
Watermarking PRFs from Lattices: Public
Extract and Collusion Resistant

Yukun Wang1 and Mingqiang Wang2

1 School of Mathematics, Shandong University, Jinan, China
mathwangyukun@163.com

2 School of Mathematics, Shandong University, Jinan, China
wangmingqiang@sdu.edu.cn

Abstract. A software watermarking scheme enables one to embed a
“mark ” (i.e., a message) into a program without significantly changing
the functionality. Moreover, any removal of the watermark from a marked
program is futile without significantly changing the functionality of the
program. At present, the construction of software watermarking mainly
focuses on watermarking pseudorandom functions (PRFs), watermark-
ing public key encryption, watermarking signature, etc.
In this work, we construct new watermarking PRFs from lattices which
provide collusion resistant and public extraction. Our schemes are the
first to simultaneously achieve all of these properties. The key to the suc-
cess of our new constructions lies in two parts. First, we relax the notion
of functionality-preserving. In general, we require that a marked program
(approximately) preserve the input/output behavior of the original pro-
gram. For our scheme, the output circuit is divided into two parts, one
for PRF output and the other for auxiliary functions. As a result, we only
require the PRF output circuit to satisfy functionality-preserving. Sec-
ond, the marking method we use is essentially different form the previous
scheme. In general, the mark program will change the output of some
special point. The extraction algorithm determines whether the circuit
is marked by determining whether the output of some special points has
been changed. In our schemes, we use the constrained signature to mark
a PRF circuit.

Keywords: Watermarking PRF, Constrained Signature

1 Introduction

A software watermarking scheme allows one to embed a “mark” (i.e., a message)
into a program without significantly changing the functionality. Moreover, it
should be difficult to remove the watermark from a marked program or create
a new programs that are considered to be watermarked without significantly
changing the program’s behavior. Watermarking schemes are widely used to
traitor tracing, ownership protection, etc.

Barak et al. [BGI+01, BGI+12] and Hopper et al. [HMW07] proposed the
first rigorous mathematical framework of watermarking schemes. These work-
s are difficult to adapt to stronger security requirements. Early works in this

area [NSS99,YF11,Nis13] gave very partial results showing that certain crypto-
graphic functions can be watermarked, but security only held against restricted
adversaries with limited ability to modify the program.

The first positive result for watermarking scheme against arbitrary removal
strategies is presented by Cohen et al. in [CHN+16]. They construct a water-
marking pseudorandom function (PRF) based on the heavy hammer of indistin-
guishability obfuscation (IO). After Cohen et al. seminal work, many creative
results have been proposed [BLW17, KW17, QWZ18, YAL+18, KW19, YAL+19,
YAYX20]. Watermarkable PRFs are constructed form either indistinguishability
obfuscation or standard (lattice) assumptions in these works. Even so, there is
still a significant gap in security and capabilities between the schemes construct-
ed from IO and those from standard assumption.

In [CHN+16], Cohen et al. also construct watermarking schemes for public
encryption (PKE) and signature from their watermarking PRFs. Subsequent-
ly Baldimtsi et al. [BKS17] show how to watermark public-key cryptographic
primitives with stateful setting. But their work are under a modified security
model where a trusted watermarking authority generates both unmarked and
marked keys3. Recently, Goyal et al. [GKM+19] construct watermarking public-
key primitives with desired security properties from simple assumptions, such as
the existence of one-way function, standard lattice assumptions, etc. The key en-
abler of their new constructions is a relaxed notion of functionality-preserving. In
all of other works, a marked program (approximately) preserve the input/output
behavior of the original program. But in [GKM+19], it is only required to pre-
serve the ”functionality” of the original program.4 Unfortunately, this definition
does not apply to watermarkable PRF, because in PRF functions correctness
means the input/output behavior of marked program almost everywhere like
the original program. Watermarking PRFs. A watermarking scheme for a

PRF family F consists of two main algorithm, the marking algorithm and the
extraction algorithm. The mark algorithm takes as input a PRF Fk from the
PRF family and output a program C which is the marked version of Fk. C and
Fk should satisfy the approximate correctness, meaning that Fk(x) = C(x) for
all but a negligible fraction of inputs x and these inputs should be hard to find.
The extraction algorithm takes as input a circuit C and the extraction key, and
output whether the circuit is marked. Generally speaking, if a circuit has been
marked, the extraction algorithm will output a symbol “marked” or a message.
On the other hand, if a circuit is unmarked, the extraction algorithm will output
a symbol ⊥ or “unmarked”.

The main security requirement of watermarking scheme is unremovability
which requires that given a marked circuit C∗ for a random PRF key, the adver-
sary is not able to create a new circuit C′ which has different result with C∗ in
extraction program without altering the outputs of C∗ on a significant fraction

3 In the standard watermarking model, anyone can generate keys
4 For example, a marked signature program just need to output valid signatures which

can be different from the output of original signature program.

of inputs (There are two cases, one is that different messages is embedded in the
C′ and C∗, and the other is that C′is unmarked.). Simply put, unremovability
requires that it is difficult for the adversary to change the message marked in the
circuit without destroying the circuit. Another very important security require-
ment is unforgeability, which means that anyone without the mark key is not
able to generate a new watermarked circuit. Prior works on watermarking

PRFs. The first watermarkable PRF scheme was constructed by Cohen et al.
in [CHN+16]. Their construction are based on IO and can be achieved secret
marking and public extraction, where the unremovability property holds even
if the adversary has access to the marking oracle. Later, Yang et al. [YAL+19]
improve the scheme in [CHN+16] to achieve collusion resistance. The first water-
markable PRF scheme from standard assumptions was constructed by Kim and
Wu in [KW17]. In their scheme, both the marking and the extraction procedures
are secret, but the unremovability security property only holds if the adversary
has access to the marking oracle. Subsequently, in [QWZ18,KW19], watermark-
able PRFs with public marking and extraction queries have been constructed.
None of the above-mentioned schemes (from standard assumption) meets the de-
sirable security requirements such as public extraction and collusion resistance.
In [YAYX20], Yang et al. provide a generic construction that upgrades a wa-
termarkable PRF without collusion resistance to a collusion resistant one. In
addition, the security properties of the original scheme can be preserved.

