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Abstract. We investigate the efficiency of a (module-)LWR-based PRF
built using the GGM design. Our construction enjoys the security proof
of the GGM construction and the (module-)LWR hardness assumption
which is believed to be post-quantum secure. We propose GGM-based
PRFs from PRGs with larger ratio of output to input. This reduces the
number of PRG invocations which improves the PRF performance and
reduces the security loss in the GGM security reduction. Our construc-
tion bridges the gap between practical and provably secure PRFs. We
demonstrate the efficiency of our construction by providing parameters
achieving at least 128-bit post-quantum security and optimized imple-
mentations utilizing AVX2 vector instructions. Our PRF requires, on
average, only 39.4 cycles per output byte.
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1 Introduction

A pseudorandom function (PRF) is a keyed function whose outputs are pseudo-
random, i.e., no probabilistic polynomial-time adversary can distinguish, with
non-negligible advantage, between the outputs of the pseudorandom function for
chosen inputs and those of a truly random function. The pseudorandom function
should also be efficiently and deterministically computable.

Pseudorandom functions are essential tools in designing protocols. PRFs are
used as building blocks in many cryptographic primitives especially in symmetric-
key cryptography, for example, message authentication codes and block ciphers.

Banerjee, Peikert and Rosen (BPR) [7] proposed theoretical provably-secure
constructions of pseudorandom functions based on conjectured hard learning-
with-error lattice problems and “rounded-subset products”. They also intro-
duced a “derandomization” technique in order to generate the error terms deter-
ministically. Despite interesting proofs and new techniques, the main drawback
of their constructions is that the parameters are too large for practicality.
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RISQ (P141580), by the European Union PROMETHEUS project (Horizon 2020
Research and Innovation Program, grant 780701).



Later on, Banerjee, Brenner, Leurent, Peikert and Rosen [6] proposed con-
crete and practical instantiations of PRFs called “SPRING” (for subset-product
with rounding over a ring), which are based on the BPR design [7]. However,
SPRING instantiations [6] do not adhere to the parameters suggested by the
security proof of the BPR design, namely, they relax the condition requiring the
modulus q to be exponentially large in the PRF input length `. More precisely,
they use a very small modulus q to obtain good performance.

Even though it has been stated in [6] (and also referred to the original com-
ments in BPR [7]) that the exponentially large q might be a proof artifact,
SPRING instantiations do not inherit the security guarantees from BPR [7].
Those instantiations can be viewed as heuristic. If SPRING [6] had set parame-
ters according to the proofs in [7], it would have resulted in a huge performance
penalty.

In this work, we investigate the practicality of the pseudorandom function
construction of Goldreich, Goldwasser, and Micali (GGM) [22] and show that the
GGM-based PRF can lead to a reasonably efficient scheme enjoying a proof under
a reasonable assumption. Note that the GGM construction is elementary; it can
be constructed from any length-doubling pseudorandom generator (PRG) and
can be depicted as a binary tree. However, there is a significant disadvantage with
this construction, namely, it requires ` sequential invocations to the underlying
PRG for input length ` which corresponds to the number of levels in the binary
tree. The reason why it is not possible to parallelize between different level
of the tree is that one needs the output of the PRG at level i to be used as
the input of the PRG at level i+1. For many applications (in particular when
used as building components of advanced cryptographic primitives), this can
be a significant drawback. For this reason, the BPR construction and follow-up
works do not rely on the GGM framework.

Even though the sequential invocation can be viewed as a crucial disadvan-
tage, we can use this construction in applications which evaluate PRF using
consecutive inputs such as in a counter mode. In such a case, the average num-
ber of invocations to the underlying PRG is approximately only 2 (as opposed
to ` in the worst case). The reason why the number of invocations can be very
low is that we do not always need to traverse the tree from the root to one of the
leaves; we may backtrack only one level up. Recall the GGM construction: we
use only half of the PRG’s output for the next input. If the current evaluation
uses the left half, then the next consecutive evaluation would use the right half
which has already been computed, thus involving no PRG invocation at all.

To construct an efficient and post-quantum secure PRG, we rely on the hard-
ness assumption of the (module-)learning-with-rounding ((module-)LWR) prob-
lem. We demonstrate the practicality of our lattice-based PRF by deriving pa-
rameters achieving at least 128-bit security and providing optimized implemen-
tations together with timing results.
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1.1 Tools and techniques

Our intention is to construct an efficient post-quantum secure PRF based on a
provably secure construction and broadly studied conjectures which are believed
to be hard problems. The main tools we used are the GGM construction and the
hardness assumption of the (module-)LWR problem. Other tools that we used
to obtain fast implementations are Karatsuba’s multiplication and the vector
instructions (AVX2). In the following, we briefly explain how we utilized and
combined these tools.

GGM construction. One of the main reasons that we chose the GGM con-
struction is its simplicity: the construction requires only a length-doubling PRG
and can be depicted using a binary tree. Moreover the GGM construction has
a rigorous security proof, namely, so long as the underlying PRG is secure, the
GGM-based PRF construction is secure. This means that we can restrict to
building a secure length-doubling PRG.

We further observed that the binary tree in the GGM construction corre-
sponds to the length-doubling requirement for the PRG. However, there is no
restriction why we should use a binary tree. For example, we could use a ternary
tree and use a length-tripling PRG. We could even push further and use a 4-ary
tree with a length-quadrupling PRG. In this work, we generalize to an ω-ary tree
with a length-ω-fold PRG. Using higher expansion rate is the main technique
in our construction to obtain a lower-depth tree, fewer number of calls to the
underlying PRG, and improvements in the efficiency.

