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Abstract This paper presents two modifications for Loidreau’s code-based cryp-6

tosystem. Loidreau’s cryptosystem is a rank metric code-based cryptosystem con-7

structed by using Gabidulin codes in the McEliece setting. Recently a polynomial-8

time key recovery attack was proposed to break Loidreau’s cryptosystem in some9

cases. To prevent this attack, we propose the use of subcodes to disguise the secret10

codes in Modification I. In Modification II, we choose a random matrix of low col-11

umn rank over Fq to mix with the secret matrix. According to our analysis, these12

two modifications can both resist the existing structural attacks. Additionally, we13

adopt the systematic generator matrix of the public code to make a reduction14

in the public-key size. In additon to stronger resistance against structural attacks15

and more compact representation of public keys, our modifications also have larger16

information transmission rates.17

Keywords Code-based cryptography · Rank metric codes · Gabidulin codes ·18

Loidreau’s cryptosystem19
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1 Introduction21

In 1978, McEliece proposed the first code-based public-key cryptosystem, namely22

the well-known McEliece cryptosystem based on Goppa codes [1]. Since then cryp-23

tologists have made extensive study on its security [2–5]. Apart from some weak24

keys [6], the McEliece cryptosystem still remains secure in general cases. The main25

drawback of this cryptosystem lies in its large public-key size, which makes it un-26

practical in many situations. To overcome this problem, many variants have been27
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proposed. In 1986, Niederreiter [7] introduced a knapsack-type cryptosystem us-1

ing GRS codes, which was shown to be insecure by Sidelnikov in [8]. But if we2

use Goppa codes in the Niederreiter setting, it was proved to be equivalent to3

the McEliece cryptosystem in terms of security [9]. GRS codes allow us to re-4

duce the public-key size due to their optimal error-correcting capability. Many5

variants based on GRS codes were proposed after Niederreiter’s work. However,6

nearly all of these variants were broken one after another because of GRS codes7

being highly structured. In the variant [10], the BBCRS cryptosystem, the authors8

proposed the use of a dense matrix rather than a permutation matrix to disguise9

the structure of the underlying GRS code. In this proposal, the column scrambler10

is a matrix of the form (R + T )−1, where T is a sparse matrix and R is a dense11

matrix of low rank. With this approach, the public code seems quite different from12

GRS codes. This variant therefore can resist some known structural attacks, such13

as the Sidelnikov-Shestakov attack [8]. However, in [11] the authors presented a14

polynomial-time key recovery attack against this variant in some cases. Although15

we can adjust the parameters to prevent such an attack, it would bring some other16

problems such as the decryption complexity increasing exponentially and a higher17

request of error-correcting capability for the underlying code.18

In 1985 Gabiduin [12] introduced a new family of rank metric codes, known as19

the Gabidulin codes. Since the complexity of decoding general rank metric codes is20

much higher than that of decoding Hamming metric codes [15,16], it is feasible to21

obtain much smaller public-key sizes by building cryptosystems in the rank metric.22

In [17] the authors proposed to use Gabidulin codes in the McEliece setting and23

introduced the GPT cryptosystem. Unfortunately, several structural attacks were24

put forward to completely break this system [23–25].To prevent these attacks, vari-25

ants based on different masking skills for Gabidulin codes were proposed [18–22].26

But in [28] the authors declare the failure of all the previous masking techniques27

for Gabidulin codes. In [26] Faure and Loidreau proposed a cryptosystem also28

relying on the Gabidulin codes but not in the McEliece setting. Until the work29

in [27], the Faure-Loidreau system had never been severely attacked. Recently,30

in [29] Loidreau proposed a cryptosystem constructed by using Gabidulin codes in31

the McEliece setting. Different from the original GPT cryptosystem, the isomet-32

ric matrix is replaced with a matrix whose inverse is taken in an Fq-subspace of33

Fqm of dimension λ. By doing this, the public code seems quite random. Loidreau34

claimed that his proposal could prevent the existing structural attacks. However,35

this claim was proved to be invalid by the authors in [30] when λ = 2 and the36

code rate is greater than 1/2. Soon after this, the author in [31] generalized this37

attack to the case of λ > 2 and the code rate greater than 1 − 1
λ . However, it is38

feasible to prevent this attack even when the secret code rate is greater than 1− 1
λ39

according to our analysis.40

The rest of this paper is organised as follows. In Section 2 notations and some41

concepts about rank metric codes used throughout this paper are given. Section42

3 is devoted to a simple descripton of Loidreau’s cryptosystem. In Section 4 we43

shall introduce part of the Coggia-Couvreur attack (please refer to [30] for more44

details). Following this, our two modifications for Loidreau’s cryptosystem will be45

introduced in Section 5, then security analysis of our modifications will be given46

in Section 6. In Section 7, we will give some suggested parameters for different47

security levels and make a comparison with Loidreau’s original scheme in Table 148

and with some NIST-PQC submissions in Table 2. Section 8 is our conclusion.49
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2 Preliminaries1

