
An Intimate Analysis of Cuckoo Hashing with a

Stash

Daniel Noble ∗

April 8, 2021

Abstract

Cuckoo Hashing is a dictionary data structure in which a data item is
stored in a small constant number of possible locations. It has the appeal-
ing property that the data structure size is a small constant times larger
than the combined size of all inserted data elements. However, many
applications, especially cryptographic applications and Oblivious RAM,
require insertions, builds and accesses to have a negligible failure prob-
ability, which standard Cuckoo Hashing cannot simultaneously achieve.
An alternative proposal introduced by Kirsch et al. is to store elements
which cannot be placed in the main table in a “stash”, reducing the fail-
ure probability to O(n−s) where n is the table size and s any constant
stash size. This failure probability is still not negligible. Goodrich and
Mitzenmacher showed that the failure probability can be made negligible
in some parameter N when n = Ω(log7(N)) and s = Θ(logN). In this
paper, I will explore these analyses, as well as the insightful alternative
analysis of Aumüller et al. Following this, I present a tighter analysis
which shows failure probability negligible in N for all n = ω(log(N))
(which is asymptotically optimal) and I present explicit constants for the
failure probability upper bound.

1 Introduction

Cuckoo hashing is a hash table implementation that improves performance by
allowing objects to be stored in a number of locations [PR01]. Pagh and Rodler
discovered that this small modification greatly reduced the probability of a build
failure. Specifically, a Cuckoo Hash table can store n elements of size log(N)
in O(n log(N)) space, with failure probability Θ(1

n) (see [DK12] for the explicit
constant).

For many applications this failure probability was sufficient. In the case that
a failure did occur, the hash table could simply be rebuilt with new hash func-
tions. While a hash table rebuild requires Θ(n) computation, the probability of

∗University of Pennsylvania, dgnoble@cis.upenn.edu

1

this occurrance is Θ(1
n), so the amortized computation cost per access is still

constant.
However, over the subsequent years, a number of applications arose that

caused this failure probability to be insufficient. Specifically:

• For certain applications, the indexes were sensitive data, and as such a
rebuild now constituted a security failure.

• Moreover, for some such applications the probability of a security failure
needed to be negligible in some parameter 2λ.

• Moreover, for some of those applications, n, the number of data items
might be significantly smaller than (e.g., polylogarithmic in) 2λ.

A sequence of works arose to address these problems.
Firstly Kirsch, Mitzenmacher and Wieder explored the modification that

any items which could not be stored in the Cuckoo Hash table would be stored
in a“stash” of constant size s [KMW09]. They showed that the probability of a
build failure was then reduced to O(n−s).

While this analyses allowed the failure probability to be reduced significantly,
it only applied to constant s, so did not allow the failure probability to be
negligible in n.

While Cuckoo Hashing was initially designed to allow for a constant number
of accesses, in certain situations it was acceptable to have a super-constant num-
ber of stash accesses if this could provide a negligible build failure probability.
For instance, since the stash is small, the stash may be stored in a lower mem-
ory level, so accesses to the stash may be significantly cheaper than accesses
to the hash table. Another important use-case is Oblivious RAM. Oblivious
RAM is a cryptographic primitive in which a trusted client can store data on an
untrusted RAM. While encryption allows the client to hide the contents of the
data, ORAM ensures that the client can also hide its access patterns from the
untrusted RAM. Many Oblivious RAM designs use the Hierarchical approach,
where data is stored in various hash tables of exponentially increasing sizes.
The client may have a small amount of memory available itself, which may be
enough for instance to store the stash. Therefore it is reasonable in this model
for the cost of stash accesses to be counted separately from those of accesses to
the Cuckoo Hash table(s). 1

Goodrich and Mitzenmacher developed such an Oblivious RAM protocol
[GM11]. While the analysis of Kirsch et al. did not provide negligible failure
probability, Goodrich and Mitzenmacher showed how to extended this analysis
to achieve negligigble failure probability in certain cases. They proved that,
provided n = Ω(log7(N)) a stash of size s = Θ(log(N)) would result in a
failure probability negligible in N . (For tables of size o(log7(N)) another type
of oblivious hashing data structure was needed.)

1Other Hierachical ORAMs allowed the client to only have constant memory usage, and
solved the problem of super-constant stashes by reinserting stash elements into another level,
or having a single shared stash. This meant that only non-stash elements would be accessed
in any given Hash Table, allowing for a constant number of accesses in these Hash Tables.

2

Aumüller, Dietzfelbinger and Woelfel then presented an elegant alternative
analysis of Cuckoo Hashing with a Stash based on graph counting [ADW14].
They showed firstly, that for constant s the probability of a build failure was
further upper-bounded by O(n−(s+1)). They then showed that for sufficiently

large n, the failure probability is O(n−
s
2) when s ≤ n 1

3r , for a suitable constant
r.

These analyses leave open the question of how small n can be in terms of
N and still have a Cuckoo Hash table with a stash with negligible probability
of build failure. This survey reviews the analyses above in detail. It then ex-
tends the analysis to present a bound that is asymptotically tight. The bound
on the failure probability also contains explicit constants. This is an impor-
tant towards constructing concrete hierarchical ORAM implementations, which
require concrete bounds for build failures of small cuckoo hash tables.

2 Notation

We will use the following notation and variables throughout the table:
[x]: The set of integers 1, . . . , x for some integer x > 0.

n: The number of items to be stored in the table.
N : A parameter N > n such that failure should be negligible in N .
m: The size of the regular hash tables. (We will examine the two-table case, so
the total Cuckoo hash table will have size 2m.)
Po (µ): The Poisson distribution, with parameter µ.
Bin (M,p): The Binomial distribution, with M trials, each with probability of
success p.