(M)LWR. Note that the security of the GGM-based PRFs relies on the security
of the underlying PRG. Therefore, the next question that we need to answer is
what to use for the secure expansion-rate-ω PRG. Note also that computing this
PRG should be efficient because the performance of the PRF heavily depends
on the performance of the underlying PRG.

Since we aim at constructing a post-quantum secure PRF, lattice-based con-
structions seem to be the most appealing especially in terms of efficiency. For
this reason, we decided to rely on the (module-)LWR hardness assumption. Infor-
mally, the small-secret variant of the (module-)LWR problem states that multi-
plying a uniformly random matrix A with a “small” uniformly random vector s
then performing rounding operations leads to a resulting vector that looks uni-
formly random, i.e., indistinguishable, with non-negligible probability, from a
truly uniform vector.

Note that there also exist other variants such as ring-LWR, learning-with-
errors (LWE), ring-LWE, and module-LWE. The main reason that we chose to
focus on (module-)LWR variants instead of the ring variants is the flexibility
in the parameter setting. Note that with the plain LWR, it allows even better
adjustment of parameters and involves no polynomial reduction. However, one
drawback of the plain LWR is that it requires rather huge memory for the public
parameter, i.e., A ∈ Zn×n

q . For the completeness, we include the plain LWR
variant in Appendix A.
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We could have decided to construct the PRG relying on the hardness assump-
tion of the (module-)LWE problem (instead of the (module-)LWR one). How-
ever, our analysis suggested that using learning-with-rounding provides more
efficiency in terms of parameter selection and implementation. Since the input
to the PRG (in our context) is the secret vector s, if we were using (module-)LWE
we would also need the error vector e as part of the input. This means that the
output of the matrix-vector multiplication As plus an error vector e needs to
provide enough bits to be used as the next input. In case we use (module-)LWR
(which we do), we only need that the output has enough bits for the secret vec-
tor s. We do not need the error vector e because we use deterministic rounding
instead. This also means that we can set our parameters slightly smaller. More-
over, the rounding operation is simply cutting bits; this operation is arguably
easier to implement than generating and adding errors.

Karatsuba’s multiplication. Our construction with module-LWR consists of
matrix-vector multiplication and rounding operations. Since rounding is sim-
ply ignoring bits and can be done relatively fast, the bottleneck operation is
the matrix-vector multiplication which is basically polynomial multiplication.
Since we also aim at having efficient implementations, we wish to use a poly-
nomial multiplication algorithm which gives better time complexity than that
of the schoolbook multiplication. One of commonly used multiplications is the
number-theoretic transform (NTT). However, this multiplication requires an
NTT-friendly prime which we view as quite a strong restriction. Therefore, we
opt for more flexible multiplication algorithms such as Karatsuba and Toom-
Cook.

The reason we choose Karatsuba’s multiplication is that it outperforms Toom-
Cook’s multiplication for low to medium degree polynomials. This suggests that
we should use Karatsuba’s multiplication up to certain degrees and then switch
to using Toom-Cook’s multiplication. In other words, Toom-Cook should be used
in combination with Karatsuba, but we may not need to switch to using Toom-
Cook. To keep our implementations simple and flexible, we decided to ignore
Toom-Cook and use only Karatsuba’s multiplication.

Table 1 compares estimated multiplication costs of our instantiations, where
we use Karatsuba’s multiplication, with (extrapolations of) previous work, where
we assume using NTT for polynomial multiplication. In this cost estimation for
our Karatsuba’s multiplication, we decompose polynomial degree n down to 16
then we switch to the schoolbook method for the actual multiplication.

1.2 Optimized implementations

We analyzed the parameters of the (module-)LWR problem together with the ex-
pansion rate ω. We derived parameters achieving at least 128-bit security in the
quantum core model [3]. We provide optimized implementations 3 of our PRF
construction in which we also use vector instructions to obtain better perfor-
mance. The timing results (see Section 5 for more details) show that evaluating

3 available at https://github.com/BeJade/mlwr-prf
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PRF in a counter mode using our construction requires, on average, only 39.4
cycles per output byte.

Table 1: Extrapolated cost estimation of lattice-based PRFs with different un-
derlying hardness assumptions for 128-bit security

schemes assumptions mod key pp. mul

SPRING-BCH [6] R bsub prode 257 16396 129 115
SPRING-CRT [6] R bsub prode 514 18444 145 115
Our scheme, M MLWR, GGM 216 192 24576 1991
Our scheme LWR, GGM 216 200 2944000 2944
[7] + AKPW13,R [5] RLWR, GGM > 240 655360 5120 5243∗

BPR12,syn,R [7] RLWR, syn > 2128 163840 - 10486∗

BPR12,direct,R [7] R bsub prode > 2128 2097152 16384 10486∗

[7] + AKPW13 [5] LWR, GGM > 240 313600000 3500 250880∗

BPR12,direct [7] bsub prode > 2128 1003520000 11200 501760∗

BPR12,GGM [7] LWR, GGM > 2128 11200 31360000 1003520∗

BPR12,GGM,R [7] RLWR, GGM > 2128 16384 67108864 42949673∗

BPR12,syn [7] LWR, syn > 2128 74097496 - 351232000∗

In the first two columns, abbreviations ‘syn’, ‘R’, ‘M’, ‘bsub prode’, ‘MLWR’ mean
‘synthesizer’, ‘ring’, ‘module’, ‘rounded subset product’ and ‘module-LWR’ respectively.
Key and public parameter (pp.) are of size in bytes. Multiplication (mul) in the last
column considers only the main matrix-matrix or matrix-vector product; the cost is
shown in terms of thousand 16-bit-by-16-bit multiplication; asterisk (∗) means extrap-
olated cost. Since we focus on constructions which provide security level at least 2128,
we extrapolate the cost of BPR-based schemes using dimension n = 1024 for RLWR
(to allow NTT) and n = 700 for LWR. Note that in this comparison table we provide
BPR-based schemes two advantages: (1) we consider modulus q = 2128 (resp. 240) while
it should be much more than these values for the proofs to be applicable; (2) for the
synthesizer variant, we consider that all moduli are the same and take the smallest
one. We do not include [12] in the comparison because it is a PRG not a PRF.