1.1 Our Results

In this work, we construct a public extract and collusion resistant watermarkable
PRF from standard assumption and show that:

Scheme
Public

Marking
Public

Extraction
Extraction

Oracle
PRF Security
(Authority)

Collusion
Resistant

Hardness
Assumotion

[CHN+16] % ! ! ! % iO

[KW17] % % % ! % LWE

[QWZ18] ! % ! % % LWE

[KW19]
%

!

%

%

!

!

!

!

%

%

LWE
LWE+RO

[YAL+19] % ! ! ! ! iO

[YAYX20] ! % ! ! ! LWE

This Work % ! ! ! ! LWE+SIS

Table 1. Comparatison

1.2 Technical Overview

In this section, we provide an overview of our technical. First we design a special
method to judge watermarking points. Then we construct a watermarking PRFs
scheme based on constrained signature. The difficulty of public extraction.

At present, all watermarkable PRFs schemes based on standard assumption
adopt the following pattern:

– First, the setup procedure generater an unmarked circuit Fk : X → Y.
– Second the marking procedure receives a message m and generate h(m) = X

where h is a special function and X ∈ X . Then the marking procedure
changes the function value of the points in X to get a marked circuit C
where

C(x) =

{
Fk(x) if x /∈ X,
random if x ∈ X.

– Finally, the extraction procedure extracts the information marked in the
circuit C by comparing the output of two circuits Fk and C.

It can be seen from the above that the extraction procedure need two key in-
formation, the function h and the value of Fk(x) where x ∈ X to run correctly.
The function h is used to get a special set of points. The output of unmarked
circuit Fk and marked circuit C are different in this set. The value of Fk(x)
where x ∈ X is used to determine whether a given circuit is marked. It’s easy
to see that for a given circuit C, if C(x) = Fk(x), x ∈ X, then C must be an
unmarked circuit. On the other hand, if C(x) 6= Fk(x) where x ∈ X, then C is
a marked circuit.

Anyone who gets the function h and the value of Fk(x) can break the un-
removability of watermarkable PRFs which means that the adversary is able to
remove the messages embedded in a watermarked program without significantly
changing the functionality. When a marked circuit C is received , the adversary
first extracts a message in circuit C and then compute the set X and the value
of Fk(x) where x ∈ X. After that, the adversary output a new circuit C ′ with
the same output of circuit C except the points in X. When calculating the value
of the point x ∈ X, the circuit C ′ will output Fk(x). Generally speaking, the
output of circuit C ′ is as follows:

C′(x) =

{
C(x) if x /∈ X,
Fk(x) if x ∈ X.

From the above results, it is not difficult to see that C is an unmarked circuit
and the most of outputs are the same as circuit C. This break the unremovability
of watermarkable PRFs.

In the framework of existing watermark scheme, it is very difficult to extract
publicly. Anyone who has the ability to extract can break through unremov-
ability. The main obstacle to achieving public extraction is that there is a huge
contradiction between the existing extraction mode and the public extraction.

Our solution. Goyal et al. [GKM+19] construct a watermarkable signature
scheme with public extraction. Their extraction procedure just need the verifi-
cation algorithm of constrained signature. The verification algorithm could be
public and does not break unremovability.

Relaxing functionality-preserving. Existing constructions of watermarkable
PRFs [KW17,QWZ18,KW19] from standard assumptions do not support prop-
erties like collusion resistance (where the watermark remains unremovable even
if a user sees multiple marked versions of the program) or public verifiability
(where anyone is able to tell if a program is marked). Yang et al. [YAYX20]
present a generic construction that upgrades a watermarkable PRF without col-
lusion resistance to a collusion resistant one. Moreover, these constructions rely
on heavy cryptographic machinery, such as fully homomorphic encryption, fin-
gerprinting code to watermark a PRF.

Goyal et al. [GKM+19] take a step back and revisit some of the definitions
underlying software watermarking. Much like Cohen et al. [CHN+16] started by
relaxing perfect functionality-preserving to statistical functionality-preserving
and used that as the basis for obtaining the first positive results on water-
marking, they also identify another meaningful relaxation of the functionality-
preserving requirement. In [CHN+16], functionality-preserving require that the
input/output behavior of a marked circuit C′ should be almost identical to that
of the original circuit C. This is indeed the most natural notion of functionality-
preserving when C implements a PRF. In [GKM+19], functionality-preserving
require that a marked circuit C′ should output a valid value just like the original
circuit C. For instance, valid value in watermarkable signing algorithm mean
that C and C′ should output a valid signatures (even if the signatures output by
C′ might be different from the ones output by C). In watermarkable encryption
algorithm, the valid value means that the decrypted message of C and C′ is the
same.