3 Cuckoo Hashing

Cuckoo Hashing in its simplest form involves 2 hash functions, h1 and h2, and
2 hash tables, T1 and T2, each with m = εn locations of capacity 1. Each
hash table has a unique hash function, and the hash functions are assumed to
produce outputs uniformly at random in [m]. The tables consist of pairs (x, y)
where x is the dictionary key and y is the dictionary value. An item (x, y) is
stored in the table by being inserted into T1[h1(x)]. If another item (x′, y′) was
stored in that location, it is removed from its original location (like a baby bird
being displaced from its nest by a Cuckoo chick) and is placed in T2[h2(x′)].
This may replace another item, which the algorithm likewise attempts to insert.
This process continues either until every item has found a location in which
to be inserted, or some threshold on the recursion depth is reached.2 In the

2Many works (e.g. [KMW09]) set this recursion depth to α log(N) for a sufficiently large
constant α. This makes the probability that an item that can be inserted is not inserted small,
but does not make this probabality negligible. Therefore we instead in our analysis assume
that the maximum recursion depth is 2n, which ensures an optimal allocation.

3

latter case the insertion has “failed”. This triggers a “table rebuild” in which
new tables are created with new hash functions and the algorithm attempts to
insert every element into the new hash table.

Cuckoo Hash tables can be generalized to have a larger number of hash
functions. They can also be generalized to use a single table.

4 A Lower Bound

We begin by showing the following lower bound on the number of elements n in
terms of the security parameter N , such that cuckoo hashing with a stash can
fail with negligible probability in N . For consistency with other parts of the
paper, we use the 2-table construction but this can easily be adapted to other
constructions.

Theorem 1. If n = O(log(N)) and n − s = Ω(n) then it is impossible for a
2-table Cuckoo Hash table to have a negligible build failure probability in N .

Proof. Since n − s = Ω(n), it follows that n − s ≥ c0n for sufficiently large n
where the constant c0 satisfies 0 < c0 ≤ 1. Therefore:

n− s
n
≥ c0

n− s− 2

n
≥ c0 −

2

n
n− s− 2

n
≥ c0

2
when n ≥ 4

c0
n− s− 2

n
≥ c1 for constant c1 satisfying 0 < c1 ≤

1

2

Since n = O(log(N)), there is some constant c2 such that n ≤ c2 log(N) (for
sufficiently large n).

Let m = εn be the size of each table.
If all n items are hashed to the first dn−s−2

2 e locations in both tables, then
2dn−s−2

2 e ≤ n−s−1 items can be stored in the table, and s items can be stored
in the stash, but 1 item will not be able to be stored at all, so the build fails.

The probability that all n items are stored in the first dn−s−2
2 e locations in

both tables is at least:

(
n− s− 2

2εn

)2n

≥
(c1

2ε

)2c2 log(N)

≥ N2c2 log(c12ε)

This is non-negligible in N . Therefore the probability of a build failure is
non-negligible.

4

This immediately implies the contrapositive:

Corollary 1. Cuckoo Hashing with a stash requires n − s = o(n) or n =
ω(log(N)) in order to succeed with failure negligible in N .

The case that n− s = o(n) is very unnatural–it implies that a sub-constant
number of elements are stored in the table, at which point the Cuckoo table is
not providing much use. Thus, in any realistic setting where Cuckoo tables are
used, it is necessary that n = ω(log(N)). This provides the lower bound for n in
terms of N such that Cuckoo Hashing with a stash has a negligible probability
of failure. We will later provide analysis that shows that this is also the upper
bound for Cuckoo Hashing to succeed, so this bound is tight.

5 Graph Representation

Analyses of Cuckoo Hash table failure often represent the problem as a graph
problem as follows. For each location in the Cuckoo hash table, create a vertex.
Since the Cuckoo hash table has two tables each with capacity m, there will be
2m vertices. For each element stored in the Cuckoo hash table, draw an edge
between the two locations in which it may be stored. Let G be the resulting
graph. Since there will be one location from each table, G will be bipartite,
with m vertices in each part. There may also be multiple edges between a pair
of vertices, so G is a multigraph. Observe also that the graph is not connected:
since n < m some nodes will not be connected to any edges and there may also
be multiple connected components that contain edges.

Let γ(G) denote the cyclotomic number of G, that is the minimum number
of edges that must be removed in order for G to be acyclic. Let ex(G) denote
the excess of G, that is the minimum number of edges that must be removed
from G to ensure that every connected component is acyclic or unicyclic.

Analysis is based on the following critical observation (which is proven, for
instance, as Lemma 5 of [ADW14]).

Theorem 2. Let G be the graph representation of a Cuckoo hash table with a
stash of size s. Then the build succeeds if and only if ex(G) ≤ s.

6 Kirsch et al: Cuckoo Hashing with a Constant
Sized Stash

Here we present the analysis of Kirsch et al [KMW09]. While they delt only
with the case where the stash is constant, their analysis is the foundation of
Goodrich and Mitzenmacher’s analysis of the case with super-constant stashes
and the tighter analysis presented later in this paper.

As explained in Section 5, the analysis first treats the problem as looking at
the distribution of the excess of the corresponding graph distribution.

The first step is to describe distributions of these graphs. G(m,m,D) de-
notes the distribution of graphs generated by picking a bipartite graph with m

5

nodes in each part, picking a number of edges according to D, and assigning
each edge a left-endpoint chosen uniformally at random from one part and a
right-endpoint chosen uniformally at random from the other part. G(m,m, n)
describes the actual distribution of Cuckoo graphs, where n, in slight abuse of
notation, also represents a probability distribution entirely concentrated at the
value n.

