
Measure-Rewind-Measure: Tighter Quantum
Random Oracle Model Proofs for One-Way to

Hiding and CCA Security?

Veronika Kuchta1, Amin Sakzad1, Damien Stehlé2,3, Ron Steinfeld1,
and Shi-Feng Sun1,4

1 Faculty of Information Technology, Monash University, Australia
2 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342 Lyon Cedex 07, France.

3 Institut Universitaire de France.
4 Data61, CSIRO, Australia

Abstract. We introduce a new technique called ‘Measure-Rewind-
Measure’ (MRM) to achieve tighter security proofs in the quantum ran-
dom oracle model (QROM). We first apply our MRM technique to derive
a new security proof for a variant of the ‘double-sided’ quantum One-
Way to Hiding Lemma (O2H) of Bindel et al. [TCC 2019] which, for the
first time, avoids the square-root advantage loss in the security proof. In
particular, it bypasses a previous ‘impossibility result’ of Jiang, Zhang
and Ma [IACR eprint 2019]. We then apply our new O2H Lemma to
give a new tighter security proof for the Fujisaki-Okamoto transform for
constructing a strong (IND-CCA) Key Encapsulation Mechanism (KEM)
from a weak (IND-CPA) public-key encryption scheme satisfying a mild
injectivity assumption.
Keywords. QROM, security proof, public-key encryption.

1 Introduction

Background. Correctly selecting secure parameters for quantum-
resistant cryptosystems requires understanding both the concrete quan-
tum cost of attacks against the underlying intractability assumption (e.g.,
LWE [19]), as well as the concrete quantum cost of attacks against the
cryptosystem itself. Ideally, one would like a cryptosystem whose secu-
rity is tightly related via a security proof (or security reduction) to the
intractability of a well-studied problem, so that attacks against the cryp-
tosystem of lower cost than those against the problem are ruled out.
Such tight proofs give confidence in the concrete security of practical
parameter choices based on the best known attacks against the under-
lying problem. Unfortunately, due to existing gaps in the understanding

? This is the full version of the EUROCRYPT 2020 conference paper.

of security proofs in the context of quantum adversaries, there are many
practical post-quantum cryptosystem candidates that lack such tight se-
curity proofs.

A case in point is the Fujisaki-Okamoto (FO) CCA transform [9],
which is commonly applied in the design of practical public-key cryptosys-
tems to strengthen their security from chosen-plaintext security (IND-CPA)
to chosen-ciphertext security (IND-CCA), assuming the random oracle
model (ROM) for the underlying cryptographic hash functions. This trans-
form and its variants [8, 21, 10, 20] are used in all public-key encryption
schemes and key-establishment algorithms of the second round of the
NIST PQC standardisation process [18]. Tight security proofs are known
for FO variants against classical adversaries (in the classical ROM), mean-
ing that an adversary breaking the FO-transformed scheme in time T and
advantage ε can be used to break the underlying scheme in time ≈ T and
advantage ≈ ε. Oppositely, no such tight security proof for an all-purpose
FO transform is known against quantum attacks in the quantum random
oracle model [6]. In the QROM, the adversary is given quantum access
to those hash functions modeled by random oracles. Note that [20, 25]
described a transform from a deterministic encryption scheme that enjoys
a so-called disjoint simulatability property, to an IND-CCA public-key en-
cryption scheme, which is tight in the QROM. The assumptions for this
tight QROM transform are more stringent than those of the all-purpose
FO transform: only 2.5 out of 17 second round NIST proposals for public-
key encryption schemes claim that it is applicable to them [3, 7, 4],1 and
at the cost of additional assumptions.

Although a series of works [21, 10, 11, 12, 15, 13, 5] have provided im-
proved analyses of the FO transform, the existing QROM reductions are
still not tight. The state-of-the-art reductions essentially preserve the run-
time, but the advantage degradation only satisfies Adv(ACCA) ≤ O(qc ·
(Adv(BCPA))δ), where (c, δ) = (1/2, 1/2) (versus the ideal tight result
(c, δ) = (0, 1) that one could hope for), where Adv(ACCA) and Adv(BCPA)
respectively denote the distinguishing advantages of the IND-CCA attack
against the FO-transformed scheme and IND-CPA attack against the orig-
inal scheme, and q denotes the number of QROM queries made by the
attacker A. We note that previous techniques have mainly improved the
value of c, reducing it gradually from c = 3/2 down to c = 1/2. Re-
garding δ, while it has been improved from 1/4 to 1/2, going further

1 In the case of [4], this holds for Streamlined NTRU Prime, but not for NTRU
LPRime.

2

towards δ = 1 has seemed challenging. Recently, it has even been conjec-
tured infeasible, based on an ‘impossibility result’ [14].

At the heart of these prior results has been the use of the ‘One-
way to Hiding’ (O2H) lemma, first given in [23]. All its versions so far
inherently lead to a ‘square-root advantage’ loss in the proofs of the
FO transforms. The O2H lemma can be formulated informally as fol-
lows. A quantum distinguisher AO2H is given quantum access to an or-
acle O that implements either a random oracle H : X → Y or a mod-
ified random oracle G : X → Y , where H and G are identical on all
except a single secret point x ∈ X: we have H(x′) = G(x′) for all
x′ 6= x and H(x) = yH and G(x) = yG where yH , yG are indepen-
dent uniformly chosen random strings. The distinguisher is also given
z = (zx = enc(x), zH = yH , zG = yG), where enc is a one-way function (a
deterministic encryption scheme in the FO scenario).2 The goal of AO2H
is to distinguish whether the oracle O implements G or H, while making
up to q queries to O with depth at most d (where a depth of d means
that AO2H splits its queries into d bunches and all queries within each
bunch are queried in parallel, so queries in each bunch may depend on
the answer to d − 1 previous query bunches, and the total number of
queries over all d bunches is at most q). An algorithm that computes x
from zx (by breaking the one-wayness of enc), queries O(x) and compares
the result to zH achieves an advantage Adv(AOO2H) negligibly close to 1.
In the case of a classical access to O, no algorithm can do better. In the
quantum access case, all variants of the O2H lemma known so far suffer
from a square-root advantage loss. For example, the recent [5, Lemma 5]
states that Adv(AOO2H) ≤ 2 ·

√
Adv(BG,HOW). Here BG,HOW (z) is a quantum

attacker against the one-wayness of enc, which is given oracle access for
both G and H (these oracles can be simulated given zx, and thus such
an attacker implies an attacker against the one-wayness of enc). The one-
wayness attacker BG,HOW constructed in the proof of this O2H lemma (and
all prior variants thereof) ‘only’ runs AO2H and measures its queries. In
particular, it does not ‘rewind’ AO2H to an earlier state. Rewinding the
state of an attacker to an earlier state is often considered tricky in the
quantum setting, due to the fact that measurement operations are not
reversible. The ‘impossibility result’ of [14] states that any O2H lemma
based on a one-wayness attacker that runs the distinguisher only once and

2 We use this definition of z for simplicity in this introduction. The actual formulation
of most prior O2H lemmas, as well as our new one, is more general and allows z to
have an arbitrary joint distribution with G,H, x, as well as allowing a set S of any
number of x’s on which G and H may differ, rather than just one.

3

Table 1. Comparison of security bounds and features of our new O2H lemma with
earlier variants of the O2H lemma. The ‘Bound’ column shows the dependence of the
upper bound on the distinguisher advantage Adv(A) in terms of the One-Wayness
attacker advantage ε and A’s oracle query depth d ≤ q (where q is the total number of
queries). The ‘|S|’ column indicates the number of points on which G and H may differ,
the ‘BOW must know’ column shows the oracles available to the one-wayness attacker,
and the ‘Event’ column indicates the type of event used to define A’s advantage. Here
H \ S (resp. G \ S) refers to the restriction of H (resp. G) to the complementary set
of S, and 1S refers to the indicator function of S.

O2H variant Bound |S| BOW must know Event

Original [23, 1] 2dε1/2 Arbitrary H or G Arbitrary

Semi-classical [1] 2d1/2ε1/2 Arbitrary (H \ S or G \ S) Arbitrary
and 1S

Double-sided [5] 2ε1/2 One H and G Arbitrary

This work 4dε Arbitrary H and G Efficiently checkable

involves no rewinding, must incur a square-root advantage loss. Thus, it
has been suggested in [5, 14] that the square-root advantage loss in the
O2H lemma may be unavoidable in the quantum setting.

Contributions. We present a novel quantum O2H lemma that, for the
first time, does not suffer from the square-root advantage loss in the
reduction. Concretely, we obtain a security bound of the form Adv(A) ≤ 4·
d ·Adv(BG,H), where B is the one-wayness attacker against the underlying
one-way function enc.

To circumvent the ‘impossibility result’ of [14], we introduce a Measure-
Rewind-Measure (MRM) proof technique, which provides a new way to
extract the one-wayness secret x from the distinguisher. Rather than ex-
tracting x directly by measuring the oracle queries of the distinguisher
(as in prior works), the MRM technique may also extract x from the
distinguishing measurement of the distinguisher. The latter distinguish-
ing measurement knowledge extraction is achieved by letting the distin-
guisher perform its distinguishing measurement, and then rewinding the
collapsed measured state back to the state of the oracle query stage, to
perform a second measurement and extract x. A comparison of our O2H
lemma security bounds and features with earlier O2H lemma variants is
provided in Table 1.

Compared to prior O2H lemmas, our variant is the first to avoid
the square-root advantage loss. On the other hand, it constructs a one-
wayness attacker which in general requires oracle accesses to both G

4

and H. Therefore, our lemma is in the same setting as the ‘double-sided’
O2H lemma of [5], which makes it less general than the semi-classical or
original O2H lemmas. Nevertheless, it still suffices for important applica-
tions (see below). Compared to the ‘double-sided’ O2H lemma in [5], our
variant is slightly less general in one respect and more general in another.
On the one hand, the classical event distinguished by the O2H attacker A
in [5] can be arbitrary, while we assume this event to be efficiently check-
able by A. ‘Efficiently checkable’ means that the distinguishing advantage
in the definition of the O2H Lemma is defined as the advantage of A in
the usual way, i.e., Adv(A) = |Pr[1 ← AG(z)]− Pr[1 ← AH(z)]|. This is
in contrast to the more general definition used in [5], which uses the ad-
vantage |Pr[Ev : AG(z)]− Pr[Ev : AH(z)]| for any classical event Ev over
the view of A. There may not exist a computationally efficient algorithm
to check whether Ev has occurred. On the other hand, our O2H variant
allows |S| (the number of points on which G and H may differ) to be
arbitrary, while in [5] it must contain a single point.

