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Abstract

Verifiable Secret-Sharing (VSS) is a fundamental primitive in secure distributed computing. It
is used as an important building block in several distributed computing tasks, such as Byzantine
agreement and secure multi-party computation. VSS has been widely studied in various dimen-
sions over the last three decades and several important results have been achieved related to the
fault-tolerance, round-complexity and communication efficiency of VSS schemes. In this article,
we consider VSS schemes with perfect security, tolerating computationally unbounded adversaries.
We comprehensively survey the existing perfectly-secure VSS schemes in three different settings,
namely synchronous, asynchronous and hybrid communication settings and provide the full de-
tails of each of the existing schemes in these settings. The aim of this survey is to provide a
clear knowledge and foundation to researchers who are interested in knowing and extending the
state-of-the-art perfectly-secure VSS schemes.

1 Introduction

A central concept in cryptographic protocols is that of Secret Sharing (SS) [48, 13]. Consider a set
P = {P1, . . . , Pn} of mutually distrusting parties, where the distrust in the system is modeled by a
centralized adversary, who can control upto t parties. Then a SS scheme allows a designated party
D ∈ P (called dealer) to share a secret s among P, by providing each party Pi a share of the secret s.
The sharing is done in such a way that the adversary controlling any subset of at most t share-holders
fails to learn anything about s, while any subset of at least t+ 1 share-holders can jointly recover s.
In a SS scheme, it is assumed that all the parties including the ones under the adversary’s control
follow the protocol instructions correctly (thus, the adversary is assumed to be passive, who can only
eavesdrop the computation and communication of the parties under its control). Verifiable Secret
Sharing (VSS) [19] extends the notion of SS to the more powerful malicious/active adversarial model,
where the adversary can completely dictate the behaviour of the parties under its control during the
execution of a protocol. Moreover, D is allowed to be potentially corrupted. A VSS scheme consists
of a sharing phase and a reconstruction phase, each implemented by a publicly-known protocol.
During the sharing phase, D shares its secret in a verifiable fashion, which is later reconstructed
during the reconstruction phase. If D is honest, then the privacy of its secret is maintained during
the sharing phase and the shared secret is later robustly reconstructed, irrespective of the behaviour
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of the corrupt parties. The interesting property of VSS is the verifiability property, which guarantees
that even if D is corrupt, it has “consistently/correctly” shared some value among the parties and the
same value is later reconstructed. One can interpret VSS as a distributed commitment, where, during
the sharing phase, D publicly commits to a private input (known only to D) and later during the
reconstruction phase, the committed value is reconstructed publicly (even if D does not cooperate).

VSS serves as a central building block in a variety of important secure distributed-computing
tasks, such as secure multi-party computation (MPC) [11, 47] and Byzantine agreement (BA) [28].
Due to its importance, VSS has been studied in various settings, based on the following categoriza-
tions.
• Conditional vs Unconditional Security: If the adversary is computationally bounded (where

it is allowed to perform only polynomial amount of computations), then the notion of security
achieved is conditional/cryptographic [46, 5, 6], whereas unconditionally-secure VSS provides
security even against a computationally unbounded adversary. Unconditionally-secure VSS can
be further categorized as perfectly-secure where all security guarantees are achieved in an error-
free fashion [11], and statistically-secure where a negligible error is allowed [47, 24, 37].

• Type of Communication: Here we have two categories. The more popular synchronous model
assumes that the parties are synchronized through a global clock and there are strict (publicly-
known) upper bounds on the message delays [11, 47, 31, 30, 36, 3]. The other category is the
asynchronous communication model [10, 12, 8, 1, 42, 43, 23, 7], which models the real-world
networks like the Internet where the parties are not synchronized and where the messages can
be arbitrarily (but finitely) delayed. A major challenge in the asynchronous model is that
a receiving party cannot distinguish between a slow sender whose messages are delayed and
a corrupt sender who does not send the messages at all. Due to this inherent phenomenon,
asynchronous VSS (AVSS) protocols are more complicated than their synchronous counter-
parts. A third category of VSS protocols are designed in the hybrid communication setting
[44], which is a mix of the synchronous and asynchronous models. Namely, the protocol starts
with a few initial synchronous rounds, followed by a completely asynchronous execution. The
main motivation for considering a hybrid setting is to “bridge” the feasibility and efficiency
gaps between completely synchronous and completely asynchronous protocols.

• Corruption Capacity: Most of the works on VSS assume a threshold adversary, where it is
assumed that the adversary can corrupt any subset of upto t parties. A non-threshold adversary
[25, 40, 21, 22] is a more generalized adversary, where the corruption capacity of the adversary
is specified by a publicly-known adversary structure, which is a collection of potentially corrupt
subset of parties. During the protocol execution, the adversary can choose any subset from the
collection for corruption. A threshold adversary is a special type of non-threshold adversary,
where the adversary structure consists of all t-sized subsets of P.

Our Contributions In this work, we provide a comprehensive survey of all the existing perfectly-
secure VSS schemes tolerating a threshold adversary. We consider all the three communication
settings, namely synchronous, asynchronous and hybrid. These schemes are designed over a period
of three decades. The nuances, subtleties and foundational ideas involved in these works need a
holistic and unified treatment, which is the focus of this work. This survey is structured to provide
an easy digest of the perfectly-secure VSS schemes. Through this survey, we hope to provide a
clear knowledge and foundation to researchers who are interested in knowing and extending the
state-of-the-art perfectly-secure VSS schemes.

Organization The survey is divided into three parts, each dealing with a separate communication
model. The first part covers the synchronous communication model, where the bulk of the work on
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VSS has been done. The second part deals with the asynchronous communication model. The third
part covers the hybrid communication model.

Part I : Synchronous Communication Setting

2 Preliminaries and Definitions

Throughout part I, we consider a synchronous communication setting, where there exists a set of n
mutually distrusting parties P = {P1, . . . , Pn}, connected by pair-wise private and authentic channels
(also known as the secure-channel model). The distrust in the system is modeled by a centralized
adversary Adv, who is computationally unbounded. The corruption capability of Adv is upper bounded
by a publicly-known threshold t, such that Adv can corrupt at most t parties during the execution
of a protocol in a malicious/Byzantine fashion and force them to behave in any arbitrary manner
during the protocol execution. We call the parties under the control of Adv as corrupt/malicious,
while the parties not under the control of Adv are called honest. For simplicity, we assume a static
adversary, who decides the set of parties to corrupt at the beginning of a protocol. However, the
protocols discussed can be proved to be secure even assuming a more powerful adaptive adversary,
who can adaptively corrupt parties as the protocol proceeds by following [38].

Apart from the pair-wise secure channels, we assume the presence of a system-wide broadcast
channel, which allows any designated party in P to send some message identically to all the parties.
Any protocol in the synchronous setting operates as a sequence of rounds. In each round, a party
can (privately) send messages to other parties and broadcast a message. Moreover, we assume that
in a given round, each party can simultaneously use the broadcast channel. The messages sent
or broadcast by a party is determined by its input, its random coins, and messages received from
other parties in previous rounds. We assume that Adv is rushing, which means that in any round
the corrupt parties receive the messages sent by the honest parties before deciding on their own
messages for that round. The view of a party during a protocol execution is defined to be its inputs
and random coins for the protocol, along with all the messages received by the party throughout the
protocol execution. The view of Adv is defined to be the collection of the views of the parties under
the control of Adv.

Structure of a VSS Protocol. Following the abstraction of [31], VSS protocols can be structured
into two phases. A sharing phase executed by a protocol Sh, followed by a reconstruction phase
executed by a protocol Rec. While the goal of the sharing phase is to share a secret held by a
designated dealer D ∈ P, the aim of the reconstruction phase is to reconstruct back the shared
secret. In a more detail, during the protocol Sh, the input of D is some secret s ∈ S, where S is some
publicly-known secret-space which is the set of all possible D’s secrets. Additionally, the parties may
have random inputs for the protocol. Let viewi denote the view of party Pi at the end of the protocol
Sh. Based on viewi, each party Pi outputs a share si, which is some publicly-known function of viewi,
as determined by the protocol Sh.

During the reconstruction phase, each Pi may reveal a subset of its view viewi, as per the protocol
Rec. Each party then applies a publicly-known reconstruction function on the revealed views, as
determined by the protocol Rec and reconstructs some output. Following [36], we say that round-
complexity of protocol Sh is (r, r′), where r′ ≤ r, if Sh involves r rounds of communication and if
among these r rounds, the broadcast channel is used for r′ rounds. We use similar terminology for
the round-complexity of Rec. By communication complexity of a protocol, we mean the total number
of bits communicated by the honest parties in the protocol.
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2.1 Definitions

We start with the definition of a t-out-of-n secret-sharing (SS) scheme, which consists of a share-
generation function G and a recovery function R. While G is probabilistic, the function R is deter-
ministic. The function G generates shares for the input secret, while R maps the shares back to the
secret. The shares are generated in such a way that the probability distribution of any set of t shares
is independent of the secret, while any set of t+ 1 shares uniquely determine the secret.

Definition 2.1 (t-out-of-n secret-sharing [32]). It is a pair of algorithms (G,R), such that
– Syntax: The share-generation function G takes input a secret s and some randomness r and

outputs a vector of n shares (s1, . . . , sn). The recovery function R takes input a set of t + 1
shares corresponding to t+ 1 indices {i1, . . . , it+1} ⊂ {1, . . . , n} and outputs a value.

– Correctness: For any secret s and any vector of n shares (s1, . . . , sn) where (s1, . . . , sn) =
G(s, r) for some randomness r, it holds that for every subset {i1, . . . , it+1} ⊂ {1, . . . , n}

R(si1 , . . . , sit+1) = s.

– Privacy: For any subset of t indices, the probability distribution of the shares corresponding
to these indices in independent of the underlying secret. That is, for any I = {i1, . . . , it} ⊂
{1, . . . , n}, let gI(s)

def
= (si1 , . . . , sit), where (s1, . . . , sn) = G(s, r) for some randomness r. Then

we require that for every index-set I where |I| = t, the random variables gI(s) and gI(s
′) are

identically distributed, for every pair (s, s′) where s 6= s′.

Definition 2.2. Let Π = (ΠG,ΠR) be a t-out-of-n secret-sharing scheme. Then we say that a value s
is secret-shared among P as per Π, if there exists some randomness r such that (s1, . . . , sn) = ΠG(s, r)
and each honest party Pi ∈ P holds the share si.

In the literature, two types of VSS protocols have been considered. The type-I VSS protocols
are “weaker” in terms of the properties achieved, compared to the type-II VSS protocols. Namely,
in type-II VSS, it is guaranteed that the underlying secret of the dealer is secret-shared as per some
specified secret-sharing scheme. While the first category of VSS is sufficient to study VSS as a stand-
alone primitive, the second category of VSS schemes is desirable when VSS is used as a primitive in
secure MPC protocols [36, 4, 3].

Definition 2.3 (Type-I VSS [31]). Let (Sh,Rec) be a pair of protocols for the parties in P, where
a designated dealer D ∈ P has some private input s ∈ S for the protocol Sh. Then (Sh,Rec) is called
a Type-I perfectly-secure VSS scheme, if the following requirements hold.

– Privacy: If D is honest, then the view of Adv during Sh is distributed independent of s.
– Correctness: If D is honest, then all honest parties output s at the end of Rec.
– Strong Commitment: Even if D is corrupt, in any execution of Sh the joint view of the

honest parties defines a unique value s? (which could be different from s), such that all honest
parties output s? at the end of Rec, irrespective of the behaviour of Adv.

Definition 2.4 (Type-II VSS [32]). Let (Sh,Rec) be a pair of protocols for the parties in P,
where a designated dealer D ∈ P has some private input s ∈ S for the protocol Sh. Moreover,
let Π = (ΠG,ΠR) be a given t-out-of-n secret-sharing scheme. Then (Sh,Rec) is called a Type-II
perfectly-secure VSS scheme with respect to Π, if the following requirements hold.

– Privacy: If D is honest, then the view of Adv during Sh is distributed independent of s.
– Correctness: If D is honest, then at the end of Sh, the value s is secret-shared among P as

per Π. Moreover, all honest parties output s at the end of Rec.
– Strong Commitment: Even if D is corrupt, in any execution of Sh the joint view of the honest

parties defines a unique value s?, such that s? is secret-shared among P as per Π. Moreover,
all honest parties output s? at the end of Rec, irrespective of the behaviour of Adv.
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Further stronger definition of VSS Definition 2.3-2.4 are referred as “property-based” defini-
tion of VSS, where security is defined by enumerating a list of desired security goals. However, as
shown in [16, 17], the property-based security definition (for any cryptographic task) is not rigorous.
For instance, the definition does not guarantee that all the desired security goals are indeed enumer-
ated. More importantly, the definition does not say anything about what security guarantees are
achieved, when multiple instances of a protocol are composed and executed in parallel. Motivated
by these shortcomings, [16, 17] proposed the Universal Composability (UC)-security framework for
defining and proving the security of any general cryptographic task. Loosely speaking, according
to this framework, a VSS protocol is considered to be secure if it “emulates” an ideal-world VSS
protocol [32], where the dealer D privately provides the secret s and an appropriate randomness r
as inputs to a centralized trusted third-party (TTP), who then computes the shares of s as per some
given secret-sharing scheme Π and privately sends the shares to the respective parties. Proving the
security of VSS protocols as per the UC framework brings in additional technicalities. To the best of
our knowledge, except the works of [4, 3], the security of all VSS protocols is proved according to the
property-based definitions. Since the main goal of this paper is to survey the existing perfectly-secure
VSS protocols, we will stick to the property-based definitions. However, we stress that the security
of the protocols discussed in this article can also be proved as per the UC framework, by following
[4, 3].

2.2 Properties of Polynomials Over a Finite Field

Let F be a finite field where |F| > n and let α1, . . . , αn be distinct non-zero elements of F. A
degree-d univariate polynomial over F is of the form f(x) = a0 + . . . + adx

d, where each ai ∈ F. A

degree-(`,m) bivariate polynomial over F is of the form F (x, y) =

i=`,j=m∑
i,j=0

rijx
iyj , where each rij ∈ F.

Let fi(x)
def
= F (x, αi), gi(y)

def
= F (αi, y). We call fi(x) and gi(y) as ith row and column-polynomial

respectively of F (x, y). This is because the distinct evaluations of the polynomials fi(x) and gi(y)
at x = α1, . . . , αn and at y = α1, . . . , αn respectively, constitute an n × n matrix of distinct points
on F (x, y) (see Fig 1). It is easy to see that fi(αj) = gj(αi) holds for every distinct pair of αi, αj ,
since fi(αj) = gj(αi) = F (αj , αi). We say a degree-m polynomial Fi(x), where i ∈ {1, . . . , n}, lie on
a degree-(`,m) bivariate polynomial F (x, y), if F (x, αi) = Fi(x) holds. Similarly, we say a degree-`
polynomial Gi(y), where i ∈ {1, . . . , n}, lie on F (x, y), if F (αi, y) = Gi(y) holds.

F (x, y) is called symmetric, if rij = rji holds for every i, j. This automatically implies that
F (αj , αi) = F (αi, αj) holds for every αi, αj , further implying that F (x, αi) = F (αi, y) holds.

Definition 2.5 (d-sharing [26, 9]). A value s ∈ F is said to be d-shared, if there exists a degree-d

polynomial, say q(·), with q(0) = s, such that each (honest) Pi ∈ P holds its share1 si
def
= q(αi). The

vector of shares of s corresponding to the (honest) parties in P is denoted as [s]d. A set of values
S = (s(1), . . . , s(L)) ∈ FL is said to be d-shared, if each s(i) ∈ S is d-shared.

