
Key-schedule Security for the TLS 1.3 Standard

Chris Brzuska1, Antoine Delignat-Lavaud2, Christoph Egger3,
Cédric Fournet2, Konrad Kohbrok1, and Markulf Kohlweiss4

1 Aalto University, Finland {chris.brzuska,konrad.kohbrok}@aalto.fi
2 Microsoft Research Cambridge, UK {fournet,antdl}@microsoft.com

3 Friedrich-Alexander University Erlangen, Germany christoph.egger@fau.de
4 Edinburg University, UK mkohlwei@ed.ac.uk

Abstract. We analyze the security of the TLS 1.3 key establishment
protocol, as specified at the end of its rigorous standardization process.
We define a core key-schedule and reduce its security to concrete assump-
tions against an adversary that controls client and server configurations
and adaptively chooses some of their keys. Our model supports all key
derivations featured in the standard, including its negotiated modes and
algorithms that combine an optional Diffie-Hellman exchange for forward
secrecy with optional pre-shared keys supplied by the application or re-
cursively established in prior sessions. We show that the output keys are
secure as soon as any of their input key materials are. Our compositional,
code-based proof makes use of state separation to yield concrete reduc-
tions despite the complexity of the key schedule. We also discuss (late)
changes to the standard that would improve its robustness and simplify
its analysis.

1 Analyzing the TLS 1.3 Handshake

Transport Layer Security (TLS) is the most widely used authenticated secure
channel protocol on the Internet, protecting the communications of billions of
users. Previous versions of TLS have suffered from many attacks against weak-
nesses in their design, including legacy algorithms (e.g. FREAK for export
RSA [11], LogJam [3] for export Diffie-Hellman, WeakDH for ill-chosen groups,
and exploits against Mantin biases of RC4 [25]); the RSA key encapsulation (e.g.
the ROBOT [22] variant of Bleichenbacher’s PKCS1 padding oracle); the frag-
ile MAC-encode-encrypt construction leading to many variants of Vaudenay’s
padding oracles against CBC cipher suites (e.g. BEAST, Lucky13 [4]); the weak
signature over nonces allowing protocol version downgrades (e.g. DROWN [6]
and POODLE); the key exchange (e.g. FREAK [54] and 3SHAKE [15]); the
hash transcript (e.g. SLOTH [18]); and other negotiated parameters [13]. TLS
1.3 intends both to fix the weaknesses of previous versions and to improve their
performance, notably by lowering the latency of connection establishment from
two roundtrips down to one, or even zero when resuming a connection.

Historically, the IETF process to adopt a standard involves an open consor-
tium of contributors mostly coming from industry, with a bias towards early
implementers. The TLS working group at the IETF acknowledged that this pro-
cess puts too much emphasis on deployment and implementation concerns, and

2 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

tends to address security issues reactively [55]. Instead, it decided to address
security upfront by welcoming feedback from various cryptographic efforts, in-
cluding symbolic [32,31] and computational protocol models [35,36,51], both on
paper and implemented in tools such as Tamarin or CryptoVerif. Early drafts
of TLS 1.3 also drew much inspiration from Krawczyk’s OPTLS protocol [50],
which comes with a detailed security proof, although later versions diverged
from it (in particular in the design of resumption). This proactive approach has
certainly improved the overall design of TLS 1.3, and uncovered flaws along its
28 intermediate drafts. However, many of these efforts are incomplete (focusing,
e.g., on fixed protocol configurations) or do not account for the final version
published in RFC 8446. Since final adoption, further questions have been raised
about pre-shared keys, potential reflection attacks [38], and difficulties in sepa-
rating resumption PSKs (produced internally by the key exchange) from external
ones installed by the application. In short: we still miss provable security for the
new Internet standard.

TLS can be decomposed into sub-protocols: the record layer manages the
multiplexing, fragmentation, padding and encryption of data into packets (also
called records) from three separate streams of handshake, alert, and application
data. Incoming handshake messages are passed to the handshake sub-protocol,
which in turn produces fresh record keys and outgoing handshake messages.
Taking advantage of this well-understood modularity, other protocols re-use the
TLS 1.3 handshake with different record layers: for instance, DTLS 1.3 is a vari-
ant based on UDP datagrams instead of TCP streams, while the IETF version
of QUIC replaces the record layer with a much extended transport [44], adding
features such as dynamic application streams and fine-grained flow control. De-
tailed security proofs for the TLS 1.3 record layer have been proposed by Patton
et al. [56] (extending the work of Fischlin et al. [41] on stream-based channels),
Badertscher et al. [7], and Bhargavan et al. [14], who also provide a verified ref-
erence implementation. Therefore, we defer to these works for the record layer,
and focus on the handshake protocol.