As an important application of our O2H lemma, we present the first
security proof for the FO transform in the QROM which does not suffer
from a ‘square-root’ advantage loss for non-deterministic schemes, i.e., it
has the form Adv(ACCA) ≤ O(qc · Adv(BCPA)δ), where δ = 1 rather than
δ = 1/2 as in previous results (on the other hand, our proof currently gives
a larger value of c compared to earlier works, see below). A comparison
of our FO security proof bounds with earlier ones starting from IND-CPA
non-deterministic weak schemes is provided in Table 2. The ‘Security loss’
column of that table shows the number of extra bits of security required
for the ‘weak scheme’ in order to guarantee (via the security proof bound)
a desired bit security of λ for the FO-transformed scheme. To obtain the
‘security loss’ L, we define the indistinguishability bit security of a scheme
(against distinguishers that never output ⊥, which is the class of attacks
considered here) [16] as λ if the time to squared (conditional) advantage
ratio T/ε2 of any attack with time T ≤ 2λ is ≥ 2λ.3 We then choose the
smallest bit security Sweak of the ‘weak scheme’ so that the CCA security
bound for the CCA scheme implies a CCA bit security of the FO scheme
to be ≥ λ, and define the ‘security loss’ as L := Sweak − λ. We remark
that our bit security loss estimates in Table 2 assume that the classical
bit security definitions in [16] are appropriate in the quantum setting, as
we are not aware of any research on bit security notions in the quantum
setting. Note also that this latter assumption does not impact the security

3 We note that [16] calls ε the ‘conditional advantage’ while ε2 is referred to as the
‘advantage’; we always refer to ‘conditional advantage’ ε as ‘advantage’.

5

bounds we prove in this paper (which do not depend on this assumption);
it only affects their interpretation in Table 2 in terms of bit security. We
refer the reader to Appendix B for the security loss computation details
for the entries of Table 2.

We make the following remarks about Table 2. Whereas all previous
proofs for FO applied to non-deterministic IND-CPA weak schemes in-
curred at least a λ bit security loss (due to the square-root advantage
loss in the CCA bound), our proof removes this λ bit overhead, and in-
stead incurs a loss 4 log d that depends only on the query depth d of the
CCA distinguisher. In particular, this means that our security proof is
nearly tight for low query depth attacks (i.e., when log d is much smaller
than λ), its loss is less than λ bits for log d < λ/4.The case of (relatively)
low query depth attacks ruled out by our proof tends to be of high prac-
tical interest, since it corresponds, for instance, to massively parallelized
attacks, which are the standard approach to deal with high computation
costs in practical cryptanalyses. An additional requirement of our scheme
is injectivity, but it turns out that it is commonly satisfied by many prac-
tical weak schemes, as argued in [5]. We leave a detailed investigation
of injectivity of the second round PQC NIST KEM candidates [18] to
future work (see [5, Appendix D] for a short discussion). We also remark
that although our work and [5] need the extra injectiveness assumption, it
gives a better bound than prior works for modular FO proofs (those that
decompose into a composition of two proofs: one for the T transform and
one for the U transform). The prior works in Table 2 can get the same
bound overall for FO but only via a direct proof for whole FO transform
(combining the T and U transforms). The reason we do not adapt prior
FO proofs that do not rely on the injectiveness property is that those
proofs also seem to require an O2H Lemma where the extractor works
with single-sided oracles for either G or H, rather than the G and H
requirement we (and [5]) have in our ‘double-sided’ O2H Lemma.

Techniques. To explain our MRM security proof technique, we consider
the following example and explain the difficulty encountered by previous
O2H proofs, and then our observations leading to our MRM technique
for resolving this difficulty.

Consider the following O2H distinguisher AO that makes 1 query
(with depth 1) to its quantum oracle and makes a measurement on the
resulting state to distinguish whether O = H or O = G. The oracle input
(first) and output (second) registers are denoted by in and out. Given
z = (enc(x), H(x)), the distinguisher AO prepares in the input register
in a superposition of the form

∑
x′∈X

√
px′ |x′〉 and queries O to get the

6

Table 2. Comparison of security bounds for FO-type non-deterministic IND-CPA to
IND-CCA transforms in the QROM. The ‘CCA bound’ column shows the dependence
of the upper bound on CCA attacker advantage Adv(A) against the FO-transformed
scheme in terms of the attacker advantage ε against the weak scheme transformed by
FO, and A’s oracle query depth d ≤ q (where q is the total number of random oracle
queries). For simplicity, in this table, we only take into account the dependence in ε,
and neglect other additive terms and (small) multiplicative constants. In all cases listed,
the run-time of the weak scheme attacker is within a constant factor of the run-time of
the CCA scheme. The required weak scheme security notion is shown in column ‘Weak
scheme’. The ‘Security loss’ column indicates the bit security loss of the CCA bound
(see text). Note that all the weak schemes are not required to enjoy perfect correctness
of decryption.

CCA bound Security loss Weak scheme

[10] q3/2 · ε1/4 3λ+ 9 log q IND-CPA

[11, 15, 13] d1/2 · ε1/2 λ+ log d IND-CPA

[5] d1/2 · ε1/2 λ+ log d IND-CPA
injective

This work d2 · ε 4 log d IND-CPA
injective

state

|ψO〉 =
∑
x′∈X

√
px′ |x′, O(x′)〉 = √px|x,O(x)〉+

∑
x′ 6=x

√
px′ |x′, O(x′)〉,

where
∑
x′∈X px′ = 1. Let |ψ6=x〉 :=

∑
x′ 6=x

√
px′

1−px
|x′, H(x′)〉. Recalling

that G and H differ only on x, we are in one of the following two cases:

|ψH〉 = √px|ψHx 〉+
√

1− px|ψ 6=x〉 and |ψG〉 = √px|ψGx 〉+
√

1− px|ψ6=x〉,

with |ψHx 〉 := |x,H(x)〉 and |ψGx 〉 := |x,G(x)〉.
Since the amplitude of in = |x〉 in |ψH〉 is √px, measuring the input

register in forA’s query would give the secret x with probability Adv(B) =
Pr[Min=|x〉|ψO〉] = px. This is in fact the strategy of the one-wayness
adversary B constructed from A in prior O2H security proofs.

On the other hand, as observed in [14], the trace distance between
|ψG〉 and |ψH〉 is

√
1− (|ψG〉, |ψH〉)2 =

√
1− (1− px)2 =

√
(2− px)px

and therefore there exists a projective measurement MV = (MV , I−MV)
(whereMV is a projector on a subspace V of the state space)4 that A can

4 Here, we assume that A outputs 1 when the result of measurement space is a state
in subspace V .

7

perform on |ψO〉 to distinguish the case O = H from O = G with distin-
guishing advantage Adv(A) = ‖MV |ψH〉‖2 − ‖MV |ψG〉‖2 =

√
(2− px)px

(see [17, Chapter 9]). The existence of such a distinguisher with a square
root advantage ≈

√
2px led the authors of [14, 5] to the suggestion that

removing the square-root loss from the O2H security reduction may be
impossible in the quantum setting.

Let us exhibit such the worst-case MV that A could use. Consider
MV = |v〉〈v| that projects the state on a single unit vector |v〉, with |v〉 de-
fined as lying on the plane spanned by |ψG〉 and |ψH〉, and at angle π/4+
θ/2 from |ψG〉 if |ψH〉 is at angle θ from |ψG〉. Then Adv(A) = cos2(π/4+
θ/2)− cos2(π/4− θ/2) = sin θ =

√
1− (1− px)2 =

√
(2− px)px ≈

√
2px.

Our MRM technique for resolving the above conundrum stems from
the observation that to achieve its high ≈

√
2px advantage, the above

example distinguisher A uses a measurement MV that itself encodes the
secret x. Indeed, in the measurement vector |v〉 the state in = |x〉 has
amplitude ≈ 1/

√
2 when px is small. Hence, as A can measure along |v〉,

it must somehow store it and we should be able to extract x from A with
high probability by simply measuring in of |v〉 in the computational basis.

The above idea raises the question of how to set up the system state to
be |v〉. The answer is simply to let A perform its distinguishing measure-
ment MV on |ψH〉.5 If the measurement is MV , the state collapses to the
state MV |ψH〉/‖MV |ψH〉‖. In the above example, this is |v〉 with prob-
ability ≈ 1/2 when px is small. In the standard quantum computational
model, since A’s measurement MV is not performed with respect to the
computational basis (note that |v〉 is a superposition of computational
basis vectors), applying MV to the oracle output state is implemented by
A as a composition of a unitary UV followed by a computational basis
measurement Mβ of a qubit register β corresponding to A’s output bit
(where UV is designed so that it maps the state |v〉 to a state with β = 1).
Then, setting up the system state to be |v〉 actually consists in running
A with oracle H to obtain the state |ψH〉, applying UV followed by A’s
output qubit measurement Mβ, and if the result of the latter measure-
ment is β = 1, then rewinding the collapsed output state of A to the step
before the measurement by applying the inverse unitary U−1

V (so that
effectively the measurement projector MV = U−1

V Mβ=|1〉UV is applied on
the state |ψH〉).

Overall, we obtain an efficient MRM-based quantum algorithm C to
extract x from A that works as follows for q = d = 1: run AH and query

5 Our actual general reduction applies it to a uniform superposition 1
2 (|ψH〉+ |ψG〉);

see below.