Kirsch et al. propose to instead look at the distribution G(m,m,Po(λ)),
where Po(λ) represents the Poisson distribution with parameter λ. This has the
desirable property that the multiplicity of each edge is distributed according to
Po(λ

m2) and is independent.
They then show that for n(1 + ε0) ≤ λ ≤ m(1 − ε0) for some constant ε0,

the probability that Po(λ) < n is negligible. Specifically: Pr(Po(λ) < n) ≤
e−λ

(
eλ
n

)n ≤ e−n(ε0−ln(1+ε0)) ≤ e−Ω(n). Since n = ω(log(N)) this probability is
negligible in N .

Let G0 ← G(m,m,X) where X is distributed according to Po(λ) condi-
tioned on X ≥ n. They showed that any upper bound on ex(G0) will also
apply to ex(G(m,m, n)). This is evident since G0 can be viewed as first picking
a graph from G(m,m, n) and then adding a further X − n edges. Doing this
will never reduce the excess, and may increase it.3

Following this, Kirsch et al present the following important result:

Lemma 1. Lemma 2.7 of [KMW09]. There exists some constant, 0 < β < 1
such that for any fixed vertex v and integer k ≥ 0,

Pr(|Cv| ≥ k) ≤ βk

Here Cv is the connected component containing vertex v and |Cv| is the
number of edges it contains.

They then examine the cyclotomic number of each component, γ(Cv). First
they calculate this conditioned on the number of edges in the component:

Lemma 2. Lemma 2.8 of [KMW09]. For every vertex v and t, k, n ≥ 1

Pr(γ(Cv) ≥ t||Cv| = k) ≤
(

3e5k3

m

)t
Combining these yields that for any constant t:

Pr(γ(Cv) ≥ t) ≤
∞∑
k=1

(
3e5k3

m

)t
βk

Using the assumption that t is a constant, this simplifies to O(n−t). (As a
result of assuming constant t, their later equations will only apply for constant-
sized stashes.)

3Kirsch et al prove a more general statement using the language of stochastic dominance.
However, this generality is not needed for their main result.

6

It follows naturally that the excess of a component has the following bound
for any constant s:

Pr(ex(Cv) ≥ s) = Pr(γ(Cv) ≥ s+ 1) ≤ O(n−(s+1))

The authors then observe that, even though the distributions ex(Cv) are not
independent across different components, they are in fact negatively correlated.
Furthermore, the number of vertices is fewer than the number of components.
Therefore, they show that the sum of 2m independent samples of ex(Cv), will
stochastically dominate the actual excess of the graph. If B1, . . . , B2m are 2m
independent samples from γ(Cv), then:

Pr(ex(G) ≥ s) ≤ Pr

(
2m∑
i=1

Bi ≥ s+ |i : Bi ≥ 1|

)
By separating the sum according to the number of components with non-

zero excess and assuming that s is a constant, the authors derive the desired
bound of O(n−s).

In short, Kirsch et al. provided the first analsyis of Cuckoo Hashing with a
stash, and present a useful framework for analysis by examining the excess of
random components in a related Poisson-based graph representation. However,
their result assumes the stash size is constant and does not make the constants
explicit.

7 Goodrich and Mitzenmacher: Privacy-Preserving
Access of Outsourced Data via Oblivious RAM
Simulation

Goodrich and Mitzenmacher constructed an Oblivious RAM scheme using Cuckoo
hashing. Firstly, this required that the failure probability be negligible, which
could not be satisfied by the previous analysis of Kirsch et al [KMW09] which
only provided failure probability O(n−s) for constant-sized s. Furthermore,
the ORAM application now required failure to be negligible in the size of the
ORAM, N , not in the size of the table, n, where n could by poly-logarithmic in
N .

This therefore required a much closer analysis. This analysis is presented
in Appendix C of their paper, but despite its obscure location, its result has
been very important for later ORAM work and referenced extensively [KLO12,
GMOT12, LO13]. In particular they show that for n = Ω(log7(N)), and s =
Θ(log(N)), the failure probability is negilible in N . Considering how cited this
result is, the analysis is slightly cursory, so below we fill in some of the missing
details.

They start from the results of Kirsch et al. This implicitly re-uses the Pois-
sonization argument, which holds since n = ω(log(N)) is still satisfied. Specifi-
cally, they begin with the results that

7

Pr(γ(Cv) ≥ t||Cv| = k) ≤
(

3e5k3

m

)t
and that for some constant 0 ≤ β ≤ 1

Pr(|Cv| = k) ≤ βk

Combining these yields that

Pr(γ(Cv) ≥ t) ≤
∞∑
k=1

Pr(γ(Cv)||Cv| = k)Pr(|C| ≥ k)

≤
∞∑
k=1

min

((
3e5k3

m

)t
, 1

)
βk

βk is a geometric sequence in k. Recalling that 0 < β < 1, this means that∑∞
i=a β

k = βa

1−β . They observe that when k = Ω(log2N), βk will be negligible
in N , so

∞∑
k=log2(N)

min

((
3e5k3

m

)t
, 1

)
βk = N−ω(1)

This means the expression will be negligible if the sum of the terms from k = 1
to k = O(log2(N)) is negligible.

They assume that m = Θ(n) = Ω(log7N). They argue that in this case
Pr(γ(Cv) ≥ j + 1) is at most m−1−αj for some constant α. A proof of this is
missing in the paper, but it can be shown that Pr(γ(Cv) ≥ j+1) = O(m−1−αj)
by the following argument. Given that k = O(log2(N)),

3e5k3

m
= O

(
1

log(N)

)
= O

(
m−

1
7

)
Therefore,

log2(N)∑
k=1

min

((
3e5k3

m

)t
, 1

)
βk ≤

log2(N)∑
k=1

(
3e5
)t
m−

t
7

Observe that, from the constant-stash case, Pr(γ(Cv) ≥ t+1) = O(m−1−t).
For t ≥ 9 and sufficiently large m,

Pr(γ(Cv) ≥ t+ 1) ≤ neg(N) +

log2(N)∑
k=1

(
3e5
)t+1

m−
t+1
7

≤ neg(N) + log2(N)
(
3e5
)t+1

m−
9
7−

t−8
7

≤ neg(N) +m
2
7

(
3e5
)t+1

m−
9
7−

t−8
7

≤ neg(N) +
(
3e5
)t+1

m−1− t
63

≤ O(m−1−αt) for some constant α

8

Since Pr(γ(Cv) ≥ t + 1) ≤ O(m−1−t) for 1 ≤ t ≤ 8 and (with a differ-
ent constant in the O-notation) Pr(γ(Cv) ≥ t + 1) ≤ O(m−1−αt) for t ≥ 9,
Pr(γ(Cv) ≥ t+ 1) ≤ cm−1−αt for some constants α and c.