Unfortunately, their idea can’t be directly applied to the watermarkable PRF,
which is caused by the special function of PRF. For a PRF, the valid output
means that the output value of C and C′ must be exactly the same.

In order to solve this problem, we redefine a weak functionality-preserving.
Under this definition, we divide the output of the function into two parts C =
C1‖C2, where for C1 part, we need it to satisfy the function preserving property,
the C2 part is not required. When using the function, only the first part C1 is
used as the output of the pseudorandom function, and the second part C2 is
only used as an auxiliary tool in the process of watermark and extraction. With
this definition, we can do more operations on C2 to achieve public extraction.

Change of marking and extraction mode.We no longer use the previous
watermark and extraction mode, that is, by comparing the existing circuit with
the circuit without watermark to judge whether the circuit is watermarked or
extract the watermark message. We creatively extract a new mode, by detecting
the legitimacy of the signature to determine whether a circuit is watermarked.
For the circuit without watermark, we require that most of the points can output

the legal signature, while for the circuit with watermark, we require that the
legal signature can be output at some special points, which can be made public.
Because the process of signature validity detection can be carried out publicly
(because the verification key is public in the signature scheme), this characteristic
makes public extraction possible.

The third output of the extraction algorithm. Generally speaking, the
extraction algorithm has two outputs: unmark and msg, where unmark indi-
cates that the circuit has not been watermarked, and msg indicates that the
watermark message in the circuit has been extracted. In the previous scheme,
the randomly selected circuit is generally classified as unmarked (which is also
meaningful, because the randomly selected circuit has not experienced the wa-
termark algorithm, which can be said to be unmarked). In our scheme, due to
the particularity of our watermark and extraction mode, our extraction algorith-
m will have a third output ⊥, this output indicates that the circuit is randomly
selected or tampered by the opponent. In other words, we have the ability to
detect whether the input circuit is legal or not. Here, the legal representation is
generated according to the honest algorithm, and has not be tampered.

2 Notations

We use the hold upper-case letters (e.g.,A,B) to represent matrices and bold
lower-case letters (e.g.,a,b) to represent column vectors.

Let [A‖B] denote the concatenation of two matrices and (A,B)=[AT ‖BT]T .
We use λ to denote the security parameter and negl(λ) to denote a negligible
function that grows slower than λ−c for any constant c > 0 and any large enough

value of λ. For an integer N, we let [N]
def
= {1, . . . , N}.

3 Watermarkable PRFs

In this section, we formally propose the definition of watermarkable PRFs, which
are adapted from those previous works [CHN+16,BLW17,KW17,QWZ18,KW19,
YAL+19,YAYX20].

3.1 The definiton

Definition 3.1 (Watermarkable PRFs) Fix a security parameter λ, key s-
pace K, input space X ∈ {0, 1}n, output space Y ∈ {0, 1}m and message space
M. A watermarkable PRFs WPRF = {Setup,KeyGen,Eval,Mark,Extract}
consists of following algorithms:

• Setup (1λ) → (PP,MK,EK) : On input the security parameter λ, the setup
algorithm outputs the public parameter PP, the watermarking mark key MK
and the watermarking extract key EK.

• KeyGen (PP) → k : On input the public parameter PP, the key generation
algorithm outputs a PRF key k ∈ K.

• Eval (PP, k, x)→ y : On input the public parameter PP, a PRF keys k ∈ K
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Mark(PP,MK, k,msg)→ C : On input the public parameter PP, the water-
marking mark key MK and a message msg ∈M, the mark algorithm outputs
a marked circuit C : X → Y.

• Extract(PP,EK,C)→ msg : On input the public parameter PP, the water-
marking extract key EK and a circuit C, the extraction algorithm outputs a
message m ∈ M∪ {unmarked}, where unmarked denotes that the circuit is
unmarked.

Remark 3.2 (the third output of the extraction algorithm) In addition
to the output m ∈ M ∪ {unmarked} in the standard definition, the extraction
algorithm will have a third output {⊥} in our scheme. When the extraction
algorithm outputs ⊥, it means that it is a illegal circuit. There are two kinds of
illegal situations: one is that the circuit is a marked circuit, but the circuit has
been tampered with by the adversary, so it can not extract effective information
from the circuit; the other is that the circuit is not generated in a legal way.
Therefore, no matter what the situation is, it is meaningless to extract the circuit.

Correctness. The correctness requirements on a watermarking scheme are t-
wofold. First, the output of the watermarked key should be the same as original
key almost everywhere (i.e., the behavior of the watermarked key differs from
the original key on only a negligible fraction of the domain). Second, the extrac-
tion algorithm should be able to extract the correct message from an honestly-
watermarked key.

Definition 3.3 (Functionality Preserving) For any msg ∈M, let (PP,MK,

EK) ← Setup(1λ), k ← KeyGen(PP), C ← Mark(PP,MK, k,msg), x
$←− X ,

then we have Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).

We propose a new definition of functionality preserving which called weak func-
tionality preserving. The watermarking circuit C is divided into two parts: C1

and C2, where C1 is used to output PRF values, C2 is used to assist water-
marking detection. C1 is required to be functionality preserving, and C2 is not
required.

Definition 3.4 (Weak Functionality Preserving) For any msg ∈ M, let
(PP,MK, EK)← Setup(1λ), k ← KeyGen(PP), C = C1×C2 ← Mark(PP,MK,

k,msg), x
$←− X , then we have Pr[C1(x) 6= Eval(PP, k, x)] ≤ negl(λ).