8

theH oracle to set up the state |ψH〉, continue runningA until it performs
its measurement MβUV and, if the result is β = |1〉, rewind A back to
just after the query by running U−1

V and apply measurement Min on the
in register to extract x, achieving overall success probability ≈ 1/4 for
the above example distinguisher A when px is small.

In our new O2H security proof, we show that (a slight variant of) the
above MRM extraction technique works for q = d = 1 in the case where
MV is a general measurement. More precisely, we show that the advan-
tage of any distinguisher A cannot exceed 4 ·max(Adv(B),Adv(C)), where
Adv(C) is the probability that our MRM-based extractor recovers x, and
Adv(B) = px is the probability that the direct query measurement algo-
rithm B recovers x. Our actual extraction algorithm D therefore runs A
twice: in the first run of A, algorithm D runs the direct query measure-
ment algorithm B to attempt to compute x, and in the second run of A,
algorithm D runs our MRM-based algorithm C to attempt to compute x.
By the above bound, the advantage of A is at most 4 times the success
probability of D.

The proof of our new O2H bound is based on re-writing Adv(A) :=
|‖MV |ψG〉‖2 − ‖MV |ψH〉‖2| as an inner product of the form

Adv(A) ≤
∣∣∣(|ψG〉 − |ψH〉,MV (|ψG〉+ |ψH〉)

)∣∣∣ .
At this point, we use the crucial fact that since G and H differ only on x,
|ψG〉−|ψH〉 = |ψGx 〉+ |ψHx 〉 is a vector in the subspace E|x〉 of vectors with
in = |x〉, so it is unchanged by applying a projection Min=|x〉 onto E|x〉.
Consequently, the inner-product above can be rewritten as

Adv(A) ≤
∣∣∣(Min=|x〉(|ψG〉 − |ψH〉),Min=|x〉MV (|ψG〉+ |ψH〉)

)∣∣∣ .
Now, we observe that the norm ‖Min=|x〉(|ψG〉 − |ψH〉)‖ of the vector on
the left of the inner-product is (up to a factor of 2) the square-root of the
advantage px of the direct measurement extraction algorithm B, whereas
the norm

‖Min=|x〉MV (|ψG〉+ |ψH〉)‖ = ‖Min=|x〉U
−1
V Mβ=|1〉UV (|ψG〉+ |ψH〉)‖

of the vector on the right of the inner-product is (up to a factor of 2) the
square-root of the advantage of a variant of the MRM-based extraction
algorithm C. Applying the Cauchy-Schwarz inequality gives our bound

Adv(A) ≤ 4 ·
√

Adv(B) ·
√

Adv(C) ≤ 4 ·max(Adv(B),Adv(C)),

9

for q = d = 1. We extend our O2H security proof to the case of any depth
d ≥ 1 by applying a standard hybrid argument over d hybrid distributions
in which the oracle O is used only to answer the i-th depth of A, which
leads to an additional loss of a factor d in our bound on Adv(A).

We apply the new O2H lemma to the FO transform, by showing that
a slight variant of the proof of security for the FO 6⊥ (‘implicit rejection’)
variant based on the ‘double-sided’ O2H lemma from [5] suffices for use
with our new O2H lemma, without any significant reduction cost. The
reason we cannot directly plug in our new ‘double-sided’ O2H lemma
in the FO security proof of [5] is the limitation of our new O2H lemma
to ‘efficiently checkable’ events for the definition of distinguisher A. Our
modified proof applies the lemma with the event ‘A outputs 1’ instead.
By the general tight equivalence results of [5, Theorem 5], we also obtain
an improved security proof for other variants FO⊥ (‘explicit rejection’)
and FO 6⊥m (key derived from message only).

Open problems. Our new O2H security proof for q = d = 1 oracle
queries crucially makes use of the fact that |ψG〉−|ψH〉 is in the subspace
of vectors with in = |x〉. This property may no longer be satisfied after
q > 1 queries, and currently, we handle this difficulty via a hybrid argu-
ment that loses a factor q in the advantage (in the presentation of our
reduction we actually only lose a factor d ≤ q that is the query depth, but
in the worst-case we have d = q). The security proofs of [1, 5] make use
of semi-classical oracles or a variant of Zhandry’s quantum query record-
ing technique [26] to reduce (or even eliminate) the loss factor q in the
advantage, but they do not seem to be easily compatible with our MRM
technique. An interesting open problem is to find an even tighter secu-
rity proof that combines our MRM technique with those techniques to
give a fully tight reduction for O2H in the quantum setting. Relaxing the
‘double-sided’ aspect of our O2H Lemma to a ‘single-sided’ variant (like
the original O2H Lemma [23]) is also left as an interesting question. Re-
moving the injectivity assumption and finding other applications for our
O2H Lemma and the underlying MRM technique are further questions
left open by our work.

Additional related work. To the best of our knowledge, the use of
quantum circuit rewinding is novel in the context of the O2H Lemma, but
there is a body of work using different forms of quantum circuit rewinding
in other applications, notably in the analysis of quantum security of zero-
knowledge protocols. Watrous [24] presented a quantum rewinding lemma,
which is a procedure involving multiple ‘measure-rewind’ iterations with

10

interleaved unitary gates, in order to approximate a desired collapsed
measured state with any desired fidelity. The procedure assumes a near
independence of the measurement probabilities on the input state, which
suffices to prove the zero-knowledge property of certain protocols. Our
MRM technique does not make such near independence assumptions (in-
deed the measurement distribution of the distinguisher may strongly de-
pend on the input state), but only applies one ‘measure-rewind-measure’
iteration. Unruh [22] presented a form of rewinding extraction technique
for proving soundness of zero-knowledge proof of knowledge protocols
against quantum attacks. However, the purpose of rewinding there is to
approximate the previous state of the attacker while minimising the dis-
turbance of the measurement, whereas in our MRM technique, we actually
want the measurement to disturb the state in order to extract knowl-
edge from the measurement vector. Later work by Ambianis et al. [2]
showed the necessity of restrictions of Unruh’s rewinding in the context
of quantum-secure proofs of knowledge.

2 Preliminaries

For a finite set H, we denote by H
$← H the sampling of a uniformly

random element H from H. If A is an algorithm, we denote by b← A(z)
the assignment to b of the output of A run on input z.

Let C denote the set of complex numbers. For z ∈ C, we denote the
absolute value of z by |z| and the complex conjugate of z by z̄. The
(complex) inner product between two vectors |u〉 = (u0, . . . , un−1) and
|v〉 = (v0, . . . , vn−1) in Cn is denoted by (|u〉, |v〉) :=

∑
i ūi · vi. Let |v〉 ∈

Cn, then ‖|v〉‖ =
√

(|v〉, |v〉) denotes its Euclidean norm. For a linear
transformation M , the Hermitian (adjoint) operation on M is denoted
by M †.

2.1 Quantum Computations
A qubit is a quantum system defined over {0, 1}. Given two orthonormal
vectors |0〉, |1〉, let S be the state space of a single qubit, namely

S =
{
α0|0〉+ α1|1〉 : |α0|2 + |α1|2 = 1, α0, α1 ∈ C

}
.

For an integer N ≥ 1, the state space of a quantum system (register) of
N qubits is the N -fold tensor product of S and is denoted by

S⊗N =

 ∑
in∈{0,1}N

αin|in1〉 · · · |inN 〉 :
∑

in∈{0,1}N

|αin|2 = 1, αin ∈ C

 .
11

For x = (x1, . . . , xN) ∈ {0, 1}N , the associated computational basis
vector of S⊗N is x = |x1〉|x2〉 · · · |xN 〉, and is denoted by |x〉. The set
of all 2N computational basis states {|x〉} forms an orthonormal basis
for S⊗N . A linear combination |φ〉 =

∑
x∈{0,1}N αx|x〉 of computational

basis states |x〉 is referred to as a superposition of computational basis
states. We refer to the weight αx as the amplitude of |x〉 in state |φ〉.

Given the state |φin〉 ∈ S⊗N of an N -qubit register in and a value
y ∈ {0, 1}N , we denote by Min=|y〉 : S⊗N → S⊗N the operator that
applies the projection |y〉〈y| map to the state |φin〉 of register in to get
the new state |y〉〈y||φin〉. This projector can be generalized to a projector
MEV

onto a subspace EV = {
∑
in∈V αin|in〉 : αin ∈ C} defined by a

subset V ⊆ {0, 1}N , which applies the projection map
∑
y∈V |y〉〈y| to

a state |φin〉 ∈ S⊗N . For example, for a subset S ⊆ {0, 1}N , we define
S⊕n := {in ∈ ({0, 1}N)n : ∃ i with ini ∈ S}, and then MES⊕n is the
projector onto subspace ES⊕n := {

∑
in∈S⊕n αin|in〉 : αin ∈ C}. We use

the same notation for operators and projectors even if they are applied
to non-normalized vectors in CN . It can be checked that any projector
operator MEV

is Hermitian (i.e., we have M † = M) and idempotent (i.e.,
we have M2 = M).

A measurement in the computational basis on a register in that is
in state |φin〉 ∈ S⊗N returns the measurement result y ∈ {0, 1}N with
probability P = ‖Min=|y〉|φin〉‖2 and changes (‘collapses’) the state of
in to |φ′in〉 = Min=|y〉|φin〉

‖Min=|y〉|φin〉‖ . Such a measurement of register in is denoted
byMin. A general projective measurement is defined by a set of projection
operators {M1, . . . ,Mn} where Mi’s project onto subspaces Vi that are
mutually orthogonal and whose sum is the whole state space. For exam-
ple, for any subspace V of S⊗N , we can define the projective measurement
MV = (MV , I −MV) where MV is the projector onto V and I −MV is
the projector onto the orthogonal complement of V . Any general projec-
tive measurement can be implemented by composing a unitary operation
followed by a measurement in computational basis. Each measurement
costs one time unit.