Continuing from their claim that Pr(γ(Cv) ≥ t+1) ≤ m−1−αt they continue
their analysis based on that of Theorem 2.2 of [KMW09]. We present the
analaysis below, but include the constant c.

Pr(ex(G) ≥ s) ≤
∑

j1,...,j2m∑2m
i=1 ji=s

∏
i=1,...,2m
ji≥1

cm−1−αji

≤
2m∑
k=1

∑
j1,...,j2m∑2m
i=1 ji=s

|{i:ji≥1}|=k

ckm−αs−k

≤
2m∑
k=1

(
2m

k

)
skckm−αs−k

≤
2m∑
k=1

(
2me

k

)k
skckm−αs−k

≤ m−αs
2m∑
k=1

(
2esc

k

)k

≤ m−αs
2m∑
k=1

e2sc

≤ m−αs2me2sc

≤ m1+logm(2)−(α−2c logm(e))s

≤ m−Ω(s)

For s = Θ(log(N)) and m = Ω(log7(N)), this is negligible in N .

8 Aumüller et al. Explicit and Efficient Hash
Families Suffice for Cuckoo Hashing with as
Stash

Aumüller et al. [ADW14] present an elegant alternative analysis of Cuckoo
Hashing with a stash. This analysis also treats the problem by representing
it as a problem on random graphs and determining whether the excess of the
graph is above a certain threshold. However, unlike the approach of Kirsch et al
[KMW09], they do this by counting the number of possible graphs that would
result in a stash overflow, and then determining the probability that the graph
representation of the Cuckoo Hash table is such a graph.

9

They define N(t, `, γ, ζ) to be the number of non-isomorphic multi-graphs
with t edges, ` leaf edges, cyclotomic number γ and ζ components. They prove
(Lemma 4) using simple inductive arguments, that N(t, `, γ, ζ) = tO(`+γ+ζ).

They then define (Definition 6) an excess-(s+ 1) core graph to be a leafless
graph of excess exactly s+1 in which every component contains at least 2 cycles.
An excess-(s+ 1) core graph can be thought of as a minimal version of a graph
that still contains excess s+1, and they prove that any graph that has excess at
least s+ 1 will contain an excess-(s+ 1) core graph as a subgraph. Hence, the
probability that ex(G) ≥ s + 1 is the probability that G contains a sub-graph
that is an excess-(s+ 1) core graph.

Let G′ be an excess-(s + 1) core graph, with connected components Ci for
1 ≤ i ≤ ζ. By definition an excess-(s + 1) core graph will have each connected
component contribute at least one to the excess, so ζ ≤ s + 1. Furthermore, if
γi = γ(Ci), then (s + 1) =

∑ζ
i=1(γi − 1) = γ − ζ, so γ ≤ 2(s + 1). Lastly, an

excess-(s+1) core graph by definition has no leaves. This means that the number
of excess-(s+ 1) core graphs with t edges is N(t, `, γ, ζ) = tO(γ+ζ) = tO(s).

They then proceed to determine the number of labelled excess-(s + 1) core
graphs that are sub-graphs of bipartite graph. First it is necessary to observe
that the number of vertices is t− γ + ζ = t− (s+ 1). Since the graph is bipar-
tite, each connected component of the sub-graph is also bipartite, so the part-
assignment of a single vertex in that component determines the part-assignment
of all other vertices. There are therefore 2ζ ≤ 2s+1 possible choices of assign-
ments of vertices to parts. Given the assignment of parts for each vertex, there
are at most mt−(s+1) assignments of labels. Given a set of t edges, the num-
ber of ways the edges can be labelled is t!. This shows that the total number
of possible labelled excess-(s + 1) core graphs (given a set of t edge labels) is
upper-bounded by:

t!2s+1mt−s−1tO(s)

Given n edges, there are
(
n
t

)
subsets of these edges. There are therefore at

most
(
n
t

)
t!2s+1mt−s−1tO(s) labelled subgraphs with t edges that form an excess-

(s+ 1) core graph.
Each edge is chosen from [m]2 (since there are m vertices in each part).

Therefore, the probability that there is a labelling that corresponds to an excess-
(s+ 1) core graph with t edges is at most(

n

t

)
t!2s+1mt−s−1tO(s)

m2t
≤ 2s+1

ms+1

nttO(s)

mt
=

2s+1

ms+1

tO(s)

(1 + ε)t

An excess-(s + 1) core graph, must have at least s + 3 edges, so if we sum
over all s+ 3 ≤ t ≤ n we obtain the final result:

Pr(ex(G) ≥ s+ 1) ≤ 2s+1

ns+1

∑
s+3≤t≤n

tO(s)

(1 + ε)t
(1)

10

For some constant s, this yields the following failure probability (Lemma 7
of [ADW14]):

Pr(ex(G) ≥ s+ 1) ≤ O
(

1

ns+1

)
They also demonstrates bounds for super-constant s. Specifically, they show

that for sufficiently large n, and for a certain, super-constant, range of s, the
following bound holds (Theorem 2 of [ADW14]):

Pr(ex(G) ≥ s+ 1) ≤ O
(

1

n
s
2

)
However, the analysis of Aumüller et al does not provide good concrete

bounds as is. In the proof of their analysis of a super-constant sized stash
(Theorem 2), they state that an initial examination of their proofs shows yields
a constant of 27 in the big-oh notation in the exponent in Equation 1. Fur-
thermore, this requires the table size to be a large polynomial in the size of s,
specifically n ≥ s3∗27 = s81. In the case where N >> n and failure negligble
in N is required, this requires that n ≥ log81(N), which is much looser than
the bound n ≥ log7(N) of [GM11]. It would be an interesting further work
to determine if a more careful analysis on the number of excess-(s + 1) core
graphs could yield bounds that are useful for computing required stash sizes for
concrete failure probabilities.