2.2.1 Properties of Univariate Polynomials Over F

We next state certain standard properties of univariate polynomials, which are used extensively in
VSS protocols. We start with the well-known Shamir’s t-out-of-n secret-sharing scheme [48]. Most of
the type-II VSS protocols are with respect to Shamir’s secret-sharing scheme. The share-generation
algorithm ShaG of the Shamir’s secret-sharing scheme takes input a secret s ∈ F. To compute the

1We interchangeably use the term shares of s and shares of the polynomial q(·) to denote the values q(αi).
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shares, a polynomial q(·) is picked uniformly at random from the set Ps,t of all degree-t univariate
polynomials over F whose constant term is s, where |Ps,t| = |F|t. The output of the algorithm is the
vector of shares (s1, . . . , sn), where si = q(αi). Since the polynomial2 is chosen randomly and has
degree-t, the probability of the t shares learnt by Adv will be independent of the underlying secret.
Formally:

Lemma 2.6 ([4]). For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values
s, s′ ∈ F, any subset I ⊂ {1, . . . , n} where |I| = ` ≤ t, and every ~y ∈ F`, it holds that:

Pr
f(x)∈rPs,t

[
~y = ({f(αi)}i∈I)

]
= Pr

g(x)∈rPs′,t

[
~y = ({g(αi)}I∈I)

]
,

where f(x) and g(x) are chosen uniformly and independently3 from Ps,t and Ps′,t, respectively.

Let (s1, . . . , sn) be a vector of Shamir-shares for s, generated by ShaG. Moreover, let I ⊂
{1, . . . , n}, where |I| = t + 1. Then the recovery function ShaR takes input the shares {si}i∈I
and outputs s. The standard instantiation of ShaR is the well-known Lagrange’s interpolation for-
mula, which interpolates the unique degree-t Shamir-sharing polynomial passing through the points
{(αi, si)}i∈I .

Relationship Between d-sharing and Reed-Solomon (RS) Codes Let s be d-shared through
a polynomial q(·) and let (s1, . . . , sn) be the vector of shares. Moreover, let W be a subset of these
shares, such that it is ensured that at most r shares in W are incorrect (the exact identity of the
incorrect shares are not known). The goal is to error-correct the incorrect shares in W and correctly
reconstruct back the polynomial q(·). Coding-theory [39, 41] says that this is possible if and only if
|W | ≥ d+ 2r + 1 and the corresponding algorithm is denoted by RS-Dec(d, r,W ). There are several
well-known efficient instantiations of RS-Dec, such as the Berlekamp-Welch algorithm [39].

2.2.2 Properties of Bivariate Polynomials Over F

For univariate polynomials, there exists a unique degree-d univariate polynomial, passing through a
given set of d + 1 distinct points. The following result can be imagined as a generalization of this
result for the case of bivariate polynomials. Informally, it states that if there are “sufficiently many”
univariate polynomials which are “pair-wise consistent”, then together they define a unique bivariate
polynomial. Formally:

Lemma 2.7 (Pair-wise Consistency Lemma [15, 43, 4]). Let fi1(x), . . . , fiq(x) be degree-`
polynomials and let gj1(y), . . . , gjr(y) be degree-m polynomials where q ≥ m+ 1, r ≥ `+ 1 and where
i1, . . . , iq, j1, . . . , jr ∈ {1, . . . , n}. Moreover, let for every i ∈ {i1, . . . , iq} and every j ∈ {j1, . . . , jr},
the condition fi(αj) = gj(αi) holds, where α1, . . . , αn are distinct non-zero elements from F. Then
there exists a unique degree-(`,m) bivariate polynomial, say F ?(x, y), such that the row polynomials
fi1(x), . . . , fiq(x) and the column polynomials gj1(y), . . . , gjr(y) lie on F ?(x, y).

In most VSS protocols, a dealer on having a secret s does the following to share it: the dealer
picks a random degree-t Shamir-sharing polynomial q(·) where q(0) = s. The sharing polynomial q(·)
is further embedded into a random degree-(t, t) bivariate polynomial F (x, y) at x = 0. The dealer
then distributes the row-polynomial fi(x) = F (x, αi) and column-polynomial gi(y) = F (αi, y) to
every party Pi. Similar to the case of Shamir secret-sharing, it holds that Adv, by learning at most

2We often use the term Shamir-sharing polynomial to denote the degree-t polynomial used in the algorithm.
3Here the notation ∈r denotes that the polynomials are picked uniformly at random from the respective domains.
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t row and column-polynomials, does not learn any information about the underlying shared value
s. Intuitively, this is because (t + 1)2 distinct values are required to uniquely determine F (x, y),
but Adv learns at most t2 + 2t distinct values. In fact, it can be shown that for every two degree-t
polynomials q1(·), q2(·) such that q1(αi) = q2(αi) = fi(0) holds for every Pi ∈ C (where C is the set of
corrupt parties), the distribution of the polynomials {fi(x), gi(y)}Pi∈C when F (x, y) is chosen based
on q1(·), is identical to the distribution when F (x, y) is chosen based on q2(·). Formally:

Lemma 2.8 ([4]). Let C ⊂ P where |C| ≤ t, and let q1(·) and q2(·) be two different degree-t polyno-
mials over F such that q1(αi) = q2(αi) holds for every Pi ∈ C. Then,{

{F (x, αi), F (αi, y)}Pi∈C

}
≡
{
{F ′(x, αi), F ′(αi, y)}Pi∈C

}
holds, where F (x, y) and F ′(x, y) are two different degree-(t, t) bivariate polynomials, chosen at ran-
dom under the constraints that F (0, y) = q1(·) and F ′(0, y) = q2(·) holds.

3 Lower Bounds

An obvious necessary condition for any perfectly-secure VSS protocol is that n > 2t should hold.
This follows from the following intuitive argument. In any VSS protocol, the joint view of the honest
parties should uniquely determine the dealer’s secret. Otherwise the correctness property of the
VSS protocol will be violated and the honest parties will fail to reconstruct dealer’s secret when the
corrupt parties produce incorrect view during the reconstruction phase. Since in the worst case there
can be n − t honest parties, to satisfy the privacy property of VSS, the condition n − t > t should
hold, as otherwise the view of the adversary will not be independent of dealer’s secret.

We actually need a more stricter necessary condition of n > 3t to hold for any perfectly-secure
VSS protocol, irrespective of the number of rounds. While the requirement of the necessity condition
of n > 3t has been argued informally in several works [11, 18, 47], a formal proof appeared in [27].

Theorem 3.1 ([27]). Let Π = (Sh,Rec) be a perfectly-secure VSS scheme, where the round-complexity
of Sh and Rec is (rSh, r

′
Sh) and (rRec, r

′
Rec) respectively. Then n > 3t holds.

Theorem 3.1 is proved by relating VSS with the problem of 1-way perfectly-secure message trans-
mission (1-way PSMT) [27]. In the 1-way PSMT problem, there is a sender S and a receiver R,
such that there are n disjoint uni-directional communication channels Ch1, . . . , Chn from S to R (i.e.
only S can send messages to R along these channels, but the other way around communication is not
possible). At most t out of these channels can be controlled by a malicious/Byzantine adversary in
any arbitrary fashion. The goal is to design a protocol, which allows S to send some input message
m reliably (i.e. R should be able to receive m without any error) and privately (i.e. view of the
adversary should be independent of m). In [27], it is shown that a 1-way PSMT protocol exists only
if n > 3t. Moreover, if there exists a perfectly-secure VSS scheme with n ≤ 3t, then using it one can
even design a 1-way PSMT protocol with n ≤ 3t, which is a contradiction.

The Round Complexity of VSS In [31], the round-complexity of a VSS protocol is defined to
be the number of rounds in the sharing phase. The round complexity of reconstruction phase is not
counted, as all (perfectly-secure) VSS protocols adhere to a single-round reconstruction, where the
parties can just reveal (a subset of) their view to every other party. While Theorem 3.1 dictates a
necessary condition of n > 3t for any VSS protocol, the interplay between the round-complexity of
perfectly-secure VSS and resilience bounds (stated in Theorem 3.2) was studied in [31].

Theorem 3.2 ([31]). Let r ≥ 1 be a positive integer and let r′ ≤ r. Then:
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• If r = 1, then there exists no perfectly-secure VSS protocol with (r, r′) rounds in the sharing
phase under any of the following conditions.

– When t > 1, irrespective of the value of n.
– When t = 1 and n ≤ 4.

• If r = 2, then perfectly-secure VSS with (r, r′) rounds in sharing phase is possible only if n > 4t.
• If r ≥ 3, then perfectly-secure VSS with (r, r′) rounds in sharing phase is possible only if n > 3t.

The above bounds are obtained by relating the round complexity of VSS to the round complexity
of the secure multi-cast (SM) problem. In the SM problem, there exists a designated sender S ∈ P
with some private message and a designated receiving set R ⊆ P. The goal is to design a protocol
which allows S to send its message identically to all the parties only in the set R, even in the presence
of a computationally unbounded adversary who can control any t parties, possibly including S.

On the Usage of Broadcast Channel All perfectly-secure VSS protocols are designed under
the assumption that a system-wide broadcast channel is available to the parties. However, this is
just a simplifying abstraction, as one can “emulate” the effect of a broadcast channel by executing a
perfectly-secure reliable-broadcast (RB) protocol [45] among the parties over the pair-wise channels,
provided n > 3t. RB protocols with guaranteed termination are slow and require Ω(t) rounds of
communication [29], while the fast RB protocols with probabilistic termination guarantees require
O(1) expected number of rounds [28, 35] where the constants are rather high. Given the fact that
the usage of broadcast channel is an “expensive resource”, a natural question is whether one can
design a VSS protocol with a constant number of rounds in the sharing phase and which does not
require the usage of broadcast channel in any of these rounds. Unfortunately, the answer is no. This
is because such a VSS protocol will imply the existence of a strict constant round RB protocol with
guaranteed termination (the message to be broadcast by the sender can be shared using the VSS
protocol with sender playing the role of the dealer, followed by reconstructing the shared message),
which is impossible as per the result of [29]. Hence the best that one can hope for is to design VSS
protocols which invokes the broadcast channel only in a fewer rounds.

4 Upper Bounds

We now discuss the optimality of the bounds presented in Theorem 3.2 by discussing VSS protocols
with various round-complexities. The sharing phase of these protocols is summarized in Table 1.
The round complexity of the reconstruction phase of all the protocols is (1, 0). The names of the VSS
schemes are prefixed with the number of rounds required in the sharing phase. In the table, G denotes
a finite group and RSS stands for replicated secret-sharing [34] (see Section 4.1.4). The 3AKP-VSS
scheme has some special properties, compared to 3FGGRS-VSS, 3KKK-VSS schemes, which are useful
for designing round-optimal perfectly-secure MPC protocols (see Section 4.1.7).

4.1 VSS Protocols with n > 3t

We start with perfectly-secure VSS schemes with n > 3t. With the exception of [30], all the schemes
in this category are of Type-II. The reconstruction phase of all these VSS schemes (including [30]) re-
quires a single round. While presenting these protocols, we use the following simplifying conventions.
If a party is expecting some message from a sender party in the protocol and if it either receives
no message or semantically and syntactically incorrect message, then the receiving party substitutes
some default value which is semantically and syntactically correct and proceeds with the steps of
the protocol. Similarly, if the dealer is publicly identified to be cheating then the parties discard the
dealer and terminate the protocol execution with a default sharing of 0.
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Scheme n Round Complexity Type Sharing Semantic Algebraic Structure Complexity

7BGW-VSS [11] n > 3t (7, 5) Type-II Shamir F polynomial(n, t)

5BGW-VSS [31] n > 3t (5, 3) Type-II Shamir F polynomial(n, t)

4GIKR-VSS [31] n > 3t (4, 3) Type-II Shamir F polynomial(n, t)

3GIKR-VSS [31] n > 3t (3, 2) Type-II RSS G exponential(n, t)

3FGGRS-VSS [30] n > 3t (3, 2) Type-I Shamir F polynomial(n, t)

3KKK-VSS [36] n > 3t (3, 1) Type-II Shamir F polynomial(n, t)

3AKP-VSS [3] n > 3t (3, 2) Type-II Shamir F polynomial(n, t)

2GIKR-VSS [31] n > 4t (2, 1) Type-II Shamir F polynomial(n, t)

1GIKR-VSS [31] n = 5, t = 1 (1, 0) Type-I Not Applicable F polynomial(n, t)

Table 1: Summary of the sharing phase of the perfectly-secure VSS schemes.

4.1.1 The 7-round 7BGW-VSS Scheme

The 7BGW-VSS scheme, consisting of the protocols 7BGW-VSS-Sh and 7BGW-VSS-Rec are presented
in Fig 2. The sharing phase protocol is actually a simplified version of the original protocol, taken
from [33]. The approach used in the protocol 7BGW-VSS-Sh has been followed in all the followup
works on perfectly-secure VSS schemes. To share a secret s, the dealer D picks a random degree-t
Shamir-sharing polynomial q(·) and the goal is to ensure that D verifiably distributes the Shamir-
shares of s as per the polynomial q(·) to respective parties. Later, during the protocol 7BGW-VSS-Rec,
the parties exchange these Shamir-shares and correctly reconstruct q(·) by error-correcting upto t
incorrect shares using the algorithm RS-Dec. The verifiability in 7BGW-VSS-Sh ensures that even
if D is corrupt, the shares distributed by D to the (honest) parties during 7BGW-VSS-Sh are as per

some degree-t Shamir-sharing polynomial, say q?(·), thus ensuring that s?
def
= q?(0) is Shamir-shared.

Moreover, the same s? gets reconstructed during 7BGW-VSS-Rec. This ensures that the 7BGW-VSS
scheme is a type-II VSS scheme.

To prove that D is sharing its secret as per some degree-t Shamir-sharing polynomial q(·), the
dealer D embeds its sharing-polynomial in a random degree-(t, t) bivariate polynomial F (x, y). As
shown in Fig 1, there are two approaches to do this embedding. The polynomial q(·) could be either
embedded at x = 0 (the approach shown in part (a)) or it could be embedded at y = 0 (the approach
shown in part (b)). For our description, we follow the first approach. The dealer then distributes
distinct row and column-polynomials to respective parties. If D is honest, then this distribution of
information maintains the privacy of dealer’s secret (follows from Lemma 2.8). Also, if D is honest,
then constant term of the individual row-polynomials actually constitute the Shamir-shares of s, as
these values are nothing but distinct points on the sharing-polynomial q(·). However, a potentially
corrupt D may distribute individual row and column-polynomials, which may not be derived from
a single degree-(t, t) bivariate polynomial. Hence, the parties interact to verify if D has distributed
“consistent” row and column-polynomials, without revealing any additional information about s.

Every pair of parties Pi, Pj upon receiving the polynomials fi(x), gi(y) and fj(x), gj(y) respec-
tively, interact and check if fi(αj) = gj(αi) and fj(αi) = gi(αj) holds. If the checks pass for all
the pairs of parties, then from Lemma 2.7, it follows that D has distributed consistent row (and
column-polynomials) to the parties. However, if the checks do not pass, then either D has dis-
tributed inconsistent polynomials or the parties have not exchanged the correct common values. In
this case, the parties interact publicly with D to resolve these inconsistencies. The details follow.

Every Pi upon receiving the supposedly common values on its column polynomial from the
other parties prepares a complaint-list Li, which includes all the parties Pj whose received value is
inconsistent with Pi’s column-polynomial (this should be interpreted as if there is a dispute between
Pi and Pj). Notice that if there is a dispute between Pi and Pj , then at least one of the three
parties D, Pi, Pj is corrupt. Each party then broadcasts its complaint-list. In response, for every
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[s]t

(a)

fj(x)⇒

gi(y)

⇓

⇓
q(·)

F (α1, α1) . . . F (αi, α1) . . . F (αn, α1)

...
...

...
...

...

F (α1, αj) . . . F (αi, αj) . . . F (αn, αj)

.

..
...

...
...

...

F (α1, αn) . . . F (αi, αn) . . . F (αn, αn)

⇒

...

⇒

...