TLS 1.3 Handshake and Key Schedule The top of Fig. 1 gives an ab-
stract view of the protocol message flow. In the client hello (CH) message, the
client sends a nonce nc, its Diffie-Hellman (DH) share gx, a PSK label and a
binder value (the role of which we explain in our key schedule security model).
As a means of negotiation, the client may offer shares for different groups and
different PSK options (thus the indices i, j in gxi

i , labelj , binderj). The server
communicates its choice of the DH group and the PSK when sending the server
hello (SH) message which contains the server nonce ns, its share gy

i0
(including

the group description) and the label labelj0 of the chosen PSK. The remaining
messages consist of encrypted extensions (EE), server certificate and signature
(C(pk),CV(σ)), key confirmation messages in the forms of messages authentica-
tion codes (MACs) τs and τc computed over the transcript, and a ticket which is
used on the client side to store a resumption key (later referred to as resumption
PSK) derived from the key material of the current key exchange session.

Key-schedule Security for the TLS 1.3 Standard 3

xpd

xpd

xpd

xtr xtr

xtr

...

...

xpd

xpdxpd

Parent name(s):
n: n1 n2

es: 0salt psk
eem: es ⊥
cet: es ⊥
bind: es ⊥
binder : bind ⊥
hs: esalt dh
sht: hs ⊥
cht: hs ⊥
hsalt: hs ⊥
as: hsalt 0ikm
rm: as ⊥
cat: as ⊥
sat: as ⊥
eam: as ⊥
psk: rm ⊥

kes ← xtr(kpsk , k0salt)
kbind ← xpd(kes, ext/res binder, [])

kbinder ← xpd(kbind , [], dbind)
kcet ← xpd(kes, c e traffic, des)
keem ← xpd(kes, e exp master, des)
kesalt ← xpd(kes, derived, [])
khs ← xtr(kesalt , kdh)
kcht ← xpd(khs, c hs traffic, dhs)
ksht ← xpd(khs, s hs traffic, dhs)
khsalt ← xpd(khs, derived, [])

kas ← xtr(khsalt , k0ikm)
kcat ← xpd(kas, c ap traffic, das)
ksat ← xpd(kas, s ap traffic, das)
keam ← xpd(kas, exp master, das)
krm ← xpd(kas, res master, drm)
k′psk ← xpd(krm , resumption, tn)
kpsk , k0ikm , k0salt ← 0len(alg)

τs/c ← deriveFin(ksht/kcht , dsf /das)
σ ← sign(sk, dsig)

kae{1 ,2 ,3 } ← TLS record layer derivations

Fig. 1: TLS 1.3 Handshake Protocol (top) and Key Schedule (bottom). Keys k_
depend on handshake transcript digests d_ and are output by the key schedule at
each phase of the protocol. After the negotiation of algorithms, shares and pre-
shared keys in the client hello (CH) and server hello (SH), the handshake traffic
secrets (kcht, ksht) are output, and used to derive the handshake encryption
keys (kae1, kae2) and the HMAC keys for the server finished (SF) and client
finished (CF) key confirmation messages. In typical configuration, the server
is authenticated by sending its certificate C(pk) and signing the digest in the
certificate verify CV (σ) message. See Fig. 11a for a formal description of the
key schedule and Fig. 18 for how it integrates into the TLS 1.3 handshake. Our
model focuses on the core key schedule that produces traffic secrets. Note that
we use xpd(·, [], ·) as an alias for hmac(·, ·). This encoding is sound since xpd
is not used with an empty label, otherwise. The encoding is convenient, since
it allows us to model kbinder as a key—note that hmac and xpd both provide
pseudorandomness and collision-resistance, justifying their uniform treatment
(in fact, xpd is based on hmac). We color digests and keys in alternating red and
blue to clarify digest-key dependency.

4 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

The key schedule is the core part of the handshake that performs all key
computations. It takes as main input PSK and DH key materials and, at each
phase of the handshake, it derives keys, e.g., to encrypt client early traffic (kcet),
to compute the binder value (kbinder), to encrypt server handshake traffic (ksht)
and to encrypt client handshake traffic (kcht). In Fig. 1, each column of triangles
(from left to right) respectively describes the early phase, the handshake phase
and the application phase of the schedule.