In addition to this analysis, Aumüller et al present explicit efficient hash-
functions. They show that even though these hash functions no longer have
outputs that are chosen uniformly at random and independent, these hash func-
tions are still sufficiently random that the failure probability is not significantly
increased.

9 A Tight Analysis

In this section we present an analysis of Cuckoo Hashing with a stash. This
analysis shows that for s = Θ(log(N)) the failure probability is negligible for
any n = ω(log(N)).

As with Kirsch et al. we look at graphs chosen from G(m,m,Po(λ)) to
upper-bound those chosen from G(m,m, n). This means that the multiplicity
of each edge is chosen from Po

(
λ
m2

)
, where n(1 + ε0) ≤ λ ≤ m(1 − ε0). This

adds a failure probability of e−n(ε0−ln(1+ε0)) to account for the possibility that
the total number of edges is fewer than n.

We now bound the cyclotomic number of connected components inG(m,m,Po(λ))
given their size where a component’s size is defined as the number of vertices in
the component.4

4Note that this differs from [KMW09], in which the size of a component is the number of
edges it contains.

11

Theorem 3. Given a random vertex v in G(m,m,Po(λ)), and letting Cv be
the connected component containing v

Pr(γ(Cv) ≥ t||Cv| = k) ≤
(
ek2(1− ε0)

4mt

)t
Proof. Imagine a Breadth First Search on a component of this graph. We can
execute the Breadth First Search such that if a vertex at depth d has multiple
edges to vertices at depth d−1 we only observe one of these edges. Once the BFS
is complete, we can then observe the number of edges that were not observed
during the BFS.

Let us make some observations between the edges that could have not been
observed in the graph. If there is some vertex u at level d, there cannot be an
unobserved edge between it and any vertex w at level d′ >= d + 2, as if such
an edge existed, w would have been found earlier during the BFS and placed at
level d+ 1. Recall also that the graph is bipartite. We can therefore see that all
vertices at a given level are in the same part. This can be shown by induction:
it is true trivially of the first level which contains only a single vertex. Given
it is true of a certain level d, it is true of level d + 1 since all vertices in level
d+ 1 are neighbors of vertices in level d so must all be in the other part of the
graph as those in level d, so are all in the same part of the graph as each other.
It follows that there cannot be any edges between vertices at the same level.
Let a be the number of vertices in the connected component Cv, where Cv has
k vertices total. The number of unobserved vertex pairs that may have edges
between them is therefore at most a(k − a). This is maximized by a = k

2 and

results in there being k
4 pairs of vertices in Cv that may have vertices between

them.
Of these k − 1 are known to have at least one edge between them, these

being the edges that were found during the BFS. Since the Poisson distribution
is exponentially decreasing, the number of additional edges between each of
these pairs of vertices, is stochastically dominated by Po

(
λ
m2

)
. The number of

edges between pairs of vertices such that the multiplicity of the edges between

them was not observed is exactly Po
(
λ
m2

)
and there are at most k2

4 −(k−1) such
edge pairs. Therefore, the total number of unobserved edges is stochastically

dominated by Po
(
k2λ
4m2

)
.

Given a standard bound of the Poisson distribution, for any t ≥ 1 this means
that

Pr (γ(Cv) ≥ t||Cv| = k) ≤
(
ek2(1− ε0)

4mt

)t
e−

k2(1−ε0)
4m

≤
(
ek2(1− ε0)

4mt

)t

Now we need to upper-bound the probability that |Cv| = k. Kirsch et al
show that Pr(|Cv| ≥ k) ≤ βk for a constant β < 1. We will prove a slightly

12

different bound that will be more useful for our later analysis. It also appears
in their analysis, they switch back to analyzing G(m,m, n), whereas we will
continue to analyze G(m,m,Po(λ)).

Theorem 4. Given a random vertex v in G(m,m,Po((1− ε0)m)), and letting
Cv be the connected component containing v, where ε0 is a constant in (0, 1)

and ε1 =
ε20

2−ε0 , then

Pr(|Cv| = k) ≤ 2

k(1− ε0)
e−ε1k

Proof. Let us return to the BFS algorithm. Given that the node u has been
found in the BFS, and that node w has not yet been found, the probability that
w is a child of u is:

Pr

(
Po

(
λ

m2
≥ 1

))
= 1−Pr

(
Po

(
λ

m2

)
= 0

)
= 1− e−

λ
m2

≤ 1−
(

1− λ

m2

)
≤ λ

m2

Now, some of the nodes will have already been observed by the BFS. These
have zero probability of being a child of u. For nodes that have not been observed
by the BFS, the probabilities that they are a child of u is independent. There-
fore, the number of children of u is stochastically dominated by Bin(m, λ

m2). Let

r = λ
m = 1 − ε0. The number of children is therefore stochastically dominated

by Bin(m, rm).
From Pitman [Pit98] we have the result that if a branching process has

children chosen independently from the distribution Xi, the probability that
the total progeny is k is (exactly) 1

kPr(Sk = k − 1) where Sk is the sum of k
independent samples from Xi. In this case, we instead have that the number of
children is stochastically dominated by Bin(m, λ

m2), therefore:

13

Pr(|Cv| = k) ≤ 1

k
Pr(Bin(mk,

r

m
) = k − 1)

≤ 1

k

(r
m

)k−1 (
1− r

m

)mk−(k−1)
(
mk

k − 1

)
≤
(r
m

)−1 (r
m

)k (
1− r

m

)(
1− r

m

)mk−k 1

mk − (k − 1)

(mk)!

k!(mk − k)!