⇒

f1(0)

...

fj(0)

...

fn(0)

[s]t

(b)

fj(x)⇐

gi(y)

⇓

⇐ q(·)

F (α1, α1) . . . F (αi, α1) . . . F (αn, α1)

...
...

...
...

...

F (α1, αj) . . . F (αi, αj) . . . F (αn, αj)

.

..
...

...
...

...

F (α1, αn) . . . F (αi, αn) . . . F (αn, αn)

⇓ ⇓ ⇓ ⇓ ⇓

g1(0) . . . gi(0) . . . gn(0)

Figure 1: Pictorial depiction of the values on the degree-(t, t) polynomial F (x, y) distributed by D
and how they constitute [s]t. The value highlighted in the yellow color denotes a common value held
by every pair of parties (Pi, Pj). In the first approach, the Shamir-sharing polynomial q(·) is set
as F (0, y) and the Shamir-shares are the constant terms of the individual row-polynomials. In the
second approach, q(·) is set as F (x, 0) and the Shamir-shares are the constant terms of the individual
column-polynomials.

dispute reported by a party, the dealer D makes public its version of the disputed value, namely the
corresponding value on its bivariate polynomial. This is followed by the first-stage accusations against
the dealer. Namely, a party publicly “accuses” D, if the party is in dispute with more than t parties or
if it finds D making public a value, which is not consistent with its column-polynomial. In response,
D makes public the row and column-polynomials of such accusing parties. However, care has to
taken to ensure that these broadcast polynomials are consistent with the polynomials of the parties
who have not yet accused D. This is done through the second-stage of public accusations against
dealer, where a party (who has not yet accused D) publicly accuses D, if it finds any inconsistency
between the row and column-polynomials held by the party and the polynomials which are made
public by D (in response to D’s response to first-stage accusations).

Throughout the protocol, if D is honest, then it will always respond correctly in response to any
accusation or dispute raised. Moreover, there will be at most t accusations against D, as honest
parties never accuse an honest D. Consequently, in the protocol if the parties find D not responding
to some accusation or some dispute or if more than t parties accuse D, then D is corrupt and hence the
parties terminate the protocol by discarding D. By making public the row and column-polynomials
of the accusing parties or disputed values on the bivariate polynomial, the privacy is not violated.
This is because if D is honest, then all the values which are made public correspond to corrupt parties
and are already known to Adv. On the other hand, if D is corrupt but not discarded, then it ensures
that the polynomials of all honest parties are consistent.
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Sharing Phase: Protocol 7BGW-VSS-Sh

• Round I (sending polynomials) — the dealer does the following:
– On having the input s ∈ F, pick a random degree-t Shamir-sharing polynomial q(·), such that

q(0) = s holds. Then pick a random degree-(t, t) bivariate polynomial F (x, y), such that
F (0, y) = q(·) holds.

– For i = 1, . . . , n, send the polynomials fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y) to party Pi.

• Round II (pair-wise consistency checks) — each party Pi does the following:

– On receiving degree-t polynomials fi(x), gi(y) from D, send fij
def
= fi(αj) to Pj , for j = 1, . . . , n.

• Round III (broadcast complaints) — each party Pi does the following:
– Initialize a complaint-list Li to ∅. For j = 1, . . . , n, include Pj to Li, if fji 6= gi(αj). Broadcast

Li.
• Round IV (resolving complaints) — the dealer does the following:

– For i = 1, . . . , n, if Pi has broadcast Li 6= ∅, then for every Pj ∈ Li, broadcast the value F (αi, αj).
• Round V (first-stage accusations) — each party Pi does the following:

– Broadcast the message (Pi, accuse,D), if any of the following conditions hold.

1. |Li| > t or if Pi ∈ Li;
2. If ∃k ∈ {1, . . . , n}, such that Pi ∈ Lk and F (αk, αi) 6= fi(αk);
3. If for any Pj ∈ Li, the condition F (αi, αj) 6= gi(αj) holds.

• Round VI (resolving first-stage accusations) — the dealer does the following:
– For every Pi who has broadcast (Pi, accuse,D), broadcast the degree-t polynomials fi(x) and

gi(y).
• Round VII (second-stage accusations) — each party Pi does the following:

– Broadcast the message (Pi, accuse,D) if there exists any j ∈ {1, . . . , n} such that D has broadcast
degree-t polynomials fj(x), gj(y) and either fj(αi) 6= gi(αj) or gj(αi) 6= fi(αj) holds.

• Output decision — each party Pi does the following:
– If more than t parties Pj broadcast (Pj , accuse,D) throughout the protocol, then discard D.
– Else output the sharea fi(0).

Reconstruction Phase: Protocol 7BGW-VSS-Rec

Each party Pi ∈ P does the following:
– Send the share si to every party Pj ∈ P. Let Wi be the set of shares received from the parties. Execute

RS-Dec(t, t,Wi) to reconstruct s and terminate.

aIf D has broadcast new polynomials fi(x), gi(y) for Pi during Round VI, then consider these new polynomials.

Scheme 7BGW-VSS

Figure 2: The perfectly-secure VSS scheme of [11].

Since the idea of bivariate polynomials has been used in all the followup works on perfectly-secure
VSS, we give a very high level overview of the proof of the properties of 7BGW-VSS protocol.

Theorem 4.1. Protocols (7BGW-VSS-Sh, 7BGW-VSS-Rec) constitute a Type-II perfectly-secure VSS
scheme with respect to Shamir’s t-out-of-n secret-sharing scheme.

Proof. If D is honest, then for every pair of parties (Pi, Pj), fi(αj) = gj(αi) and fj(αi) = gi(αj)
holds. Consequently, no honest Pj will be present in the list Li of any honest Pi. Moreover, D
honestly resolves the first-stage accusations as well as second-stage accusations and consequently, no
honest party accuses and discards D. Hence s will be t-shared through the degree-t polynomial q(·).
Moreover, during 7BGW-VSS-Rec, the honest parties correctly reconstruct q(·) and hence s. This
follows from the properties of RS-Dec and the fact that q(·) is a degree-t polynomial and at most t
corrupt parties can send incorrect shares. Hence, the correctness property is guaranteed.
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Let C be the set of corrupt parties. If D is honest, then throughout 7BGW-VSS-Sh, the view of
Adv consists of {fi(x), gi(y)}Pi∈C . Moreover, no honest party accuses D and hence all the information
which D makes public can be derived from {fi(x), gi(y)}Pi∈C . Now since these polynomials are derived
from F (x, y), which is a randomly chosen polynomial embedding q(·), it follows from Lemma 2.8 that
the view of Adv is distributed independently of s, thus guaranteeing privacy.

For strong commitment we have to consider a corrupt D. If the honest parties discard D,

then clearly the value s?
def
= 0 will be t-shared and the same value 0 gets reconstructed during

7BGW-VSS-Rec. On the other hand, consider the case when the honest parties do not discard D
during 7BGW-VSS-Sh. In this case we claim that the row and column-polynomials of all the hon-
est parties are derived from a single degree-(t, t) bivariate polynomial, say F ?(x, y), which we call

as D’s committed bivariate polynomial. Consequently, s?
def
= F ?(0, 0) will be t-shared through the

Shamir-sharing polynomial q?(·) def= F ?(0, y) and s? gets reconstructed during 7BGW-VSS-Rec.
To prove the claim, we first note that there are at least n − t = 2t + 1 parties who do not

broadcast an accuse message against D (as otherwise D is discarded). Let H be the set of honest
parties among these n − t parties. It is easy to see that |H| ≥ n − 2t = t + 1. The parties in H
receive degree-t row and column-polynomials from D. Moreover, for every Pi, Pj ∈ H, their row
and column-polynomials are pair-wise consistent (as otherwise either Pi or Pj would broadcast an
accuse message against D). It then follows from Lemma 2.7 that the row and column-polynomials
of all the parties in H lie on a single degree-(t, t) bivariate polynomial, say F ?(x, y). Next consider
any honest party Pj 6∈ H, who broadcasts an accuse message against D and corresponding to which
D makes public the row and column-polynomials of Pj . To complete the proof of the claim, we
need to show that these polynomials also lie on F ?(x, y). We show it for the row-polynomial of Pj
and a similar argument can be used for the column-polynomial as well. So let fj(x) be the degree-t
row-polynomial broadcast by D for Pj . It follows that fj(αi) = gi(αj) holds for every Pi ∈ H,
where gi(y) is the degree-t column polynomial held by Pi (otherwise Pi would have broadcast an
accuse message against D). Now gi(y) = F ?(αi, y) holds. Moreover, since |H| ≥ t + 1, the distinct
points {(αj , gi(αj))}Pi∈H uniquely determine the degree-t polynomial F ?(x, αj). This implies that
fj(x) = F ?(x, αj), as two different degree-t polynomials can have at most t common points.

4.1.2 A 5-round Version of Protocol 7BGW-VSS-Sh

Protocol 7BGW-VSS-Sh follows the “share-complaint-resolve” paradigm, where D first distributes the
information on its bivariate polynomial, followed by parties complaining about any “inconsistency”,
which is followed by D consistently resolving these inconsistencies. At the end, either all (honest)
parties held consistent polynomials derived from a single degree-(t, t) bivariate polynomial or D is
discarded. The “complaint” and “resolve” phases of 7BGW-VSS-Sh occupied five rounds. In [31],
the authors proposed a round-reducing technique, which collapses these phases to three rounds, thus
reducing the overall number of rounds to five. The modified protocol 5BGW-VSS-Sh is presented in
Fig 3.

The high level idea of the protocol 5BGW-VSS-Sh is as follows. In 7BGW-VSS-Sh, during the
third round, Pi broadcasts only the identity of the parties with which it has a dispute (through Li),
followed by D making the corresponding disputed values public during Round IV, which is further
followed by Pi accusing D during Round V, if Pi finds D’s version to mis-match with Pi’s version.
Let us call Pi to be unhappy, if it accuses D during Round V. The round-reducing technique of [31]
enables to identify the set of unhappy parties UH by the end of Round IV as follows. During Round
III, apart from broadcasting the list of disputed parties, party Pi also makes public its version of the
corresponding disputed values. In response, both D and the corresponding complainee party makes
public their respective version of the disputed value. Now based on whether D’s version matches the
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complainant’s version or complainee’s version, the parties can identify the set UH.
In 7BGW-VSS-Sh, once UH is identified, D makes public the polynomials of the parties in UH dur-

ing Round VI. And to verify if D made public the correct polynomials, during Round VII, the parties
not in UH raise accusations against D, if they find any inconsistency between the polynomials held
by them and the polynomials made public by D. The round-reducing technique of [31] collapses these
two rounds into a single round. Namely, once UH is decided, D makes public the row-polynomials of
these parties. In parallel, the parties not in UH makes public the corresponding supposedly common
values on these row-polynomials. Now to check if D broadcasted correct row-polynomials, one just
has to verify whether each broadcasted row-polynomial is pair-wise consistent with at least 2t + 1
corresponding values, broadcasted by the parties not in UH.

• Rounds I and II — same as in protocol 7BGW-VSS-Sh.
• Round III — each party Pi does the following:

– For every Pj ∈ P where fji 6= gi(αj), broadcast (complaint, i, j, gi(αj)).
• Round IV (making disputed values public) — the dealer and each party Pj does the

following:
– If Pi broadcasts (complaint, i, j, gi(αj)), then D and Pj broadcasts F (αi, αj) and fj(αi) respec-

tively.
• Local computation (deciding unhappy parties) — each party Pk does the following:

– Initialize a set of unhappy parties UH to ∅.
– For every pair of parties (Pi, Pj), such that Pi has broadcast (complaint, i, j, gi(αj)), D has

broadcast F (αi, αj) and Pj has broadcast fj(αi), do the following.
– If gi(αj) 6= F (αi, αj), then include Pi to UH.
– If fj(αi) 6= F (αi, αj), then include Pj to UH.

– If |UH| > t, then discard D.
• Round V (resolving unhappy parties) — the dealer and each Pj 6∈ UH does the following:

– For every Pi ∈ UH, the dealer D broadcasts degree-t polynomial fi(x).
– For every Pi ∈ UH, party Pj broadcasts gj(αi).

• Output decision — each party Pk does the following:
– If there exists any Pi ∈ UH for which D broadcasts fi(x) and at most 2t parties Pj 6∈ UH broadcast

gj(αi) values where fi(αj) = gj(αi) holds, then discard D.
– Else output the share fk(0).

Protocol 5BGW-VSS-Sh

Figure 3: A simplified 5-round version of 7BGW-VSS-Sh due to [31].

4.1.3 The 4-round 4GIKR-VSS Scheme

In [31], the authors proposed another round-reducing technique to reduce the number of rounds of
5BGW-VSS-Sh by one. The modified protocol 4GIKR-VSS-Sh is presented in Fig 4. The idea is
to ensure that the set UH is decided by the end of Round III, even though this might look like
an impossible task. This is because the results of pair-wise consistency checks are available during
Round III and only after the various versions of the disputed values are made public during Round
IV, the set UH gets decided. The key-observation of [31] is that the parties can “initiate” the pair-
wise consistency checks from Round I itself. More specifically, every Pi, Pj exchange random pads
privately during the Round I, independently of D’s distribution of the polynomials. Once Pi, Pj obtain
their respective polynomials, they can broadcast a masked version of the supposedly common values
on their polynomials, using the exchanged pads as the masks. If D, Pi and Pj are all honest, then
the masked version of the common values will be the same. Moreover, nothing about the common
values will be learnt, as the corresponding masks will be known only to Pi, Pj . So by comparing the
masked versions of the common values, the parties will publicly come to know about the results of

13



pair-wise consistency checks by the end of the Round II. After this, the rest of the steps will be the
same as in 5BGW-VSS-Sh.

• Round I (sending polynomials and exchanging random pads)
– D computes and distributes the row and column-polynomials as per round I of 7BGW-VSS-Sh.
– Each Pi ∈ P picks a random pad rij ∈ F corresponding to every Pj ∈ P and sends rij to Pj .

• Round II (broadcasting common values in a masked fashion) — each Pi does the following:

– Broadcast aij
def
= fi(αj) + rij and bij

def
= gi(αj) + r′ji, where r′ji is the pad, received from Pj .

• Round III (making disputed values public) — for all Pi, Pj where aij 6= bji, party Pi, Pj
and D does the following:

– D broadcasts F (αj , αi).
– Pi broadcasts fi(αj).
– Pj broadcasts gj(αi).

• Remaining steps — same as 5BGW-VSS-Sh from the local computations at the end of Round IV
onwards.

Protocol 4GIKR-VSS-Sh

Figure 4: A 4-round sharing phase protocol due to [31].

4.1.4 The 3-round 3GIKR-VSS Scheme

We next present a VSS scheme called 3GIKR-VSS from [31], which has a round-optimal sharing phase,
namely a 3-round sharing phase. However, the protocol is inefficient, as it requires an exponential
(in n and t) amount of computation and communication. The computations in 3GIKR-VSS scheme
are performed over a finite group (G,+).

We first explain the notion of t-out-of-n replicated secret-sharing (RSS) [34]. Let K
def
=
(
n
t

)
and

A1, . . . , AK denote the set of all possible subsets of P of size t. For k = 1, . . . ,K, let Gk
def
= P \ Ak.

It is easy to see that in each Gk, the majority of the parties are honest. To share s ∈ G, the
share-generation algorithm of RSS outputs (v(1), . . . , v(K)) ∈ GK , where v(1), . . . , v(K) are random

elements, such that v(1) + . . .+ v(K) = s holds. The share si for Pi is defined as si
def
= {v(j)}Pi∈Gj .

It is easy to see that any t-sized subset of (s1, . . . , sn) will have at least one “missing” element
from v(1), . . . , v(K), say v(l), whose probability distribution will be independent of s, thus ensuring
privacy. On the other hand, any (t+ 1)-sized subset of (s1, . . . , sn) will have all values v(1), . . . , v(K)

which can be added to reconstruct back s, thus ensuring correctness. Following Definition 2.2, we
say that s ∈ G is RSS-shared, if it is secret-shared as per t-out-of-n RSS. That is, if there exist
v(1), . . . , v(K) such that s = v(1) + . . .+ v(K), with all parties in Gk holding v(k).

