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Abstract. We study the memory-tightness of security reductions in public-key cryptography, focusing
in particular on Hashed ElGamal. We prove that any straightline (i.e., without rewinding) black-box
reduction needs memory which grows linearly with the number of queries of the adversary it has access
to, as long as this reduction treats the underlying group generically. This makes progress towards
proving a conjecture by Auerbach et al. (CRYPTO 2017), and is also the first lower bound on memory-
tightness for a concrete cryptographic scheme (as opposed to generalized reductions across security
notions). Our proof relies on compression arguments in the generic group model.
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1 Introduction

Security proofs rely on reductions, i.e., they show how to transform an adversary A breaking a scheme into
an adversary B solving some underlying assumed-to-be-hard problem. Generally, the reduction ought to be
tight — the resources used by B, as well as the attained advantage, should be as close as possible to those of
A. Indeed, the more resources B needs, or the smaller its advantage, the weaker the reduction becomes.

Auerbach et al. [2] were the first to explicitly point out that memory resources have been ignored in
reductions, and that this leads to a loss of quality in security results. Indeed, it is conceivable that A’s memory
is naturally bounded (say, at most 254 bits), and the underlying problem is very sensitive to memory. For
example, the best-known algorithm for discrete logarithms in a 4096-bit prime field runs in time (roughly) 2°¢
using memory 2%°. With less memory, the best algorithm is the generic one, requiring time ©(/p) ~ 22948,
Therefore, if B also uses memory at most 294, we can infer a larger lower bound on the necessary time
complexity for A to break the scheme, compared to the case where B uses 2'°° bits instead.

WHAT CAN BE MEMORY-TIGHT? One should therefore target reductions that are memory-tight, i.e., the
memory usage of B is similar to that of A.! The work of Auerbach et al. [2], and its follow-up by Wang et
al. [13], pioneered the study of memory-tight reductions. In particular, and most relevant to this work, they
show negative results (i.e., that certain reductions cannot be memory tight) using streaming lower bounds.

Still, these lower bounds are tailored at general notions (e.g., single- to multi-challenge reductions),
and lower bounds follow from a natural connection with classical frequency problems on streams. This paper
tackles the more ambitious question of proving impossibility of memory-tight reductions for concrete schemes,
especially those based on algebraic structures. This was left as an open problem by prior works.

HaSHED ELGAMAL. Motivated by a concrete open question posed in [2], we consider here the CCA-security
of Hashed ElGamal. In its KEM variant, the scheme is based on a cyclic group G = {g) — the secret key
sk is a random element from Zg|, whereas the public key is pk = g°¢. Then, encapsulation produces a
ciphertext-key pair

C«—g", K« H(pk").

for 7 < Zg| and a hash function H : G — {0, 1}*. Decapsulation occurs by computing K « H(C¥).

* A preliminary version of this paper appears in the proceedings of EUROCRYPT 2020. This is the full version.
! Generally, B = R* for a black-box reduction R, and one imposes the slightly stronger requirement that R uses
small memory, independent of that of A.



The CCA-security of Hashed ElGamal in the random-oracle model was proved by Abdalla, Bellare, and
Rogaway [1] based on the Strong Diffie-Hellman (SDH) assumption (also often called GapDH), and we briefly
review the proof.? First, recall that in the SDH assumption, the attacker is asked to compute g*¥ from g%
and ¢Y, given additionally access to a decision oracle O, which on input h,y € G, tells us whether h¥ = y.

The reduction sets the Hashed ElGamal public-key to pk = ¢g” (setting implicitly sk = v), the challenge
ciphertext to be C* = g¢g", and the corresponding key K* to be a random string. Then, it simulates both
the random oracle and the decapsulation oracle to the adversary A (which is run on inputs pk, C* and K*),
until a random-oracle query for g*? is made (this can be detected using the O, oracle). The challenge is to
simulate both oracles consistently: As the reduction cannot compute discrete logarithms, it uses the oracle
O, to detect whether a random-oracle query X and a decapsulation query C; satisfy O,(C;, X) = true, and,
if this is the case, answers them with the same value.

This reduction requires memory to store all prior decapsulation and random-oracle queries. Unlike other
reductions, the problem here is not to store the random-oracle output values (which could be compressed
using a PRF), but the actual inputs to these queries, which are under adversarial control. This motivates
the conjecture that a reduction using little memory does not exist, but the main challenge is of course to
prove this is indeed the case.

OUR RESULT, IN SUMMARY. We provide a memory lower bound for reductions that are generic with respect to
the underlying group G. Specifically, we show the existence of an (inefficient) adversary A in the generic group
model (GGM) which breaks the CCA security of Hashed ElGamal via O(k) random oracle/decapsulation
queries, but such that no reduction using less than k- A bits of memory can break the SDH assumption even
with access to A, where \ is the bit-size of the underlying group elements.

Our lower bound is strong in that it shows we do not even have a trade-off between advantage and
memory, i.e., if the memory is smaller than k - A, then the advantage is very small, as long as the reduction
makes a polynomial number of queries to O, and to the generic group oracle. It is however also important
to discuss two limitations of our lower bound. The first one is that the reduction — which receives g, g¥ in
the SDH game — uses pk = g as the public key to the Hashed ElGamal adversary. The second one is that
the reduction is straightline, i.e., it does not perform any rewinding.

We believe that our impossibility result would extend even when the reduction is not straightline. How-
ever, allowing for rewinding appears to be out of reach of our techniques. Nonetheless, we do conjecture a
lower bound on the memory of 2(klog k) bits, and discuss the reasoning behind our conjecture in detail in
Appendix C.

We stress that our result applies to reductions in the GGM, but treats the adversary as a black box. This
captures reductions which are black-box in their usage of the group and the adversary. (In particular, the
reduction cannot see generic group queries made by the adversary, as in a GGM security proofs.) Looking at
the GGM reduces the scope of our result. However, it is uncommon for reductions to depend on the specifics
of the group, although our result can be bypassed for specific groups, e.g., if the group has a pairing.

CONCURRENT RELATED WORK. Concurrently to our work, Bhattacharyya [4] provides memory-tight reduc-
tions of KEM-CCA security for variants of Hashed ElGamal. At first glance, the results seem to contradict
ours. However, they are entirely complementary — for example, a first result shows a memory tight reduction
for the KEM-CCA security of the “Cramer-Shoup” variant of Hashed ElGamal — this variant differs from the
(classical) Hashed ElGamal we consider here and is less efficient. The second result shows a memory-tight
reduction for the version considered in this paper, but assumes that the underlying group has a pairing. This
is a good example showing our result can be bypassed for specific groups i.e. groups with pairings, but we
also note that typical instantiations of the scheme are on elliptic curves for which no pairing exists.

2 Abdalla et al. [1] do not phrase their paper in terms of the KEM/DEM paradigm [12,6], which was introduced
concurrently — instead, they prove that an intermediate assumption, called Oracle Diffie-Hellman (ODH), follows
from SDH in the ROM. However, the ODH assumption is structurally equivalent to the CCA security of Hashed
ElGamal KEM for one challenge ciphertext.



1.1 Our Techniques

We give a high-level overview of our techniques here. We believe some of these to be novel and of broader
interest in providing other impossibility results.

THE SHUFFLING GAME. Our adversary against Hashed ElGamal® A first attempts to detect whether the
reduction is using a sufficient amount of memory. The adversary A is given as input the public key g%, as
well as g, as well as a string C* € {0, 1}, which is either a real encapsulation or a random string. It first
samples k values i1, ..., from Z,. It then:

(1) Asks for decapsulation queries for C;j < g%, obtaining values K;, for j € [k]
(2) Picks a random permutation 7 : [k] — [k]. ‘
(3) Asks for RO queries for H; < H(V}) for j € [k], where V; «— gV,

After this, the adversary checks whether K; = Hy;) for all j € [k], and if so, it continues its execution,
breaking the ODH assumption (inefficiently). If not, it just outputs a random guess.

The intuition here is that no reduction using substantially less than & - logp bits succeeds in passing the
above test — in particular, because the inputs C; and V; are (pseudo-)random, and thus incompressible. If
the test does not pass, the adversary A is rendered useless, and thus not helpful to break SDH.

Remark 1. The adversary here is described in a way that requires secret randomness, not known to the
reduction, and it is easier to think of A in this way. We will address in the body how to generically make
the adversary deterministic.

Remark 2. We stress that this adversary requires memory — it needs to remember the answers C1, ..., Ck.
However, recall that we adopt a black-box approach to memory-tightness, where our requirement is that
the reduction itself uses little memory, regardless of the memory used by the adversary. We also argue this
is somewhat necessary — it is not clear how to design a reduction which adapts its memory usage to the
adversary, even if given this information in a non-black-box manner. Also, we conjecture different (and much
harder to analyze) memory-less adversaries exist enabling a separation. An example is multi-round variant,
where each round omits (2), and (3) only asks a single query H(V;) for a random j «s$[k], and checks
consistency. Intuitively, the chance of passing each round is roughly klogp/s, but we do not know how to
make this formal.

INTRODUCING THE GGM. Our intuition is however false for an arbitrary group. For instance, if the discrete
logarithm (DL) problem is easy in the group, then the reduction can simply simulate the random oracle
via a PRF, as suggested in [2]. Ideally, we could prove that if the DL problem is hard in G, then any PPT
reduction given access to A and with less than & - log p bits of memory fails to break SDH.* Unfortunately,
it will be hard to capture a single hardness property of G sufficient for our proof to go through. Instead, we
will model the group via the generic group model (GGM) [11,9]: We model a group of prime order p defined
via a random injection ¢ : Z, — £. An algorithm in the model typically has access to (1) (in lieu of ¢g) and
an evaluation oracle which on input a,b € £ returns o(oc~(a) + o~ 1(b)). (We will keep writing g’ instead
of o(4) in the introduction, for better legibility.)

THE PERMUTATION GAME. In order to fool A, the reduction can learn information about 7 via the O,
oracle. For example, it can try to input C; = g% and Vi = g¥imGh (both obtained from A’s queries), and
0,(C}j,V;) = true if and only if 7(j') = j. More generally, the reduction can compute, for any @ = (a1, ..., ax)
and b = (by,...,bg),

k k
k . . k . .
CF = gzjzl aji; _ | | C;’] , V* = ng:1 bjvin()y — | | ijbj ,
Jj=1 Jj=1

3 The paper will in fact use the cleaner formalization of the ODH assumption, so we stick to Hashed ElGamal only
in the introduction.

4 This statement is somewhat confusing, so note that in general, the existence of a reduction is not a contradiction
with the hardness of DL, as the reduction is meant to break SDH only given access to an adversary breaking the
scheme, and this does not imply the ability to break SDH without access to the adversary.



and the query O,(C*,V*) returns true iff b; = a,(; for all j € [k], which we write as b = m(d@). We abstract
this specific strategy in terms of an information-theoretic game — which we refer to as the permutation game
— which gives the adversary access to an oracle O which takes as inputs pairs of vectors (@, b) from Z’; , and

returns true iff b = m(d) for a secret permutation . The goal of the adversary is to recover 7.

Clearly, a strategy can win with O(k?) oracle queries (€;,€;) for all i, j, where €; € Z’; is the unit vector
with a 1 in the i-th coordinate, and 0 elsewhere. This strategy requires in particular querying, in its first
component, vectors which have rank k. Our first result will prove that this is necessary — namely, assume
that an adversary makes a sequence of ¢ queries (&1, 1), ..., (Zq, ¥,) such that the rank of #1,...,%, is at
most £, then the probability to win the permutation game is of the order O(g‘/k!). We will prove this via a
compression argument.

Note that roughly, this bound tells us that to win with probability ¢ and ¢ queries to the oracle, the

attacker needs
i 0 (klogk: - log(1/6)> .
log(q)

A REDUCTION TO THE PERMUTATION GAME. We will think of the execution of the reduction against our
adversary as consisting of two stages — we refer to them as R; and Rs. The former learns the decapsulation
queries ¢'1, ..., g'*, whereas the latter learns the RO queries g'~M?, ... g=® v and (without loss of gener-
ality) attempts to guess the permutation 7. We will lower bound the size of the state ¢ that R; passes on
to Ro. Both stages can issue O, and Eval queries.

Note that non-trivial O, queries (i.e., those revealing some information about the permutation), are
(except with very small probability) issued by Ra, since no information about 7 is ever revealed to Ri. As
one of our two key steps, we will provide a reduction from the execution of R1, R against A in the GGM to
the permutation game — i.e., we build an adversary D for the latter game simulating the interaction between
R1,R2 and A, and such that Ry, Ro “fooling” A results in D guessing the permutation.

MEMORY VS. RANK. The main question, however, is to understand the complexity of D in the permutation
game, and in particular, the rank £ of the first component of its queries — as we have seen above, this affects
its chance of winning the game.

To do this, we will take a slight detour, and specifically consider a set £ € L of labels (i.e., outputs
of o) that the reduction Ry comes up with (as inputs to either of Eval or Oy) on its own (in the original
execution), i.e., no earlier Eval query of Ry returned them, and that have been previously learnt by R, as
an output of its Eval queries. (The actual definition of Z is more subtle, and this is due to the ability of the
adversary to come up with labels without knowing the corresponding pre-image.)

Then, we will show two statements about Z:

(i) On the one hand, we show that the rank ¢ of the oracle queries of the adversary D is upper bound by
|Z] in its own simulation of the execution of Ry, Ro with A.

(ii) On the other hand, via a compression argument, we prove that the size of Z is related to the length
of ¢, and this will give us our final upper bound.

This latter statement is by itself not very surprising — one can look at the execution of Ro, and clearly every
label in Z that appears “magically” in the execution must be the result of storing them into the state ¢.
What makes this different from more standard compression arguments is the handling of the generic group
model oracle (which admits non-trivial operations). In particular, our compression argument will compress
the underlying map o, and we will need to be able to figure out the pre-images of these labels in Z. We give
a very detailed technical overview in the body explaining the main ideas.

MEMORY-TIGHT AGM REDUCTION. The Algebraic Group Model (AGM) was introduced in [8]. AGM re-
ductions make strong extractability assumptions, and the question of their memory-tightness is an interesting
one. In Appendix A we construct a reduction to the discrete logarithm problem that runs an adversary against
the KEM-CCA security of Hashed ElGamal in the AGM such that the reduction is memory-tight but not
tight with respect to advantage. We note that the model of our reduction is different than a (full-fledged)
GGM reduction which is not black-box, in that it can observe the GGM queries made by the adversary. Our



result does not imply any impossibility for these. In turn, AGM reductions are weaker, but our results do
not imply anything about them, either.

2 Preliminaries

In this section, we review the formal definition of the generic group model. We also state ODH and SDH as
introduced in [1] in the generic group model.

NoOTATION. Let N = {0,1,2,---} and, for k € N, let [k] = {1,2,--- , k}. We denote by InjFunc(S1, S2) the set
of all injective function from Sy to Ss.

We also let # denote a wildcard element. For example 3¢ : (¢,%) € T is true if the set 7' contains an
ordered pair whose first element is ¢ (the type of the wildcard element shall be clear from the context). Let
Sk denote the set of all permutations on [k]. We use f : D - R u {1} to denote a partial function, where
f(xz) = L indicates the value of f(x) is undefined. Define in particular D(f) = {de D : f(d) # L} and
R(f)={reR : 3deD : o(d) =r}. Moreover, we let D(f) = D\D(f) and R(f) = R\R(f).

We shall use pseudocode descriptions of games inspired by the code-based framework of [3]. We make
use of pairs of games being identical-until-bad (i.e., the games are identical until a bad flag is set), and apply
the so-called “Fundamental Lemma” to upper bound the difference in the probability of the game outputs
in terms of the probability of bad being set to true in either of the games. The output of a game is denoted
using the symbol =. In all games we assume the flag bad is set to false initially. In pseudocode, we denote
random sampling using <«—$, assignment using < and equality check using =. In games that output boolean
values, we use the term “winning” the game to mean that the output of the game is true.

We also introduce some linear-algebra notation. Let S be a set vectors with equal number of coordinates.
We denote the rank and the linear span of the vectors by rank(S) and span(.S) respectively. Let Z, i be vectors
of dimension k. We denote 2 of dimension 2k which is the concatenation of Z, ¢ as Z = (Z, ). We denote the
element at index i of a vector & as Z[i].

2.1 Generic Group Model

The generic group model [11] captures algorithms that do not use any special property of the encoding of
the group elements, other than assuming every element of the group has a unique representation, and that
the basic group operations are allowed. This model is useful in proving lower bounds for some problems, but
we use it here to capture reductions that are not specific to the underlying group.

More formally, let the order of the group be a large prime p. Let Z, = {0,1,2,--- ,p—1}. Let £ < {0, 1}*
be a set of size p, called the set of labels. Let o be a random injective mapping from Z, to £. The idea is
that now every group element in Z, is represented by a label in £. An algorithm in this model takes as
input o(1),0(x1),0(x2), - ,o(xy,) for some z1,--- ,x, € Z, (and possibly other inputs which are not group
elements). The algorithm also has access to an oracle named Eval which takes as input two labels a,b € £
and returns ¢ = o(0 !(a) + o 1(b)). Note that for any d, given o(z;), o(d - z;) can be computed using
O(logd) queries to Eval. We denote this operation as Exp(o(z;),d). We assume that all labels queried by
algorithms in the generic group model are valid i.e. all labels queried by algorithms in the generic group
model are in £.°

ORACLE DIFFIE-HELLMAN ASSUMPTION (ODH). We first formalize the Oracle Diffie-Hellman Assumption
(ODH) [1], which we are going to use in lieu of the CCA security of Hashed ElGamal. Suppose, a group
has generator g and order p. The domain of hash function H is all finite strings and range is {0, 1}""¢". The
assumption roughly states for u,v «$Z,, W «s {0, 1}'te"the distributions (g%, g”,H(¢*¥)) and (g%, g*, W)
are indistinguishable to an adversary who has access to the oracle H, where H,(g%) returns H(g*?) with the
restriction that it is not queried on g".

5 We stress that we assume a strong version of the model where the adversary knows L.



ODH-REAL-GG . ODH-RAND-GG .
Game GC,p,hLen (A) . Game GL,p,hLen (A) .

1: o «$InjFunc(Z, — L) 1: o «$InjFunc(Z, — L)

2: u«$Zp;U « o(u) 2: ue$Zp;U « o(u)

3: v«$Zy;V «—o(v) 3: v«$Zy,;V «— o(v)

4: He$ 2hien 4: He$ Qhien

5: W « H(o(uv)) 5: W — {0, 1}

6: b ANOROBRND G VW o(1)) G, g ANOHROBAC) (17 v W, 0(1))
7 7

return b return b

Oracle Eval(a,b) : Oracle H,(a) :

1: return a'(a'_l(a) + o'_l(b)) 1: if a=U then return L

2: else return H(a(ail(a) - v))

Game G155 (A) Oracle O,(a,b) :

1: o «$InjFunc(Z, — L) 1: return (6 '(a)-v =0"'(b))
2: ue$Zp;U « o(u)

3: ve8$Zy;V —o(v)

40 2 ABACOO0D (Y 6 (1))

5

return (z = o(uv))

Fig. 1. Games for ODH and SDH assumptions

We give a formalization of this assumption in the random-oracle and generic group models. For a fixed
hLen € N, let 2y1en be the set of hash functions mapping {0, 1}* to {0, 1}'*". In Figure 1, we formally define
the Games G%%’:’Q&EAL'GG, Gg%ﬁg&ﬁND'GG. The advantage of violating ODH is defined as

ODH-GG ODH-REAL-GG ODH-RAND-GG
Advﬁ,p,hLen ('A) = |Pr [Gll,p,hLen (A) = 1] —Pr [Gll,p,hLen (A) = 1]| :

STRONG DIFFIE-HELLMAN ASSUMPTION (SDH). This is a stronger version of the classical CDH assumption.
This assumption roughly states that CDH is hard even in the presence of a DDH-oracle O, where O, (g%, g¥)
is true if and only if z - v = y.

We formally define the game
SDH is defined as

GSPH-6G in the generic group model in Figure 1. The advantage of violating

AdvEPIEC (A) = [Pr [GRHLSS (A) = true]| .

Note in particular that one can upper bound this advantage unconditionally.
We shall drop the £ from the subscript of advantages and games henceforth since the set of labels £ remains
the same throughout our paper.

Brack Box REDUCTIONS IN THE GGM. We consider black-box reductions in the generic group model.
We will limit ourselves to an informal description, but this can easily be formalized within existing formal
frameworks for reductions (see e.g. [10]). We let the reduction R access an adversary A, and denote by R4
the resulting algorithm — understood here is that R supplies inputs, answers queries, etc. In addition, we
let R and A access the Eval oracle available in the GGM. We stress that the GGM oracle is not under the
reduction’s control here — typically, the reduction itself will break a (hard) problem in the GGM with help
of A. We will allow (for simplicity) A to be run depending on some secret private coins® not accessible by
R. Reductions can run A several times (with fresh private coins). We call a reduction straigthline if it only
runs A once.