≤ 1

mk − (k − 1)

m

r

(
1− r

m

)
Pr(Bin(mk,

r

m
) = k)

≤ 1

mk − (k − 1)

(m
r
− 1
)
Pr(Bin(mk,

r

m
) = k)

≤ m

mk − (k − 1)

(
1

r

)
Pr(Bin(mk,

r

m
) = k)

≤ 1

k − k−1
m

(
1

r

)
Pr(Bin(mk,

r

m
) = k)

≤ 1

k − k
2

(
1

r

)
Pr(Bin(mk,

r

m
) = k)

≤ 2

k

(
1

r

)
Pr(Bin(mk,

r

m
) = k)

≤ 2

kr
Pr(Bin(mk,

r

m
) ≥ k)

The expected value of Bin(mk, rm) is rk. Setting s = 1
r−1 = 1−r

r = ε0
1−ε0 > 0

and observing k = (1 + s)rk Standard Chernoff bounds show that

Pr(Bin(mk,
r

m
) ≥ k) ≤ e−

s2rk
2+s

≤ e
−

(ε0
1−ε0)

2
(1−ε0)k

2+
ε0

1−ε0

≤ e−
ε20k

2(1−ε0)+ε0

≤ e−
ε20k

2−ε0

≤ e−ε1k

where ε1 =
ε20

2−ε0 .

Therefore Pr(|Cv| = k) ≤ 2
kr e
−ε1k.

14

Combining Theorems 3 and 4 yields:

Pr(γ(Cv) ≥ t) ≤
2m∑
k=1

(
ek2r

4mt

)t
2

kr
e−ε1k

≤ 2

r

(er

4mt

)t 2m∑
k=1

k2t−1e−ε1k (2)

We will need the following Lemma to simplify this further:

Lemma 3. Let t ≥ 1, ε1 ∈ (0, 1). Then:

2m∑
k=1

k2t−1e−ε1k ≤ 2e

(
2t

ε1e

)2t

Proof. It is possible to approximate a summation with an integral, using the
same methods as Reinman sums but in reverse. Let f(x) be a continuous func-
tion that is monotonically increasing until a maximum point xmax, after which x
is monotonically decreasing. Let x′ = bxmaxc. Let h(x) = min(f(bxc), f(bxc+

1)). Let us observe how
∑b
x=a h(x) approximates

∫ b+1

a
f(x)dx.

Observe that for any integer a, h(x) is the same for all x ∈ [a, a+ 1). Since
f(x) has no local minima and is continuous, the minimum value of f(x) over the
range [a, a+ 1) is either at f(a) or f(a+ 1). Therefore f(x) ≥ min(f(a), f(a+
1)) = h(x) for x ∈ [a, a + 1). Since this applies to the interval [a, a + 1)
for any integer a, h(x) ≤ f(x) for all x. Hence, for any integers a and b,∑b
a h(x) =

∫ b+1

a
h(x) ≤

∫ b+1

a
f(x)dx.

∫ b+1

a

f(x)dx ≥
b∑
a

h(x)

≥
x′−1∑
a

f(x) +min(f(x′), f(x′ + 1)) +

b∑
x′+1

f(x+ 1)

≥

(
b+1∑
a

f(x)

)
−max(f(x′), f(x′ + 1)

≥

(
b+1∑
a

f(x)

)
− f(xmax)

Hence:

b∑
a

f(x) ≤
∫ b

a

f(x)dx+ f(xmax)

15

Let f(x) = x2t−1e−ε1x where t ≥ 1 and 0 < ε1 < 1. First we need to
show that it is a function that is monitonically increasing, then monitonically
decreasing.

f ′(x) = (2t− 1)x2t−2e−ε1x − ε1x2t−1e−ε1 = x2t−2e−ε1(2t− 1− ε1x)

Observe that x2t−2 and e−ε1 are both positive. Therefore f ′(x) will be
positive when x < 2t−1

ε1
, f ′(x) = 0 at x = 2t−1

ε1
and will be negative when x >

2t−1
ε1

. Therefore this function is monotonically increasing, then monitonically

decreasing, as required, with xmax = 2t−1
ε1

. We can easily calculate:

f(xmax) =

(
2t− 1

ε1

)2t−1

e−(2t−1)

=

(
2t− 1

ε1e

)2t−1

Hence the inequality applies to the sum and

2m∑
k=1

k2t−1e−ε1k ≤
∫ 2m

1

x2t−1e−ε1xdx+

(
2t− 1

ε1e

)2t−1

≤
∫ ∞

0

x2t−1e−ε1xdx+

(
2t− 1

ε1e

)2t−1

By a standard integral identity,
∫∞

0
x2t−1e−ε1xdx = (2t−1)!

ε2t1
. Furthermore, a

standard factorial approximation shows that (2t− 1)! ≤ (2t)2te−2t−1. Hence

2m∑
k=1

k2t−1e−ε1k ≤
(

2t

ε1

)2t

e−(2t−1) +

(
2t− 1

ε1e

)2t−1

≤
(

2t

ε1

)2t

e−(2t−1) +

(
2t

ε1

)2t−1

e−(2t−1)

≤ 2

(
2t

ε1

)2t

e−(2t−1)

≤ 2e

(
2t

ε1e

)2t

where we use the fact 0 < ε1 < 1.