Scheme 3GIKR-VSS is presented in Fig 5. The sharing protocol 3GIKR-VSS-Sh verifiably generates
a replicated secret-sharing of dealer’s secret, maintaining its privacy if D is honest. The verifiability
ensures that even if D is corrupt, there exists some value held by D which has been shared as per
RSS by D. The reconstruction protocol 3GIKR-VSS-Rec allows the parties to reconstruct the RSS-
shared value of D. During 3GIKR-VSS-Sh, D generates a vector of values (v(1), . . . , v(K)) as per the
share-generation algorithm of RSS and sends v(k) to all the parties in Gk. If D is honest, then this
ensures the privacy of s. This is because if Adv corrupts the set of t parties in the set Ak, then it
will not have access to v(k). To ensure that a potentially corrupt D has distributed the same vk to
all the (honest) parties in Gk, each pair of parties in Gk privately exchange their respective copies of
v(k) and publicly raises a complaint if they find any inconsistency. To resolve any complaint raised
for Gk, D makes public the value v(k) for Gk, thus ensuring that all the parties in Gk have the same
v(k). Notice that this step does not violate the privacy property. This is because if D is honest and
if Gk consists of only honest parties, then there will be no pair-wise inconsistency in Gk. So if any
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inconsistency is reported for Gk, then either D is corrupt or Gk consists of at least one corrupt party
and so making v(k) public does not add any new information to the view of Adv.

The above process of finding and resolving inconsistencies will require four rounds, which can
be collapsed to three, by using the round-reducing technique of [31] of publicly identifying pair-wise
inconsistencies based on the idea of pre-exchanging pair-wise random pads. During 3GIKR-VSS-Rec,
the goal of each Pi is to correctly obtain v(1), . . . , v(K). While Pi will have all the v(k) values
corresponding to the sets Gk of which it is a member, the challenge is to obtain the v(k) values for the
sets Gk for which Pi is not a member. Consider any such Gk where Pi 6∈ Gk and where all (honest)
parties hold the same value of v(k). To enable Pi obtain v(k), every party in Gk sends v(k) to Pi, who
applies the majority rule to filter out the correct value of v(k).

Sharing Phase: Protocol 3GIKR-VSS-Sh

• Round I (distributing shares and exchanging random pads)
– D on having the input s ∈ G, randomly selects v(1), . . . , v(K) ∈ G such that s = v(1) + . . .+ v(K)

holds. It then sends v(k) to every party Pi ∈ Gk, for k = 1, . . . ,K.

– For k = 1, . . . ,K, each Pi ∈ Gk sends a randomly chosen pad r
(k)
ij ∈ G to every Pj ∈ Gk where

i < j.
• Round II (pair-wise consistency check within each group)

– For k = 1, . . . ,K, each pair of parties Pi, Pj ∈ Gk with i < j do the following:

– Pi broadcasts a
(k)
ij = v

(k)
i + r

(k)
ij , where v

(k)
i denotes the version of v(k) received by Pi from D.

– Pj broadcasts a
(k)
ji = v

(k)
j + r

′(k)
ij , where v

(k)
j denotes the version of v(k) received by Pj from

D and r
′(k)
ij denotes the pad received by Pj from Pi.

• Round III (resolving conflicts)

– For k = 1, . . . ,K, if there exists Pi, Pj ∈ Gk such that a
(k)
ij 6= a

(k)
ji , then D broadcasts the value

v(k).
• Output determination — each party Pi does the following:

– If ∃k ∈ {1, . . . ,K} where Pi ∈ Gk such that D broadcast v(k), then set v
(k)
i to v(k).

– Output the share si
def
= {v(k)i }Pi∈Gk

.

Reconstruction Phase: Protocol 3GIKR-VSS-Rec

Each party Pi ∈ P does the following:

– ∀k ∈ {1, . . . ,K}, such that Pi ∈ Gk, send v
(k)
i to every party in P \ Gk.

– ∀k ∈ {1, . . . ,K} where Pi 6∈ Gk, set v(k) to be the value v
(k)
j received from at least t+1 parties Pj ∈ Gk.

– Output s =
∑

Gk:Pi∈Gk

v
(k)
i +

∑
Gk:Pi 6∈Gk

v(k).

Scheme 3GIKR-VSS

Figure 5: The 3-round 3GIKR-VSS scheme due to [31].

4.1.5 The 3-round 3FGGRS-VSS Type-I VSS Scheme

The 4GIKR-VSS scheme comes closest in terms of number of rounds to obtain a round optimal and
efficient VSS scheme. Round IV of 4GIKR-VSS-Sh consists of the dealer making public the polyno-
mials of the so-called unhappy parties. In [30], the authors observed that the elimination of Round
IV results in a primitive that satisfies a weaker commitment requirement, where the reconstructed
value may be some predefined default value, when the dealer is corrupt. This primitive is called weak
verifiable secret sharing (WSS) [47] and is used as a building block to construct a VSS scheme. WSS
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is used by [30] to construct an efficient and round optimal VSS scheme. We first present the required
background and the protocol for WSS of [30] before presenting the 3FGGRS-VSS scheme.

Definition 4.2 ((n, t)-WSS [47]). Let (Sh,Rec) be a pair of protocols for the n parties in P, where
a designated D ∈ P has some private input s ∈ S for the protocol Sh. Then (Sh,Rec) is called a
perfectly-secure (n, t)-WSS scheme, if the following requirements hold.

– Privacy and Correctness: Same as in VSS.
– Weak Commitment: Even if D is corrupt, in any execution of Sh the joint view of the honest

parties defines a unique value s? (which could be different from s), such that each honest party
outputs either s? or some default value ⊥ at the end of Rec, irrespective of Adv.

The WSS scheme 3FGGRS-WSS of [30] is given in Fig. 6. Protocol 3FGGRS-WSS-Sh is the
same as 4GIKR-VSS-Sh, except that the parties do not execute the Round IV. Consequently, upto
t parties (namely the parties in UH) will not posses their respective shares. As a result, during
3FGGRS-WSS-Rec, only the happy parties (namely the parties not in the set UH) are allowed to
participate for reconstructing the shared value. For reconstruction, the happy parties broadcast
their respective polynomials. To ensure that each happy party broadcasts correct polynomials, the
parties publicly verify the pair-wise consistency of these polynomials. And the polynomials which
are not found to be pair-wise consistent with “sufficiently many” polynomials are not considered for
the purpose of reconstruction. If the parties are finally left with at least n−t pair-wise consistent row
and column-polynomials, then these row-polynomials are used to reconstruct back D’s committed
Shamir-sharing polynomial and hence its secret, else the parties output ⊥. The idea is that if the
parties are finally left with n− t pair-wise consistent polynomials, then they lie on the same degree-
(t, t) bivariate polynomial as committed by D to honest happy parties during the sharing phase, as
among these n− t pairs of polynomials, at least t+ 1 belong to the happy honest parties.

We stress that if D is honest, then no honest party will be in the set UH and hence all honest
parties will have their respective shares of D’s Shamir-sharing polynomial. Moreover, if any poten-
tially corrupt party produces an incorrect polynomial during the reconstruction phase, then it will
be ignored due to the pair-wise consistency checks. Thus 3FGGRS-WSS achieves the properties of a
type-II VSS, for the case of an honest D. However if D is corrupt, then during the sharing phase, upto
t honest parties may belong to UH. Moreover, during the reconstruction phase, even if a single cor-
rupt party produces incorrect polynomials, then the parties end up reconstructing ⊥. It is this latter
phenomenon, which prevents 3FGGRS-WSS from being a VSS scheme.

Sharing Phase: Protocol 3FGGRS-WSS-Sh

• The parties execute the first 3 rounds of 4GIKR-VSS-Sh. Let UH be the set of unhappy parties and let

W def
= P \ UH be the set of happy parties. If |UH| > t, then discard D.

Reconstruction Phase: Protocol 3FGGRS-WSS-Rec

• Revealing private information — each party Pi ∈ W does the following:
– Broadcast the polynomials fi(x) and gi(y).

• Consistency check — each party Pi does the following:
– Construct a consistency graph G over the set of parties W with an edge between Pj and Pk if and

only if fj(αk) = gk(αj) and gj(αk) = fk(αj).
– Remove Pj from G, if it has degree less than n− t in G. Repeat till no more nodes can be removed

from G. Redefine W to be the set of parties, whose corresponding nodes remain in G.
• Output decision — each party Pi does the following:

Scheme 3FGGRS-WSS
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– If |W| < n− t then output a default value ⊥. Else interpolate a degree-t polynomial q(·) through
the points {(αj , fj(0))}Pj∈W and output q(·) and s = q(0).

Figure 6: The 3-round 3FGGRS-WSS scheme due to [30]

Sharing and Reconstructing Polynomial Using 3FGGRS-WSS We note that D’s computation
in 3FGGRS-WSS-Sh can be recasted as if D wants to share the degree-t Shamir-sharing polynomial
F ?(0, y), where F ?(0, 0) is the value which D wants to share. If D is not discarded, then each (honest)
Pj ∈ W receives the share F ?(0, αj) from D through its degree-t row-polynomial F ?(x, αj). Here
F ?(x, y) is the degree-(t, t) bivariate polynomial committed by D to the honest parties in W, which
is the same as F (x, y) for an honest D. If D is honest, then adversary learns at most t shares of
the polynomial F (0, y) and hence its view will be independent of F (0, 0). The computations done
during 3FGGRS-WSS-Rec can be similarly recasted as if the parties publicly try to reconstruct a
degree-t Shamir-sharing polynomial F ?(0, y), which has been shared by D during 3FGGRS-WSS-Sh.
If D is honest, then the parties robustly reconstruct the shared polynomial. Else, the parties ei-
ther reconstruct the shared polynomial or output ⊥. Hence we propose the following notations for
3FGGRS-WSS, which later simplifies the presentation of 3FGGRS-VSS.

Notation 4.3. We use the following notations and interpretations.
• We say that party Pj ∈ P shares a degree-t polynomial r(·) held by Pj , to denote that Pj plays

the role of D and invokes an instance of 3FGGRS-WSS-Sh by selecting r(·) as its Shamir-sharing
polynomial and all the parties participate in this instance.

• We say that Pi receives a wss-share rji from Pj , to denote that in Round I of the 3FGGRS-WSS-Sh
instance invoked by Pj , Pi receives a degree-t row-polynomial from Pj , whose constant term is
rji. If Pj is not discarded during the 3FGGRS-WSS-Sh instance, then the wss-shares rji of all
the honest parties in W lie on a unique degree-t Shamir-sharing polynomial held by Pj .

• Let r(·) be a degree-t polynomial shared by Pj through an instance of 3FGGRS-WSS-Sh. We say
that the parties try to reconstruct Pj’s shared polynomial, to denote that the parties execute
the corresponding instance of 3FGGRS-WSS-Rec, which either outputs r(·) or ⊥.

From WSS to VSS The sharing-phase protocol of the 3FGGRS-VSS scheme (see Fig. 7) is exactly
the same as the first three rounds of the protocol 4GIKR-VSS-Sh with the following twist. The
random pads rji used by party Pj to verify the pair-wise consistency of its row-polynomial with the
other parties’ column-polynomials are “tied together” by letting these pads lie on a random degree-t
blinding-polynomial rj(·), which is shared by Pj (see Notation 4.3). For pair-wise consistency, Pj
makes public a degree-t polynomial Aj(·), which is a masked version of its row-polynomial and its
blinding-polynomial, while the parties Pi make public the supposedly common value on their column-
polynomials, blinded with the wss-shares of Pj ’s blinding-polynomial. This new way of performing
pair-wise consistency checks achieves the same “goals” as performing the checks using random pads.
More importantly, the privacy is still maintained in the case of an honest D. This is because for every
honest Pj , the adversary obtains at most t shares of Pj ’s blinding-polynomial, which are randomly
distributed. The set of happy parties for the VSS is identified based on the results of pair-wise
consistency and conflict-resolutions, as done in 4GIKR-VSS-Sh. Moreover, the parties also ensure
that for every happy party Pj for the VSS, there are at least n − t happy parties, belonging to the
happy set of parties for Pj ’s WSS-sharing instance. This latter property is crucial for ensuring the
strong commitment property during the reconstruction phase.

Let F ?(x, y) be the degree-(t, t) bivariate polynomial, committed by D during the sharing phase.
During the reconstruction phase, instead of simply asking the happy parties to make their row-
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polynomials public, the parties reconstruct their blinding-polynomials (by executing instances of
3FGGRS-WSS-Rec), which are then unmasked from the corresponding Aj(·) polynomials to get back
the row-polynomials of the happy parties. For the honest happy parties Pj , robust reconstruction
of their blinding-polynomials is always guaranteed, thus ensuring that their corresponding row-
polynomials F ?(x, αj) are robustly reconstructed. If the reconstruction of Pj ’s blinding-polynomial
fails, then clearly Pj is corrupt and hence can be safely discarded from consideration during the re-
construction phase. Moreover, even if Pj is corrupt and the parties reconstruct a degree-t polynomial
during the corresponding 3FGGRS-WSS-Rec instance, the weak-commitment property of the WSS
guarantees that reconstructed polynomial is the same blinding-polynomial as shared by Pj . Hence
unmasking this polynomial from Aj(·) will return back the row-polynomial F ?(x, αj). This is because
there are at least n − t parties, which belong to the happy set of both the VSS instance, as well as
Pj ’s WSS instance. Now out of these n− t common happy-parties, at least t+ 1 will be honest. And
the wss-shares received by these honest parties Pk from Pj uniquely define Pj ’s blinding-polynomial
rj(x), while evaluations of the column-polynomials of the same honest-parties Pk at y = αj uniquely
determines the degree-t row-polynomial F ?(x, αj). Moreover, during the sharing phase these honest
parties Pk collectively ensured that Aj(·) = F ?(x, αj) + rj(·) holds, as otherwise they do not belong
to the happy set of Pj ’s WSS instance.

Sharing Phase: Protocol 3FGGRS-VSSSh

• Round I (sending polynomials and exchanging random pads):
– D computes and distributes the row and column-polynomials as per round I of 7BGW-VSS-Sh.
– Each party Pi ∈ P (including D) picks a random degree-t blinding-polynomial ri(·) and shares it

through an instance WSS−Shi of 3FGGRS-WSS-Sh.
• Round II (broadcasting common values in a masked fashion) — each Pi does the following:

– Broadcast the degree-t polynomial Ai(·)
def
= fi(x) + ri(·).

– Broadcast bij
def
= gi(αj) + r′ji, where r′ji denotes the wss-share received from Pj during WSS−Shj .

– For every k ∈ {1, . . . , n}, concurrently execute Round II of the instance WSS−Shk.
• Round III:

– (making disputed values public) — for all Pi, Pj where Ai(αj) 6= bji, dealer D broadcasts
F (αj , αi), party Pi broadcasts fi(αj) and party Pj broadcasts gj(αi).

– For every k ∈ {1, . . . , n}, the parties concurrently execute Round III of the instance WSS−Shk.
• Local computation at the end of Round III — each party Pk does the following:

– Initialize a set UH of unhappy parties. For every Pi, Pj where Ai(αj) 6= bji, do the following.
– Include Pi ∈ UH, if during Round III, F (αj , αi) 6= fi(αj) holds.
– Include Pj ∈ UH, if during Round III, F (αj , αi) 6= gj(αi) holds.

Let V def
= P \ UH be the set of happy parties.

– For j ∈ {1, . . . , n}, let Wj denote the set of happy parties at the end of the instance WSS−Shj .
Remove Pi from Wj , if during Round II, Aj(αi) 6= bij holds.

– For every Pj ∈ V, if |V ∩ Wj | < n − t, then remove Pj from V. Repeat this step till no more
parties can be removed from V. If |V| < n− t, then discard D.