A quantum algorithm executes a sequence of unitary gate operations
for a fixed set F containing Hadamard, phase, CNOT and π/8 gates.
Each gate is also counted as one unit of time. The overall time taken to
perform a quantum algorithm A is denoted by TA. An efficient quantum
algorithm runs a polynomial-time (in N) sequence of gate operations or
measurements.

Given a function H : X → Y = {0, 1}N , a quantum-accessible or-
acle O of H is modeled by a unitary transformation UH operating on

12

two registers in, out with state spaces S⊗N , in which |x, y〉 is mapped to
|x, y ⊕H(x)〉, where ⊕ denotes XOR group operation on Y . A quantum
algorithm with quantum random oracle O performs a mix of classical
and quantum unitary algorithms. This can be efficiently converted, up
to a constant factor overhead and same number of oracle queries [17],
to a purely unitary algorithm that applies a unitary followed by a fi-
nal set of measurements. A purely unitary algorithm making q oracle
queries to O is denoted by (OUi)qi=1, where Ui is a unitary operation
applied before the i-th call to oracle O. Following [5], we model a quan-
tum algorithm A making parallel queries to a quantum oracle O as a
quantum algorithm making d ≤ q queries to an oracle O⊗n consisting
of n = q/d parallel copies of oracle O. Given an input state of n pairs
of in/out registers |x1〉|y1〉 · · · |xn〉|yn〉, the oracle of O⊗n maps it to the
state |x1〉|y1⊕O(x1)〉 · · · |xn〉|yn⊕O(xn)〉. We call d the algorithm’s query
depth, n the parallelization factor, and q = n ·d the total number of oracle
queries.

2.2 Original One-Way to Hiding (O2H) Lemma

We now recall the One-Way to Hiding (O2H) Lemma, as stated in [1]
(this formulation generalizes Unruh’s original O2H Lemma [23]).

Lemma 2.1 ([1, Theorem 3]). Let G,H : X → Y be random functions,
z be a random value, and S ⊆ X be a random set such that G(x) =
H(x) for every x /∈ S. The tuple (G,H, S, z) may have an arbitrary joint
distribution. Furthermore, let AH be a quantum oracle algorithm which
queries H with depth at most d. Let Event be an arbitrary classical event.
Define the oracle algorithm BH(z) as follows: sample i $← {0, . . . , d− 1};
run AH(z) until just before its i-th round of queries to H; measure all
query input registers in the computational basis, and output the set T of
measurement outcomes. Then

Adv(A) ≤ 2d
√

Adv(B) and |
√
Pleft −

√
Pright| ≤ 2d

√
Adv(B),

where Adv(A) := |Pleft − Pright| with

Pleft := Pr[Event : AH(z)], Pright := Pr[Event : AG(z)],

and
Adv(B) := Pr[S ∩ T 6= ∅ : T ← BH(z)].

13

3 Main Results

The following result will prove useful later on in the proof of Lemma 3.2.

Lemma 3.1. For any vectors |φ1〉 and |φ2〉, we have

|‖|φ1〉‖2 − ‖|φ2〉‖2| ≤ |(|φ1〉 − |φ2〉, |φ1〉+ |φ2〉)|.

Proof. Let x1 = |φ1〉 − |φ2〉 and x2 = |φ1〉+ |φ2〉. Then, we have:∣∣∣∣∣‖x1 + x2‖2

4 − ‖x1 − x2‖2

4

∣∣∣∣∣ = |(x1 + x2, x1 + x2)− (x1 − x2, x1 − x2)|
4

= |Real((x1, x2))| ≤ |(x1, x2)|,

where Real(z) denotes the real part of a complex number z. ut

3.1 O2H with Measure-Rewind-Measure (MRM)

We first describe the fixed input version of our result, where G,H, S, z
are all fixed, and then we extend it to case of random G,H, S, z. Note
that below, the value z can depend on G,H, S, so can serve to provide
the adversary with a ‘hint’ about G,H, S (for instance, in our application
later on, the value z contains an encryption of S).

Lemma 3.2 (Fixed O2H with MRM). Let G,H : X → Y be fixed
functions, z be a fixed value, and S ⊆ X be a fixed set such that G(x) =
H(x) for every x /∈ S. Furthermore, let AO be a quantum oracle algo-
rithm which queries an oracle O with depth d. Then we can construct
unitary algorithms {AOi (z)}0≤i<d, {BG,Hi (z)}0≤i<d, and {CG,Hi (z)}0≤i<d
with TAO

i
≈ TAO , TBG,H

i
. TAO

i
and TCG,H

i
≈ 2 · TAO

i
(for all i) and such

that

Adv(AO) ≤
d−1∑
i=0

Adv(AOi), (1)

and (for all i):

Adv(AOi) ≤ 4
√

Adv(BG,Hi) · Adv(CG,Hi)

≤ 4 max{Adv(BG,Hi),Adv(CG,Hi)}. (2)

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr[1← AH(z)], Pright := Pr[1← AG(z)],

14

Adv(AOi) := |Pr[1← AHi (z)]− Pr[1← AGi (z)]|,
Adv(BG,Hi) := Pr[S ∩ TBi 6= ∅ : TBi ← B

G,H
i (z)],

and
Adv(CG,Hi) := Pr[S ∩ TCi 6= ∅ : TCi ← C

G,H
i (z)].

Proof. Let O⊗nG and O⊗nH be the n-wise parallel quantum oracles for G
and H, respectively. As in [5, Lemma 5], we define another quantum
oracle O⊗nG,H , which is used to put the sum and difference of O⊗nG and O⊗nH
in superposition, entangled with another bit b. This can be configured so
that the additional bit register b decides which oracle is in use. Concretely,
we define

O⊗nG,H := (O⊗nH ⊗ |+〉〈+|) + (O⊗nG ⊗ |−〉〈−|),

where |+〉 = |0〉+|1〉√
2 and |−〉 = |0〉−|1〉√

2 .Therefore, the oracle O⊗nG,H maps
the state |ψ〉|+〉 to the state O⊗nH (|ψ〉)|+〉 and the state |ψ〉|−〉 to the
state O⊗nG (|ψ〉)|−〉. As observed in [5], it can be efficiently implemented
by applying a Hadamard gate before and after a conditional evaluation
map that applies OH if b = 0 and OG if b = 1. By setting the b bit
register to start in the superposition state |+〉+|−〉√

2 = |0〉, and applying
O⊗nG,H we get a state with the sum and differences of the oracle output
states entangled with the bit b:

O⊗nG,H(|ψ〉|0〉) = 1√
2
·
(
O⊗nH (|ψ〉)|+〉+O⊗nG (|ψ〉)|−〉

)
= 1

2 ·
(
O⊗nH |ψ〉+O⊗nG |ψ〉

)
⊗ |0〉

+ 1
2 ·
(
O⊗nH |ψ〉 −O

⊗n
G |ψ〉

)
⊗ |1〉. (3)

Looking ahead, we will use the above bit b in algorithms Bi and Ci and
aim to measure b = 1 in the former and b = 0 in the latter, so that we get
the difference and sum states, respectively, in the remaining registers.

We now present our hybrid algorithms for i ∈ {0, . . . , d− 1}. The i-th
hybrid pair of algorithms for A corresponds to running A with its first
i oracle calls answered with O⊗nH , A’s (i + 1)-th call answered by O⊗nO
where O ∈ {G,H} is A’s oracle, and A’s final d− (i+ 1) calls answered
using O⊗nG . The extraction algorithms Bi and Ci detailed below will run A
similarly except with the (i+1)-th query answered with the superposition
oracle O⊗nG,H . We define the four hybrid algorithms below. Recall that the
total number of quantum oracle queries of A equals q = n · d, where n is
the parallelization factor, and that A applies a unitary Uj in between its
(j − 1)-th and j-th oracle call.

15

– Algorithm AOi for O ∈ {O⊗nH , O⊗nG }. This algorithm starts with 0’s in
registers |aux〉

⊗n
i=1(|ini〉|outi〉)|β〉, where aux is A’s auxiliary work-

ing register, and β ∈ {0, 1} is A’s output bit. Algorithm AOi first
runs (O⊗nH Uj)ij=1 to get to state |st2i,i〉, then runs OUi+1 to get to
state |st2i+2,i〉, and finally performs (O⊗nG Uj)dj=i+2, which takes us to
state |st2d,i〉. This is finalized by a unitary operation Ud+1, which gives
state |st2d+1,i〉, to which the output bit measurement Mβ is applied.
The algorithm outputs the measurement result bit β.

– Algorithm BG,Hi . This algorithm starts with one extra bit register
as input compared to previous algorithm. The first 2n + 2 registers
are exactly the same as those in AOi and the last register is devoted
to bit b to implement O⊗nG,H . All registers are initialized to 0. Then,
this algorithm runs (O⊗nH Uj)ij=1 (giving a state |st′2i,i〉), then applies
O⊗nG,HUi+1 (giving a state |st′2i+2,i〉), and then performs a measurement
Mb of the b register (i.e., just after the (i + 1)-th oracle call). If the
result of this measurement is 1, then a measurementMin of the oracle’s
input register in = (in1, . . . , inn) is conducted. This can also be seen
as n parallel measurements Min1 . . .Minn . The algorithm terminates
by outputting the results of the measurements.

– Algorithm CG,Hi . This algorithm has the same registers as the pre-
vious one. All registers are initialized to 0. This algorithm applies
(O⊗nH Uj)ij=1, O⊗nG,HUi+1, (O⊗nG Uj)dj=i+2 and Ud+1. The states after
applying those operations are called |st′′2i,i〉, |st′′2i+2,i〉, |st′′2d,i〉 and
|st′′2d+1,i〉, respectively. Then the measurements Mb, and Mβ are ap-
plied. If the result of Mb equals 0 and the result of Mβ equals 1,
then the following (rewinding) transformations are applied back to
the point just after the (i+ 1)-th oracle call: U †d+1, ((O⊗nG Uj)†)dj=i+2,
resulting in states called |st′′′2d,i〉, and |st′′′2i+2,i〉, respectively. Finally,
a measurement with respect to in is performed, and the algorithm
outputs the result of the measurement.

