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Abstract—Sharding technology is becoming a promising can-
didate to address the scalability issues in blockchain. The key
concept behind sharding technology is to partition the network
status into multiple distinct smaller committees, each of which
handles a disjoint set of transactions to leverage its capability
of parallel processing. However, when introducing sharding tech-
nology to blockchain, several key challenges need to be resolved,
such as security and heterogeneity among the participating nodes.
This paper introduces RepShard, a reputation-based blockchain
sharding scheme that aims to achieve both linearly scaling
efficiency and system security simultaneously. RepShard adopts a
two-layer hierarchical chain structure, consisting of a reputation
chain and independent transaction chains. Each transaction chain
is maintained within its shard to record transactions, while
the reputation chain is maintained by all shards to update the
reputation score of each participating node. We leverage a novel
reputation scheme to record each participating node’s integrated
and valid contribution to the system, in which we consider
the heterogeneity of participating nodes (e.g., computational
resources). The reputation score used in sharding and leader
election processes maintains the balance and security of each
shard. RepShard relies on verifiable relay transactions for cross-
shard transactions to ensure consistency between distinct shards.
By integrating reputation into the sharding protocol, our scheme
can offer both scalability and security at the same time.

I. INTRODUCTION

Blockchain functions as a decentralized and immutable
ledger that facilitates transparent and auditable management
of data and transactions. It shows enormous potential to
revolutionize and advance existing financial ecosystems [1] [2].
As blockchain technologies mature, different variants of dis-
tributed ledgers emerge, each with its own strengths and
weaknesses. Most current blockchain schemes are still far
from achieving a high throughput (e.g., at the levels of VISA
processing [3]) among a huge amount of participating nodes. A
straightforward and effective solution to achieve a “scale-out”
blockchain is via sharding technology, which has the potential
to scale blockchain horizontally. Sharding technology literally
partitions the network status into distinct smaller committees,
each of which only handles a disjoint set of transactions
assigned to it (alternatively called a “shard”). In other words,
the transactions are assigned to distinct shards so that different
transactions can be handled in parallel among the shards.

Sharding technology advances the distributed ledger tech-
nologies by decreasing the processing load on each node,
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and increasing the overall processing ability of the system.
However, sharding is not a one-shot solution to balance the
trade-off between scalability and performance. Each shard
is an independent and autonomous committee that needs to
overcome several key challenges to achieve a consensus. In
the literature, there exist several blockchain sharding protocols,
e.g., Elastico [4], OmniLedger [5], and RapidChain [6], to
address the scalability issues. However, most of these existing
sharding protocols fail to consider one important property,
heterogeneity, among the participating nodes in a practical
blockchain system. And, the less-competent nodes may be-
come a bottleneck and hamper the system performance and
security (see the motivation in Section II). We, therefore, need
a scheme to evaluate the heterogeneity of the participating
nodes.

Reputation is a view of one entity on others, commonly
established by historical behaviors, which can be regarded as a
reliable indicator of the honesty of one entity. We can integrate
a reputation scheme into a sharding protocol to mitigate the
weaknesses in current sharding protocols. In this paper, we
propose a reputation-based sharding scheme, RepShard, aiming
to achieve both linearly scaling efficiency and system secu-
rity simultaneously. RepShard adopts a two-layer hierarchical
chain structure, including one reputation chain and independent
transaction chains. Each transaction chain is maintained within
its shard to record transactions, while the reputation chain is
maintained by all shards to update the reputation score of each
participating node.

RepShard combines a novel reputation scheme with
blockchain sharding to enhance its security. Our reputation
scheme is established on two factors: the amount of valid
and aggregated contributions a participating node has made,
and the consistency of these contributions when the system
still actively works. This reputation reflects an “integrated
contribution” of participating nodes, which is a reliable source
to establish the system security. Within the sharding protocol,
we design a verifiable relay transaction as the communica-
tion channel to deal with cross-shard transactions. A relay
transaction carries enough information to verify its validity
in destination shard.

This paper presents a reputation-based sharding scheme.
Briefly, we make the following contributions:

• We propose a reputation-based sharding scheme,
RepShard, to achieve linearly scaling efficiency and security at
the same time. RepShard adopts a two-layer hierarchical chain
structure, recording the transactions and reputation separately.



• RepShard extends the mechanism to calculate the rep-
utation scores, which can be used to explicitly indicate and
represent the heterogeneity among the participating nodes
when assigning them into shards. Also, the calculation of
reputation is based on integrated work, instead of instantaneous
computational power.

• RepShard adopts a novel scheme to effectively deal with
cross-shard transactions and guarantees the eventual consensus
among distinct shards. Our transaction model is based on an
account/balance model.

The rest of the paper is organized as follows. Section II
provides the motivation. Section III shows the models on
the system, threat, and transaction. Section IV presents the
proposed protocol in detail. Section V provides a security
analysis of the proposed protocol. Section VI surveys the
related work in this topic, and Section VII concludes this
paper.

II. MOTIVATION

Applying a sharding scheme on the blockchain can po-
tentially improve the overall transaction processing capability
(w.r.t., system throughput) with the help of parallel processing
among multiple distinct shards. Practically, the participating
nodes in a system pose a huge difference in capacity to
contribute a system, such as computational power, bandwidth,
and historical behaviors on honesty [7]. However, most exist-
ing sharding schemes lack consideration of the heterogeneity
among these consensus nodes. This unawareness may sig-
nificantly affect the overall performance of a system. For
example, when applying a random-based sharding [4] [5] or a
simple balanced random sharding [6], without considering the
heterogeneity among the nodes, those less-competent consen-
sus nodes may become a bottleneck and hamper the system
throughput.