The key schedule thus consists of a collection of xtr an xpd operations, orga-
nized in a graph. Each of the operations takes as input a chaining key and/or
new key material, (kpsk in the xtr in the early phase and kdh in the xtr in the in
the handshake phase), together with the latest digest and auxiliary inputs such
as a resumption status r and a ticket nonce tn. In particular, on the path from
an input key to an output key, one xpd operation includes the latest digest of
the protocol messages dbind , des, dhs, das, and drm which causes the output key
to depend on kbinder and the Diffie-Hellman shares indirectly via the transcript
hash. The computation of the DH secret kdh from DH shares and exponents is
also part of our modeling, despite happening outside the xtr and xpd functions.
From each chaining key, at least one output key and/or new chaining key for the
next invocation will be derived via xtr and xpd.

Our TLS key schedule model thus outputs seven keys: kcet , keem, kbinder ,
kcht , ksht , kcat , ksat , keam. They constitute a natural boundary for our model,
inasmuch as all other TLS keys and IVs are further derived from them in a
transcript-independent manner.

Extracting a Key Schedule Model for the Handshake We intend to cap-
ture all aspects of key-exchange security that relate to the creation and deriva-
tion of keys that are output by TLS sessions. Our resulting key-schedule security
model is an partial specification of key exchange security for TLS that elides
the content and flow of protocol messages, how the state of each participant
advances, and the mapping between cryptographic identities (such as DH shares
and PSKs) and participant identities (such as certificates, server names, PSK
identifiers, etc.). In this model, the adversary can (i) register chosen dishonest ap-
plication PSKs and dishonest DH shares, (ii) instruct the game to sample honest
application PSKs and honest DH shares, and (iii) trigger key derivations. This
overapproximation of the adversaries capabilities allows for a simpler model (in
a similar way as adversarially chosen plaintexts simplify models of encryption).
The adversary of the key schedule can freely inject and derive corrupt keys across
many resumptions and include (essentially) arbitrary additional parameters such
as transcripts. These capabilities go beyond practically possible attacks against
TLS. Informally, the model ensures that all output keys are pairwise distinct
and, moreover, if honest key material was used at any point in the derivation,
then the derived keys are pseudorandom and pseudo-independent, i.e., they look
like independently drawn, uniformly random strings.

While the key schedule model captures the cryptographically interesting se-
curity properties of the key exchange, it does not capture other aspects such as
authentication or key confirmation. For instance, who actually owns a key is a

Key-schedule Security for the TLS 1.3 Standard 5

protocol property, and the corresponding party identities are left implicit in the
key schedule. Of course, if the identity can be unambiguously parsed from the
plaintext handshake transcript, then agreement on session keys (which implic-
itly authenticates this transcript in its derivation) implies in particular that the
peers agree on the server’s certificate. We argue that these derived properties
are more suitable for tool-assisted security modeling, inasmuch as their proofs
are conceptually simple (e.g. perfect reduction to code-based assumptions, or
symbolic Dolev-Yao models) but involve many details of the protocol. For in-
stance, tools such as Tamarin are excellent at detecting missing binding between
identities and protocols keys (see, e.g., the post-handshake client authentication
attack based on transcript collisions with PSKs reported by Cremers et al. [31] in
an earlier draft). Thus, we propose to use computational (handwritten) analysis
such as ours to precisely capture the pseudorandomness and independence prop-
erties achieved by the key schedule (and pinpoint the underlying assumptions)
for all configurations supported by the standard, and then rely on verification
tools to develop a comprehensive model of the handshake. This paper focuses
on the TLS 1.3 key schedule model, and leaves a mechanically-verified model of
the handshake based on key-schedule security as future work.

Key Handles and Collision Attacks In key exchange models, cryptographic
session identifiers are used to match client and server instances that agree on
the session key and possibly other parameters such as participant identities and
the session transcript (see [28] for a discussion on agreement and [52,13] for a
discussion on session identifiers in key exchange). The mapping from session
identifiers to keys should be injective with overwhelming probability, i.e., two
protocol instances that derive the same key should have the same identifier. In
this sense, it is useful to think of a session identifier as containing all the relevant
parts of the communication transcript that influence the key.

Our key schedule model uses handles as the analogue of session identifiers
in protocols. The handles of output keys are closely related to session identifiers
in the key exchange. More systematically, we introduce handles for all internal,
intermediate keys (such as kes and kesalt). We construct handles recursively,
based on (the handles of) their key material and the additional inputs implicitly
authenticated in their key derivation (label, transcript, ticket nonce, as detailed
in Fig. 2). To this end, we define injective handle constructor functions xtr〈·〉,
xpd〈·〉, dh〈·〉 as the modelling counterpart of concrete key derivation functions.
Fig. 2 sums up this notation and shows how handles are chained through the
TLS key schedule. See Section 4.2 for the formal definition of handles.