In our case, the reduction R will be playing G3PH-6G

ohLen - 1t Teceives as inputs o(1), U = o(u), V = o(v),

and has access to the Eval, O, oracles, as well as an adversary A for GOPIEREAL-GG op GOPHRAND-GG e
reduction needs therefore to supply inputs (o(1),U’, V', W) to A, and to answer its queries to the oracles

H,, as well as queries to H. We will call such a reduction restricted if it is straightline and V' = V.

5 If we want to allow the reduction to control random bits, we model them explicitly as an additional input.



2.2 Compression Lemma

In our lower bound proof we use the compression lemma that was formalized in [7] which roughly means
that it is impossible to compress every element in a set with cardinality ¢ to a string less than log ¢ bits long,
even relative to a random string. We state the compression lemma here as a proposition.

Proposition 1. Suppose, there is a (not necessarily efficient) procedure Encode : X x R — Y and a (not
necessarily efficient) decoding procedure Decode : Y x R — X such that

Pr [Decode(Encode(z,r),r) = 2] = €,
zeX,rER

then log |V] = log |X| — log(1/e).

2.3 Polynomials and Schwartz-Zippel Lemma

Let p(X1, -, X,) be a n variate polynomial. We denote by p(x1,--- ,z,) the evaluation of p at the point
(1, ,x,) throughout the paper. The polynomial ring in variables X1, - - - , X,, over the field Z, is denoted
by Zp[X1,- -+, X,]. We state the Schwartz-Zippel Lemma in Z, which will be useful later.

Proposition 2. Let p be a non-zero n variate polynomial with degree d. Then

d
P o d < -
P QM) =0 (mod p)] <

2.4 Key Encapsulation Mechanism (KEM)

A key-encapsulation mechanism (KEM) consists of three probabilistic polynomial time (PPT) algorithms
Gen, Encap, Decap. The key generation algorithm Gen is probabilistic and outputs a key-pair (pk,sk). The
encapsulation algorithm Encap is a probabilistic algorithm that takes pk as input and outputs a ciphertext c
and a key K where K € K for some non-empty set . The decapsulation algorithm Decap is a deterministic
algorithm that takes as input the secret key sk and a ciphertext ¢ outputs a key K € K if (sk,¢) is a valid
secret key-ciphertext pair and L otherwise. For correctness, it is required that for all pairs (pk,sk) output
by Gen, if (K, ¢) is output by Encap(pk) then K is the output of Decap(sk, c).

SINGLE CHALLENGE KEM-CCA SECURITY. The single challenge CCA security of a KEM is defined by a
pair of games called GKEM-CCA-REAL (GKEM-CCA-RAND Ty hoth games a (pk,sk) pair is generated by Gen, and
(¢, K) is output by the encapsulation algorithm Encap on input pk. The adversary is provided with (pk, ¢, K)
in GKEM-CCA-REAL and with (pk, ¢, K') in GKEM-CCA-RAND where K’ is a randomly sampled element of IC. The
adversary has access to the decapsulation oracle with sk as the secret key and it can make decapsulation
queries on any ciphertext except the ciphertext ¢ and has to output a bit. We define the advantage of violating
single challenge KEM-CCA security is defined as the absolute value of the difference of probabilities of the
adversary outputting 1 in the two games. A KEM is single challenge CCA-secure if for all non-uniform PPT
adversaries the advantage of violating single challenge KEM-CCA security is negligible.

SINGLE CHALLENGE KEM-CCA ofF HASHED ELGAMAL. We describe the KEM for Hashed ElGamal in a
group with order p and generator g and a hash function H. The function Gen samples v at random from
Zp, and returns (g¥,v) as the (pk,sk) pair. The function Encap on input v, samples u at random from
Z, and returns g“ as the ciphertext and H(¢g"") as the key K. The function Decap on input ¢, returns
H(c?). Note that Decap in KEM of Hashed ElGamal is identical to the H, function as defined in the ODH
assumption. It follows that the single challenge KEM-CCA security of Hashed ElGamal is equivalent to the
ODH assumption. In particular, in the generic group model when H is modeled as a random oracle, the
single challenge KEM-CCA security of Hashed ElGamal is equivalent to the ODH assumption in the random
oracle and generic group model.



3 Memory Lower Bound on the ODH-SDH Reduction

3.1 Result and Proof Outline

In this section, we prove a memory lower bound for restricted black-box reductions from ODH to SDH. We
stress that the restricted reduction has access only to the H, H, queries of the adversary. As discussed above,
the ODH assumption is equivalent to the single-challenge KEM-CCA security of Hashed ElGamal, this
proves a memory lower-bound for (restricted) black-box reductions of single challenge KEM-CCA security
of Hashed ElGamal to the SDH assumption.

Theorem 1 (Main Theorem). In the generic group model, with group order p, there exists an ODH
adversary A that makes k H queries and k H, queries (where k is a polynomial in logp), a function €1(p, hLen)
which is negligible in logp, hlLen, and a function es(p) which is negligible in log p, such that,
1. AdvORILSC(A) = 1 — €1 (p, hLen).
2. For all restricted black-box reductions R, with s bits of memory and making a total of ¢ (assuming q = k
and 6q < p — 4k — 4) queries to Oy, Eval,

e2(p) ,

k
4843\ B¢ 6g\? 4q¢®logp + 13¢% + 5¢
p.hLen > (1 +— ) + +

p p p

where ¢ = 4Hg§Z]

This result implies that if Advztjht_r? G(RA) is non-negligible for a reduction R making q queries where ¢ is a
polynomial in log p, then s = 2(klogp) i.e. the memory required by any restricted black-box reduction grows
with the number of queries by A. Hence, there does not exist any efficient restricted black-box reduction
from ODH to SDH that is memory-tight.

In Appendix C, we discuss how rewinding can slightly improve the memory complexity to (roughly)
O(klog k), with heavy computational cost (essentially, one rewinding per oracle query of the adversary). We

conjecture this to be optimal, but a proof seems to evade current techniques.

DE-RANDOMIZATION. Before we turn to the proof — which also connects several technical lemmas presented
across the next sections, let us discuss some aspects of the results. As explained above, our model allows
for the adversary A to be run with randomness unknown to R. This aspect may be controversial, but we
note that there is a generic way for 4 to be made deterministic. Recall that A must be inefficient for the
separation to even hold true. For example, A can use the injection o from the generic group model to generate
its random coin — say, using 0 ~!(a;) as coins a priori fixed labels aj, as, . ... It is a standard — albeit tedious
and omitted — argument to show that unless the reduction ends up querying the pre-images (which happens
with negligible probability only), the ¢~ 1(a;)’s are good random coins.

STRENGTHENING BEYOND SDH. We would like to note that our result can be strengthened without much
effort to a reduction between ODH and a more general version of SDH. Informally, we can extend our result
to every problem which is hard in the generic group model in presence of an O, oracle. For example, this
could be a problem where given g, g%, and g*, the attacker needs to output g/(**), where f is (a fixed)
two-variate polynomial with degree at least 2. We do not include the proof for the strengthened version for
simplicity. However, it appears much harder to extend our result to different types of oracles than O,, as our
proof is tailored at this oracle.

Proof. Here, we give the overall structure, the key lemmas, and how they are combined — quantitatively —
to obtain the final result.

First off, Lemma 1 establishes that there exists an adversary A such that Adv?yEE;nGG (A) is close to 1,
which we will fix (i.e., when we refer to A, we refer to the one guaranteed to exist by the lemma). The proof

of Lemma 1 is in Section 4.1 and the proof of Lemma 2 is in Section 4.2.



Lemma 1. There exists an adversary A and a function €1(p, hLen) such that is negligible in logp, hLen, and

AdvOPHCE(4) = 1 — ¢ (p, hLen) .

p,hLen

After that, we introduce a game, called G; and described in Figure 3 in Section 4.2. Very informally, this
is a game played by a two-stage adversary R, Ro which can pass a state to each other of size s bits and
have access to the Eval, O, oracles. The game captures the essence of the reduction R the adversary A of
having a sufficient amount of memory. This is made formal in Lemma 2, where we show that the probability

of the reduction R winning GZSEE;SG while running A is bounded by the probability of winning G;.

Lemma 2. For every restricted black box reduction R that runs A while playing Gg'?hﬂgnGG, there exist adver-

saries R1, Ro playing G1, such that the number of queries made by R1, Ro to Eval, O, is same as the number
of queries made by R to Eval, O, the state passed from R1 to Ro is upper bounded by the memory used by
R and,

4132(1ogp)2 N 4qgklogp + ¢>
p p '

We introduce Games Gs, Gs in Figure 5 in Section 4.2. These games are identical to G; except for the
condition to output true. The condition to output true in these games are disjoint and the disjunction of
the two conditions is equivalent to the condition to output true in G;. A little more specifically, both games
depend on a parameter [, which can be set arbitrarily, and in Gs and Gy the winning condition of G; is
strengthened by additional ensuring that a certain set defined during the execution of the game is smaller
or larger than [, respectively. Therefore, tautologically,

Advzs)?\tr?G(RA) < Pr[Gy = true] +

Pr[Gy = true] = Pr[Gy = true] + Pr[G3 = true] . (1)

We now prove the following two lemmas below, in Sections 4.3 and 4.4,

Lemma 3. If (R1,R2) make q queries to their oracles in total in the game Go as defined in Figure 5, then

L 2g(2k 2 k2 4+ k+2
Pr[GQ:true]sq——i-M—i-@—i-L,
k! P p P

Lemma 4. If the size of the state ¢ output by R4 is s bits and (R1, Re) make q queries in total in the game
Gs as defined in Figure 5, then

2q—1

2 B+ k+2
+—=
P

l
s (8¢%(2k+2+3q)\ 2 6
Pr[G3=>true]<2-22<Q( ret q)) <1+q>
p p
Combining (1) and the result of Lemmas 3 and 4 we get,

1 2g—1
8q2(2k+2+3q)>2< 6q> 2 N

14+ —
p p

Pr[G; = true] <222 <

2k +k+2 b2k +3¢g+2) 5
Q_F%_FM_FE. (2)
P k! D D
291

q
Since (1 + %) © < (1 + %) , combining Lemma 2, (2) we get,

!
_ C(SRCk+2+30)\ T [ 6g\T 20k +k+2
Adv RIS (RH) <2-22< a o q>> (1+pq> + 2 e Ly

2q(2k 2 4k2(logp)®  4qk1 2 4l
q(2k +3¢+2)  5¢  4k*(logp)”  4gklogp+¢® ¢
D D P P k!




We let,
¢ 20k*+k+2) N 4k (log p)*

e(p) =5+
k! D D
Setting ¢ = Hggg] and | = £, %l! < k:f. By Sterling’s approximation k! > k*+1/2e=%_ Therefore,

/{Jk/4 kk/4 ek 1
TR T KR R R
For k > e* (we can set k > e?), Z—l! < W i.e. Z—l! is negligible in logp for k polynomial in logp. Also,
2(k%+k+2) | 4k*(logp)?
0 +
We have that,

is negligible in logp (since k is a polynomial in logp). So, €2(p) is negligible in log p.

p,hLen p P
2q(2k + 3q + 2) N 5¢ N 4qklogp + ¢>
p P P

k
. (84°(2k +2 % a
AdvSPH-GG(RA) <o . 93 <8q (2k + +SQ)> <1 n 6‘1) n

+e2(p) -

log q
log k

k
- o [(48¢3\ ¥ 6g\? 4¢*logp+13¢*> +5
R <228 (S5) (1 51) 4 MR et

where ¢ = 4[;264]. Assuming ¢ > k (and thus ¢ > e* > 2), we get,

4 Proof of Theorem

4.1 Adversary A against ODH
In this section, we construct the ODH adversary A needed for the proof.
Lemma 1. There exists an adversary A and a function €1 (p, hLen) such that is negligible in logp, hLen, and

AdV;?,EEe;GG(A) =1—ei(p,hLen).

Proof. The adversary A is formally defined in Figure 2. Adversary A samples 41,--- ,i; from Z,, and com-
putes o(i;),0(i; - v) for all j in [k]. It then makes H, queries on o(¢;)’s for all j in [k]. Adversary A then
samples a permutation m on [k] — [k], and then makes H queries on o (i (;) - v)’s for all j in [k]. If an-
swers of all the H queries are distinct and the answers of all the H, queries are distinct and for all j in [k],
Hy(o(i;)) = H(o(i; - v)), A computes the discrete logarithm of V' outputs the correct answer. Otherwise it
returns a bit sampled uniformly at random. Note that A is inefficient, but only if it is satisfied from the
responses it gets from the reduction using it.

First off, we note that adversary A does not use its input W until after the flag honest is set. So,
W does not affect the setting of honest in any way. Since W is the only difference among the inputs of
GOPH-REAL-GG( A) and GOPH-RAND-GG( A) to A, Pr[honest = 0] and Pr [honest = 1] are equal in both games.

p,hLen p,hLen
The flag honest is set to 0 in the following two cases.

1. for some distinct j,1 € [k] , ans1[j] = ans1[l] or ansa[j] = ansy[l]). i.e.
3j,Le [K],j # 1:H(a(i;)) = H(o (@) v H(a(i; - v)) = H(a (i - v)) -

We name this event E;. Note that if for some distinct 4,1 € [k], ¢; = 4;, then the event E; happens with
probability 1 since H(i;) = H(4;). We compute the probability of that there exists some distinct j, 1 € [k],
such that i; = i;.
ko
-1 k(k—1
Pr(3jlelk],j#1:i;=14] = Zj _kk=1)

o p

10



Also, note that if v = 0, £y happens with probability 1 since H(o(4; - 0)) = H(o(0)) = H(o(4; - 0)). Since
v is sampled uniformly at random from Z,, Pr[v =0] = 1

We define the event Es as follows. ’
(Fjlelkl,j#1:i;=4)A(v+#0).
Using the union bound,
Pr[—FE:2] < M —i—1 .
p p
Since, o is an injective function, E5 implies
Bile[kl,j#1:0(i;) =0(it) volij v)=a(i-v).
Since H is a random oracle, the collision probability is,
Pr[H(r) = H(s) |r # 5| = Jhlen -
Therefore, using the union bound we have,
i | B < NG
Hence,
k(k—1)+1 k(k—1)

P + 2hLen

Pr [El] < Pr [_'EQ] + Pr [El |E2] <
2. for some j € [k], ans1[j] # ansa[j] i.e.
3j € [k] : Hu(o(ij)) # H(o(ij - v)) -
This is an impossible event in G]?E,':';nREAL'GG(A) and Ggy'ﬁ,':'e'nRAND'GG(A) by the definition of H,.

Therefore,
kE(k—1)+1  k(k—1)
2hLen

In Gg_y?l'_";nREAL'GG (A), if honest = 1, the output of GS’EE;”REAL'GG(A) will always be 1 because W = H(o(uv)) =

H(inp) = W'. Therefore,

Pr[honest = 0] = Pr[E;] <

p,hLen

Pr [GODIEREAL-GG(4) = 1] > Pr[honest = 1] > 1 — <k(k i) L Gl ”)

D + 2hLen

In GOPHRAND-GG(A) if honest = 1, the probability that W = W’ is at most zrm because W is sampled

uniformly at random from the range of H in GS)E{;RAND'GG. So we have,
- - 1 1
Pr [(Gg'ﬁt'enRAND oA = 1] < Pr[honest = 0] - 5 + Pr[honest = 1] - Jhlen
E(k—1)+1  k(k—1) 1 E(k—1)+1 k(k—1)
< + 1-— —
2]9 9ohlen+1 2hLen D 2hLen
Hence,
Pr [GORIEREA-GS(4) = 1] — Pr [GORHERAND-GS () = 1]
3k(k—1)+1  3k(k—1) 1 k(k—1)+1 k(k—1)
= 1 - 2p + 2hLen+1 2hLen 1—- D - 2hLen :

We let, €1 (p, hLen) = (3’6(’“;1}”1 + 3;{’:;}’) + o (1 — Bl kg’:;})). Since k is polynomial in log p,

€1(p, hLen) is negligible in log p, hLen. Therefore,

AdV;?,EEe_nGG(A) > 1—¢i(p, hLen) .

11



Adversary AHV(~)7H(-)1EV3|(-1»)(U7 ‘/7 W, 0.(1)) .
Tt iy, ip «$7,

2: foreach j € [k] do

30 @il « Exp(a(1), ;) Qa[] « Exp(V; ;)

4: honest «— 1

5: foreach j € [k] do

6:  ansi[j] « H,(Q1[5])

7T: w™<$S,

8: foreach j € [k] do

9. anss[r(j)] « H(Qa[r()])

10: if 35,1 e [k],j # 1 : (ans1[j] = ansi[l] v ansz[j] = ansz[l]) then honest « 0
11: if 35 € [k] : ans; [j] # ans2[j] then honest « 0
12 : if honest = 1 then

13: temp «— o(1);v « 1

14 : while (temp # V')

15 : temp « Eval(temp, o(1));v « v + 1

16 : inp < Exp(U,v); W' « H(inp); b « (W' = W)
17: else b «<${0,1}

18 : return b

Fig. 2. The adversary A

4.2 The Shuffling Games

THE GAME G;. We first introduce the two-stage game Gy played by a pair of adversaries R; and Ro. (With
some foresight, these are going to be two stages of the reduction.) It is formally described in Figure 3. Game

G involves sampling 0,1, - - - , %%, v from Zj,, then running R4, followed by sampling permutation 7 from Sy,
and then running Rs. The first stage R has inputs o (1), -+ ,0(ix) and it outputs a state ¢ of s bits along
with k strings in {0, 1}""*". The second stage R has inputs #,0(in1) - V), ,0(ink) - v) and it outputs

k strings in {0, 1}"e". Both the stages R, Ro have access to oracles Eval, O,. Game G; outputs true if all
the k strings output by R are distinct, and if all the k strings output by Rs are distinct, and if for all
j € [K], the j*" string output by R is identical to the 7(j)" string output by R;. Additionally, G involves
some bookkeeping. The Eval, O, oracles in G; take an extra parameter named from as input which indicates
whether the query was from Ry or Rs.

We introduce the phrase “seen by” before describing the bookkeeping. A label has been “seen by” Rj if it
was an input to R1, queried by Rq or an answer to a previously made Eval(.,.,1) query. A label has been
“seen by” Rg if it was an input to Re, queried by Ro or an answer to a previously made Eval(.,.,2) query.
We describe the sets X', V1, Vs, £ which are used for bookkeeping in Gy.

— The labels in X are answers to Eval(., ., 1) queries such that it has not yet been “seen by” R; before the
query.

— )1 contains all the labels that are input to R1, queried by R; or answers to Eval(.,.,1) queries i.e. it is
the set of labels “seen by” R;.

— Y contains all the labels that are input to Rs, queried by R; or answers to Eval(.,.,2) queries i.e. it is
the set of labels “seen by” R.

— All labels in Z are queried by Ro and have not been “seen by” Rs before the query and are in X

The following lemma tells us that we can (somewhat straightforwardly) take a reduction as in the theorem
statement, and transform it into an equivalent pair Ry, Ro of adversaries for G;. The point here is that the
reduction is very unlikely to succeed in breaking the SDH assumption without doing an effort equivalent to
winning G to get A’s help — otherwise, it is left with breaking SDH directly in the generic group model,
which is hard.

12



Game Gq :

1: o «$InjFunc(Zp, L);41,- - ,ix,v «$7Zp

2: X« {o(l),0(w),0(i1), - ,0(i)}; 1 « {c(1),0(v),0(1), - ,0(ir)}
31 ¢ys1,cee sk e REACDOGD 601y 5(0) o(in), -, o (ik))

4: w38y V2 «— {o(1),0(v),0(i1-v), + ,o(ix V) Z «—

51 s, sh, sy e REACIONCD (4 61y 6 (0), 0 linay V) s o linery V)
6: win < (Vj € [k] : sn¢5) :s;)/\(Vj,le[k:] jFEL = s # s /\s;- # 5)
7 : return win

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

1: ceo(c '(a)+o ‘(b)) 1: if from = 1 then Y; <= {a, b}

2 if from = 1 then 2 if from = 2 then

3 if c¢ Y; then X < {c} 3 if a€ X\), then Z < {a}

4 V1 <= {a,b,c} 4: if be X\)> then Z < {b}
5: if from = 2 then 5 Vo < {a, b}

[§ if a€ X\)s then Z < {a} 6: return (v- ail(a) - ofl(b))

7 if be X\Y; then Z < {b}

8 Y2 <= {a,b,c}

9 return c

Fig. 3. Game G1. We use the phrase R1, Rz win G; to mean G; = true. We shall use this convention for all games
in the paper that output boolean values.