One can check that TAO
i
≈ TAO , TBG,H

i
. TAO

i
and that TCG,H

i
≈ TBG,H

i
+

2(TAO
i
− TBG,H

i
) ≤ 2 · TAO

i
.

We have AO=G
0 = AG, AO=H

d−1 = AH and AO=H
i = AO=G

i+1 for 0 ≤ i ≤
d−2 (here and in the following, we use the shorthand O = G and O = H

16

for O = O⊗nG and O = O⊗nH respectively). This implies that:

Adv(A) = |Pr[1← AG]− Pr[1← AH]|
= |Pr[1← AO=G

0]− Pr[1← AO=H
d−1]|

=
∣∣∣∣∣
d−1∑
i=0

(
Pr[1← AO=G

i]− Pr[1← AO=H
i]

)∣∣∣∣∣
≤

d−1∑
i=0

∣∣∣Pr[1← AO=G
i]− Pr[1← AO=H

i]
∣∣∣

=
d−1∑
i=0

Adv(AOi),

where the first and the last equalities are obtained based on the defini-
tions, the second equality is the result of a simple telescopic argument, and
the only inequality follows from the triangle inequality. This proves (1).

We now proceed to prove (2). Fix 0 ≤ i ≤ d− 1. Let

Wi := Ud+1(O⊗nG Uj)dj=i+2,

|ψi,F 〉 := |stO=H
2i+2,i〉 − |stO=G

2i+2,i〉,

|ψi,B〉 := W †iMβ=|1〉Wi(|stO=H
2i+2,i〉+ |stO=G

2i+2,i〉).

We first study Adv(AOi). We have:

|Pr[1← AO=H
i]− Pr[1← AO=G

i]|

=
∣∣∣‖Mβ=|1〉|stO=H

2d+1,i〉‖2 − ‖Mβ=|1〉|stO=G
2d+1,i〉‖2

∣∣∣
≤
∣∣∣(Mβ=|1〉(|stO=H

2d+1,i〉−|stO=G
2d+1,i〉),Mβ=|1〉(|stO=H

2d+1,i〉+|stO=G
2d+1,i〉)

)∣∣∣ (4)

=
∣∣∣(Mβ=|1〉Wi|ψi,F 〉,Mβ=|1〉Wi(|stO=H

2i+2,i〉+ |stO=G
2i+2,i〉)

)∣∣∣ (5)

=
∣∣∣(|ψi,F 〉,W †iM †β=|1〉Mβ=|1〉Wi(|stO=H

2i+2,i〉+ |stO=G
2i+2,i〉)

)∣∣∣
= |(|ψi,F 〉, |ψi,B〉)| (6)
= |(Min∈S⊕n |ψi,F 〉, |ψi,B〉)| (7)

=
∣∣∣(Min∈S⊕n |ψi,F 〉,M †in∈S⊕n |ψi,B〉

)∣∣∣ (8)

≤ ‖Min∈S⊕n |ψi,F 〉‖ · ‖M †in∈S⊕n |ψi,B〉‖, (9)

where (4) follows from Lemma 3.1, (5) is obtained based on the definitions
of AOi and |ψi,F 〉, (6) employs the fact that Mβ=|1〉 is a Hermitian and
idempotent transformation and the definition of |ψi,B〉, (8) uses the fact

17

that Min∈S⊕n is idempotent, and (9) follows from the Cauchy-Schwarz
inequality. Finally, the equality in (7) exploits the fact that |ψi,F 〉 may
have non-zero amplitudes only for computational basis vectors in ∈ S⊕n
(we recall that S⊕n is the set of n-dimensional vectors in having at least
one component in the set S on which H and G differ). To see the latter
fact, one can write

|stO2i+2,i〉 =
∑

in∈S⊕n,out
αin,out|in1〉|out1⊕O(in1)〉 · · · |inn〉|outn⊕O(inn)〉

+
∑

in∈S⊕n,out

αin,out|in1〉|out1⊕O(in1)〉 · · · |inn〉|outn⊕O(inn),

with S⊕n = {0, 1}N ·n \ S⊕n. From this, we deduce that difference vector
|ψi,F 〉 only has a component along S⊕n, as the sum over S⊕n (and out)
is identical for both |stG2i+2,i〉 and |stH2i+2,i〉.

Based on the definitions of O⊗nG,H , B
G,H
i and CG,Hi , and the superposi-

tion property (3), the following holds:

|st′2i+2,i〉 = |st′′2i+2,i〉 = 1
2
(
|ψi,F 〉|1〉+ (|stO=H

2i+2,i〉+ |stO=G
2i+2,i〉)|0〉

)
. (10)

On the one hand, we have

Adv(BG,Hi) = Pr[S ∩ TBi 6= ∅, TBi ← B
G,H
i (z)]

=
∥∥∥∥∥Min∈S⊕n

Mb=|1〉|st′2i+2,i〉
‖Mb=|1〉|st′2i+2,i〉‖

∥∥∥∥∥
2

· ‖Mb=|1〉|st′2i+2,i〉‖2

=
∥∥∥∥∥Min∈S⊕n

|ψi,F 〉|1〉
‖|ψi,F 〉|1〉‖

∥∥∥∥∥
2

·
∥∥∥∥1

2 |ψi,F 〉|1〉
∥∥∥∥2

(11)

= 1
4‖Min∈S⊕n |ψi,F 〉‖2, (12)

where (11) follows from (10). On the other hand, by definition of CG,Hi ,
we have that:

|st′′′2i+2,i〉 =
W †iMβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉
‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖

=
W †iMβ=|1〉WiMb=|0〉|st′′2i+2,i〉
‖Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖

, (13)

= |ψi,B〉|0〉
‖|ψi,B〉|0〉‖

, (14)

18

where (13) holds since Mb=|0〉 does not have any effect on Ud+1 nor on
(UjO⊗nG)dj=i+2 and hence it commutes with Wi, and (14) is obtained us-
ing (10) and the definition of |ψi,R〉. Finally, one can write:

Adv(CG,Hi) = Pr[S ∩ TCi 6= ∅, TCi ← C
G,H
i (z)]

= ‖M †in∈S⊕n |st′′′2i+2,i〉‖2 · ‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖2

= ‖M †in∈S⊕n |st′′′2i+2,i〉‖2·‖W
†
iMβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖2(15)

=
∥∥∥∥∥M †in∈S⊕n

|ψi,B〉|0〉
‖|ψi,B〉|0〉‖

∥∥∥∥∥
2

·
∥∥∥∥1

2 |ψi,B〉|0〉
∥∥∥∥2

(16)

= 1
4‖M

†
in∈S⊕n |ψi,B〉‖2, (17)

where (15) holds true as W †i is a unitary operation and Mb=|0〉 commutes
with Wi, and (16) follows from (14). Substituting (12) and (17) into (9)
proves (2). ut

We now extend our O2H Lemma to the random case.

Lemma 3.3 (Random O2H with MRM). Let G,H : X → Y be ran-
dom functions, z be a random value, and S ⊆ X be a random set such that
G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z) may have arbitrary
joint distribution. Furthermore, let AO be a quantum oracle algorithm
which queries oracle O with query depth d. Then we can construct an
algorithm DG,H(z) such that TDG,H . 3 · TAO and

Adv(AO) ≤ 4d · Adv(DG,H).

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr
H,z

[1← AH(z)], Pright := Pr
G,z

[1← AG(z)],

and
Adv(DG,H) := Pr

G,H,S,z
[T ∩ S 6= ∅ : T ← DG,H(z)].

Proof. We first construct DG,H on input z as follows:

– Sample i $← {0, . . . , d− 1},
– Run BG,Hi (z) and CG,Hi (z) to obtain TBi and TCi , respectively, and
– Return T := TBi ∪ TCi .

19

The run-time bound follows from Lemma 3.2, which states that TBG,H
i

.

TAO and TCG,H ≈ 2 · TAO . In the following, when we do not explicitly
state the subscripts of probabilities or expectations, it means that they
are over the internal randomness of the quantum algorithms only. Now,
for fixed G,H, S, z, let

PBi∨Ci
i (G,H, S, z) := Pr[(TBi ∩ S 6= ∅) ∨ (TCi ∩ S 6= ∅) :

TBi ← B
G,H
i (z), TCi ← C

G,H
i (z)].

With the above definition, we can write:

E
G,H,S,z

[
PBi∨Ci
i (G,H, S, z)

]
≥ E
G,H,S,z

[
max

{
Adv(BG,Hi),Adv(CG,Hi)

}]
≥ 1

4 E
G,H,S,z

[Adv(AOj)], (18)

where the first inequality uses the fact that, for any two events E1 and E2,
we have Pr[E1 ∨ E2] ≥ max{Pr[E1],Pr[E2]}, and the second one follows
from Lemma 3.2. We now investigate the advantage of algorithm D:

Adv(DG,H) =
∑
j

Pr[i = j] · E
G,H,S,z

[
P
Bj∨Cj

j (G,H, S, z)
]

≥ 1
4d
∑
j

E
G,H,S,z

[Adv(AOj)]

≥ 1
4d · Adv(AO),

where the first and second inequalities follow from (18) and Lemma 3.2,
respectively. ut

4 Tighter IND-CCA Proofs for Fujisaki-Okamoto KEMs

Here, we apply our results from Section 3 to prove IND-CCA security of
the Fujisaki-Okamoto FO 6⊥ transform, which takes an IND-CPA secure
public-key encryption scheme (PKE) and applies a composition of the T
transform [10] and the U 6⊥ transform [10, 13] to produce an IND-CCA
secure Key Encapsulation Mechanism (KEM). Our QROM security proof
for FO 6⊥ is obtained by adapting the proof in [5] to work with our new
O2H lemma.

20

4.1 Security Definitions

We recall standard definitions related to PKEs, KEMs and pseudo-random
functions (PRFs) in Appendix A. Here we recall less standard definitions
that will be needed in the analysis of the transform to an IND-CCA KEM.