Definition 3.5 (Extraction Correctness) For any msg ∈M, let (PP,MK,

EK) ← Setup(1λ), k ← KeyGen(PP), C ← Mark(PP,MK, k,msg), x
$←− X ,

then we have Pr[Extract(PP,EK,C) 6= msg] ≤ negl(λ).

Definition 3.6 (Watermarking Meaningfulness) For any circuit C : {0, 1}n
→ {0, 1}m, let (PP,MK,EK)← Setup(1λ), then we have:

Pr[Extract(PP,EK,C) 6= ⊥] ≤ negl(λ)

Pseudorandomness. The second property we require on a watermarkable PRF-
s is the usual notion of pseudorandomness. First, it requires that the watermark-
able PRF should be pseudorandomness against an external adversary. Second,
the watermarkable PRF should be pseudorandom against the watermarking au-
thority (i.e., the holder of watermarking mark key and extraction key).

Definition 3.7 (Pseudorandomness) Let (PP,MK,EK)← Setup(1λ), k ←
KeyGen(PP), and f be a random function from {0, 1}n to {0, 1}m. Also, let O1(·)
be an oracle that takes as input a string x ∈ {0, 1}n and returns Eval(PP, k, x),
and let O2(·) be an oracle that takes as input a string x ∈ {0, 1}n and returns
f(x). Then for all PPT adversary A, we have:

|Pr[AO1(·)(PP) = 1]− Pr[AO2(·)(PP) = 1]| ≤ negl(λ).

Definition 3.8 Pseudorandomness against the Watermarking Author-
ity Let (PP,MK,EK) ← Setup(1λ), k ← KeyGen(PP), and f be a random
function from {0, 1}n to {0, 1}m. Also, let O1(·) be an oracle that takes as input
a string x ∈ {0, 1}n and returns Eval(PP, k, x), and let O2(·) be an oracle that
takes as input a string x ∈ {0, 1}n and returns f(x). Then for all PPT adversary
A, we have:

|Pr[AO1(·)(PP,ME,EK) = 1]− Pr[AO2(·)(PP,MK,EK) = 1]| ≤ negl(λ).

Definition 3.9 Weak Pseudorandomness against the Watermarking Au-
thority Let (PP,MK,EK)← Setup(1λ), k ← KeyGen(PP), and f be a random
function from {0, 1}n to {0, 1}m. Also, let O1(·) be an oracle that takes as input
a string x ∈ {0, 1}n and returns (x,Eval(PP, k, x)), and let O2(·) be an oracle
that takes as input a string x ∈ {0, 1}n and returns (x.f(x)). Then for all PPT
adversary A, we have:

|Pr[AO1(·)(PP,ME,EK) = 1]− Pr[AO2(·)(PP,MK,EK) = 1]| ≤ negl(λ).

Unremovability The main security notions for a watermarking scheme is
unremovability. Conceptually, unremovability says that an efficient adversary is
not able to remove or modify the messages embedded in a watermarked program
without significantly changing the functionality.

Definition 3.10 (ε -Unremovability) Fix a security parameter λ. A water-
markable PRF WPRF = {Setup,KeyGen,Eval,Mark,Extract} is ε-unremovable
if for all PPT and ε-unremoving-admissible adversaries A, we have

Pr[ExptURA(λ) = 1] ≤ negl(λ),

where we define the experiment ExptURA and ε-unremoving-admissible adver-
saries A as follows:

1. The challenger begins by sampling (PP,MK,EK)← Setup(1λ) and returns
PP to the adversary A.

2. Then the adversary A is given access to following oracles (but it may be
restricted in querying them as discussed below):
• Mark Key Oracle. The mark key oracle returns MK to the adversary
A.

• Extraction Key Oracle. The extraction key oracle returns EK to the
adversary A.

• Marking Oracle. On input a message msg ∈M and a PRF key k ∈ K,
the challenger returns the circuit C← Mark(PP,MK, k,msg).

• Extraction Oracle. On input a circuit C, the extraction oracle returns
a message msg ← Extract(PP,EK,C).

• Challenge Oracle. On input a message msg ∈M, the challenger sam-
ples k∗ ← KeyGen(PP) and returns the circuit C∗ ← Mark(PP,MK, k∗,
msg) to the adversary A.

3. Finally, A outputs a circuit C̃ and the experiment ExptURA output 1 iff

Extract(PP,EK, C̃) /∈ M∗. Here, we use M∗ to denote all messages sub-
mitted to the challenge oracle and use Ĉ to denote all circuits returned by
challenge oracle.

We say that a adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ Ĉ satisfies C∗ ∼ε C̃ which means that |{x ∈ {0, 1}n : C∗(x) 6= C̃(x)}| ≤
ε · 2n.

We can achieve different security requirements by limiting the adversary capa-
bilities in querying oracles. In a nutshell, we write unremovability as C-(M,E)-ε-
unremovability, where C ∈ {single key, bounded collusion resistant, unbounded
collusion resistant}, M ∈ {−, MO, PM}, and E ∈ {−,bounded EO, EO, PE}.
The above three security notions are explained in more detail below:

– Constraints on Challenge Oracle. The unremovability can be defined
against an adversary that can:
• single key. make only one query to the challenge oracle.
• bounded collusion resistant. make queries to the challenge oracle for

priori bounded times.
• unbounded collusion resistant. make queries to the challenge oracle

for unbounded times.
– Constraints on Mark Key The unremovability can be defined against an

adversary that can:
• − make no query to the mark key oracle and the marking oracle.
• MO make queries to the marking oracle for unbounded times but make

no query to the mark key oracle.
• PM make query to the mark key oracle.