Reconstruction Phase: Protocol 3FGGRS-VSSRec

• Reconstructing the blinding-polynomials:
– For every Pj ∈ V, the parties try to reconstruct Pj ’s blinding-polynomial by participating in

an instance WSS−Recj of 3FGGRS-WSS-Rec. Pj is removed from V if ⊥ is the output during
WSS−Recj .

• Reconstruction and output decision — each party Pi does the following:

Scheme 3FGGRS-VSS
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– For each Pj ∈ V, compute fj(x) = Aj(x) − rj(·), where rj(·) is reconstructed at the end of
WSS−Recj . Interpolate a degree-t polynomial q(·) through {(αj , fj(0))}Pj∈V . Output s = q(0).

Figure 7: The 3-round 3FGGRS-VSS scheme due to [30]

4.1.6 The 3-round 3KKK-VSS Scheme

The 3FGGRS-VSS scheme is a Type-I VSS for a corrupt D. Moreover, it makes use of the broadcast
channel during two of the rounds of the sharing phase, which is not optimal. The 3KKK-VSS scheme
[36] rectifies both these problems.

The optimal broadcast-channel usage must first be rectified for 3FGGRS-WSS-Sh. The modi-
fied construction 3KKK-WSS-Sh (see Fig 8) is based on the observation that during Round II of
3FGGRS-WSS-Sh (which is same as Round II of 4GIKR-VSS-Sh), there is no need to publicly perform
the pair-wise consistency checks over masked values. Instead, parties can first privately perform the
pair-wise consistency checks over unmasked values and later publicly announce the results during
the third round. However, we also need to add a provision for the dealer to resolve any potential
conflicts during the third round itself. For this, during the second round, every Pi, Pj privately
exchange their supposedly common values and also the random pads. Additionally, the pads are also
“registered” with the dealer. Later during the third round, upon a disagreement between Pi and Pj ,
they broadcast their respective common values and their respective random pads, else they broadcast
their appropriately masked common values. In parallel, dealer either broadcasts the common value
in a masked fashion if the pads it received from Pi, Pj are same, else it just broadcasts the common
value. The secrecy of the common values is maintained if Pi, Pj and dealer are honest. On the other
hand, if dealer is corrupt and if there is a disagreement between honest Pi, Pj , then the dealer can
“take side” with at most one of them during the third round.

• Round I (sending polynomials and exchanging random pads):
– Same as Round I of 4GIKR-VSS-Sh. Additionally, each Pi ∈ P sends the pads {rij}Pj∈P to D.

• Round II (exchanging common values and confirming pad) — each Pi does the following:
– Send aij = fi(αj) and bij = gi(αj) to Pj .
– Send {r′ji}Pj∈P to D, where r′ji denotes the pad received from Pj during Round I.

• Round III (complaint and resolution) — each party Pi does the following:
– For j ∈ {1, . . . , n}, let a′ji and b′ji be the values received from Pj during Round II.

– If b′ji 6= fi(αj), broadcast (j, disagree-row, fi(αj), rij), else broadcast (j, agree-row, fi(αj)+
rij).

– If a′ji 6= gi(αj), broadcast (j, disagree-column, gi(αj), r
′
ji), else broadcast (j, agree-column,

gi(αj) + r′ji).
– If Pi = D, then for every ordered pair of parties (Pj , Pk), additionally do the following.

– Let r
(1)
jk and r

(2)
jk be the pads received from Pj and Pk respectively during Round I and Round

II. If r
(1)
jk 6= r

(2)
jk , then broadcast ((j, k), NEQ, F (αk, αj)), else broadcast ((j, k), EQ, F (αk, αj)+

r
(1)
jk ).

• Local computation (identifying unhappy parties) — each party Pk does the following:
– Initialize a set of unhappy parties UH to ∅. For every Pi, Pj such that Pi broadcasts (j, disagree-row,

fi(αj), rij) and Pj broadcasts (i, disagree-column, gj(αj), r
′
ij) where rij = r′ij , do the following.

– Include Pi to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fi(αj).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fi(αj) + rij .

– Include Pj to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= gj(αi).

Protocol 3KKK-WSS-Sh
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– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= gj(αi) + r′ij .

– If |UH| > t, then discard D. Else let W def
= P \ UH be the set of happy parties.

Figure 8: The 3-round 3KKK-WSS-Sh protocol due to [36]

From 3KKK-WSS to 3KKK-VSS We note that the notion of sharing and reconstructing degree-t
polynomials (as stated in Notation 4.3) is applicable even for the 3KKK-WSS scheme. By replacing
3FGGRS-WSS with 3KKK-WSS scheme in the 3FGGRS-VSS scheme, readily provides a VSS scheme
with the optimal usage of broadcast channel. However, the resultant VSS scheme need not be not be
of Type-II for the case of a corrupt D, as the unhappy honest parties may not hold their respective
shares. Hence the 3KKK-VSS scheme deploys an additional trick to get rid of this problem.

Let Pi be an unhappy party during 3FGGRS-VSS-Sh and let F ?(x, y) be the degree-(t, t) bivariate
polynomial, defined by the polynomials of the (honest) happy parties. We note that each happy Pj
broadcasts a masking Aj(·) of its row-polynomial F ?(x, αj). If Pi is happy in Pj ’s WSS instance
WSS−Shj , then Pi can compute the point F ?(αi, αj) on its supposedly column-polynomial F ?(αi, y)
by unmasking the wss-share r′ji received during WSS−Shj from Aj(αi). Hence if there is a set SSi of
at least t+ 1 happy parties Pj , who keep Pi happy during their respective WSS−Shj instances, then
using the above procedure, Pi can compute t+ 1 distinct points on its column-polynomial F ?(αi, y),
which are sufficient for Pi to get F ?(αi, y). However, it is not clear how to extend the above approach
to enable Pi obtain its row-polynomial F ?(x, αi), which is required for Pi to obtain its share of D’s
Shamir-sharing polynomial F ?(0, y). The way-out is to let D embed its Shamir-sharing polynomial
in a random degree-(t, t) symmetric bivariate polynomial, which ensures that F ?(x, αi) = F ?(αi, y)
holds, thus allowing Pi to obtain its required Shamir-share.

The above idea requires broadcast during the second as well as third round. To ensure the optimal
usage of broadcast channel, the technique used in the 3KKK-WSS-Sh protocol is deployed, along
with postponing the broadcast of masked row-polynomials to the third round. However, this brings
additional challenges to filter out the parties from Wj sets for the individual WSS instances. For
example, a corrupt D can distribute pair-wise inconsistent polynomials in such a way that the masked
polynomial Aj(·) broadcast by an honest happy party Pj is inconsistent with the corresponding
masked value broadcast by an honest unhappy party Pi, even though Pi belongs to Wj during
WSS−Shj . Simply removing Pi from Wj in this case (as done in 3FGGRS-VSS-Sh) might end up
resulting in Pi being removed from theWj set of every honest happy party. And this may lead to SSi
set of size less than t+ 1. To prevent this, apart from checking the pair-wise consistency of masked
row-polynomials, the parties also carefully consider the results of private pair-wise consistency checks
performed during the second round, whose results are public during the third round. The details are
presented in Fig. 9. We stress that even though each party obtains a single degree-t polynomial from
D, it is treated both as the row as well as column-polynomial to perform the pair-wise consistency
checks. Accordingly, if Pi finds a “negative” result for the private pair-wise consistency check with
Pj , then it broadcasts a disagree-row as well as a disagree-column message against Pj . Else it
broadcasts just an agree-column message for Pj ; the agree-row message for Pj is assumed to be
implicitly present in the latter case.

Sharing Phase: Protocol 3KKK-VSS-Sh

• Round I (sending polynomials and exchanging random pads):
– D with secret s ∈ F picks a random degree-t Shamir-sharing polynomial q(·) such that q(0) = s

and picks a random symmetric bivariate polynomial F (x, y) such that F (0, y) = q(·). For

Scheme 3KKK-VSS
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i = 1, . . . , n, the dealer D sends only the row-polynomial fi(x)
def
= F (x, αi) to party Pi.

– Each party Pi ∈ P (including D) picks a random degree-t blinding polynomial ri(·) and shares it
through an instance WSS−Shi of 3KKK-WSS-Sh. In addition, Pi sends the polynomial ri(·) to
D.

• Round II (exchanging common values and confirming pad) — each Pi does the following:

– For j = 1, . . . , n, send aij
def
= fi(αj) to Pj . Send {r′ji}j=1,...,n to D, where r′ji is the wss-share

received from Pj during Round I of WSS−Shj .
– For j = 1, . . . , n execute Round II of the instance WSS−Shj .

• Round III (complaint and resolution) — each party Pi does the following:

– Broadcast the degree-t polynomial Ai(·)
def
= fi(x) + ri(·).

– For j ∈ {1, . . . , n}, let a′ji be the value received from Pj during Round II.
– If a′ji 6= fi(αj), then broadcast (j, disagree-row, fi(αj), rij) and (j, disagree-column, fi(αj), r

′
ji).

– Else broadcast (j, agree-column, fi(αj) + r′ji).
– If Pi = D, then for every ordered pair of parties (Pj , Pk), additionally do the following.

– Let r
(1)
jk and r

(2)
jk be the pads received from Pj and Pk respectively during Round I and Round

II. If r
(1)
jk 6= r

(2)
jk , then broadcast ((j, k), NEQ, F (αk, αj)), else broadcast ((j, k), EQ, F (αk, αj)+

r
(1)
jk ).

– For every j ∈ {1, . . . , n}, concurrently execute Round III of WSS−Shj .
• Local computation at the end of Round III — each party Pk does the following:

– Initialize a set of unhappy parties UH to ∅. For every Pi, Pj such that Pi broadcasts (j, disagree-row,
fi(αj), rij) and Pj broadcasts (i, disagree-column, fj(αi), r

′
ij) where rij = r′ij , do the following.

– Include Pi to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fi(αj).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fi(αj) + rij .

– Include Pj to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fj(αi).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fj(αi) + r′ij .

– Let V def
= P \ UH be the set of happy parties and for every Pj ∈ V, let Wj be the set of happy

parties at the end of WSS−Shj . Remove Pj from V, if any of the following holds:
– |Wj | < n− t.
– ∃i ∈ {1, . . . , n} : Pj broadcasts (i, disagree-row, fj(αi), rji) where Aj(αi) 6= fj(αi) + rji.

– For every Pj ∈ V, remove Pi from Wj , if any of the following holds.
– Pi broadcasts (j, agree-column, y) such that Aj(αi) 6= y.
– Pj broadcasts (i, disagree-row, fj(αi), rji) and Pi broadcasts either (j, agree-column, ?) or

(j, disagree-column, ?, r′ji), where r′ji 6= rji.
– Remove Pj from V if |V ∩Wj | < n− t. Repeat, till no more parties can be removed from V.
– If |V| < n− t, then discard D.

• Computing shares — each party Pi ∈ P does the following:
– If Pi ∈ H, then output the share fi(0).
– Else recompute fi(x) as follows and output the share fi(0).

– Initialize a support set SSi to ∅. Include Pj to SSi, if Pj ∈ H and Pi ∈ Hj .
– Compute a degree-t polynomial fi(x) by interpolating the points {(αj , Aj(αi)− r′ji)}Pj∈SSi

.

Reconstruction Phase: Protocol 3KKK-VSS-Rec

Same as the protocol 7BGW-VSS-Rec.

Figure 9: The 3-round 3KKK-VSS scheme due to [36]

21



4.1.7 The 3-round 3AKP-VSS Type-II VSS Scheme

In [3], it is shown that 4 rounds are necessary and sufficient for securely computing any n-party
degree-2 functionality with perfect security and optimal resilience t < n/3. To design their 4-round
MPC protocol, they rely on a 3-round Type-II perfectly-secure VSS which should ensure that if D is
not discarded at the end of sharing phase, then one of the following holds for every honest party Pi
at the end of Round II.
• Pi holds its tentative Shamir-share of the underlying secret;
• Pi holds at least t+ 1 tentative shares of its Shamir-share, which we call as share-shares.

Moreover, it is also required that at the end of Round III, either the tentative share or the tentative
share-shares should turn out to be correct (which of these is going to be the case need not be known
to Pi at the end of Round II). The 3FGGRS-VSS scheme fails to satisfy the above requirements, as
it is not a Type-II VSS. The 3KKK-VSS scheme also fails to satisfy the above requirements. This is
because if Pi 6∈ V, then it obtains its share-shares through the set of parties in SSi only at the end
of Round III, as the parties broadcast their masked row-polynomials only during Round III. Hence
in [3], a new 3-round VSS scheme called 3AKP-VSS (see Fig 10) is presented, satisfying the above
requirements. The scheme is obtained by tweaking the 3FGGRS-VSS scheme and by borrowing the
idea of symmetric bivariate polynomial from the 3KKK-VSS scheme.

Sharing Phase: Protocol 3AKP-VSS-Sh

• Round I: Same as Round I of 3FGGRS-VSS-Sh, except that D uses a random degree-(t, t) symmetric
bivariate polynomial F (x, y) and distributes only the row-polynomial fi(x) = F (x, αi) to every Pi.

• Round II: Same as Round II of 3FGGRS-VSS-Sh, except that bij
def
= fi(αj) + r′ji. Moreover, every

party Pi sets si
def
= fi(0) as its tentative Shamir-share and {Aj(αi)− r′ji}Pj∈P as its tentative share-

shares.
• Round III: Same as Round III of 3FGGRS-VSS-Sh, except that for every Pi, Pj where Ai(αj) 6= bji,

party Pi broadcasts (fi(αj), rij), party Pj broadcasts (fj(αi), r
′
ij) and D broadcasts F (αj , αi).

• Local computation at the end of Round III — each party Pk:
– Compute the sets UH and V as in 3FGGRS-VSS-Sh, based on every Pi, Pj for which Ai(αj) 6= bji.
– Remove Pi from Wj , if Aj(αi) 6= bij during Round II and rji 6= r′ji during Round III.
– Remove Pj from V if there exists some i ∈ {1, . . . , n}, such that Pj broadcasts (fj(αi), rji) during

Round III and Aj(αi) 6= fj(αi) + rj(αi).
– Remove Pj from V, if |V ∩ Wj | < n − t. Repeat, till no more parties can be removed from V. If
|V| < n− t, then discard D.

• Computing shares — each party Pi ∈ P: compute the shares as in the protocol 3KKK-VSSSh.

Reconstruction Phase: Protocol 3AKP-VSS-Rec

Same as the protocol 7BGW-VSS-Rec.

Scheme 3AKP-VSS

Figure 10: The 3-round 3AKP-VSS scheme due to [3]

4.2 VSS Protocol with n > 4t

In this section, we present a perfectly-secure VSS scheme 2GIKR-VSS with n > 4t due to [31], which
requires 2 rounds in the sharing phase. Before proceeding further, we first recall a data structure
called (n, t)-star (which we often call as just star) from [10].

Definition 4.4 ((n, t)-star [10]). Let G be an undirected graph over P. Then a pair of subset of
nodes (C,D) where C ⊆ D ⊆ P is called an (n, t)-star, if all the following hold.
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– |C| ≥ n− 2t and |D| ≥ n− t.
– For every Pi ∈ C and every Pj ∈ D, the edge (Pi, Pj) is present in G.

In [10], an efficient algorithm is provided for checking the presence of a star in a given graph.
The algorithm outputs either a star, or ⊥ (indicating that no star is present). Whenever the input
graph contains a clique of size at least n− t, then the algorithm outputs a star in the graph.