2.1 Notations and basic concepts2

Let q be a prime power. Denote by Fq the finite field with q elements, and Fqm3

an extension field of Fq of degree m. For two positive integers k and n, denote by4

Mk,n(Fqm) the set of all k×n matrices over Fqm , and by GLn(Fqm) the set of all5

n×n invertible matrices over Fqm . For a matrix M ∈ Mk,n(Fqm), the column rank6

of M with respect to Fq, denoted by Clrq(M), is the largest number of columns7

of M linearly independent over Fq. Denote by ⟨M⟩ the vector space spanned by8

rows of M over Fqm .9

An [n, k] linear code C over Fqm is a k-dimensional subspace of Fn
qm . The dual10

code of C, denoted by C⊥, is the orthogonal space of C under the usual Euclidean11

inner product over Fqm . A k × n full-rank matrix G ∈ Mk,n(Fqm) is called a12

generator matrix of C if the vector space ⟨G⟩ is exactly the code C. A generator13

matrix of C⊥ is called a parity-check matrix of C.14

2.2 Rank metric codes15

Now we recall some basic concepts for rank metric and rank metric codes.16

Definition 1 For a vector x = (x1, · · · , xn) ∈ Fn
qm , the support of x denoted by17

Supp(x), is defined to be the linear space spanned by coordinates of x over Fq.18

Formally we have19

Supp(x) =

{
n∑

i=1

λixi : λi ∈ Fq, 1 ⩽ i ⩽ n

}
.

Definition 2 For a vector x ∈ Fn
qm , the rank weight of x denoted by wR(x), is20

defined to be the dimension of Supp(x) over Fq.21

Given two vectors x,y ∈ Fn
qm , the rank distance between x and y, denoted by22

dR(x,y), is defined to be the rank weight of x − y. It is easy to verify that the23

function dR(·, ·) defines a proper metric on Fn
qm . A code endowed with the rank24

metric is called a rank metric code, and in this paper by rank metric codes we25

always mean linear rank metric codes.26

Definition 3 For a rank metric code C ⊆ Fn
qm , the minimum rank distance of C,27

denoted by d(C), is defined as28

d(C) = min{dR(x,y) : x,y ∈ C and x ̸= y}.

It is easy to verify that the minimum rank (Hamming) distance of a linear29

code is equal to its minimum rank (Hamming) weight. In the context of Hamming30

metric codes, the minimum distance d of an [n, k] linear code satisfies the Singleton31

bound d ⩽ n− k + 1 [32]. Similarly, the minimum rank distance of a rank metric32

code C satisfies the following Singleton-style bound.33
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Theorem 1 (Singleton-style bound) [33] Let C ⊆ Fn
qm be an [n, k] rank metric1

code, then the minimum rank distance of C with respect to Fq satisfies the following2

inequality3

d(C) ⩽ n− k + 1.

Remark 1 A linear code attaining the Singleton-style bound is called a Maximum4

Rank Distance (MRD) code. Apparently an [n, k] MRD code can correct up to5

⌊n−k
2 ⌋ rank errors.6

The following proposition implies that the maximum rank weight of a rank7

metric code is bounded from above by the column rank of its generator matrix.8

Proposition 1 For a matrix M ∈ Mk,n(Fqm) with Clrq(M) = r, the maximum9

rank weight of the code ⟨M⟩ is bounded by r from above.10

Proof It suffices to prove that for any v ∈ ⟨M⟩, we have wR(v) ⩽ r. Since11

Clrq(M) = r, there exists Q ∈ GLn(Fq) such that MQ = [M ′|O], where M ′ ∈12

Mk,r(Fqm) with Clrq(M
′) = r and O is a zero matrix. For any v ∈ ⟨M⟩, there13

exists x ∈ Fk
qm such that v = xM and14

vQ = xMQ = x[M ′|O] = (x′,0),

where x′ ∈ Fr
qm and 0 is a zero vector. Hence we have wR(v) = wR(vQ) ⩽ r. This15

concludes the proof.16

2.3 Gabidulin codes17

Gabidulin codes can be viewed as an analogue of GRS codes in the rank metric18

setting, and these two types of codes resemble each other closely in the construction19

principle. GRS codes admit generator matrices with the Vandermonde structure,20

while Gabidulin codes can be described by Moore matrices defined as follows.21

Definition 4 For an integer s, denote by [s] the s-th Frobenius power qs. A
matrix G ∈ Mk,n(Fqm) is called a Moore matrix generated by a = (a1, · · · , an) ∈
Fn
qm if the s-th row of G equals the coordinate-wise Frobenius power a[s−1] =

(a
[s−1]
1 , · · · , a[s−1]

n ) for each 1 ⩽ s ⩽ k. Formally we have

G =


a1 a2 · · · an

a
[1]
1 a

[1]
2 · · · a

[1]
n

...
...