– Constrains on Extraction Key The unremovability can be defined a-
gainst an adversary that can:
• − make no query to the extraction key oracle and the extraction oracle

• EO make queries to the extraction oracle for unbounded times but make
no query to the extraction key oracle.

• PE make query to the extraction key oracle.

Unforgeability. The another security notion for a cryptographic watermarking
scheme is unforgeability. Roughly, it says that an adversary should not be able
to construct a marked program without the mark key.

Definition 3.11 (δ-Unforgeability.) Fix a security parameter λ. A water-
markable PRF WPRF = {Setup,KeyGen,Eval,Mark,Extract} is δ-unforgeability
if for all PPT and δ-unforging-admissible adversaries A, we have

Pr[ExptUFA(λ) = 1] ≤ negl(λ),

where we define the experiment ExptUFA and δ-unforging-admissible adversaries
A as follows:

1. The challenger begins by sampling (PP,MK,EK)← Setup(1λ) and returns
PP to the adversary A.

2. Then the adversary A is given access to following oracles (but it may be
restricted in querying them as discussed below):
• Marking Oracle. On input a message msg ∈M and a PRF key k ∈ K,

the challenger returns the circuit C← Mark(PP,MK, k,msg).
• Extraction Oracle. On input a circuit C, the extraction oracle returns

a message msg ← Extract(PP,EK,C).
• Extraction Key Oracle. The extraction key oracle returns EK to the

adversary A.
3. Finally, A outputs a circuit C̃ and the experiment ExptUFA output 1 iff

Extract(PP,EK, C̃) 6= {⊥, unmark}.

We say that a adversary A is δ-unforging-admissible if for every circuit C∗i
returned by marking oracle satisfies C∗i �δ C̃.

We can achieve different security requirements by limiting the adversary capa-
bilities in querying oracles. In a nutshell, we write unforgeability as (M,E)-δ-
unforgeability, where M ∈ {−, MO}, and E ∈ {−, EO, PE}. The above two
security notions are explained in more detail below:

– Constraints on Mark Key The unforgeability can be defined against an
adversary that can:
• − make no query to the mark key oracle and the marking oracle.
• MO make queries to the marking oracle for unbounded times but make

no query to the mark key oracle.
– Constrains on Extraction Key The unforgeability can be defined against

an adversary that can:
• − make no query to the extraction key oracle and the extraction oracle
• EO make queries to the extraction oracle for unbounded times but make

no query to the extraction key oracle.
• PE make query to the extraction key oracle.

3.2 Building Block: Constrained Signature

The main building block of our watermarking PRFs is a prefix-constrained sig-
nature (which can be built generically from any signature scheme, or more gen-
erally, any one-way function). We give the formal definition below:

Definition 3.12 (Constrained Signatures [BF14,Tsa17,GKM+19].) A con-
strained signature scheme with message space M and constraint family F ⊆
Funs[M, {0, 1}] is a tuple of algorithm ΠCSig = (Setup,Sign,Verify,Constrain,
ConstrainSign). with the following properties:

• Setup(1λ) → (V K,MSK) : On input the security parameter λ, the setup
algorithm outputs the verification key VK and the master secret key MSK.
• Sign(MSK,m) → σ : On input the master secret key MSK and a message
m ∈M, the signing algorithm outputs a signature σ.
• Verify(V K,m, σ)→ b : On input the verification key VK, a message m ∈M

and a signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.
• Constrain(MSK, f) → skf : On input the master secret key MSK and a

function f ∈ F , the constrain algorithm outputs a constrained key skf .
• ConstrainSign(skf ,m)→ σ : Om input a constrained key skf and a message
m ∈M, the constrain signing algorithm outputs a signature σ.

Definition 3.13 (Correctness) For any message m ∈M and constraint fam-
ily F , let (V K,MSK)← Setup(1λ) then a constrained signature scheme ΠCSig

is correct if
Pr[Verify(V K,m,Sign(MSK,m)) = 1] = 1.

In addition, for all constraints f ∈ F where f(m) = 1, let skf ← Constrain(MSK, f),

Pr[Verify(V K,m,ConstrainSign(skf ,m)) = 1] = 1.

Definition 3.14 (Constrained Unforgeabiity) Fix a security parameter λ.
A constrained signature scheme ΠCSig = (Setup,Sign,Verify,Constrain,ConstrainSign)
with message space M and constraint family F is constrained unforgeability if
for all PPT and unforging-admissible adversaries A, we have

Pr[ExptCSignA(λ) = 1] ≤ negl(λ),

where we define the experiment ExptCSignA and unforging-admissible adver-
saries A as follows:

1. The challenger begins by sampling (V K,MSK) ← Setup(1λ) and returns
VK to the adversary A.

2. Then the adversary A is given access to following oracles:
– Constrain Oracle. On input a function f ∈ F , the challenger returns
skf ← Constrain(MSK, f)

– Signing Oracle. On input a message m ∈M, the challenger returns a
signature σ ← Sign(msk,m).

3. Finally, A outputs a message-signature pair (m∗, σ∗) and the experiment
ExptCSignA output 1 iff Verify(V K,m∗, σ∗) = 1.

