
iTimed: Cache Attacks on the Apple A10 Fusion SoC

Gregor Haas, Seetal Potluri, Aydin Aysu
North Carolina State University

Abstract
This paper proposes the first cache timing side-channel at-
tacks on one of Apple’s mobile devices. Utilizing a recent,
permanent exploit named checkm8, we reverse-engineered
Apple’s BootROM and created a powerful toolkit for running
arbitrary hardware security experiments on Apple’s in-house
designed ARM systems-on-a-chip (SoC). We integrate two
additional open-source tools to enhance our own toolkit, fur-
ther increasing its capability for hardware security research.
Using this toolkit, which is a core contribution of our work,
we then implement both time-driven and access-driven cache
timing attacks as proof-of-concept illustrators. In both cases,
we propose statistical innovations which further the state-of-
the-art in cache timing attacks. We find that our access-driven
attack, at best, can reduce the security of OpenSSL AES-128
to merely 25 bits, while our time-driven attack (with a much
weaker adversary) can reduce it to 48 bits. We also quantify
that access-driven attacks on the A10 which do not use our
statistical improvements are unable to deduce the key, and
that our statistical technique reduces the traces needed by the
typical time-driven attacks by 21.62 million.

1 Introduction
With rare exceptions [10], side channel attacks (SCAs) on
Apple’s line of mobile devices have been largely unexplored
in the literature for two core reasons. First, Apple’s "It Just
Works" design philosophy is based on tight vertical integra-
tion and hiding their devices’ underlying complexities from
both users and application programmers. Apple either designs
or integrates all components in the system stack, and does not
release detailed documentation about the system. Therefore,
security research on iPhones typically starts with reverse en-
gineering the target subsystem or application. Researchers
rely on high-level overviews of security components [19], par-
tial source code releases [16], or even illegally leaked source
code [7] to aid their reverse engineering efforts.

Second, while reverse engineering and other forms of static
analysis are partially possible on iPhones, dynamic analysis
tends to be even more difficult. Dynamic analysis involves
observing applications while they are running, typically un-
der a debugger or another control tool. Apple’s proprietary
development tool (Xcode) does ship with a debugger, but it is
not possible to debug arbitrary applications without first com-
promising the operating system and removing certain security
restrictions [4]. Even in these cases, the kernel can often not

be debugged—rare exceptions include the Apple A11 SoC,
which contains proprietary debug registers that were acciden-
tally left enabled in production devices [2], and development-
fused devices which cannot be obtained legally [8]. Addi-
tionally, Apple ensures that applications cannot arbitrarily
interact with other applications or the operating system by
strictly enforcing the allowed inter-process communication
(IPC) interfaces. As shown in the literature [6], even determin-
ing which interfaces exist is a challenging research problem.

In the context of hardware security research on iPhones,
useful resources such as documentation or development tools
are even rarer compared to software security research. For one,
Apple does not release any detailed documentation for their
in-house designed hardware modules. Some information can
be found in Apple’s patents for a dynamic voltage frequency
modulation (DVFM) module [18], secure co-processor [17],
etc., but even such references only provide high-level views
of system components rather than the technical implementa-
tion details. Even with detailed knowledge of the hardware,
interfaces to useful modules are often not exposed to ap-
plication programmers. For example, without an attacker-
controllable interface to the DVFM module, fault attacks such
as CLKSCREW [30] or VoltJockey [26] are not possible.
Likewise, since the operating system’s scheduling interfaces
are not exposed to programmers, it is arguably harder to ap-
ply timing-based SCAs which depend on thread-shared and
core-shared state. In fact, to date, there is no successful demon-
stration of timing SCAs on Apple SoCs.

The iPhone security research community exhibits closed-
source tendencies that are similar to, and partially caused by,
Apple’s closed-source design philosophy. Powerful exploit
chains, especially ones which can modify the kernel, are often
used to bootstrap further security research. To that extent, the
most powerful class of iPhone exploits is based on vulnerabil-
ities in the BootROM, a region of read-only memory (ROM)
that contains Apple’s first-stage bootloader [19]. Security re-
searchers can use BootROM exploits to create an arbitrary
kernel modification primitive that is permanent, and cannot
be patched by Apple short of recalling all vulnerable devices.
Public BootROM exploits thus are very rare. Currently, only
eight exploits are known across all iPhone models [20].

Contributing to the ongoing effort to build quality, open-
source iPhone research tools [2] [6], we present iTimed: a
novel research toolkit built on checkm8, a new publicly dis-
closed BootROM vulnerability. Most modern iPhones, from

1

the iPhone 5 to the iPhone X, are permanently vulnerable to
checkm8 which creates a unique opportunity for hardware
security research on those devices. Our toolkit exposes many
useful interfaces for general hardware security research, many
of which tie directly into Apple’s hardware drivers. We also
enhance our toolkit by integrating two open-source tools de-
veloped by other groups that were not originally intended for
hardware security. Finally, we present two proof-of-concept
cache timing SCAs—one access-driven as in [24], and the
other time-driven as in [3]. For both of these attacks, we
propose novel statistical extensions that let us break standard
implementations of t-table AES-128. To the best of our knowl-
edge, these are the first such SCAs on an Apple SoC.

1.1 Contributions
The central contributions of this paper are:

• We reverse-engineered the iPhone 7 BootROM and di-
rectly show the root-cause vulnerability of checkm8.

• Incorporating useful functions and primitives obtained
from our reverse-engineering, we implement an extensi-
ble BootROM toolkit to base extensive hardware security
experiments on. Source code is currently available on
request to ghaas@ncsu.edu .

• We integrate two additional open-source tools into our
toolkit, creating an end-to-end solution for full-stack
(hardware, drivers, operating system) hardware security
experiments on iPhone hardware.

• Using this toolkit, we develop and implement an access-
driven timing SCA. We show that a straightforward im-
plementation of PRIME+PROBE fails due to Apple’s cache
replacement policies and prefetcher.

• To successfully implement this attack, we propose novel
attack and statistical techniques that specifically account
for the A10’s microarchitecture. We find that our modi-
fied PRIME+PROBE attack can lower the AES-128 secu-
rity level to 25 bits, while the standard PRIME+PROBE
attack fails completely. To the best of our knowledge,
this is the first such access-driven SCA on an Apple SoC.

• We then weaken the adversarial model and develop a
time-driven, profiled cache timing SCA on the same SoC.
We find that, even when an adversary does not manip-
ulate the architectural state, the A10 SoC still exhibits
vulnerable timing behaviors at both the BootROM stage
of boot, as well as with a full operating system. To the
best of our knowledge, this is the first such time-driven
SCA on an Apple SoC.

• To improve the time-driven attack, we propose multi-
profile attacks which utilize timing information from
multiple known AES keys to deduce the value of an
unknown AES key. We find that multi-profile attacks
require up to 21.62 million less traces than single-profile
attacks to reduce the AES key search space to 248.

Figure 1: Simplified diagram of the A10 Fusion SoC’s
BootROM USB stack based on our reverse-engineering. The
SETUP and DATA handlers are separated, which is a primary
cause for the checkm8 vulnerability. The diagram also shows
communication between modules—the USB driver commu-
nicates with the Synopsys OTG controller via interrupts, the
interrupt handler communicates with the driver task via IPC,
and all other communication consists of function calls.
2 Background
In this section, we introduce relevant background information
to contextualize our work. We begin with a discussion on
the iPhone system integrity infrastructure and show how the
checkm8 vulnerability naturally leads to an arbitrary kernel
modification primitive. We then give a brief architectural
overview of the Apple A10 Fusion SoC, which is the target
of our attack. Finally, we review recent and relevant advances
in cache timing SCAs to further motivate our attacks.

2.1 iPhone System Integrity
Apple’s design philosophy is that all software on their devices
should "just work" exactly as distributed, such that any non-
Apple modifications are neither necessary nor allowed. To
that extent, system integrity is a core guarantee provided by
Apple’s security infrastructure. For iPhones specifically, this
guarantee is rooted in the secure boot chain.

Apple’s boot chain ensures that only the software signed
by Apple can execute on the device. The chain begins in
the BootROM, a small area of ROM that contains Apple’s
first-stage bootloader and public key. The BootROM loads
the second-stage bootloader (named iBoot) from nonvolatile
storage and verifies that its signature is valid. If either the load
or the signature check fails, the BootROM instead enters a
direct firmware upgrade (DFU) mode. In this mode, a signed
firmware image can be sent to the device over USB and booted
instead of iBoot—typically, such an image would restore the
device to a working state by reinstalling both iBoot and the
kernel. Once entered, the device will loop in DFU mode until
it is powered off or receives a valid image.