2 Preliminaries

We write vectors in bold lowercase letters and matrices in bold uppercase letters.
We write log for log2 unless specified otherwise. In the context of distributions,
we denote U a uniform distribution. We define the rounding function b·cp :
Zq −→ Zp as bxcp = bx · (p/q)c where q > p ∈ Z. When applied to vectors, it
means applied componentwise.

2.1 GGM construction

Goldreich, Goldwasser and Micali [22] proposed a method to construct a PRF
from any length-doubling pseudorandom generator, i.e., expansion rate 2. To
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describe their construction, let G be a length-doubling pseudorandom generator
where G0 and G1 denote the first half and the second half of G’s output respec-
tively, i.e, G(k) = G0(k)||G1(k) where |G0(k)| = |G1(k)| = `. PRF with a key k
and `-bit input x, Fk : {0, 1}` → {0, 1}` is defined as:

Fk(x1x2 · · ·x`) = Gx`
(· · · (Gx2(Gx1(k))) · · · ).

This construction can be depicted as a binary tree whose depth corresponds to
the input length `. The root of the tree gets the input key k as an input for the
PRG evaluation whereas each left-child node gets G0 from its parent to use as an
input and each right-child node gets G1. This process continues as many times
as the input length. Evaluating PRF with an input x is done by looking at each
bit of x and traversing the tree from the root to one of the leaves by going down
to the left subtree if the bit is 0 and going down to the right subtree if the bit
is 1. Note that we do not have to compute and store the entire binary tree; we
only need to compute PRG along the path from the root to the corresponding
leaf. Figure 1 depicts the above construction for ` = 3. Solid lines show the path
to compute Fk(010).
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Fig. 1: GGM construction

Theorem 1 (GGM construction, adapted from [22,25]). If G is a length-
doubling ε-indistinguishable pseudorandom generator, then the construction out-
lined above is a qdε-indistinguishable pseudorandom function where q denotes
the number of queries and d denotes the tree’s depth.

2.2 Hardness assumptions.

The security of cryptographic primitives usually relates to hardness assumptions
that certain mathematical problems are difficult to solves. In this subsection, we
recall definitions of hardness assumptions that we use in our constructions.

Definition 1 (Learning-with-errors (LWE)). Let q ≥ 2 be a modulus, m
and n be dimensions such that m ≥ n ≥ 1, and χ be a distribution over Z.
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The learning-with-errors problem is to distinguish, with non-negligible probability,
between the following two distributions: (A,As + e) and U(Zm×n

q × Zm
q ), where

A ∼ U(Zm×n
q ), s ∼ U(Zn

q ) and e ∼ χm.

The LWE assumption states that the LWE problem for certain choices of
parameters (q,m, n, χ) is hard for all probabilistic polynomial time algorithms.
The LWE problem has been extended to ring-LWE by Lyubashevsky, Peikert
and Regev [34] where the integer ring Z has been replaced by a polynomial
ring R. Since LWE and ring-LWE are very similar except for using different rings
and vector dimensions, these problems were later on generalized by Brakerski,
Gentry and Vaikuntanathan [13] to what they called a general learning with
errors problem. Langlois and Stehlé [32] analyzed the hardness and explained
the usefulness of this variant where they called it module-LWE. In this paper, we
also use the term module.

Definition 2 (Module-LWE, adapted from [13]). Let m and k be integer
dimensions, let modulus q ≥ 2 be a prime integer, let R = Z[x]/(xd + 1) where
d is a power of two, let Rq = R/qR, and let χ be a distribution over R. The
module-LWE problem is to distinguish, with non-negligible probability, between
the following two distributions: (A,As + e) and U(Rm×k

q × Rm
q ), where A ∼

U(Rm×k
q ), s ∼ U(Rk

q ) and e ∼ χm.

Banerjee, Peikert and Rosen [7] introduce the learning-with-rounding (LWR)
problem whose error terms in the LWE problem are replaced by a deterministic
rounding process. With some conditions on the modulus and the dimensions,
they also proved that the LWR problem is as hard as the LWE problem. There
also exist ring and module versions of LWR where the problems are defined
analogously.

Definition 3 (Module-LWR, adapted from [7,13,32]). Let m and k be in-
teger dimensions, let moduli q ≥ p ≥ 2 be integers, let R = Z[x]/(xd + 1) where
d is a power of two, and let Rq = R/qR. The module-LWR problem is to dis-
tinguish, with non-negligible probability, between the following two distributions:
(A, bAscp) and U(Rm×k

q )× bU(Rm
q )cp, where A ∼ U(Rm×k

q ) and s ∼ U(Rk
q ).

Note that the distribution bU(Rm
q )cp may seem inconvenient. However, by

taking p|q, this distribution becomes identical to U(Rm
p ) which is easier to work

with.
We would like to make a remark that there also exist different (module-)LWR

variants depending on the distributions of the secret s and the round-off bits.
The variant that we use is the one with small secret where the distribution of
the secret s is consistent with the round-off bits.

3 Our construction

We aim at constructing an efficient and secure lattice-based PRF. Our construc-
tion is based on two main building blocks, namely, the GGM construction and
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the (module-)learning-with-rounding problem [7]. The former is used for con-
structing pseudorandom functions while the latter is used for the underlying
hardness assumption of pseudorandom generators.

