
Explicit, Closed-form, General bounds for Cuckoo

Hashing with a Stash

Daniel Noble
University of Pennsylvania, dgnoble@cis.upenn.edu

November 17, 2022

Abstract

Cuckoo Hashing is a dictionary data structure in which a data item
is stored in a small constant number of possible locations. It has the
appealing property that a data structure of size 2m can hold up to n = 1

d
m

elements for any constant d > 1; i.e., the data structure size is a small
constant times larger than the combined size of all inserted data elements.
However, the probability that a cuckoo hash table build fails is Θ(1

m
). This

is too high for many applications, especially cryptographic applications
and Oblivious RAM. An alternative proposal introduced by Kirsch et
al. is to store elements which cannot be placed in the main table in
a “stash”, reducing the failure probability to O(m−(s+1)) where s is any
constant stash size. However, this analysis did not apply to super-constant
s, and the bounds are asymptotic rather than explicit. Further works
improved upon this, but either were not explicit, not closed-form or had
limitations on the stash size. In this paper we present the first explicit,
closed-form bounds for the failure probability of cuckoo hashing with a
stash for general stash sizes.

1 Overview

This paper proves the first explicit, closed-form bounds for the failure probability
of cuckoo hashing with a stash for general stash sizes. Specifically, it proves the
following bound:

Theorem 1. Given a 2-table cuckoo hash table, in which each table holds m
elements, and which has a stash of size s ≥ 0, the cuckoo hash table can suc-
cessfully hold n ≤ 1

dm elements for any d > 1, with failure probability at most:

C(s+ 2)

(
c(s+ 1)

m

)s+1

where C and c depend only on d:

C =
16e2d3(d+ 1)2

(d− 1)5
e

7.2d3(d+1)2

(d−1)5

1

c =
d2(d+ 1)2

e(d− 1)5

As a corollary, this shows tighter bounds that what existed previously on
the requirements on m and s to have failure probability negligible in some term
N . Specifically:

Corollary 1. The probability of build failure for a 2-table cuckoo hash table of
size m = ω(log(N)) and a stash of size s = Θ(log(N)) is negligible in N .

The analysis takes the standard approach of representing the problem as a
problem on random bipartite graphs. The result above is attained by proving
the first explicit closed-form general upper bound for the excess of balanced
bipartite graphs with randomly chosen edges. Namely, it proves the following:

Theorem 2. Let G be a bipartite multigraph with parts L and R, where |L| =
|R| = m, and n = 1

dm edges each chosen independently and uniformly at random
from L×R. Let ex(G) represent the excess of G, that is the minimum number
of edges that need be removed such that every connected component has at most
one cycle. Then:

Pr(ex(G) ≥ t) ≤ C(t+ 1)

(
ct

m

)t
for every t ≥ 1 and d > 1 where C and c are defined as above.

The paper is organized as follows. Section 2 presents a summary of previous
work. Section 3 explains cuckoo hashing and Section 4 explains the correspon-
dence between cuckoo hashing and random bipartite graphs. Section 5 presents
the main analysis on the graph problem, though proofs for some of the lem-
mas for this analysis are deferred to Section 6. As a bonus, Section 7 shows
that Corollary 1 is basically tight; that is if m = O(log(N)) it is essentially
impossible to attain negligible failure probability in N .

2 Previous Work

Cuckoo hashing is a hash table implementation that improves performance by
allowing objects to be stored in a number of locations [PR01]. Pagh and Rodler
discovered that this small modification greatly reduced the probability of a
build failure. Specifically, a cuckoo hash table can store n elements of size W
in Θ(nW) space, with accesses only accessing Θ(1) locations of size W . It is
still sometimes impossible to place all items in the required locations, in which
case the build fails. A build failure, which we henceforth refer to just as failure,
occurs with probability Θ(1

n) (see [DK12] for the explicit constant).
For many applications this failure probability is sufficient. In the case that

a failure does occur, the hash table can simply be rebuilt with new hash func-
tions. While a hash table rebuild requires Θ(n) computation, the probability

2

of this occurrence is Θ(1
n), so the amortized computation cost per access is still

constant.
However, for many applications this failure probability is still too high. In

particular, in security-oriented applications, rebuilds often constitute a security
failure. A sequence of works arose to reduce the failure probability of Cuckoo
hashing.1

First, Kirsch, Mitzenmacher and Wieder introduced the modification that
any items which could not be stored in the Cuckoo Hash table would be stored
in a “stash” of constant size s [KMW09]. They showed that the probability of a
build failure2 was then reduced toO(n−(s+1)). (They state this as the equivalent
statement that the probability that the required stash is at least s is O(n−s).)
This analysis allowed the failure probability to be reduced significantly, but it
only applied to constant s. Furthermore, closed-form explicit bounds are not
stated.

Kutzelnigg provided a detailed analysis of cuckoo hashing with a stash based
on a generating function approach [Kut10]. In some senses the approach is
very theoretically satisfying. The paper shows (Theorem 1) that the failure
probability is exactly

c(α, s)m−s−1 −O(m−s−2)

where m is the size of each table, s is the stash size, α is related to the ratio
between the size of the table and the number of entries and c depends only on
α and s, where c(α, s) 6= 0. However, while the paper states that c(α, s) can
be calculated explicitly using the techniques in the paper, this calculation is
very complex. In particular, it states: “The calculations [to compute c(α, s)]
are limited by the available memory of the machine that executed the computer
algebra system. Using a workstation with 12GB RAM, we were successful in
solving the problem for s ∈ {0, 1, 2}.” Thus, it seems that a standard worksta-
tion is not able to compute c(α, s) for s > 2. Thus, while the paper presents
powerful techniques and proves that some constant c(α, s) exists, it cannot yet
be considered a practical technique for calculating good upper bounds on the
failure probability for general values of s.