...

a
[k−1]
1 a

[k−1]
2 · · · a

[k−1]
n

 . (1)

For a matrix G ∈ Mk,n(Fqm), we define G[s] = (G
[s]
ij ). For a set S ⊆ Fn

qm , we22

define S[s] = {x[s] : x ∈ S}. For a linear code C ⊆ Fn
qm , it is easy to verify that23

C[s] is also an Fqm -linear code.24

Definition 5 (Gabidulin codes) For a vector a ∈ Fn
qm with wR(a) = n ⩽ m,25

let G be the k×n Moore matrix generated by a. The [n, k] Gabidulin code Gn,k(a)26

over Fqm generated by a is defined to be the linear space ⟨G⟩, namely we have27

Gn,k(a) = ⟨G⟩.28
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A major reason for Gabidulin codes being widely used in the design of cryp-1

tosystems consists in their remarkable error-correcting capability and simple al-2

gebraic structure. Now we recall some properties of Gabidulin codes through the3

following two theorems without proving.4

Theorem 2 [34] The Gabidulin code Gn,k(a) is an MRD code. In other words,5

Gn,k(a) attains the Singleton-style bound for rank metric codes.6

According to Theorem 2, the minimum rank distance of Gn,k(a) is n− k + 1.7

This implies that any ⌊n−k
2 ⌋ rank errors can be corrected. In fact, several efficient8

docoding algorithms for Gabidulin codes already exist (for instance [12–14]).9

Theorem 3 [27] The dual code of Gn,k(a) is the Gabidulin code Gn,n−k(b
[k−n+1)])10

for some b ∈ Gn,n−1(a)
⊥ with wR(b) = n.11

3 Loidreau’s scheme12

For a vector a ∈ Fn
qm with wR(a) = n, denote by G a generator matrix of Gn,k(a).13

For a positive integer λ ≪ m, let V ⊆ Fqm be an Fq-linear space of dimension λ.14

Now we give a simple description of Loidreau’s scheme through the following three15

algorithms.16

– Key Generation17

Randomly choose P ∈ GLn(Fqm) whose entries are taken from V and compute18

Gpub = GP−1. We publish (Gpub, t) as the public key where t = ⌊n−k
2λ ⌋, and19

keep (a, P ) as the secret key.20

– Encryption21

For a plaintext m ∈ Fk
qm , randomly choose a vector e ∈ Fn

qm with wR(e) = t.22

The ciphertext corresponding to m is computed as c = mGpub + e.23

– Decryption24

Compute c′ = cP = mG + eP . Since wR(eP ) ⩽ wR(e) · dimq(V) ⩽ ⌊n−k
2 ⌋,25

decoding c′ will lead to the plaintext m.26

4 The Coggia-Couvreur attack27

Before describing the Coggia-Couvreur attack, we first introduce a distinguisher28

for Gabidulin codes. This distinguisher provides us with a method of distinguishing29

Gabidulin codes from general ones.30

4.1 The distinguisher for Gabidulin codes31

Most of cryptosystems based on Gabidulin codes have been proved to be insecure32

against structural attacks. Although these attacks were proposed to cryptanalyze33

different variants of the GPT cryptosystem, the principle for their work is based34

on the same observation that one can distinguish Gabidulin codes from general35

ones by performing a simple operation on these codes.36

Given a random linear code C ⊆ Fn
qm of dimension k ⩽ n/2, the expected37

dimension of the code C+ C[1] equals 2k, or equivalently C ∩C[1] = {0} holds with38
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high probability. But for a Gabidulin code Gn,k(a), we have Gn,k(a)+Gn,k(a)
[1] =1

Gn,k+1(a), namely the dimension of Gn,k(a) + Gn,k(a)
[1] is k + 1. More generally,2

we have the following two propositions.3

Proposition 2 [30] Let C ⊆ Fn
qm be a random linear code of length n and dimen-4

sion k. For a non-negative integer l and a positive integer s < k, we have5

Pr
(
dim(C + C[1] + · · ·+ C[s]) ⩽ min{n, (s+ 1)k} − l

)
= O(q−ml).

Proposition 3 [30] Let k ⩽ n and s be a positive integer, then for any a ∈ Fn
qm

with wR(a) = n, we have

Gn,k(a) ∩ Gn,k(a)
[1] = Gn,k−1(a

[1]);

Gn,k(a) + Gn,k(a)
[1] + · · ·+ Gn,k(a)

[s] = Gn,k+s(a).