Handles act as administrative identifiers used by the adversary to request
operations on keys whose values are secret. Handles are also crucial in express-
ing uniqueness: for output keys, we show that, with overwhelming probability,
there is a one-to-one mapping between handles and values. Finally, as illustrated
above, uniqueness provides a general basis for authenticating all key-exchange
parameters included in the handles.

Internally, uniqueness of the output keys depends on uniqueness of their
input key materials, which is problematic both for Diffie-Hellman secrets and for

6 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

xpd

xpd

xpd

xtr xtr

xtr

xpd

xpd

n = psk:
hpsk ← appPSK〈ctr , alg〉
or hpsk ← noPSK〈alg〉

n = dh:
Xi0 ← g

xi0
i0

;Yi0 ← gy
i0

hdh ← dh〈sort(Xi0 , Yi0)〉
or hdh ← noDH

(n, salt, ikm) ∈ {(es, 0salt, psk),
(hs, esalt, dh), (as, hsalt, 0ikm}:
hn = xtr〈n, hsalt , hikm〉

(n,m) ∈ {(bind, es), (esalt, es),
(cet, es), (eem, es), (hsalt, hs),
(cht, hs), (sht, hs), (rm, as),
(cat, as), (sat, as), (eam, as),
(psk, rm)}:
hn ← xpd〈n, labeln , hm , t〉

n = binder :
hbinder ← xpd〈n, [], hbind , t〉

Fig. 2: The rules for constructing handles hn mirror the concrete key derivations
of Fig. 1, but carry more information than the keys they represent (such as
hash and group algorithms), to model cryptographic agility. The administrative
handles of application PSKs consist of a counter ctr and the hash algorithm.

PSKs (both application-provisioned and derived for resumption). For DH shares
(gx, gy), we construct the handles for the secret gxy as sort(gx, gy). However,
(gxr, gy) and (gx, gyr) clearly lead to the same key, so we can ensure neither
uniqueness nor pseudorandomness at this level—for instance, if we combine such
(dishonest) DH secrets with an honest PSK, the result should be pseudorandom
and look independent while it would be identical. The TLS key schedule prevents
collision attacks emerging from the collision of (gxr, gy) and (gx, gyr) by including
the pair of shares into the authenticated transcript. Accordingly, our key schedule
model restricts the adversary to use only transcripts whose Diffie-Hellman shares
match those included in the handle.

A similar issue appears when the adversary registers a dishonest resumption
PSK as a dishonest application PSK. TLS prevents key collision attacks emerging
from such PSK collisions by including a different label (ext or res) into the
derivation of the binder value, which appears in the handshake transcript (see
Fig. 1) and is in turn hashed into the derivation of output keys. Thus, our model
also restricts the adversary to use only transcripts with valid PSK binders.

As explained below, our model fully captures the potential use of different
groups and hash algorithms at each phase of the key schedule (an important
feature of TLS) which creates additional challenges to achieving uniqueness.

Security Assumptions We assume that the hash function for computing the
transcript hash as well as the key derivation functions xtr and xpd are collision-

Key-schedule Security for the TLS 1.3 Standard 7

resistant5. For the early phase, we rely on the Extract-then-Expand paradigm
(denoted xtr-then-xpd in our language) being a key derivation function (KDF)
as by the HKDF standard [48], assuming that xtr is a secure extractor and xpd
is a pseudorandom function (PRF). By the design of TLS 1.3, we assume that
the PSKs are generated independently of the salt (which is set to 0 in the early
phase) and that xtr is a secure extractor even with a 0 salt.

For the handshake and the application phase, we additionally rely on xtr
being a PRF when keyed with the salt. The use of this assumption on xtr was
suggested in the OPTLS work by Krawczyk and Wee [50] and is backed by
the implementations of xtr via HMAC, which was shown to be an (arbitrary
input-length) PRF [8,43], assuming the dual PRF security of its (fixed-length)
compression function under (weak) related-key attacks. Additionally, we rely on
the PRF-properties of xpd which, in turn, is also backed by the implementation of
xpd via HMAC. Finally, we rely on the pseudorandomness of the MAC algorithm
used to derive binder values (see Fig. 1), which is, once again, covered by the
assumption that HMAC is a PRF.