Another observation is that most existing blockchain shard-
ing schemes are based on randomness to periodically re-shuffle
consensus nodes to ensure the security of a system. And, a
good randomness needs to meet several important properties,
e.g., unbiasability, unpredictability, and public-verifiability,
which are not easy to achieve [8]. Without good randomness,
the security of a blockchain system can be compromised.
Even with good randomness, a blockchain system may also be
compromised easily. For example, with a sophisticated attack,
such as bribery attack [9], the adversary may have the ability
to control a temporary majority (e.g., more than 50%) of the
overall computing power, which may, in turn, ruin the entire
system.

Motivated by the above observations, we propose to ap-
ply a reputation-based scheme to the blockchain sharding to
jointly achieve both scalability and security. Roughly speaking,
reputation (or reputation score) is a stable indicator of the
participating nodes’ capability and reliability. The reputation
can also enhance system security by balancing the overall rep-
utation scores across different shards, making it more difficult
for malicious users to take full control of a specific shard. In
a centralized network, it is a trivial task to track a reputation,
since all peers’ reputation can be managed and maintained
by one centralized entity [10]. However, in a decentralized
network, e.g., blockchain, it is a challenging task to track an

accurate reputation, especially in the presence of malicious
nodes. Also, it is a challenging task to establish trust among
different parties that do not have a trustful connection [11].
We, therefore, require a secure and reliable mechanism to
establish a reputation in a decentralized manner, even in the
presence of malicious nodes. The adopted reputation scheme
is not evaluated by a node’s “instantaneous power”, e.g., the
node’s power in a short time [12]. Instead, the reputation of a
consensus node is established on its historical behaviors and
all previous valid and integrated contributions.

III. MODELS

A. System and Threat Models

In RepShard, we consider a decentralized network with
n nodes, in which the nodes may have different capabilities
(e.g., computation power). We assume each node i has a
public/private key pair (pki, ski), and the public key pki
is used to define its identity. All messages sent over the
network are authenticated by the sender’s private key. In
addition, we make a similar assumption as in previous work,
e.g., [4] [5] [6]. For example, the network connections among
the honest nodes are well-connected and authenticated. And,
our consensus protocol is based on a permissioned setting, in
which each participating node requires a unique identity to
access and contribute to the blockchain. We denote n nodes
V n = {v1, v2, ..., vn} and k shards Sk = {S1, S2, ..., Sk},
where Sk = S1∨S2∨...∨Sk and n = |S1|+|S2|+...+|Sk|. If
we use r to represent the reputation score (e.g., the reputation
score of node vi is ri), the overall reputation score for each
shard is approximately equal, e.g., r(Si) ≈ r(Sj), where r(Si)
and r(Sj) are the accumulated reputation scores for shard Si
and Sj , respectively.

Our protocol considers a Byzantine adversary who can
corrupt at most f nodes among 3f+1 participating nodes. We
consider a replica (node) as honest if it follows the protocol
faithfully and behaves honestly. Similar to almost all existing
committee-based consensus protocols, our Byzantine adversary
is slowly adaptive. This means that the adversary is allowed to
choose a set of nodes to corrupt only at the very beginning of
the protocol run and/or the interval between two consecutive
epochs, but does not have the ability to change its choice within
one epoch.

B. Transaction Model

Unlike the Unspent Transaction Output (UTXO) model [1],
our scheme adopts the account/balance model [13], which is
similar to a bank account. For instance, when trying to approve
a pending transaction, the bank first must verify whether its
account has enough balance to ensure the transaction can
proceed correctly. We can extend the field of balance to be a
more practical case by adding more fields on it, e.g., with the
help of programmable logic for specific applications. Different
from UTXO transactions, which can only support full state
transitions and updates, the account/balance model has the
ability to support incremental state updates, e.g., withdraw or
deposit the transaction balance incrementally. In addition, the
account/balance transaction model can be easily extended to
different application domains, e.g., financial services, industrial
IoT.



IV. REPSHARD: SCALABLE AND SECURE SHARDING
SCHEME

This section provides a detailed design principle of
RepShard. We focus on the following aspects: sharding and
leader election, consensus protocol, and reputation scheme.

A. Protocol Overview

RepShard proposes a two-layer hierarchical blockchain
structure, which maintains each shard’s transaction chain and a
reputation chain, separately. Each shard has its own transaction
chain to proceed with the transactions assigned to that shard.
The reputation chain is maintained by all shards to record the
reputation scores of all participants. The reputation score is
based on two aspects: one is the aggregated amount of valid
and effective work (or contribution) that a participating node
has contributed to; the other is the frequency of that work.
These two aspects are calculated over the whole period when
the system is active and functions well. This reputation scheme
can thus reflect the heterogeneity and trustworthiness of the
participating nodes. Both the sharding process and the leading
election process are based on the reputation scores to achieve
a balanced and secure shard. The interval, w.r.t., epoch, for
updating the reputation chain is much longer than that for
the transaction chains, e.g., tens or hundreds of transaction
blocks yield one reputation block. Also, the updated reputation
score of each shard will be recorded in the reputation chain.
The transaction chains deal with transactions at high speed
to achieve a high system throughput, while the reputation
chain (with a low updating frequency) is used to guarantee
the system’s security and robustness.

Fig. 1 demonstrates an overview of the RepShard scheme.
RepShard maintains two types of epochs: epochtx (or etx in
Fig. 1) for transaction chains (TX chains) and epochrep (or
erep in Fig. 1) for reputation chain. The membership of a
node to a shard will not change during one erep; however, the
shard leader will change between different etx. When a new
epoch erep begins for the reputation chain, all participating
nodes will be sharded into distinct shards, and one node can
only be sharded into one shard. At the end of each erep, each
shard has a synchronization process to construct a temporary
reputation block (TRB) within the shard, which can be further
used to construct the reputation block (RB) for the reputation
chain. To build RepShard, we identify several key components:
sharding and leader election, consensus protocols (including
intra-chain and inter-chain), and reputation schemes. These key
components will be presented in Section IV-B.