This section explains how we combine the aforementioned two building blocks
to achieve a competitive performance PRF. We first start by explaining how we
cope with the sequential nature of the GGM construction. Then we explain
choices for the PRG and give justifications why we decided to work with the
(module-)LWR. Finally, we give the outline of our construction.

3.1 Lower-depth GGM-based PRF

Recall that the GGM-based pseudorandom function construction requires a
length-doubling pseudorandom generator, and the construction can be depicted
using a binary tree. Each node (except for the leaves) of the tree corresponds
to an evaluation of a PRG whose input is from half of its parent’s PRG output,
i.e., front half for a left-child node, and back half for a right-child node. For the
root of the tree, its input is the key k of the PRF.

Evaluating the GGM-based PRF is done by looking at each bit of the input x
and traversing the tree from the root to one of the leaves by, say, if the current
bit is 0 then go to the left subtree, if the current bit is 1 then go to the right
subtree. One thing to be noticed is that the depth of the tree corresponds to
the length of the PRF input, i.e., an `-bit-input PRF implies a binary tree of
depth `.

Observe that the performance of the GGM construction heavily relies on the
number of calls to the PRG which corresponds to the input length ` and, thus,
the depth of the binary tree. The `-sequential call is a major drawback of this
construction, and it is unavoidable due to the nature of the construction, namely,
one needs to traverse the tree level by level since the output from the previous
level is used as the input to the next level. Our goal is to address this drawback.

Our approach is to generalize to using an ω-ary tree instead of a binary tree.
This affects the original construction in three ways. First, we do not merely
look at a single bit when we traverse the tree; instead, we examine logω bits at
a time. Second, the tree’s depth decreases to `/ logω levels, meaning that the
number of invocations to the underlying PRG also decreases to `/ logω calls. By
reducing the depth of the tree, this also reduces the security loss in the security
reduction of the security proof of the GGM construction. Third, the construction
now requires the output of the PRG to be ω times longer than the input length
(not just length-doubling as in the original construction). Note however that this
should not be viewed as a severe penalty because it is achievable in practice; we
give a list of possible parameters, explain a concrete implementation and show
timing results in Section 5.

In general, we may set ω to be any positive integer greater than 1, and if
we set ω = 2 then we obtain the original GGM construction. The construction
works best when ω is a power of two, i.e., when logω is an integer. Note that
we do not impose on a condition that ` is divisible by logω. If ` is divisible by
logω, then it results in a complete ω-ary tree and every call to PRG has a full
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ω choices of which part of the output to be used as the next input. Otherwise,
the tree is not complete where nodes at the level before the leaves have about
2`/ωd`/ logωe−1 child nodes.

Even though our construction does not remove the nature of the sequential
invocations to the underlying PRG, we significantly decrease the number of calls
(the tree’s depth). That is, instead of requiring ` sequential calls for length `
input, our construction requires only `/ logω calls. Notice that the asymptotic
bound remains the same for the original GGM and our construction. However,
our construction, indeed, helps improve the performance in practice (see Sec-
tion 5 for more details on concrete implementations and timing results) since
the number of calls to PRG decreases at least by a factor of 1.5.

3.2 (M)LWR-based PRG

Another component that we need in our construction is a secure PRG with
the output length ω times larger than its input length. Since we target an effi-
cient and post-quantum secure PRF construction, one natural candidate is the
lattice-based cryptography. Therefore, we consider constructing PRG based on
the learning-with-errors (LWE) [43] and the learning-with-rounding (LWR) [7]
problems.

Recall that the LWE problem involves computing (A,b = 〈A, s〉+ e) where
A is public, s is secret, and e is small error generated randomly. In case of the
LWR problem, the process of adding small error e is replaced by deterministic
rounding. The LWR problem was introduced in [7] where the authors also in-
troduced a lattice-based PRF whose construction is based on a pseudorandom
synthesizer [37,38,39] which requires a deterministic function. This requirement
is opposite to the nature of LWE where errors are generated randomly. For this
reason, LWR was used in [7]. In case of our construction, both LWE and LWR are
possible. We use LWR for efficiency, i.e., to decrease the amount of randomness
required (see below and Section 5). Therefore, we want to emphasize that the
reason we use LWR slightly differs from that of [7].

To reduce the memory required for the secret vector s ∈ Zn
q and the pub-

lic matrix A ∈ Zm×n
q , we consider using module-LWR [13,32] instead of LWR,

i.e., using s ∈ Rn′

q′ and A ∈ Rm′×n′

q . We could have used ring-LWR [35], but
we chose to work with modules because of the flexibility. As explained in [11]
and [18]; there is only one ring to implement, and adjusting security is done by
adjusting the dimension of the matrix. We explain our construction using LWR
in Appendix A. In this section, we focus on our construction using module-LWR.

Until now, we have not yet mentioned how to obtain the length-ω-fold-output
PRG from module-LWR. We recall our module-LWR-based construction then we
explain how to satisfy the required length condition. In our construction, except
for the initial input for the first call to the PRG, the subsequent calls use the
output from previous calls. The output length condition requires that the number
of bits of bAscp must be at least ω times larger than s which is the input for
the next call to the module-LWR-based PRG. We claim that this requirement is
indeed achievable.
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To see this, recall that the expansion rate r is the ratio between the output
and the input length of the PRG (e.g., length-doubling PRG has r = 2) and we
want r ≥ ω for our construction. Let q ≥ p ≥ 2 be integers, let R = (Z[x]/(xd +
1)), let A ∈ Rm×n

q , and let s ∈ Rn
log q−log p (i.e., q′ = log q − log p). Note that

each coefficient of s has the same magnitude as the round-off bits. The input s
has size nd(log q− log p), and the output bAscp has size md log p. Thus, we need

to ensure that md log p
nd(log q−log p) ≥ r. One concrete example (which we also use in our

implementation, see Section 5) to achieve r ≥ 16 is to set parameters as follows:

q=216, d=256, n=3,m=16 and p=212. This gives 16·256·log 212

3·256(log 216−log 212) ≥ 16 = r.