4.2 Description of the Coggia-Couvreur attack6

In this part we investigate the structural vulnerability of Loidreau’s cryptosystem7

in the case of λ = 2 and the dimension of the public code Cpub = ⟨Gpub⟩ being8

greater than n/2. The principle for the Coggia-Couvreur attack lies in Propositions9

2 and 3. Instead of directly operating the public code, the authors in [30] consider10

the dual of the public code because of the following lemma.11

Lemma 1 [30] Any parity-check matrix Hpub of Cpub can be expressed as12

Hpub = HsecP
T ,

where Hsec is a parity-check matrix of the secret Gabidulin code Gn,k(a).13

The authors considered the case of λ = 2, namely the linear space V ⊆ Fqm14

has dimension 2 over Fq. Suppose V is spanned by α, β ∈ F∗
qm over Fq, namely15

V = ⟨α, β⟩Fq
. Let H ′

sec = αHsec and P ′ = α−1P , apparently we have Hpub =16

H ′
secP

′T . It is easy to see that H ′
sec spans the same code as Hsec and entries17

of P ′ are contained in V ′ = ⟨1, α−1β⟩Fq
. Hence it is reasonable to suppose that18

V = ⟨1, γ⟩Fq
for some γ ∈ F∗

qm . In this situation, we can express PT in the form of19

PT = P0 + γP1,

where P0, P1 ∈ Mn,n(Fq).20

According to Theorem 3, there exists some b ∈ Gn,n−1(a)
⊥ with wR(b) = n21

such that Gn,k(a)
⊥ = Gn,n−k(b). We define22

g = bP0,h = bP1.

As for the triple (γ, g,h), the authors made the following two assumptions:23

(1) Gn,n−k+2(g) ∩ Gn,n−k+2(h) = {0} and wR(g), wR(h) ≥ n− k + 2;24

(2) m > 2 and γ is not contained in any proper subfield of Fqm .25
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The rationality for these two assumptions can be explained as follows. Ac-1

cording to the authors’ experiments on Magma, Assumption (1) holds with an2

extremely high probability. Apparently m > 2 is reasonable because of m ⩾ n. On3

the other hand, if γ is contained in some proper subfield of Fqm , then the adversary4

can find γ through the exhausting method for the reason that even the union of5

all proper subfields of Fqm contains much less elements than Fqm . Hence γ cannot6

be contained in any proper subfield of Fqm .7

The core of the Coggia-Couvreur attack is to find the triple (γ, g,h) or one of8

its equivalent forms (see [30] for more details). With the knowledge of the triple9

(γ, g,h) or one of its equivalent forms, one can decrypt any valid ciphertext in10

polynomial time and hence completely break Loidreau’s cryptosystem.11

What follows are two lemmas that will be useful for analysing the security of our12

modifications. For the remaining part of the Coggia-Couvreur attack, interested13

readers can refer to [30] for more details. Now we introduce these two lemmas14

without proving.15

Lemma 2 [30] The code C⊥
pub is spanned by

g + γh, g[1] + γh[1], · · · , g[n−k−1] + γh[n−k−1]. (2)

Lemma 3 [30] Under Assumption (1), we have that C⊥
pub + C⊥

pub
[1]

is spanned by16

g + γh and g[1],h[1], · · · , g[n−k−1],h[n−k−1] and g[n−k] + γ[1]h[n−k],

and17

(C⊥
pub + C⊥

pub
[1]
) ∩ (C⊥

pub
[1]

+ C⊥
pub

[2]
)

is spanned by18

g[1] + γ[1]h[1] and g[2],h[2], · · · , g[n−k−1],h[n−k−1] and g[n−k] + γ[1]h[n−k].

Remark 2 Similar to Lemma 3, it is easy to verify that

(C⊥
pub + C⊥

pub
[1]
) ∩ (C⊥

pub
[1]

+ C⊥
pub

[2]
) ∩ · · · ∩ (C⊥

pub
[n−k−1]

+ C⊥
pub

[n−k]
) (3)

yields a code spanned by

g[n−k−1] + γ[n−k−1]h[n−k−1] and g[n−k] + γ[1]h[n−k]. (4)

The key point for the Coggia-Couvreur attack is that one can obtain (4) by19

computing (3). But if C⊥
pub

[i]
+ C⊥

pub
[i+1]

(0 ⩽ i ⩽ n − k − 1) happens to be the20

whole space Fn
qm , computing (4) will lead to nothing but the whole space itself,21

which means that the Coggia-Couvreur attack will fail in this situation. Our first22

modification for Loidreau’s cryptosystem is inspired by this observation. On the23

other hand, if C⊥
pub does not contain the full code spanned by (2), then one cannot24

obtain (4) from (3) either even if C⊥
pub

[i]
+ C⊥

pub
[i+1]

(0 ⩽ i ⩽ n− k − 1) is not the25

whole space. Modification II is based on this observation and this is really true26

according to our analysis in Section 6.27
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5 Our modifications1