Goodrich and Mitzenmacher developed another analysis for super-constant
values of s in order to generate an improved Oblivious RAM protocol [GM11].
Oblivious RAM is a technique to hide virtual accesses from an adversary who can
see physical accesses, and numerous protocols have used cuckoo hashing for this
purpose (e.g., [PR10], [GMOT12], [KLO12]). In these protocols, cuckoo hashing
build failures constitute a security failure. Failure is desired to be negligible
in some parameter N , but tables can be much smaller than N , for instance
they may be polylogarithmic in N . Goodrich and Mitzenmacher extended the

1Since this paper examines the 2-table version, (where there are 2 tables, each of size
m = dn) we only discuss previous work with results for this version. However, as far as the
authors are aware, there are also no explicit, closed-form bounds for general stash sizes for
other versions of cuckoo hashing.

2While this paper presents failure probabilities in terms of m, if other papers present their
results in terms of n, we do too. Since n = 1

d
m converting between these is trivial.

3

analysis of Kirsch et al. to achieve negligible failure probability in certain cases.
They proved that, provided n = Ω(log7(N)), the probability of a build failure
is upper bounded by n−Ω(s) for general values of s. Thus, a stash of size s =
Θ(log(N)) would result in a failure probability negligible in N . In comparison,
our work does not have limits on the value of n, and states explicit bounds.

Aumüller, Dietzfelbinger and Woelfel then presented an elegant alternative
analysis of cuckoo hashing with a stash based on graph counting [ADW14]. In
this analysis, they showed a new result for super-constant stash sizes. They
showed that for sufficiently large n, the failure probability is O(n−

s
2) when

s ≤ n
1
3% , for a suitable constant %. However this constraint on the relationship

between s and n proves restrictive in practice. They state “a rough estimate ...
shows that % = 27 suffices”, but this would impose the restriction that s ≤ n 1

81 .
Even for s = 2, this makes the bound inapplicable for practical values of m.

Pinkas et al. [PSSZ15] show empirically that cuckoo hashing with a stash
performs well even for small values of d. Specifically, they generated random
instances of the problem for n ∈ {211, 212, 213, 214} and d = 1.2. For each value
of n they generated 230 random instances of the cuckoo hashing table and deter-
mined the stash sizes that were needed. From this they extrapolated the stash
sizes needed for smaller error probabilities and other values of n (see [PSSZ15]
Table 3 and Figure 1). Compared to their work, our result has the following
advantages. Firstly, it is based on mathematical proofs rather than empirical
analysis. Secondly, the results of Pinkas et al. for small error probabilities (e.g.
2−40) depend on extrapolations.3 Thirdly, Pinkas et al. only show the failure
probabilities for specific values of n, d and s, whereas the results of this paper
show explicit upper bounds for the failure probability for any values of n, d and
s. On the negative side, compared to Pinkas et al. our constants are clearly
worse. Below we present parameter choices that, based on our analysis, have
failure probability below 2−40 when d = 3. When d = 3, our memory usage is
2.5x that of [PSSZ15] and the required stash size is about 4x larger (compare
to Table 4 of [PSSZ15]).

number of elements n 210 212 214 216 218 220 222 224

stash size s 33 23 18 15 12 11 9 8

Table 1: Stash sizes needed to obtain failure probability below 2−40 when d = 3.

Finally, Pinkas et al. [PSWW18a] observed that an analysis by Wieder
[Wie16] provided a bound on the stash size that does not make any assumptions
about the stash size (see Appendix C of the full version [PSWW18b]). While
Wieder’s proof does not present explicit bounds in the final result, Pinkas et
al. filled in the missing details to present a explicit, general bound. However,

3This limitation is, in a sense, inherent in empirical evidence of statistical failure. We
would like, ideally, to pick some upper bound on the number of times the program will be run
and argue that it is unlikely to fail even if run that many times. But to prove this, we need
to run it that many times in the lab, and it is usually unrealistic to expect the program to be
run more times in a lab than in production.

4

the bound they present is still not closed-form and it also seems that Wieder’s
proof contained an error which propagated to the bound of Pinkas et al.4

We could make the bound closed-form, such as by applying Lemma 7 from
this paper. This would result in the following bound for the failure probability:(

2

m

)s+1

2e

(
10(s+ 1) + 1

e ln(d)

)10(s+1)+1

Asymptotically, for non-constant s, the bound presented in Theorem 1 of
this paper is much tighter. The bound above can be represented asymptotically
as:

O(O(1)sm−(s+1)s10s+11)

whereas the equivalent representation of Theorem 1 would be:

O(O(1)sm−(s+1)ss+2)

3 Cuckoo Hashing

Cuckoo Hashing in its simplest form involves 2 hash functions, h1 and h2, and
2 hash tables, T1 and T2, each with m = dn locations of capacity 1. Each hash
table has a unique hash function, and the hash functions are assumed to produce
outputs uniformly at random in {1, . . . ,m}. The tables consist of pairs (x, y)
where x is the dictionary key and y is the dictionary value. An item (x, y) is
stored in the table by being inserted into T1[h1(x)]. If another item (x′, y′) was
stored in that location, it is removed from its original location (like a baby bird
being displaced from its nest by a Cuckoo chick) and is placed in T2[h2(x′)].
This may replace another item, which the algorithm likewise attempts to insert.
This process continues either until every item has found a location in which to
be inserted or it is determined that it is impossible to place all items in the
cuckoo hash table.5 In the latter case the insertion has “failed”. This triggers

4Wieder’s proof uses the inductive hypothesis that the number of non-isomorphic graphs
with t edges, k components and excess s is at most t5s+2k, but based on the previous parts
of the proof this should be t8s+2k, which, since k ≤ s, is at most t10s, not t8s. This means
that the explicit, non-closed-form bound that the excess is at least s, that would be obtained
from Wieder’s proof should be:

1

ns

(
2

1 + ε

)s

·
∑
t≤n

t10s

(1 + ε)t
=

(
2

m

)s

·
∑
t≤n

t10s

dt

where d = (1 + ε) = m
n

.
5Some works fix a maximum recursion depth for the insertion procedure, such as [KMW09]

which sets it to α log(N) for a sufficiently large constant α. It is then possible, with a small
but non-negligible (in N) probability, that an insertable item is not inserted. Our analysis
instead assumes an optimal allocation. This can be achieved by only stopping the insertion
when it is detected that the insertion process has entered an infinite loop. See Section 4 of
[Kut10] for more details. This process still has an expected insertion time of Θ(1) per item
(Lemma 3.7 of [Aum10]), so building the full table this way takes expected Θ(n) time.