Once iBoot is successfully loaded and verified, the
BootROM will transfer control to a special boot trampoline.
The trampoline is an intermediate stage of the boot process,

2

mailto:ghaas@ncsu.edu

designed to reset the device to a known state by clearing all
memory from the previous boot stage, and disabling hardware
devices where applicable. The trampoline ensures that a vul-
nerability in one boot stage will not leak information about
the previous boot stages. After exiting, the trampoline trans-
fers control to iBoot which loads and verifies the kernel using
the same general process as the BootROM. Thus, the integrity
of the operating system is closely tied to the immutability and
correctness guarantees of the BootROM.

2.2 checkm8
Understanding the DFU mode’s USB implementation is es-
sential for understanding the checkm8 exploit. Therefore, we
thoroughly reverse-engineered1 this interface and present our
findings in Figure 1, as well as Listings 1, 2, and 3 in Appendix
A.1. If the DFU mode is entered, the USB core subsystem is
initialized first. This subsystem serves as a bridge between
the high-level USB interfaces (such as the DFU mode imple-
mentation) and the low-level driver for the Synopsys OTG
USB controller. Then, the USB DFU interface is registered
with the USB core, providing it with a standard set of callback
functions for various USB events. The DFU interface allo-
cates an IO buffer to hold chunks of the downloaded firmware
image, after which the USB data transfer stage begins. When
a new packet is received, the USB driver task checks if it is a
SETUP packet, containing metadata for a new transaction, or a
DATA packet, containing the data from a previously specified
transaction. In either case, the packet is then forwarded to the
USB core and the interfaces for further processing

On September 27th, 2019, independent iOS security re-
searcher axi0mX released a proof-of-concept tool named
checkm82, which exploits a use-after-free vulnerability in the
USB core implementation. Our reverse-engineering reveals
the root-cause of this vulnerability. When a setup packet
is received, the DFU interface sets the USB core’s data
phase buffer pointer (dp_buf) to the previously allocated
io_buffer (Listing 2, line 15). As the transaction’s data
packets are received, they are copied to the dp_buf (Listing 1,
line 16). Once all of the transaction’s data has been received,
the USB core calls the DFU interface’s data handler and resets
its static internal state (Listing 1, line 27). The DFU inter-
face also copies the chunk’s data to its final location img_buf
(Listing 3, line 5). axi0mX found that this implementation has
a vulnerability—if a setup packet is received, but USB is reset
before any data packets are processed, the dp_buf pointer
is never set to NULL. Since no valid image was received, the
BootROM will reinitialize the DFU mode and allocate a new
IO buffer. However, before any setup packets are received,
the dp_buf pointer will still point to the last DFU iteration’s
IO buffer—a classic use-after-free vulnerability.

Using this vulnerability, it is possible to craft a buffer
overflow attack that overwrites a function pointer on the

1Using standard tools, such as Ghidra (https://ghidra-sre.org/)
2https://github.com/axi0mX/ipwndfu

heap (for details, see [22]). Then, using the DFU mode’s
normal functionality, an arbitrary shellcode can be uploaded
and executed with full permissions in the BootROM. This
breaks the integrity-related security guarantees provided by
the BootROM—for example, checkm8 can be used to patch
iBoot after it is loaded and verified, but before it is booted.
Then, in iBoot, checkm8 can similarly patch the XNU kernel
or transfer control to another operating system entirely. These
claims are not theoretical—both our own toolkit and various
other open-source tools, which we discuss in Section 4, im-
plement this functionality. By default, axi0mX’s shellcode
simply adds stubs for reading, writing, and executing arbitrary
addresses (triggered by specially formatted USB requests).
However, we will show in Section 4 that these read/write/ex-
ecute primitives can be combined and extended in powerful
ways to build a more advanced research platform.

2.3 Apple A10 Fusion SoC
The checkm8 exploit works on most iPhone models, from the
iPhone 5 to the iPhone X. Therefore our toolkit can be trivially
extended to all these models. However, we specifically target
an iPhone 7 (model A1778) containing an A10 SoC because,
when this project began in 2019, the iPhone 7 was the most
common Apple mobile device in the consumer market3—it
is still commonly used with over 80 million sold copies. The
iPhone 7’s SoC contains four ARMv8-A cores arranged in
a standard big.LITTLE4 configuration: two power efficient
cores, and two high performance cores [15]. However, only
one of these core types can be active at a time which means
the SoC appears as a dual-core processor. This SoC has a
four-level memory hierarchy - a 64KB L1 data cache, a 64KB
L1 instruction cache, a unified 3MB L2 cache, a unified 4MB
L3 cache, and (depending on the boot stage) either 2MB of
SRAM or 2GB of DRAM.

The SoC integrates a variety of devices that enable ad-
vanced functionality, but we will focus only on the ones rel-
evant to our attacks. The Synopsys OTG USB controller
is integrated directly into the SoC, providing the iPhone
with both USB host and device capabilities. The SoC also
includes a 24MHz hardware timer, accessible via the stan-
dard ARMv8 register CNTPCT_EL0. We also use the ARMv8
registers CLIDR_EL1, CSSELR_EL1, and CCSIDR_EL1 to help
reverse-engineer the SOC’s cache structure and implementa-
tion. We note that we can only read these privileged registers
because of checkm8.

2.4 Target Algorithm for SCAs
For this work, we use AES-128 [5] to encrypt a 16-byte input
M using a 16-byte key K. A short, formalized description of
this algorithm is given in Appendix B.1.

3https://deviceatlas.com/blog/most-popular-iphones
4https://www.arm.com/why-arm/technologies/big-little

3

https://ghidra-sre.org/
https://github.com/axi0mX/ipwndfu
https://deviceatlas.com/blog/most-popular-iphones
https://www.arm.com/why-arm/technologies/big-little

2.5 Timing Attacks on AES
Cache timing attacks can be broadly classified into three cate-
gories: time-driven attacks, trace-driven attacks, and access-
driven attacks. Time-driven and trace-driven attacks were
first theoretically discussed in [25], experimentally demon-
strated later by Bernstein in [3] and by Acıiçmez et al. in [1],
respectively, and then improved with better statistical analy-
sis [27, 28]. These attacks mainly define their threat model
adversary as a passive observer—for time-driven attacks, the
adversary can only observe the overall time for a full encryp-
tion operation. For trace-driven attacks, the adversary can
observe each cache hit or miss within that encryption opera-
tion. Correspondingly, these types of attacks are more gener-
alizable between architectures and cryptographic ciphers, but
often require many traces to extract secret information.

Access-driven attacks, by contrast, assume that the adver-
sary can actively manipulate the state of the cache. These were
first demonstrated with the PRIME+PROBE technique [24], but
have become much more popular recently. Discoveries of
techniques such as FLUSH+RELOAD [34], EVICT+RELOAD [14],
and FLUSH+FLUSH [13], among others, have led to a wealth
of powerful, high-resolution attacks that require significantly
less traces than time and trace-driven attacks.

Timing attacks typically target x86 desktop and server com-
puters, but have also been demonstrated on ARM mobile de-
vices running Android. Bernstein’s attack was first shown on
three Android devices [29] and subsequently extended to oth-
ers [28]. More recently, Lipp et al., at USENIX 2016, ported
access-driven attacks to ARM Android devices [23]. These
papers inspire us to pursue this work as to date, and to the best
of our knowledge, no cache attacks have been demonstrated
on the Apple-designed ARM SoCs found in iPhones.

In addition to attacks, many timing SCA defenses have also
been proposed [9]. Details of these lie out of the scope of
this work since none have been confirmed on Apple’s devices,
except the ones which we identify in this work.

3 Threat Model

Both attacks assume that the attacker has the ability to syn-
chronously trigger AES encryptions. We also assume known-
plaintext attacks. Furthermore, our attacks do not need precise
timing of intermediate states: while the exact format of the
timing measurements varies between our attacks, we always
treat the underlying AES implementation as a black box.

Our access-driven attack (Section 5), follows the standard
synchronous threat model for access-driven timing SCAs [24].
For this attack, we require that the attacker is co-located on
the same core as the victim since this attack, like other access-
driven attacks, hinges on precise manipulations and measure-
ments of the victim’s cache state. Furthermore, we require
knowledge of the virtual address of the t-tables—however,
this is a standard assumption in the literature [24] and is not
difficult to learn in practice.

Figure 2: Arduino with MAX3421E USB host shield con-
nected to our test iPhone 7. The Arduino is a USB proxy
between the host and device and generates correct partial
requests when necessary. This setup successfully addresses
checkm8’s reliability issues. This iPhone is running pongoOS,
discussed in Section 4.2.

Our time-driven attack (Section 6), again, follows the stan-
dard threat model of profiled time-driven timing SCAs [3].
We assume that the attacker can trigger AES encryptions on
the target device with at least one known key, as well as the ca-
pability to trigger AES encryptions using the key under attack.
These encryptions can be either triggered by a process on the
same device or through remote interaction [3]. Time-driven
attacks do not assume that the adversary has to be co-located
on the same core to manipulate the micro-architectural state,
making them stronger than access-driven attacks.