In code-based cryptography, randomness is widely used in both the key generation2

and encryption procedures. In terms of the intersection of a given linear code and3

a randomly chosen linear space, we have the following proposition.4

Proposition 4 Let n, k, l be positive integers with k + l < n. Let C ⊆ Fn
qm be a

linear code of dimension k, and V be a random linear subspace of Fn
qm of dimension

l. In terms of the intersection C ∩ V, we have the following inequality

Pr{C ∩ V = {0}} ⩾ 1−O
(
q−ms),

where s ⩾ 2 is a positive integer.5

Proof Exploiting the Gaussian coefficient, the number of l-dimensional subspaces6

of Fn
qm linearly independent of C can be computed as7

N1 =

l−1∏
i=0

(qm)n − (qm)k+i

(qm)l − (qm)i
=

l−1∏
i=0

qmn − qm(k+i)

qml − qmi
.

Similarly, the number of all l-dimensional subspaces of Fn
qm can be computed as8

N2 =

l−1∏
i=0

(qm)n − (qm)i

(qm)l − (qm)i
=

l−1∏
i=0

qmn − qmi

qml − qmi
.

Then the target probability Pr{C ∩ V = {0}} can be computed as

N1

N2
=

l−1∏
i=0

qmn − qm(k+i)

qmn − qmi

=

l−1∏
i=0

qmn − qmi − qmk+mi + qmi

qmn − qmi

=

l−1∏
i=0

(
1− qmk − 1

qm(n−i) − 1

)
⩾

(
1− qmk − 1

qm(n−l+1) − 1

)l
. (5)

By Taylor expansion, the right hand side of (5) can be expressed as(
1− qmk − 1

qm(n−l+1) − 1

)l
= 1− l · qmk − 1

qm(n−l+1) − 1
+ o

( qmk − 1

qm(n−l+1) − 1

)
= 1−O

(
q−m(n−k−l+1)

)
.

Let s = n − k − l + 1, apparently s ⩾ 2 because of k + l < n. Finally we have9

Pr{C ∩ V = {0}} ⩾ 1−O
(
q−ms

)
. This completes the proof.10

Remark 3 Proposition 4 states a fact that for a linear code C and a randomly11

chosen linear space V, we have that C ∩ V = {0} holds with high probability.12

Meanwhile, it is reasonable to conclude that for a k× n full-rank matrix H and a13

randomly chosen l × n full-rank matrix A with k + l < n, the block matrix

(
A
H

)
14

is of full rank with high probability.15
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5.1 Description of Modification I1

Let G be an [n, k] Gabidulin code generated by a ∈ Fn
qm with wR(a) = n. Denote2

by H a parity-check matrix of G. For a positive integer l ⩾ k− n
2 , randomly choose3

an l×n full-rank matrix A over Fqm and set Hsub =

(
A
H

)
. Let Gsub be a generator4

matrix of ⟨Hsub⟩⊥. By Proposition 4, Hsub has rank k + l with high probability.5

It would be well if we assume that Hsub is of full rank, otherwise we rechoose the6

matrix A. Apparently Gsub spans a subcode of G of dimension k′ = k − l. For a7

positive integer λ ≪ m, let V ⊆ Fqm be an Fq-linear space of dimension λ.8

– Key generation9

Let P ∈ GLn(Fqm) with entries contained in V. Without loss of generality,10

we assume that the submatrix of GsubP
−1 formed by the first k′ columns is11

invertible. Choose a matrix S ∈ GLk′(Fqm) to change Gpub = SGsubP
−1 into12

systematic form. We publish (Gpub, t) as the public key where t = ⌊n−k
2λ ⌋, and13

keep (a, P ) as the secret key.14

– Encryption15

For a plaintext m ∈ Fk′

qm , randomly choose e ∈ Fn
qm with wR(e) = t. Then the16

ciphertext corresponding to m is computed as c = mGpub + e.17

– Decryption18

For a ciphertext c, compute c′ = cP = mSGsub + eP . Since wR(eP ) ⩽19

wR(e) · λ ⩽ ⌊n−k
2 ⌋. Applying the decoding procedure of G to c′ will lead to20

e′ = eP , then we have e = e′P−1. The restriction of c − e to the first k′
21

coordinates will be the plaintext m.22

Remark 4 According to the analysis in Section 4.2, we can always assume that23

1 ∈ V. If λ = 1, there will be V = Fq and P−1 ∈ GLn(Fq). In this situation, Gpub24

spans a subcode of G. Then one can exploit the r-Frobenius weak attack [35] to25

completely break this modification. To prevent this attack, we should make sure26

that λ ⩾ 2 in Modification I.27

5.2 Description of Modification II28

Let G be an [n, k] Gabidulin code generated by a ∈ Fn
qm with wR(a) = n. Denote29

by G a generator matrix of G. For a positive integer l ≪ min{k, n− k}, randomly30

choose M ∈ Mk,n(Fqm) with Clrq(M) = l and let GM = G+M . It is easy to see31

that GM is of full rank. Indeed, if there exists x ∈ Fk
qm such that xGM = 0, then32

we have xG ∈ ⟨M⟩. By Proposition 1, the maximum rank weight of ⟨M⟩ does not33

exceed l. Together with d(G) = n− k+ 1 ≫ l , we have xG = 0 and hence x = 0.34

For a positive integer λ ≪ m, let V ⊆ Fqm be an Fq-linear space of dimension λ.35