Before discussing the detailed protocol, we first exemplify
a high-level scenario on how RepShard processes a transaction
(or a payment process), which can be easily extended to
other scenarios. Without loss of generality, we consider a
cross-shard transaction. A transaction instance involves two
participating nodes (or we may call them users or clients) from
different shards, i.e., shard A and shard B, as shown in Fig. 2.
The nodes from different shards perform two interdependent
operations, withdraw and deposit. Typically, the withdraw
operation ρ, which only involves the states in shard A, is
handled by the participating nodes of shard A. If the target
account contains enough balance to perform this withdraw
operation, this transaction will only be included in a block

(e.g., block i + 1 in Fig. 2) of shard A. Once this is done,
shard A will compose a relay transaction carrying the deposit
operation φ, and this relay transaction will be forwarded to
shard B for further processing to complete this payment.
After verifying the validity of the relay transaction and the
receiving account in shard B, the deposit operation φ will
always execute without needing to check the balance of the
receiving account in shard B. Once the deposit operation is
executed and appended to a block (e.g., block j+1 in Fig. 2) of
shard B, the transaction completes. The intra-shard consensus
will guarantee the consistency within a shard. We assume the
whole system is uniformly split into k = 2κ distinct shards,
and a shard is identified by both its sharding scale κ and shard
index s (s ∈ {0, 1, ..., 2κ−1}). According to the sharding scale
κ, it is a trivial task to locate the sharding index.

B. Description

1) Sharding and Leader Election: We first need to assign
the participating nodes into distinct shards, and then we elect
a leader within that shard. A good sharding and leader election
process must preserve several critical properties to ensure the
security of each shard, e.g., randomness and resemblance. We
adopt a similar nodes sharding scheme as in [7]. However,
our scheme is a hierarchical blockchain structure, and the
reputations come from the reputation chain, instead of from
each individual state block of [7]. Also, our leader election
scheme is based on our reputation scheme with randomness.

Randomness is used to guarantee that the whole process
is unpredictable. Both sharding and leader election processes
must be random to prevent prediction attacks, e.g., predicting
which shard a node belongs to, or which node is the leader.
Resemblance means the equivalence of reputation score in each
shard. Sharding nodes into shards is based on both randomness
and reputation, and each shard should be balanced to some
extent. The ideal assignment is that each shard has a relatively
similar reputation score in sum and the size of each shard, e.g.,
almost the same as the number of honest and malicious nodes.
This feature increases the security of each shard, preventing
one particular shard from being compromised. Besides that,
due to heterogeneity among the participating nodes, the results
of both sharding and leader election processes should be easily
verified by each participating node independently, without
involving too much communication overhead. Our sharding
and leader election scheme can guarantee the above critical
properties.

a) Nodes Sharding: The system first runs a node shard-
ing algorithm to assign the participating nodes into shards.
Our node sharding algorithm is based on two metrics: the
randomness and the cumulative reputation score rw of a node
over all its previous w epochs. Algorithm 1 shows a reputation-
based nodes sharding scheme in pseudo-codes. To achieve
public-verifiability among all participating nodes, we utilize
the hash value of the previous reputation block (except the
genesis block), as the random seed of the current epoch, to
initialize the random generator Grand (Line 1 in Algorithm 1).
Within one reputation epoch, the membership of the shard
nodes does not change, except its shard leaders, since the
shard leader changes for each transaction epoch. From the
last reputation block, we can easily obtain the aggregated
reputation score of the previous epoch, which is a list Re−1.



Fig. 1: RepShard overview. RepShard adopts a two-layer hierarchical structure, and each layer has its chain and epoch: etx for
the transaction chain and erep for the reputation chain. The membership of a node to a shard will not change during one erep,
however, the shard leader will change between different etx. Different colors represent different shards and the corresponding
transaction chains. Node with L means the current shard leader. At the end of each erep, each shard has a synchronization process
to construct a temporary reputation block (TRB) within the shard, which can be further used to construct the reputation block
(RB) for the reputation chain.

Fig. 2: Message passing mechanism across distinct shards with
the help of relay transactions based on Account/Balance model.

Algorithm 1: Reputation-based Nodes Sharding
Input:
A random set from previous epoch e− 1
Seede = {RBHe−1

1 , RBHe−1
2 , ..., RBHe−1

k }, where
RBH represent Reputation Block Hash;
The aggregated reputation scores
Re−1 = {re−11 , re−12 , ..., re−1n } of each node over all
the previous e− 1 epochs;
Output:
k distinct shards S = {S1, S2, ..., Sk}, where
Si ∧ Sj = ∅ and S = S1 ∨ S2 ∨ ... ∨ Sk.

1 Initialize the shards and random number generator:
Si = ∅, where 1 ≤ i ≤ k; Grand: = Seede

2 Sort the aggregated reputation score:
Re = sort(Re−1)

3 for each reputation score rei in Re do
4 Generate a index sequence {t1, t2, ..., tj} and the

corresponding set {St1 , St2 , ..., Stj} of S
satisfying |St1 | = |St2 | = ... = |Stj | =
min(|S1|, |S2|, ..., |Sk|), where j is the number
of satisfied subsets.

5 Obtain a random number (a integer) x from
Grand.

6 Allocate node i with reputation score rei to Stu
that u = x mod j.

7 end

We sort all the reputation scores in Re−1, in descending order,
as a new list Re. For each element in Re list, it is assigned to
a shard, which typically is with a minimum size, so that it can
maintain the property of resemblance. If multiple shards satisfy
the minimum size requirement, the system randomly selects a
satisfied shard to assign the node (Line 4 - 5 in Algorithm 1).
For each iteration (Line 3 - 7 in Algorithm 1), we choose the
current unassigned node with the largest reputation score to
assign into a shard. This inherently maintains the balance and
equivalence of the total reputation score in each shard.

b) Leader Election: After the shards are formed and the
participating nodes are assigned to the corresponding shards,
each shard starts its leader election process. Similar to the
nodes sharding process, our leader election scheme is also
based on the same metrics: the randomness and the cumulative
reputation score rw of a node over all its previous w epochs.
Algorithm 2 shows a leader election process in pseudo-codes.
The reputation means a node with a high reputation score has
more chance to be elected as the shard leader. We follow the
proof-of-stake (PoS) protocol to form a potential committee
of leaders, and the shard leader is randomly selected from
the potential leader committee. In our case, only the nodes
having enough high reputation scores, e.g., higher than both
the median score and the mean score of all shard members,
can have the chance to be a shard leader. If a node does not
satisfy the requirements, it will be assigned a value +∞. Each
qualified node is required to divide its reputation score by a
randomly generated number based on the same random number
generator Grand and node id (e.g., the public key of the node)
(Line 7 - 8 in Algorithm 2), this will ensure the randomness
of a potential leader. We then select the node with a minimum
value as a shard leader. After each shard selects its leader, the
shard runs the consensus process to deal with transactions.