5

a “table rebuild” in which new tables are created with new hash functions and
the algorithm attempts to insert every element into the new hash table.

In cuckoo hashing with a stash, if an item cannot be inserted, the build does
not immediately fail, but instead the item is placed in the stash. The build only
fails if an item cannot be inserted and the stash is already full.

Cuckoo hash tables can be generalized to have a larger constant number of
tables, or have locations with some constant capacity greater than 1. They can
also be generalized to use multiple hash functions in a single table. However,
this work will analyze only the traditional 2-table version.

4 Graph Representation

Analyses of cuckoo hash table failure often represent the problem as a graph
problem as follows. For each location in the cuckoo hash table, create a vertex.
Since the cuckoo hash table has two tables each of size m, there will be 2m
vertices. For each element stored in the cuckoo hash table, draw an edge between
the two locations in which it may be stored, so n edges total. Let G be the
resulting graph. Since there will be one location from each table, G will be
bipartite, with m vertices in each part. There may also be multiple edges
between a pair of vertices, so G is a multigraph. Observe also that the graph is
not connected: since n < m some nodes will not be connected to any edges and
there may also be multiple connected components that contain edges.

We introduce some graph notation and terminology. Given a graph G, let
γ(G) denote the cyclotomic number of G, that is the minimum number of edges
that must be removed in order for G to have no cycles. Let ex(G) denote the
excess of G, that is the minimum number of edges that must be removed from
G to ensure that every connected component has at most one cycle.

Analysis is based on the following critical observation (which is proven, for
instance, as Lemma 5 of [ADW14]) that build failure in a cuckoo hash table can
be determined by the excess of its graph representation:

Theorem 3. Let G be the graph representation of a cuckoo hash table with a
stash of size s, where s is any non-negative integer. Then the build succeeds if
and only if ex(G) ≤ s. Equivalently, the build fails if and only if ex(G) ≥ s+ 1.

Now, let G(m,m, n) be the distribution of graphs generated from graph
representations of random cuckoo hash tables with 2 tables of size m and n
items. Let G ← G(m,m, n), i.e., G is randomly sampled from G(m,m, n). As
already stated, G will then be a bipartite graph with parts A and B each of m
vertices. Since each hash function produces a random value in {1, . . . ,m}, G will
have n edges chosen uniformly at random from A × B. Note that this exactly
matches the description of how G is chosen in Theorem 2. Therefore, Theorem
2 describes the bounds on the excess of graph representations of random cuckoo
hash tables. Thus, by Theorem 3, Theorem 2 implies Theorem 1.

6

5 An Explicit Analysis

The remainder of this section proves Theorem 2, (though some more tedious
lemmas are deferred to Section 6).

The analysis will proceed by observing the randomly generated graph, care-
fully choosing which information about the graph is revealed. This will give
bounds on both the size and the cyclotomic number of the component contain-
ing a randomly chosen edge, which will give bounds on the excess of the entire
graph. We will make extensive use of the following algorithm, which should
be viewed as occurring on a randomly generated graph. Observed variables
are therefore drawn from probability distributions and the distribution of the
remainder of the graph at any point is conditioned on the variables that have
already been observed.

Edge Component Search Algorithm

1. While ∃ an undiscovered edge in G

(a) Select one such edge at random. Call it e. Call the vertices it connects
v1 and v2.

(b) Let Qe be a queue initialized to {v1, v2}. Set Ve = {}, Ye = {e}.
(c) While Qe is not empty

i. Set v ← dequeue(Qe).

ii. Add v to Ve.

iii. Set Nv to be the set of undiscovered neighbors of v, (i.e., neigh-
bors of v which have never been placed in Qe for any edge e).
This should be thought of as first observing |Nv|, and then ob-
serving the vertices themselves.

iv. Enqueue all vertices in Nv to Qe.

v. For each w in Nv, add one of the edges connecting v to w to
Ye. (If there is more that one such edge, pick one at random,
without observing the total number of such edges.)

(d) Set Te = (Ve, Ye).

(e) For every pair of vertices in Ve which are in different parts of G,
observe the number of unobserved edges between the vertices. Set
Ze to be the set of these edges.

(f) Set Ce = (Ve, Ye ∪ Ze).

Theorem 4. Ce calculated in step 1f will be the connected component in G
containing the edge e chosen in step 1a.

Proof. Observe that steps 1b and 1c are identical to a Breadth First Search
(BFS), except that the queue begins containing two vertices instead of 1. How-
ever, v2 is a neighbor of v1, so the initial state of the system can be viewed as
the state of a BFS starting at v1 where the first neighbor (v2) has already been

7

found, and added to the queue. Therefore, the resulting BFS will find exactly
the nodes reachable from v1 in G, which is exactly the nodes in the connected
component in G containing e. Observe also that any edges that may exist in
Ce are found, either in steps 1b and 1(c)v, in which case they are added to Ye,
or in step 1e in which case they are added to Ze. Either way, these edges exist
in Ce. Lastly, only edges in the connected component containing e exist in Ce,
since only edges in G connecting vertices in Ce are added.

Observing the correspondence to a BFS also indicates the following Lemma.

Lemma 1. Te calculated in step 1d is a spanning tree of Ce.

Furthermore, Ye and Ze are disjoint. Therefore, Ze contains a set of edges
in Ce which, if removed, produces a tree. This implies the following fact.

Fact 1. |Ze| = γ(Ce)

Lastly, since the random edge selected in 1a will always be one that has
not yet been discovered, and all edges in a component are discovered when
that component is explored, each new component found will be separate to all
previous components found. Furthermore, since the algorithm continues until
all edges are found, it will find all components of G.