An assumption which our work brought to light is the need to rely on the
salted Oracle Diffie-Hellman (SODH) for Diffie-Hellman, i.e., if a Diffie-Hellman
(DH) secret is generated from two random, honest shares, then applying xtr
to the DH secret with several, adversarially chosen salts should still provide
(computationally) independent and pseudorandom keys (see Section 3.3). In
practice, such different salts can emerge from disagreement between server and
client about the PSK to use since the early salt esalt changes when the PSK
changes (see Fig. 1).

Cryptographic Agility The assumptions we make need to hold even if several
hash algorithms are used in parallel and some of them may be broken. We model
broken algorithms by allowing the adversary to choose the keys for the respective
primitives, a strengthening of the fact that the adversary knows the keys derived
by broken algorithms. Such agile assumptions on cryptographic primitives are
typically quite strong. Interestingly, as we show, we can reduce several of the
assumptions to non-agile assumptions for the specific case of TLS 1.3. This
is possible because all hash functions currently supported in TLS 1.3 have a
different output length and thus, the resulting keys can be distinguished due to
the hash functions’ separate domains. The only case where we need to make an
agile base assumption (rather than prove agile security from non-agile security)
is SODH. This is required because honest clients and servers may use the same
Diffie-Hellman secret with different hash algorithms.

1.1 Proof Methodology and Outline

Our analysis of the TLS 1.3 Key Schedule involves three techniques of inde-
pendent interest: (i) the fine-grained decomposition of games to manage their
shared state which leads, essentially, to a graph-based induction (or, formally
5 The TLS 1.3 standard acknowledges this collision resistance requirement:

https://www.rfc-editor.org/rfc/rfc8446.html#appendix-E.1.1.

https://www.rfc-editor.org/rfc/rfc8446.html#appendix-E.1.1

8 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

hybrid) proof, (ii) the abstraction of this technique into a general graph-based
key schedule theory, and (iii) the careful management of collisions in the system.
We elaborate on each of these techniques in turn.
Game Modularity In preparation for the proof, we decompose the pseudo-
code of the key schedule game into separate code packages, each with their
own private state, that call one another, such that their composition (by code
inlining) is perfectly equivalent to the initial, monolithic game.

This technique allows us to cut out part of the game (formally defined as
a connected sub-graph of the directed, acyclic call graph of packages) and con-
sider the rest of the game as a reduction, i.e., part of the adversary against the
subgame. In particular, we define security assumptions so that we can perform
game-hops (reductions) by matching and rewriting sub-graphs. The underly-
ing mechanism is known as state-separating proofs (SSP [27]); we give a short
introduction in Section 2.
Abstraction Since TLS derives a large number of keys, enumerating all reduc-
tion steps is a mechanical procedure which is not a useful task in itself. Instead
of enumerating all steps, we provide a more general approach, namely, we define
the class of all TLS-like key schedules and show that the graph-based approach
applies to them. This way, we classify the different derivation steps in the key
schedule according to the properties on which we rely. This classification is of
conceptually independent interest, since other key schedules might rely on sim-
ilar concepts for separating output keys.
Separating keys: Collision-resistance via Aborts and Mappings An im-
portant concept in our proof are separation points. Namely, the TLS 1.3 key
schedule aims to provide distinct output keys, but does not include the resump-
tion level as a label into the key derivation, thus making the separation between
application keys (resumption level 0) and resumption keys (resumption level > 0)
intricate. A separation point is necessary between the use of a pre-shared key
and a derived output key in order to ensure separation between application keys
and resumption keys. This separation point either includes a bit—as is the case
for the computation of the binder—or it includes the binder into its arguments,
inheriting the separatedness of the binder. Separation points provide a similar
properties for DH keys.

Before a separation point, we have redundant keys, i.e., keys with different
handles but identical values. Redundant keys complicate the use of assumption:
A PRF, on the same inputs yields the same output and thus, when applying the
security of a PRF based on the first input, we need to ensure that the second
input—which in the case of xtr can also be a key—does not repeat.

While we use collision-resistance on separated keys, we need to use a sepa-
rate mechanism on non-separated keys since, as just discussed, they might have
inherent redundancy. We thus introduce a mapping that is non-injective on non-
separated keys (which are intermediate keys in the key schedule), and we prove
that the mapping is injective on separated keys and, in particular, injective on
output keys which the adversary has access to. Therefore, proving pseudoran-
domness and uniqueness of the output keys using internal handles implies the

Key-schedule Security for the TLS 1.3 Standard 9

pseudorandomness and uniqueness of the output keys using external handles. To
prove this rigorously, we define a relation over the state of two games, one using
internal and one using external keys, and we show via induction over the oracle
calls that the relation holds throughout and that if the relation on the state of
the two games holds, then their input-output-behaviour is identical. We here im-
port a proof technique from the area of formal verification, applying invariants
for functional equivalence of pseudo-code in a paper proof.