Protocol 2GIKR-VSS-Sh is based on a simplification of the asynchronous VSS scheme of [10],
adapted to the synchronous setting (see Section 6.1). In 2GIKR-VSS-Sh, D hides its degree-t Shamir-
sharing polynomial q(·) in a random degree-(t, t) bivariate polynomial F (x, y) and distributes the
row and column-polynomials to respective parties. The goal is then to verify if the row and column-
polynomials of all (honest) parties are derived from a single degree-(t, t) bivariate polynomial. How-
ever, since n > 4t (compared to n > 3t in the earlier protocols), the above verification task is
significantly simplified. For simplicity, we first explain an inefficient method for the verification
tailor-made for n > 4t, followed by the actual efficient method used in the protocol.

Once the parties receive their respective polynomials, they perform the pair-wise consistency
checks and publicly report any inconsistency (by using the round-reducing technique of [31] based
on random pads, the results of the pair-wise consistency tests will be publicly available by the end
of the second round). The parties next construct a consistency-graph G over P, where there exists
an edge between a pair of parties if no dispute is reported during the pair-wise consistency check
involving the pair of parties. The parties next check for the presence of a clique of size n − t in G,
which is bound to exist if D is honest. If no clique is obtained then clearly D is corrupt and hence
the parties discard D. If a clique C of size n − t is obtained, then it implies that there are at least
n − 2t = 2t + 1 honest parties in C, whose polynomials are pair-wise consistent and lie on a single
degree-(t, t) bivariate polynomial, say F ?(x, y), held by D. However, there could be upto t honest
parties outside C, whose row-polynomials may not lie on F ?(x, y). To complete the protocol, the goal
will be to let each such “outsider” Pi 6∈ C obtain the consistent degree-t row-polynomial F ?(x, αi).
The crucial observation here is that since we are in the setting where n > 4t, achieving the above
goal does not involve any additional interaction. More specifically, each Pi 6∈ C considers the set of
n− t ≥ 3t+ 1 gji values, received from the parties Pj ∈ C as part of the pair-wise consistency test.
Now among these gji values, at least 2t + 1 are sent by the honest parties Pj ∈ C, which uniquely
define the degree-t row-polynomial F ?(x, αi). This is because F ?(αj , αi) = gji holds for each of these
honest parties Pj , since gji is nothing but gj(αi) where gj(x) is the degree-t column-polynomial held
by Pj , which is the same as F ?(αj , y). Since F ?(x, αi) is a degree-t polynomial and there can be at
most t corrupt parties Pj ∈ C who may provide incorrect values of gji, party Pi can error-correct
these values and obtain F ?(x, αi).

The above method is inefficient, as finding a maximum-sized clique is an NP-complete problem.
Instead, the protocol checks for the presence of a star. If D is honest then the set of honest parties
always constitute a potential clique of size n− t in G. Hence, star-finding algorithm always outputs a
star. If a star (C,D) is obtained in G, then there are at least |C|− t = t+1 honest parties in C holding
degree-t row-polynomials and at least |D| − t = 2t+ 1 honest parties in D holding degree-t column-
polynomials, which are pair-wise consistent and hence are derived from a single degree-(t, t) bivariate
polynomial F ?(x, y) held by D. In order that every Pi 6∈ C obtains its corresponding row-polynomial
F ?(x, αi), Pi applies the error-correction procedure as discussed above on the gji values received from
Pj ∈ D during the pair-wise consistency check. Protocol 2GIKR-VSS-Sh is presented in Fig 11; the
reconstruction protocol 2GIKR-VSS-Rec is same as 7BGW-VSS-Rec.
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• Round I (sending polynomials and exchanging random pads) — same as Round I of 4GIKR-VSS-Sh.
• Round II (broadcasting common values in a masked fashion) — same as Round II of

4GIKR-VSS-Sh.
• Local computation at the end of round II — each party Pi does the following:

– Construct an undirected graph G over P, where the edge (Pl, Pm) is present if alm = bml and
aml = blm holds. Run the star-finding algorithm over G.

– If the star-finding algorithm outputs ⊥, then discard D. Else let (C,D) be the star obtained in G.
– If Pi ∈ C, then output the share fi(0).
– Else recompute the row-polynomial fi(x) as follows and output the share fi(0).

– ∀Pj ∈ D, compute gji = bji − rij . Execute RS-Dec(t, t, Si) to get fi(x), where Si
def
=

{gji}Pj∈D.

Protocol 2GIKR-VSS-Sh

Figure 11: The 2-round 2GIKR-VSS-Sh protocol with n > 4t due to [31].

4.3 VSS Protocol with a Single Round

In [31], the authors present a perfectly-secure VSS scheme 1GIKR-VSS (Fig 12), with n = 5 and
t = 1. The sharing as well as reconstruction phase requires one round. Let P1, . . . , P5 be the set
of 5 parties and without loss of generality, let P1 be the dealer. During the sharing phase, P1

distributes Shamir-shares of its secret. Since no additional rounds are available, the parties cannot
verify whether D has distributed consistent shares. In the reconstruction phase, the dealer is not
allowed to participate. The remaining parties exchange their respective shares and try to error-
correct one potential incorrect share. If the error-correction is successful then the parties output the
constant term of the reconstructed degree-1 polynomial, else they output ⊥. The idea here is that
since there can be at most one corrupt party among {P1, . . . , P5}, there are two possible cases. If P1

is honest, then the privacy is ensured and the shares of P2, P3, P4 and P5 lie on a degree-1 polynomial.
Hence during the reconstruction phase, even if a potentially corrupt party provides incorrect share,
it can be error-corrected, thus guaranteeing the correctness property.

The case when P1 is corrupt can be divided into three possible sub-cases. If P1 has distributed
valid Shamir-shares (all lying on degree-1 polynomial), then the underlying Shamir-shared value
will be reconstructed correctly during the reconstruction phase. The second sub-case is when P1

has distributed valid Shamir-shares to exactly three parties among {P2, P3, P4, P5}. For simplicity,
let those three parties be P2, P3 and P4 and let their shares lie on a degree-1 polynomial, say q?(·).
Hence s?

def
= q?(·) will be 1-shared among {P2, P3, P4} and during the reconstruction phase, all honest

parties reconstruct this s? by error-correcting the share provided by P5. The remaining sub-case is
when the shares of no three parties among {P2, P3, P4, P5} lie on a degree-1 polynomial. In this

case we define s?
def
= ⊥, where ⊥ 6∈ F, indicating that the sharing dealt by P1 is “invalid”. During

the reconstruction phase, the error-correction will fail (since the shares of no three parties lie on a
degree-1 polynomial) and hence the honest parties output ⊥.

Sharing Phase: Protocol 1GIKR-VSS-Sh

The dealer P1 on having input s ∈ F, picks a random degree-1 polynomial q(·) over F such that q(0) = s.

For i = 2, . . . , 5, it sends the share si
def
= q(αi) to Pi.

Reconstruction Phase: Protocol 1GIKR-VSS-Rec

Scheme 1GIKR-VSS
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Each party Pi ∈ {P2, P3, P4, P5} does the following:
• Send si to every Pj ∈ P \ {P1}. On receiving sj from Pj , include sj in a list Wi. Execute

RS-Dec(1, 1,Wi).
– If RS-Dec outputs a degree-1 polynomial q(·), then output q(0). Else output ⊥.

Figure 12: The one round perfectly-secure VSS scheme of [31].

Part III : Asynchronous Communication Setting

5 Preliminaries and Definitions

In the synchronous communication setting, each party knows beforehand how long it has to wait for
an expected message, and if the message does not arrive within that time-bound, then the sender
party is corrupt. Unfortunately, it is impossible to ensure such strict time-outs in real-world networks
like the Internet, where the communication channels may have arbitrary delays. Motivated by this,
[10, 15] introduced the asynchronous communication model with eventual message delivery.

Apart from a better modelling of real-world networks, asynchronous protocols have the advantage
of running at the actual speed of the underlying network. More specifically, for a synchronous
protocol, the participants have to pessimistically set the global delay ∆ to a large value to ensure
that the messages sent by every honest party at the beginning of each round reaches their destination
within the ∆ time frame. But if the actual delay δ is such that δ << ∆, then the protocol fails to
take advantage of the faster network and its running time will be proportional to ∆.

In the asynchronous model, there are no upper bounds on message delays and the messages can be
arbitrarily, but finitely delayed. The only guarantee is that any sent message is eventually delivered.
Moreover, they need not be delivered in the same order in which they were sent. The sequence of
message delivery is controlled by a scheduler and to model the worst case scenario, we assume that
the scheduler is under the control of Adv. Due to the lack of any upper bound on the message delays,
no party can wait to receive communication from all its neighbours to avoid an endless wait (as a
corrupt neighbour may not send any message). As a result, in each step of an asynchronous protocol,
a party can afford to wait for messages from at most n − t parties (including itself), thus ignoring
communication from t potentially honest neighbours. Consequently, all synchronous VSS protocols
fail completely when executed in an asynchronous environment, as they depend upon the fact that
the messages of all the honest parties are considered.

Informally, an AVSS scheme consists of asynchronous sharing and reconstruction phase, providing
privacy, correctness and strong commitment guarantees. However, we need these properties to hold
eventually. Additionally, we need termination guarantees. Namely, if D is honest, then we require that
these phases eventually terminate. On the other hand, if D is corrupt, then the termination demands
are “weaker”. Namely, we require the honest parties to terminate the sharing and reconstruction
phase only if some honest party has terminated the sharing phase. This models the fact that a
potentially corrupt D may not invoke the sharing phase in the first place4.

Definition 5.1 (Perfectly-Secure AVSS [15]). Let (Sh,Rec) be a pair of asynchronous protocols
for the n parties, where a designated dealer D ∈ P has a private input s for Sh and where each
(honest) party who completes Sh, subsequently invokes Rec, with its local output of Sh. Then
(Sh,Rec) constitute a perfectly-secure AVSS scheme, if all the following holds for every possible Adv.
• Termination:

– If D is honest, then every honest party will eventually complete Sh.

4This is unlike synchronous VSS, where protocols always terminate after a “finite” number of communication rounds.
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– If some honest party has completed Sh, then all honest parties will eventually complete Sh.
– If some honest party has completed Sh, then it will eventually complete Rec.

• Privacy and Correctness: Same as for synchronous VSS.
• Strong Commitment: If D is corrupt and some honest party terminates Sh, then the joint

view of the honest parties at the end of Sh defines a value s? (possibly different from s), such
that all honest parties output s? at the end of Rec.

We can have Type-I and Type-II AVSS schemes. All the existing perfectly-secure AVSS schemes
are of Type-II, where the secret is always shared as per Shamir’s secret-sharing scheme.

5.1 Asynchronous Tools

Asynchronous Reliable-Broadcast (ACast) An ACast protocol allows a designated sender
S ∈ P to identically send a message m to all the parties. If S is honest, then all honest parties
eventually terminate with output m. While, if S is corrupt and some honest party terminates with
output m?, then eventually every other honest party should terminate with output m?. Hence the
termination guarantees are “weaker” than synchronous reliable-broadcast, where the protocol always
terminates, irrespective of S. Bracha [14] presented a very elegant instantiation of ACast for any
n > 3t. We use the term Pi broadcasts m to mean that Pi acts as S and invokes an instance of ACast
protocol to broadcast m. Similarly, the term Pj receives m from the broadcast of Pi means that Pj
(as a receiver) completes the instance of ACast protocol where Pi is S, with m as output.

Online Error-Correction (OEC) Let s be an unknown value, which is d-shared among P ′ ⊆ P
such that d < (|P ′| − 2t) holds. The goal is to make some designated party, say PR, reconstruct s
(actually OEC allows PR to reconstruct the entire sharing-polynomial). In the synchronous setting,
this could be easily achieved by asking every party in P ′ to send its share to PR, who can apply the
algorithm RS-Dec and error-correct up to t potentially incorrect shares. Given that d < (|P ′| − 2t),
the reconstruction will be robust. In the asynchronous setting, achieving the same goal requires a
bit of trick. The intuition behind OEC is that PR keeps waiting till it receives d+ t+ 1 shares from
the parties in P ′, all of which lie on a unique degree-d polynomial, which eventually happens for PR
as there are at least |P ′| − t ≥ d+ t+ 1 honest parties in the set P ′. This step requires applying the
RS-Dec procedure repeatedly. We denote the OEC procedure by the notation OEC(P ′, d).

6 Perfectly-Secure AVSS Schemes

We discuss the various perfectly-secure AVSS schemes [10, 43, 20]. While the sharing phase requires
n > 4t, with the exception of [43] the reconstruction phase requires n > 3t. The necessity of the
condition n > 4t follows from [12, 2], where it is shown that in any AVSS scheme designed with n ≤ 4t,
there is a non-zero probability in the termination property. We summarize the AVSS schemes in
Table 2. While the degree of sharing d is t for [10, 20], the degree d could be more than t for [43].

Sharing Phase Reconstruction Phase

Scheme n d L |F| Communication Complexity (CC) n CC

BCG-AVSS [10] n > 4t t 1 |F| > n O(n2 log |F|) + BC(n2 log n) n > 3t O(n2 log |F|)
PCR-AVSS [43] n > 4t t < d < n− 2t 1 |F| > n O(n2 log |F|) + BC(n2 log n) n > 4t O(n2 log |F|)
CHP-AVSS [20] n > 4t t ≥ n− 3t |F| > 2n− 3t O(L · n2 log |F|) + BC(n2 log n) n > 3t O(L · n2 log |F|)

Table 2: Summary of the perfectly-secure AVSS schemes. Here L denotes the number of values shared
through a single AVSS instance and BC denotes the communication happening through ACast.
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6.1 BCG-AVSS Scheme

The BCG-AVSS scheme is presented in Fig 13. The sharing phase protocol BCG-AVSS-Sh is a slightly
modified and simplified version of the original protocol [10], based on the simplifications suggested in
[8, 43]. Protocol BCG-AVSS-Sh is similar to 2GIKR-VSS-Sh (see Fig 11), executed in the asynchronous
setting. The protocol has four stages, each of which is executed asynchronously.

During the first stage, D distributes the row and column-polynomials to the respective parties.
During the second stage, each party upon receiving its polynomials performs pair-wise consistency
checks by exchanging the common values on its polynomials and publicly announcing the results.
Based on these results, each party builds a consistency-graph. Since the results of the consistency
checks are broadcast asynchronously, the consistency-graph might be different for different parties
(however, the edges which are present in the graph of one honest party will be eventually included
in the graph of every other honest party). During the third stage, D keeps updating its consistency-
graph till it finds a star (C,D) in its consistency-graph, which it then broadcasts as a “proof” that
the row-polynomials of the (honest) parties in C and the column-polynomials of the (honest) parties
in D lie a single degree-(t, t) bivariate polynomial, which is considered as D’s “committed” bivariate
polynomial. A party upon receiving (C,D) from D accepts it, when (C,D) constitutes a star in its
own consistency-graph. The idea here is that if D has behaved honestly then the set of honest parties
eventually constitute a clique in D’s consistency-graph and hence it eventually finds a star. And if
(C,D) constitutes a star in D’s consistency-graph, then it will eventually constitute a star in every
other party’s consistency-graph as well and hence will be accepted.

Once a star is accepted by Pi then in the last stage, its goal is to compute its share, for which Pi
should hold its degree-t row-polynomial, lying on D’s committed bivariate polynomial. If Pi ∈ C, then
it already has this polynomial. Else, Pi waits for the common values on the required row-polynomial
from the parties in D and error-corrects the incorrectly received values using OEC. Since Pi’s desired
row-polynomial has degree-t and since each Pj in D holds a share of this polynomial in the form of
a common value on its column-polynomial, OEC eventually outputs the desired row-polynomial for
Pi. This is because |D| ≥ 3t+ 1 and contains at most t corrupt parties5.

During reconstruction phase, every party sends its share to every other party. The parties then
reconstruct the secret by using OEC on the received shares (this step will work even if n > 3t).

Sharing Phase: Protocol BCG-AVSS-Sh

• Stage I : Distributing Polynomials — the dealer D does the following
– On having the input s ∈ F, pick a random degree-t Shamir-sharing polynomial q(·), such that

q(0) = s holds. Then pick a random degree-(t, t) bivariate polynomial F (x, y), such that
F (0, y) = q(·) holds.