We start with the definitions of a valid ciphertext and a security prop-
erty called “finding failing ciphertext” (FFC). The latter was introduced
in [5] to capture a decryption error requirement on the dPKE scheme
needed for the IND-CCA security of the U 6⊥ transform (recalled below).
Notice that the success event of the FFC experiment is not efficiently
checkable, which may at first sight seem incompatible with our O2H
lemma; looking ahead, this event corresponds to the Fail event in the proof
of Theorem 4.6, which we handle without invoking our O2H lemma.

Definition 4.1 (Valid Ciphertext). Let P = (KeyGen,Encr,Decr) be a
deterministic PKE. We call a ciphertext c ∈ C valid for a public key pk if
there exists a message m ∈M such that c = Encr(pk,m).

Definition 4.2 (Finding Failing Ciphertext). Let P = (KeyGen,Encr,
Decr) be a PKE and A be an adversary executing an attack against the
finding failing ciphertext property (FFC), as specified by the following ex-
periment:

1 H
$← H

2 (pk, sk)← KeyGen(λ)
3 L← AH(pk)
4 return [∃m ∈M, c ∈ L : Encr(pk,m) = c ∧ Decr(sk, c) 6= m]

The advantage of A in the above experiment is defined as:

AdvFFC
P (A) := Pr[1← ExptFFC

P (A)].

In the analysis of the U 6⊥ transform, we will also need a dPKE satis-
fying the following injectivity property.

Definition 4.3 (Injectivity of a dPKE). Let η ≥ 0. A dPKE scheme
P = (KeyGen,Encr,Decr) is η-injective if

Pr[Encr(pk, ·) is not injective: (pk, sk)← KeyGen(1λ), H $← H] ≤ η.

21

4.2 Transforms

In [10], the authors showed how to build a transform T which converts any
rPKE scheme P = (KeyGen,Encr,Decr) into a dPKE scheme T (P, G) =
(KeyGen,Encrd,Decr) using a hash function G : M → R, where R is
the space of random coins of rPKE’s Encr algorithm. In [5], the authors
proved the following security reduction from IND-CPA security of rPKE
to OW-CPA security of T (P, G). We use this result as is, since it does not
suffer from a square-root advantage loss.

Theorem 4.4 ([5, Theorem 1]). Let P be an rPKE with message space
M and randomness space R. Let G : M → R be a quantum-accessible
random oracle. Let A be a OW-CPA adversary against P′ = T (P, G).
Suppose that A queries G at most q times with query depth at most d.
Then we can construct an IND-CPA adversary B, running in time ≈ TA,
such that:

AdvOW-CPA
P′ (A) ≤ (d+ 2) ·

(
AdvIND-CPA

P (B) + 8 · (q + 1)
|M|

)
.

The following result provides a bound on the FFC advantage for a
scheme obtained via the transform above.

Lemma 4.5 ([5, Lemma 6]). Let P = (KeyGen,Encr,Decr) be a δ-
correct rPKE with messages inM and randomness in R. Let G :M→R
be a random oracle, so that T (P, G) := (KeyGen,Encr1,Decr) is a deran-
domized version of P. Suppose that T (P, G) is η-injective. Let A be an
FFC adversary against T (P, G) which makes at most q queries to G with
query depth at most d and returns a list of at most qdec ciphertexts. Then

AdvFFC
T (P,G)(A) ≤ ((4d+ 1)δ +

√
3η) · (q + qdec) + η.

We now recall the U 6⊥ transform from [10]. It converts a dPKE P =
(KeyGenP,Encr,Decr) into a KEM K = (KeyGen,Encaps,Decaps) using a
pseudorandom function F : KF×C → K and a hash function H :M×C →
K for given key spaces KF and K. HereM and C denote the message and
cipher spaces of P. The PRF is used in case the ciphertext happens to be
invalid. The transform is defined by the following three algorithms:

– KeyGen(1λ). On input a security parameter λ, this algorithm runs
(pk, skP) ← KeyGenP(1λ), samples a random key prfk $← KF and sets
sk = (skP, prfk). The algorithm returns a pair of public and secret keys
(pk, sk).

22

– Encaps(pk). On input a public key pk, this algorithm samples a random
message m $←M, encrypts it running the encryption algorithm of P,
i.e., c ← Encr(pk,m), and computes a hash value k ← H(m, c). It
outputs (k, c).

– Decaps(sk, c). This algorithm parses sk as sk = (skP, prfk) and runs
the decryption algorithm of P to decrypt c, i.e., m′ ← Decr(skP, c). If
m′ = ⊥, then it returns F(prfk, c). If m′ 6= ⊥ but Encr(pk,m′) 6= c,
then it also returns F(prfk, c). In all other cases (i.e., if m′ 6= ⊥ and
Encr(pk,m′) = c), it returns H(m′, c).

4.3 Analysis of the U 6⊥ Transform

We are now ready to state our main application of the O2H lemma from
Section 3. In the following theorem, we state that U 6⊥(P,F, H) is an
IND-CCA secure KEM as long as the following four conditions are sat-
isfied: (i) the dPKE scheme P is OW-CPA secure, (ii) it is η-injective for a
negligible η, (iii) it is FFC secure, and (iv) F is a secure PRF. The latter
is as in prior works: the improvement is in the security loss.

Theorem 4.6. Let H : M × C → K be a quantum-accessible random
oracle, F : KF×C → K be a PRF and P be an η-injective dPKE which does
not depend of H. Let U 6⊥(P,F, H) be the KEM obtained by applying the
U 6⊥ transform to P, F and H. Let A be an adversary against the IND-CCA
security of U 6⊥(P,F, H) issuing at most q (quantum oracle) queries to H
with query depth at most d, and qdec classical queries to the decapsulation
oracle.

Then, we can construct three algorithms whose run-times are . 3TA.
These algorithms are:

– a OW-CPA-adversary B1 against P,
– an FFC-adversary B2 against P, returning a list of at most qdec ci-

phertexts,
– a PRF-adversary B3 against F making qdec queries.

These algorithms satisfy the following:

AdvIND-CCA
U 6⊥(P,F,H)(A) ≤ 4d · AdvOW-CPA

P (B1) + 6AdvFFC
P (B2) + 2AdvPRF

F (B3)

+ (4d+ 6) · η.

Proof. Our proof uses a sequence of games. All six games in our proof are
essentially the same as in the proof of [5, Theorem 2], the only difference
being the analysis of Game 5 to apply our new O2H lemma instead of

23

the O2H lemma from [5]. For the sake of completeness, we present all the
games.

In each of the following games, the probability space is partitioned into
three mutually exclusive classical outcomes (events) called Win, Lose and
Draw, respectively corresponding to A succeeding in its IND-CCA attack
(b′ = b), failing (b′ 6= b) and a kind of intermediate outcome between
the two, defined precisely in Game 2. Outcome Draw is defined to have
probability 0 in Games 0 and 1, but in later games, whenever Draw occurs,
the game continues and returns a Draw in the end regardless of b and b′.
In Game i (for i ∈ {0, . . . , 5}), we define the attacker’s ‘score’ wi as

wi := Pr[Win : Game i] + 1
2 Pr[Draw : Game i]

=1
2 + 1

2 (Pr[Win : Game i]− Pr[Lose : Game i]) ,

where the last equality comes from the fact that Win, Lose and Draw
partition the probability space in each game.

Game 0 (IND-CCA). This game is the original IND-CCA experiment
against U 6⊥(P,F, H).

Game 1 (PRF is random). This game is the same as Game 0, ex-
cept that the simulator replaces the PRF F(prfk, ·) in the decapsulation
algorithm by a random function R $← KC . We construct a PRF adversary
B3 by replacing calls to F(prfk, ·) by calls to B3’s oracle. Adversary B3
runs A and outputs 1 if A wins the IND-CCA game and 0 otherwise. If
B3’s oracle is F, then it simulates Game 0, and if B3’s oracle is R, then it
simulates Game 1. Therefore, we have Pr[BF(k,·)

3 = 1] = Pr[Win : Game 0]
and Pr[BR(·)

3 = 1] = Pr[Win : Game 1], and hence

|w1 − w0| = AdvPRF
F (B3).

Game 2 (Draw on fail). We let Fail be the (classical) event that at
least one query of A to the decapsulation oracle OD fails to decrypt a
valid ciphertext., i.e., adversary A queries a c such that there exists some
message m ∈ M such that c = Encr(pk,m), but with Decr(sk, c) 6= m.
We also let Inj denote the (classical) event that the encryption mapping
Encr(pk, ·) is injective over the message space M. In Game 2 and the
subsequent games, we define the Draw event as Draw := Fail∨¬Inj (which
implies ¬Draw := ¬Fail∧Inj). We define di := Pr[Draw : Game i], for i ≥ 2.
For i < 2, we define Draw as the empty event and di = 0.

24

We have:

|w2 − w1| =
∣∣∣∣Pr[Win : Game 2]− Pr[Win : Game 1] + d2

2

∣∣∣∣ ≤ d2
2 ,

where the first equality holds since d1 = 0 and the inequality holds true
as −d2 ≤ Pr[Win : Game 2] − Pr[Win : Game 1] ≤ 0. Note that the
simulator may not be able to efficiently check whether Draw occurs, but
the games will not require the simulator to perform this check.

Game 3 (Reprogram H(m, c) to R(c)). This game differs from Game 2
by reprogramming the hash function return value H(m, c) on input (m, c)
to R(c) if c = Encr(pk,m).

The change from Game 2 to Game 3 does not affect the probability of
Win and Draw so that w3 = w2 and d3 = d2. This is because in Game 3,
the joint distribution of the oracle H and the attacker’s view remains the
same as in Game 2, as long as Draw does not occur. In particular, the
distribution of H(m, c) for each (m, c) remains uniformly random thanks
to the uniformly random choice of R(c). The H(m, c) values also remain
independent for distinct pairs (m, c) 6= (m′, c′) if Draw does not occur,
since the latter implies that Inj occurs (i.e., there do not exist two dis-
tinct messages m 6= m′ with c = Encr(pk,m) = Encr(pk,m′) = c′) Also,
if Draw does not occur, then for any ciphertext c queried to and failing
decryption by the Decaps oracle (meaning that Encr(pk,Decr(sk, c)) 6= c),
the Decaps oracle returns a value R(c) that is statistically independent of
the value of H(m, c) for all messages m ∈ M (since if there would exist
some m with H(m, c) = R(c), i.e., Encr(pk,m) = c, it would imply that
c is a valid ciphertext which failed to decrypt in Decaps, so that Draw
occurred).