We now outline the proof of the pseudorandomness and uniqueness of the
output keys of the key schedule using internal handles (Theorem D.1). For de-
tails, see Appendix D.
Proof Outline

1. We idealize the transcript hash such that different transcripts always lead
to different hash values.

2. We introduce a check for collisions that aborts the game instead of storing
the same value for two different dishonest handles. The proof for this hop
follows from collision-resistance of the derivation primitives, and we also
use induction over the construction rules for keys and handles (see Fig. 2).
The induction start relies on the uniqueness of dishonest application PSKs
(the adversary is only allowed to store each application PSK value once)6,
the separation between application and resumption PSKs and uniqueness of
dishonest DH secrets as guaranteed by the mapping.

3. We then introduce a check for collisions on honest early salts that aborts
the game with a special win symbol instead of storing a value for a honest
early salts that would collide with a prior early salt, honest or dishonest
(Lemma D.4). The adversary technically wins when it causes a collision;
Lemma D.7 removes the symbol from the game and bounds the loss.

4. We replace the handshake salt values (hsalt) and the output keys derived
from honest DH secrets with fresh uniformly random values (Lemma D.5).

5. Relying on the pseudorandomness properties of the xtr/xpd derivations at
every level, we replace all honest keys with uniformly random keys of the
same length. (Lemma D.6). The proof follows from a hybrid argument both
over the depth of the resumption tree and the derivation steps at each re-
sumption level.

6. We introduce a check for collisions that aborts the game instead of storing
the same value for different honest and dishonest output keys and binders.
(Lemma D.7). For collisions between honest and dishonest keys, we rely
on the pre-image resistance of the xtr and xpd computation: it is hard to
find a pre-image of a uniformly random output value (as honest keys are
already idealized). We bound any collisions between two honest keys by
a birthday bound. An analogous argument allows us to analyze and then
remove the special win aborts for collisions with honest early salts introduced
in Lemma D.4.
After this step, output keys and binders are unique and, if honest, random.

6 PSK handles are administrative. As they are not shared with anyone else, an adver-
sary with multiple handles for the same PSK value would only ‘confuse’ itself.

10 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

1.2 Related Work

In this paper, we model simultaneous protocol executions using different ci-
phersuites based on the same keying material. We capture the flexible way in
which TLS negotiatiates ciphersuites and security parameters by considering
keys tagged with algorithms. See [37,13] for a discussion on negotiation and [17]
for a model and proof of TLS 1.2 that considers agility.

The following discussion focuses on attacker capabilities and security guar-
antees, and glosses over the exact encoding into security games and the use of
multiple keys and stages.

Early drafts of TLS 1.3 were based on the OPTLS protocol by Krawczyk
and Wee [50], and used semi-static Diffie-Hellman shares instead of pre-shared
keys. Kohlweiss et al. [46] investigate a modified variant of the draft-06 TLS
1.3 handshake in the constructive cryptography framework [53].

Dowling et. al. [35,36] present a multi-stage security model of draft-05 and
draft-10 using variants of the Bellare-Rogaway key exchange models. Their
multi-stage model considers psk_ke, dh_ke, and psk_dhe_ke modes in isolation.
Li et al. [51] adapt the multi-stage security model to also capture the recursive
nature of the TLS 1.3 key schedule, by accounting for the re-use of resumption
secrets between different modes (psk_ke, psk_dhe_ke, and the now removed
semi-static share 0-RTT). All of these works proved various subsets of the TLS
standard secure.

Cremers et al. [32,31] investigate the security of draft-10 and draft-21,
using the automated Tamarin prover (in the symbolic model). Their work inves-
tigates the proposed post-handshake client authentication and finds an attack
that exploited a missing binding between PSKs and transcripts that led to the
addition of binders to the standard. To our knowledge ours is the first reduction
proof that models the additional security afforded by binder values.

Bhargavan et al. [12] also model TLS 1.3, decomposed into 3 separate pieces:
dh_ke 1-RTT handshake, the 0-RTT handshake, and the record protocol. They
verify these models using both ProVerif [21] and CryptoVerif [19]. A limitation
of their model is the informal way in which the separate guarantees for the three
components are combined to justify the overall security of the protocol.

Blanchet [20] introduces a new proof modularization framework in Cryp-
toVerif, which bears significant similarities with the state-separating proof frame-
work [27] that our work is based on. The work also updates some of the model
from draft-18 to draft-28; however, the model still assumes that all pre-
shared keys are derived from resumption secrets and does not capture adaptively-
created dishonest application PSKs, or the security of PSK binders.