Adversary BVOHOBRIC) (7 Vo, 0(1))

1 g, ip <$7Z,

2: foreach j € [k] do

3: Q1[7] <« Exp(o(1),;); Q2[j] « Exp(V, ;)

4 : honest « 1

5: foreach j € [k] do

6:  ansi[j] < H(Q1[5])

7T: w™<$Sk

8: foreach j € [k] do

9:  ansy[r(5)] « H(Q2[r(5)])

10: if 35,01 € [k],j # L : (ans1[§] = ans1[l] v ansz[j] = ans2[l]) then honest « 0
11: if 35 € [K],j # | : ans1[j] # ans2[j] then honest « 0
12: b<${0,1}

13: return b

Fig. 4. Adversary B

Proof. We introduce the adversary B which is identical to A till setting of honest (line 11) and then returns
a bit uniformly at random. It is formally defined in Figure 4. Since the value honest does not change after
line 11 in either A or B, the value of honest will be identical in A, B. Also, observe that if honest is set to 0
in A, A’s output is identical to that of 5.

Consider any restricted black-box reduction R from ODH to SDH in the random oracle and generic group
model that has oracle access to A. During the execution of R4 if honest = 0 in A, then it has the same
output as B. So, Therefore,

Pr G0N (RA) = true] < Pr[GoR15¢(RP) = true| + Pr [honest = 1 in A during the execution of R™] .
(3)

13



The adversary R” makes at most 2k log p 4 ¢ queries to its oracles. From the hardness of SDH in the generic
group model [1], it follows

4k2(logp)®  4qk1 2
(;gp) L4 oip+q . (1)

We show that if honest = 1 in A when R runs A, R = (R1,R2) can run R and win G; . We next describe

how R1,Rs run and simulate A, Gi'?htnGG to R.

Recall that Rq has inputs o(1),0(v),0(i1),--- ,0(ix). First off, Rq samples u uniformly at random from
Z, and computes o(u) = Exp(o(1),u). It then starts running R with inputs o(1), o(u), o(v) and simulates
the oracles Eval, O, to R. For every Eval(a, b) query made by R, Ry makes an Eval(a, b, 1) query to its own

oracle and forwards the answer to R. For every O,(a,b) query made by R, Ry makes an O,(a,b,1) query

SDH-GG B
AdVp,hLen (R )<

to its own oracle and forwards the answer to R. Ry makes H, queries to R on o(i1), - ,0(ix) and receives
responses si,--- ,Sk. 1 stops the execution of R after making the H, queries, records the local state st of
R. Finally, R outputs st along with sy,---,s;. Recall that Ra has inputs st,o(ix(1) - v), ;0 (irm) - V).

First, Rs restarts R from state st. For every Eval(a, b) query made by R, R, makes an Eval(a, b,2) query to
its own oracle and forwards the answer to R. For every O,(a, b) query made by R, Rs makes an O,(a, b, 2)

query to its own oracle and forwards the answer to R. Ro makes H queries to R on o (ir(1)-v), -+ ,0(ix(k) V)
and receives responses s7,--- , s;.. Finally, Ro outputs s, -- -, s}.
Observe that o, u, v are sampled identically in GZ%’E;SG(R““), Gy, 41, - , ik, ™ are sampled identically in

A, Gy and R1, Ro make the same queries to R as A does in the same order. It follows that R, Ro perfectly
simulate A, GZ%‘E;SG to R. Also note that the number of queries made by R1,Rs to Eval, O, is same as
the number of queries made by R to Eval, O, and the state passed from R; to Ry is upper bounded by the
memory used by R because ¢ is the local state st of R at a certain point in its execution.

Next we relate the probabilities of honest = 1 in A and G; = true. If honest = 1 in 4 we have the

following.

1. There does not exist distinct j,! € [k] such that ans;[j] = ans;[l]. The equivalent condition in Gy is
Vilelkl:j#1 = s; #s;.

2. There does not exist distinct j,I € [k] such that ansg[j] = ansg[l]. The equivalent condition in G, is
Vjlel[k]:j#1 = s #s].

3. For all j € [k], ans1[j] = ansa[j]. The equivalent condition in Gy is Vj € [k] : sr(;) = s .
It follows that whenever honest = 1 in A, G; = true. Hence,
Pr [honest = 1 in A during the execution of R4| < Pr[G; = true] . (5)
From (3) and (5), it follows that,
AdvTH5C(RA) < AdVIRIESC(RP) + Pr[Gy = true] . (6)

Combining (4) and (6), we have,

4k?(log p)2 N 4qgklogp + ¢?

AdvSDH-CC(RAY < Pr[Gy = true] +
p p

p,hLen

(7)

O

Lemma 2. For every restricted black box reduction R that runs A while playing GIS)R]'E;EG, there exist adver-
saries R, Ro playing Gy, such that the number of queries made by R1, Rs to Eval, O, is same as the number
of queries made by R to Eval, O, the state passed from Ry to Ra is upper bounded by the memory used by
R and,

4k2(log p)* _ daklogp + ¢

AdvRH-GE(RA) < Pr[Gy = true] +
p p

p,hLen
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Game , Gs|:

1: o «S$InjFunc(Zy, L);i1, -+ ,ig, v «<$Z,

2: X« {o(l),0(w),0(i1), - ,0(ix)}; V1 « {c(1),0(v),0(1), - ,0(ir)}

3: st sp e REAGODONGD 61y 5(0), 0(ir), -, o(ik))

4: 88k Vo« {o(1),0(v),0(i1 -v), - ,0(ix V) 2« &

5 sy s o REMCDOE (6 0(1) 0 (0),0(inqr) - v). (i )
6: Win(—(VjE[k]:S.,\.(j)=S;)/\(Vj,l6[k:]:j;ﬁl = sj ;éslAs'j #s])

7 |return (win A |Z] < l)l ‘ return (win A |Z| 2 1)

Fig. 5. Games G2, Gs. The Eval, O, oracles in Gz, G3 are identical to those in G; and hence we do not rewrite it here.
The newly introduced changes compared to G1 are highlighted. The statement within the thinner box is present only
in Gs and the statement within the thicker box is present only in Ga.

Game PG(A) : Oracle O(Z,%) : [ #ezk, gezk
1: m«$S; 1: return (Vie [k] : Z[n ()] = 7[z])
2. 7_r/ P AO(.,.)

3: return (7 =7')

Fig. 6. The permutation game PG being played by adversary A is denoted by PG(.A)

THE GAMES Gy AND Gg3. In Figure 5 we define G5, Gg which have an added check on the cardinality of Z
to output true. Everything else remains unchanged (in particular Eval, O, are unchanged from G; and we
do not specify them again here). The statement within the thinner box is present only in G3 and statement
within the thicker box is present only in Go. The changes from G; have been highlighted. We shall follow
these conventions of using boxes and highlighting throughout the paper.

The games Go, G3 are identical to G; except for the condition to output true. Since this disjunction of
the conditions to output true in Go, Gz is equivalent to the condition to output true in G, and the conditions
to output true in Go, G3 are disjoint, we have,

Pr[G;y = true] = Pr[Gy = true] + Pr[Gs = true] .

4.3 Proof of Lemma 3
Recall we are going to prove the following lemma.

Lemma 3. If (R1,R2) make q queries to their oracles in total in the game Go as defined in Figure 5, then

Lo 2q(2k+3¢+2) 5 B+ k+2
g, 24 q+2) 5S¢ .

Pr[Gy = true] < —
[ ] k! p p p

Proof. We introduce a new game — called the permutation game and denoted PG — in order to upper bound
Pr [G2 = true]. In the rest of this proof, we are going to first define the game, and upper bound the winning
probability of an adversary. Then, we are going to reduce an adversary for Gy to one for PG.

THE PERMUTATION GAME. In Game PG, an adversary has to guess a randomly sampled permutation 7
over [k]. The adversary has access to an oracle that takes as input two vectors of length k and returns true
if the elements of the first vector, when permuted using 7, results in the second vector and false otherwise.
Figure 6 formally describes the game PG.

In the following, we say an adversary playing PG is a (g, [)-query adversary if it makes at most ¢ queries
to O, and the rank of the vectors that were the first argument to the O queries returning true is at most [.

The following lemma — which we prove via a compression argument — yields an upper bound on the
probability of winning the game for a (g, 1)-query adversary.
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Procedure Encode(n) :  Oracle O(Z, ) :

1: ¢« 0 1: ce—c+1
2: S« g 2: if (Fi € [k] : Z[x(i)] # ¢[i]) then
3: enc« I 3: return false
4: 7'« A°CH 4: else
5. return enc 5: if & ¢ span(S) then
6 : S« Su{z}
7 enc < enc u {c}
8: return true

Procedure Decode(enc) : Oracle O(Z,7) :

1: c« 0 1 cect1
2: 5'eg 2: if c € enc then
3: A% 3: 8 e s u{@a)
4: return 7 4 return true
5 return ((f7 g) e span(S'))

Fig. 7. Encoding and decoding 7 using A

Lemma 5. For a (q,l)-query adversary A playing PG the following is true.

l
Pr[PG(A) = true] < % .
Proof. We construct an encoding of 7w by running adversary A. In order to run A, all the O queries need to
be correctly answered. This can be naively done by storing the sequence number of queries whose answers
are true. In fact, of all such queries, we need to just store the sequence number of just those whose first
argument is not in the linear span of vectors which were the first argument of previous such queries i.e. we
store the sequence number of only those O queries returning true whose first argument form a basis of the
first argument of all O queries returning true. This approach works because for every vector &, there is only a
unique vector % such that O(Z, %) = 1. The random tape of the adversary can be derived using the common
randomness of Encode, Decode and hence the adversary produces identical queries and output. For simplicity,
we do not specify this explicitly in the algorithms and treat A as deterministic. The formal description of
the algorithms Encode, Decode are in Figure 7.

Observe that S is a basis of vectors & such that O(Z, ¢) = true. Note that for an O(Z, §) query returning
true, if & € S then the sequence number of the query is stored in enc. Therefore, (¥, %) € S’ in Decode. Again,
for an O(Z, §) query returning true, if £ ¢ S then the sequence number of the query is not stored in enc and
therefore (Z,9) ¢ S’. So, for an O(Z,¥) query returning true, (Z,%) € S’ iff £ € S. Since, for all (#,¥) such
that O(Z, ) = true we have that for all i € [k], #]i] = Z[7~1(4)], it follows that S’ forms a basis of vectors
(Z,7) such that O(Z,y) = true.

In Decode(enc), the simulation of O(&, ¥) is perfect because

— If ¢ is in enc, then & € S in Encode. From the definition of S in Encode, it follows that O(Z,¢) should
return true.

— Otherwise we check if (Z, ) € span(S’) and return true if the check succeeds, false otherwise. This is
correct since in S’ is a basis of vectors (#,¥) such that O(Z, ) = true.

The encoding is a set of |S| query sequence numbers. Since there are at most g queries, the encoding
space is at most (Ig\)' Using X" to be the set S, )V to be the set of all possible encodings, R to be the set of

random tapes of A, it follows from Proposition 1 that,

q
Pr [Decoding is sucessful] < l]:') .
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Procedure PopulateSetsEval(a, b, ¢, from) : Procedure PopulateSetsO,(a, b, from) :

1: if from =1 then if from = 1 then Y; <= {a, b}

1:
if c¢ V1 then X <~ {c} 2 if from = 2 then
V1 << {a,b,c} 3: if a € X\, then Z <« {a}
if from = 2 then 4 if be X\V, then Z « {b}
if a€ X\ V> then Z «- {a} 5 Vs <~ {a, b}
if b e X\Vs then Z < {b}

Y2 < {a,b,c}

N O o A WN

Fig. 8. Subroutines PopulateSetsEval, PopulateSetsO,

Since the simulation of O(&, %) is perfect in Decode, decoding is successful if PG(.A) = true. Therefore,

(5) _ ¢

Since A is a (g, l)-query adversary, |S| < I. Thus, we have,

l

Pr[PG(A) = true] < % (8)

REDUCTION TO PG. We next show that the Pr[Gy = true] is upper bounded in terms of the probability of
a (q,1)-query adversary winning the game PG.

Lemma 6. There exists a (q,1)-query adversary D against the permutation game PG such that

2(2k +3¢+2) 5g  K*4k+2
29(2k+3¢+2) 5S¢ kK +k+2
p p p

Proof. We transform R, Re playing Go to an adversary D playing the game PG through a sequence of
intermediate games and use the upper bound on the probability of winning the game PG established previ-
ously to prove an upper bound on Pr[Gy = true]. In order to make the pseudocode for subsequent games
compact we define the two subroutines PopulateSetsEval, PopulateSetsO, and invoke them from Eval, O,. The
subroutines PopulateSetsEval, PopulateSetsO, are formally described in Figure 8.

Pr[Gy = true] < Pr[PG(D) = true] +

THE GAME Gy4. We next describe game G4 where we introduce some additional bookkeeping. In G4, every
valid label that is an input to R1, Ro or queried by R1,R2 or an answer to a query of Rq,Ro, is mapped
to a polynomial in Zy[I1,--- , Iy, V,T1, - ,Toq] where ¢ is the total number of Eval, O, queries made by
R1,R2. The polynomial associated with label a is denoted by p,. Similarly, we define A to be a mapping
from polynomials to labels. For all labels a € £, A(pa) = a. The mapping from labels to polynomials is done
such that for every label a mapped to pa,

U_l(a) = pa(ih‘" 7ikvvvt17"' 7t2q) .

For compactness, let us denote (i, -+, ik, v,t1,- - - ,t2q) by i. Prior to running R, polynomials 1,V I, - - -, I,
LV, IV are assigned t0 Py(1); Po(v)s Po(ir)s " ** s Po(ix)s Po(izv)s *** s Po(iy-v) respectively and for all other
labels a € L, p, = L. The function A is defined accordingly. For labels a queried by Ri, Rs that have not
been previously mapped to any polynomial (i.e. pa = L), pa is assigned Tpew (new starting from 1 and being
incremented for every such label queried), the variable tey is assigned the pre-image of the label and A(Thew)
is assigned a. Since there are ¢ queries (each with two inputs), there can be at most 2¢ labels that had not
previously been mapped to any polynomial. Hence, the polynomials have variables Iy,--- , Iy, V,Ty,--- , Ta,.

For an Eval(a,b,.) query where ¢ = o(c!(a) + 0~ 1(b)), let p’ = pa + pp. From the definition of p, we

have that p’(i) = o !(a) + o 1(b). If A(p’) # L, then by definition of A, we have A(p’) = c. If A(p’) = L,
then exactly one of the following two must be true.
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Game Gy :

1: o «$InjFunc(Z,, L); foreach a € £ do pa < L

2: foreach p' € Zp[I1, -+ , I, V,T1, -+ ,T2q] do A(p’) « L

3 i, ik, v < $Zpspo(r) — 1 A(L) « o(1)

4: if pyy) = L then p,(,) <V

5: A(V) « a(v)

6: foreach j € [k] do

7: if Po(ij) = 1 then Po(iy) < I;

8:  Al;) <« oliy)

9: if Po(v-ij) = 1 then Po(v-ij) < Vi,
10 : A(VI;) « o(v-1ij)
11: new 0 X « {o(1),0(v),0(i1), -+ ,0(ix)}; V1 < {o(1),0(v),0(i1), -, o(ir)}
120 st 85 REACODONED (61 6(v),0(61), - -, o(ix))
13: 7 «$Sk; V2 « {o(1),0(v),0(i1-v), - ,0(ix- V) 2« &
14 : 5/1, s’z, cee ,s/k — Rgval("’"Q)’O"(""Q)((75, o(1),0(v), O'(i,,r(l) )RR ,O’(i"(k) )
15:  win < (Vj € [K] : 5.5 :s;)/\(Vj,lE[k] jFEL = s # 8 /\5_’7. #5)

16 : return (win A |Z] <)

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

1 if pa = L then 1 if pa = L then

2 AssignPoly(a) 2 AssignPoly(a)

3 if ppb = L then 3 if ppb = L then

4 AssignPoly(b) 4 AssignPoly(b)

5: p’ < pa-+pb 5: ans <« (Vpa = pb)

6: if A(p’) = L then 6: if (vpa(7) = pw(7)) # ans then
7 if 3c' € L :py (i) = p'(7) then 7 ans « (vpa(i) = pb (7))
8 A(p) < ¢’ 8 : PopulateSetsO, (a, b, from)
9 else 9 return ans
10 : A(p') « o(c™ (a) + o~ (b));
11 : PA) € p’

12 : PopulateSetsEval(a, b, A(p’), from)
13: return A(p’)

Procedure AssignPoly(€) :

1: new « new + 1;tnew < J_l(l); pe «— Thew; A{Thew) «— £

Fig. 9. G4 introduces additional bookkeeping. The newly introduced changes compared to G2 are highlighted.

—

1. The label ¢ has been mapped to a polynomial which is different from p’. In this case pe(7) = p/(7) and
A(p’) is assigned c.

2. The label ¢ has not been mapped to any polynomial. In this case, p. is assigned p’ and A(p’) is assigned
c.

The label A(p’) is returned as the answer of the Eval query. Note that the output of Eval is ¢ = o(c~!(a) +
o~1(b)) in all cases, i.e. it is the same as the output of Eval in Go.

For an O,(a,b,.) query, we first assign the boolean value Vp, = pp to ans. Note that if ans is true, then
v-o-1(a) = 071(b). However, we might have that v-o~1(a) = 0~ (b) and Vp, # pp. When this happens,
the boolean value v(pa(7) = pp(i)) is assigned to ans. Oracle O, returns ans. From the definition of p, it
follows that the value returned by O, in G4 is (v- o !(a) = o~ 1(b)) i.e. it is the same as the output of O,

in GQ.
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Game Gs :

1: foreach i € Z, do o(i) « L;foreach a€ £ do pa « L

2: foreach p’ € Zy[I, -+ , I, V,T1, -+ ,Taq] do A(p’) « L

3 i, ik, v «$Zp;0(1) <8 L po(ry « 15 A(1) « o(1)

4: if po(yy) = L then o(v) <$R(0);po(v) <« V

5: A(V)« o(v)

6: foreach j € [k] do

7 if Po(iy) = L then o(i;) «$ R(o); Po(iy) < 1

8: A(I;) « o(ij)

9: if Po(vij) = L then o(v-i;) «$ R(a);pd(“_ij) «— VI;
10 : A(VI;) «— o(v-1ij)
11 new e 0,  {0(1),0(v), 0(in), -+ o)k Y1 {o(1), 0(0),0(in), -+, olis)}
120 51,85 REACODONED (61 6(v),0(61), - -, o(ix))
13: 7 «$Sk; V2 « {o(1),0(v),0(i1-v), - ,0(ix- V) 2«
140 sy, sh,e s e« REVCHDNCD (6 6(1), 0 (0), 0 (inr) 0], 0 lingry - v))
15:  win < (Vj € [K] : 5.5 :s;) AV Le[k]:j#l = s; # s /\s; #5,)

16 : return (win A |Z] <)

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :
1 if pa = L then 1: if pa = L then

2 AssignPoly(a) 2: AssignPoly(a)

3 if ppb = L then 3: if pp = L then

4 AssignPoly(b) 4: AssignPoly(b)

5: p < pa+pb 5: ans <« (Vpa = pb)

6: if A(p') = L then 6: if (vpa(?) = pu(7)) # ans then
7 if 3¢’ € £ : pys(7) = p'(7) then T ans  (vpa(i) = pu (i)
] AR « ¢ 8 : PopulateSetsO, (a, b, from)
9 else 9: return ans

10 : o(p'()) «$R(0); A(p') « o (p' (7))

11: PAp) < p'

12: PopulateSetsEvaI(a,b,A(p'),from)
13: return A(p’)

Procedure AssignPoly(€) :

1: new < new + 1; tnew <8 D(0); 0(tnew) < £; pe < Thew; A(Thew) < £

Fig. 10. Gs lazily samples 0. The newly introduced changes compared to G4 are highlighted.

Figure 9 formally describes G4. The changes in G4 compared to G, have been highlighted. We have
already pointed out that the outputs of O, Eval in G4 are identical to those in Gs. Since the other changes
involve only additional bookkeeping, the outputs of G, G4 are identical. Therefore

Pr[G4 = true] = Pr[Gy = true] . (9)

THE GAME Gj;. We define G5 in Figure 10 where o is lazily sampled. Since o is lazily sampled, it is a partial
function and we use previously defined notations D(c), R(c), D(o), R(c). There are no other changes in Gy
compared to Gy.

In Gy, o is sampled uniformly at random from InjFunc(Z,, £). In Gs, if o(i) is previously not defined,
it is sampled uniformly from the values in the range that do not have a pre-image and similarly if o~ !(x)
is previously not defined, it is sampled uniformly from the values in the domain that do not have a image.
Therefore, the distribution of o on the points in D(c) in Gs is identical to the distribution of o on the
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Game , Gr :

Procedure AssignPoly () :

1: new < new + 1; tnew <$7Z;

2: if o(tnew) # L then bad « true;| thew «$ D(0)

3: 0(tnew) < £;Pe < Thew; A(Thew) < £

Fig.11. In G7 we remove the restriction on ¢;’s. The main procedure of Gg,G7 are identical to Gs and the only
changes in the oracles are the AssignPoly procedure, hence we write only the AssignPoly procedure. The changes in
the procedure from that in Gs have been highlighted. The boxed statement is present only in Gg.

points in D(o) if o was sampled from InjFunc(Z,, £). So, in G5, the distribution of ¢ on the points in D(0)
is identical to that of G4. Since o is never evaluated on points outside D(o) in either games and there are
no other changes in Gs, the outputs of G4, G5 are identical.