2) Consensus: This section presents the consensus proto-
cols we adopted. Specially, we discuss intra-shard and inter-
shard consensus protocols separately. The intra-shard con-
sensus is responsible for the transactions within one shard,
while the inter-shard consensus handles the transactions across
multiple shards.



Fig. 3: Intra-shard consensus overview. The left part is the data structures of transactions in different consensus phases; the right
part is a scalable BFT consensus protocol powered by a threshold signature.

Algorithm 2: Reputation-based Leader Selection
Input: k distinct shards S = {S1, S2, ..., Sk} from

Alg. 1;
Output:
k distinct shard leaders L = {l1, l2, ..., lk}, where
li ∈ Si.

1 Initialize the leaders for each shard: li = ∅ where
1 ≤ i ≤ k

2 for each shard Si ∈ S do
3 rmed = median of the reputation score of Si
4 rmean = mean of the reputation score of Si
5 λ = 1

2 (rmed + rmean)
6 for each validator vj ∈ Si do
7 if (re−1j ≥ rmed && re−1j ≥ rmean) then
8 Obtain a random float 0 < x < 1 from

Grand

9 wi,j = 1
2 (1 +

x−re−1
j

λ+|x−re−1
j | )

10 else
11 wi,j = +∞
12 end
13 end
14 li = vj where wi,j = min(wi,1, wi,2, ..., wi,|Si|)
15 end

a) Intra-shard Consensus: Considering the scalability
within a shard, the intra-shard consensus is based on a scalable
BFT protocol. This scalable BFT protocol uses a threshold
signature to reduce the communication complexity among the
participating nodes. Simply, a threshold signature scheme can
guarantee that, for a given threshold parameter k (1 ≤ k ≤ n),
any k signers from a total of n signers can collaboratively
generate (or recover during decryption) a valid signature for
any given message. However, there is no way to do so when
the number of signers is less than the threshold k [14]. Our
BFT protocol utilizes a well-established Boneh-Lynn-Shacham
(BLS) signature [15] as a threshold signature scheme.

To apply a BFT protocol on account/balance transactions,
we need some data structures on transaction-block for the
transaction chain in each shard. The left side of Fig. 3
shows the related data structures, including TXSet, TXOps,
TXOpsBlk and TXBlkPrf. TXSet, Transaction Set, contains a
set of transactions for consensus procedure, which consists of
the hashes of transactions in a specific order (e.g., ascending
order) and the signature from shard leader. TXOps, Transaction
Operations, provides the operations and the decisions (e.g., the
vote on the validity of a transaction) from the shard members,
as well as their signatures. Taking a withdraw operation as an

example, if the corresponding account has enough balance to
cover the withdraw operation, then this withdraw operation
is valid, and the node votes “yes”. Note that the entities
on TXSet and TXOps should be in the same order. Each
shard member shows a decision on each transaction, e.g.,
valid/invalid or yes/no options, within its shard. TXOpsBlk,
Transaction Operations Block, contains all TXOps from all
shard members. TXBlkPrf, Transaction Block Proof, contains
the commit-proof information for this round consensus, so that
each honest node can decide by itself if this block is valid or
not. When the epoch starts, the shard leader first needs to
collect and broadcast the pending transactions, submitted by
clients, within its shard. And all the communicated messages
must be signed by its original sender.

For TXSet, each shard member checks all transactions
in this TXSet and makes a decision on the validity of each
transaction. Our design considers the heterogeneity among the
participating nodes, e.g., some participating nodes may not
have enough resources to make a decision at that moment.
Instead of only providing two options, e.g., Yes or No1, we
provide a third option Unknown. The option Unknown is given
by a node to avoid punishment on its reputation score in the
following cases: (1) when it does not have the ability to handle
so many transactions due to hardware limitations; (2) when
the transaction itself has not been received. After verifying
the transactions, the shard members are required to send their
decisions, with the signatures, back to the shard leader for
further processing.

The consensus procedure of our scalable BFT protocol is
elaborated below and illustrated on the right side of Fig. 3.

• Pre-processing: In this phase, the primary Sp generates a
group of random secret shares using a BLS threshold signature
scheme, and then publishes the generated cryptographic hash
of each secret share. Then, Sp sends one share to each Si. At
the end of this phase, each replica possesses one distinct private
key for signing (alternatively called ‘signing key’), which can
be further used to generate a signature share for any message.

• Request: In this phase, the clients2 send operation re-
quests to Sp. The Sp handles these requests and constructs a
transaction set TXSet from its gathered transactions3.

1About the validity of a transaction, Yes implies the transaction is valid, No
implies the transaction is invalid.

2The client can be a transaction from the originate shard if involving
the cross-shard transaction, e.g., a relay transaction containing the deposit
operations.

3Typically, each replica has a transaction pool to buffer these received
transactions.



• Prepare: In this phase, Sp sends the TXSet to all replicas.
Upon receiving this TXSet, each replica prepares its vote on the
validity of each transaction in the form of TXOps, and signs
this constructed TXOps using its private signing key. Each
replica then prepares its commitment proof on this TXOps.