We refer to Table 2 and Table 4 for other possible parameters.

3.3 Construction outline

In this subsection, we explain our efficient lattice-based PRF (see Appendix A
for the LWR variant). Recall that the input to the PRF is a key k and a string
x of length ` while the output is a pseudorandom string z. A public parameter
in our construction is A ∈ Rm×n

q .
Since our construction is more efficient when logω = ω̃ is an integer, we

assume from now on that it is the case. Construction 1 outlines our PRF. We
divide the construction into three parts, namely, pre-computation, main loop,
and outputting. In the following, we explain each part in more details.

Construction 1 PRF from module-LWR

Input: PRF’s key k = {0, 1}∗ and a bit string x = {0, 1}`

Output: Pseudorandom string z = {0, 1}`
′

1: t = Random(k)
2: s = Reformat(t)
3: for i = 0 to `− 1 step by ω̃ do
4: c = x[ω̃i] x[ω̃i+1] . . . x[ω̃i+ω̃−1] . View ω̃ bits as number in [0, ω−1]
5: t = Ac · s . Multiply row c of A to s
6: t = btc
7: s = Reformat(t) . Reformat into s
8: end for
9: for i = 0 to m− 1 do

10: t = Ai · s
11: t = btc
12: z = z||t . Concatenate output extracting from t
13: end for
14: return z

Pre-computation

Pre-computation. This part handles (1) generating randomness from the key k,
i.e., Random(k), for example, using extendable output functions, and (2) refor-
matting into the vector s, i.e., Reformat(t), for example, setting each 4 bits of t
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to each coefficient of s. Note that these can be pre-computed per secret key k.
For instance, evaluating the same function Fk(·) at different points, say, x and
y, e.g., Fk(x) and Fk(y). Note that we could reformat k directly into s without
feeding it as an input to generate random bits, i.e., calling Reformat(t) directly
without calling Random(k). However, we have Random(k) for two reasons: first,
in case the input k is not random, which would affect the security analysis of
the underlying module-LWR problem; second, in case the input k does not have
the preferred length, which would be problematic if it is too short. If the input k
is already random and has long enough length, then Random(k) can be skipped.
Nevertheless, we still perform Reformat(t) to convert random bits into a right
format for the following steps.

Main loop. This part handles the main loop which involves calling the under-
lying module-LWR-based PRG. The number of calls depends on the width of the
tree (ω) which is one of several parameters to be optimized. In the construction
outline, we present a general construction that is not specific to any particular
width. In Section 5, we give a concrete example where we define all parameters
including the tree’s width ω.

One optimization in our construction is that each iteration involves a vector-
vector multiplication and not a matrix-vector multiplication. We observed that
we only need m/ω rows of the matrix A to multiply with the vector s. This value
m/ω can be as small as one, which is the case for our concrete implementation.
Therefore, we assume that we select only one row of the matrix A. Choosing
which row is done by viewing ω̃ bits of the input x as a number between 0 and
ω − 1 (line 4 in Construction 1) then selecting the corresponding row c (line 5
in Construction 1).

After having multiplied the selected row of the matrix A with the vector s,
before moving to the next ω̃ bits of `, we call Reformat(t) to extract bits from t
and assign to s to be used in the following iteration. These steps are analogous
to selecting front half (G0(·)) or back half (G1(·)) of the PRG for the next PRG’s
call in the original GGM construction.

Outputting. This part handles the output of the PRF. Before we reformat the
output, we perform the final m iterations of vector-vector multiplications. In
contrast to previous iterations where we multiply only m/ω rows of A with s,
for the output we multiply all m rows, i.e., the entire matrix A. This has the
advantage of significantly increasing the length of the PRF output. The final
task of this part is to concatenate all the results and turn them into the desire
format.

4 Security analysis

The high-level structure of our PRF construction follows the GGM construction
whose security relies on the security of the underlying PRG. Therefore, we mainly
analyze the security of the (module-)LWR problem which we use as the expansion-
rate-ω PRG in our lattice-based PRF construction. Note that in our generalized
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GGM construction, it is possible that the tree’s depth is lower than in the original
one. For this reason, we also examine if this may incur any loss in the security
reduction of the GGM construction.

4.1 GGM

Since our construction is essentially the generalization of the GGM construction,
Theorem 1 also applies to our setting. Note that in the original GGM construc-
tion, the tree’s depth corresponds to the bitlength ` of the input string to the
PRF. In our generalized GGM construction, the tree’s depth corresponds to `/ω̃
where 2ω̃ is the tree’s width. If ω̃ = 1 then we recover the original GGM con-
struction. This means that the tree’s depth in the generalized GGM construction
is no greater than in the original construction.

4.2 LWE and (M)LWR

Our construction relies on the hardness assumption of the (module-)LWR problem
where each sample is a vector whose elements are from a polynomial ring (or an
integer ring in case of the plain LWR variant). It can be seen that the module-LWR
problem provides more structure than LWR. However, since there are no known
attacks that exploit such additional structures (of either ring or module), we did
not make use of the module structure in our security analysis.