– For i = 1, . . . , n, send the polynomials fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y). to Pi.

• Stage II : Pair-wise consistency checks and building consistency-graph — each party Pi

– Upon receiving fi(x), gi(y) from D, send fij
def
= fi(αj) and gij

def
= gi(αj) to Pj , for j = 1, . . . , n.

– Upon receiving fji, gji from Pj , broadcast (OK, i, j) if fji = gi(αj) and gji = fi(αj) hold.
– Construct a graph Gi over P. Add the edge (Pj , Pk) in Gi, if (OK, j, k) and (OK, k, j) are received

from the broadcast of Pj and Pk respectively. Keep updating Gi, upon receiving new (OK, ?, ?)
messages.

• Stage III : Finding star in the consistency-graph — the dealer D does the following
– Let GD be the consistency-graph built by D. After every update in GD, run the star-finding

algorithm to check for the presence of a star in GD. If a star (C,D) is found in GD, then
broadcast (C,D).

Scheme BCG-AVSS

5For this step, it is necessary that n > 4t. Else |D| ≤ 3t and OEC will fail to let Pi obtain its desired row-polynomial.
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• Stage IV : share computation — each party Pi does the following
– If (C,D) is received from the broadcast of D, then accept it if (C,D) is a star in the graph Gi.
– If (C,D) is accepted, then compute the share si as follows and terminate.

– If Pi ∈ C, then set si = fi(0), where fi(x) is the degree-t row-polynomial received from D.
– Else initialize Wi to ∅. Upon receiving gji from Pj ∈ D, include gji to Wi. Keep updating

Wi and keep executing OEC(Wi, t) till a degree-t polynomial fi(x) is obtained. Then set
si = fi(0).

Reconstruction Phase: Protocol BCG-AVSS-Rec

Each party Pi ∈ P does the following.
– Send the share si to every party Pj ∈ P.
– Initialize a set Ri to ∅. Upon receiving sj from Pj , include sj to Ri. Keep updating Ri and executing

OEC(Ri, t) till a degree-t polynomial q(·) is obtained. Then output s = q(0) and terminate.

Figure 13: The perfectly-secure AVSS scheme of [10].

6.2 PCR-AVSS Scheme

In [43] it is observed that since we are in the setting where n > 4t, one could modify the BCG-AVSS
scheme in a non-trivial way to generate a d-sharing of D’s input in a verifiable fashion, for any given
d in the range t ≤ d < n − 2t. The resultant scheme PCR-AVSS is presented in Fig 14. The main
motivation to design an AVSS where the degree of sharing is greater than t is that such a sharing
leads to more efficient MPC protocols (see for instance [26, 8, 9, 43]).

During the first stage of PCR-AVSS-Sh, to d-share s, the dealer D picks a random degree-d
Shamir-sharing polynomial q(·) with q(0) = s and embeds q(·) in a random degree-(d, t) bivariate
polynomial F (x, y) at y = 0. Thus the row and column-polynomials have varying degrees: the
row-polynomials have degree-d, while the column-polynomials have degree-t. This is in contrast to
the VSS schemes discussed till now where q(·) has degree-t and where q(·) is embedded at x = 0
(instead of y = 0) in a random degree-(t, t) bivariate polynomial. The dealer then distributes the row
and column-polynomials to respective parties. The second stage is similar to protocol BCG-AVSS-Sh
where the parties perform pair-wise consistency checks, publicly announce their results and build
consistency-graphs.

During the third stage, D proves that it has distributed consistent polynomials to “sufficiently
many” parties, derived from a single degree-(d, t) bivariate polynomial, say F ?(x, y) (where F ?(x, y) =
F (x, y) for an honest D). This stage is different from BCG-AVSS-Sh where D has to prove that it has
distributed consistent polynomials, derived from a single degree-(t, t) bivariate polynomial. Hence
the proof mechanism is different and constitutes the core of PCR-AVSS-Sh. In a more detail, during
the third stage, D publicly proves that it has delivered degree-d row-polynomials lying on F ?(x, y),
to at least n − t = 3t + 1 parties E and degree-t column-polynomials lying on F ?(x, y), to at least
n− t = 3t+ 1 parties F (the sets E and F need not be the same).

Once the existence of the sets (E ,F) is confirmed (we will discuss in the sequel how such sets are
identified), D’s sharing is completed in the fourth stage, where the goal will be to ensure that every
Pi gets its degree-d column-polynomial gi(y). Party Pi can then output gi(0) (which is the same as

F ?(αi, 0)) as its share and the value s?
def
= F ?(0, 0) will be d-shared through the degree-d polynomial

F ?(x, 0). While the parties Pi ∈ F will already have their respective gi(y) polynomials, the goal
is to actually ensure that the “outsider” parties Pi 6∈ F get their respective gi(y) polynomial. For
this we observe that every Pj ∈ E possesses a share on gi(y), which also constitute a point on Pj ’s
row-polynomial and which Pj would have sent to Pi as part of pair-wise consistency test. Since there
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are at least 3t + 1 such parties Pj in F and since gi(y) has degree-t, party Pi can reconstruct gi(y)
by error-correcting upto t incorrect values sent by the parties in E using the OEC.

If D is honest, then throughout the protocol Adv learns at most t row-polynomials and t column-
polynomials, derived from F (x, y) which is a random degree-(d, t) bivariate polynomial where F (x, 0) =
q(·). Now similar to Lemma 2.8, one can show that the probability distribution of the row and
column-polynomials learnt by Adv will be independent of q(·). That is, for every candidate degree-d
polynomial q(·), there exists some degree-(d, t) bivariate polynomial, consistent with the row and
column-polynomials learnt by Adv. Intuitively this is because (d + 1)(t + 1) distinct points are
required to uniquely determine D’s bivariate polynomial F (x, y), but through the rows and column-
polynomials of t corrupt parties, Adv learns at most t(d + 1) + t distinct points, leaving d + 1 − t
“degree of freedom” from the view-point of Adv. This ensures the privacy of D’s input. We next
discuss how the desired (E ,F) sets are identified during the third stage of PCR-AVSS-Sh.

Dealer first finds a star (C,D) in its consistency-graph. The presence of a star implies that the
row and column-polynomials of the honest parties in C and D respectively lie on a single degree-(d, t)
bivariate polynomial F ?(x, y). This follows from Lemma 2.7 and the fact that there are at least
n − 3t = t + 1 honest parties in C (holding degree-d row-polynomials) and at least n − 2t = d + 1
honest parties in D (holding degree-t column-polynomials), whose row and column-polynomials are
pair-wise consistent. To find the required sets (E ,F), the dealer tries to find additional “supportive
parties” (apart from C and D) whose row and column-polynomials also lie on F ?(x, y). The idea is
that if D has behaved honestly, then the rows and column-polynomials of all honest parties would
lie on F ?(x, y) and there are n− t honest parties. To hunt for these additional supportive parties, D
follows the following two-stage non-intuitive approach.
• It first tries to “expand” D by identifying additional parties whose column-polynomials also lie

on F ?(x, y). The expanded set F , includes all the parties having edges with at least 2t + 1
parties from C. The parties in D will be already satisfying this criteria and included in F . It is
easy to see that the column-polynomial of every Pj ∈ F lies on F ?(x, y). This is because Pj ’s
column-polynomial has degree-t and since Pj has an edge with at least 2t + 1 parties from C,
this implies that its column-polynomial is pair-wise consistent with the row-polynomial of at
least t+ 1 honest parties from C, all of which lie on F ?(x, y).

• D then tries to “expand” C by searching for the parties Pj , who have an edge with at least
d+ t+ 1 parties from F . The idea is that the row-polynomial of such Pj is of degree-d and out
of the d+ t+ 1 parties from F (with whom Pj has an edge), at least d+ 1 are honest. Thus,
Pj ’s row-polynomial will be pair-wise consistent with the column-polynomials of at least d+ 1
honest parties from F , all of which lie on F ?(x, y). This implies that the row-polynomial of Pj
also lies on F ?(x, y). Hence D includes Pj in a set E . Notice that all the parties in C will be
already included in E , as they satisfy the above criteria.

Once D finds the sets (E ,F) of size n − t, it broadcasts them and then the parties verify whether
indeed they satisfy the same “conditions” in their respective consistency-graphs, as satisfied in the
consistency-graph of D. However there is a subtle issue, as D may have to wait indefinitely for the
“expansion” of D and C sets, beyond their initial cardinalities. For instance, consider the case when
n = 4t + 1, d = 2t and C and D are exactly of size 2t + 1 and 3t + 1 respectively, such that they
contain t corrupt parties. If the corrupt parties Pi in C choose to be inconsistent with the parties
Pjoutside D (by not broadcasting the (OK, i, j) messages), then the honest parties Pj outside D will
have edges with only t+ 1 parties from C and will not be included in the set F . So F will remain the
same as D and will not include any additional party. Similarly, if the corrupt parties Pi in F choose
to be inconsistent with the parties Pj outside C, then the honest parties Pj outside C will be never
included in E . So C may never expand from its initial size of 2t+ 1.

To deal with the above, in [43] it is observed that if D is honest then eventually all honest parties
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(at least n− t) will be consistent with each other and will eventually form a clique in the consistency-
graph. Moreover, if the star-finding algorithm is executed on “this” instance of the consistency graph
which has all the honest parties forming a clique, then the C component of the obtained star will have
at least 2t+ 1 honest parties. Now if C contains at least 2t+ 1 honest parties, then eventually D will
expand to F , which will contain all n− t honest parties and eventually C will expand to E containing
n−t = 3t+1 parties. This crucial observation is at the heart of the protocol PCR-AVSS-Sh. However,
it is difficult for D to identify an instance of its dynamic consistency-graph that contains a clique
involving at least n− t honest parties. The way-out is to repeatedly run the star-finding algorithm
and the expansion of every instance of star (C,D) obtained in the consistency-graph. That is, after
every update in its consistency-graph, D checks for the presence of a new star in the graph (which
was not found earlier) along with the corresponding F and E sets and update the existing F and E
sets (corresponding to all the previously generated stars).

Sharing Phase: Protocol PCR-AVSS-Sh

• Stage I : Distributing Polynomials — same steps as BCG-AVSS-Sh except that the Shamir-sharing
polynomial q(·) is of degree-d, the bivariate polynomial F (x, y) is of degree-(d, t) and F (x, 0) = q(·).

• Stage II : Pair-wise consistency checks and building consistency-graph — same as BCG-AVSS-Sh.
• Stage III : Finding (E ,F) in the consistency-graph — the dealer D does the following

– After every update in GD, run the star-finding algorithm to check for the presence of a star. Let
there are α number of distinct stars that are found till now in GD, where α ≥ 0.
– If a new star (Cα+1,Dα+1) is found in GD, then do the following:

1. Add Pj to a set Fα+1 if Pj has an edge with at least 2t+ 1 parties from Cα+1 in GD.
2. Add Pj to a set Eα+1 if Pj has an edge with at least d+ t+ 1 parties from Fα+1 in GD.
3. For β = 1, . . . , α, update the existing Fβ and Eβ sets as follows:
• Add Pj to Fβ , if Pj 6∈ Fβ and Pj has an edge with at least 2t + 1 parties from Cβ in

GD.
• Add Pj to Eβ , if Pj 6∈ Eβ and Pj has an edge with at least d + t + 1 parties from Fβ

in GD.

– If no new star is obtained, then update the existing sets Fβ , Eβ by executing the step 3 as
above.

– Let (Eγ ,Fγ) be the first pair among the generated pairs (Eβ ,Fβ) such that |Eγ | ≥ 3t + 1 and
|Fγ | ≥ 3t+ 1. Then broadcast ((Cγ ,Dγ), (Eγ ,Fγ)).

• Stage IV : share computation — each party Pi does the following
– If ((Cγ ,Dγ), (Eγ ,Fγ)) is received from the broadcast of D, accept it if all the following holds.

– |Eγ | ≥ 3t+ 1 and |Fγ | ≥ 3t+ 1.
– (Cγ ,Dγ) is a star in the consistency-graph Gi.
– Every party Pj ∈ Fγ has an edge with at least 2t+ 1 parties from Cγ in Gi.
– Every party Pj ∈ Eγ has an edge with at least d+ t+ 1 parties from Fγ in Gi.

– If ((Cγ ,Dγ), (Eγ ,Fγ)) is accepted, then compute the share si as follows and terminate.
– If Pi ∈ Fγ , then set si = gi(0), where gi(y) is the degree-t column-polynomial received from

D.
– Else initialize Wi to ∅. Upon receiving fji from Pj ∈ E , include fji to Wi. Keep updating

Wi and keep executing OEC(Wi, t) till a degree-t polynomial gi(y) is obtained. Then set
si = gi(0).

Reconstruction Phase: Protocol PCR-AVSS-Rec

Each party Pi ∈ P executes the following steps.
– Send the share si to every party Pj ∈ P.

Scheme PCR-AVSS
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– Initialize Ri to ∅. Upon receiving sj from Pj , include sj to Ri. Keep updating Ri and keep executing
OEC(Ri, d) till a degree-d polynomial q(·) is obtained. Then output s = q(0) and terminate.

Figure 14: The perfectly-secure AVSS scheme of [43].

6.3 CHP-AVSS Scheme

Protocol BCG-AVSS-Sh requires a communication of O(n2 log |F|) bits over the pair-wise channels,
apart from the broadcast of Θ(n2) OK messages and the broadcast of star. The protocol generates
t-sharing of a singe secret. If D wants to t-share L secrets, then it can invoke L instances of
BCG-AVSS-Sh. This makes the broadcast-complexity (namely the number of bits to be broadcast)
proportional to L. Instead [20] proposed a modification of 6 PCR-AVSS-Sh called CHP-AVSS-Sh,
which allows D to t-share L secrets for any given L ≥ n − 3t, without incurring any additional
communication complexity. The broadcast-complexity of CHP-AVSS-Sh will be independent of L,
which is a significant saving. This is because each instance of the broadcast in the asynchronous
setting needs to be emulated by running the costly Bracha’s ACast protocol.

We explain the idea of CHP-AVSS-Sh assuming L = n− 3t. If L > n− 3t, then D can divide its
inputs into multiple batches of n− 3t and invoke an instance of CHP-AVSS-Sh for each batch. Recall
that in protocol PCR-AVSS-Sh, if D is honest, then the adversary’s view (which consists of t number
of degree-d row and degree-t column-polynomials) leaves d+ 1− t “degree of freedom” in the degree-
(d, t) bivariate polynomial F (x, y), where t < d < n− 2t. If we consider the maximum value dmax of
d which is n− 2t− 1, this implies n− 3t degree of freedom in F (x, y). While PCR-AVSS-Sh uses this
degree of freedom for generating a dmax-sharing of a single value by embedding a single degree-dmax
sharing-polynomial in F (x, y), CHP-AVSS-Sh uses it to generate t-sharing of n − 3t different values
by embedding n− 3t independent degree-t Shamir-sharing polynomials in F (x, y).

In a more detail, given s(1), . . . , s(n−3t) for t-sharing, D picks n − 3t random degree-t Shamir-
sharing polynomials q(1)(·), . . . , q(n−3t)(·), where q(k)(0) = s(k). These polynomials are embedded
in a degree-(dmax, t) bivariate polynomial, which is otherwise a random polynomial, except that
F (βk, y) = q(k)(·) holds. Here β1, . . . , βn−3t are distinct, publicly-known non-zero elements from F,
different from the evaluation-points7 α1, . . . , αn. Notice that the embedding and the degree of the
sharing-polynomials are different in PCR-AVSS-Sh and CHP-AVSS-Sh. Accordingly, the shares of the
parties are different (see Fig 15). The shares of Pi in CHP-AVSS-Sh will be {F (βk, αi)}k∈{1,...,n−3t}.
And to compute them, the goal will be to ensure that Pi gets its row-polynomial fi(x) = F (x, αi),
as Pi can then compute its shares by evaluating fi(x) at x = β1, . . . , βn−3t.