We will now prove some claims about the distibutions of neighbors, and
edges, found by the Edge Component Search Algorithm. The analysis is made
challenging by the fact that the existence of edges is not independent: the more
edges are found, the fewer are left to find. Likewise, the more vertices are
explored by the BFS, the fewer are left as possible end-points for the remaining
edges. However this is resolved, in short, due to the way variables are observed
in the Edge Component Search Algorithm, as edges are discovered at least
as quickly as vertices are found in either part. Thus, even though the actual
probability distributions depend on what has already been discovered, we can
find probability distributions that only depend on m and n that stochastically
dominate the real distributions.

We first upper-bound the number of neighbors found in step 1(c)iii.

Theorem 5. The number of neighbors found in step 1(c)iii is stochastically
dominated by Bin(n, 1

m)

Proof. First, the number of undiscovered neighbors of v found in step 1(c)iii
is at most the number of undiscovered edges that connect to v. Let u be the
number of discovered edges at a certain point of time, and n−u be the number
of undiscovered edges. Let A be the part of the bipartite graph containing v and
B the other part. Each of the u edges has one end-point in A. One of these u
edges is known to have its end-point in A at v (for v1, v2 this is e, and for other
vertices, it is the edge that was used to find v). Therefore, there are u− 1 edges
that have other end-points in A, and so at most u − 1 vertices in A that are
end-points of previously discovered edges. Only vertices that are end-points of
a previously-discovered edge may have their number of neighbors examined (in

8

step 1(c)iii). Therefore, there are at least m− u+ 1 vertices in A (including v)
which prior to to step 1(c)iii have not had their number of neighbors examined.

Some of the remaining n− u edges may be later discovered to exist between
previously found vertex-pairs (in step 1e). The number of undiscovered edges
that are not in this category is still at most n− u.

Therefore, there are at most n−u edges that could contribute towards |Nv|,
and for each, the only thing that is known about the edge’s end-point in A is
that it is not one of the at most u−1 vertices in A which have had their number
of neighbors counted. Hence, each such edge will have v as its end-point in A
with probability at most 1

m−u+1 . Since there are at most n − u such edges,

|Nv| is stochastically dominated by Bin(n − u, 1
m−u+1), which by Lemma 3 is

stochastically dominated by Bin(n, 1
m)

We now need to show bounds on the number of edges found in step 1e. It
will help to first define three types of vertex pairs. The first are opened vertex
pairs, for which the number of edges between the pair of vertices is fully known
(including when it is known to be zero). Step 1e cannot find any edges between
opened vertex pairs, since it only finds previously undiscovered edges. The
second type is partially opened vertex pairs, for which it is known that at least
one edge exists between them but it is not known how many more exist. The
third type is unopened vertex pairs, for which it is not yet known whether the
vertices are neighbors.

We begin by showing bounds on the number of edges between unopened
vertex pairs.

Theorem 6. In the Edge Component Search Algorithm, if at a point in time
u edges have been discovered, then the number of edges between an unopened
vertex pair, v and w, is stochastically dominated by Bin(n, 1

m(m−u)).

Proof. First we show that the number of edges between v and w is stochastically
dominated by Bin(n− u, 1

(m−u)2).

Let q be the number of edges that exist between unopened vertex pairs.
Every such edge must not yet have been discovered, but there may be some
undiscovered edges between partially opened vertex pairs. Therefore q ≤ n− u

For the q edges that exist between unopened vertex pairs, we do not know
any information about which vertices they exist between beyond the fact that
they exist between unopened vertex pairs. Furthermore, it is equally likely to
exist between any such pair.

Since only u edges have been discovered, there must be at least m−u vertices
in each part that touch no discovered edges. Hence, each pair of such vertices is
an unopened vertex pair. Therefore, there are at least (m−u)2 unopened vertex
pairs. Thus, for any given unopened pair, and an edge that exists between a
unopened pair, the probability that the edge exists between that unopened pair

is at most
(

1
m−u

)2

. Hence, the number of edges between any given unopened

9

pair will be stochastically dominated by Bin(n − u, 1
(m−u)2), which by Lemma

4, is stochastically dominated by Bin(n, 1
m(m−u)).

Next we show bounds on the number of additional edges found in step 1e
between partially opened pairs.

Theorem 7. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

(Proof deferred to section 6).
Combining this with Theorem 6 and observing that u ≤ n, we get the

following result.

Theorem 8. In the Edge Component Search Algorithm, any vertex pair that
is partially opened or unopened, has a number of undiscovered edges that is
stochastically dominated by Bin(n, 1

m(m−n)).

Now define a function H(m,n), which samples a graph H ← H(m,n) chosen
the same as Ce in step 1 of the Edge Component Search Algorithm except that:

• Edges and vertices are given new unique identifiers when discovered that
may not be the same as the names “found” by the Edge Component Search
Algorithm.

• |Nv| in step 1(c)iii is chosen from Bin(n, 1
m)

• In step 1e, the additional edges between any pair of vertices in different
parts is chosen from Bin(n, 1

m(m−n)). (Recall the graph is a tree at this

point, so is bipartite.)

• We refer to Ve as V , Qe as Q, Ye as Y and Ze as Z.

Theorem 9. For any component Ce discovered in the Edge Component Search
Algorithm, γ(Ce) is stochastically dominated by γ(H) for an independent sample
H ← H(m,n).

Proof. We can view the two graph-sampling algorithms as running in parallel
using the same source of randomness. We can choose an interpretation of the
randomness generated such that if an event in the sampling of H stochastically
dominates an event in the sampling of Ce, the event always happens in H if
it happens in Ce. Since the probability of finding an edge in Ce is always
stochastically dominated by that of finding the edge in H (from Theorems 5 and
8), Ce will be a subset of H for any choice of randomness. Therefore γ(Ce) ≤
γ(H) for any choice of randomness, which implies that γ(Ce) is stochastically
dominated by γ(H).

We can now upper bound |H| and γ(H) in order to upper bound γ(Ce).