In fact, we analyzed the hardness of the (module-)LWR problem as the LWE
one where we consider the process of adding errors as being replaced by the
process of rounding off bits. A reduction from the LWE to the LWR problem
was first given by Banerjee, Peikert and Rosen [7], then further improved by
Alwen, Krenn, Pietrzak and Wichs [5], Bogdanov, Guo, Masny, Richelson and
Rosen [10], and Alperin-Sheriff and Apon [4]. We refer to those articles for more
details.

To solve the LWE problem (see [3] for more details), the state-of-the-art algo-
rithm is BKZ [44,16] and there are two variants, namely, the primal and the dual
attacks. We estimate security for both variants and take the minimum between
the two. The BKZ algorithm reduces a lattice basis by calling an SVP oracle
with a smaller dimension b where there are two different approaches, namely,
enumeration and sieving. We explore both approaches and take the minimum
between the two. We estimate the complexity of solving SVP by using 20.292b as
the classical and 20.265b as the quantum cost estimations [40,36,29,8,30,28,11].
We use Kyber’s script [11] as a main tool to perform security analysis where our
notion of bit security reflects security of the underlying LWE problem.

5 Implementation

To illustrate the practicality of our construction, we implemented two variants
of our lower-depth GGM-based PRF, one with module-LWR and another one
with LWR. In this section, we focus on the module-LWR variant and explain how
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we designed our implementation, derived parameters achieving at least 128-bit
security, and optimized our implementation. (The script to estimate the security
level and our implementation are publicly available at https://github.com/

BeJade/mlwr-prf.) We also show the timing results of the two variants of our
implementations and compared with previous work. Note that details on the
LWR variant can be found in Appendix A.

5.1 Design

The goal of this subsection is to describe how we chose to implement each com-
ponent in our construction. We give justifications of choices made and explain
why we think they best suit our optimized implementation.

Polynomial Multiplication. In addition to the fundamental schoolbook multi-
plication, there exist other (polynomial) multiplication algorithms which achieve
faster time complexity, for example, NTT, Toom-Cook, Karatsuba. The main
reason that we cannot use NTT is that it requires modulus q to be of the form
q ≡ 1 mod 2n where n is the degree of the polynomial. With this condition, it
rules out even moduli q.

We could have used Toom-Cook (to split degree-n polynomial into k degree-
n/k polynomials) which can be considered as a generalization of Karatsuba (k =
2, i.e., splitting degree-n polynomial into 2 degree-n/2 polynomials). However,
our analysis shows that Karatsuba’s algorithm works better for low to medium
degree polynomials where the switching point between Karatsuba and Toom-
Cook is unclear. To keep our implementation simple and reusable in case of
updating parameters, we decided to use Karatsuba’s algorithm.

To multiply degree-n polynomials f and g, we start by splitting f into f0 and
f1 each of degree n/2 (similarly for g). We repeat this splitting until we reach
polynomials of degree 16, then we switch to using the schoolbook multiplica-
tion. We chose the cut-off at degree 16 because AVX2 instructions allow 16-way
vectorization.

Karatsuba’s algorithm is very well suited for vectorization. To see this, recall
(refined) Karatsuba’s identity [9]:

(f0 +xn/2f1)(g0 +xn/2g1) = (1−xn/2)(f0g0−xn/2f1g1)+xn/2(f0 +f1)(g0 +g1).

Computing f0 + f1 is done by loading the first, say 16, coefficients of f0 into
one 16-way vector and the first 16 coefficients of f1 into another vector then
adding them together. Next, we load the next 16 coefficients of f0 and f1 and
add them together. We repeat these steps for all coefficients of f0 and f1 (also for
g0 + g1). Multiplying by xn/2 corresponds to working with coefficients at index
+n/2. Note that when computing figj , the actual multiplication is performed
once the degree of fi and gi reaches 16 and is computed using the schoolbook
multiplication. We also vectorize this schoolbook multiplication by multiplying
16 pairs at once since there are enough independent multiplications to choose
from. For example, for d = 256, n = 3, there are 34 = 81 16-by-16 multiplications.
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Randomness generation. Our construction requires randomness generation
for deriving the initial vector s. We decided to use hash functions with the
extendable output function SHAKE-128 (standardized in FIPS 202 [41]). The
reason why we chose SHAKE-128 is that it has received a lot of cryptanalysis
at least in the SHA-3 competition. Another advantage in using SHAKE-128 is
that we can adapt some parts of the publicly available optimized AVX2 imple-
mentation from Kyber [11].

Note that deriving the vector s can be pre-computed per key k. In many
scenarios, the same key k is used for different evaluations of input string x. This
means that once the key k is known, deriving s can be pre-computed for each
key k and stored it even before knowing x.

Rounding operation. To round numbers from log q bits to log p bits, we simply
remove (log q− log p) least significant bits. In the implementations, we use logical
operation and with 1 for the bits that we want to keep and with 0 for the bits
that we want to discard. Since q and p are fixed, the pattern of ones and zeros
used for this logical operation is also fixed. Therefore, we keep this masking
pattern as a constant.

Value extraction. We need to extract from PRG output only the part to be
used as an input for the next PRG call. We begin with masking the corresponding
part of the vector t, namely, to round from log q bits to log p bits. This is done
by the masking technique similar to the rounding operation. Then we rearrange
the rounded values into new vectors si. That is, we extract each log q− log p bits
from t and assign to each si,j for 0 ≤ i < n and 0 ≤ j < d.

5.2 Parameters

We recall notations and parameters in our construction. Let q be a modulus and
p be a rounding parameter such that q > p and log q = log p+ logB where q, p,
and B are power of two. Let R = Zq[x]/(xd + 1). Let A ∈ Rm×n

q be a random
public matrix. Let s ∈ Rn

logB be a small secret vector. We want parameter sets
satisfying the expansion-rate-ω output length requirement and achieving at least
128-bit security for the underlying module-LWR problem.