Pr[G4 = true] = Pr[Gs = true] . (10)

THE GAMES Gg AND Gr7. Next, we define Games Gg, G7. The changes introduced in Gg from Gy have been
highlighted (as before). In G; we want to sample t;’s from Z,, instead of D(o). So in G¢ we first sample them
from Z, and define a bad event if o(t;) # L i.e. t; € D(o). If this bad event happens, then we resample ¢;
from W. We then remove this resampling in G7. The main procedure of Gg,G; are identical to Gy and
the only changes in the oracles are the AssignPoly procedure, hence we rewrite only the AssignPoly procedure
in Figure 11.

Observe from the pseudocode that outputs of Gs, Gg are identical. Therefore,

Pr[Gg = true] = Pr[Gs = true] . (11)

After 0(1),0(v),0(i1),- - ,0(ix),0(i1 - v), -+ ,0(ig - v) are sampled, the size of D(o) is at most 2k + 2. For
every query D(o) can grow by size at most 3 (in case of Eval queries). Therefore, the size of D(o) is at most
2k + 3q + 2. Since bad is set only when an element from D(o) is sampled,

2q(2k + 3 2
Pr [bad = true in G7] < 20k + 39 +2) .
p

It is evident from their pseudocodes that Gg, G; are identical-until-bad. From the Fundamental Lemma
Game Playing we get,

2q(2 2
Pr[Gg = true] < Pr[Gr = true] + 242k + 39 +2) . (12)
p

In G7, note that R(0) = R(A) and D(o) is not used anywhere. Also the condition py(;) # L is equivalent
to the condition that there exists some p such that A(p) # L and p(i) = j and the condition there exists

¢’ € £ such that pe (i) = p'(7) is equivalent to the condition there exists some p such that A(p) # L and
p(i) = p’(i). Hence, G7 can be rewritten without o.

THE GAMES Gg AND Gg. Next, we introduce games Gg, Gg. In Gg we remove o (we had previously pointed
out G7 can be rewritten without o), remove some redundant code and the bad event in G7 and add new bad

events when there is some p such that A(p) # L and p(i) = p'(z) in Eval and (vpa(i) = pp(7)) # ans in O,.
Hence outputs of G7,Gg are identical.

Pr [G7 = true] = Pr[Gg = true]| . (13)

Since 7 affects only the setting of bad in Eval, O, we see that i may well have been sampled at the very
end of Gg and it can be checked if any of the Eval, O, queries would have set bad to true. The degree of any
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Game |Gg |, Gg :

1: foreach a € £ do ps «— L;foreach p’ € Zp[Iy, -+ I, V,Th, -+ ,T2q] do /l(p') — 1
2 gy, ik, v < $Zp; A(L) < S Lipacry — 1

3: if3p: A(p) # L A p(i) = v then A(V) « A(p)

4: else A(V) «$ R(A); pap) <V

5: foreach j € [k] do

6: if3p:A(p) # L A p(i) = i; then A(I;) « A(p)

7 else A(I;) «<$ R(A); Pacry < Ij

8: ifdp:A(p) # L Ap(i) =ij-vthen A(VI;) « A(p)

9: else A(VI;) e$m; PA(VI;) < VI

10 new — 0; X « {AL), AV}, A(LL), -+ s AR} V1 — {AQ), AVY, AL, -+ s A(IR)}
11 ¢ys1,-oe s e RYVODOCD (4@, AWy, AT, -+ AUR))
12: 7 «$Sk; V2 « {A(L), A(V), A(VI), ,AVI)} 2 « &

130 sl 80,00, s e REACHDONCD (6 A1), AWV, ATray - Voo, Allngy - V)
14: win « (Vj € [K] : sx(j) :s;)/\(Vj,le[k]:j;El = s5; # 51 /\s;;ﬁSZ)

15: return (win A |Z| < 1)

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

1 if po = L then 1 if pa = L then

2 AssignPoly(a) 2 AssignPoly(a)

3 if pp = L then 3 if ppb = L then

4 AssignPoly(b) 4: AssignPoly(b)

5: p < pa+pb 5 ans < (Vpa = pb)

6: if A(p') = L then 6: if (vpa(i) = pb(i)) # ans then
7 if 3p: A(p) # L A p(D) = p'(i) then 7 bad « true

8 bad « true 8: ans « (vpa(7) = pu (7))

9: A(p’) « A(p) 9: PopulateSetsO, (a, b, from)

_ 10 : return ans
10 [else JA(p") < $R(A); pay < P’
11: PopulateSetsEval(a, b, A(p'), from)
12: return A(p')

Procedure AssignPoly () :

1: new < new + 1; tnew <$Zp; pe < Thew; A{Thew) — £

Fig. 12. Games Gs, Gg introduce new bad events. We remove o from these games. The changes from G7 have been
highlighted. The boxed statements are present only in Gs.

polynomial is at most 2 since every polynomial has monomials only of the form I, VI;,T;,V and constants.
We compute the probability of bad « true in Gg in Eval, O,.

In Eval, bad is set to true if A(p’) = L and for some label ¢’ pe/(i) = p/(7). From the definition of A,
it follows that A(p’) = L implies per # p’. We therefore have p'(i) — per(i) = 0. Note that p’ — pes is not
identically zero since A(p’) = L and the degree of p’ — pes is at most 2. Observe that the elements of 7 are
sampled from Z, and could have been sampled at the very end of Gy because i does not affect anything
other than setting bad. So, the probability p’(i) — pe (i) = 0 is bounded by % by Proposition 2. Since there
are at most g Eval queries, the probability that bad is set to true due to this condition in any of the Eval
queries in Gy is bounded by % using the union bound.

In O, bad is set to true is when (vpa(7) = pb(7)), (Vpa = pp) are different boolean values. Note that

-,

when (Vpa = pp) = true then (vpa(i) = pn(¢)). The only case when the two boolean values differ is when

— —

(Vpa = pp) = false and vpa(i) = pp(i) i.e. (Vpa—pp) is not identically zero but vpa(i) —pp (i) = 0. Note that
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the degree of (Vpa—pp) is at most 3 (since Vp, can have degree at most 3) . Like the previous analysis since
the elements of ¢ are sampled from Z, and could have been sampled at the very end of Gg, the probability

vpa(i) — pu(2) = 0 is bounded by % by Proposition 2. Since there are at most ¢ O, queries, the probability

that bad is set to true due to this condition in any of the O, queries in Gg is bounded by % using the union

bound. Therefore,

5
Pr[bad = true in Gg] < ;q .

Note that Gg and Gg are identical-until-bad. Therefore, using the Fundamental Lemma of Game Playing we
get,

Pr[Gg = true] < Pr[Gg = true] + %4 . (14)
p

We note that in Gg, A becomes an injective function since for p # p’, A(p) # A(p’). Therefore, A~! is well
defined. This means that for all labels £, pg can be replaced by A~!(£) throughout Gg. Also,(Vpa, = pp) is
always returned from O, and hence the check on ans can be omitted. The bad events can be removed from
Gy because it does not affect its execution in any way. That in turn implies ¢;’s do not affect the execution
of Gg and can also be removed. Since Gy only introduces a new bad event compared to Gg and the bad
event does not affect the output,

Pr[Gg = true] = Pr |Gy = true] . (15)

We need to compute the probability that bad is set to true in procedure RestrictedSample of Gig. First we
compute the probability that v € {0, 1},

2
Pr [ve{0,1}] =-.
v S8 Zy p

Note that just before i; sampled in G the size of S U S8’ is at most 2j. We compute the probability that
ij € Su S’ for some j € [Kk],
9
Pr [ijeSus]<.
i; «$7Z, P
In Gy, since bad can be set to true only in RestrictedSample, the probability that bad is set to true. Therefore,
using the union bound,

Note that Gig and Gq; are identical-until-bad. Therefore, using the Fundamental Lemma of Game Playing
we get,
kK2 +k+2

Pr[Gyg = true] < Pr[Gy; = true] +
p

(16)

THE GAMES G19 AND Gq;. We introduce a procedure named RestrictedSample in order to sample iy, - - - , i, v
instead of sampling them uniformly at random, replace p by A~!, remove ¢;’s and the bad events in Gy.
In Gq1, RestrictedSample sets bad to true if v € {0,1} or if the cardinality of the set {1,v,d1,--- ik, 41 -
v+ ik - v} is less than 2k + 2. In Gq;, RestrictedSample samples these values with the restriction that
K1, v,01, 0 yig, i1 -0, i -0} = 2k + 2.

We note that since 4y, , i, v sampled in Gqy satisfy 1,041, ik, 91 0, -+ ik - 0| = 2k + 2, the if
statements in lines 3, 6, 8 will always evaluate to true. Since i1, --- ,ix, v do not affect the execution of G1;
at any other point, the sampling of i1, --- ,%;,v and the if statements in lines 3, 6, 8 can be omitted from
G11. Therefore, G1; can be rewritten as shown in Figure 14. We next upper bound Pr [G4 = true] in terms
of Pr[Gy; = true] in Lemma 7.
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Game Gqo,| G171 |:

1: foreach p € Zp[I1, - ,Iy,V, Ty, -+ ,T2q] do A(p) « L

2: 41, ,ik,v < RestrictedSample(); A(1) «$ L

3: if Ap: A(p) # L A p(i) = v then A(V) « A(p)

4: else A(V) «$ R(A)

5: foreach j € [k] do

6: if Ip: A(p) # L A p(7) = i; then A(I;) « A(p)

7: else A(I;) «<$ R(A)

8: ifdp:A(p)# L Ap(E) =ij-vthen A(VI;) « A(p)

9: else A(V1;) <—$m

10 new « 0; X « A(1), A(V), A(I1), -+, AlZe) s V1 < {A(1), A(V), A(L1), - -+, A(Ik)}
11t ¢ys1,e e85 « REACDOCD 0y AV, AL, -+, A(IR))

120 788k Va « (A1), V), A(VLh),--- ,A(VI} 2« &

130 s, 85,00, sp e REACDOCD (6 A1), AV), ATray - V), oo, AlTngry - V))
14 : win«—(Vje[k]:sﬂ(j)=s;)A(Vj,le[k]:j;él = s; # 8§ /\s; # s7)

15: return (win A |Z] <)

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

if A='(a) = L then 1: if A='(a) = L then
2 new <« new + 1; A(Thew) < a
3: if A= (b) = L then

new <« new + 1; A(Thew) < b 4 : new <« new + 1; A(Thew) < b
5
6

1

2 new < new + 1; A(Thew) < a

3

4

5: p« A7 (a) + A7 (b) PopulateSetsO, (a, b, from)
6

7

8

9

if A='(b) = L then

if A(p) = L then

return (VA '(a) = A~ (b))
A(p) «$ R(A)

PopulateSetsEval(a, b, A(p), from)

return A(p)

Procedure RestrictedSample() :

1: v «$Zy;if ve {0,1} then bad « true;| v «$Z,\{0,1}

S {118 « v
3: foreach j € [k] do

4: ij «$2Zp;if i; € S U S then bad « true;| i «$2Z,\(SuS)

S = (i} S  fo i)

6: return iy, - ,ig,v

Fig. 13. In games G10, G11 pa has been replaced by A~ (a) for labels a and t;’s are removed. The procedure AssignPoly
is no longer written separately, its code is written inline instead. In Gi1, ¢;’s, v are sampled with the restriction that
the set {1,v,41," -+ ,%k,91 -V, - ,ik-v} has cardinality 2k + 2. The changes from Gg have been highlighted. The boxed
statements are present only in Gi;.

Lemma 7. For the games G4, G111, we have,

2q(2k+3¢+2) 5 K2+ k+2
292k +3¢+2) 5¢ kK +k+2

Pr [G4 = true] < Pr[Gq; = true] +
p p p
Proof. Combining (10) to (16) we get,

2q(2k+3¢+2) 5 K24+ k+2
29(2k+3¢+2) 5g kK +k+2

Pr [G4 = true] < Pr[Gy; = true] +
p p p
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Game G :
foreach p € Zp[I1,--- , I, V,T1,--- ,T2q] do A(p) < L; A(1) «$ L

—

2. A(V) «$ R(A)
3: foreach j € [k] do

4: A(ILj) <8 R(A); A(VI;) «$ R(A)

51 new ¢ 03X « A1), A(V), A(I1), -+, A(Ii)}; V1 e {A(1), A(V), A(IL), -+, A(Ii)}
6: @51, s — RYVCODNCSD Q) AV, AL, -, A(I))

T: 88k Vo — {AL), AV),AVI), - ,AVI)}L 2« &

8¢ shysh, e sy e RECHDOCD (6 A1), AV), ATrry - V), Alln(ry - V)
9:

win < (Vj € [k] : sx(5) :s;) AV Lelk]:j#1 = s; # 51 /\S; #5)
10 : return (win A |Z| <)

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

if A7 (a) = L then if A7 (a) = L then

1
new « new + 1; A(Thew) <« a 2 new « new + 1; A(Thew) <« a
if A7'(b) = 1 then 3: if A'(b) = L then
4 new «— new + 1; A(Thew) < b
PopulateSetsO, (a, b, from)

return (VA™!(a) = A7 (b))

new « new + 1; A(Thew) < b

ot

(=2}

if A(p) = 1 then

A(p) «3 R(A)
PopulateSetsEval(a, b, A(p), from)

1
2
3
4
5: p« A Na)+ A7 (b)
6
7
8
9

return A(p)

Fig.14. Game Gi; has been written more compactly than the one in Figure 13 by removing redundant code.

Procedure PolyMultCheck(pa, pb) :

1: if 35 : (coefficient(pa, T;) # 0 v coefficient(pa, VI;) # 0) then return false
2: if 3j : (coefficient(pp, T;) # 0 v coefficient(py, I;) # 0) then return false
3: if coefficient(py, V') # coefficient(pa, 1) then return false

4: foreach j € [k] do Z[j] « coefficient(pa, I;); ¥[j] « coefficient(py, V1)
5: if O(&,y) = true then

6 if & ¢ span(S) then S <= {7}; 2’ < {a}

7 if |S| = I then ABORT

8

9

return true

else return false

Fig. 15. Subroutine PolyMultCheck for simulating O,. In particular, coefficient(p, M) returns the coefficient of
the monomial M in the polynomial p. The sets S and Z’ have no effect on the behavior, and are only used in the
analysis of D. The symbol ABORT indicates that D aborts and outputs L.

THE ADVERSARY D. Next, we construct the adversary D that plays PG by simulating Gi1; to R1, Ra, where
the permutation 7 is the secret permutation from PG. As we will discuss below, the core of the adversary
D will boil down to properly simulating the O, oracle using the O oracle from PG and simulating the labels
o(ir(;)) (and the associated polynomials) correctly without knowing 7. After a correct simulation, D will
simply extract the permutation 7.

To see how this can be done, let us first have a closer look at Gi;. Let us introduce the shorthand
K; = VI for j € [k]. With this notation, every polynomial input to or output from Eval is a linear
combination of the monomials 1, I, ..., Iy, V, Ky, ..., Ky, 11,75, ... . Now, it is convenient to slightly rethink
the check of whether Vp, = pp within O, with this notation. First off, we observe that if either of the
polynomial contains a monomial of the form T;, the check fails. In fact, it is immediately clear that the check
can only possibly succeed is if p, is a linear combination of 1 and the I;’s and py, is a linear combination of
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Adversary D :

1: foreach peZy[ly, -, I, V,K1, -+ , K, T1,--- ,T2q] do A(p) < L

2: A1) «$L;A(V) <3 R(A)

3: foreach j € [k] do

40 AL <SR AK;) <SR

5: new « 0;X — {A(1), A(V), A1), - -+, ATe)}; V1« {A(1), A(V), A(T1), -+, A1)}
6: grsne g e RYVOODYCIDAQ), AV), AL, L AI))

7 Vo = {AQ), AV), A(Kq), -+, MER LB Z « B2 < 38 « &

8: syl s o YU OO (6 A1), AV), AK), - AKR))

9: win' — ({s1,-, sy ={s1, ) AV LE[R] :J#L = sj # 51 A8) #5))
10 : if win’ = true then

11 : foreach i, j € [k] do if s; = s; then =(i) =j
12 return 7w

13: else return L

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

if A7'(a) = L then if A (a) = L then

1 1
2 new « new + 1; A(Thew) <« a 2 new < new + 1; A(Thew) < a
3: if A"'(b) = L then 3: if A"'(b) = L then
4 new « new + 1; A(Thew) <« b 4: new < new + 1; A(Thew) < b
5 PopulateSetsO, (a, b, from)
6 PolyMultCheck(pa, pPb)

5: p <« pa+tpb

if A(p) = L then A(p) «$ R(A)
PopulateSetsEval(a, b, A(p), from)

© N O

return A(p)

Procedure PopulateSetsEval(a, b, ¢, from) : Procedure PopulateSetsO,(a, b, from) :

if from = 1 then ); < {a, b}
if from = 2 then

1: if from = 1 then 1
if c ¢ V1 then X « {c} 2
V1 & {a,b,c} 3: if a€ X\)Y2 then Z < {a}
if from = 2 then 4 if be X\), then Z < {b}
5 V2 < {a, b}

if be X\V, then Z < {b}

2
3
4
5: if ac X\), then Z < {a}
6
7

Vo {a, b, c}

Fig.16. Adversary D which plays the permutation game PG. The changes in D compared to Gi1 have been high-
lighted.

V and the K;’s. Now, assume that
k
pa(Ilv"'7I]€) =ap + Z f[]] [] )

k
po(V, K1, Ki) = bo -V + > ili]- K -

Then, V - pg = pp if and only if ag = by and §[j] = Z[n(j)] for all j € [k]. If we are now in Game PG, and 7
is the chosen permutation, then this is equivalent to O(Z,¥) = true and ag = by.

This leads naturally to the adversary D, which we formally describe in Figure 16. The adversary will
simply sample labels f1,...,fx for o(v - iry),...,0(v i), and associate with them polynomials in the
variables K7, ..., K;. Other than that, it simulates the game G, with the exception that the check V-p, = pp
is not implemented using the above approach — summarized in Figure 15. Note that D aborts when |S| =1
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and makes at most ¢ queries to O. Thus D is a (g,[)-query adversary against PG. If D does not abort, then
its simulation of Gq; is perfect. If G1; = true and D does not abort, then win’ shall be true and D will output
the correct .

The rest of the proof will now require proving that whenever Gi; outputs true our adversary D will never
abort due to the check |S| = I. Since G1; = true only if |Z| < I, the following lemma implies that D does
not abort if G1; = true.

Lemma 8. Let (Z1,%1), -+, (Zu, Ju) be the queries made by D to O which return true. Then,
rank(Zy,- - ,Z,) < |Z].

Proof. We introduce an operator proj(p) which maps a polynomial to a vector in Z’; consisting of the
coefficients of the monomials I,. .., I;. We will show below that for all i € [u], there exists a set Z; € Z
such that Z; € span(proj(A~1(Z;))). From this, the claim is immediate, because

rank(Zy, - ,&,) < rank (U proj(A_l(ZZ-))>

i=1
u
Ok
i=1

First off, note that every non-zero query (#;,¥;) that returns true is made during the simulation of the
execution of Ro. This is because such a query requires the polynomial associated with ¢; to contain a
monomial in K; for at least some j € [k], and such polynomials can only occur in the execution of Rs.
Also note that every vector z; is associated with a polynomial p;. This polynomial must have form ag +
Z§:1 Z;[4] - I;, as discussed before.

Let us look at an execution of D after-the-fact, and more specifically, the simulated execution of R, Ro
within D. Let a; be the label associated with the polynomial p;. If it has not been output by an Eval query
ever, then it must be that a; = A(I;) for some j € [k]. Because a;, € X, then a; € Z, and thus Z; = {a;}.
Similarly, assume that a was output last by an Eval query of R;. Then, it must be that a; has been added
to X, because every output of an Eval query by R, is aded to X, unless the string a; was associated earlier
with one of the T, monomials. But this label would not lead the oracle query to output 1. Therefore, a; is
added to Z upon Ry’s corresponding O, query, and we can set Z; = {a;}.

We are left with the harder case that a; is the output of an Eval query of R,. Note that because of this,
it is not hard to see that we can write

< < <|Z].

L proi(4~"(2:))
i=1

pi = 2 v - A7 (by)
j=1

where by, ..., b; are inputs to Eval queries made by Ro. This in turn implies that
,
Z = proj(p;) = ), v, - proj(47" (b)) .
j=1

We now claim that if proj(A~!(b;)) # 0, then it must be that b; € X, and therefore it is added to Z. (Either
within the Eval query, or in an earlier O, query using it.)