– Key generation36

Let P ∈ GLn(Fqm) with entries contained in V. Without loss of generality,37

we assume that the submatrix of GMP−1 formed by the first k columns is38

invertible. Choose a matrix S ∈ GLk(Fqm) to change Gpub = SGMP−1 into39

systematic form. We publish (Gpub, t) as the public key where t = ⌊n−k−2l
2λ ⌋,40

and keep (S,G, P ) as the secret key.41

– Encryption42
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For a plaintext m ∈ Fk
qm , randomly choose a vector e ∈ Fn

qm with wR(e) = t.1

Then the ciphertext corresponding to m is computed as c = mGpub + e.2

– Decryption3

For a ciphertext c, compute c′ = cP = mSG+mSM + eP . Since

wR(mSM + eP ) ⩽ wR(mSM) + wR(eP ) ⩽ l + λt ⩽ ⌊n− k

2
⌋,

applying the decoding procedure of G to c′ will lead to mSG. Then the plain-4

text m can be recovered by solving a linear system with a complexity of O(n3).5

Remark 5 Similar to the analysis in Remark 4, we should make sure that λ ⩾6

2 in this modification. Otherwise, Modification II can be reduced to the GPT7

cryptosystem that has been completely broken.8

6 Security analysis9

In general, there are two types of attacks on code-based cryptosystems, namely10

the generic attack and structural attack.11

Generic attacks. These attacks aim to recover the plaintext directly from the12

ciphertext when nothing but the public key is known. In the context of code-based13

cryptography, generic attacks are involved with the problem of decoding general14

linear codes or equivalently the syndrome decoding problem, both of which are15

believed to be very difficult by the community. In the paper [36], the authors16

proposed two generic attacks on the rank syndrome decoding (RSD) proplem,17

which lay a foundation for the security of rank metric code-based cryptography.18

Suppose C is an [n, k] rank metric code over Fqm , correcting up to t rank errors.19

Let y = c+e, where c is a codeword in C and e is a random vector with wR(e) = t.20

The first attack in [36] is combinatorial and permits to recover the error e with21

min{O((n− k)3m3qt⌊(km)/n⌋), O((n− k)3m3q(t−1)⌊((k+1)m)/n⌋)}

operations in Fq. The second attack in [36] is algebraic and shows that in the case22

of ⌈((t + 1)(k + 1) − (n + 1))/t⌉ ⩽ k, the RSD problem can be solved with an23

average complexity of24

O(t3k3qt⌈((t+1)(k+1)−(n+1))/t⌉)

in Fq. Apparently both of these two attacks need exponential time to recover the25

plaintext without knowing the secret key.26

Structural attacks. These attacks aim to recover the structure of the se-27

cret code from a random-looking public matrix. In fact, recovering the structure28

amounts to obtaining the secret key in some sense, which means that the cryptosys-29

tem will be completely broken in this situation. In [29], Loidreau argued that his30

cryptosystem could resist the invariant subspace attack, also known as Overbeck’s31

attack. Since our modifications exploit the same masking technique to disguise the32

structure of the secret code, naturally we believe that our modifications can also33

prevent Overbeck’s attack. Therefore, in the remaining part of this section we only34

consider the security against the Coggia-Couvreur attack.35
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6.1 Analysis of Modification I1

Before giving the analysis, we shall introduce the following theorem. This theorem2

states a simple fact that if C ⊆ Fm
qm is a linear code with a generator matrix G,3

then its s-th Frobenius power C[s] is also a linear code over Fqm and has G[s] as a4

generator matrix.5

Theorem 4 Let C ⊆ Fn
qm be an [n, k] linear code that has G as a generator matrix.6

For any integer s, C[s] is also an [n, k] linear code over Fqm and has G[s] as a7

generator matrix.8

Proof On the one hand. For any u ∈ C[s], there exists x ∈ Fk
qm such that u =9

(xG)[s] = x[s]G[s] ∈ ⟨G[s]⟩, then we have10

C[s] ⊆ ⟨G[s]⟩.

On the other hand. For any v ∈ ⟨G[s]⟩, there exists x ∈ Fk
qm such that v = xG[s] =11

(x[m−s]G)[s] ∈ C[s], then we have12

⟨G[s]⟩ ⊆ C[s].