Consider the length condition for the module-LWR-based PRG, the input is
the vector s ∈ Rn

logB and the output is the rounded vector bAscp ∈ Rm
p . This

means that the output size is m · d · log p and the input size is n · d · (logB).
Therefore, the equations that we consider is:

m · d · log p ≥ ω · (n · d · (logB))

m · d · (log q − (logB)) ≥ ω · (n · d · (logB))

m · (log q − (logB)) ≥ ω · (n · (logB)).

Note that we want ω ≥ 2, and the larger ω is the shallower the tree becomes.
We modified Kyber’s script [11] to suit our setting and use it to estimate

the security of the underlying module-LWR problem. In this security analysis,
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the major modification is that we use a uniform distribution instead of a bi-
nomial one. The conditions in which we search for good parameter sets for the
module-LWR variant are as follows:

- q = 216, fixed;
- logB ∈ {1, 2, 3, 4};
- d ∈ {128, 256};
- n ∈ {5, 6} for d = 128 and n = 3 for d = 256;
- m ∈ {4, 8, 16, 32}.

Good parameters that achieve at least 128-bit security and ω ≥ 2 are listed in
Table 2.

Table 2: Good parameters achieving at least 128-bit module-LWR security and
the expansion-rate-ω condition

d m n logB security ω mul mem depth cost

128 4 5 4 145 2 69120 5120 128 8294400
128 4 6 2 131 4 41472 6144 64 2654208
128 16 5 4 133 8 69120 20480 43 2972160
128 32 5 4 133 16 69120 40960 32 2211840

256 4 3 4 167 4 62208 6144 64 3981312
256 8 3 4 167 8 62208 12288 43 2674944
256 16 3 4 167 16 62208 24576 32 1990656
256 32 3 4 167 32 62208 49152 26 1617408

We fix the modulus q = 216. Abbreviations ‘mem’ denotes the size in bytes of the
matrix A; ‘depth’ denotes the tree’s depth; ‘mul’ denotes the multiplication cost per
depth; and ‘cost’ = mul × depth denotes the total multiplication cost for the full input
length `.

From Table 2, we observe that the module-LWR variant with d = 256 provides
higher security (with larger gap) than what we target, i.e., 128 vs. 167. Using
d = 128 allows better adjustment in terms of security level, i.e., 131–145 is closer
to 128, and less memory usage to store the matrix A. However, it comes with a
trade-off of increasing the multiplication cost.

According to the possible parameter sets, it is debatable which one should
be selected for the implementation. Smaller m allows less memory usage at the
price of increasing multiplication cost and higher tree’s depth. On the other
hand, larger m allows larger expansion rate ω. We decided that we prioritize the
runtime (multiplication cost) and chose the parameter set with the tree’s depth
power of two to aid implementation. Concretely, we chose the second to last row
of Table 2 with the following parameters: q = 216, d = 256, m = 16, n = 3
logB = 4, and ω = 16. This gives the (M)LWR security estimation of 167. If we
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consider the security loss due to multiple PRF evaluations, this parameter set
allows up to 234 PRF queries to still preserve 128-bit PRF security.

As for comparison to the LWR variant, we state here the parameter set that
we use in our implementation and refer to Appendix A for more details. Since we
want to be able to compare to our module-LWR implementation, we decided to
use similar parameters, namely, same q and ω. Concretely, we use the following
parameters: q = 216, ω = 16, n = 800, m = 1840, and logB = 2. This gives the
(M)LWR security estimation of 131.

5.3 Performance

To demonstrate the efficiency of our lattice-based PRF, we implemented Con-
struction 1 and Construction 2 (see Appendix A) with the parameters mentioned
in the previous subsection. We measured the run time of our implementations
in cycle counts which are the medians of 10000 executions obtained from an
Intel Core i7-6600U (Skylake) with TurboBoost turned off running at 2.6 GHz.
Generating the public parameter A (setup phase) costs 78815 cycles. The pre-
computation part (generating randomness, i.e., Random(k) and reformatting the
vector, i.e., Reformat(t)) all together costs 4630 cycles. The main loop costs
711374 cycles. The outputting costs 236124 cycles. Note that these cycle counts
are for 128-bit input and 6144-byte output.

We would like to emphasize that if we consider evaluating PRF with consec-
utive x in a counter mode, we do not need to compute the tree from its root to
one of its leaves; we can reuse the computation from previous iterations. As a
result, it takes only 242347 cycles for the main loop, and 236390 cycles for the
outputting. Note that the cost of the main loop significantly decreases due to
shorter paths to reach the leaves. However, the outputting costs stays the same
because we always do one matrix-vector multiplication.

Table 3 below compares our timing results with SPRING [6] (in terms of
numbers of cycles per output byte). Recall that SPRING has its security based
on the rounded subset product hardness assumption while the security of our
PRF relies on the more standard (module-)LWR hardness assumption.
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A LWR-based PRG

This Appendix explains our PRF construction based on the LWR hardness as-
sumption. Note that, in general, this construction is very much similar to the
one in the main article which is based on the module-LWR hardness assumption.
In order not to repeat the same details, we only highlight the differences between
the two constructions.

A.1 Construction

Construction 2 outlines our LWR-variant PRF. Recall that the PRF takes two
inputs, namely, a key k and a string x of length `, and outputs a pseudorandom
string z. The matrix A is a public parameter. Similar to the module-LWR con-
struction, the LWR construction is also divided into three parts: pre-computation,
main loop, and outputting. Below, we emphasize the differences between the two
constructions parts by parts.