4 Tooling
While checkm8 is a powerful exploit technique, the proof-
of-concept released by axi0mX is not suitable for extensive
hardware security research. We present our novel extensions
to checkm8 toolkit and describe how we improve the reliabil-
ity, extensibility, and supported execution models of the base
checkm8. We also discuss two novel tools which were not
originally intended for hardware security research, and show
how we incorporate these into our research platform.

4.1 Expanding the checkm8 Toolkit
We created our own open-source toolkit based on checkm8
that addresses a core set of usability issues. When discussing
our toolkit, we refer to the computer that runs the toolkit as
the host and the target iPhone as the device.

4.1.1 Reliability
We first improved the tool’s success rate, both in terms of
successfully exploiting checkm8 and system stability. As

4

described in Section 2.2, successfully exploiting the use-
after-free vulnerability depends on partial USB transactions
containing only a SETUP packet. However, no standard USB
host controller drivers support generating such transactions.
axi0mX’s solution involves asynchronously canceling a nor-
mal USB request, which probabilistically results in a correct
partial request. Several of these requests must be made (cor-
rectly) for the exploit to succeed, so the exploit’s success
rate becomes probabilistic as well. Furthermore, partial re-
quests can be correct enough for the exploit to succeed but
will silently corrupt memory in the background, crashing the
device at some point in the future. This is a major challenge
for hardware security research, which often depends on long
profiling phases or precise hardware manipulation.

Figure 2 shows how we solved the reliability problem. Mod-
ifying a standard USB host controller driver (such as XHCI)
to support partial requests would be challenging—each layer
of the host’s USB stack, from the driver to the user-space in-
terface, would need to be changed. Therefore, we have opted
to implement the required functionality on the Arduino plat-
form. Arduinos are a family of low-cost 8-bit microcontrollers.
They can be extended with functionality-specific "shields"—
the one shown here has a USB host shield5 with a MAX3421E
USB host controller. The Arduino driver for this chip is open
source, so we modified it to support checkm8 partial requests.
Then, the Arduino acts as a proxy between the host and the
device, forwarding all USB communication and generating
correct partial requests when necessary.

4.1.2 Extensibility
Our checkm8 toolkit also addresses the issue of extensibility.
Ideally, we would like to easily write, load, and execute com-
plex programs that implement extensive hardware security
experiments. For many such experiments, it is convenient to
interact directly with the hardware; however, writing drivers
for Apple’s proprietary modules could be extraordinarily dif-
ficult. Luckily, the BootROM includes fully functional, if
somewhat minimal, interfaces to many of these modules. For
our toolkit, we reverse-engineered much of the BootROM and
exposed a core set of useful functions which can be used by
experimental programs to interact with the BootROM and
the iPhone’s hardware. Listing 4 is part of the source code
for our time-driven attack’s profiler, which contains several
calls to BootROM functions. For example, line 22 reads 16
random bytes from the BootROM’s pseudorandom number
generator—one of the BootROM’s many cryptographic inter-
faces. In line 26, we retrieve a high resolution timestamp from
the SoC’s 24MHz cycle counter, which we can also use to pro-
gram interrupts some number of cycles in the future. Finally,
line 34 interacts with the BootROM’s simple tasking sys-
tem, which implements both process-like and semaphore-like
constructs. All these extensions are crucial to run successful
side-channel experiments.

5https://store.arduino.cc/usa/arduino-usb-host-shield

Figure 3: Flow of synchronous (a) and asynchronous (b) exe-
cution models over time. Blue shapes are the USB task, green
shapes are the experimental program, and yellow shapes are
calls to BootROM task initialization functions—task_new
(1) and task_run (2) specifically.

Our tool also includes a full build system for these experi-
mental programs. The BootROM does not support common
executable formats, such as ELF, so all programs must consist
of raw assembly instructions when they are installed on the de-
vice. We include cross compiler support, so that programs can
be written in C rather than assembly. Our build system then
automatically strips the compiled binary and places the pro-
gram’s entry point at the beginning of the file. All BootROM
functions are called using absolute jumps rather than relative
jumps, so programs can be installed anywhere in the memory
space. The CPU’s memory management unit (MMU) is still
inactive at the BootROM stage of boot, so there is no address
space protection. Since we do not want to overwrite any exist-
ing heap, stack, or global variables when installing programs,
we use the BootROM’s dynamic memory allocator to get a
safe address. Finally, we write the program to the safe address
and store its pointer for subsequent executions.

4.1.3 Execution Models
To complete our programming model and improvements to
checkm8, we use the BootROM’s tasking system to support
two different execution models as shown in Figure 3. As
mentioned in Section 2.2, axi0mX’s checkm8 implements
arbitrary execution by adding a stub to the USB controller
which can be triggered with a specially formatted USB re-
quest. Therefore, any program executed with this technique
will run synchronously within the USB controller task as
shown in Figure 3a. For certain hardware security experi-
ments, this execution mode might reduce the quality of the
gathered data. For example, our time-driven attack (Section 6)
depends heavily on maintaining the state of the L1 cache
between iterations. If our profiling program were executed
synchronously, the L1 cache would be polluted by the USB
driver stack because a USB request must be processed be-
tween each iteration.

We instead execute such programs asynchronously us-
ing the reverse engineered BootROM tasking functions and
synchronization primitives. The semantics of this execution
model are similar to POSIX pthreads—a new task is created
and scheduled as shown in Figure 3b, and receives its initial
arguments through a pointer (Listing 4, line 3). The new task
starts executing after the USB task finishes the task_run

5

https://store.arduino.cc/usa/arduino-usb-host-shield

USB execution request, and can explicitly yield control back
to USB in case IO is required. The BootROM also includes a
semaphore-like synchronization primitive which allows co-
operation between tasks—this is useful for hardware security
experiments that depend on core-shared state, particularly
relevant to timing-based side channels as defined in [9].

4.2 checkra1n
We employ two external groups’ toolkits that nicely comple-
ment ours and, used together, create a much richer hardware
security research environment for iPhones. The first of these
toolkits, checkra1n [31], is maintained by axi0mX, Luca Tode-
sco, and other iPhone security researchers, aiming to create
a user-land jailbreak via checkm8 as an exploit primitive.
Jailbreaks allow ordinary users to install non-approved ap-
plications or system tweaks on their devices, and may be
repurposed as a research tool. The checkra1n toolkit was first
released on November 10th, 2019, and was partially open-
sourced on March 1st, 2020 as pongoOS6. pongoOS is a
simple, task based operating system used by checkra1n to
patch the XNU kernel. It runs in the boot trampoline (dis-
cussed in Section 2.1) after iBoot, so it must first configure
the hardware to support a proper execution environment.

Todesco reverse-engineered and reimplemented (without
Apple’s proprietary code) a large number of drivers for iPhone
hardware. These drivers are tied together with a simple com-
mand line interface to control the system. pongoOS is mod-
ular and provides a straightforward SDK to compile custom
modules against, as well as support for dynamically loading
these modules at runtime. While pongoOS does include some
useful features (such as access to the device’s full 2GB of
DRAM), we primarily use pongoOS to bootstrap the second
open-source tool used in our hardware security experiments.

4.3 Project Sandcastle
Corellium, LLC, is the creator of a line of virtualized iPhones,
functionally identical to real, physical devices. These are sold
primarily to security researchers who do not want to risk irre-
versibly damaging real devices while searching for exploits.
Corellium open-sourced the first version of Project Sandcastle
on March 4th, 2020. Project Sandcastle consists of a set of
supporting pongoOS modules and tools, a patched Linux ker-
nel capable of booting on an iPhone 7, and a buildroot project
that automatically compiles a bootable image with this kernel.
This image includes, among other things, a full glibc and
compiler toolchain, network drivers, support for both CPUs
on A10, and many more features. pongoOS includes func-
tionality for receiving and booting these images. This envi-
ronment then makes it possible to fully explore advanced
SCAs on iPhones, including industry-standard cryptographic
implementations such as OpenSSL (see Section 7.3).

6https://github.com/checkra1n/pongoOS

5 Access-Driven Attacks

We now present an access-driven SCA on the OpenSSL t-table
AES-128 implementation. This attack is motivated by the
synchronous PRIME+PROBE attack from the seminal work of
Osvik et al. in [24], but makes several key modifications which
address the A10’s specific microarchitecture. We emphasize
that we pursue the PRIME+PROBE attack as it forms a canonical
example—our statistical method is not only limited to this
particular attack style, and extends easily to the ever-evolving
iterations of access-driven attacks. For example, we have
observed vulnerable cache flush timings which would enable
attacks such as FLUSH+RELOAD [34] and FLUSH+FLUSH [13].