To achieve the above goal, we observe that if D invokes the protocol PCR-AVSS-Sh (with the
above modifications) and if the protocol terminates for the honest parties, then it ensures that D
has “committed” a degree-(dmax, t) bivariate polynomial, say F ?(x, y) (where F ?(x, y) is the same as
F (x, y) for an honest D), such that each (honest) party Pj possesses its degree-t column-polynomial
gj(y) = F ?(αj , y). We also observe that for each row-polynomial fi(x) = F ?(x, αi), every party Pj
holds a share F ?(αj , αi) in the form of gj(αi). Moreover, the degree of fi(x) is dmax = n−2t−1 and
there are total n parties holding shares of fi(x). Hence, if every party Pj sends its share gj(αi) of
fi(x) to Pi, then Pi can reconstruct its desired row-polynomial fi(x) by applying OEC on the received

values. We note that in CHP-AVSS-Sh for a corrupt D, the values ~S′
def
= (F ?(β1, 0), . . . , F ?(βn−3t, 0))

will be t-shared, where ~S′ = (s(1), . . . , s(n−3t)) for an honest D. As most of the protocol steps of
CHP-AVSS-Sh are the same as PCR-AVSS-Sh, we do not give the formal details to avoid repetition.

Part III : Hybrid Communication Setting

6It is easy to see that the communication complexity of PCR-AVSS-Sh is the same as BCG-AVSS-Sh.
7This imposes the restriction of |F| > 2n− 3t to hold in the protocol CHP-AVSS-Sh.
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[s]dmax , s = q(0)

[s(1)]t [s(L)]t

fi(x)⇒

q(·) ⇒

gj(y)

⇓
q(1)(·)
⇓

q(L)(·)
⇓

s(1) = q(1)(0) s(L) = q(L)(0)

F (α1, α1) . . . F (αj , α1) . . . F (αn, α1)

...
...

...
...

...

F (α1, αi) . . . F (αj , αi) . . . F (αn, αi)

...
...

...
...

...

F (α1, αn) . . . F (αj , αn) . . . F (αn, αn)

⇓ . . . ⇓ . . . ⇓

g1(0) . . . gj(0) . . . gn(0)

⇒

...

⇒

...

⇒

f1(β1) = q(1)(α1)

...

fi(β1) = q(1)(αi)

...

fn(β1) = q(1)(αn)

. . .

...

. . .

...

. . .

f1(βL) = q(L)(α1)

...

fi(βL) = q(L)(αi)

...

fn(βL) = q(L)(αn)

Figure 15: Pictorial representation of the values distributed by D in PCR-AVSS-Sh and CHP-AVSS-Sh.
Polynomial F (x, y) has degree-(dmax, t), where dmax = n − 2t − 1. The row-polynomials have
degree-dmax, while the column-polynomials have degree-t. In PCR-AVSS-Sh, the value s is dmax-
shared through the degree-dmax row-polynomial F (x, 0) (shown in red color), while in proto-
col CHP-AVSS-Sh, the values s(1), . . . , s(L) are t-shared through degree-t column polynomials
F (β1, y), . . . , F (βL, y) (shown in blue color), where L = n− 3t.

7 Preliminaries and Definitions for Hybrid Communication Setting

Even though the asynchronous model is practically more relevant compared to the synchronous set-
ting, there are some inherent downsides to the requirements of AVSS. For instance, the optimal
resilience bounds for synchronous and asynchronous VSS are t < n/4 and t < n/3 respectively. Ad-
ditionally, the AVSS protocols are more complex than their synchronous counterparts. A potential
solution to bridge this “gap” is to devise a hybrid communication setting, which is a mix of syn-
chronous and asynchronous setting. Namely, the first r rounds are assumed to be synchronous, where
r ≥ 1. After these r rounds, the entire communication happens asynchronously. In an interesting
work [44], it is shown that one can design a Type-II perfectly-secure VSS satisfying Definition 5.1
with t < n/3 in the hybrid setting, where r = 1. Notice that the protocol has optimal resilience as
well as requires the optimal number of synchronous rounds.

We next define weak polynomial sharing (WPS), which is used as a building block in the hybrid
VSS scheme of [44]. The primitive allows a dealer D to distribute shares of a private degree-t
polynomial held by D. If D is honest, then every honest party should eventually terminate with its
share. Moreover, even if D is corrupt and some honest party terminates Sh, then it is ensured that D
has distributed shares of some degree-t polynomial to at least t+1 honest parties, with the remaining
honest parties outputting ⊥. Property-wise, WPS is a weaker primitive than WSS, as it has only a
sharing phase and may not allow even a “weak reconstruction” of D’s shared polynomial.

Definition 7.1 (Weak Polynomial Sharing (WPS) [44]). Let Sh be protocol for the n parties
in the hybrid setting, where a designated dealer D ∈ P has a private degree-t polynomial f(x) over
F for Sh. Then Sh constitutes a perfectly-secure WPS, if all the following holds.
• Termination: Same as AVSS.
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• Privacy: Same as AVSS.
• Correctness: If some honest party terminates Sh, then there exists a weakly committed poly-

nomial f?(x) over F such that.
– If D is honest, then f?(x) = f(x) and each honest Pi outputs f(αi) at the end of Sh.
– If D is corrupt, then every honest Pi outputs either f?(αi) or some default value ⊥, with at

least t+ 1 honest parties outputting f?(αi).

8 Hybrid VSS Protocol with t < n/3

In the AVSS schemes, the parties not receiving their shares from D, deploy OEC to recompute
their shares from the share-shares received from the parties, who received their shares from D.
This inherently requires n > 4t, as OEC is used to error-correct t errors and reconstruct degree-t
polynomials, for which at least 3t+ 1 parties should have valid shares. On contrary, the hybrid VSS
of [44] is designed only with n > 3t. The presence of a synchronous round at the beginning simplifies
certain aspects of verifiability, that were difficult in the asynchronous model and completely avoids
the need for OEC. We first start with the WPS construction of [44].

The WPS construction (fig 16) is similar to the 3KKK-WSS-Sh protocol. The dealer embeds
its degree-t polynomial in a random symmetric degree-(t, t) bivariate polynomial and distributes
its row-polynomials. In parallel, the parties pair-wise exchange random pads. Since the pads are
exchanged during the synchronous round, it is ensured that each party Pi receives the pad selected
for it for every other party by the end of the synchronous round. The sent and received pads are also
“registered” with D for comparison purpose (while the sent pads are communicated to D during the
synchronous round, the received pads are communicated asynchronously). Based on this, D sends to
Pi its list of conflicting-parties Ci, who did not concur on the pads. Based on Ci, party Pi broadcasts
its common values in a masked fashion for the parties who are not in Ci and in an unmasked fashion
for the parties who are in Ci. The dealer then checks whether Pi’s public value are consistent with
the bivariate polynomial and the pads registered with D and accordingly includes Pi to a set W.
Once W achieves the size of 2t+ 1 (which eventually happens if D behaves honestly), D broadcasts
W. It is then publicly verified that no pair of parties in W publicly conflicts over their supposedly
common values that are either in padded or in clear form.

IfW is successfully verified, then the row-polynomials of the (honest) parties inW lie on a single
degree-(t, t) symmetric bivariate polynomial F ?(x, y) held by D. While every Pi ∈ W can directly
output the constant term of its row-polynomial as its share, any party Pi 6∈ W tries to compute
its row-polynomial by interpolating the common values with the parties in W. If Pi has a conflict
with any party in W, then the common values is publicly available. Else, it computes the common
value by subtracting the pad it sent to that party in the synchronous round from padded value made
public by that party. If the interpolation does not give a degree-t polynomial (which can happen
only for a corrupt D), then Pi sets ⊥ as its share.

Synchronous Phase

• Sending polynomials and exchanging random pads:
– D with input f(·) chooses a random symmetric degree-(t, t) bivariate F (x, y) such that F (0, y) =

f(·) and sends fi(x) = F (x, αi) to each party Pi ∈ P
– Each party Pi ∈ P picks a random pad mij for every Pj ∈ P and sends mij .
– Each Pi sends {mij}Pj∈P to D. Let {ms

ij}Pj∈P be the list of sent-pads received by D from Pi.

Protocol WPS
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Asynchronous Phase

• Verifying masks:
– Each Pi sends the pads {mji}Pj∈P received from various parties to D. Let {mr

ji}Pj∈P be the list
of received-pads which D receives from Pi.

– Upon receiving {mr
ji}Pj∈P from Pi, dealer D sends to Pi a set Ci = {Pj : mr

ji 6= ms
ij}.

• Broadcasting masked/unmasked common values — each party Pi: Broadcasts (Ai,Bi, Ci),
where:

– Ai = {aij = fi(αj) +mij}Pj∈P .
– Bi = {bij}Pj∈P , where bij = fi(αj) if Pj ∈ Ci and bij = fi(αj) +mji otherwise.

• Constructing and broadcasting W — Dealer D does the following:
– Upon receiving (Ai,Bi, Ci) from Pi, mark Pi as correct and include in W, if all the following hold.

1. aij −ms
ij = F (αj , αi)

2. bij = F (αj , αi) for all Pj ∈ Ci and bij −mr
ji = F (αj , αi) otherwise

3. Ci is the same set sent by D to Pi.

– Wait until |W| ≥ 2t+ 1 and then broadcast W.
• Verifying W — each party Pi: AcceptW received from the broadcast of D if all the following holds.

– |W| ≥ 2t+ 1 and (Aj ,Bj , Cj) is received from the broadcast of each Pj ∈ W.
– Every Pj , Pk ∈ W are pair-wise consistent, as per the following conditions.

1. if Pj ∈ Ck and Pk ∈ Cj then bjk = bkj
2. if Pj ∈ Ck and Pk 6∈ Cj then akj = bjk
3. if Pj 6∈ Ck and Pk ∈ Cj then ajk = bkj
4. Else ajk = bkj and akj = bjk

• Output stage — each party Pi: If W is accepted, then terminate with output si, computed as
follows.

– If Pi ∈ W then set si = fi(0).
– Else interpolate the points {(αj , sij)}Pj∈W where sij = bji if Pi ∈ Cj and sij = bji−mij otherwise.

If the interpolation outputs a degree-t polynomial fi(x) then set si = fi(0), else set si = ⊥.

Figure 16: Weak Polynomial Sharing protocol due to [44]

From WPS to VSS WPS fails to serve as a VSS because if D is corrupt, then the parties outside
W may get ⊥. Protocol PR-Sh (see Fig 17) fixes this shortcoming. The protocol has two “layers”
of communication. The goal of the first layer is to identify a set V of 2t + 1 parties whose row-
polynomials are pair-wise consistent and lie on a single degree-(t, t) symmetric bivariate polynomial
F ?(x, y). The structure of this layer is same as WPS. The second layer is executed in parallel,
enabling the parties not in V to obtain their respective row-polynomials lying on F ?(x, y). In a more
detail, every Pj picks a random blinding-polynomial pj(·) and shares it by invoking an instance WPSj
of WPS. Additionally, it makes public the polynomial pj(·) + fj(x) during the asynchronous phase.
The idea is that if later Pj is declared to be a part of V, then any Pi 6∈ V can compute the point fj(αi)
(which is the same as fi(αj)) on Pi’s row-polynomial, if Pi obtains the output pj(αi) during WPSj .
While an honest Pj ∈ V makes public the correct pj(·) + fj(x), care has to be taken to ensure that
even a corrupt Pj ∈ V has made public the correct pj(·) + fj(x). This is done as follows. First, each
party Pk participates conditionally during WPSj depending upon whether the blinded polynomial of
Pk is consistent with respect to its received point on pk(·) during WPSk and the supposedly common
share fk(j). Second, Pj is included in V only when during WPSj the generated W set Wj is accepted
and which has an overlap of 2t+ 1 with V.

For a corrupt Pj ∈ V, an honest Pi 6∈ V may end up obtaining ⊥ during WPSj . However
there will be at least t + 1 honest Pj ∈ V, corresponding to whom Pi eventually obtains pj(αi)
during WPSj , using which Pi obtains t + 1 points on fi(x), which are sufficient to compute fi(x).
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Synchronous Phase

D and parties execute the same steps as in the synchronous phase of WPS. Additionally, each Pi picks a
random degree-t blinding-polynomial pi(·) and as a dealer invokes an instance WPSi of WPS to share pi(·).
Moreover, Pi also participates in the synchronous phase of the instance WPSj for every Pj ∈ P.

Asynchronous Phase

• Verifying masks: Parties and D execute the same steps as in WPS.
• Broadcasting values — each party Pi: Broadcasts (Ai,Bi, Ci, di(x)), where Ai,Bi, Ci are same as

in WPS and di(x)
def
= pi(x) + fi(x).

• Participating in WPS instances — each party Pi: For j = 1, . . . , n, participates in WPSj if a
degree-t polynomial dj(x) is received from the broadcast of Pj and if dj(αi) = pj(αi) + fi(αj) holds.

• Computing and Broadcasting V — the D: computes and broadcasts (V, {Wi}Pi∈V), such that:
– Every Pi ∈ V is marked as correct (by satisfying the same conditions as in WPS).
– For every Pi ∈ V, the set Wi is accepted during the instance WPSi.
– |V| ≥ 2t+ 1 and |V ∩Wi| ≥ 2t+ 1 for every Pi ∈ V.

• Verifying V — each party Pi: Accept (V, {Wi}Pi∈V) received from the broadcast of D, if:

1. Every Pj , Pk ∈ V are pair-wise consistent (using the same criteria as in WPS).
2. For all Pj ∈ V, the set Wj is accepted during the instance WPSj .
3. |V| ≥ 2t+ 1 and for every Pj ∈ V, the condition |V ∩Wj | ≥ 2t+ 1 holds.

• Output stage — each party Pi: If (V, {Wi}Pi∈V) is accepted then terminate with output si, where:
• If Pi ∈ V then set si = fi(0).
• Else compute the output pji in WPSj for every Pj ∈ V, interpolate degree-t polynomial fi(x)

through the points {(αi, sij = dj(αi)− pji)}Pj∈V∧pji 6=⊥ and set si = fi(0).

Protocol PR-Sh

Figure 17: The hybrid VSS protocol due to [44]

9 Conclusion

In this article, we surveyed the existing perfectly-secure VSS schemes. We considered three different
communication settings, the synchronous, asynchronous and the hybrid communication setting. We
identify the following open problems in the domain of perfectly-secure VSS.
• All VSS schemes in the synchronous setting with n > 3t and three round sharing phase requires

a communication of O(n3 log |F|) bits, both over the pair-wise channels as well as over the
broadcast channel. This is in contrast to the VSS schemes which allows four or more rounds
in the sharing phase and which requires a communication of O(n2 log |F|) bits. The main
reason for this is that all the 3-round VSS schemes deploy n invocations of the WSS, each
with a communication of O(n2 log |F|) bits. It is interesting to see if one can design a 3-round
perfectly-secure VSS scheme with a communication complexity of O(n2 log |F|) bits.

• To the best of our knowledge, we are unaware of any non-trivial lower bound on the communica-
tion complexity of any perfectly-secure VSS scheme. One could explore to derive a non-trivial
lower bound on the communication complexity of perfectly-secure VSS schemes.

• The broadcast complexity (namely the total number of bits broadcasted by the honest parties)
of all the VSS schemes with n > 3t is proportional to the number of values shared by the VSS
instance. This is unlike the asynchronous VSS scheme of [20], whose broadcast complexity is
independent of the number of values shared by the VSS instance. It is interesting to see if
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one can design a perfectly-secure VSS scheme with n > 3t where the broadcast complexity is
independent of the number of shared values.

• The round complexity of the 3AKP-VSS scheme [3] is not optimal in terms of the usage of
broadcast channel. One could explore to achieve the same properties as the 3AKP-VSS scheme,
with the broadcast channel being used only during the second round.
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