Note that if proj(A~!(b;)) # 0, then b; is not a fresh label input to an Eval query by either of R; or Rs (as
it would have been associated with T, for some z), and it is not one of the labels A(1), A(V), A(K1), ..., A(K})
input to Rq. So, b; is either A(I7),..., A(Iy), or the output of an Eval query by R; which is added to X. In
both cases, b; € X. Hence, we can now define

Z = {bj cjelk], proj(A~(b;)) ;é()’} .

This concludes the proof. O
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We have established that if G1; outputs true, then D will not abort and hence D simulates G1; to Rq, Ro
perfectly. If win = true in Gq1, the checks by D succeed and D outputs the correct permutation and wins
PG. Therefore, D is a (g,1)-query adversary such that PG(D) = true if G1; = true. Hence,

Pr[G11 = true] < Pr[PG(D) = true] . (17)
Combining Lemma 7 and (9),(17) we get,

292k +3¢+2) 5 K24+ k+2
29(2k+3¢+2) 5¢ kK +k+2

Pr [Gs = true] < Pr[PG(D) = true] + (18)
p p p o
Combining (8) and (18) we get,
Lo2q(2k 2 k2 +k+2
Pr[G2:true]<i+M+@+L.
k! P p p -

4.4 Memory Lower Bound when |Z| > I (Proof of Lemma 4)
Recall that we need to prove the following lemma, which we do by using a compression argument.

Lemma 4. If the size of the state ¢ output by Ry is s bits and (R1, Ra) make q queries in total in the game
Gs as defined in Figure 5, then

2q—1

1 q
8¢%(2k +2+3¢)\ 2 6 2 B2+ k+2
(s 20yt (o) ke

vl

Pr[Gs = true] <2-2
p p p

Proof. Our proof does initial game hopping, with easy transitions. It first introduces a new game, G2 whose
minor difference from game Gg is that it samples iy, - , i, v using RestrictedSample which was previously
used in game Gi;. It adds a bad flag while sampling i1, -- - , ik, v which is set to true if v is in {0,1} or if
|1, 0,41, ,ik,91-0, - ,ik-v| < 2k+2. The bad event does not affect the output of G1o in any way. Observe
that even though the sampling of i1, --- ,ig, v is written in a different manner in Gy, it is identical to that
in Gs3. In all other respects these two games are identical.

Pr[G3 = true] = Pr[Gya = true] . (19)

Games Gq9,Gy3 differ in the procedure RestrictedSample and the condition to return true. Note that the
conditions of bad being set to true is identical in G2, G13 and given that bad is not set to true, Gi3 returns
true whenever G15 returns true. Therefore, using the Fundamental Lemma of Game Playing

Pr[Gi2 = true] < Pr[Gy3 = true] + Pr[bad = true in Gi3] .

From our analysis in the proof of Lemma 7, we have established that the probability of bad being set to true
2

in RestrictedSample is at most %. Since in Gi3 bad is set only in RestrictedSample, the probability of

bad being set to true is the same. Hence, we get,

K2+ k+2
Pr[Gig = true] < Pr[Gys = true] + Malhte . (20)
p
THE COMPRESSION ARGUMENT. We assume Pr[Gi3 = true] = 2e. We say a o is “good” in Gqs if
Pr [G13 = true | o was sampled in Glg] >e€. (21)

It follows from Markov’s inequality that at least € fraction of ¢’s are “good”. The following lemma captures
the essence of our compression argument.
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Game | G2 ,|G13|:

1: o <$InjFunc(Zy, L);41, ++ ,ix, v < RestrictedSample()

21 X e {o(1),0(0),0(in), 0l V1 {o(1),0(0),0(in),  olin)}

3: ¢ys1,00 s REACGODNGD 601y 5(0), a(in), -, o (i))

4: T3Sk Vo« {o(1),0(v),0(i1 -v), - ,0(ix V) 2« &

5: 8], 85,0, 8y — Rgval(""2)’o‘/(""2)(qb, o(1),0(v),0(inc1) V) 5 0(in(k) - V))
6: Win(—(VjE[k]:S.,\.(j)=S;)/\(Vj,l6[k:]:j;ﬁl = sj ;ﬁslAs'j #s])

7: return (|Z\ =1)
Procedure RestrictedSample() :

1: v «$Zy;if v e {0,1} then bad « true;| v «$7Z,\{0,1}

2: S {118 « {1}
3: foreach j € [k] do

4: ij «$Zp;if i; € S U S then bad « true;|i; «$Z\(SuS')

5: S« (i1 8 << {wt iy}

6: returniy,---,ig,v

Oracle Eval(a, b, from) : Oracle O,(a, b, from) :

1: ce—o(oc'(a)+o (b)) 1: if from = 1 then Y; «- {a, b}
2: if from = 1 then 2: if from = 2 then

3 if c¢ Y1 then X <~ {c} 3 if a€ X\)> then Z < {a}
4 V1 <~ {a,b,c} 4: if be X\)> then Z <« {b}
5: if from = 2 then 5 YV, <~ {a, b}

6 if a€ X\V> then Z <= {a} 4. return (v o (a) = o (b))
7 if be X\)> then Z <« {b}

8: V2« {ab,c}

9 return c

Fig. 17. Games Gi2,G13. The statement within the thinner box is present only in Gi2 and the statement within the
thicker box is present only in Gi13. The newly introduced changes compared to Gz are highlighted.

Lemma 9. If the state output by Ry in Gi3 has size s bits, all the “good” o’s can be encoded such that the
size of the encoding space is at most

(2¢—1) -1
2°pl 1+ bq P ,
D 8¢2(2k + 2 + 3q)

and decoded correctly with probability at least €.

We first give some intuition regarding how we achieve compression and show how Lemma 9 leads to an
upper bound on Pr[Gs = 1]. We defer the proof of Lemma 9 to Section 4.5.

INTUITION REGARDING COMPRESSION. Observe in Gi3, the labels in Z were queried by Ro (these labels
were not seen by Ry before they were queried) and were answers to R1 and were not seen by R before the
query. The core idea is that for all a € L\ Z, we store exactly one of a or its pre-image in the encoding and
for all labels in Z, we store neither the label nor its pre-image. Since Ro queries all the labels in Z, these
labels can be found by running Ro while decoding. Since all the labels in Z are answers to queries of Ry
and were not seen by R, before the query, their pre-images can be figured out while running R .

HicH LEVEL OUTLINES OF Encode, Decode. In Encode, we simulate the steps of G135 to R1, R, including
bookkeeping and then run R; again assuming the particular o we are compressing is sampled in Gis. In
Decode, we run R, and then R to recover o. We treat the values i1, -- ,ig, v, ™ as part of the common
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randomness provided to Encode, Decode (we assume they are sampled from the same distribution they are
sampled from in Gi3). The random tapes of Ry, Ra can also be derived from the common randomness
of Encode, Decode. For simplicity, we do not specify this explicitly in the algorithms and treat R,,Ro as
deterministic.

RUNNING R,. First off, we assume that R, queries labels that it has “seen” before and Rs queries labels
that R1 has “seen” or it has “seen” before. We shall relax this assumption later. Ideally, we would want to
just store only ¢, the inputs labels to Ro and the labels that are answers to Rs’s queries. We append the
input labels of Ro and labels that are answers to its Eval queries that it has not “seen” before to a list named
Lbls. However, it is easy to see that this information is not enough to answer O, queries during decoding,
as answering O, queries inherently requires knowledge about pre-images of Ro. This naturally leads to the
idea of maintaining a mapping of all the labels “seen by” Rs to their pre-images.

THE MAPPING T OF LABELS TO PRE-IMAGE EXPRESSIONS. The pre-images of input labels and the labels
that were results of sequence of Eval queries on its input labels by R4, are known. However, Ro might query
labels which were neither an input to it nor an answer to one of its Eval queries. Such a label is in Z since
we have assumed that all labels queried by Ry were “seen by” R or “seen by” Ro before. We represent the
pre-images of labels in Z using a placeholder variable X,, where n is incremented for every such label. Note
that the pre-image of every label seen by Ro can be expressed as a linear polynomial in the X,,’s (these
linear polynomials are referred to as pre-image expressions from hereon). Therefore we maintain a mapping
of all labels “seen by” and their pre-image expressions in a list of tuples named T. Our approach is inspired
by a similar technique used by Corrigan-Gibbs and Kogan in [5]. Like in [5], we stress that the mapping T
is not a part of the encoding.

For Eval queries, we can check if there is a tuple in T whose pre-image expression is the sum of the
pre-image expressions of the input labels. If that is the case, we return the label of such a tuple. Otherwise,
we append the answer label to Lbls. For O, queries, we can return true if the pre-image expression of the first
input label multiplied by v gives the pre-image expression of the second input label. Otherwise we return
false.

SURPRISES. There is a caveat, however. There might arise a situation that the label which is the answer to
the Eval query is present in T but its pre-image expression is not the sum of the pre-image expressions of
the input labels. We call such a situation a “surprise” and we call the answer label in that case a “surprise
label”. For O, queries, there might be a surprise when the answer of the O, query is true but the pre-image
expression of the first input label multiplied by v is different pre-image expression of the second input label.
In this case we call the second input label the surprise label. We assign a sequence number to each query
made by Ro, starting from 1 and an index to each tuple in T, with the indices being assigned to tuples
in the order they were appended to T. To detect the query where the surprise happens, we maintain a set
named Srps; that contains tuples of query sequence numbers and indices of the surprise label in T. This set
Srps; is a part of the encoding. Note that whenever there is a surprise, it means that two different pre-image
expressions evaluate to the same value. Since these two pre-image expressions are linear polynomials, at least
one variable can be eliminated from T by equating the two pre-image expressions.

RUNNING R;. Now that we have enough information in the encoding to run R, we consider the information
we need to add to the encoding to run R, after Ro is run. First, we need to provide R; its input labels.
Our initial attempt would be to append the input labels of R; (except o(1), o(v), which are already present)
to Lbls. However, some of these input labels to R might have already been “seen by” Rs. Since all labels
“seen by” Ro are in T, we need a way to figure out which of o(i;)’s are in T. Note that such a label was
either queried by Ry or an answer to a query of Ry (cannot have been an input to R given the restrictions
on 41,--- ,1x,v). Suppose ¢ was the sequence number of the query in which o(i;) was queried or an answer.
The tuple (g,b,7) is added to the set Inputs where b can take values {1,2,3} depending on whether o(i;)
was the first input label, the second input label or the answer label respectively. This set Inputs is a part of
the encoding. The rest of the labels o(i;), which do not appear in T, are added to T with their pre-images
and the labels are appended to Lbls. Note that for all queries of R, it follows from our assumption that the
input labels will be in T. For every surprise, we add a tuple of sequence number and an index in T to the
set Srps,.
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RELAXING THE ASSUMPTION. When we allow Ro to query labels it has not seen before or R has not seen,
there are two issues. First, we need to add a tuple for the label in T (since T, by definition contains a tuple
for all labels queried by R2). We solve this issue by adding the tuple made of the label and its pre-image.
We have no hope of recovering the pre-image later, hence, we append the pre-image to a list named Vals.
This list needs to be a part of the encoding since the pre-image of the label needs to be figured out to be
added to T during decoding. For queries of Rq, if the input label is not present in T, we do the same thing.
The second issue that comes up when we relax the assumption is that we need to distinguish whether an
input label was in Z or not. We solve this issue by maintaining a set of tuples named Free. For all labels in
Z that are not an input label to R1, we add the tuple consisting of the sequence number of the query of R4
and b to Free where b set to 1 indicates it was the first input label and b set to 2 indicates it was the second
input label.

THE FINAL STEPS. The labels the are absent in T are appended to a list named RLbls. If |Z]| < I, a fixed
encoding D (the output of Encode for some fixed o when |Z] > 1) is returned. Otherwise the encoding of o
consisting of Lbls, RLbls, Vals, Inputs, Srps,, Srps,, Free, ¢ is returned.

WRAPPING UP. The set of all “good” ¢’s has size at least ep! (where we have used that the total number of
injective functions from Z, — L is p!). Using X to be the set of the “good” ¢’s, Y to be the set of encodings,
R to be the set of cartesian product of the domains of i1, --- ,ix, v, 7, the set of all random tapes of R; the
set of all random tapes of Rq and L, it follows from Lemma 9 and Proposition 1 that

6
log (Pr [Decoding is correct]) <s + (2¢ — ) log (1 + q)
p

—llog( 5 p >—loge.
8¢%(2k + 2 + 3q)

We have from Lemma 9 that Pr[Decoding is correct] > e. Therefore,

6q D
2loge < 2g—Dlog [ 1+ -2) —11 .
oge< st (2 )Og< +p> Og<8q2(2k+2+3Q)>

Since Pr [G13 = true] = 2¢, using (19) and (20) we have,

8q2(2k+2+3q)>4< Gq)zqzl+k2+k+2

Pr[Gs = true] <2-22 (
p p

4.5 Proof of Lemma 9

We provided the intuition behind our compression of ¢ in Section 4.4. We formally define the Encode, Decode
algorithms here and then analyze the size of the encoding space for “good” o’s.

THE Encode PROCEDURE. As we have previously mentioned Encode simulates Gi3 to R1, Re and then runs
R1 again. The Encode procedure has been formally defined in Figure 18. We shall next explain the pseudocode
in detail and relate it to the intuition we provided in Section 4.4. In order to understand the pseudocode of
Encode, initially ignore the code involving T, Lbls, Vals, RLbls, Free, Srps,, Srps,.

First off, note that the oracles Eval(.,.,1),Eval(.,.,2),Eval(.,.,3) have identical outputs to the oracle
Eval(.,.) in Gy3 and the oracles O,(.,.,1),0,(.,.,2),0y(.,.,3) have identical outputs to the oracle O,(.,.) in
G13. As mentioned previously the randomness input to Encode i.e. i1, - - - ,4,, v, 7 are distributed according to
the distribution of these values in G13. Observe that till line 7, Encode perfectly simulates G153 to R1, R2. Then
in line 10, Ry is run again. Recall that we treat Rq, Ro as deterministic without loss of generality (alterna-
tively we could have specified the random tape of these adversaries as an input to Encode, Decode). Therefore,
R1 shall make the same queries when it is run the second time as it did in its first run since it receives iden-
tical answers to its queries (we have previously argued that the outputs of oracles Eval(., ., 1), Eval(.,.,3) are
identical and the outputs of oracles O,(.,.,1),0,(.,.,3) are identical on same inputs).
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Procedure Encode(o, (i1, , ik, v, 7)) : Oracle Eval(a, b, ?2) :

1: X« {o(1),0(w),0(1), - ,0(ik)}; V1 « {o(1),0(v),0(i1), - ,0(ix)} 1: c1¢c1+1

20 ¢,s1,0 s, RYVCOODNCD(6(1) 6(0),0(ir), - o(in) 2: ceo(c " (a)+07" (b))

3: Yo {o(l),0(w),0(i1-v),  ,0(ir - v)}; 2« 3: if a¢ Y then

4: T« [];T.append((o(1),1,1)); T.append((a(v), v, 1)) 4:  AddToTable(a,c1,1); Vs <= {a}
5: foreach j € [k] do T.append(o(i; - v),i; - v, 1)) 5: if b¢ Y, then

6 : Free « (J;Srps; « (J;Srps, < (J;n <« 0;Inputs «— F;c1 « 0;c2 « 0 6 AddToTable(b, ¢1, 2); Vo <i{b}
Tooshysh,e sy e REACHDONCD (6 6(1) 0(v), 0(iny v), L 0ling) V) T if (c, %, %) ¢ T then

8: foreach j € [k] do 8: T.append(c, T{a) + T(b), 1)

9:  if (o(ij), *, %) ¢ T then T.append((o(i;),i;,1)); 9: Vo< e}

100 ¢,s1,--, 85 « REVCGBNCD(G01) 5(0), 0(i1), -+, oin)) 10:  if 3j€[k] : ¢ = o(i;) then
11: Lbls « [];Vals « []; RLbls « [] 11 : Inputs <2 {(c1,3,4)}

12 foreach j € [|T[] do 12 VarReduce(T, T(a) + T(b), i;)
13: (s,m, f) « T[j] 13: else

14 : if f =1 then Lbls.append(s) 14 - if T(c) # T(a) + T(b) then

15 : if f=2th Vals. d

i f en Vals.append(im) 15 : Srps; <= {(c1, T.index(c))}
16 : foreach j € [p] do
16 : VarReduce(T, T(a) + T(b), T(c))
17 : if (o(j), *,%) ¢ T then RLbls.append(c(j))
17: returnc

18 : if |Z| < | then return D

19 : else return (Lbls, RLbls, Vals, Srps,, Srps,, Inputs, Free, ¢)
Oracle Eval(a, b, 1) : Oracle O,(a, b, 1) : Procedure AddToTable(¢,¢,b) :

1: ce—olc '@y +o (b)) 1: c=o{v-0 '(a)) 1: if £€ X then

2: ifcé¢ ) then X < {c} 2: V1 << {a, b} 2 Z & ey

3: Y1 < {a,b,c} 3: return (b =c) 3: if 3j € [k] : £ = o(i;) then Inputs «= {(c,b,5)}; T.append(£, i, 0)
4: returnc 4 else Free «= {(c,b)};n < n + 1; T.append(£, X, 0)

5: else T.append(£,0 '(£),2)

Oracle O,(a,b,2) : Oracle Eval(a, b, 3) : Oracle O,(a, b, 3) :

1: ¢1¢<c1+1 1: coe—co+1 1: coe—co+1

2: ceo(v-o '{a) 2: c«oa(o a)+ o (b)) 2: ceov-o '(a)

3: if a¢ )Y, then 3: if (a,*,%) ¢ T then 3: if (a,*,%) ¢ T then

4: AddToTable(a, ¢y, 1); V2 <= {a} 4: T.append(£, afl(a), 2) 4: T.append(£, 071(3)7 2)

5: if b¢ Vs then 5: if (b,*,%) ¢ T then 5: if (b,#%,%)¢ T then

6 : AddToTable(b, c¢1,2); V2 <= {b} 6: T.append (¥, J_l(b), 2) 6: T.append (¥, O‘_l(b), 2)

7: if (c,#*,%) ¢ T then 7: if (c,*,%) ¢ T then 7: if (c,%,%) ¢ T then

8: return false 8: T.append(c, T(a) + T(b), 1) 8: return false

9: else 9: else 9: else
10 : if T(c) # vT(a) then 10 : if T(c) # T(a) + T(b) then 10 : if T(c) # vT(a)
11: Srps; «— {(c1, T.index(c))} 11: Srps, <= {(ca, T.index(c))} 11: Srps, <= {(ca, T.index(c))}
12 : VarReduce(T, vT(a), T(c)) 12 VarReduce(T, T(a) + T(b), T(c)) 12: VarReduce(T, vT(a), T(c))
13: return (b = c) 13: returnc 13: return (b =c)

Fig. 18. The Encode procedure. If |Z| < [, a fixed encoding D (the output of Encode for some fixed o when |Z| > I)
is returned. The function T.append(tuple) appends tuple into T. The first inserted tuple has index 1 and the index
increases by 1 for every subsequent insertion. T[¢] returns the tuple at index ¢ in T. The function T(a) returns
pre-image expression A such that (a, A,*) € T. The function VarReduce(T,C,C’) equates expressions C' and C’,
expresses the variable with highest subscript in the equation (say X;) in terms of other variables, and substitutes X;
throughout T.