We say that a adversary A is unforging-admissible if following conditions hold:

– The adversary did not make a signing query on message m∗.
– The adversary did not make a constrain query on any function f ∈ F where
f(m∗) = 1.

We say that ΠCSig is secure if for all efficient adversaries A, Pr[ExptCSignA(λ) =
1] = negl(λ)

3.3 The Construction

In this section, we present our basic construction of a public extraction and
collusion resistant watermarkable PRFs
Let λ be the security parameter, ε̄ = 1− ε
Our construction is built on the following building blocks:

– A Constrained signature scheme ΠCSig = (CS.Setup, CS.Sign, CS.Verify,
CS.Constrain, CS.ConstrainSign) with message space {0, 1}n+m, signature
space {0, 1}m.

– A pseudorandom function family F = (F.KeyGen, F.Eval) with input space
{0, 1}n key space {0, 1}λ and output space {0, 1}m.

We construct WPRF = (Setup, KeyGen, Eval, Mark, Extract), which has
input space {0, 1}n, output space {0, 1}2m, and message space [1,N] as follows:

• Setup → (PP,MK,EK) : On input the security parameter λ, the setup
algorithm first generates (V K,MSK) ← CS.Setup and random pick mi

from {0, 1}n for all i ∈ [N] (mi
$←− {0, 1}n for i ∈ [N]), let the mark set M =

{m1,m2, · · · ,mN}. Then, it outputs the public parameter PP = (M,V K),
The mark key MK = (MSK), and the extraction key EK = (V K).
• KeyGen(PP) → k : On input the public parameter PP, the key generation

algorithm generates k ← F.KeyGen and outputs the PRF key k ∈ {0, 1}λ.
• Eval→ (PP, k, x) : On input the public parameter PP = (M,V K), a PRF

key k ∈ {0, 1}λ and an input x ∈ {0, 1}n, the evaluation algorithm proceeds
as follows:
1. skf ← CS.Constrain(MSK, f) where

f(x) =

{
0 if x ∈M,

1 otherwise.

2. Output
(
F.Eval(k, x), CS.constrainSign(skf , x,F.Eval(k, x))

)
• Mark(PP,MK, k,msg)→ C : On input the public parameter PP = (M,V K),

the mark key MK = (MSK), the PRF key k and a msg ∈ [1, N], the mark-
ing algorithm proceeds as follows:

1. pick mmsg from the mark set M
2. skfmsg ← CS.Constrain(MSK, fmsg) where

fmsg(x) =

{
1 if x = mmsg,

0 otherwise.

3. Output C =
(
F.Eval(k, x), CS.constrainSign(skfmsg

, x,F.Eval(k, x))
)
.

• Extract(PP,EK,C)→ msg : On input the public parameter PP = (M,V K),
the extraction key EK = (V K), and a circuit C, the extraction algorithm
proceeds as follows:
1. Set the circuit C(x) = C1(x)||C2(x) where C1(x) = C(x)[1 : m] and

C2(x) = C(x)[m+ 1 : 2m].
2. A = 0.
3. For i ∈ [t]:

(a) Sample xi
$←− {0, 1}n .

(b) Let yi = C1(xi), πi = C2(xi).
(c) If CS.Verify(V K, xi, yi, πi) = 1, A = A+ 1

4. If A > t× ε̄, output unmark.
5. Otherwise For j ∈ [N]:

(a) Let yi = C1(mj), πi = C2(mj) where mj ∈M , and B = ∅.
(b) If CS.Verify(V K,mj , yj , πj) = 1, put mj into B.

6. If there is only one element in B which is mj′ , let msg = j′, output
msg.

7. otherwise output ⊥.

Theorem 3.1 Suppose F is a secure pseudorandom function and ΠCSig is a
constrained unforgeability signature scheme, then WPRF is a secure watermark-
able PRF family with collusion resistant and public extraction security.

We present proof the Theorem 3.1 later in this section, which includes proof of
the correctness and pseudorandomness, the unremoveability, and the unforge-
ability of WPRF.

3.4 Correctness and Pseudorandomness of WPRF

Weak Functionality Preserving. This feature requires that part of the output
of the function before and after the watermark is the same. In our scheme, the
final output of the circuit is divided into two parts C(x) = C1(x)||C2(x)where
C1(x) = F.Eval(k, x), we use this part as the output of the real pseudo-random
function, and C2(x) = CS.constrainSign(skf , x,F.Eval(k, x)) is used as auxiliary
watermark detection function, not as pseudo-random output. Therefore, as long
as there is no significant change in the output of C1(x) after the watermark,
then the circuit after the watermark can perform the same function as the circuit
before the watermark, that is, the two circuits can be approximately regarded
as the same function.

In our scheme, the watermark process only changes the output of C2(x),
for C1(x) part doesn’t make any changes, so the circuit after the watermark
and before the watermark in C1(x) must be exactly the same, and the weak
functionality preserving can be satisfied.

Extraction Correctness. This feature requires that the watermark message
can be extracted correctly from a circuit after being watermarked. When circuit
C is watermarked, we can get C =

(
F.Eval(k, x), CS.constrainSign(skfmsg

, x,

F.Eval(k, x))
)
. If and only if x = mmsg, we can get a valid signature for-

m C2(x), when x 6= mmsg, the signature output by C2(x) cannot be veri-
fied. In addition, all possible messages are in the set M . Therefore, we on-
ly need to check the elements in M in turn until there is a mmsg can satisfy
CS.Verify(V K,mmsg,C1(mmsg),C2(mmsg)) = 1, in this time msg is the mes-
sage watermarked in the circuit.