Game 4 (Decapsulation oracle returns R(c)). This game is the
same as Game 3 except that Decaps is modified to output R(c) for all
ciphertexts but the challenge ciphertext (for the challenge ciphertext, it
still outputs ⊥). Since in Game 3, Decaps already responds in this way (as
both F and H have been reprogrammed to respond with R(c)), the values
of w4, d4 are not affected, i.e., w4 = w3 and d4 = d3. The only change is
that in Game 4 and onwards, the secret key is not used anymore in the
simulation. We conclude that all probabilities di of Draw in Games 2 to 4
are the same.

25

To bound this Draw probability, we construct an adversary B2 which,
given a public key pk, simulates Game 4 with A, and outputs the list L
of A’s decapsulation queries. Note that if the event Fail occurs, then L
contains a valid ciphertext c that fails decryption by Decr. Therefore,
according to Definition 4.2, algorithm B2 is an FFC adversary against P
which runs in almost the same time as A and has FFC advantage

AdvFFC
P (B2) = Pr[Fail : Game 4]

≥ Pr[Draw : Game 4]− Pr[¬Inj : Game 4]
= d4 − η,

using the fact that P is η-injective. We conclude that

d2 = d3 = d4 ≤ AdvFFC
P (B2) + η. (19)

Game 5 (Change shared secret). This game differs from Game 4
by changing the challenge shared secret k∗b given to A to always be an
independent uniformly random value r (whereas in Game 4, the challenge
shared secret k∗b was chosen as an independent random value r = k∗1 if
b = 1 but chosen as R(c∗) if b = 0). Additionally, if b = 0 then R(c∗)
is reprogrammed to return r (i.e., H(m, c∗) = r for all messages m such
that Encr(pk,m) = c∗; we denote by S∗ the set of such messages m), but
if b = 1 then R(c∗) is not reprogrammed.

In fact, the change from Game 4 to Game 5 is purely conceptual
and does not change the joint distribution of the view of A. Indeed, in
both games, if b = 0, the input shared key k∗0 to A is uniformly random
and equal to H(m, c∗) = R(c∗) for all m ∈ S∗. And in both games, if
b = 1, the input shared key k∗1 to A is uniformly random and statistically
independent of the uniformly random value of H(m, c∗) = R(c∗) for all
m ∈ S∗. Therefore, we have w5 = w4 and d5 = d4.

In Game 5, the distribution of the input z = (pk, c∗, k∗b = r) to A is
independent of b, and the random oracle queried by A and the simulator
is either H if b = 1 (where H(m, c) = R(c) if Encr(pk,m) = c) or H ′
if b = 0, where H ′ is equal to H on all inputs except those in the set
S := {(m, c∗) : m ∈ S∗}; for inputs in S, H ′ returns r. The simulation
in Game 5 runs in time ≈ TA. Therefore, the algorithm A together with
the simulator in Game 5 constitutes an O2H distinguisher algorithm for
distinguishing oracle H from H ′ with run-time ≈ TA. Therefore, applying
Lemma 3.3, we can construct algorithm D, with run-time . 3TA and

26

making oracle calls to H ′ and H, such that

∆ := |Pr[0← A : b = 0]− Pr[0← A : b = 1]|

=
∣∣∣Pr[0← AH′]− Pr[0← AH]

∣∣∣
≤ 4d · Pr[T ∩ S 6= ∅ : T $← DH′,H(z)]. (20)

Using D, we can construct an algorithm B1 against the OW-CPA security
of P that given (pk, c∗, r), runs DH′,H and when D returns its output
set T of candidates for m∗, algorithm B1 tests each m ∈ T to check
whether m ∈ S, i.e., whether Encr(pk,m) = c∗, and returns any such m
if it is found. Note that TB1 ≈ TD. Further, algorithm B1 succeeds (i.e.,
outputs m∗) if T ∩S 6= ∅, unless ¬Inj occurs (in the latter case, the output
of B1 may be a different decryption of c∗ than m∗). Since P is η-injective,
we have

Pr[T ∩ S 6= ∅ : T $← DH′,H(pk, c∗)] ≤ AdvOW-CPA
P (B1) + η. (21)

On the other hand, in Game 5 we have:

2
∣∣∣∣w5 −

1
2

∣∣∣∣ = |Pr[Win : Game 5]− Pr[Lose : Game 5]|

=
∣∣∣∣12 Pr[0← A∧ ¬Draw : b = 0] + 1

2 Pr[0← A∧ ¬Draw : b = 1]

−1
2 Pr[0← A∧ ¬Draw : b = 1]− 1

2 Pr[1← A∧ ¬Draw : b = 0]
∣∣∣∣

≤ 1
2 |∆0,¬Draw|+

1
2 |∆1,¬Draw|, (22)

where we define, for v ∈ {0, 1},

∆v,¬Draw := Pr[v ← A∧ ¬Draw : b = 0]− Pr[v ← A∧ ¬Draw : b = 1].

We further define:

∆v,Draw := Pr[v ← A∧ Draw : b = 0]− Pr[v ← A∧ Draw : b = 1],

which satisfies

|∆v,Draw| ≤ Pr[v ← A∧ Draw : b = 0] + Pr[v ← A∧ Draw : b = 1]
= 2 · (Pr[v ← A∧ Draw ∧ b = 0] + Pr[v ← A∧ Draw ∧ b = 1])
≤ 4 · Pr[Draw] = 4 · d5. (23)

27

Now, for v ∈ {0, 1}, observe that ∆v,¬Draw +∆v,Draw = ∆, so we have, by
the triangle inequality, (23), (20) and (21):

∆v,¬Draw ≤ |∆|+ |∆v,Draw|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5. (24)

and plugging (24) into (22) for v ∈ {0, 1} gives∣∣∣∣w5 −
1
2

∣∣∣∣ ≤ 2d ·
(
AdvOW-CPA

P (B1) + η
)

+ 2d5.

Summing up the differences of wi’s over all games, we get

AdvIND-CCA
U 6⊥(P,F,H)(A) = 2|w0 − 1/2|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5 + 2d2 + 2AdvPRF
F (B3)

≤ 4d · AdvOW-CPA
P (B1) + 6AdvFFC

P (B2) + 2AdvPRF
F (B3)

+(4d+ 6) · η,

where in the last line we plugged in the bound on d5 = d2 from (19). ut

Combining Theorem 4.6 with Theorem 4.4 and Lemma 4.5, we im-
mediately obtain the following result for the IND-CCA security of the
FO-transformed scheme FO 6⊥(P,F, G,H) = U6⊥(T (P, G),F, H) from the
IND-CPA security of scheme P.

Corollary 4.7. Let P be a δ-correct rPKE with message space M and
randomness space R. Let G :M→R and H :M×C → K be quantum-
accessible random oracles, and F : KF × C → K be a PRF. Suppose that
P′ = T (P, G) is η-injective and let FO 6⊥(P,F, G,H) = U6⊥(T (P, G),F, H).
Let A be an adversary against the IND-CCA security of FO 6⊥(P,F, G,H)
issuing at most qG (resp. qH) quantum queries to G (resp. H) with query
depth at most dG (resp. dH) and at most qdec classical queries to the
decapsulation oracle of FO 6⊥(P,F, G,H).

Then, we can construct two algorithms whose run-times are . 3TA.
These algorithms are:

– an IND-CPA-adversary B1 against P,
– a PRF-adversary B2 against F issuing at most qdec queries.

28

These algorithms satisfy the following:

AdvIND-CCA
FO6⊥(P,F,G,H)(A) ≤ 8dH · (dG + 1) ·

(
AdvIND-CPA

P (B1) + 8 · (3qG + 1)
|M|

)
+ 6 · (3qG + qdec) ·

(
(8dG + 1) · δ +

√
3η
)

+ (4dH + 12) · η + 2AdvPRF
F (B2).

Acknowledgments. This work was supported in part by BPI-France in
the context of the national project RISQ (P141580), by the European
Union PROMETHEUS project (Horizon 2020 Research and Innovation
Program, grant 780701) and the Australian Research Council Discovery
Grant DP180102199. Part of this work was done while Damien Stehlé was
visiting the Simons Institute for the Theory of Computing.

References

1. A. Ambainis, M. Hamburg, and D. Unruh. Quantum security proofs using semi-
classical oracles. In Advances in Cryptology - CRYPTO 2019, pages 269–295, 2019.

2. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, pages 474–483, 2014.

3. D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederhagen,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang. Classic
McEliece – supporting documentation, 2019. Submitted to [18], available at https:
//classic.mceliece.org/nist/mceliece-20190331.pdf.

4. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU
Prime: Round 2 – supporting documentation, 2019. Submitted to [18], available
at https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf.

5. N. Bindel, M. Hamburg, K. Hövelmanns, A. Hülsing, and E. Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Theory of Cryp-
tography - 17th International Conference, TCC 2019, pages 61–90, 2019.

6. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In Advances in Cryptology - ASIACRYPT
2011, pages 41–69, 2011.

7. C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang. NTRU – supporting documentation, 2019.
Submitted to [18], available at https://ntru.org/f/ntru-20190330.pdf.

8. A. W. Dent. A designer’s guide to KEMs. In Cryptography and Coding, 9th IMA
International Conference, pages 133–151, 2003.

9. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology - CRYPTO, pages 537–554, 1999.

10. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Theory of Cryptography - 15th International Confer-
ence, TCC 2017, pages 341–371, 2017.

29

11. K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh. Generic authenticated key
exchange in the quantum random oracle model. IACR Cryptology ePrint Archive,
2018:928, 2018.