Many other works focus on analysing certain properties of the TLS 1.3 hand-
shake protocol. For instance, Arfaou et. al. [5] specifically analyse the privacy of
the TLS 1.3 psk_ke, dh_ke, and psk_dhe_ke handshakes. Fischlin et. al. [42]
analyse the draft-06 TLS 1.3 handshake, and show that its modes achieve key
confirmation in isolation. Fischlin et. al. [40] considers replay attacks against
various drafts of TLS 1.3 0-RTT handshakes such as draft-14’s psk_ke mode,

Key-schedule Security for the TLS 1.3 Standard 11

similarly considering versions and modes in isolation. Other relevant papers on
TLS handshake analysis are [49,38,30].

The idea of analyzing a key schedule (rather than a key exchange protocol) is
conceptually similar to the SIGMA-I pattern of Krawczyk [47] and Krawczyk and
Wee [50]. In the simpler setting considered in these works, the relation between
key exchange and key schedule can be performed by hand which is a conceptual
validation of the approach taken in the current paper.

Recent work also looked at the tightness of TLS 1.3 security proofs [34,33].
Besides natural birthday bounds for collision resistance, our reductions avoid
the common quadratic loss in the number of sessions. We remark however, that
tightness was not the principal focus of our analysis.

In follow-up work, Brzuska et al. [26] analyze the key schedule and tree key
encapsulation mechanism (TreeKEM) of Draft 11 of the messaging layer security
standard using the SSP methodology in a similar style. Dupressoir et al. [39] show
how SSP proofs can be used for a formalization in EasyCrypt and Abate et al. [1]
formalize SSPs in Coq as the SSProve tool.

2 State-Separating Proofs

Our technical approach is based on state-separating proofs (SSP) [27], a variant
of the code-based game-playing proofs of Bellare and Rogaway [10]. Following
their approach, we define games and oracles by their pseudo-code. To enable
proofs on large constructions, we further decompose games into packages, each
with their own interface and private state. We refer to [27] for a formal presenta-
tion of SSPs. We now give an overview of a short proof (without code), illustrated
on key expansion (xpd). The next sections provide examples of pseudocode.

Definition 2.1 (Packages). A package is a collection of named oracles, whose
code share access to private local state, and may in turn call oracles defined in
other packages. Its output interface consists of the names of its oracles. Its input
interface consists of the names of the oracles they call.

Packages can be composed by connecting their input and output interfaces. A
game is a package whose oracles are fully defined: its input interface is empty.

GxpdbXPD

Fig. 3: Gxpdb game

Consider a function xpd(k, x) that takes a (fixed-length)
key and a label and returns a (fixed-length) bitstring—
TLS uses such functions (with an additional digest argu-
ment) to create independent keys for each label. We may
model its security as indistinguishability between two games with a single

Keyin1

Keyoutb

GET
Xpd

SET

SET

GET

XPD

Fig. 4: Composed definition
for game Gxpdb.

XPD(x) oracle: a real game Gxpd0 whose oracle
returns xpd(k, x) where k is a private variable
initialized at random, and an ideal game Gxpd1

whose oracle returns instead random results, us-
ing a private table indexed by x to memorize
these results. Fig. 3 introduces our visual nota-
tion for these packages. By convention, we prefix

12 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

packages with G to indicate their use as security games. The adversary inter-
acts with one of the games Gxpdb and aims to determine the challenge bit b.
We model this adversary as a package with input interface {XPD} and with
a oracle that runs its code and returns its guess. We write A → Gxpdb for
its composition with our games, and define its advantage as Adv(A, Gxpdb) :=∣∣Pr[1 = A → Gxpd0]− Pr[1 = A → Gxpd1]

∣∣.
Keyin1

Keyint
b1

GET
Xpd1

SET

SET

XPD1

Keyout
b2

GET
Xpd2

SET

GET

XPD2

Fig. 5: Composed game
Gxxpdb1,b2

In protocols, the key used for key expansion may
be produced by some other package, and the derived
keys it produces may in turn be used in later steps
of the key schedule. To enable compositional proofs,
we thus split our Gxpd game into three packages: a
core Xpd package and two Key packages that hold
the keys it consumes and produces. As detailed in
Section 2, each of these key packages holds multiple
key instances, indexed by handles ranged over by h.
The Key packages have oracles SET(h, k) and GET(h) to set and get their keys,
respectively. Depending on their idealization bit b, they either store and return
the concrete value passed to SET (if b = 0) or sample, store, and return a fresh
random value (if b = 1). The core XPD package is now stateless: its XPD(h, x)
oracle calls GET(h) to retrieve the input key k, then calls

Keyin1

Keyoutb

GET
Xpd1

SET

SET

XPD1

Keyout0

GET
Xpd2

SET

GET

XPD2

Keyin1

Keyout1

GET
Xpd1

SET

SET

XPD1

Keyoutb

GET
Xpd2

SET

GET

XPD2

Fig. 6: Reducing to the
Gxpd1 assumption, reduc-
tion R1 in gray (top). Re-
ducing to the Gxpd2 as-
sumption, reduction R2
in gray (bottom).