5.1 Notation
We closely follow the notation of PRIME+PROBE [24]. Access-
driven attacks must account for cache configuration, so we
model caches as tuples (S,W,B), which represent the number
of sets, associativity, and block size (in bytes) of the cache
respectively. To model the t-tables, for simplicity, we assume
that the tables are contiguous in memory and that the start
address is known.

The t-tables map into the cache based on two further param-
eters (s,o) which denote the size of an individual table entry
(typically 4 bytes) and the offset of the first table within the
cache (i.e., the memory address of T0[0] mod SB). For indices
y ∈ [0,256) within a given t-table L, we can define the cache
set of y in L:

C(L,y) = bo+ s(256L+ y− (o mod B))
B

c+1 (1)

Encrypting a message M with a key K will cause mem-
ory accesses to certain t-table entries. We define an oracle
QK(M,L,y), which equals 1 if encrypting M with K will ac-
cess index y in t-table L. Thus, by repeatedly querying Q
with known plaintexts, tables, and indices, we can learn some
information about the unknown key K. Osvik et al. note that
access to a perfect oracle Q is unrealistic and instead base
their attack on an unreliable oracle M (M,L,y). Specifically,
M ≈ Q such that, for many (K,M,L,y), the expectation of
M is higher when Qk(M,L,y) = 1 than when Qk(M,L,y) = 0:

E [MK | QK = 1]> E [MK | QK = 0] ,∀(K,L,y) (2)

5.2 Standard PRIME+PROBE Fails
For our attack, we use PRIME+PROBE measurements to query
the aforementioned oracle. For this strategy, we must allocate
a probe array A of size S×W ×B bytes such that the start of
the array is congruent to the start of the cache—that is, the
address of A[0] mod SB = 0. Then, to obtain a PRIME+PROBE
measurement for a message M, we:

6

https://github.com/checkra1n/pongoOS

1. Prime: read from every memory block in A. This step has
the dual purpose of evicting the t-tables from memory,
while also filling the cache with the attacker’s data.

2. Encrypt M with the unknown key K.

3. Probe: if QK(M,L,y) = 0, we would expect that all of
the attacker’s data is still present in cache set x =C(L,y).
By contrast, if QK(M,L,y) = 1, one of the ways in cache
set x would have been evicted and replaced with the
corresponding t-table block. We can thus extract a mea-
surement of MK(M,L,y) by reading the W array entries

A [Bx] ,A [Bx+BS] , . . . ,A [Bx+(W −1)BS]

and saving the total time taken for these accesses as T M
x .

A full trace consists of the set
{

T M
x | x ∈ S

}
.

5.2.1 PRIME+PROBE Challenges
The general attack described above serves as a good theo-
retical base, but adjustments must often be made to account
for specific processor microarchitecture. In the case of the
A10 SoC, we must make two key modifications for the attack
to succeed. The first has been well studied in the literature.
PRIME+PROBE attacks on ARM processors were first shown
in ARMageddon [23]. In this work, the authors note that
ARM processors often use pseudorandom cache replacement
policies (rather than deterministic least-recently-used-based
policies) and, as such, the prime step must be modified. To
successfully evict the t-tables and fill the target cache with
the attacker’s probe array, Lipp et. al. use the work of [12] to
automatically search for fast eviction strategies. We employ
a similar, yet simplified, approach in our attack—we simply
access the W array entries in each set enough times that we
have a good probability of filling the cache with our data.

The second modification has not been extensively re-
searched from the attacker’s perspective in the literature, with
rare exceptions [33] that lack generality. We refer to Figure 4
to motivate this extension. The figure shows an example trace
obtained using our attack’s final PRIME+PROBE technique. For
traces such as these, we define four measurement categories:

1. True positives: Cache sets which are accessed during the
encryption, and are measured as if they were accessed.
These are the most common and cluster near y = 0.

2. True negatives: Cache sets which are not accessed, and
are measured as if they were not accessed. Visually, these
are outliers of various magnitudes.

3. False positives: Cache sets which are not accessed, yet
are measured as if they were accessed. These are caused
by prefetching of the t-tables and cluster near y = 0.

4. False negatives: Cache sets which are accessed, yet are
measured as if they were not accessed. These would be
caused by prefetching of the probe array, but are mostly
eliminated by our attack technique.

Figure 4: PRIME+PROBE timing measurements for each set
with a known plaintext and key. The top figure shows raw tim-
ing measurements, while the bottom figure normalizes each
measurement by the average timing of a set. The highlighted
region shows the range of the t-tables (that is, C(0,0) →
C(3,255)). Dashed vertical lines show t-table sets which are
not accessed during this encryption.

5.2.2 A10 SoC Hardware Prefetcher

In the top chart of Figure 4 we can visually identify the sets
which correspond to t-table entries. In the bottom (normal-
ized) figure we can clearly see several low outliers, which
represent cache sets that are probed faster than usual, and
thus correspond directly to t-table entries that are not ac-
cessed during the encryption. These outliers are useful for
deducing information about the unknown key. However, there
are also several cache sets which should be outliers, but are
instead very close to the mean. We argue that these false
positives are potentially caused by hardware prefetching of
adjacent t-table entries, resulting in cache misses in the probe
array. We therefore reveal that the attack has to modify both
the PRIME+PROBE attack technique and statistical analysis to
defeat Apple’s hardware prefetcher. We discuss these two
aspects in the next two subsections respectively.

5.3 Platform-Specific Attack Modifications
Our key insight is that prefetching not only affects the tar-
geted t-tables, but also the attacker’s probe array. Generally,
without supposing a specific prefetcher implementation, we
can assume that sequentially priming the array A will train
the prefetcher to tightly associate the addresses in A. Then,
when the attacker later probes the array, the A10 will prefetch

7

Figure 5: Register map of our randomized PRIME+PROBE
implementation. By using the A10’s 512 bytes of floating-
point registers as state storage and a PRG, we can defeat the
prefetcher without any additional memory accesses.

further entries into the cache—potentially evicting t-table en-
tries which were accessed during the encryption and causing
false negatives. This problem is further exacerbated by the
advanced eviction strategies required to defeat the pseudoran-
dom replacement policy, since such strategies often rely on
accessing the entries in A in structured, repetitive ways.

In order to defeat the prefetcher, we must minimize the
amount of information which it can learn about A. The most
straightforward method to do so, which we employ, is to prime
and probe with a uniform random distribution. Generating
random numbers and keeping track of state (such as which
cache sets have been primed or probed already) would, how-
ever, induce many auxiliary memory accesses and add further
noise to the measurements. Instead, we rely on an architec-
tural feature of the A10—the ARM NEON floating-point unit
(FPU). This FPU includes 32 16-byte registers, as well as an
implementation of the ARM AES instructions.

Figure 5 shows details of our randomized PRIME+PROBE
implementation. We use the index state (v0 - v15) to track
sets which have been primed or probed. The miscellaneous
registers (v16 - v19) hold various counters which help us
measure the performance of our technique. We load a full
set of AES-128 round keys into registers v20 - v30, and
then use these round keys (and the ARM AES instructions)
to repeatedly encrypt the value in v31. Finally, we use the
individual bytes in v31 as a source of randomness for our
prime and probe methods. In this way, we can fully randomize
our PRIME+PROBE attack without adding any additional noise
due to auxiliary memory accesses.

5.4 Statistical Modifications
While the original PRIME+PROBE statistical technique [24] is
functional on the A10 SoC, its efficacy is greatly reduced. The
hardware prefetcher causes false positives when encrypting,
which decreases the distance between E [MK | QK = 1] and
E [MK | QK = 0]. Instead, we rely on a novel constraint-based
statistical technique which is based on exploiting information
from true negatives while remaining tolerant of false positives.
We note that prefetcher-aware PRIME+PROBE attacks have

Figure 6: Visual representation of t-tables which are not
aligned on the cache block boundary. We find that such t-
tables often leak more information than aligned t-tables.

been previous explored [33], but these approaches are tailored
to specific prefetchers and lack generality.