10

Theorem 10. For H ← H(m,n), where m = dn for d > 1, and c3 = (d−1)2

d+1 ,
for k ≥ 2,

Pr(|H| ≥ k) ≤ 2d2

k − 1
e−c3k

Proof. Now, the vertices of H are found by each vertex having a number of chil-
dren chosen from the distribution Bin(n, 1

m). Therefore (V, Y) can be viewed
as the result of a Galton-Watson Branching process, with 2 roots, and chil-
dren chosen from independent samples of Bin(n, 1

m). The Otter-Dwass formula
[Pit98, Dwa69] states that the probability that a Galton-Watson process that
initially has α nodes, will be of size k is exactly

α

k
Pr(Sk = k − α)

where Sk is the distribution of k samples of the progeny distribution. In this
case Sk = Bin(nk, 1

m). Therefore, for k ≥ 2

Pr(|H| = k) =
2

k
Pr(Bin(nk,

1

m
) = k − 2)

=
2(k − 1)

(kn− k + 2)(kn− k + 1)
m2

(
1− 1

m

)2

Pr(Bin(nk,
1

m
) = k)

≤ 2d2(k − 1)

(k − k
n)(k − k

n)
Pr(Bin(nk,

1

m
) = k)

≤ 2d2

k − 1
Pr(Bin(nk,

1

m
) = k)

≤ 2d2

k − 1
Pr(Bin(nk,

1

m
) ≥ k)

≤ 2d2

k − 1
e−c3k

where c3 = (d−1)2

d(d+1) . The last step comes from the Chernoff Bound

Pr(X ≥ (1 + δ)µ) ≤ e−δ
2µ/(2+δ)

where the expected value µ = k
d .

Now we can bound γ(H) for a given |H|.

Theorem 11. For H ← H(m,n),

Pr(γ(H) ≥ t||H| = k) ≤
(

enk2

4m(m− n)t

)t

11

Proof. H is bipartite. If one part has size a, the other has size k − a. The
cyclotomic number of H is the number of additional edges added in the last
step. The number of pairs of vertices that may have edges added between them

is a(k − a) which has maximum value bk2 cd
k
2 e = bk

2

4 c.
Each such vertex pair has a number of edges drawn from the distribution

Bin(n, 1
(m−n)m). Therefore the total number of edges is stochastically dominated

by Bin(nbk
2

4 c,
1

m(m−n)).

Applying the Chernoff bound from Lemma 6 completes the proof.

Theorem 12. For any component Ce found by the Edge Component Search
Algorithm,

Pr(γ(Ce) ≥ t) ≤ c4
(
c5t

m

)t
where c4 = 8ed2 and c5 = 1

e(d−1)c23
= d2(d+1)2

e(d−1)5 .

Proof. First we show bounds on γ(H), where H ← H(m,n). Combining Theo-
rem 10 and Theorem 11 we can obtain bounds for γ(H):

Pr(γ(H) ≥ t) ≤
∞∑
k=2

Pr(|H| = k)Pr(γ(H) ≥ t||H| = k)

≤
∞∑
k=2

2d2

k − 1
e−c3k

(
enk2

4m(m− n)t

)t
≤ 2d2

(
en

4m(m− n)t

)t ∞∑
k=2

1

k − 1
e−c3kk2t

≤ 4d2

(
en

4m(m− n)t

)t ∞∑
k=2

e−c3kk2t−1

Applying Lemma 7 yields:

≤ 4d2

(
en

4m(m− n)t

)t
2e

(
2t

c3e

)2t

≤ 8ed2

(
t

em(d− 1)c23

)t

Since γ(Ce) is stochastically dominated by γ(H),

Pr(γ(Ce) ≥ t) ≤ 8ed2

(
t

e(d− 1)c23m

)t

12

This immediately implies the following corollary:

Corollary 2. For any component Ce found by the Edge Component Search
Algorithm,

Pr(ex(Ce) ≥ s) ≤ c4
(
c5(s+ 1)

m

)s+1

where c4 = 8ed2 and c5 = 1
e(d−1)c23

= d2(d+1)2

e(d−1)5 .

Note that this bound not only applies to the first component found, but to
every component found.

Let C ′e be the component containing e if e is the first edge found in the Edge
Component Search Algorithm and let C ′e be an empty component otherwise.
ex(C ′e) = ex(Ce) if e is the first edge found in Ce, and ex(C ′e) = 0 otherwise.
In either case the bound of Corollary 2 applies to ex(C ′e).

We will need the following Lemma (proven in section 6).

Lemma 9. Let U(s, q) be the set of sequences of positive integers, where T ∈
U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤ 0.89q−1(s+ 1)s+1

We can now bound the excess of the entire graph,

Pr(ex(G) ≥ s) = Pr(
∑
e

ex(C ′e) ≥ s)

≤
∑

j1,...,jn∑
i ji=s

Pr(∧iex(C ′ei) ≥ ji)

≤
s∑
q=1

∑
j1,...,jn∑

i ji=s
|{ji:ji≥1}|=q

∏
{ji:ji≥1}

c4

(
c5(ji + 1)

m

)ji+1

≤
s∑
q=1

∑
R⊆{1,...,n}
|R|=q

∑
j1,...,jq∑

i ji=s
ji≥1

q∏
i=1

c4

(
c5(ji + 1)

m

)ji+1

≤
s∑
q=1

(
n

q

) ∑
T∈U(s,q)

q∏
i=1

c4

(
c5(Ti + 1)

m

)Ti+1

≤
s∑
q=1

(
n

q

)
cq4

(c5
m

)s+q ∑
T∈U(s,q)

q∏
i=1

(Ti + 1)
Ti+1

Apply Lemma 9:

≤
s∑
q=1

(
n

q

)
cq4

(c5
m

)s+q
0.89q−1(s+ 1)s+1

13

≤ 1

0.89
(s+ 1)s+1

(c5
m

)s s∑
q=1

(
0.89ec4c5

dq

)q
≤ (s+ 1)e

0.89

(c5s
m

)s s∑
q=1

(
0.89ec4c5

dq

)q
Applying Lemma 10:

≤ (s+ 1)e

0.89

(c5s
m

)s 2e0.89c4c5
d

e
0.89c4c5

d

≤ (s+ 1)16e2d3(d+ 1)2

(d− 1)5
e

7.2d3(d+1)2

(d−1)5

(c5s
m

)s

This completes the proof of Theorem 2.