• Commit: In this phase, each Si signals its commitment by
sending its sign-share message, together with TXOps and its
commit proof (this proof is signed by Si’s own private key). Sp
then gathers all signature shares, and logs all received commit
proofs together to create a succinct full-commit-proof for the
TXBlkPrf. Besides, the primary Sp will also collect all returned
secret shares from each replica to re-assemble the secret, and
this process can represent an aggregated commitment from
all replicas. Sp multicasts this reassembled secret, the full-
commit-proof and the TXBlkPrf to all Sis, which is sufficient
for replicas to verify.

• Reply: Similar to the Commit phase, all the reply mes-
sages from all active replicas will be aggregated to Sp to verify
the commitment on full-commit-proof and TXBlkPrf. In the
second phase of the reply, after each replica Si verifies the
secret, it starts to reveal its secret share to Sp. The primary
then rebuilds the reply secret and forwards the secret with all
communication logs to the clients for their verification.

Each shard member keeps checking the received TXBlkPrf
and transaction-block from the leader. If any malicious behav-
iors (e.g., tampered data) performed by a leader are detected,
the honest shard member will broadcast a signed Warning
signal to other shard members. When at least half of shard
members send out the Warnings, the honest members can begin
a rollback process. The rollback process follows a general
view-change process, e.g., in [16]. In addition to the general
operations (e.g., electing a new leader), our rollback process
will clean the malicious leader’s cumulative reputation score
to an initial state, e.g., 0.

b) Cross-shard Transactions: The intra-shard consen-
sus potentially reduces both computation and communication
overheads within the shard by isolating the transaction valida-
tion and confirmation within a small range. Typically, a cross-
shard transaction is more complicated, because all associated
shards must reach a consensus and keep consistency among
the involved shards. This section presents a novel way to
handle cross-shard transactions based on the adopted trans-
action model. Similar to the settings adopted in [13] [17] [18],
we consider a cross-shard transaction scenario: a withdraw
operation ρ from payer a and a deposit operation φ to payee b,
and a and b are from different shards, e.g., Shard A and Shard
B, respectively. To complete this cross-shard transaction, we
perform a two-phase process: Withdraw Operation at Shard A
(e.g., transaction validation and forwarding at Shard A), De-
posit Operation at Shard B (e.g., relay transaction processing
at Shard B).

Suppose a cross-shard transaction tx is < ρ, a, φ, b >,
which is an unconfirmed transaction.

Phase 1: Withdraw Operation at Shard A

The shard leader of Shard A picks up this unconfirmed
transaction tx (together with other unconfirmed transactions)
to construct a new block (e.g., TXSet). The shard leader checks
whether the withdraw operation in tx is valid or not. By

comparing the balance of a with the amount to transfer in
tx, if the amount to transfer is no more than the balance, then
tx is valid; otherwise, the balance is not sufficient to perform
the withdraw operation, and tx will be labeled as invalid.
The corresponding decision (either valid or invalid) will be
included in the proposed block for verification from its shard
members, which involves a round of intra-shard consensus. For
this block, the shard leader typically does not have the right
to include a Unknown option, but it has the right to propose a
blank block in case of no transaction at that epoch. Otherwise,
a tentative chaining-block Θa and a tentative transaction block
Φa are constructed by the leader. Φa contains a list of valid
transactions, from a perspective of the leader, including the
transaction from a to b, in the form of TXSet4.

Within Shard A, the shard leader runs an intra-shard
consensus protocol. The transaction block Φa consists of both
intra-shard and inter-shard transactions. If a transaction is the
intra-shard transaction (e.g., both payer and payee are in the
same shard) or an inbound relay transaction (e.g., only payee
in this shard for deposit operation), then this transaction is
executed and completed at this stage. The withdraw operations
ρ in all cross-shard transactions of Φa are then executed within
shard A, and the deposit operation φ will be executed at an-
other shard. Each cross-shard transaction derives an outbound
relay transaction ψ :=< φ, b, γ > (where γ is a verification
data, e.g., TXBlkPrf ), which will be sent to the destination
shard B.

Phase 2: Deposit Operation at Shard B

Suppose the relay transaction ψ :=< φ, b, γ > has been
forwarded to Shard B from Shard A, as an inbound transaction,
as shown in Fig. 2.

The shard leader of Shard B picks up the inbound relay
transaction ψ to construct a new block. The leader first checks
the validity of ψ, e.g., verify against its originating block Θa

of shard A. This is used to verify the validity of this relay
transaction. If it is not invalid, then skip this inbound relay
transaction. Otherwise, the leader constructs a chaining-block
Θb as well as a transaction block Φb. Θb includes this inbound
relay transaction ψ. Similar to the scenario in Shard A, this
block is tentative. The shard leader broadcasts this block Φb

to its shard members. An intra-shard consensus is executed
and concluded. As a rule of thumb, the deposit operation φ
is always executed if the destination shard verifies its validity.
And once the deposit operation φ is executed, then the life-
cycle of the transaction < ρ, a, φ, b > is completed.

To ensure that the relay transaction is indeed executed, we
add an acknowledgment mechanism to its originate shard to
guarantee the relay transactions are executed. Upon execution
of the relay transaction, the destination shard will send its
originate shard a confirmation (at the reply stage of intra-shard
consensus), including the created chaining-block and the relay
transaction. In case that a relay transaction is accidentally dis-
carded, the discarded transaction can be re-launched, according
to the confirmed initiative transactions on the chain, by any
participating node of the originate shard.

4We call it “tentative” because it might contain some transactions (either
intra-shard or inter-shard) which are not valid in the view of other shard
members. It must pass the intra-shard consensus to agree on the proposed
transaction block.