Hence we have C[s] = ⟨G[s]⟩.13

It remains to prove that G[s] is of full rank. Suppose there exists x ∈ Fk
qm14

such that xG[s] = (x[m−s]G)[s] = 0, then we have x[m−s]G = 0 and consequently15

x = x[m−s] = 0 because of G being of full rank. This concludes the proof.16

Now we show that C⊥
pub

[i]
+ C⊥

pub
[i+1]

(0 ⩽ i ⩽ n − k − 1) is exactly the whole17

space Fn
qm , namely all these n−k codes have dimension n. By Theorem 4, it suffices18

to consider the case of C⊥
pub + C⊥

pub
[1]
.19

Let Hpub be a parity-check matrix of Cpub, then we have Hpub = HsubP
T and20

C⊥
pub = ⟨HsubP

T ⟩ = ⟨HPT ⟩+ ⟨APT ⟩.

Hence21

C⊥
pub + C⊥

pub
[1]

= ⟨HPT ⟩+ ⟨HPT ⟩[1] + ⟨APT ⟩+ ⟨APT ⟩[1].

According to Lemma 3, ⟨HPT ⟩+ ⟨HPT ⟩[1] is spanned by

g + γh and g[1],h[1], · · · , g[n−k−1],h[n−k−1] and g[n−k] + γ[1]h[n−k], (6)

where γ, g and h are defined as in Section 4.22

Note that these 2(n − k) vectors in (6) are linearly independent over Fqm .23

Indeed, if there exist xi, yi ∈ Fqm (0 ⩽ i ⩽ n− k − 1) such that24

x0(g + γh) + y0(g
[n−k] + γ[1]h[n−k]) +

n−k−1∑
i=1

xig
[i] +

n−k−1∑
i=1

yih
[i] = 0.

Then we have25

y0g
[n−k] +

n−k−1∑
i=0

xig
[i] = −x0γh− y0γ

[1]h[n−k] −
n−k−1∑
i=1

yih
[i].
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Apparently y0g
[n−k]+

∑n−k−1
i=0 xig

[i] ∈ Gn,n−k+2(g) and −x0γh− y0γ
[1]h[n−k]−1 ∑n−k−1

i=1 yih
[i] ∈ Gn,n−k+2(h). Hence xi = yi = 0 (0 ⩽ i ⩽ n − k − 1) because of2

Assumption (1).3

By Proposition 2, we have that dim(⟨APT ⟩ + ⟨APT ⟩[1]) = 2l holds with ex-4

tremely high probability. Together with Proposition 4, we have that dim(C⊥
pub +5

C⊥
pub

[1]
) = n = min{2(n − k + l), n}. This means that by computing the inter-6

section (3) the adversary can obtain nothing but the whole space and hence the7

Coggia-Couvreur attack will fail in this situation.8

6.2 Analysis of Modification II9

Since Clrq(M) = l, there must be 1 ⩽ Rank(M) ⩽ l. Assume that Rank(M) = l′,10

apparently we have dim(⟨M⟩) = l′ ⩽ l. By Proposition 1, we have wR(v) ⩽ l for11

any v ∈ ⟨M⟩. Together with d(G) = n− k + 1 ≫ l, we have ⟨M⟩ ∩ G = {0}.12

Let Cpub = ⟨Gpub⟩ = ⟨SGMP−1⟩, then a parity-check matrix for Cpub can be13

written as Hpub = HMPT , where HM is an (n− k)×n full-rank matrix such that14

SGMHT
M = O. It is easy to see that ⟨HM ⟩ contains a subcode of G⊥ of dimension15

n− k − l′. Hence C⊥
pub contains a subcode of C1 of dimension n− k − l′, where C116

is spanned by17

g + γh, g[1] + γh[1], · · · , g[r] + γh[r], where r = n− k − 1.

Similarly C⊥
pub

[1]
contains a subcode of C2 of dimension n − k − l′, where C2 is18

spanned by19

g[1] + γ[1]h[1], g[2] + γ[1]h[2], · · · , g[r+1] + γ[1]h[r+1].

Finally we have that C⊥
pub+C⊥

pub
[1]

contains a subcode of C = C1+C2 of dimension20

at most 2(n− k − l′), where C is spanned by21

g + γh and g[1],h[1], · · · , g[r],h[r] and g[r+1] + γ[1]h[r+1].