Construction 2 PRF from LWR

Input: PRF’s key k = {0, 1}∗ and a bit string x = {0, 1}`

Output: Pseudorandom string z = {0, 1}`
′

1: t = Random(k)
2: s = Reformat(t)
3: for i = 0 to `− 1 step by ω̃ do
4: c = x[ω̃i] x[ω̃i+1] . . . x[ω̃i+ω̃−1] . View ω̃ bits as number in [0, ω−1]
5: for j = c·(m/ω) to (c + 1)·(m/ω)− 1 do
6: tj = Aj · s . Multiply row j of A to s
7: tj = btjc
8: end for
9: s = Reformat(t) . Extract bits from tc(m/ω), tc(m/ω)+1, . . . , t(c+1)(m/ω)−1

10: end for
11: for j = 0 to m− 1 do
12: tj = Aj · s
13: tj = btjc
14: z = z||tj
15: end for
16: return z

Pre-computation

Pre-computation. There is no differences in the way we generate randomness,
i.e., Random(k), and reformat, i.e., Reformat(t). Note however that s ∈ Zn

logB

(instead of Rn′

logB).
The reasons for having Random(k) are also the same, namely, in case the

input k is not random or does not have the preferred length. If this is not the
case, then Random(k) can be skipped and directly proceed to Reformat(t).
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Main loop. Since the underlying PRG is now constructed from LWR, we need
to change polynomial multiplications to integer multiplications. Nevertheless,
a similar optimization for computing As is still applied, i.e., each iteration we
compute vector-vector multiplications instead of a matrix-vector multiplication.
For the LWR case, we need to multiply only m/ω rows of the matrix A to the
vector s. This time, m/ω is certainly more than one. We added an inner loop
(line 5–8 in Construction 2) to iterate multiplying those rows. Once we multiply
all those m/ω rows and before moving the next iteration of the outer loop, we
call Reformat(t) to extract bits from t and assign to s. Note that t contains m/ω
elements.

Outputting. This part remains the same, namely, we perform the entire matrix-
vector multiplication to increase the output length. Then we change the result
into the desire format and output it.

A.2 Implementation

Two major differences between the module-LWR and the LWR implementations
are multiplication algorithm and parameter set. In what follows, we explain how
we handle multiplications when we cannot use fast polynomial multiplication
algorithms, and then we state possible LWR parameter sets.

Multiplication. Since we use the plain LWR, i.e., having neither ring nor mod-
ule additional structure, our multiplications are simply integer vector multiplica-
tions which can be implemented efficiently. Another advantage of using integers
instead of polynomials is that we do not need to perform polynomial reductions.

Assume that we can perform w pairs of integer vector multiplications. To
multiply row i of matrix A with vector s, we load the first w elements of Ai and
the first w elements of s, then we perform integer vector-vector multiplication.
After that, we load the next w element of Ai and the next w elements of s, and
again we perform another integer vector-vector multiplication. We repeat these
steps until we multiply the entire row of A with s. Since we always multiply Ai,j

with sj , i.e, index j of Ai with index j of s, this means that data are aligned
in correct slots and no permutation needed. Therefore, this multiplication step
works very well with vectorization.

Next step is to sum all the results of the integer vector-vector multiplications
into a single integer. Unlike the multiplication step, this addition step requires
permutations because we want to add data which contain in the same vector. To
do so, we make use of the instruction vphaddd to perform horizontally additions
and the instruction vperm2i128 to perform permutations.

Parameters. We recall parameters in our construction. Let q be a modulus and
p be a rounding parameter such that q > p and log q = log p + logB where
q, p, and B are power of two. Let A ∈ Zm×n

q be a random public matrix.
Let s ∈ Zn

logB be a small secret vector. Similar to the module-LWR variant, we
want to set these parameters such that they satisfy the expansion-rate-ω output
length requirement and achieve at least 128-bit security for the underlying LWR
problem.
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Recall the length condition. In our LWR-based PRG, the input is the vector s
and the output is the rounded vector bAscp. That is, we have the output size
m · log p and the input size n · (logB). Therefore, the equation we consider is:

m · log p ≥ ω · (n · (logB))

m · (log q − (logB)) ≥ ω · (n · (logB)).

Similar remarks of requiring ω ≥ 2 and larger the ω shallower the tree also apply
to the LWR variant.

Now, we consider the security of the underlying LWR problem. We modified
Kyber’s script [11] to suit for our security estimation. Two main modifications
are: (1) setting the ring dimension to 1 (because we use the plain LWR); and (2)
using a uniform distribution instead of a binomial one. The conditions in which
we search for good parameter sets are as follows:

- q = 216, fixed
- logB ∈ {1, 2, 3, 4}
- n multiple of 32 in range [640, 800]
- m among 4,8,16 and 32 multiples of dn · logB/ log pe

Table 4 shows possible parameter sets for the LWR construction. To select which
parameters to implement, we prioritize the runtime and choose the last row,
namely, m = 1840, n = 800, logB = 2 which gives m/ω = 115, the tree’s depth
= 32, and the estimated security of 131.

Table 4: Good parameters achieving at least 128-bit LWR security and the
expansion-rate-ω condition

m n logB security ω m/ω mem depth mul

368 640 3 135 2 184 471040 128 15073280
384 672 3 143 2 192 516096 128 16515072
404 704 3 152 2 202 568832 128 18202624
424 736 2 131 4 106 624128 64 4993024
440 768 2 137 4 110 675840 64 5406720
460 800 1 129 8 115 736000 43 1995200

1840 800 2 131 16 115 2944000 32 2944000

We fix the modulus q = 216. Abbreviations ‘mem’ denotes size in bytes of matrix
A; ‘depth’ denotes tree’s depth; and ‘mul’ = m/ω× depth denotes the numbers of
multiplications.
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