First, we heuristically determine two thresholds T+ and T−.
We use these thresholds to categorize normalized measure-
ments into positives and negatives—a measurement greater
than T+ is categorized as a positive, while a measurement less
than T− is categorized as a negative. For the dataset in Figure
4, for example, we would set T+ =−0.02 and T− =−0.10.
We then define a scoring function E for individual timing
measurements T M

x :

E(T M
x) =

0 T M

x > T+

1 T M
x < T−

(T M
x −T+)/(T−−T+) otherwise

(3)

Higher values of E(T M
x), then, indicate stronger evidence

that the cache set x is not accessed when encrypting M with
the unknown key K. We can determine exactly which tables
L and indices y this measurement is useful for by inverting
x =C(L,y)—we denote the set of these table-index pairs as
Y . Finally, we exploit the fact that the t-table lookup indices
in the first round are simply equal to T`[Mi⊕Ki], i≡ ` mod 4.
Thus, by definition, we know that higher values of E(T M

x)
indicate stronger evidence that:

Mi⊕ yi 6= ki,∀(`,y) ∈ Y ∧ i≡ ` mod 4 (4)

Using equation 4 we can iteratively eliminate potential
key candidates by accumulating many such constraints
from various random plaintexts. We note that this attack
is particularly effective when the t-tables are not aligned
to the cache block size (i.e., o mod B 6= 0). Figure 6 il-
lustrates the concept. Assume we obtain a measurement
for set 92 with a plaintext M = 0128. If we obtain strong
evidence that this set is not accessed, we would have
Y = {(0,236), . . . ,(0,251)} and we could thus build the
constraints k0,k4,k8,k12 6∈ {236, . . . ,251}. However, if we
obtain such evidence for set 93 instead, we would have
Y = {(0,252), . . . ,(0,255),(1,0), . . . ,(1,11)}. We could
then build the constraints k0,k4,k8,k12 6∈ {252, . . . ,255} ∧
k1,k5,k9,k13 6∈ {0, . . . ,11}, which eliminates potential key
candidates for twice the number of key indices.

8

Our statistical attack proceeds as described above, iterating
over random plaintexts Mi and the corresponding traces T Mi =
{T Mi

0 , . . . ,T Mi
S } and accumulating evidence against certain

key candidates. True negatives contribute useful information
for eventually deducing the correct key, while false positives
do not actively reduce the quality of the attack. False negatives
would add incorrect evidence, leading to incorrect rejections
of key candidates. However, our randomized attack technique
discussed in the last section largely eliminates such effects.

6 Profiled Time-Driven Attacks

We now consider a weaker adversary and additionally present
a profiled, time-driven SCA on a t-table AES-128 implemen-
tation. The attack works on both our own, casual AES imple-
mentation as well as the industry-standard OpenSSL 1.1.1d
AES implementation. While both concrete instantiations of
our attack use slightly different tools (described in Section 4),
both follow the same general strategy.

6.1 Notation
We first introduce the notation which we use to describe this
attack. We consider plaintext messages M and AES encryp-
tion keys K, where both M,K ∈ {0,1}128. We further add an
indexing scheme on plaintexts and keys, parameterized by a
division factor d. For a given division factor d, the set of valid
indices is Id and the set of valid values at each index is Vd
such that:

Id =

{
i | 0≤ i <

128
d
∧ i ∈ Z

}
, |Id |=

128
d

(5)

Vd =
{

v | 0≤ v < 2d ∧ v ∈ Z
}
,
∣∣Vd
∣∣= 2d (6)

Mi
d = v denotes that the ith index of plaintext M, under

division factor d, has value v. The same notation applies to
keys K. For example, a division factor of d = 8 would index
plaintexts and keys at the byte level. A division factor d = 4
would index both at the nibble level, while d = 1 would index
both at an individual bit level. This indexing scheme is similar
to the one used in both [27] and [28].

For both attacks, we repeatedly encrypt random plaintexts
M with a constant key K and time the duration of the entire
encryption process (not including key expansion). We denote
the amount of time taken to encrypt M with K as TK (M), and
aggregate these timing measurements into so-called timing
profiles P(K). Timing profiles capture information about the
average encryption time given a plaintext’s value at a specific
index. Generally:

Pd(K) =
{

Pi,v
d (K) | ∀i ∈ Id ,∀v ∈ Vd

}
(7)

Pi,v
d (K) = 〈

{
TK(M) |Mi

d = v
}
〉 (8)

(a) Timing profile for a known key K

(b) Timing profile for an unknown key K′

(c) Error measure between P(K) and P(K′)

Figure 7: P(K), P(K′), and Ed
K→K′ (h) for an example dataset

at the BootROM stage of execution. For this example, we
have d = 8 and i = 0. Timing attacks at this stage of execution
are much more successful because of the profiles’ regularity
(clear and predictable clustering).

where 〈. . .〉 is the average of a set. For conciseness and without
loss of generality, we sometimes drop the parameter d from
the notation when it is clearly implied.

6.2 Single-Profile Attacks
In the simplest instantiation of our attack, we collect two
profiles P(K) and P(K′) for a known key K and an unknown
key K′. Our attack then proceeds to extract a set of candidate
keys Ci,L

K→K′ at each index i and with a complexity parameter
L. A candidate set is defined as:

Ci,L
K→K′ =

{
h⊕Ki |

L
min
h∈Vd

Ed
K→K′ (h)

}
(9)

Given the complexity parameter L, individual key hypothe-
ses h, and an error measure Ed

K→K′ (h) on these key hypothe-
ses, the candidate set Ci,L

K→K′ contains the L key hypotheses
h⊕Ki with the lowest measured error. For this attack, we

9

define the error measure simply as the mean squared error
(MSE):

Ed
K→K′ (h) =

1∣∣Vd
∣∣ |Vd|−1

∑
v=0

(
Pi,v

d (K)−Pi,v⊕h
d

(
K′
))2

(10)

Given a key hypothesis h, the error measure calculates the
differences between the known-key profile P(K) and per-
mutations of the unknown-key profile P(K′). Figure 7 illus-
trates this concept. The three charts show P(K), P(K′), and
Ed

K→K′ (h) respectively—it seems that P(K′) is exactly re-
versed from P(K). Such a transformation could be achieved
by XOR-ing the indices of elements in P(K′) with some
value that contains many high 1 bits. The bottom chart of
Figure 7 shows the values of Ed

K→K′ (h). Clearly, the key
hypotheses with the lowest error measure are of the form
h = 0b1111XXXX. The correct key byte here happens to be
0xF1= 0b11110001, confirming our XOR rearrangement hy-
pothesis: the transformation from P(K′)→P(K) is explained
by a key guess of 0xF1 in this case.

Using these extracted candidate sets, we can now begin to
reason about the complexity of a simple brute-force attack.
Let GL be the set of 128-bit key guesses of order L ≥ 1 and
‖ be the bitwise concatenation operator. Then, GL contains
all combinations of key guesses from the candidate sets of all
positions:

GL =

{
‖|Id |−1

i=0 hi | ∀hi ∈Ci,L
K→K′

}
(11)

The attack strategy proceeds as follows. We begin with
G1, which contains only one key guess - the concatenation
of the key hypotheses with the lowest error measure at each
index. If this is not the correct key, we then search the set G2
which contains all key guesses such that the key hypotheses
at each index have the lowest or second-lowest error measure.
Since G1 ⊂ G2, we only test the guesses in G2−G1 to avoid
repetition. We then iterate, and at each iteration j in the attack
we test only the key guesses G j−G j−1. Now, let L ′s equal
the smallest value of L such that K′ ∈ GL ′s . We now have a
brute-force complexity of:∣∣GL ′s

∣∣= L ′s
|Id | (12)

Note that L ′s is also the maximum error ranking of a correct
key hypothesis among all indices i. This is clearly a polyno-
mial worst case bound parameterized by L ′s, and therefore
already a feasible attack in a theoretical sense. We note that
this attack is bounded by the complexity of a regular brute-
force attack on AES (which has complexity 2128) by observ-
ing that the maximum possible value of L ′s is

∣∣Vd
∣∣. The worst

case brute-force complexity then becomes
∣∣Vd
∣∣|Id | = 2128. In

Section 7, we use the value of L ′s as a metric of our attack’s
efficacy, since this value is closely related to the computa-
tional complexity required to extract the correct unknown

key K′. This parameter also quantifies the amount of correct
information our attack is able to learn about the secret key,
i.e., the attack’s entropy. We show in the next section that
using information from multiple known-key profiles often
decreases the value of L and, correspondingly, the attack’s
overall entropy.

6.3 Multi-Profile Attacks
While our attack performs much better than a brute-force
attack on AES itself, information about timing variations is
sometimes not fully captured by the known-key profile P(K)
with respect to the unknown-key profile P(K′). This effect is
well-known in the literature [28], and often leads to very high
values of L ′s. The typical solution to this problem has been to
improve key enumeration techniques [32]. However, we seek
to reduce the complexity even further by instead introduc-
ing multi-profile attacks, which use information from several
known-key profiles to extract key candidates for an unknown-
key profile. Similarly to before, let P(K′) represent a timing
profile for an unknown key K′. Then, consider a set of known
keys Kn = {K0,K1, . . . ,Kn−1} and their corresponding timing
profiles Pn = {P(K0) ,P(K1) , . . . ,P(Kn−1)}. We extend the
definition of a candidate set Ci,L

K→K′ from the previous section
to the multi-profile case:

Ci,L
Kn→K′ =

n−1⋃
j=0

Ci,L
K j→K′ (13)

∣∣∣Ci,L
Kn→K′

∣∣∣= α
i,L

n−1

∑
j=0

∣∣∣Ci,L
K j→K′

∣∣∣= α
i,LnL (14)

For the single-profile case, each position i simply had L
key candidates. With this multi-profile case, we increase the
number of key candidates per position to αi,LnL where αi,L

is a parameter accounting for the case where some candidate
sets in Ci,L

Kn→K′ contain the same key candidates. For brevity,
we denote the mean value of αi,L across all key positions
i simply as αL. At first glance, this modification does not
look like an improvement – we increase the number of key
candidates at each position, which in turn increases the brute-
force complexity. However, we extend the previous section’s
brute-force attack and show that the additional known-key
profiles improve performance.

