝑥
𝑧
]⟩
)

= |𝑝⟩f ○∪
(

1√
𝑁

∑
𝑦∈[𝑁]

|||
[𝑥
𝑦
]⟩

+ |∅⟩ − 1√
𝑁

∑
𝑧∈[𝑁]

|||
[𝑥
𝑧
]⟩
)

= |𝑝⟩f ○∪ |∅⟩ = |𝑝⟩f. ⊓⊔

25