Watermarking Meaningfulness. This characteristic requires that the output
of the extraction algorithm should be ⊥ for the randomly selected circuit. When
we randomly select a circuit C, the part of C2(x) can hardly output a valid
signature, that is, CS.Verify = 0. At this time, the fourth and sixth steps of the
extraction algorithm will not stop, but will output ⊥ in step 7.

Pseudorandomness. This feature requires that the output of the watermark
function is pseudo-random, which can be directly guaranteed by the pseudo
randomness of the selected function F, Because it’s only C1(x) part is the real
output of the function.

3.5 Unremovability of WPRF

In this section, we prove the fully collusion resistant−(MO,PE)−ε−unremovability
of WPRF, assuming that ΠCSig is a constrained unforgeability signature scheme
and F is a secure pseudorandom function

Theorem 3.2 Suppose ΠCSig satisfies constrained unforgeability and F is a
secure pseudorandom function, then the watermarkable PRF scheme satisfies
fully collusion resistant−(MO,PE)− ε−unremovability.

Proof. Assume that there is a PPT adversary A can win the security experiment
ExptURA with non-negligible probability β. We construct a PPT simulator S
that breaks the constrained unforgeability for ΠCSig.

– First the simulator receives V K ← CS.Setup(1λ) from the challenger and
generates the mark set M = {m1,m2, · · · ,mN}. Then, it output the param-
eter PP=(M,VK), the extraction key EK = (V K) to the adversary A.

– Then the simulator S samples the challenge key k∗ ← {0, 1}λ which are used
in answering the challenge oracle.

– Next the simulator S answers A’s oracle queries, include marking oracle and
challenge oracle. Once A submits a message i ∈ [N] and a PRF key k for
marking Oracle, the simulator S proceeds as follows:

1. generate an empty set M∗ and put i into M∗

2. send (mi,F.Eval(k,mi) to the challenger for signing oracle and receive
a signature σi.

3. Generate a random function R : {0, 1}n → {0, 1}m and output the circuit
Ci = C1||C2 to A where C1(x) = F.Eval(k, x) and

C2(x) =

{
σ if x = mi,

R(x) otherwise.

Once A submits a message i ∈ [N] for challenge oracle, the simulator S
proceeds as follows:
1. generate an empty set M∗ and put i into M∗

2. send (mi,F.Eval(k∗,mi) to the challenger for signing oracle and receive
a signature σ∗i .

3. Generate a random function R : {0, 1}n → {0, 1}m and output the circuit
C∗i = C∗i1||C∗i2 to A where C∗i1(x) = F.Eval(k∗, x) and

C∗i2(x) =

{
σ∗i if x = mi,

R(x) otherwise.

– Finally, A submits a circuit C̃ = C̃1||C̃2 to the simulator S and the simulator
S proceeds as follows
1. Use extraction algorithm to C̃

2. If Extract(PP,EK, C̃) outputs unmark, then sample x
$←− {0, 1}\M , let

y = C̃1(x), and σ∗ = C̃2(x), outputs a message-signature pair (x, y, σ∗)
to the challenge

3. If Extract(PP,EK, C̃) outputs a message j ∈ [N], if j ∈ M∗, output

abort. Otherwise let y = C̃1(mj), and σ∗ = C̃2(mj), outputs a message-
signature pair (mj , y, σ

∗) to the challenge

4. If Extract(PP,EK, C̃) outputs ⊥, output abort.

Now we show that the adversary A who wins the security experiment ExptURA
can be used to breaks the constrained unforgeability for ΠCSig. Because A is

ε-unremoving-admissible, that means C̃1 ∼ε C̃∗i1 for all i ∈M∗. Then according
to the different output of the extraction algorithm, there are the following three
results:

– Unmark. If Extract(PP,EK, C̃) outputs unmark, for x
$←− {0, 1} \ M ,

Pr[CS.Verify(V K, x, C̃1(x), C̃2(x)) = 1] ≥ ε̄. That means we found a valid

message-signature pair (x, C̃1(x), C̃2(x)) for ΠCSig and (x, C̃1(x)) has not
been queried. Therefor we can get Pr[ExptCSignA(λ) = 1] ≥ ε̄

– j. If Extract(PP,EK, C̃) outputs a message j ∈ [N] and j ∈M∗, that means
A is not ε-unremoving-admissible. So we can get Pr[j /∈ M∗] = β. Further-

more, (mj , C̃1(mj)) has not been queried and (mj , C̃1(mj), C̃2(mj)) is a valid

message-signature pair for ΠCSig because of CS.Verify(V K, x, C̃1(mj), C̃2(mj)) =
1.

– ⊥ If Extract(PP,EK, C̃) outputs ⊥ then A is not ε-unremoving-admissible.

In conclusion, if there is a PPT adversary A can win the security experimen-
t ExptURA with non-negligible probability β, then the simulator S wins the
security experiment ExptCSignA for ΠCSig with probability at least βε̄.

Collusion Resistant. The collusion resistant feature mainly considers whether
the scheme can remain secure when different messages are inquired in the mark-
ing oracle with the same watermark key. The reason why we need to consider
this feature is that in the previous scheme, if we get the watermark circuit for
different messages with the same key, we can forge a new watermark circuit nat-
urally, and only need to take part of the watermark points to recombine. This is
determined by the watermark and extraction mode. But in our scheme, because
our watermark and extraction process operate on the part of constrained signa-
ture, the unforgeability of signature can help us achieve the effect of collusion
resistant, that is, if the adversary can collude, it means that the adversary can
forge the signature.