Applying Lemma 3 to equation 2 yields the following, fairly concise result:

16

Pr(γ(Cv) ≥ t) ≤
2

r

(er

4mt

)t
2e

(
2t

ε1e

)2t

≤ 4e

r

(
rt

meε21

)t

The following corrolary immediately follows:

Corollary 2. Let constants ε2 = 4e
1−ε0 and ε3 = 1−ε0

eε21
, where ε1 =

ε20
2−ε0 . Then

the cyclotomic number and excess of the connected component of a random vertex
in G(m,m,Po ((1− ε0)m)) are upper-bounded as follows:

Pr(γ(Cv) ≥ t) ≤ ε2
(
ε3t

m

)t

Pr(ex(Cv) ≥ s) ≤ ε2
(
ε3(s+ 1)

m

)s+1

This bounds the excess of a single component. We would like to use this
to bound the excess of the entire graph. However, the excess of different com-
ponents is not independent. Thankfully, as Kirsch et al observed, γ(Cv) are
negatively correlated across different components, and are therefore stochasti-
cally dominated by the sum of independent samples.

Kirsch et al. formalized this as the following lemma, which they prove in
their paper.

Lemma 4. (Lemma 2.10 of [KMW09]) Fix some ordering v1, . . . , v2m of the
vertices. For i = 1, . . . 2m, let C ′vi = Cvi if vi is the first vertex in the ordering
to appear in Cv, and let C ′vi be the empty graph on the 2m vertices otherwise.
Let C ′′v1 , . . . , C

′′
v2m be 5 independent random variables such that each C ′′vi is dis-

tributed as Cvi . Then (C ′′v1 , . . . , C
′′
v2m) stochastically dominates (C ′v1 , . . . , C

′
v2m).

In brief, Kirsch et al prove this by showing that, if the Cvi are sampled in
order, then C ′vi will either be sampled from the empty graph (if vi was already
found in a component) or will be sampled as with Cvi but with all previously-
found vertices removed from the graph.

It therefore follows that ex(G) =
∑2m
i=1 ex(C ′vi) ≤

∑2m
i=1 ex(C ′′vi)

We make the following additional observation. Recall that the graph is
bipartite and each part contains m vertices. We will pick our indexing such
that the vertices 1 through m are all in a single part. Since every component
that contains a cycle must contain vertices in both parts of the graph, then the
vertices indexed m + 1 to 2m will, if they are in a component that contains a

5The Lemma in Kirsch et al. states this as up to C′′vm but 2m such variables are needed
for their lemma.

17

cycle, not be the lowest index in that component. Therefore ex(C ′i) = 0 for
m+ 1 ≤ i ≤ 2m.

It also follows from Lemma 2.10 of [KMW09] that (C ′′v1 , . . . , C
′′
vm) stochasti-

cally dominates (C ′v1 , . . . , C
′
vm) Hence

ex(G) =

m∑
i=1

ex(C ′vi) ≤
m∑
i=1

ex(C ′′vi)

To complete our analysis, we will need the following Fact. It is simple to
state, but slightly tedius to prove, but is worth to work.

Fact 1. For all integers s ≥ 2,
∑s−1
a=1(a+ 1)a+1(s+ 1− a)s+1−a ≤ ε4(s+ 1)s+1

Proof. By calculation, this is true for s ∈ {2, 3, 4, 5, 6, 7, 8}, for which the left-
hand side values are, respectively {16, 216, 2777, 38824, 607534, 10707768, 212342547}
and the right-hand side values are respectively {24.03, 227.84, 2781.25, 41523.84,
732953.27, 14931722.24, 344804235.2}. For s > 8 we prove by induction.

Given that it holds true for s ≤ 8, let us show it holds true for s+ 1.

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a +

s−1∑
a=t+1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e
s−1∑
a=t+1

(a+ 1)a+1(s+ 1− a)s+1−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e(
s−1∑
a=1

(a+ 1)a+1(s+ 1− a)s+1−a −
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1

)
+ (s+ 1)s+122

≤ e
t∑

a=1

(a+ 1)a+1(s+ 2− a)(s+ 1− a)s+1−a + (s+ 1− t)eε4(s+ 1)s+1

− e(s+ 1− t)
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1 + (s+ 1)s+122

≤ e
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1((s+ 2− a)− (s+ 1− t)) + ε4(s+ 2)s+2

− teε4(s+ 1)s+1 + (s+ 1)s+122

≤ ε4(s+ 2)s+2 + 22(s+ 1)s+1 + e

t∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1(t+ 1− a)− teε4(s+ 1)s+1

18

Setting t = 3 yields:

≤ ε4(s+ 2)s+2 + 22(s+ 1)s+1 + e22ss3 + e33(s− 1)s−12 + e44(s− 2)s−2 − 3eε4(s+ 1)s+1

≤ ε4(s+ 2)s+2 + (s+ 1)s+1

(
22 +

12

s
+

54

es(s− 1)
+

256

e2s(s− 1)(s− 2)
− 3eε4

)

For s ≥ 8, the term 22 + 12
s + 54

es(s−1) + 256
e2s(s−1)(s−2) ≤ 5.5. Since 3eε4 > 5.5

the inequality simplifies to:

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a ≤ ε4(s+ 2)s+2

Since it holds true up to s = 2, . . . , 8 by inspection, and holds true for s ≥ 8
by induction, the statement is true for all s ≥ 2.

Lemma 5. Let U(s, q) be the set of sequences of positive integers, where T ∈
U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤ 0.89q−1(s+ 1)s+1

Proof. We proceed by induction on the length of the sequences. For q = 1, U
contains a single sequence T with T1 = s. Then

∑
T∈U(s,q)

∏
1≤i≤q(Ti+1)Ti+1 =

(s+ 1)s+1 = 0.890(s+ 1)s+1.
Assume that the theorem holds for all sequences of length q ≥ 1. We will

show that it also holds for all sequences of length q + 1.