3) Reputation Scheme: Previous sub-sections describe de-
tailed principles to construct a transaction chain. This section
focuses on the construction of the reputation chain. Our rep-
utation scheme is based on the concept of proof-of-reputation
(PoR), which can be used to enhance the security of RepShard.
With PoR, in addition to create enough transaction blocks,
the participating node must demonstrate that it has behaved
honestly and participated in creating these transaction blocks
on a regular basis. A node’s reputation is established based
on all its previous behaviors, which is an accumulated result.
In contrast, several previous schemes, such as proof-of-work
(PoW) or proof-of-membership (PoM), an attacker with a high
instantiate computational capability can join the system and
launches an attack. Different from traditional PoRs, RepShard
is based on all previous valid and integrated work to establish
the participationship in a system. We first present the reputation
scheme, then illustrate how to construct a reputation chain
based on our reputation scheme.

a) Reputation System: When a fixed number of transac-
tion blocks are chained (e.g., one hundred blocks), a temporary
reputation block will be constructed among all shard members
to reflect the reputation of its shard members. Each shard
member individually calculates a temporary reputation block
according to available information, e.g., TxBlkPrf s and the
transaction blocks. Given the transaction chain, our scheme
can guarantee the reputation score of any node can be calcu-
lated at any time. Based on the public agreed blocks on the
reputation chain, every consensus node has its own copy of
the reputation scores about all other participating nodes. The
calculation of reputation score R of a node can be obtained
from Algorithm 3.

With publicly available information on each shard, it is a
trivial task to convert the information on a transaction block
to a matrix. We denote some notations used to calculate the
reputation.

• H(i)
MN : a M×N matrix for transaction block i, where M

is the number of transactions in block i and N is the number
of shard members to construct this block. The himn ∈ H

(i)
MN

(where 1 ≤ m ≤ M and 1 ≤ n ≤ N ) is the element at
the m-th row and n-th column, and it satisfies the following
equation:

himn =


1 if node n contributes on transaction m
−1 if node n misbehaves on transaction m
0 otherwise.

(1)

• α: a column vector in the matrix, e.g., α(i, s) denotes
the s-th column vector of block i (or matrix H(i)

MN ).

• 1: a row vector containing all value “1”, e.g., 1m =
[1, 1, ..., 1]1×m.

• c: a function on vector α to calculate the honesty that
a node behaves on a block, which satisfies the following
equation:

c(α) =

{
1 if α does not contain “-1”
0 otherwise.

(2)

• w: a weight function on H(i)
MN (e.g., the leader node will

get more rewards), which satisfies the following equation:

w(i, s) =


w0 if the node in s-th column of H(i)

MN

is the leader node of block i
1 otherwise

(3)

where w0 (w0 > 1) is a system parameter to represent the
work contributed by shard leader.

• mi: the number of transactions included in block i (or
the number of rows of H(i)

MN ).

• B: the number of transaction blocks generated in current
reputation epoch erep.

• Re−1: the reputation score of the previous epoch.

• (a, λ): the system parameters.

Algorithm 3: Reputation Score Calculation
Input:
Transaction chain length B;
Matrix-related {H(i)

MN}Bi=1, {mi}Bi=1;
Previous reputation Re−1
Parameters a, λ,Ext
Output:
The reputation R ∈ [0, 1]

1 x0 =
∑B
i=0mi −

∑B
i=0&&1≤m≤mi

|1hi
ms=0|

2 x =
∑B
i=1

∑N
s=1 1 · α(i, s) · c(α(i, s)) · w(i, s)

3 f(x) = 1
2 (1 + x−a

λ+|x−a| )

4 if x < x0 then
5 H = 0
6 else
7 H = 1
8 end
9 Re = min(1, H · (Ext+ f(x)))

10 R = Re+Re−1

2

Considering the heterogeneity, we add some initial external
views on participating nodes, e.g., Ext ∈ [0, 1]. When a
very reliable and powerful node (e.g., a node with tamper-
resistance hardware) joins RepShard, it may have an initial
reputation that is higher than that of a random individual
joiner. This provides a fair share, namely reputation, for a
new joiner. For different behaviors, e.g., honest or dishonest,
we pose distinct scaling criteria to either reward or punish. In
general, the punishment of dishonest behaviors is more severe
than the reward for honest behaviors, e.g., dishonest behaviors
may cause the node to lose all its accumulated reputation
score. This is very important and critical for our reputation
system. The case to commit an illegitimate transaction is
more severe, or even disastrous to the whole system, than
the case of aborting a legitimate transaction. Typically, an
aborted legitimate transaction can be resumed, however, once
an illegitimate transaction is confirmed, it may be a disaster
for the system and result in system inconsistency. The option
of “Unknown” typically means that the participating nodes
do not have enough computing/communication resources to
make a decision; thus, the system neither rewards nor punishes
the corresponding participating nodes on their cumulative
reputation scores. H ∈ {0, 1} is to show the honesty of the
node, which is set to “1” for the successive contribution, is set



to “0” if any malicious behaviors found. A node is said to be
a misbehave if: (i) it presents conflicting signed messages to
other consensus group members; or (ii) it commits transaction
blocks with conflicting transactions when this node is as the
leader [12].

Our reputation scheme specifies three features: careful start,
quick reward, and prevention of over-control. The careful start
is achieved via an initial slow growth; the quick reward is for
mature participants via a fast growth rate to reward the calcu-
lative honest nodes; the prevention of over-control is achieved
via a slow increase when it nears to the top. The sigmoid
function f(x) can be used to define this kind of progression,
which is a bounded, differentiable, and real function. This
function can achieve the above targets. For example, increasing
the reputation scores slowly at the beginning, regardless of
how powerful a node might be, this can potentially prevent
the attack from an instantiate powerful adversary. The node is
required to be continuously in the system for a long time, and
should always behave honestly. Once a node earns enough
reputation to a certain level (e.g., up to a threshold), this
node is literally proved to be a trusted enough one, and after
that, its reputation score will increase much faster. However,
if any malicious behavior is detected, this node will lose
its reputation. Also, according to the sigmoid function, the
reputation score cannot grow forever. In Algorithm 3, the
reputation function can be parameterized by adjusting the
parameters (a, λ), which makes it flexible to different settings,
e.g., changing the speed of increasing the reputation scores.
This parameterized function makes the reputation scheme more
robust.