Now that we have explained the high-level structure of Encode and related it to the intuition provided
before, we shall delve into the details of its book-keeping. Recall that we say that a label has been seen by
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Procedure Decode((Lbls, RLbls, Vals, Srps,, Srps,, Inputs, Free, ¢), (i1, -+ ,ix,v, 7)) : Oracle O,(a,b,2) :

1: foreach j€Z, do o(j) « L;z1 «— 1522 < 1323 < 1;T « [] 1: c14c1+1
2: o(l) < Lbls[z1]; z1 « 21 + 1; T.append({c(1), 1, 1)) 2: if (a,%,%) ¢ T then
3: o(v) « Lbls[z1]; z1 « 21 + 1; T.append((c(v), v, 1)) 3: AddToTable(a, ¢1, 1)
4: foreach j € [k] do 4: if (b,*,%) ¢ T then
5: o(ij - v) « Lbls[z1]; 21 « 21 + 1; T.append({c (%, - v),%; - v, 1)) 5: AddToTable(b, ¢1, 2)
6: ne0cr «05c2 <0 6: if 3¢’ : (c',vT(a),*) € T then
Tooshsy sy e RyTCIDNCD (6, 0(1), 0(0), 0(inay v), o0 linny - v) 7i ced
8 : foreach j € [k] do 8: elseif Ji: (c1,1) € Srps; then
9: if o(i;) = L then 9: (e, T(e), f) « T[i]
10 : o(ij) < Lbls[z1]; 21 «— z1 + 1 10 : VarReduce(T, vT(a), T(c))
11: .51, 5n <—REVQI(""B)’O"(""B)(cr(l),J(v),a(il),-~~ Lo (in)) 11: else return false
12: foreach j € [|T|] do 12: return (b =c)
13 : (s,m, f) « T[4]
14 : o(m) « s
15: foreach j € [p] do
16 : if o(j) = L then
17 : o(j) < RLbls[z3]; 23 < 23 + 1
18 : return o
Oracle Eval(a, b, ?2) : Oracle Eval(a, b, 3) : Oracle O,(a, b, 3) :
1: ¢ ¢<c1+1 1 cy —co+1 1: coge—co+1
2: if (a,*,%) ¢ T then 2 if (a,*,%) ¢ T then 2: if (a,*,%) ¢ T then
3: AddToTable(a, ¢1, 1) 3 T.append(a, Vals[z2],2);22 ¢ 20 +1 3: T.append(a, Vals[z2],2); 20 < 22 + 1
4: if (b,#,%) ¢ T then 4: if (b, %) ¢ T then 4: if (b,#, %) ¢ T then
5: AddToTable(b, ¢y, 2) 5: T.append(a, Vals[22],2);20 ¢ 20 +1 5: T.append(a, Vals[z2],2); 20 « 22 + 1
6: if3c’: (c/,T(a)+ T(b),*) € T then 6: if 3c’:(c/,T(a)+ T(b),*)c T then 6: ifIc':(c’,vT(a),*)€c T then
7: cec 7 cec 7: cec
8: elseif 3i: (c1,i) € Srps; then 8: elseif 3i: (c2,1) € Srps, then 8: elseif 3i: (ca,1) € Srps, then
9: (e, T(c), f) « T[i] 9: (e, T(c), f) « T[i] 9: (e, T(c), f) « T[i]
10 : VarReduce(T, T(a) + T(b), T(c)) 10 : VarReduce(T, T(a) + T(b), T(c)) 10 : VarReduce(T, vT(a), T{c)
11: else 11: else 11: else return false
12: c « Lbls[z1];21 « 21 + 1 12: c « Lbls[z1];21 < 21 + 1 12: return (b =c)
13 : T.append(c, T(a) + T(b), 1) 13: T.append(c, C)
14 : if 35 € [k] : (¢1,3,7) € Inputs then 14: return c
15 : o(ij) < c
16 : VarReduce(T, T(a) + T(b),%;)
17 : return c

Procedure AddToTable(¢,c,b) :

1: if 35 € [k] : (¢, b,4) € Inputs then o(i;) < £; T.append(£,ij;,0)
2: if (c,b) € Free then n « n + 1; T.append(£, X, 0)
3: if (€, %,%) ¢ T then T.append(£, Vals[z2],2); 22 < 22 + 1

Fig. 19. The Decode function. The function T.append(tuple) appends tuple into T. The first inserted tuple has index
1 and the index increases by 1 for every subsequent insertion. T[i] returns the tuple at index ¢ in T. The function
T.index(a) returns the index of the tuple of the form (a, #, *) in T and the function T(a) returns pre-image expression
A such that (a, A, ) € T. The function VarReduce(T, C, C’) equates expressions C and C’, expresses the variable with
highest subscript in the equation (say X;) in terms of other variables, and substitutes X; throughout T.

Ry if it was an input to R1, queried by R; or an answer to a previously made Eval(.,., 1) query and a label
has been seen by Rq if it was an input to Ro, queried by Rs or an answer to a previously made Eval(., .,2)
query. To begin with we note that the sets Z, X, Y;, > are never updated after line 7 in Encode and hence
are identical to what they would have been in Gi3 if the o input to Encode was sampled.
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The ordered first-in first-out (FIFO) list Lbls first contains the input labels of R4, then the labels that
are answers to the Eval queries of Ry and had not been seen before by R (these labels are ordered in the
order of the queries). Next, it contains labels that are input to Ry that were not queried by Ry during its
run (ordered in the order of inputs of Rq). Finally, it contains labels that are answers to the Eval queries of
R1 during its second run that had not been seen by it before (during the second run) and are not among
labels seen by Ro during its run (again ordered in the order of the queries).

The ordered (FIFO) list Vals first contains the pre-image of the labels (i.e. values in Z,) that were queried
by R2 that it had not seen before (these pre-images are ordered in the order of the queries). It also contains
the pre-image of the labels that queried by R; during its second run that had not been seen by it before
(during the second run) and are not among labels seen by Ry during its run (again ordered in the order of
the queries).

The set Inputs is used to keep track of the labels that are inputs to R; that Ro makes a query on or is
an answer to Ry’s Eval query. Each element of the set is a tuple that consists of the sequence number of
the query, a flag indicating whether the label was the first or the second label of a query or the output of a
query and the j such that the label is o(i;).

The data structure T is an ordered list of tuples with each tuple consisting of a label, its pre-image
expression (as defined in Section 4.4) and a flag which takes value 0, 1,2. The flag set to 1 indicates that the
label in the tuple needs to be written to the list Lbls and the flag set to 2 indicates that the pre-image of the
label in the tuple needs to be written to the list Vals. The tuples containing the input labels of Ro are first
added to T with the pre-image of the labels being the pre-image expression. For every unique label seen by
Ro a tuple containing the label is added to T when the label is queried or is an answer to a query. When R4
queries a label, there might already be a tuple containing the label- in that case, no new tuple containing
the label is added to T. In case there was no tuple in T containing the queried label, the label might either
have been (a) an input to R; or (b) a label that was an answer to R4’s Eval query and had not been seen
by R before the query or (c) neither of (a), (b). For case (a) and (c) the pre-image expression for the
label is its actual pre-image. For case (b), the pre-image expression of the label is a placeholder variable X,
(with n incremented every time for a new placeholder). In this case, a tuple that consists of the sequence
number of the query, whether the label was the first or the second label of the query is added to the set
Free. Other than the input labels and the labels queried by R, the only labels seen by Ry are the answers
to the Eval queries. Consider an Eval query by R» on labels a,b. Let ¢ = o(0~!(a) + o~1(b)). Suppose no
tuple in T contains c, in that case a tuple containing the label ¢ and the pre-image expression the sum of the
pre-image expressions of labels a and b is added to T. On the other hand if T contains ¢ but its pre-image
expression differs from the sum of the pre-image expressions of labels a and b, then c is a surprise label as
defined in Section 4.4. The two pre-image expressions are equated and the variable with highest subscript in
the equation (say X)) is expressed in terms of other variables, and then X; is substituted throughout T (we
name this the VarReduce procedure). A tuple that consists of the sequence number of the query, the index of
the tuple containing the label c is added to the set Srps;. As mentioned previously, a surprise label may arise
even for a O, query by Rs. Suppose an O, query was made on labels a,b. In this case b is a surprise label
if there is a tuple containing b such that the pre-image expression is different from the pre-image expression
of the a by v. Again, in this case in a similar fashion, one variable is substituted throughout T using the
VarReduce procedure and a tuple that consists of the sequence number of the query, the index of the tuple
containing the label b is added to the set Srps;.

After R finishes running, tuples containing input labels of R; that Ro did not see are added to T with
the pre-image expression being the actual pre-images (this ensures that all labels input to Ry are in T).
Next, when R, is run, for every unique label seen by R; by that is not contained in a tuple in T, a tuple
containing the label is added to T in the way similar to while running Ry with the only major differences
being (a) no placeholder variables are introduced in this run i.e. for input labels that were previously not
in T, the pre-image expression is the pre-image of the label itself (b) surprises are kept track of in the set
Srps, in this case.

After R; is run for the second time, the sets Lbls, Vals are populated based on the entries in T. All the
labels that are not in T are inserted into the list RLbls in lexicographical order of the pre-images. Finally if
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|Z| < 1, the encoding D for some fixed o for which | Z| < [ is returned. Otherwise Lbls, RLbls, Vals, Srps;, Srps,,
Inputs, Free along with ¢, the state output by R; is returned by Encode.

THE Decode PROCEDURE. The Decode procedure, as mentioned previously runs Ro and then R;. It starts
running R, using the state ¢ and the first k£ + 2 labels in Lbls. It maintains the data structure T just like
Encode. It inserts tuples containing the input labels of R, into T with the pre-image expressions being the
pre-images (which it gets from the input randomness). On an Eval or O, query on labels a, b, it first checks
if a tuple containing a is in T. If not it checks if a tuple containing the sequence number of the query, 1 and
some j € [k] is present in Inputs- if that is the case, the pre-image expression of a is ;. It then checks whether
a tuple containing the sequence number of the query and 1 is present in Free- in that case the pre-image
expression of a is a new placeholder variable X,, (n is incremented). Otherwise, it reads the next value of
Vals and assigns it to the pre-image expression of a. For the other input label b, the same steps are followed.

In order to find the answer label for an Eval query, it first checks whether there is a tuple in Srps; with
the first entry being the sequence number of the query and some i- if that is the case the label in the i*? tuple
of T is returned as answer and the pre-image expression of the i*" tuple of T and the sum of the pre-image
expressions of the two inputs are equated and one variable is substituted throughout T using the VarReduce
procedure. Otherwise, it returns removes the top label from the list Lbls and returns it. It also adds a tuple
containing the label to T. The O, queries are answered in an analogous fashion. Also note that for every label
queried by Rs and every label that is an answer to Ro’s Eval query, the Decode procedure checks whether it
is an input label to R; using the Inputs set.

After running R, some of the inputs to R; might have been figured out using the set Inputs during Ro’s
query. The rest are obtained by removing the elements of the list Lbls and assigning them to unassigned
inputs of Ry. For each such label, a tuple containing the label is inserted to T. Then Decode runs R; with
the state ¢ and its input labels. The queries of R, are answered in a similar fashion like the queries of Rs.

After R has finished running, for every tuple in T, Decode assigns the labels to the pre-image expression
(we shall argue that if the input to Decode was a valid encoding i.e. not D, then after the execution of R
all the pre-image expressions in T are actual pre-images i.e. there are no more placeholders in T). Finally,
the values in Z, that have not been assigned images are assigned images using the labels in RLbls.

We say that the output of Encode is a valid encoding if the output was produced after the check |Z| > 1
succeeded in Encode. We claim that Decode produces the correct o whenever it receives a valid encoding as
input. The main observation here is that T is identically populated in Encode, Decode. From the pseudocode
and description above of Encode, Decode, it is not very difficult to infer correctness. Nonetheless, we provide
a proof sketch of correctness of decoding to Appendix B.

Next we shall relate the probability of Encode returns a valid encoding to the probability of R, Ro
winning G13. We have already argued that the outputs of Eval(.,.,1),0(.,., 1), Eval(.,.,2),0(.,.,2) and the
sets Z, V1, Vs are identical in G135 and Encode and the outputs of Eval(., ., 3), Oy(., ., 3) of Encode are identical
to the outputs of Eval(.,.,1),0y(.,.,1) of G153 respectively.

Therefore, Gi3 = true implies that |Z] > [ in Encode. So, for good o’s, the probability that Encode
produces a valid encoding (i.e. does not output D) is e.

Since, Encode produces a valid encoding whenever |Z| > [, i.e. whenever G153 outputs true given that o
was sampled in G13 we have,

Pr [Decoding is correct] = €. (22)

At the end of execution of Encode, let |Lbls| = b1, |[RLbls| = by, |Vals| = o, |Free| = f, |Inputs| = i, |Srps;| =
s1,|Srpsy| = s2,|T| = t. Let the size of the internal state output by R; be s. We make the following
observations about the outputs of Encode.

— For every i € Z,,, exactly one of the following is true.
e ¢ is present in Vals.
e o(i) is present in Lbls.
e o(i) is present in RLbls.
e o(i) was queried by R, and an entry was added to Inputs.
e (i) was queried by R and an entry was added to Free.
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Therefore, |Lbls| + |RLbls| + |Vals| + |Free| + |Inputs| = p i.e. by + b2 + 0+ f + 4 = p. Also note that every
label that is not present in T is added to RLbls, so by =p—tand by =t —o0— (i + f)

— Since a placeholder X is introduced only when an entry is added to Free and at least one placeholder
is removed from T whenever an entry is added to Srps; or Srpsy, we have |Srps;| + |Srpsy| < |Free| i.c.
s1+ 82 < f.

— |Free| + |Inputs| > |Z| because every entry in Z is in one of Free, Inputs. We also have that |Z| > [ (for
any encoding that is output, including D). It follows that |Free| + |Inputs| >l ie. f+i> 1

Claim. If o is “good” then the size of the encoding space is at most

(2¢=0) -l
2°p!l 1 + bq P .
P 8¢ (2k + 2 + 3q)

Proof. Below, we establish upper bounds on the number of possibilities of various components present in the
encoding.

— Each entry in Free is a tuple where the first element is in [¢] and the second element is in [2]. There are
f entries in total. Therefore, the number of possibilities of Free is (2¢)7.

— Since each entry in Srps; consists of triple whose first element is in [¢], second element is in [¢] (an index
of T). Therefore, the number of possibilities of Srps; is (2tg)®*.

— Since each entry in Srps, consists of triple whose first element is in [¢], second element is in [¢]. Therefore,
the number of possibilities of Srps, is (2tq)*®2.

— Each entry of Inputs consists of a tuple whose first element is in [¢] and the second element is in [3] and
the third element is in [k]. Since there are i entries in total, there are at most (3gk)? possibilities.

— The list values has o entries. Since 2k + 2 values are already known to not be in Vals (as 1,v,41, -+ , g, 1 -
v, ik -v will never be in Vals) and all the entries are distinct and are in Z,, there are (p720k72) o!
possibilities.

— The list Lbls has by =t — o0 — (i + f) distinct labels each of which are in £ (a set of size p). Hence, the
total number of possibilities are at most (tfofp(zﬁrf)) t—o—(G+ ).

— Since the labels being added to the list RLbls are the only ones absent in T, and T is fully populated in
Decode before RLbls is used, it suffices to remember their lexicographical ordering. There are p —t known
distinct labels in RLbls. The number of possibilities are (p —¢)! .

— The state output by R is s bits, hence the number of possibilities are 2°.

The encoding space is at most the product of the number of possibilities of all the components. Hence, the
size of the encoding space is upper bounded by

i(p—2k—2 P
2°(2)7 (2tq) = ++2) (3qk)" (¥ ! t—o—(i+f)(p—1).
N A T RN [E S IR
Since s1 + s2 < f, and 4t > 3k (since t > 2k + 2), the size of the encoding space is at most
. —2k—2 P
2% (atg?) 0 (P ! t—o—(i+f)p—1).
(4tq”) o MNecom (i) (t—o—(i+f)p—1)
Since 0 < 2¢ — | Z| < 2¢ — (as Vals, Z are populated only for labels on which queries are made), we have

( P )>(t—o—(¢+f))!<p_2f_2>o!(p—t)!<p!(( (p— 2k —2)! (b —t) )

t—o—(i+f p—2k—-2—-(G+f)p—t+o+i+ f)!

==

(p _ t)o+z’+f

2q—1
p!(p_%t_2> (p— )=+
p—

YA\
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Since t < 2k 4+ 2 + 3¢ (size of T can increase by at most 3 on every query), i + f > [, o < 2¢ — [, and
p—2k—2—3q > % (because 6¢g < p — 4k — 4) we have the size of the encoding space is at most

(2¢—1) -1
2%p! (1 n 6q) ( P ) .
D 8¢2(2k + 2 + 3q)

This concludes the proof.

5 Conclusions

Despite a clear restriction of our result to straightline reductions, we believe the main contribution of this
work is the introduction of novel techniques for proving lower bounds on the memory of reductions that will
find wider applicability. In particular, we clearly departed from the framework of prior works [2,13] tailored
at the usage of lower bounds for streaming algorithms, and provided the first lower bound for “algebraic”
proofs in the public-key domain. The idea of a problem-specific proof of memory could be helpful elsewhere.

Of course, there are several open problems. It seems very hard to study the role of rewinding for such
reductions. In particular, the natural approach is to resort to techniques from communication complexity
(and their incarnation as streaming lower bounds), as they are amenable to the multi-pass case. The simple
combinatorial nature of these lower bounds however is at odds with the heavily structured oracles we en-
counter in the generic group model. Another problem we failed to solve is to give an adversary A in our proof
which uses little memory — we discuss a candidate in the body, but analyzing it seems to give us difficulties
similar to those of rewinding.

This latter point makes a clear distinction, not discussed by prior works, between the way in which we
prove memory-tightness (via reductions using small memory), and its most general interpretation, as defined
in [2], which would allow the reduction to adapt its memory usage to that of A.
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A Memory-Tight Reduction in the AGM

In the algebraic group model (AGM) [8], the adversary is assumed to only produce new group elements by
applying the group operation to received group elements. In particular, for every group element X that the
adversary outputs, it also sends a representation & of X with respect to the group elements it received as
inputs. For example, let G be a group of order p. Suppose an adversary that outputs one group element
received group elements U, V' as inputs. It shall output [X]z where X is a group element and & = z1,x2 € Zj,
such that X = U*1 V%2,

Before giving the memory-tight reduction to the discrete logarithm problem in the AGM, we shall first
describe the discrete-logarithm problem, re-formulate the ODH assumption in the random oracle model
and AGM, and formally introduce PRFs (pseudorandom functions)- a tool which shall be required for our
memory-tight reduction.

Figure 20 formally defines the game for the discrete logarithm problem in a group G. The adversary is
given as input a generator and a random element of a group GG. The game outputs true if the adversary
can successfully output the discrete log of the random group element with respect to the generator. The
advantage of an adversary against the discrete logarithm problem in a group G is defined as

Adv2(A) = Pr [G2H(A) = true| .

We have previously formalized the ODH assumption in the random oracle and the generic group models.
Here, we give a formalization of this assumption in the random-oracle and algebraic group models. Let G be
a group of order p. For a fixed hLen € N, let {21, be the set of hash functions mapping {0, 1}* to {0, 1}"ten.
In Figure 21, we formally define the games Gg’?ﬂ;ﬁEAL—AGM, Gg&T_;EAND'AGM. The difference here from the
previous definition is that for every H,H, query the adversary makes, it also sends over a representation
of the group element with respect to its input group elements i.e. g,U, V. (Also, compared to the previous
definition, the generic group oracle is absent here because we are no more in the generic group model). The

advantage of violating ODH is defined as
Advgnien ™ (A) = [Pr[GERIREAAM(A) = 1] = Pr [GERIEIANAM (4) = 1]
We now briefly introduce the notion of PRF security. Let F': K x D — R be an efficiently computable
keyed function. Let RFp g be a random function mapping elements of D to R. Consider the games in Figure

20. The advantage of an adversary A against the PRF security of F is defined as,

AdVERF(A) = [Pr[GERFREAL(4) = 1] — Pr [GERFRAND (4) = 1]] .
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Game G2-(A) : Game GRFREAL(4) . Game GRRFRAND(4) .

1: g«$G* 1: ke$K 1: be AND.RO)
2: h«3G 2. be AFGD 2: returnb

3: v Ag, h) 3: returnb

4: return (h =g")

Fig. 20. Left:Game for the discrete logarithm problem in a group G of prime order p where G* = G\{0} is the set
of generators. Right:Games for PRF security

Game G2H/f RAND-AGM Game GO/f REALACM Oracle H([X]z—uy292s) © /] X = g"1U%2V "3
1: ue$Zy;U « g* 1: ue$Zy;U « g" 1: return H(X)

2: ve$Zp Ve gY 2: ve$Zp Ve g”

3: H«$ 2nen 3: H 8 2nen

4: W« {0, 13" 4: W« H(g"")

5 b AHV(.),H(.)(Q7U’ v, W) 5 b« AH"(')‘H(')(g,U, V, W)

6: return b 6: returnb

Oracle HV([Y]§:y1y2y3) : // Y = g¥1Uuv2vys

1: if Y =U then return L

2: return H(Y")

Fig. 21. Games for ODH assumption in the AGM.

MEMORY-TIGHT AGM REDUCTION. In the following theorem (Theorem 2), we show that for all adversaries
in the AGM against ODH, there exist adversaries against DL and PRF security of keyed functions that use
additional memory that grows at most logarithmically in the number of queries of the ODH adversary i.e.
the reductions are memory-tight.

Theorem 2. Let Fy : Kp, x Z3 — {0,1}"°", F, : Kp, x G — {0,1}"*" be keyed functions. For all ODH
adversaries A in the Algebraic Group Model, making a total of q queries to H,H,, there exist adversaries
B,C,D,E, F,G such that

AdvRIIAM(A) < AdvRH(B) + ¢*Adveh (C) + Adv2H(D) + AdvERF(€) + ¢ AdVERT (F) + AdVERF(G) .

Adversaries B,C,D,E,F,G are nearly as efficient as A in terms of time complexity. Moreover, adversaries
B, E use at most 8logp + log | K, | + 2hLen bits of memory in addition to the memory used by A, adversaries
C,F use at most 15logp + log | K, | + 2hLen + 4log g bits of memory in addition to the memory used by A,
and adversaries D, G use at most 8logp + log |Kp,| + 2hLen bits of memory in addition to the memory used

by A.