12. H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encap-
sulation mechanism in the quantum random oracle model, revisited. In Advances
in Cryptology - CRYPTO 2018, pages 96–125, 2018.

13. H. Jiang, Z. Zhang, and Z. Ma. Key encapsulation mechanism with explicit re-
jection in the quantum random oracle model. In Public-Key Cryptography - PKC
2019, pages 618–645, 2019.

14. H. Jiang, Z. Zhang, and Z. Ma. On the non-tightness of measurement-based re-
ductions for key encapsulation mechanism in the quantum random oracle model.
IACR Cryptology ePrint Archive, 2019:494, 2019.

15. H. Jiang, Z. Zhang, and Z. Ma. Tighter security proofs for generic key encapsula-
tion mechanism in the quantum random oracle model. In Post-Quantum Cryptog-
raphy - 10th International Conference, PQCrypto 2019, pages 227–248, 2019.

16. D. Micciancio and M. Walter. On the bit security of cryptographic primitives. In
Advances in Cryptology - EUROCRYPT 2018, pages 3–28, 2018.

17. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011.

18. NIST. Post-quantum cryptography standardization. Available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/.

19. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In 37th Annual ACM Symposium on Theory of Computing, pages 84–93, 2005.

20. T. Saito, K. Xagawa, and T. Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Advances in Cryptology - EURO-
CRYPT 2018, pages 520–551, 2018.

21. E. E. Targhi and D. Unruh. Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In 14th International Conference on Theory of Cryptography
TCC 2016-B, pages 192–216, 2016.

22. D. Unruh. Quantum proofs of knowledge. In Advances in Cryptology - EURO-
CRYPT 2012, pages 135–152, 2012.

23. D. Unruh. Revocable quantum timed-release encryption. In Advances in Cryptol-
ogy - EUROCRYPT 2014, pages 129–146, 2014.

24. J. Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–
58, 2009.

25. K. Xagawa and T. Yamakawa. (Tightly) QCCA-secure key-encapsulation mecha-
nism in the quantum random oracle model. In Post-Quantum Cryptography - 10th
International Conference, PQCrypto 2019, pages 249–268, 2019.

26. M. Zhandry. How to record quantum queries, and applications to quantum indif-
ferentiability. In Advances in Cryptology - CRYPTO 2019, pages 239–268, 2019.

A Standard Cryptographic Definitions

Definition A.1 (Public-Key Encryption). Given a finite message
spaceM, a cipher space C, a secret key space SK and a public-key space
PK, a randomized public-key encryption scheme (rPKE) consists of three
algorithms P = (KeyGen,Encr,Decr):

30

– KeyGen(1λ): On input a security parameter λ, this randomized algo-
rithm outputs a secret key sk ∈ SK and a public key pk ∈ PK.

– Encr(pk,m): On input a public key pk and a message m, this random-
ized algorithm outputs a ciphertext c ∈ C.

– Decr(sk, c): On input a secret key sk ∈ SK and a ciphertext c ∈ C, this
deterministic algorithm outputs either a message m′ ∈M or a failure
⊥ /∈M.

The definition of a deterministic public-key encryption scheme (dPKE) is
the same except that Encr is a deterministic algorithm.

Definition A.2 (Correctness of PKEs). We say that a PKE P =
(KeyGen,Encr,Decr) is δ-correct if the following holds:

E
[

max
m∈M

Pr[Decr(sk,Encr(pk,m)) 6= m] : (pk, sk)← KeyGen(1λ)
]
≤ δ.

In case of a deterministic PKE, the probability Pr[Decr(sk,Encr(pk,m)
6= m] is either 0 or 1 for each key pair (pk, sk).

We provide definitions for the two security properties of a PKE scheme
that are relevant for this work. They match the corresponding definitions
in [5]. We use notation H to denote a space of random hash functions. If
security of a PKE scheme is given in the random oracle model, we sample
a random hash function from this space, i.e., H $← H.

Definition A.3 (OW-CPA Advantage). Let P = (KeyGen,Encr,Decr)
be a dPKE or an rPKE, and A be an adversary executing a one-way
chosen-plaintext attack as specified by the following experiment:

ExptOW-CPA
P

1 H
$← H

2 (pk, sk)← KeyGen(1λ)
3 m∗

$←M
4 c∗ ← Encr(pk,m∗)
5 m′ ← AH(pk, c∗)
6 return [m∗ = m′]

The advantage of A winning the above experiment is defined as:

AdvOW-CPA
P (A) := Pr[1← ExptOW-CPA

P (A)].

31

Definition A.4 (IND-CPA Advantage). Let P = (KeyGen,Encr,Decr)
be a dPKE or an rPKE, and A = (A1,A2) be an adversary executing an
indistiguishability chosen-plaintext attack as specified by the following ex-
periment:

ExptIND-CPA
P

1 H
$← H

2 (pk, sk)← KeyGen(1λ)
3 (st,m0,m1)← AH1 (pk)
4 b

$← {0, 1}
5 c∗ ← Encr(pk,m∗b)
6 b′ ← AH2 (pk,m0,m1, c

∗, st)
7 return [b = b′]

The advantage of A winning the above experiment is defined as:

AdvIND-CPA
P (A) := 2

∣∣∣∣Pr[1← ExptIND-CPA
P (A)]− 1

2

∣∣∣∣ .
We finally recall the definition of a Key Encapsulation Mechanism (KEM)
and the corresponding security property called indistinguishability against
chosen-ciphertext-attacks.

Definition A.5 (Key Encapsulation Mechanism). Given a message
spaceM, a public-key space PK, a secret-key space SK and a key space K,
a KEM K consists of three algorithms K = (KeyGen,Encaps,Decaps):

– KeyGen(1λ): On input a security parameter λ, this randomized algo-
rithm outputs a secret key sk ∈ SK and a public key pk ∈ PK.

– Encaps(pk): On input a public key pk, this randomized algorithm out-
puts a ciphertext c ∈ C and a key k ∈ K.

– Decaps(sk, c): On input a secret key sk ∈ SK and a ciphertext c ∈ C,
this deterministic algorithm outputs either a key k ∈ K or a failure
⊥ /∈ K.

Definition A.6 (IND-CCA Advantage). Let K = (KeyGen,Encaps,
Decaps) be a KEM and A be an adversary attacking K and given access
to a random oracle H. Adversary A executes a indistinguishability
chosen-ciphertext attack as specified by the following experiment:

32

ExptIND-CPA
P

1 H
$← H

2 (pk, sk)← KeyGen(1λ)
3 (c∗, k∗0)← Encaps(pk)
4 k∗1

$← K
5 b

$← {0, 1}
6 b′ ← AH,OD (pk, c∗, k∗b)
7 return [b = b′]

Adversary A is given (classical) access to the decapsulation oracle
OD working as follows: on input of a query c, it checks if c = c∗; if so, it
outputs ⊥; otherwise, it outputs Decaps(sk, c).
The advantage of A winning the above experiment is defined as:

AdvIND-CCA
K (A) := 2

∣∣∣∣Pr[1← ExptIND-CCA
K (A)]− 1

2

∣∣∣∣ .
Definition A.7 (PRF Advantage). Let KF, X, Y be finite sets and F :
KF×X → Y be a pseudorandom function (PRF). Then the PRF-advantage
of an adversary A is defined as

AdvPRF
F (A) =

∣∣∣∣∣ Pr
k $←K

[AF(k,·) = 1]− Pr
R $←Y X

[AR(·) = 1]
∣∣∣∣∣ ,

where Y X denotes all the functions from X to Y .

B Security Loss Computation Details

For completeness, we provide the detailed computations leading our se-
curity loss bounds in Table 2.

We recall from Section 1 that we defined the security loss L of the
security reduction for an FO CCA scheme with bit security Scca as L :=
Sweak−λ, where Sweak is the smallest bit security for the FO-transformed
‘weak’ scheme so that the CCA security reduction implies Scca ≥ λ for a
security parameter λ.

For the first row of Table 2, the proved CCA advantage bound is
εcca ≤ q3/2ε

1/4
cpa, where q is the number of attacker random-oracle queries

and εcpa is the CPA advantage against the weak scheme, where both these
advantages are for attack run-time T , which is (approx.) the same for both
CPA and CCA attacks. By definition of bit-securities in the CCA and

33

CPA cases, they are Scca := T/ε2
cca and Scpa := T/ε2

cpa, respectively. We
re-write the CCA advantage bound as T/εcca ≥ T/(q3/2ε

1/4
cpa). To get ε2

cpa

in the denominator on the right, we raise both sides to the 8th power.
The left-hand side becomes (T/ε2

cca)4 · T 4 = S4
cca · T 4 while the right-

hand side becomes (T/ε2
cpa) · T 7/q12 = Scpa · T 7/q12. Rearranging gives

Scca ≥ (Scpa · T 3/q12)1/4. To guarantee Scca ≥ 2λ through this inequality,
we need Scpa ≥ q12/T 3 ·24λ. As q ≤ T , the worst-case is q = T which gives
Scpa ≥ q9 · 24λ, so the overhead is Scpa/2λ ≥ q9 · 23λ, i.e. L = 3λ+ 9 log q.

For the two middle rows of Table 2, the CCA advantage bound is
εcca ≤ d1/2ε

1/2
cpa. Rearranging and raising to the 4th power leads to the

inequality (T/ε2
cca)2 · T 2 = S2

cca · T 2 ≥ (T/ε2
cpa) · T 3/d2 and therefore,

S2
cca ≥ Scpa · T/d2. To guarantee Scca ≥ 2λ through this inequality, we

need Scpa ≥ d2/T · 22λ. As T ≥ d, we get Scpa ≥ d · 22λ, hence a loss of
L = λ+ log d.

For the last row of Table 2, the CCA advantage bound is εcca ≤ d2εcpa.
Rearranging gives T/ε2

cca ≥ (T/ε2
cpa) · 1/d4. To guarantee Scca ≥ 2λ via

this inequality, we need Scpa ≥ d4 · 2λ, hence a loss of L = 4 log d.

34