In general, our reputation scheme ensures that a node’s
reputation is computed based on its integrated contribution.
The integrated contribution is measured by all its valid work,
during the time of being active and honest, to the whole
system. The instantaneous power at a given time has little
effect on the overall reputation score. The adopted reputation
scheme can guarantee the robustness of the whole system. For
example, after the system successfully runs a sufficient time,
there is no way for a node (e.g., even equipped with powerful
resources) to quickly establish its reputation. To obtain a high
reputation, the node must work both honestly and regularly all
the time, with no other way to achieve a high reputation.

b) Reputation Chain: RepShard is a two-layer hier-
archical structure, and the reputation chain is based on the
integrated work on the transaction chains. And the integrated
work contributes to the reputation score. A shard, as a com-
mittee, applies a collective signing, e.g., CoSig [19], to create
a temporary reputation block, which can be chained to the
transaction chain as a specific block. This temporary reputa-
tion block carries the reputation of each shard member, the
confirmed transaction blocklists, the previous reputation score
from the reputation chain, as well as a collective signature from
the participating nodes. The temporary reputation blocks are
chained to the transaction chain, which can be viewed as a state
block, while the reputation blocks in the reputation chain are a
collection of temporary reputation blocks from each shard, and
contain all the reputation scores of all nodes. The collective
signature on a temporary reputation block includes the identity
information on who signed this block, and correspondingly,
this signature can be publicly verified by other shards without

involving private information.

As each temporary reputation block is agreed upon and
confirmed within the shard, we can literally consider the leader
of a temporary reputation block to be honest. We construct a
second layer of committees, consisting of the leaders from
each shard called the reputation committee. Each temporary
block is gossiped among the reputation committees, which can
be considered a transaction of the reputation committee. The
reputation committee will run one round intra-shard consen-
sus to obtain the final reputation block and chain it to the
reputation chain. The final reputation block contains only the
reputation scores from each temporary reputation block. Unlike
transaction blocks in the transaction chain, the reputation block
does not need to perform a complicated account/balance check;
they simply aggregate the temporary reputation blocks together
and verify the validity of these temporary reputation blocks.

Once a reputation block has been created on the reputation
chain, the reputation scores of the nodes are updated. RepShard
then runs the sharding and leader election processes (see
Section IV-B1) for the next reputation epoch.

V. SECURITY AND PERFORMANCE ANALYSIS

A. Consensus Security

This section demonstrates the safety and liveness of the
intra-shard consensus, and the atomicity analysis of cross-shard
transactions.

a) Safety: Following the intra-shard consensus, we
claim that a malicious leader does not have the ability to
generate a wrongful transaction block using a correct TXOps-
Blk. The TXOpsBlk contains all the signatures of its shard
members, and a malicious leader cannot modify this set based
on the threshold signature. And the threshold signature requires
a threshold number of participating nodes agreeing on the
performed operations. If more than half shard members have
sent the “Warning” signals in their decisions, the rolling
scheme will act to intercept and stop the functionality of
the malicious leader. Accordingly, the system will clean up
the malicious leader’s cumulative reputation, or even kick
this malicious node out of the system. For example, if the
reputation is cleared, to be a shard leader again, the node must
continue to work hard and contribute enough integrated work
before gaining the right to be a leader. Also, we claim that
it is impossible to create a wrongful transaction block under
an honest shard leader. The transaction block created by an
honest leader will typically be accepted by all other honest
nodes, since we assume the majority of nodes are honest.

b) Liveness: In our protocol, an honest leader always
sends out a valid TXSet to its shard members. If each shard
has at least half of its shard members behaving honestly5, the
transaction decision set TXOpsBlk can be obtained. And the
decision on a valid block made by an honest leader will be
accepted by all honest shard members. However, if the shard
leader behaves maliciously, e.g., by preventing the progress of
consensus, the rolling scheme can detect, e.g., via monitoring
the number of “Warning” messages, and take over the cleanup
processes, and a new shard leader will be elected to continue
the protocol.

5This proof is a trivial task, based on recursive formula and hypergeometric
distribution [20].



c) Cross-shard Transaction: Our transaction model is
based on account/balance transaction model, involving both
withdraw and deposit operations. For cross-shard transactions,
we allow the withdraw operation executes first in one shard,
and then the corresponding deposit operation is settled later
in other shards. As long as the withdraw operation was
successfully verified and confirmed, the deposit operation will
finally be completed, either within the same shard or at other
shards. The originate shard records a proof of accept or reject
for cross-shard transactions on a relay transaction. Once the
relay transaction is forwarded to its destination shard and
successfully be duplicated among the shard members, there is
no way to let this transaction expire unless the transaction is
included in a valid transaction block. In case a relay transaction
is dropped, according to the established block information on
the originate shard, the relay transaction still can be re-built
by any consensus nodes of the originate shard. In the case of
a malicious leader, the rolling scheme will take over to undo
unconfirmed transactions and elect a new leader to redo all
unconfirmed cross-shard transactions.

B. Reputation Security Analysis

When applying our reputation scheme, an attacker who
wants to break the system needs to gain some reputation
and hence contribute to the blockchain, rather than relying
only on its computational ability, e.g., computing power in
PoW. The reputation of a participating node in RepShard is
based on the continuity and regularity of the valid work that
contributes to the system. To explore the worst-case scenario,
we assume no participating nodes are having established an
agreed-upon trust, e.g., Ext is set to be 0 for all nodes.
Many reputation-based schemes have a similar assumption,
e.g., the work [12] [21]. For simplicity, we assume that each
participating node (even a malicious one) faithfully follows
the protocol and behaves honestly for a certain period of time,
e.g., mimicking the camouflage attacks.