The multi-profile brute-force attack is identical to the
single-profile attack, with one drop-in difference. The set of
key guesses GL is defined identically except that we replace
the single-profile candidate set Ci,L

K→K′ with the multi-profile
candidate set Ci,L

Kn→K′ . The attack then iterates identically, test-
ing G1, then G2−G1, up to G j−G j−1. Now, we define L ′m
as the smallest value of L such that K′ ∈ GL ′m . Although the
number of key candidates increases by a factor of αL ′mn, the
value of L ′m itself decreases from L ′s. We show experimentally

10

in our results that αL ′mnL ′m <L ′s, which indicates that the ben-
efit in L ′m often outweighs the cost of αL ′mn additional key
candidates. We now again state an expression for the worst
case brute-force complexity of the multi-profile attack:∣∣GL ′m

∣∣= (α
L ′mnL ′m

)|Id |
(15)

An alternatively derivation can be expressed as follows.
Denote the error ranking of the correct key hypothesis h ∈
Ci,L

K j→K′ as Li
j. Then, within each index i, we will discover

the correct key hypothesis at the minimal error ranking Li
j

out of all profiles j – we denote Li = min j∈[0,n) Li
j. However

the worst case brute-force complexity is still limited by the
maximum Li across all indices. Therefore, the complexity can
alternatively be stated as:(

max
i∈Id

min
j∈[0,n)

Li
j

)|Id |
(16)

7 Results
We now proceed to instantiate the attacks described in the
previous sections in several separate experiments. First, we
attack OpenSSL 1.1.1d using our improved PRIME+PROBE
attack. We quantify this attack’s success rate in terms of
two parameters—the number of random plaintexts, and the
number of traces captured for each plaintext. For each ran-
dom plaintext, we summarize the corresponding traces into
an averaged trace and use this average to eliminate key can-
didates. We do so because any single trace may be noisy,
and averaging many traces lets us identify true negatives
more accurately. We also use these averaged traces to run
a standard PRIME+PROBE attack without our improvements,
as a comparison. For this attack, we quantify the reduced
AES security level by building candidate sets and key guess
sets, analogously with the time-driven attack. We then report
log2 |GL ′ |= 16log2(L ′) as the reduced AES security level.

For our time-driven attack, we implicitly measure timing
variations related to the SoC’s memory hierarchy, although we
note that the L1 cache can easily accommodate all required
data for both AES-128 implementations that we test. Thus
our attack makes no explicit assumptions about which level of
the memory hierarchy a given set of data is currently located
in, and rather just indiscriminately measures black-box en-
cryption timings without manipulating the architectural state.
In our first experiment, we attempt to classify whether the
caches exhibit vulnerable address-dependent timing variations
by using our own, casual AES-128 implementation. Then, we
replicate the attack using the standard OpenSSL AES-128 im-
plementation to show the timing side-channel vulnerability of
standard cryptographic libraries executing on the Apple’s A10
SoC. For each time-driven attack configuration, we calculate
the parameter αL ′n which measures the amount of additional,
non-duplicate key candidates introduced by including more
known-key profiles—this is calculated as the mean of:

Figure 8: Results of our constraint-based statistical technique,
compared to both the best and average performance of the
original PRIME+PROBE technique [24]. Both figures show that
our attack reduces the key search-space drastically for an
exhaustive evaluation.

∣∣∣Ci,L ′
Kn→K′

∣∣∣
L ′+1

(17)

across all indices i∈ Id . We can then approximate the reduced
security level of AES, measured in bits. The size of the key
guess set GL ′ can be calculated using equation 15 with log2:

log2 |GL ′ |= |Id | · log2
(
αnL ′

)
(18)

7.1 PRIME+PROBE Results
Using Project Sandcastle (Section 4.3) we compile a full
Linux system for the iPhone 7, which includes the target of
our access-driven attack—OpenSSL 1.1.1d. We specifically
compile OpenSSL with the no-asm configuration flag to en-
sure that the ARM AES instructions are not used, as attacking
these is out of scope for this work. This is a standard choice
for earlier works [14,21,23] in this field as well. We then boot
the Linux kernel using the kernel parameters isolcpus=1,
nohz_full=1, which removes the second CPU core from the
scheduler and causes all processes to run on the first core.
Finally, we explicitly launch our victim and attack processes
on the second core using taskset 0x2.

To quantify the success rate of our PRIME+PROBE attack,
we gathered a large dataset containing measurements for one
random key. Specifically, this dataset includes 16384 traces
collected for each of 16384 random plaintexts with a natu-
rally unaligned t-table (o mod B = 16). We then randomly
subsample from this dataset to analyze other attack config-
urations. Our results are shown in Figure 8 which displays
the reduced AES security level along both hyperparameters.

11

(a) BootROM attack models (b) BootROM security levels (c) OpenSSL attack models (d) OpenSSL security levels

Figure 9: The security level (in bits) of AES under our timing attack with varying number of traces and attack configurations,
executing at the BootROM level (a, b) and at the OpenSSL level (c, d).

As expected, increasing the number of random plaintexts and
traces per plaintext generally decreases the security level of
AES-128. We find that, generally, collecting traces for more
plaintexts is better than collecting more traces per plaintext,
primarily because our technique can build more constraints
in these circumstances. The results show that we consistently
outperform classical techniques [24], even when they perform
at their best. The difference between our attack and the ear-
lier work is significant because brute-force is possible on our
reduced security level whereas the conventional method fails
to sufficiently lower the security level, unless a large amount
of data is collected.

7.2 Time-Driven Attacks at BootROM Level

Figures 9 (a) and 9 (b) summarize the experimental results
of our time-driven attack at the BootROM level. Our data
for this stage was collected using our toolkit, specifically
utilizing the (asynchronous) profiling program in Listing 4.
We are interested in visualizing our attack success rate as the
number of traces increases—however, independently profiling
for each number of traces would take a long time. Instead, we
profile with the maximum number of traces (109) and then
read out partial data via USB to simulate profiling with less
traces. This technique allows us to track our attack’s efficiency
with a varying number of traces, but does introduce some
noise from USB IO. To compensate, we perform a number
of unmeasured, random AES encryptions after reentering the
profiling task to ensure all AES data is resident in the cache.

From this data, we draw a number of conclusions. First, we
find that increasing the number of collected traces for each
profile generally decreases the AES security level across all
attack configurations. For the higher-order (large n) config-
urations, the security level drops faster (with less traces) as
compared to the single-profile configuration. This effect is
most significant around 107 traces, where the multi32 attack

configuration lowers the AES security level by 22 more bits
than the single configuration. We do find that all configu-
rations eventually reach a minimum security level of 32 bits,
which indicates that 75% of the unknown key bits K′ can be
deduced using this specific attack strategy. The remaining key
space can easily be searched exhaustively—using an Intel®

Core™i7-7700HQ processor, the brute force attack takes only
288 CPU-seconds. We thus conclude that our attacks success-
fully break AES at the BootROM stage of execution.

7.2.1 Cache Bank Conflicts

It is well documented in the literature that cache attacks can
only extract a maximal amount of key information, depending
on the technique used. Osvik et al. showed that their access-
driven attack is only able to extract the top 4 bits of each key
byte, mainly because the attack depends on tracing cache hits
and misses on 64-byte cache blocks [24]. Other works show
that attacks within the cache block granularity are feasible
as well—CacheBleed [35] exploits timing information from
cache bank conflicts to extract 60% of the bits in an RSA
private key. Jiang et al. showed that cache bank conflict timing
attacks are applicable to AES as well [21]. Since iTimed keeps
all AES data in the L1 cache during the profiling phase, we
believe that our attack measures timing variations inherently
caused by cache bank conflicts.

Various observations from the data support this cache bank
conflict hypothesis. The timing patterns for this experiment
tend to be very regular, with clear clusters at predictable loca-
tions of Md

i as seen in Figure 7. The known-key profile, for
example, has six clusters at even divisions of 32, and then four
more clusters at even divisions of 16. While these patterns are
distinct (and exploitable for timing attacks), they are also very
small—the maximum range in the timing information for the
known-key profile is only about 0.0035 timer cycles (145.83
picoseconds). Since this range is much less than the period
of a single clock cycle, we believe the origin of these timing

12

(a) Timing profile for a known key K

(b) Timing profile for an unknown key K′

(c) Error measure between P(K) and P(K′)

Figure 10: P(K), P(K′), and Ed
K→K′ (h) for an example

OpenSSL dataset. For this example, we have d = 8 and i = 3.
Note the irregularity of the profiles and error measure as com-
pared to Figure 7—this irregularity lowers the effectiveness
of our attacks and increases the required number of traces.

variations is microarchitectural in nature. We also find that
profiles collected at the BootROM level can be used in cross-
device attacks against a separate iPhone 7, which suggests
that our attack captures timing variations from a consistent,
device-independent microarchitectural side channel.