We don’t restrict adversaries to query the same key and different messages
many times in the marking oracle instruction, so our scheme is also collusion
resistant.

Public Extraction. In our game, the extraction key is directly sent to the ad-
versary, that is, we allow the adversary to extract messages in any circuit by
using the extraction key, so our scheme can meet the public extraction charac-
teristics.

3.6 Unforgeability of WPRF

In this section, we prove the fully collusion resistant−(MO,PE)−δ−unforgeability
of WPRF, assuming that ΠCSig is a constrained unforgeability signature scheme
and F is a secure pseudorandom function

Theorem 3.3 Suppose ΠCSig satisfies constrained unforgeability and F is a
secure pseudorandom function, then the watermarkable PRF scheme satisfies
fully collusion resistang−(MO,PE)− δ−unforgeability.

Proof. Assume that there is a PPT adversary A can win the security experiment
ExptUFA with non-negligible probability β. We construct a PPT simulator S
that breaks the constrained unforgeability for ΠCSig.

– First the simulator receives V K ← CS.Setup(1λ) from the challenger and
generates the mark set M = {m1,m2, · · · ,mN}. Then, it output the param-
eter PP=(M,VK), the extraction key EK = (V K) to the adversary A.

– Then the simulator S answers A’s oracle queries, include marking oracle.
Once A submits a message i ∈ [N] and a PRF key k for marking Oracle, the
simulator S proceeds as follows:

1. generate an empty set M∗ and put i into M∗.
2. send (mi,F.Eval(k,mi) to the challenger for signing oracle and receive

a signature σi.
3. Generate a random function R : {0, 1}n → {0, 1}m and output the circuit

Ci = C1||C2 to A where C1(x) = F.Eval(k, x) and

C2(x) =

{
σ if x = mi,

R(x) otherwise.

– Finally, A submits a circuit C̃ = C̃1||C̃2 to the simulator S and the simulator
S proceeds as follows
1. Use extraction algorithm to C̃.
2. If Extract(PP,EK, C̃) outputs unmark, output abort.

3. If Extract(PP,EK, C̃) outputs a message j ∈ [N], if j ∈ M∗, output

abort. Otherwise let y = C̃1(mj), and σ∗ = C̃2(mj), outputs a message-
signature pair (mj , y, σ

∗) to the challenge.

4. If Extract(PP,EK, C̃) outputs ⊥, output abort.

Now we show that the adversary A who wins the security experiment ExptUFA
can be used to breaks the constrained unforgeability for ΠCSig.

If Extract(PP,EK, C̃) output a message j ∈ [N] for j /∈ M∗, this mean-
s that the extraction algorithm detects a valid signature. Then we can get
CS.Verify(V K, x, C̃1(mj), C̃2(mj)) = 1 and (mj , C̃1(mj), C̃2(mj)) is a valid mes-
sage signature pair. This breaks the constrained unforgeability for ΠCSig.

Collusion Resistant. We don’t limit adversaries to quire the consent key and
different messages many times in the marking oracle, so our scheme is collusion
resistant.

Public Extraction. In our game, the extraction key is directly sent to the ad-
versary, that is, we allow the adversary to extract messages in any circuit by
using the extraction key, so our scheme can meet the public extraction charac-
teristics.

Acknowledgements

The authors are supported by the National Key Research and Development
Program of China (Grant No. 2018YFA0704702), the National Natural Science
Foundation of China (Grant No. 61832012) and the National Cryptography De-
velopment Fund (Grant No. MMJJ20180210).

References

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Public Key
Cryptography, volume 8383 of Lecture Notes in Computer Science, pages
520–537. Springer, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6:1–6:48, 2012.

[BKS17] Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermarking
public-key cryptographic functionalities and implementations. In ISC, vol-
ume 10599 of Lecture Notes in Computer Science, pages 173–191. Springer,
2017.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom
functions privately. In PKC, pages 494–524, 2017.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. In STOC, pages
1115–1127, 2016.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J.
Wu. Watermarking public-key cryptographic primitives. In CRYPTO,
pages 367–398, 2019.

[HMW07] Nicholas Hopper, David Molnar, and David A. Wagner. From weak to
strong watermarking. In TCC, pages 362–382, 2007.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities
from standard lattice assumptions. In CRYPTO, pages 503–536, 2017.

[KW19] Sam Kim and David J. Wu. Watermarking prfs from lattices: Stronger
security via extractable prfs. In CRYPTO, pages 335–366, 2019.

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In EURO-
CRYPT, pages 111–125, 2013.

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a
function? In PKC, pages 188–196, 1999.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking prfs under
standard assumptions: Public marking and security with extraction queries.
In TCC, pages 669–698, 2018.

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and
homomorphic signatures, and new constructions for both. In TCC, pages
489–518, 2017.

[YAL+18] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Un-
forgeable watermarking schemes with public extraction. In SCN, pages
63–80, 2018.

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Col-
lusion resistant watermarking schemes for cryptographic functionalities. In
ASIACRYPT, pages 371–398, 2019.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resis-
tant watermarkable prfs from standard assumptions. IACR Cryptol. ePrint
Arch., 2020:695, 2020.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryp-
tographic data. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
94-A(1):270–272, 2011.