From our reputation scheme in Section IV-B3, we limit the
upper bound that one node can contribute to the whole system
to prevent a small group of nodes controlling and managing
the whole system. The reputation scheme is built upon the
“integrated power” instead of “instantaneous power”. And each
shard is almost balanced, in which each shard has almost the
same number of participating nodes (refer Section IV-B1 for
details). We can prove that the growth rate of our reputation
scheme for any participating node is bounded.

In RepShard, except those nodes that provide the Unknown
option on their decisions, at any time of the system being
active, the growth rate of the reputation scores for any node
is bounded by 1

2λ
6.

This bounded reputation growth rate can prevent any node
from becoming a “supernode”. The reputation in RepShard is
a collective reputation of the shard members. In Section IV-B1
sharding and leader election, only the nodes with much higher
reputation scores have the right to be a member of the potential
shard leader committee. This means, the decision power of a
participating node partially depends on its cumulative reputa-
tion score in the shard.

6λ is a system parameter in Line 3 of Algorithm 3. The proof of this theorem
is a trivial task.

For any shard consensus group, RepShard ensures the
safety of consensus protocol under the following two condi-
tions, (i) no more than half of participating nodes are compro-
mised; and (ii) the total of reputation score of compromised
nodes Rcompromised fulfils the following condition:

Rcompromised <

∑|X|
i=1Ri
3

,

where |X| is the size of a shard, and the shard member’s
reputation score Ri is obtained from Algorithm 3. This means,
the RepShard system keeps safe unless both conditions (i) and
(ii) are broken, which rate of success is negligible.

C. Performance Analysis

Assuming that the tx is assigned to a shard with the size
c. When consensus protocol starts, the user sends tx to the
originate shard to proceed with the withdraw operation. Specif-
ically, the user sends tx to one of the participating nodes of
that shard (e.g., the shard leader), then this participating node
will multicast this tx within its shard, which incurs a O(c)
communication cost. The shard leader creates a transaction
set TXSet containing tx, then it multicasts TXSet to all its
shard members for the consensus processes, which induces a
communication complexity of O(c). After the decision making
process, the leader will collect all transaction operation results
TxOps from shard members, and this involves another O(c)
communication overhead. The shard leaders are required to
multicast the transaction operation blocks TxOpsBlk and
transaction block proof TXBlkPrf to all its shard members,
each of which takes O(c) time for intra-shard consensus.
The overall communication overhead during this consensus
procedure would be O(c).

If tx is a cross-shard transaction, it involves a relay
transaction. This requires that the operations in TXOpsBlk
of the originate shard should be transmitted to the destination
shard (deposit shard) in the form of a relay transaction. In
our scheme, the relay transaction is directly forwarded to the
destination shard. Given the fact that the number of deposit
shards in a practical system is constant (e.g., typically only
one deposit shard in our account/balance model), the total
communication between different shards for the tx is constant
O(1). Thus, the communication complexity of the consensus
protocol for any kind of transaction, either intra-shard or inter-
shard, would be O(c).

In RepShard, compared to a general participating node
in shard, the shard leader typically needs to contribute more
computational power and bandwidth to create and deal with
the transaction set, TXSet, transaction operations TXOps,
and transaction blocks TXOpsBlk. Actually, RepShard ex-
plicitly takes the capacity variations among the nodes into
consideration, e.g., the heterogeneity of nodes. In particular,
the reputation scheme encourages honest nodes to partici-
pate in the consensus processes faithfully; by filtering out
the “lazy” or malicious nodes, it can also improve overall
system performance. Those nodes that work faithfully earn
more reputation scores by contributing more computational
power and bandwidth, which in turn might be transferred into
monetary reward.



VI. RELATED WORK

Sharding-based protocols provide a potential solution to
scale blockchain. There exist many these protocols in litera-
ture, e.g., Elastico [4], OmniLedger [5], RapidChain [6] and
Monoxide [13], to name a few. In OmniLedger, the adversary
has an ability to corrupt at most 1/4 fraction of all participating
nodes. Similar to Elastico, Ominiledger has several challenges
that leave unsolved, e.g., lower fault tolerance. Similar to
OminLedger, RapidChain has some weaknesses. For exam-
ple, RapidChain depends mainly on the reference committee
during the sharding process and processing cross-sharding
transactions. Monoxide proposes the concept of asynchronous
consensus zones for a blockchain system, and each zone acts as
an independent shard to perform the consensus task. However,
the overall system is still based on PoW protocol, which is
a power-consuming protocol. Our SoK work [22] provides a
detailed comparison of popular sharding schemes.

Most existing sharding-based protocols fail to consider the
capability differences. They typically only consider the hon-
esty, either honest or malicious; other capabilities are assumed
to be all the same. However, these assumptions are not exactly
true in a practical system. Also, most of these protocols are
based on a random scheme, which is unfair for less-competent
participants. We, therefore, need a secure scheme to establish
participation among nodes. Reputation is a good candidate to
do so. CertChain [23] presents a consensus protocol based on
the dependability among nodes. It develops a reward scheme
considering the misbehavior of the nodes. The design of
CertChain is targeted solely for the applications of certificate
managements, and without considering the scalability issues
when adopting to large-scale applications. RepuCoin [12] aims
to integrate a reputation-based scheme into its chain design,
whose reputation depends on the PoW a node contributes
without considering the heterogeneity of nodes. Also, this
scheme does not consider the issues of scalability.

VII. CONCLUSION

This paper proposes a reputation-based blockchain shard-
ing scheme, RepShard, which achieves scalability and system-
level security at the same time. RepShard leverages a hierar-
chical chain structure to record the transactions and reputation
separately. The transactions are handled by each shard in
parallel to achieve scalability, and a separate reputation chain
updates each node’s reputation via the proposed reputation
scheme. The reputation scheme is based on the valid work
that each node contributes to the system. As future work,
we plan to implement the proposed RepShard scheme and
thoroughly evaluate the performance in terms of throughput
and transaction latency on a real-world application.
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