6 Additional Lemmas

This section contains proofs of (more tedious) lemmas.
We begin by showing a useful lemma for inequalities with exponentials.

Lemma 2.

a2b1 ≤ a1b2 ⇒
(

1− 1

a1 + 1

)b1
≥
(

1− 1

a2

)b2
Proof. (

1− 1

a1 + 1

)b1
≥
(

1− 1

a2

)b2
⇔

b1 ln

(
1− 1

a1 + 1

)
≥ b2 ln

(
1− 1

a2

)
⇐

b1

(
1− 1

1− 1
a1+1

)
≥ b2

(
− 1

a2

)
⇔

b1

(
1− a1 + 1

a1

)
≥ − b2

a2
⇔

− b1
a1
≥ − b2

a2
⇔

a2b1 ≤ a1b2

Lemma 3. Bin(n − q, 1
m−q+1) is stochastically dominated by Bin(n, 1

m) when
m ≥ n.

14

Proof. Now Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only
if n1 ≤ n2 and (1 − p1)n1 ≥ (1 − p2)n2 [KM10]. Set n1 = n − q, n2 = n,
p1 = 1

m−q+1 , p2 = 1
m . Clearly n1 ≤ n2. Observe that

(
1− 1

m− q + 1

)n−q
≥
(

1− 1

m

)n
⇐

Applying Lemma 2

(n− q)m ≤ n(m− q)⇔
−qm ≤ −qn⇔
m ≥ n

The last statement is true, so the condition (1−p1)n1 ≥ (1−p2)n2 holds,

Lemma 4. If integers m,n, u satisfy m > n ≥ u ≥ 1 then Bin(n − u, 1
(m−u)2)

is stochastically dominated by Bin(n, 1
m(m−u)).

Proof. Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only if n1 ≤
n2 and (1− p1)

n1 ≥ (1− p2)
n
2 [KM10]. Set n1 = n − u, n2 = n, p1 = 1

(m−u)2

and p2 = 1
m(m−u) . Clearly n1 ≤ n2. Now(

1− 1

(m− u)2

)n−u
≥
(

1− 1

m(m− u)

)n
⇐

Applying Lemma 2

(n− u)m(m− u) ≤ n
(
(m− u)2 − 1

)
(n− u)m ≤ n(m− u− 1

m− u
)⇔

um ≥ n(u+
1

m− u
)⇔

m

n
≥
u+ 1

m−u
u

⇔

m− n
n

≥ 1

u(m− u)
⇔

n

m− n
≤ u(m− u)

The last statement holds since u(m − u) ≥ m − 1 ≥ n ≥ n
m−n . Hence

(1 − p1)n1 ≥ (1 − p2)n2 as required, so Bin(n − u, 1
(m−u)2) is stochastically

dominated by Bin(n, 1
m(m−u)).

15

Theorem 7. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

Proof. The case of the pair v1, v2 is special because the initial edge e that
was found between these was discovered by selecting a random undiscovered
edge, rather that requesting information about the pair v1, v2. Therefore, the
occurrence of e between v1 and v2 does not affect the distribution of other edges.
Hence the remaining edges between v1 and v2 will actually be distributed exactly
the same as between any unopened vertex pair.

For the remaining partially opened vertex pairs, we will prove a slightly
different statement, which implies the one above. Let A be the number of
additional edges between the partially opened pair andB be the number between
the unopened pair. We show that if i < j, the probability that A = i and B = j
is less than the probability that A = j and B = i.

Let there be some state, S, observed on the remainder of the system. By
Bayes:

Pr(B = i ∧A = j + 1|S)

Pr(B = j ∧A = i+ 1|S)
=

Pr(B = i ∧A = j + 1)Pr(S|B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)Pr(S|B = j ∧A = i+ 1)

Now Pr(S|B = i∧A = j+1) = Pr(S|B = j∧A = i+1), since in both cases
i+ j+ 1 edges will have been used between the two vertex-pairs. Therefore, the
probability above is simply

Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

Note that this statement is true regardless of what the state S is (as long
as it is possible), so we can consider S to be all information learned about
the assignment of edges from the beginning of the Edge Component Search
Algorithm.

So, if there are initially b vertex pairs and n edges:

Pr(B = i ∧A = j + 1|S)

Pr(B = j ∧A = i+ 1|S)
=

Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

=
Pr(B = i|A = j + 1)Pr(A = j + 1)

Pr(B = j|A = i+ 1)Pr(A = i+ 1)

=

(
n−j−1

i

) (
1
b−1

)i (
1− 1

b−1

)n−j−1−i (
n
j+1

) (
1
b

)j+1 (
1− 1

b

)n−j−1

(
n−i−1
j

) (
1
b−1

)j (
1− 1

b−1

)n−i−1−j (
n
i+1

) (
1
b

)i+1 (
1− 1

b

)n−i−1

=

(
n−j−1

i

)(
n
j+1

)(
n−i−1
j

)(
n
i+1

)
16

=
i+ 1

j + 1
< 1

Therefore, Pr(B = i∧A = j+ 1|S) < Pr(B = j ∧A = i+ 1|S), when i < j,
which implies that after observation of the system S, A − 1 is stochastically
dominated by B. Therefore, the number of additional edges between a partially
opened pair is stochastically dominated by the number of edges between an
unopened pair.

Lemma 5. Let X be the sum of independent Bernoulli variables, with mean µ.
A basic form of the Chernoff Bound for any δ > 0 is as follows:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
This implies the following looser bound:

Lemma 6. For any non-negative integer t,

Pr(X ≥ t) ≤
(eµ
t

)t

Proof. For t ≤ µ, eµt ≥ e, so
(
eµ
t

)t ≥ 1, so the statement holds as the probability
cannot be more than 1. For t > µ we can view t = (1 + δ)µ for some δ > 0.