Proof. Before diving into the details of the proof, we shall provide some intuition. For a memory-tight
reduction, the H, H, oracles have to be simulated with low memory. The reason it is non-trivial is because
the adversary can make a H, query on Y and a H query on X =Y, and the reduction must reply with the
same answers for both queries. In the AGM, however, the adversary would need to send over ¥ = x1x2x3 and
i = 11Y2Y3, the representation of X and Y respectively i.e. X = ¢g"1U*2V® and Y = g1 UY2V¥. We shall
next outline a strategy for a reduction to the discrete logarithm problem, point out flaws in the strategy and
fix them.

The reduction to the discrete logarithm problem gets as input (g, V). It would sample u from Z, and
sample W at random and run the ODH adversary A. For every H query on X with representation xxox3, the
reduction would associate a polynomial mx = x1 + uxs + x3.5 in the variable S. Observe that the reduction
is supposed to respond with H(g®1 +ue2+#3v) j e H(g™x(")). For every H, query on Y with representation
y1y2Ys3, the reduction would associate a polynomial my+ = 1.5 + uysS + y352. Observe that the reduction
is supposed to respond with H(gy1”+“y2”+y3”2) i.e. H(g™ " (")) Essentially the reduction could associate a
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univariate polynomial of degree at most two for every query. Since a univariate polynomial of degree at most
two has at most three coeffecients, the reduction could respond with the output of a PRF that takes three
elements of Z, as input and returns a value in {0, 1}"*". Finally when the adversary makes a H query on
g"? (this can be checked by the reduction by checking if the queried value equals V*), the reduction could
solve for v from the representation of ¢“¥, i.e. suppose the representation was xx2x3 then the reduction
could output (xq + uze)(wrs —u) ! if x5 # u. (Also it is easy to show that the adversary cannot have any
advantage against ODH if it does not make a H query on ¢g"?).

This strategy however has two flaws. The first flaw is that the adversary could potentially come up with
different representations for the same group element. In this case the strategy we described would yield
different answers to the two queries. An even more contrived case would be when the reduction makes H,
query on Y with representation y1ysys and a H query on X = YV with representation zjx2x3 and not all
of y3,x1,xo are zero and y; + uys # x3. In this case again our strategy would yield different answers. The
second flaw is that when the the adversary makes a H query on ¢g"“¥ with representation xxox3 such that
x3 = u. We first will talk about how to handle the second flaw because it is simpler.

The second flaw can be done away with by giving a separate reduction to discrete logarithm that sets
U to be its discrete logarithm instance input. This reduction would be simpler because it picks its own v
and can simulate H, H, queries by using a PRF that takes as input a group element and outputs a string in
{07 1}hLen'

In order to handle the first flaw, we give another reduction to the discrete logarithm problem that
answers queries similar to the first one but computes its output differently. This reduction randomly chooses
two values in {1,--- ,q} where ¢ is the total number of H, H, queries the adversary makes and remembers
the polynomial associated with these two indices. After running the adversary to completion the reduction
equates the two remembered polynomial, finds solutions and checks if any of the solutions is the correct
discrete logarithm. Note that if the adversary is indeed able to engineer a scenario that we described in the
first flaw, then at least two of the ¢ polynomials are distinct but equal when evaluated at v (because they are
different representations of the same group element). So, with probability < this reduction would choose the
right polynomials if the scenario related to the first flaw happens. If it chooses the right polynomials, it can
successfully compute the discrete logarithm. Note that for this reduction there is a multiplicative advantage
loss of factor ¢2. Now, we shall start with the formal proof.

First off, we define two games G, G; in Figure 22. Observe that G( perfectly simulates Gg&T;EEAL'AGM
to A. The only difference in Gy from Gg&[‘;ﬁEAL'AGM is that the random oracle H is lazily sampled in G¢ and
there is some extra bookkeeping. The lazy sampling and bookkeeping does not affect the view of A in any
way, and the output of Gg is identical to that of Gg%"ﬂ;ﬁEAL'AGM when interacting with 4. Hence we have
that

P [GIRLENAM() = 1] = Pr(Go = 1]

Similarly, G; perfectly simulates Gg%T;EAND'AGM to A and the output of G, is identical to that of Gg%’_’eﬁAND'AGM
when interacting with A. Thus

Pr [G?;%T—GEAND—AGM(A) = 1] =Pr[G,=1] .

Therefore we have that
AdvoStAM(A) = [Pr[Gy = 1] — Pr[Gy = 1]| . (23)

Now, observe that Gg, Gy are identical if the flag ASKA is not set to true in both of them. Using the
Fundamental Lemma of Game Playing, we have

|Pr[Gog = 1] — Pr[Gy = 1]| < Pr[ASKA = true in G4] .
Therefore it follows from (23) that

Advgihien® (A) < Pr[ASKA = true in G1] . (24)

39



Game Gg : Game G : Game | G |, Game :

1: ue$Z,;U « g* 1: u<«$Zy,;U « g* 1: uwe$ZpU « g*

2: ve$Z,V e g° 2: v<$Z, V<« g° 2: ve$Zp Ve g°

3: foreach X e Gdo H(X) <« I 3: foreach XeGdoH(X)« L 3: foreach X € G do H(X) « L
4: H(g"") «$ {0, 1}hten 4: W« {0, 1} 4: W «${0, 1}

5: W« H(g"") 5: b ANOHO (G U v, 5: be ANVORO G U v W)

6: be ANVOHO Uy W 6: returnb =

. return b (g ) 6: return | ASKA A bad; Iml

Oracle H([X]s—212003) :  / X = g"1U0"2V®3 Oracle Hy([Y]j—y,yous) : [ Y = gV1Uv2V¥3

if V¥ = X then
ASKA « true

if u = z3 then bad; « true

if Y = U then return L
if HY") = L then

H(y'u) —$ {07 1}|’|Len
return H(Y'")

N S

else v1 « (z1 + uz2)(u — 183)71
return W

if H(X) = L then
H(X) «${0, 1}

return H(X)

0 N O Uk W N

Fig. 22. Games Go, G1, G2, Gs. The differences of Gg from G%?ﬂ;ﬁEAL_AGM have been highlighted. The differences of
G from Gg'?ﬂ;ﬁAND_AGM have been highlighted. In G2, G3 the code in the thinner box is present only in G2 and the
code in the thicker box is present only in Gs. The differences in G2, Gs from G; have been highlighted. The H, H,
oracles have not been specified for G2, Gs because they are identical as that in Gy.

Next, we introduce two games Go, Gg in Figure 22. The code in the thinner box is present only in G5 and
the code in the thicker box is present only in Gs. We shall use this convention throughout this proof. Note
that, since Gs is identical to Gy except for the return value and returns ASKA A bad;, we have that

Pr[ASKA A bad; = true in G| = Pr[G; = true] .
Similarly since Gj3 is identical to G; except for the return value and returns bad;, we have that
Pr[bad; = true in G1] = Pr[G3 = true] .

Since
Pr[ASKA = true in G1] < Pr [/—\SKA A bad; = true in Gl] + Pr[bad; = true in G4]

it follows that
Pr [ASKA = true in G1] = Pr[Gy = true] + Pr[G3 = true] .

Combining with (24) we get
Advg'ﬂ;’:GM(A) < Pr[Gs = true] + Pr[G3z = true] . (25)

Next we introduce G4 in Figure 23 that is identical to G5 with some additional bookkeeping. It additionally
defines a mapping m on points where H is defined that maps group elements to polynomials in Z,[S]. All
group elements X on which to H query was made is mapped to z7 + uxs + Sxs where (1,22, 23) is the
representation of X. Group elements YV such that a H, query was made on Y is mapped to y1 S +uy2S +y352
where (y1,y2, y3) is the representation of Y. The mapping of a group element X is denoted by mx. Observe
that for all X if my is defined then X = ¢g™x(¥) Since, G, involves only additional bookkeeping compared
to G1 and the additional bookkeeping in no way affects the flag ASKA

Pr[Gy = true] = Pr[G4 = true] . (26)
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Game Gy : Oracle H([X]s—212923) : Oracle H,([Y]j=y1ysys)
1: u«$Zp;U « g 1: if V¥ = X then 1: if Y = U then return L
2 ve$Zy;V e g° 2 ASKA « true 2: if H(Y") = L then
3: foreach X € G do 3 if u = x3 then bad; « true 3: myv < y1S + uy2S + y3S?
4: H(X) « Limx « L 4 else v; « (@1 4+ uws)(u — x3)" " 4 H(Y'?) <8 {0, 1}
hLen .
5: W «8{0,1} 5: return W 5 return H(Y")
6: b AHV(.),H(.)(g, UV, W) 6: if H(X) = 1 then
N 7 mx « z1 +uzr2 + Sz
7 : return ASKA A bad; X ! 2 3
8 H(X) «$ {0, 1}""
9: return H(X)
Game G5, Game| Gg |: Oracle H([X]z=2,2925) : Oracle H,([Y]g=y,yoys) :
1: u<«$Z,;U « g* 1: if V¥ = X then 1: if Y = U then return L
2. ve$Z,;V —g¥ 2: ASKA « true 2: if H(Y") # L then
3: foreach X € G do 3: if u = z3 then bad; « true 3: if myv # 15 + uy2S + y352 then
4:  HX) e Limx « L 4:  else vy « (@1 +uza)(u—x3)” " 4: bady « true
. hLen 5: t w
5: W «${0,1} . 'fl:;rn L en 5: ‘myv <—y15+uy25+y3$2 ‘
6: be AV G vy 77T f( ) # L then < en —
R 7 if mx # x1 4+ uz2 + 35S then . ‘ v en
7 : return ASKA A bad; ! 2 3 6: ) = )
8: bady « true
7: if H(Y") = L then
9 ‘mx<—11+uw2+135‘ 8: myv « Y15 + uy2S + y35°
10 : H(X) «${0, 1} 9:  HYY) «${0, 13"
11: if H(X) = L then 10+ return H(Y™)
12: mx « x1 + uxs + x3S
13:  H(X) «<${0, 1}
14 : return H(X)

Fig. 23. Games G4, Gs, Gg. The differences of G4 from G2 have been highlighted. The differences of Gs, Gs from Ga
have been highlighted. In G5, G¢ the code in the box is present only in Gg.

Game G5 in Figure 23 introduces a bads event compared to G4. The bady event happens during a H query
on X with representation x1,xo,x3 if mx is previously defined but is not equal to 1 + uxs + x3S. In case
this event happens my is reassigned to ;1 + uzs + x3.5. The bady event happens during a H, query on Y
with representation y1,y2,ys if my+ is previously defined but is not equal to y1.S +uy2S + y352. In case this
event happens my. is reassigned to ;.S + uy2S + y352. Observe that even though my is reassigned, it is
still true that if my is defined then X = g™x(*) (same for Y*). This bady event does not affect anything in
G5, hence

Pr[G4 = true] = Pr[Gs = true] . (27)

Next, we introduce game Gg in Figure 23. It differs from G5 only when bad, is set to true. Whenever bads
happens in Gg during a H query on X, H(X) is re-sampled and whenever bady happens in Gg during a H,
query on Y, H(Y") is re-sampled. Note that G5, Gg are identical if the bady flag is not set in either of them.
Using the Fundamental Lemma of Game Playing we have

Pr [Gs = true] < Pr[Gg = true| + Pr[bady = true in Gg] . (28)

Observe that in Gg, for all group elements X, H(X) is sampled uniformly at random from {0, 1}"-*" if and
only if myx is updated in the previous step. Moreover, since g™x(*) = X my, # mx, if X; # X5. In Gy,
therefore instead of randomly sampling the value of H(X), we can assign it the output of a random function
that takes as input the coefficients of myx and returns a value in {0, 1}"t". Let RFZ?N{OJ}hLen be a random

function mapping Zf, to {0, 1}, So, G7 remains identical to Gg and we have the following.

Pr [Gg = true] = Pr[G; = true] . (29)
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Game G7,Game |Gs |, Game|Go[:  Oracle H([X]z=u,225) :

1: ue$Zy;U « g* 1: if V¥ = X then
2: ve$Zy;V e g¥ 2: ASKA « true
3: if v = x3 then bad; « true
4 : else v; « (z1 + uz2)(u — mg)fl
4: foreach X eGdoH(X) « Limx « L . return W
5: W «${0,1}" 6: if H(X) # L A mx # 21 + uzs + 35 then
6 b AH"(‘)’H<‘)((], U, V,W) 7 bads « true
8: «— + + x3S5
: mx ot o
9: H(X) «— RFZB,{Oyl}hLen((ml 2 um2,333,0))
8 : return ASKA A bad; P
10 : H(X) « Fi(k, (z1 + uz2, x3,0))
11: if H(X) = L then
12 : mx <« x1 + urs + x3S
13 H(X) < RFg3 (o 1yhten (21 + w2, 23,0))
14: H(X) « Fi(k, (z1 + uzz, x3,0))

15: return H(X)

Oracle H,([Y]g=y,yoys) :

1: if Y =U then return L

2: iFH(YY) % L Amyv #9415+ uyzS + y35> then
3 bady « true

4: myv <—y15+uy25+y352

5 H(Y?) « RFZ%’(O’l}hLen((O;yl + uy2,y3))

6:  [HO") < Filk (0,91 +uya p0)) |

if H(Y") = L then
H(Y") « RFzg,{oJ}hLen((O’ Y1 + uy2,ys3))

95 [H(Y") « Filk (0,31 + uya,ya) |

10 : return H(Y")

Fig. 24. Games G7, Gg, Gg.The differences of these games from Gg have been highlighted. The code in the thinner
box is present only in Gg and the code in the thicker box is present only in Gg.

Pr [bady = true in Gg] = Pr[bady = true in G7] . (30)

Next, we replace the random function RFZ%7{071}hLen with a keyed function F7 : Zg x Kp, — {0,1}"e" in Gg
(Figure 24). Consider adversary £ in Figure 25. It is easy to see that £ simulates G7 to A when interacting
with G%?F'RAND i.e. when it can query O = RFZ%’{O’l}hLen(.) and returns 1 if and only G7 returns true. It

simulates Gg to A when interacting with GIP,TF‘REAL i.e. when it can query O = Fy(k,.) and returns 1 if and
only Gg returns true. Therefore,

Pr [Gr = true] < Pr[Gs = true] + Adv%’fF(S) . (31)

It can be verified from the pseudocode that adversary £ uses at most 8logp + log |K g, | + 2hLen bits of
memory in addition to the memory used by A and is nearly as efficient as A.

We can simplify Gg and re-write it as shown in Figure 26. We next introduce Gg in Figure 24 that is
identical to G; except that it returns the value of bads. So we have

Pr [bady = true in G7] = Pr[Gg = true] . (32)

Next we introduce G which is identical to Gg except that it returns the boolean value (v; = v) instead of
ASKA A bad;. Suppose the query for which the flag ASKA is set in G1g is on [X]z=zia0as- Since ASKA is set
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Adversary £°:// O:7Z3 — {0,1}"" Oracle H([X]z—s,2025) :

1 u<«$Z,;U < g* 1: if V¥ = X then
2: v<$Z, Vg’ 2 ASKA « true
3: W ${0 1}hLen 3: if v = x3 then bad; « true
4 return W
4 b AHV(')YH(') UV, W
- (g ) 5: return O((z1 + uxs, x3,0))

5: if ASKA A bad; = true then return 1
6: return O

Oracle HV([Y]ﬂ=y1y2y3) :

1: if Y =U then return L

2: return O((0,y1 + uy2,y3))

Adversary F°:// O:73— {0,1}"" Oracle H([X]z=2,2925) :

1: ue$Z,U « g* 1: ¢ «q+1
2: v e$Zy,V e g 2: if V¥ = X then
3: q1 <8[q];92 <$[q]\q1 3: return W
4: p1 e Lp2 e L 4 ifq':qlthenple:rlJruazerzgS
5: k<_$KF1:’U2‘_O 5: if ¢ = ¢o then py « z1 + uws + 35
6: W <${0,1}"" 6: return O((z1 + uza, x3,0))
7: ¢ «0
8: b AMNOHO (G U v W)
9: way, vz < solutions obtained from equating p1, p2
10 : if g“2! =V then vy « vo;
11 else vy «— vaa

12: return (v = v)

Oracle H,([Y]g=y;ypus) :

¢ —qd+1

if Y = U then return L

if ¢’ = ¢1 then p; « y15 + uy2S + y352
if ¢ = g2 then py « y15 + uy2S + y35°

aoR W N

return O((0,y1 + uys, y3))

Fig. 25. Adversaries &£, F. It is easy to see that £ simulates G to A when interacting with GHRRAND and simulates
Gs to A when interacting with GRRFREAL - Adversary F simulates G11 to A when interacting with GRRF-RAND anq

simulates G12 to A when interacting with GHRFREAL

for this query, X = g"?. If bad; is not set to true in Gg, then vy is indeed equal to v. Therefore
Pr[Gg = true] < Pr[Gip = true] . (33)

Now, consider adversary B against the discrete logarithm problem in Figure 27. Observe that it simulates
G1g perfectly to A and outputs v;. Since G1g outputs true if and only if vy is the discrete logarithm of V', it
follows that

Pr[Gyo = true] = Adve-(B) . (34)

Observe that B is nearly as efficient as A. It requires memory to store U, V, W, u, k, v1, the current query and
the return value. These can be stored in at most 8logp + log | K, | + 2hLen bits.

Next we introduce Gi; which is similar to Gg with a few modifications. First, it keeps a counter for the
total number of queries that A makes. It randomly picks two distinct numbers ¢; and ¢o from 1 through ¢
where ¢ is the total number of queries A makes to H, H,. It stores the polynomial defined for the ¢;* query in
p1 and the polynomial defined for the ¢89 query in py. After the execution of A, it equates py, p2 to obtain
solutions va1, vas. If w91 is the discrete logarithm of V', it assigns ve; to vo and otherwise assigns vao to vs.
(Note that if the equation has only one solution vgs is assigned 0 by default). It then returns the boolean
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Game Gg :

u<«$Z,;U < g*

v «$Zy; V «— g"

k «$ Kp,

foreach X € G do H(X) « Lymx « L
W «$ {0, 1}

b ANVOHO (6 v Wy

: return ASKA A bad;

OraCle H([X]f=1193213) . Oracle HV([Y]5=919293) :

N S B N O

1 if V¥ = X then 1: if Y =U then return L
2 ASKA « true 2: iFH(YY)# L Amyo #9418+ uyzS + y3S> then
3 if u = x3 then bad; « true 3 bads <« true

-1
4 else v1 « (z1 + uz2)(u — x3) 4: myv — y1S + uyaS + y3S?
o:  return W 5 H(Y") « Fi(k, (0,41 +uyz,ys)
6 if H(X) # L Amx # x1 + uxz2 + 35 then 6 return Fy(k, (0,41 + uyz, y3))
7 bads « true
8 mx « x1 + uxrs + 35
9: H(X) « Fi(k, (z1 + uza, z3,0))
10: return Fy(k, (z1 + uxa, x3,0))

Fig. 26. Game Gg simplified. Game Gg has just been re-written in an equivalent form by removing some redundant
code.

value (vy = v). So, Gy; has some additional book-keeping compared to Gy and differs only in the return
value. In particular, we have

Pr[bady = true in Gg]| = Pr[bady = true in G14] ,

ie.
Pr[Gy = true] = Pr[bad; = true in Gq4] .

Now if the flag bads is set to true in Gq1, it means that either for some X with representation xizox3 on
which a H query was made mx had previously been defined but was different from x; + uxs + Sx3 or for
some Y with representation y;ysy3 on which a H, query was made my+ had previously been defined but was
different from y1.S 4+ uy2S +y352. Since my=(v) = x by the definition of m, if bads is set to true in Gi1, there
are at least 2 queries by A such that the polynomial defined to answer the two queries were distinct but
gave the same result when evaluated at v. Since py, p2 are chosen randomly from the ¢ polynomials defined
to answer the queries, with probability at least q%, p1, p2 are the two distinct but gave the same result when
evaluated at v. Now, since py, p2 can be of degree at most 2, equating them will yield at most two solutions
V91, Va2s. It follows that vo = v if the right polynomials py, p are picked, which happens with probability q%.
So )
Pr[Gq11 = true] > q—z Pr [bady = true in G11] .