7.3 Time-Driven Attacks on OpenSSL
Figures 9 (c) and 9 (d) show the results of our attack on
the OpenSSL 1.1.1d AES implementation. Similar to the
BootROM experiment, we find that increasing the number
of collected profiles generally decreases the security level
of OpenSSL AES. Multi-profile configurations again outper-
form the single configuration, but the effect is much more
significant for this experiment. We find that, at maximum, the
multi31 configuration lowers the AES security level by 32
more bits than the single configuration. We were unable to

determine an exact lower bound for this experiment due to
high profiling times—collecting 32 profiles with 109 traces
each took two weeks. We believe that fully visualizing the
reduced OpenSSL security level would require 32 profiles
with about 1011 traces each, and require about 200 weeks
to profile. Based on our experience with this attack, we be-
lieve that the single configuration is bounded at about 80
bits while the multi31 configuration is bounded at about
48 bits. Using the same Intel® processor as in the previous
experiment, we estimate the brute-force attack time for our
proposed multi31 configuration needs 6065.5 CPU-hours
which is feasible given enough cores. By contrast, the conven-
tional single-profile brute force attack would require over 3.5
billion CPU-years which is arguably impractical.

Figure 10 shows that the OpenSSL profiles are less reg-
ular than the BootROM profiles (Figure 7). There are no
visible clusters that could be used to efficiently compare key
hypotheses. Instead, the attack relies on the timing informa-
tion’s peaks and troughs. The maximum range of these timing
variations is approximately .03 timer cycles (1.25 nanosec-
onds), which is an order of magnitude increase compared
to the BootROM experiments. We believe this increase is
explained by MMU address translation overhead, since the
Linux kernel utilizes a full virtual memory system. Accesses
to the translation lookaside buffer (TLB), which caches vir-
tual to physical address translations, could also contribute to
these timing variations [11].

8 Conclusion and Future Work
Hardware security research on iPhones is notoriously diffi-
cult. This paper is the first effort to enable hardware security
experiments on the Apple iPhone SoCs. Extending a new
public BootROM exploit, we reverse-engineered a significant
part of the BootROM, exposed useful functions and interfaces
within, and increased the experimental scope of our platform
to whole system stacks, including hardware, driver, and oper-
ating system layers. Our effort greatly lowers the difficulty of
implementing future hardware security experiments on Ap-
ple’s SoCs. Using our tool, we implemented the first SCAs
on the target platform, showed practical secret-key extraction
on AES, and even improved the state-of-the-art of SCA by
addressing platform-specific challenges and proposing statisti-
cal enhancements. Future extensions of this work may include
attacking other algorithms such as public-key cryptosystems
and evaluating remote fault or physical side-channel attacks
with the help of our tool.

9 Ethical Disclosure

This work began on September 27th, 2019, when checkm8
was released to the public. We contacted Apple’s product
security team on July 11th, 2020, to report our findings prior
to submitting the paper or revealing it on any other public
forum.

13

References

[1] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache
attacks on aes (short paper). In International Conference
on Information and Communications Security, pages
112–121. Springer, 2006.

[2] Brandon Azad. KTRW: The journey to build a debug-
gable iPhone. 36C3, 2019.

[3] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[4] Drew Branch. Debugging ios applications: A guide to
debug other developers’ apps. Medium, 2017.

[5] Joan Daemen and Vincent Rijmen. The block cipher
rijndael. In International Conference on Smart Card
Research and Advanced Applications, pages 277–284.
Springer, 1998.

[6] L. Deshotels, C. Carabas, , J. Beichler, R. Deaconescu,
and W. Enck. Kobold: Evaluating Decentralized Access
Control for Remote NSXPC Methods on iOS. In IEEE
Symposium on Security and Privacy (SP), pages 399–
413, 2020.

[7] Lorenzo Franceschi-Bicchierai. Key iphone source code
gets posted online in ’biggest leak in history’. Mother-
board, 2018.

[8] Lorenzo Franceschi-Bicchierai. The prototype iphones
that hackers use to research apple’s most sensitive code.
Vice, 2019.

[9] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8(1):1–27, 2018.

[10] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran
Tromer, and Yuval Yarom. Ecdsa key extraction from
mobile devices via nonintrusive physical side channels.
In ACM SIGSAC Conference on Computer and Commu-
nications Security, page 1626–1638, 2016.

[11] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with tlb attacks. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 955–972, 2018.

[12] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer. js: A remote software-induced fault attack
in javascript. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 300–321. Springer, 2016.

[13] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+ flush: a fast and stealthy cache
attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 279–299. Springer, 2016.

[14] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security Symposium
(USENIX Security 15), pages 897–912, 2015.

[15] Joshua Ho and Brandon Chester. The iphone 7 and
iphone 7 plus review: Iterating on a flagship. anandtech,
2016.

[16] Apple Inc. Apple open source, https://opensource.apple.
com/.

[17] Apple Inc. Security enclave processor for a system on a
chip. Number US8832465B2. 2012.

[18] Apple Inc. Dynamic voltage and frequency management
based on active processors. Number US9304573B2.
2013.

[19] Apple Inc. Apple platform security guide. Spring 2020.

[20] The iPhone Wiki. Bootrom exploits, https://www.
theiphonewiki.com/wiki/Bootrom#Bootrom_Exploits.

[21] Zhen Hang Jiang and Yunsi Fei. A novel cache bank tim-
ing attack. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 139–146.
IEEE, 2017.

[22] Alex Kovrizhnykh. Technical analysis of the checkm8
exploit. Digital Security, 2019.

[23] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. Armageddon: Cache
attacks on mobile devices. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 549–564,
Austin, TX, August 2016. USENIX Association.

[24] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1–20.
Springer, 2006.

[25] Dan Page. Theoretical use of cache memory as a crypt-
analytic side-channel. 2002.

[26] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and
Gang Qu. Voltjockey: Breaking sgx by software-
controlled voltage-induced hardware faults. In 2019
Asian Hardware Oriented Security and Trust Sympo-
sium (AsianHOST), pages 1–6. IEEE, 2019.

14

https://opensource.apple.com/
https://opensource.apple.com/
https://www.theiphonewiki.com/wiki/Bootrom#Bootrom_Exploits
https://www.theiphonewiki.com/wiki/Bootrom#Bootrom_Exploits

[27] Chester Rebeiro and Debdeep Mukhopadhyay. Boost-
ing profiled cache timing attacks with a priori analysis.
IEEE Transactions on Information Forensics and Secu-
rity, 7(6):1900–1905, 2012.

[28] Raphael Spreitzer and Benoît Gérard. Towards more
practical time-driven cache attacks. In IFIP Interna-
tional Workshop on Information Security Theory and
Practice, pages 24–39. Springer, 2014.

[29] Raphael Spreitzer and Thomas Plos. On the applicability
of time-driven cache attacks on mobile devices. In Inter-
national Conference on Network and System Security,
pages 656–662. Springer, 2013.

[30] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. Clkscrew: Exposing the perils of security-
oblivious energy management. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1057–1074,
2017.

[31] Luca Todesco. The One Weird Trick SecureROM Hates.
Power of Community, 2019.

[32] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Re-
nauld, and François-Xavier Standaert. An optimal
key enumeration algorithm and its application to side-
channel attacks. In International Conference on Selected
Areas in Cryptography, pages 390–406. Springer, 2012.

[33] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and
Srikanth V Krishnamurthy. Papp: Prefetcher-aware
prime and probe side-channel attack. In Proceedings of
the 56th Annual Design Automation Conference 2019,
pages 1–6, 2019.

[34] Yuval Yarom and Katrina Falkner. Flush+reload: a high
resolution, low noise, l3 cache side-channel attack. In
23rd USENIX Security Symposium (USENIX Security
14), pages 719–732, 2014.

[35] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
Cachebleed: A timing attack on openssl constant-time
rsa. Journal of Cryptographic Engineering, 7(2):99–
112, 2017.