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤
(

e

(1 + δ)

)(1+δ)µ

e−µ

≤
(

eµ

(1 + δ)µ

)(1+δ)µ

e−µ

≤
(eµ
t

)t

Lemma 7. Let t ≥ 1, c3 ∈ (0, 1). Then:

∞∑
k=1

k2t−1e−c3k ≤ 2e

(
2t

c3e

)2t

Proof. It is possible to approximate a summation with an integral, using the
same methods as Riemann sums but in reverse. Let f(x) be a continuous func-
tion that is monotonically increasing until a maximum point xmax, after which x

17

is monotonically decreasing. Let x′ = bxmaxc. Let h(x) = min(f(bxc), f(bxc+

1)). Let us observe how
∑b
x=a h(x) approximates

∫ b+1

a
f(x)dx.

Observe that for any integer a, h(x) is the same for all x ∈ [a, a+ 1). Since
f(x) has no local minima and is continuous, the minimum value of f(x) over the
range [a, a+ 1) is either at f(a) or f(a+ 1). Therefore f(x) ≥ min(f(a), f(a+
1)) = h(x) for x ∈ [a, a + 1). Since this applies to the interval [a, a + 1)
for any integer a, h(x) ≤ f(x) for all x. Hence, for any integers a and b,∑b
a h(x) =

∫ b+1

a
h(x) ≤

∫ b+1

a
f(x)dx.

∫ b+1

a

f(x)dx ≥
b∑
a

h(x)

≥
x′−1∑
a

f(x) +min(f(x′), f(x′ + 1)) +

b∑
x′+1

f(x+ 1)

≥

(
b+1∑
a

f(x)

)
−max(f(x′), f(x′ + 1)

≥

(
b+1∑
a

f(x)

)
− f(xmax)

Hence:

b∑
a

f(x) ≤
∫ b

a

f(x)dx+ f(xmax)

Let f(x) = x2t−1e−c3x where t ≥ 1 and 0 < c3 < 1. First we need to
show that it is a function that is monotonically increasing, then monotonically
decreasing.

f ′(x) = (2t− 1)x2t−2e−c3x − c3x2t−1e−c3 = x2t−2e−c3(2t− 1− c3x)

Observe that x2t−2 and e−c3 are both positive. Therefore f ′(x) will be
positive when x < 2t−1

c3
, f ′(x) = 0 at x = 2t−1

c3
and will be negative when x >

2t−1
c3

. Therefore this function is monotonically increasing, then monotonically

decreasing, as required, with xmax = 2t−1
c3

. We can easily calculate:

f(xmax) =

(
2t− 1

c3

)2t−1

e−(2t−1)

=

(
2t− 1

c3e

)2t−1

Hence the inequality applies to the sum and

∞∑
k=1

k2t−1e−c3k ≤
∫ ∞

1

x2t−1e−c3xdx+

(
2t− 1

c3e

)2t−1

18

≤
∫ ∞

0

x2t−1e−c3xdx+

(
2t− 1

c3e

)2t−1

By a standard integral identity,
∫∞

0
x2t−1e−c3xdx = (2t−1)!

c2t3
. Furthermore, a

factorial approximation shows that (2t− 1)! ≤ (2t)2te−(2t−1). Hence

∞∑
k=1

k2t−1e−c3k ≤
(

2t

c3

)2t

e−(2t−1) +

(
2t− 1

c3e

)2t−1

≤
(

2t

c3

)2t

e−(2t−1) +

(
2t

c3

)2t−1

e−(2t−1)

Recalling that 0 < c3 < 1, so 2t
c3
> 1

≤ 2

(
2t

c3

)2t

e−(2t−1)

≤ 2e

(
2t

c3e

)2t

Lemma 8. For all integers s ≥ 2,
∑s−1
a=1(a+ 1)a+1(s+ 1− a)s+1−a ≤ 0.89(s+

1)s+1

Proof. By calculation, this is true for s ∈ {2, 3, 4, 5, 6, 7, 8}, for which the left-
hand side values are, respectively {16, 216, 2777, 38824, 607534, 10707768, 212342547}
and the right-hand side values are respectively {24.03, 227.84, 2781.25, 41523.84,
732953.27, 14931722.24, 344804235.2}. For s > 8 we prove by induction.

Given that it holds true for s ≤ 8, let us show it holds true for s+ 1.

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a +

s−1∑
a=t+1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e
s−1∑
a=t+1

(a+ 1)a+1(s+ 1− a)s+1−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e

19

(
s−1∑
a=1

(a+ 1)a+1(s+ 1− a)s+1−a −
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1

)
+ (s+ 1)s+122

Applying the inductive hypothesis yields:

≤ e
t∑

a=1

(a+ 1)a+1(s+ 2− a)(s+ 1− a)s+1−a + (s+ 1− t)e0.89(s+ 1)s+1

− e(s+ 1− t)
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1 + (s+ 1)s+122

≤ e
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1((s+ 2− a)− (s+ 1− t)) + 0.89(s+ 2)s+2

− te0.89(s+ 1)s+1 + (s+ 1)s+122

≤ 0.89(s+ 2)s+2 + 22(s+ 1)s+1 + e

t∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1(t+ 1− a)− te0.89(s+ 1)s+1

Setting t = 3 yields:

≤ 0.89(s+ 2)s+2 + 22(s+ 1)s+1 + e22ss3 + e33(s− 1)s−12 + e44(s− 2)s−2 − 3e0.89(s+ 1)s+1

≤ 0.89(s+ 2)s+2 + (s+ 1)s+1

(
22 +

12

s
+

54

es(s− 1)
+

256

e2s(s− 1)(s− 2)
− 3e0.89

)

For s ≥ 8, the term 22 + 12
s + 54

es(s−1) + 256
e2s(s−1)(s−2) ≤ 5.5. Since 3e0.89 > 5.5

the inequality simplifies to:

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a ≤ 0.89(s+ 2)s+2

Since it holds true up to s = 2, . . . , 8 by inspection, and holds true for s ≥ 8
by induction, the statement is true for all s ≥ 2.