In the Coggia-Couvreur attack, the adversary can obtain (4) by computing22

(3). Our analysis shows that the adversary cannot perform the same operation on23

Modification II to obtain (4). Here we demonstrate this point with the method of24

reduction to absurdity.25

Suppose that

⟨g[r] + γ[r]h[r], g[r+1] + γ[1]h[r+1]⟩ ⊆
r∩

i=0

(C⊥
pub

[i]
+ C⊥

pub
[i+1]

). (7)

Then for any 0 ⩽ i ⩽ r, we have26

g[r] + γ[r]h[r], g[r+1] + γ[1]h[r+1] ∈ C⊥
pub

[i]
+ C⊥

pub
[i+1]

. (8)

Applying the inverse of the i-th Frobenius map to both sides of (8), there will be27

g[r−i] + γ[r−i]h[r−i], g[r−i+1] + γ[1−i]h[r−i+1] ∈ C⊥
pub + C⊥

pub
[1]
,
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or equivalently1

g + γh and g[1],h[1], · · · , g[r],h[r] and g[r+1] + γ[1]h[r+1] ∈ C⊥
pub + C⊥

pub
[1]
.

This implies that C ⊆ C⊥
pub + C⊥

pub
[1]
, which conflicts with the previous conclusion2

that C⊥
pub + C⊥

pub
[1]

contains a subcode of C of dimension at most 2(n− k − l′).3

Hence the assumption (7) cannot be true and the adversary cannot recover (4)4

from (3) as the Coggia-Couvreur attack on Loidreau’s cryptosystem. Therefore5

the Coggia-Couvreur attack does not work on Modification II.6

7 Parameters and key size7

In Table 1 we give some parameters suggested for different security levels, and8

make a comparison on performance with Loidreau’s original scheme in the case of9

k ⩽ n
2 . When considering the parameters, we exploit the complexity assessment10

of generic attacks given in Section 6.11

In Modification I, the public key is a systematic generator matrix of an [n, k−l]12

rank metric code, resulting in a public-key size of (k − l)(n − k + l) · m · log2(q)13

bits. In Modification II, the public key is a systematic generator matrix of an [n, k]14

rank metric code, resulting in a public-key size of k(n− k) ·m · log2(q) bits. As for15

information rates, this value is (k−l)/n for Modification I, and k/n for Modification16

II respectively. For the concrete instances, we consider the case where q = 3 and17

λ = 2. It is not difficult to see from Table 1 that our modifications have obvious18

advantages over Loidreau’s scheme in both public-key sizes and information rates.19

Instance Parameters Public-key Size Inf. Rate Sec.

m=37, n=37, k=17 4,611 0.46 128

Loidreau’s system m=45, n=45, k=21 8,425 0.47 192

m=52, n=52, k=24 12,857 0.46 256

m=42, n=42, k=23, l=2 3,670 0.50 128

Modification I m=48, n=48, k=25, l=1 5,478 0.50 192

m=56, n=56, k=29, l=1 8,698 0.50 256

m=44, n=44, k=30, l=1 3,661 0.68 128

Modification II m=51, n=51, k=33, l=1 6,002 0.65 192

m=57, n=57, k=35, l=1 8,696 0.61 256

Table 1: Comparison on public-key sizes (in bytes) and information rates with
Loidreau’s scheme for different security levels.

20

In Table 2, we make a comparison on public-key sizes with some other code-21

based cryptosystems that were selected as the third round candidates of the NIST22

PQC Standardization Process. These candidates are HQC [37], BIKE [38], NTS-23

KEM [39] and Classic McEliece [40]. Note that the Classic McEliece published24

in the third round of the NIST PQC project is a merged version of NTS-KEM25

and the original Classic McEliece for their specifications being very similar. From26
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Instance 128 bits 192 bits 256 bits

HQC 2,249 4,522 7,245

BIKE 1,540 3,082 5,121

Classic McEliece 261,120 524,160 1,044,992

NTS-KEM 319,488 929,760 1,419,704

Modification I 3,693 5,478 8,698

Modification II 3,661 6,002 8,696

Table 2: Comparison on public-key sizes (in bytes) with some other
cryptosystems.

Table 2 we can see that our modifications behave pretty well without using codes1

endowed with special algebraic structures.2

8 Conclusion3

In this paper, we propose two modifications for Loidreau’s cryptosystem. Accord-4

ing to our analysis, both of these two modifications can resist the existing structural5

attacks on Gabidulin codes based cryptosystems, including Overbeck’s attack and6

the Coggia-Couvreur attack. In our modifications, we adopt a systematic genera-7

tor matrix of the public code to reduce the public-key size. Note that this method8

of describing the public code may reveal some information about the plaintext be-9

cause of the sparsity of the intended errors in Hamming metric [41], which means10

a security flaw to the cryptosystem. In the rank metric, however, the intended11

errors may happen in all coordinates of the error vector with high probability.12

Particularly, if we generate the error vector by randomly and uniformly choosing13

n elements from an Fq-subspace of Fqm of dimension t, then the expected Ham-14

ming weight of the subvector of length k is k(1− 1
qt ) ∼ k, while in Hamming metric15

this value is kt/n. Therefore there is no need to worry about this problem in our16

modifications.17
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