Appendix A Code Snippets

A.1 DFU Mode Functionality

Listing 1: Relevant parts of the USB core

1 / / da ta phase v a r i a b l e s
2 s t a t i c u i n t 8 _ t * dp_buf ;
3 s t a t i c u i n t 3 2 _ t dp_len , dp_rcvd ;
4
5 void u s b _ c o r e _ h a n d l e _ r e c e i v e (

6 u i n t 8 _ t * r x _ b u f f e r , bool s e t u p _ p k t ,
7 i n t l e n g t h , bool * d a t a _ p h a s e) {
8 . . .
9 / / da ta p a c k e t h a n d l e r

10 i f (! s e t u p _ p k t && l e n g t h > 0) {
11 c o p y _ l e n = dp_ le n − dp_rcvd ;
12 i f (l e n g t h <= c o p y _ l e n) {
13 c o p y _ l e n = l e n g t h ;
14 }
15
16 memcpy (dp_buf , r x _ b u f f e r , c o p y _ l e n) ;
17 dp_buf += c o p y _ l e n ;
18 dp_rcvd += c o p y _ l e n ;
19 * d a t a _ p h a s e = t r u e ;
20
21 i f (dp_rcvd == dp _ l en &&
22 i n t f _n u m >= 0 &&
23 i n t f _n u m < n u m _ i n t e r f a c e s &&
24 i n t e r f a c e s [i n t f _ nu m]−> h a n d l e _ d a t a
25 != NULL) {
26 i n t e r f a c e s [i n t f _ nu m]−> h a n d l e _ d a t a () ;
27 dp_rcvd = 0 ;
28 dp_ l e n = 0 ;
29 dp_buf = NULL;
30 * d a t a _ p h a s e = f a l s e ;
31 }
32 }
33 . . .
34 / / s e t u p p a c k e t h a n d l e r
35 i f (s e t u p _ p k t) {
36 i f (i n t f _ n u m < n u m _ i n t e r f a c e s &&
37 i n t e r f a c e s [i n t f _ nu m]−> h a n d l e _ s e t u p
38 != NULL) {
39
40 i n t e r f a c e s [i n t f _ nu m]−> h a n d l e _ s e t u p (
41 r x _ b u f f e r , &dp_buf) ;
42 }
43 . . .
44 }

Listing 2: DFU mode setup handler

1 i n t d f u _ h a n d l e _ s e t u p (
2 s t r u c t u s b _ r e q u e s t * req ,
3 u i n t 8 _ t ** o u t _ b u f f e r) {
4 . . .
5 i f (t y p e == ’ \ x01 ’) { / / DFU download
6 l e n = req−>wLength ;
7 i f (l e n == 0) {
8 s t a t u s = SYNC_MANIFEST ;
9 }

10 e l s e {
11 i f (l e n > 0 x800) { / / e r r o r
12 d f u _ s t a t e = DFU_IDLE ;
13 re turn −1;
14 }
15 * o u t _ b u f f e r = i o _ b u f f e r ;
16 }
17 b y t e s _ e x p e c t i n g = l e n ;

15

18 re turn l e n ;
19 }
20 . . .
21 }

Listing 3: DFU mode data handler

1 void d f u _ h a n d l e _ d a t a (i n t l e n) {
2 i f (b y t e s _ e x p e c t i n g == l e n) {
3 i f (b y t e s _ r e c e i v e d + l e n
4 <= img_buf_ l en) {
5 memcpy (img_buf + b y t e s _ r e c e i v e d ,
6 i o _ b u f f e r , l e n) ;
7 d f u _ s t a t e = DFU_IDLE ;
8 b y t e s _ r e c e i v e d += l e n ;
9 b y t e s _ e x p e c t i n g = 0 ;

10 re turn ;
11 }
12 s t a t u s = FAIL ;
13 dfu_done = t r u e ;
14 e v e n t _ n o t i f y (& d f u _ e v e n t) ;
15 re turn ;
16 }
17 d f u _ s t a t e = DFU_ERROR;
18 re turn ;
19 }

A.2 Attack Programs

Listing 4: Time-driven profiling program

1 / * Main e n t r y * /
2 PAYLOAD_SECTION
3 void e n t r y _ a s y n c (u i n t 6 4 _ t * base)
4 {
5 u i n t 8 _ t msg_old [1 6] ;
6 u i n t 8 _ t key_sched [1 7 6] ;
7 u i n t 6 4 _ t t i m i n g ;
8
9 / / g e t i n i t i a l params

10 u i n t 8 _ t *msg = (u i n t 8 _ t *) base [0] ;
11 u i n t 8 _ t * key = (u i n t 8 _ t *) base [1] ;
12 s t r u c t a e s _ c n s t * c =
13 (s t r u c t a e s _ c n s t *) base [2] ;
14 s t r u c t d a t a * d a t a =
15 (s t r u c t d a t a *) base [3] ;
16 u i n t 3 2 _ t n u m _ i t e r = (u i n t 3 2 _ t) ba se [4] ;
17
18 expand_key (key , key_sched , 11 , c) ;
19 f o r (i = 0 ; i < n u m _ i t e r ; i ++)
20 {
21 / / g e n e r a t e a new msg
22 get_random (msg , 1 6) ;
23 memcpy (msg_old , msg , 1 6) ;
24
25 / / e n c r y p t i t and measure t i m e
26 s t a r t = g e t _ t i c k s () ;
27 a e s 1 2 8 _ e n c r y p t (msg , key_sched , c) ;

28 t i m i n g = g e t _ t i c k s () − s t a r t ;
29
30 / / up da t e c o u n t e r s
31 u p d a t e _ d a t a (da t a , msg_old , t i m i n g) ;
32 }
33
34 e v e n t _ n o t i f y (& da ta−>ev_done) ;
35 t a s k _ e x i t (0) ;
36 }

Appendix B Algorithms

B.1 AES-128
For this work, we use AES-128 to encrypt a 16-byte input M
using a 16-byte key K. During this encryption, AES utilizes
four lookup tables—mainly T0,T1,T2,T3 (each of which con-
tains 256 4-byte constants) and S (which contains 256 1-byte
constants). The t-tables implement the SubBytes, ShiftRows,
and MixColumn operations whereas the S-box implements
SubBytes and ShiftRows [5]. We index the plaintext M as
bytes M = M0‖ . . .‖M15 and the key K in four-byte chunks
K = K0‖ . . .‖K3. The key is expanded into 10 round keys
Ki,1≤ i≤ 10 with K0 = K. Then, utilizing an intermediate
byte-indexed state x initialized as x0 = M⊕K, we iterate for
0≤ i < 9:

(xi+1
0 ‖ . . .‖x

i+1
3) = T0[xi

0]⊕T1[xi
5]⊕T2[xi

10]⊕T3[xi
15]⊕Ki+1

0

(xi+1
4 ‖ . . .‖x

i+1
7) = T0[xi

4]⊕T1[xi
9]⊕T2[xi

14]⊕T3[xi
3]⊕Ki+1

1

(xi+1
8 ‖ . . .‖x

i+1
11) = T0[xi

8]⊕T1[xi
13]⊕T2[xi

2]⊕T3[xi
7]⊕Ki+1

2

(xi+1
12 ‖ . . .‖x

i+1
15) = T0[xi

12]⊕T1[xi
1]⊕T2[xi

6]⊕T3[xi
11]⊕Ki+1

3

Then in the final round, we set i = 9 and calculate

(x10
0 ‖ . . .‖x10

3) =
(
S[x9

0]‖S[x9
5]‖S[x9

10]‖S[x9
15]
)
⊕K10

0

(x10
4 ‖ . . .‖x10

7) =
(
S[x9

4]‖S[x9
9]‖S[x9

14]‖S[x9
3]
)
⊕K10

1

(x10
8 ‖ . . .‖x10

11) =
(
S[x9

8]‖S[x9
13]‖S[x9

2]‖S[x9
7]
)
⊕K10

2

(x10
12‖ . . .‖x10

15) =
(
S[x9

12]‖S[x9
1]‖S[x9

6]‖S[x9
11]
)
⊕K10

3

and return x10 as the ciphertext.

16

	Introduction
	Contributions

	Background
	iPhone System Integrity
	checkm8
	Apple A10 Fusion SoC
	Target Algorithm for SCAs
	Timing Attacks on AES

	Threat Model
	Tooling
	Expanding the checkm8 Toolkit
	Reliability
	Extensibility
	Execution Models

	checkra1n
	Project Sandcastle

	Access-Driven Attacks
	Notation
	Standard PRIME+PROBE Fails
	PRIME+PROBE Challenges
	A10 SoC Hardware Prefetcher

	Platform-Specific Attack Modifications
	Statistical Modifications

	Profiled Time-Driven Attacks
	Notation
	Single-Profile Attacks
	Multi-Profile Attacks

	Results
	PRIME+PROBE Results
	Time-Driven Attacks at BootROM Level
	Cache Bank Conflicts

	Time-Driven Attacks on OpenSSL

	Conclusion and Future Work
	Ethical Disclosure
	Code Snippets
	DFU Mode Functionality
	Attack Programs

	Algorithms
	AES-128