∑
T∈U(s,(q+1))

∏
1≤i≤q+1

(Ti + 1)Ti+1 ≤
s−q∑
T1=1

(T1 + 1)T1+1
∑

T ′∈U((s−T1),q)

∏
1≤i≤q

(T ′i + 1)T
′
i+1

≤
s−1∑
a=1

(a+ 1)a+10.89q−1(s− a+ 1)s−a+1

≤ 0.89q−1
s−1∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1

≤ 0.89q(s+ 2)s+2

We can now bound the excess of the entire graph. We have that ex(G) ≤∑m
i=1 ex(C ′′vi). In order for

∑m
i=1 ex(C ′′vi) ≥ s, there must be some sequence

j′1, . . . , j
′
m such that

∑
i j
′
i ≥ s and ex(C ′′vi) = j′i. Equivalently, if there was a

sequence j1, . . . , jm such that
∑
i ji = s and ex(C ′′vi) ≥ ji then

∑m
i=1 ex(C ′′vi) ≥ s

would also be satisfied.

19

Therefore

Pr(ex(G) ≥ s) ≤ Pr(

m∑
i=1

ex(C ′′vi) ≥ s)

≤
∑

j1,...,jm∑
i ji=s

Pr(∧iex(C ′′vi) ≥ ji)

≤
s∑
q=1

∑
j1,...,jm∑
i ji=s

|{ji:ji≥1}|=q

∏
{ji:ji≥1}

ε2

(
ε3(ji + 1)

m

)ji+1

≤
s∑
q=1

(
m

q

) ∑
T∈U(s,q)

∏
{x∈T}

ε2

(
ε3(x+ 1)

m

)x+1

≤
s∑
q=1

(
m

q

)
εq2

(ε3
m

)s+q ∑
T∈U(s,q)

∏
{x∈T}

(x+ 1)
x+1

≤
s∑
q=1

(
m

q

)
εq2

(ε3
m

)s+q
0.89q−1(s+ 1)s+1

≤ 1

0.89
(s+ 1)s+1

(ε3
m

)s s∑
q=1

(
em

q

)q
εq2

(ε3
m

)q
0.89q

≤ 1

0.89
(s+ 1)s+1

(ε3
m

)s s∑
q=1

(
0.89eε2ε3

q

)q
≤ (s+ 1)e

0.89

(ε3s
m

)s s∑
q=1

(
0.89eε2ε3

q

)q

The summation on the right results in a constant. Concretely, over the
positive reals the function

(
a
x

)x
is maximized at x = a

e , for which it has value
e
a
e . Therefore:

∞∑
x=1

(a
x

)x
≤

2a−1∑
x=1

(a
x

)x
+

∞∑
x=2a

(a
x

)x
≤

2a−1∑
x=1

(e
a
e) +

∞∑
x=2a

(
1

2

)x
≤ e ae (2a− 1) + 1

≤ 2ae
a
e

20

Therefore

Pr(ex(G) ≥ s) ≤ (s+ 1)e

2

(ε3s
m

)s
4eε2ε3e

2ε2ε3

≤ 2(s+ 1)e2ε2ε3e
0.89ε2ε3

(ε3s
m

)s
Recall that ε2 = 4e

1−ε0 and ε3 = 1−ε0
eε21

so ε2ε3 = 4
ε21

= 4(2− ε0)2ε−4
0 , so

Pr(ex(G(m,m,Po ((1− ε0)m))) ≥ s) ≤ 2(s+1)e24(2−ε0)2ε−4
0 e0.89∗4(2−ε0)2ε−4

0

(ε3s
m

)s
Adding the probability that the Poissonization fails yields the final upper-

bound:

Theorem 5. The probability that two-table cuckoo hashing with n elements,
tables of size m = 1+ε0

1−ε0n for ε0 ∈ (0, 1) and a stash of size s fails is:

Pr(ex(G(m,m, n) ≥ s+ 1) ≤ ε4(s+ 2)

(
ε5(s+ 1)

n

)s+1

+ e−ε6n

where

ε4 = 8(2− ε0)2ε−4
0 e2+0.89∗4(2−ε0)2ε−4

0

ε5 =
(2− ε0)2(1− ε0)2

e(1 + ε0)ε40
ε6 = ε0 − ln(1 + ε0)

When n = Ω(s), with an implicit constant of above ε5, and s = ω(log(N))
this will be negligible in N . We therefore have a bound that shows that Cuckoo
Hashing has negligible failure probability for any super-logarithmic stash sizes.
As we have shown that logarithmic stash sizes cannot yield negligible failure
probability, this analysis is tight in terms of the asymptotics of the stash sizes.

21

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Ex-
plicit and efficient hash families suffice for cuckoo hashing with a
stash. Algorithmica, 70(3):428–456, 2014.

[DK12] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of
cuckoo hashing. ACM Transactions on Algorithms (TALG), 8(2):1–
36, 2012.

[GM11] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In ICALP,
pages 576–587. Springer, 2011.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Privacy-preserving group data access via state-
less oblivious RAM simulation. In SODA, pages 157–167. SIAM,
2012.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) se-
curity of hash-based oblivious RAM and a new balancing scheme.
In SODA, pages 143–156. SIAM, 2012.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM Journal on Comput-
ing, 39(4):1543–1561, 2009.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for
secure two-party computation. In TCC, pages 377–396. Springer,
2013.

[Pit98] Jim Pitman. Enumerations of trees and forests related to branching
processes and random walks. Microsurveys in discrete probability,
41:163–180, 1998.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In
ESA, pages 121–133. Springer, 2001.

22