Hence we have

Pr[Gg = true] < ¢* Pr[Gy; = true] . (35)

Next, we replace the random function RFZ%7{O71}hLen with a keyed function Fj : Zf; x Kp, — {0,1}"*" in Gy,

(Figure 28). Consider adversary F in Figure 25. It is easy to see that F simulates G1; to A when interacting
with G?{QF_RAND i.e. when it can query O = RFZ?)7{071}hLen(.) and returns 1 if and only Gi; returns true. It

simulates G12 to A when interacting with G}P,TF‘REAL i.e. when it can query O = Fy(k,.) and returns 1 if and
only Gis returns true. Therefore,

Pr[G11 = true] < Pr[Giy = true] + Adv';?F(}') . (36)
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Game Gqg : Oracle H([X]s—212923) :

u

1: we$Zp;U«g 1: if V¥ = X then

2 v $Zp; V g° 2: ASKA « true

3 k<—$KF1;'u14—0 3: if v = x3 then bad; « true

4: foreach X e Gdo H(X) « Limx « L 4: else v; <—(zl+um2)(u—m3)71

5 W «$ {0, 1}“'-9" 5: return W

6 b AH"(')’H(')(g,U, v, W) 6: if H(X) # L Amx # z1 + uzs + 235 then
7 bads « true

7: return (v; = v)
8: mx « x1 +uxs + 385
9: H(X) « Fi(k, (z1 + uz2,x3,0))
10 : return Fi(k, (z1 + uza, z3,0))

Oracle Hy([Y]g=y1405)

1 if Y = U then return L

2: iFH(YY) % L Amyv # 415 +uysS + y35° then
3: bads <« true

4: myv — y1S + uyaS + y3S>

5: H(Y") « Fi(k,(0,y1 + uy2,y3))

6: return Fy(k, (0,y1 + uy2,ys))

Adversary B(g,V) : Oracle H([X]z—212525) :

1: uw$ZyU « g* 1: if V" = X then

2: ke$Kp ;v <0 2 vl<—(ml+u12)(u7r3)_1
3: W «${0, 1}hLen 3: return W

4 b«—AH"(')’H(')(g,U, vV, W) 4: return Fy(k, (z1 + uxa, x3,0))

5: return v;

Oracle H,([Y]g=y;ypys) :

1: if Y =U then return L
2: return Fy(k,(0,y1 + uys2,ys))

Fig. 27. Game G, reduction B. The differences of G1o from Gg have been highlighted.

It can be verified from the pseudocode that adversary F uses at most 15logp + log |[Kr, | + 2hLen + 4log g
bits of memory in addition to the memory used by A and is nearly as efficient as A.

Now, consider adversary C against the discrete logarithm problem in Figure 27. Observe that it simulates
G2 perfectly to A and outputs vy. Since G5 outputs true if and only if vy is the discrete logarithm of V', it
follows that

Pr[Gis = true] = Adv2H(C) . (37)

Observe that C is nearly as efficient as A. It requires memory to store U, V, W, u, k, , vo1,v922, V., q, q1, 42, ¢, P1, P2,
the current query and the return value. These can be stored in at most 15logp + log |Kr, | + 2hLen +41log g
bits.

Combining (26) to (37) we have

Pr[Gy = true] < Advor(B) + ¢?Adve-(C) + AdvEET(€) + 2AdVERT (F) . (38)

Now that we have upper bounded Pr[Gy = true], we need to upper bound Pr[Gs = true] to get an up-
per bound on Advg%t’:GM(A). Here, again we shall construct an adversary against the discrete logarithm
problem.

We introduce Gis in Figure 29 next. It is easy to verify that it is identical to Gs (Gis replaces the
random oracle H with a random function RFg (o 1yne and changes a couple of equality checks to a different

but equivalent form). Hence we have

Pr[Gi3 = true] = Pr[Gs = true] . (39)

45



Game Gi1,| Game G132 |: Oracle H([X]z—zy2905) :

¢ —q +1
if V¥ = X then

1: ue$ZyU « g* 1

2: ve$Z,V g 2

3: @1 <8[qlia2 <8 [ad\na 3 return W

4 pr « L,p2 « L 4 if H(X) # L Amx # x1 + uxz2 + 35 then

5: keS$Kp;v2¢0 5: bady < true

6 6

7 7

8 8
9

9

foreach X € G do H(X) « Lymx « L mx < 1 + urz + T3S

W «$ {0, 1}hen if ¢’ = q1 then p; « x1 + uas + 235

¢ <0 if ¢’ = g2 then ps < x; + uzs + 35

b AVOHRG g Ty ) H(X) — Rz, 0,1yhten (21 + w2, 23, 0))

10 : w21, va2 « solutions obtained from equating p1,P2 10: |H(X) « Fi(k, (z1 + uzs, 23, 0))
11: if g¥21 = V then vy < va

11: return H(X)
12: else vy « vas

13 : return (v = v)

Oracle H,([Y]j=y1yoys)

¢ <q +1

if Y = U then return L

ifH(YY) # L Amyv # y15 4 uyaS + y3S> then
bads <« true

if ¢ = q1 then p; « 15 + uy2S + y35?

1

2

3

4

5: myv < Y15+ uy2S + y35°
6

7 if ¢ = g2 then ps « y1S + uy2S + y352
8

H(YU) <« RFZ%,{Ovl}hLen ((01 Y1 + uyz2, yS))

95 [HO™") « Fi(k, (0,51 + uyz, ys))
10 : return H(Y")

Adversary C(g,V) : Oracle H([X]z—z,2905) :

1: u<«$Zy,; U« g* 1 ¢ «—qd+1

2: @ <$[ql;q2 <$[d] 2: if V" = X then

3: pr« L,pa« L 3 return W

4: W «${0,1}" 4: if ¢ = q then p; « z1 + uzs + 35
5: q’(—O 5 ifq':qgi:henpg(—r1+ufc2+m3$
6: bHAHV(')’H(')(g,U, V, W) 6: return Fy(k,(z1 + uzs,x3,0))

7: w21,vas < solutions obtained from equating pi, p2

8: if g"21 = V then vy < va21

9: else vy « va2

[
(=)

return vs

Oracle H,([Y]g=y1y2y3) :

g «dq+1
if Y = U then return L

1:

2

3: if ¢’ = qi then p; « 15 + uy2S + y332
4: if ¢ = go then ps « y15 + uy2S + y352
5

return Fi (k, (0, y1 + uy2, y3))

Fig. 28. Game G11, adversary C. The differences of G11 from Gg have been highlighted.

Next, we introduce game G14 where the only change from Gi3 is that the random function is replaced by a
keyed function Fy : Kp, x G — {0, 1}hten,

Consider adversary G in Figure 29. It is easy to see that G simulates G135 to A when interacting with
G;SF'RAND i.e. when it can query O = RFg (g 1nen(.), and returns 1 if and only G3 returns true. It simulates
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Game | G153 |, Game |G14]: Oracle H([X]s—212023) :

1: ue$Z,;U « g* 1: if UY =1 then
2: ve$Zy;V e g¥ 2: ASKA « true
3: if U = g”3 then bad; « true
4 : else v1 « (z1 + uz2)(u — x3)
4: foreach X € G do H(X) « L 5. return W
5: ‘ H(g"") « RFg o 1ynten(9"") ‘ 6: if H(X) = L then
7 H(X) « RF X
6 : H(guv) — Fz(guv) ‘ ( ) G,{O,l}hLe"( ) ‘
71 W «${0, 1} 8: H(X) « F2(k, X)
8: b« .AH"(')’H(‘)(g7 U,V,W) 9: return H(X)

9: return bad;

Oracle H,([Y]g=y,yaus) :

1: if Y =U then return L
2: if H(Y") = L then

3: ‘ H(Y") « RFg (g 1ymen (Y") ‘

~

‘H(Y”) — Fa(k, YY) ‘

5: return H(Y")
Adversary G° :// O:G — {0,1}"*" Oracle H([X]z=z,z25) :

1: ue$Z,;U « g* 1: if UY =1 then

2: ve$Z,V e« g” 2 if U = ¢”3 then bad; « true
3: W «$/{0, 1}“Le" 3: else v1 « (z1 + uz2)(u — wg)_l
4 b AH"(')’H(‘)(g7 U, V,W) 4 return W

5 return bad; 5 return O(X)

Oracle H,([Y]y=y,y5y3)

1: if Y =U then return L
2: return O(Y")

Fig. 29. Games Gi3, G14, adversary G. The differences of Gi3,G14 from G3 have been highlighted. In G13, G14 the
code in the thinner box is present only in G13 and the code in the thicker box is present only in Gig4.

G4 to A when interacting with GERFREAL j e when it can query O = Fy(k, .), and returns 1 if and only G4

returns true. Therefore,
Pr[Gi3 = true] < Pr[Gyy = true] + Adv;SF(g) . (40)

It can be verified from the pseudocode that adversary G uses at most 8logp + log |Kp,| + 2hLen bits of
memory in addition to the memory used by A and is nearly as efficient as A.

Next, we introduce game G; that is identical to G4 in all respects except that it returns (u; = u)
instead of bad;. It is easy to see that

Pr [Gy4 = true] < Pr[Gy5 = true] . (41)

Now, consider the adversary D against the discrete logarithm problem in Figure 30. Observe that it simulates
G5 perfectly to A and outputs uy. Since G5 outputs true if and only if u; is the discrete logarithm of U,
it follows that

Pr[Gi5 = true] = Adv2H(D) . (42)

Observe that D is nearly as efficient as A. It requires memory to store U, V, W, u, k,u, the current query
and the return value. These can be stored in at most 8log p + log | K, | + 2hLen bits. Combining (39) to (42)
we get

Pr[G;3 = true] < Adver (D) + Advis (G) .
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Game G5 : Oracle H([X]z—2120w3) :

u

1 u«$Zp;U g 1: if U’ =1 then

2: v<$Z, V< g° 2: if U = ¢g”3 then
3 uy « 0;k <8 Kp, 3: bad] « true

4: foreach X € Gdo H(X)« L 4: Ul « T3

5: W <${0, 1}hLen 5 return W

6: W« H(g"") 6: return Fy(k,X)

70 be ANVORO G Ty W)

8: return (u; = u)

Oracle HV([Y]§=y1y2y3) :

1: if Y = U then return L

2: return Fy(k,Y")

Adversary D(g,U) : Oracle H([X]z=212903) :

1: v«$Zyp;V < g° 1: if U =1 then

20 keSKp, 2 if U= ¢"% then
3: W «${0,1}" 3: w1« T3

4: b AHV(-)YH(-)(g7 UV, W) 4 return W
5 5

return u; return Fs(k, X)

Oracle H,([Y] =y, yous) :

1: if Y =U then return L
2: return F»(k,Y")

Fig. 30. Game G5, adversary D. The differences of Gi5 from Gi14 have been highlighted.

Combining this with (25) and (38) we have

AdvgNT A (A) < Adveh(B) + ¢*Adver (C) + Adveh (D) + AdvER (€) + ¢PAdVEEF (F) + AdviRT () .

B Proof Sketch of Correctness of Decoding in Section 4.5

We shall argue that Decode produces the correct o whenever it receives a valid encoding as input. So we
assume throughout that the input to Decode is a valid encoding.

We shall show that T is identically populated in Encode, Decode and the answers to the queries of Ro, R1
are identical in Encode, Decode. This would mean that the runs of Rs,Rq would be identical in Encode,
Decode since answers to every query is identical in Encode, Decode. In Encode, after running R, note that
T does not have any placeholder variables remaining because all the elements were Z were answers to Ry
and would have had the placeholder variables for their pre-images removed by the time R; finishes. So,
all the tuples of T are triples of labels, pre-images and the flag after running R;. Since Encode returns a
valid encoding (i.e. the check |Z| = [ succeeds), the labels in RLbls are the ones absent in T appended in
the lexicographical order of their pre-images. Now we shall use the fact that T is identical in Decode after
running R, i.e. 1l the tuples of T are triples of labels, pre-images and the flag after running R,. Note that
in Decode, the labels in T are correctly assigned to their pre-images and all unassigned pre-images in 7Z,
are assigned the labels in RLbls sequentially i.e. for all x € Z,,, () is recovered correctly. Therefore Decode
produces the correct 0. So all we need to show now is that T is identically populated in Encode, Decode and
answers to every query is identical in Encode, Decode.

T IS IDENTICALLY POPULATED AND QUERIES ARE ANSWERED IDENTICALLY IN Encode, Decode. In Encode,
since T is created after Rq is run for the first time, T is not affected by the first run of R;. Now, observe that
the first k + 2 tuples appended to T are (o(1),1,1), (c(v),v,1), (c(i1 - v),41 - v, 1), , (o(ig - v), i - v,1) in
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Encode. It follows that o(1),0(v),--- ,0(i1 -v), - ,0(ix - v) are the first k + 2 labels appended to Lbls. This
means that in Decode, (1), 0(v), o(i; - v)’s are correctly assigned using the first & 4 2 labels in Lbls and the
first k+2 tuples in T are the same as that in Encode. This means the first k+2 tuples are identically populated
in T in Encode, Decode. Next, we sketch a proof that T is identically populated in Encode, Decode on every
query made by Ro, R1. We shall also show that the answers to the queries are identical in Encode, Decode.
Note that T is modified only by the append and VarReduce operations. We shall be using the phrase “a label
£ is not in T” to mean (£, x, *) ¢ T throughout this proof sketch.

We shall first show that T is identical in Encode, Decode after an Eval(.,.,2) query if it was identical
in Encode, Decode before the query and that the answer to the query is identical in Encode, Decode. We
can prove a similar statement about O,(.,.,2) queries analogously. We shall then show T is identical in
Encode, Decode after before R is run in both of them for the last time. Then we shall that T is identical in
Encode, Decode after an Eval(.,.,3) or O,(.,.,3) query if it was identical in Encode, Decode before the query
and that the answers to the queries are identical in Encode, Decode. This would conclude our proof that T
is identically populated in Encode, Decode and that the queries of Ry and R4 are answered identically.

Assuming that T is identical in Encode, Decode before an Eval(.,.,2) query, we show that T is identical
after the query in Encode, Decode and the answer to the query is identical in Encode, Decode. In Encode, when
an Eval(., ., 2) query (assume the query sequence number is ¢1) is made by R, AddToTable is invoked on the
input labels if they are not present in T (the input label not being in ) is equivalent to it not being in T).
Suppose £ is such an input label that is not present in T in Encode- this also means that £ is not present in
T in Decode from our assumption. Therefore, AddToTable(4, ¢,b) would be invoked in both Encode, Decode.
There are three possibilities.

1. In Encode, £ € X and for some j € [k], £ = o(i;). In this case, observe that (c,b, ) is added to Inputs.
Since, this is the only point where tuples of the form (x,1, %), (%,2, ) are added to Inputs in Encode, the
equivalent condition in Decode is that there exists some j € [k] such that (c,b,7) € Inputs. Note that the
same tuple is appended to T in Encode, Decode when these equivalent conditions are true.

2. In Encode, £ € X and for no j € [k], £ = o(i;). In this case, observe that (c,b) is added to Free. Since,
this is the only point where tuples are added to Free in Encode, the equivalent condition in Decode is
(c,b) € Free. Again, note that the same tuple is appended to T in Encode, Decode when these equivalent
conditions are true.

3. In Encode, neither of the previous two conditions are true. In Decode, note that when AddToTable was
invoked, £ was not present in T and if either of the preceding two conditions were true, then a tuple
containing £ was appended to T. Therefore, £ is not in T if and only if neither of the preceding conditions
are true. Since the two preceding conditions are equivalent in Encode, Decode, the complement of the
disjunction of the two conditions are also equivalent in Encode, Decode. Since the tuple (£, 1(£),2) is
added to T in Encode, it is easy to see that o~1(£) is the element popped out to the list Vals. Therefore,
again the same tuple is appended to T in Encode, Decode.

Therefore, after the invocation of AddToTable function, T is identical in Encode, Decode.

Note that the condition that ¢ is in T and T(c) # T(a) + T(b) in Encode implies that there does not
exist ¢ such that (c/, T(a) + T(b),*) € T. Also a tuple of the form (cy,#) is added to Srps; in Encode if
and only if ¢ is in T and T(c) # T(a) + T(b). Therefore, the condition ¢ is in T and T(c) # T(a) + T(b)
is equivalent to the condition that there does not exist ¢’ such that (¢/, T(a) + T(b),*) € T and there is
some 4 such that (c1,4) € Srps; in Decode. Since T is identical up until this point, the operation VarReduce
is identical in Encode, Decode.

The only other point when tuples are appended to T in Encode on an Eval(a,b,2) query is when a
tuple containing ¢ (the answer of the Eval query) is added. Note that a tuple containing ¢ is added to T in
Encode if ¢ is not in T. If ¢ is not in T, then (+,T(a) + T(b),*) ¢ T which in turn implies that no tuple
of the form of (¢, *) was added to Srps;. Therefore the equivalent condition in Decode is that for no ¢/,
(¢, T(a)+T(b),*) € T and for no ¢, (c1,%) € Srps, . It is easy to see that c is the label popped from the list Lbls
in Decode when the condition is true. Therefore, again, the same tuple is appended to T in Encode, Decode.
Also, the same label is the answer to the Eval query in Encode, Decode. Again, the condition c is not in T and
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for some j € [k], ¢ = o(i;) in Encode is equivalent to the condition that for no ¢/, (¢/, T(a)+ T(b),*) € T and
for no i, (¢1,i) € Srps; and for some j € [k], (c1,3,7) € Inputs because a tuple of the form (¢, 3, *) is added
to Inputs if and only if ¢ is not in T and for some j € [k] : ¢ = o(;) in Encode. Therefore, the VarReduce
operation is identical in Encode, Decode. Also, in this case the same label o(i;) is returned in Encode, Decode.
In Encode, the condition c is in T and T(c) = T(a) + T(b) is equivalent to the condition there exists ¢’ such
that (c¢/,T(a) + T(b),*) € T. Since, T is identical up until this point in Encode, Decode, the condition c is
in T and T(c) = T(a) + T(b) in Encode is equivalent condition (¢, T(a) + T(b), ) € T in Decode. Note that
for this equivalent condition, no changes are made to T in Encode, Decode and the same label is returned in
both procedures.

Thus, we have argued that the changes to T and the answer is identical in Encode, Decode on an Eval(., ., 2)
query. Therefore, if T was identical in Encode, Decode before an Eval(.,.,2) query, it remains identical after
the query too and the answer of the Eval(.,.,2) query is identical in Encode, Decode.

Using very similar arguments we can prove that if T was identical in Encode, Decode before an O, (., ., 2)
query, it remains identical after the query too and the answer of the O, (., ., 2) query is identical in Encode, Decode.
We omit the proof since it is very similar to the previous one.

Since T was identical before running Ro in Encode, Decode, it remains identical after running Ro since
the changes made on each Eval(.,.,2),0,(.,.,2) query are identical in Encode, Decode and all the answers to
queries of Ry are identical in Encode, Decode. In Encode, the condition o(7;) is not in T is equivalent to the
condition ¢(i;) = L in Decode because whenever a tuple of containing o(i;) was appended to T in Decode,
the value of o(i;) was set and for o(i;)’s not in T, the value of o(i;) is L. Therefore, T remains identical in
Encode, Decode till before running R; in Encode, Decode.

Just like we argued that T remains identical after running R and all the answers to queries of Ry are
identical in Encode, Decode, we can use very similar arguments to prove the T remains identical after running
R1 in Encode, Decode and all the answers to queries of Ry are identical in Encode, Decode. We omit the
proof since it is very similar to the proof before.

There are no other changes to T after running R; in Encode, Decode. Therefore, T is identical in
Encode, Decode and all the answers to queries of Ro, R are identical in Encode, Decode.

C Rewinding: Conjecture and Obstacles

We briefly discuss the barriers in extending our result to consider rewinding.

A REDUCTION. First off, we informally describe a reduction R that does rewind the adversary A and answers
all the H, H, queries using O(klogk + log p) bits of memory where k is the total number of H and H, query
A makes. To simulate the random oracle in a memory-efficient way, the reduction R uses a PRF with key
k¢ whose domain is £ and range is {0, 1}hten and a list L. It keeps a counter on the number of queries by
A and increments it by 1 on each H and H, query. The reduction R samples a key k; (assume k; can be
expressed in r bits) for the PRF and initializes L to empty before running A.

For the first query made by A (H or H,), R responds with PRF(k¢, 1) and appends 1 to L. If the i*® query
by A is a H, query on a, R records a, rewinds A to its beginning, and checks if A had made a H, query on
a before the i*" query or if A had made a H query on b such that O,(a,b) = 1 before the i®® query. If A
does find either of these to be true on the j* query, R appends L[j] to L. Similarly, if the i*® query by A is
a H query on a, R records a, rewinds A to its beginning, and checks if A had made a H query on a before
the i*" query or if A had made a H, query on b such that O,(b,a) = 1 before the i** query. If A does find
either of these to be true on the j* query, R appends L[j] to L. While rewinding, R answers the t'" query
(t <) by PRF(ky, L[t]). Clearly, using this strategy, R simulates the answers to the queries of A correctly.
Note that £y can be expressed in r bits, L can be expressed in at most klog k bits, a can be expressed in at
most log p bits and the query sequence number can be expressed in at most log k bits. Therefore, R uses at
most r + klogk + logp + logk = O(klog k + logp) bits of memory.

REMARKS. Note that even if R rewinds A, R needs to answer the queries of A from its beginning to the point
where R rewound it, again. Therefore, it seems unavoidable that R needs to remember some information
about each query of A. Since there are k queries, this information would take at least logk bits for each
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query (since answer to each query could be unique) and klogk bits in total. Hence, we conjecture a lower
bound of 2(klog k) bits even when R rewinds A.

We are not aware of any techniques that could help us establish this bound, and this appears a much
harder problem than the straightline case.
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