Lemma 9. Let U(s, q) be the set of sequences of positive integers, where T ∈
U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤ 0.89q−1(s+ 1)s+1

Proof. We proceed by induction on the length of the sequences. For q = 1, U
contains a single sequence T with T1 = s. Then

∑
T∈U(s,q)

∏
1≤i≤q(Ti+1)Ti+1 =

(s+ 1)s+1 = 0.890(s+ 1)s+1.
Assume that the theorem holds for all sequences of length q ≥ 1. We will

show that it also holds for all sequences of length q + 1.

20

∑
T∈U(s,(q+1))

∏
1≤i≤q+1

(Ti + 1)Ti+1 ≤
s−q∑
T1=1

(T1 + 1)T1+1
∑

T ′∈U((s−T1),q)

∏
1≤i≤q

(T ′i + 1)T
′
i+1

Applying our inductive hypothesis gives:

≤
s−1∑
a=1

(a+ 1)a+10.89q−1(s− a+ 1)s−a+1

≤ 0.89q−1
s−1∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1

Using Lemma 8

≤ 0.89q(s+ 2)s+2

Lemma 10. For a > 0,
∞∑
x=1

(a
x

)x
≤ 2ae

a
e

Proof. Over the positive reals the function f(x) =
(
a
x

)x
is maximized at x = a

e ,
for which it has value e

a
e . Therefore:

∞∑
x=1

(a
x

)x
≤

2a−1∑
x=1

(a
x

)x
+

∞∑
x=2a

(a
x

)x
≤

2a−1∑
x=1

(e
a
e) +

∞∑
x=2a

(
1

2

)x
≤ e a

e (2a− 1) + 1

≤ 2ae
a
e

7 A Lower Bound

We now show the following lower bound on the number of elements n in terms
of the security parameter N , such that cuckoo hashing with a stash can fail with
negligible probability in N . For consistency with other parts of the paper, we use
the 2-table construction but this can easily be adapted to other constructions.

21

Theorem 13. If n = O(log(N)) and n − s = Ω(n) then it is impossible for a
2-table Cuckoo Hash table to have a negligible build failure probability in N .

Proof. Since n − s = Ω(n), it follows that n − s ≥ c0n for sufficiently large n
where the constant c0 satisfies 0 < c0 ≤ 1. Therefore:

n− s
n
≥ c0

n− s− 2

n
≥ c0 −

2

n
n− s− 2

n
≥ c0

2
when n ≥ 4

c0
n− s− 2

n
≥ c1 for constant c1 satisfying 0 < c1 ≤

1

2

Since n = O(log(N)), there is some constant c2 such that n ≤ c2 log(N) (for
sufficiently large n).

Let m = dn be the size of each table.
If all n items are hashed to the first dn−s−2

2 e locations in both tables, then
2dn−s−2

2 e ≤ n−s−1 items can be stored in the table, and s items can be stored
in the stash, but 1 item will not be able to be stored at all, so the build fails.

The probability that all n items are stored in the first dn−s−2
2 e locations in

both tables is at least:

(
n− s− 2

2dn

)2n

≥
(c1

2d

)2c2 log(N)

≥ N2c2 log(c1
2d)

This is non-negligible in N . Therefore the probability of a build failure is
non-negligible.

This immediately implies the contrapositive:

Corollary 3. Cuckoo Hashing with a stash requires n − s = o(n) or n =
ω(log(N)) in order to succeed with failure negligible in N .

The case that n− s = o(n) is very unnatural–it implies that a sub-constant
number of elements are stored in the table, at which point the Cuckoo table is
not providing much use. Thus, in any realistic setting where Cuckoo tables are
used, it is necessary that n = ω(log(N)). This provides the lower bound for n in
terms of N such that Cuckoo Hashing with a stash has a negligible probability
of failure.

22

8 Acknowledgments

This research was sponsored in part by ONR grant (N00014-15-1-2750) “Syn-
Crypt: Automated Synthesis of Cryptographic Constructions”.

23

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Ex-
plicit and efficient hash families suffice for cuckoo hashing with a
stash. Algorithmica, 70(3):428–456, 2014.

[Aum10] Martin Aumüller. An alternative analysis of cuckoo hashing with
a stash and realistic hash functions. PhD thesis, Diplomarbeit,
Technische Universität Ilmenau, 2010.

[DK12] Michael Drmota and Reinhard Kutzelnigg. A precise analysis
of cuckoo hashing. ACM Transactions on Algorithms (TALG),
8(2):1–36, 2012.

[Dwa69] Meyer Dwass. The total progeny in a branching process and a
related random walk. Journal of Applied Probability, 6(3):682–
686, 1969.

[GM11] Michael T Goodrich and Michael Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious RAM simula-
tion. In ICALP, pages 576–587. Springer, 2011.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko,
and Roberto Tamassia. Privacy-preserving group data access via
stateless oblivious RAM simulation. In SODA, pages 157–167.
SIAM, 2012.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) se-
curity of hash-based oblivious RAM and a new balancing scheme.
In SODA, pages 143–156. SIAM, 2012.

[KM10] Achim Klenke and Lutz Mattner. Stochastic ordering of classical
discrete distributions. Advances in Applied probability, 42(2):392–
410, 2010.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More ro-
bust hashing: Cuckoo hashing with a stash. SIAM Journal on
Computing, 39(4):1543–1561, 2009.

[Kut10] Reinhard Kutzelnigg. A further analysis of cuckoo hashing with a
stash and random graphs of excess r. Discrete Mathematics and
Theoretical Computer Science, 12(3):81–101, 2010.

[Pit98] Jim Pitman. Enumerations of trees and forests related to branch-
ing processes and random walks. Microsurveys in discrete proba-
bility, 41:163–180, 1998.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In
ESA, pages 121–133. Springer, 2001.

24

[PR10] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In
CRYPTO, pages 502–519. Springer, 2010.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hash-
ing. In 24th USENIX Security Symposium (USENIX Security 15),
pages 515–530, 2015.

[PSWW18a] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. In An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 125–157. Springer, 2018.

[PSWW18b] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. Cryptology
ePrint Archive, 2018.

[Wie16] Udi Wieder. Hashing, load balancing and multiple choice draft,
2016.

25