SET((h, x), xpd(k, x)) to store the derived key in a
table at index (h, x). Fig. 4 on the right defines the
resulting, analogous definition of our XPD game. Its
top key package is always ideal (since expansion is
keyed with a random key) whereas the bottom key
package is parameterized by the game’s challenge
bit b. For the rest of the example, we let Gxpdb refer
to this composed package.

We now illustrate SSPs by reducing the security
of two-step expansion (simplified from TLS) to the
security of its two steps. The first step derives an
intermediate key, e.g. a traffic secret or a resumption
master secret from which further output keys can
be derived. Both steps are modeled using the XPD
package described above, with different domains for
their keys, and different names for their oracles (with
two oracles XPD1(h, x) and XPD2(h, x) for the 2-step
expansion).

Fig. 5 gives a hybrid definition of the two-step
expansion game parametrized by their two bits b1
and b2. The proof that output keys are uniformly
random proceeds in two steps. We first idealize Gxpd1, switching b1 from 0 to
1 (Fig. 6). We then idealize Gxpd2, now keyed with a random intermediary key,
switching b2 from 0 to 1 (Fig. 6). By combining the two steps, we obtain:

Adv(A, Gxxpd0,0, Gxxpd1,1) ≤ Adv(A → R1, Gxpdb
1) + Adv(A → R2, Gxpdb

2).

Key-schedule Security for the TLS 1.3 Standard 13

Notation We use capital letters for oracle names and write P.ORACLE(x) to
refer to oracle ORACLE with argument x in package P. In code, we use lowercase
names for auxiliary functions. We write T , K ,. . . for tables and sets; ⊥ for errors;
h for a sequence of h; x ← e for assigning the result of e to x; and x←$K for
sampling x uniformly at random in K.

We write throw event for the command that immediately returns event to
the adversary, skipping any further oracle computation or state change. After-
wards, all oracles are considered silenced and immediately return ⊥, a behaviour
introduced by Rogaway and Zhang in [57]. We use this command to model col-
lisions within indistinguishibility games. We write assert c as an abbreviation
for if c : throw ⊥ and use it in oracles to restrict their use by the adversary.

We write Adv(A, G0, G1), or just Adv(A, Gb), for the advantage of A distin-
guishing between two games G0 and G1, i.e.,

∣∣Pr
[
A → G0]− Pr

[
A → G1]∣∣.

3 Security Assumptions

We now define the assumptions that our protocol analysis relies on: collision
resistance, (dual) pseudorandomness for the PRFs (xtr) and KDFs (xpd), and
salted oracle Diffie-Hellman.

3.1 Collision-Resistance

Gcrf-alg,b

HASH(t)

assert t ∈ dom(f-alg)
d← f-alg(t)
if H [t] = ⊥ :

if b ∧ d ∈ range(H) :
throw abort

H [t]← d

return d

Fig. 7: Gcrf-alg,b code.

Fig. 7 defines the collision-resistance game Gcrf-alg,b for
a given function f-alg. The HASH oracle takes as input a
text t from the domain of f-alg and returns its digest d.
If that text t has not been queried before, the digest is
stored in table H at index t. In the ideal game (b = 1),
the oracle first checks whether d already occurs in H ,
and if so, throws an abort. Hence, the adversary can
distinguish between the real and the ideal game if and
only if it can submit two different texts with the same
digest. Our definition generalizes to n-ary functions by
letting the text t be the tuple of their arguments. TLS
1.3 supports an extensible set of hash algorithms, cur-
rently defined as H = {sha256, sha384, sha512} (see
FIPS 180-2) and it employs these algorithms in three functionalities; hence, we
rely on collision-resistance of the functions hash-alg, xtr-alg, and xpd-alg for
every alg ∈ H. We write len(alg) for the output length of alg.

3.2 Pseudorandomness

Fig. 8 defines pseudorandomness for a given two-input functions f-alg. Since we
may need to apply the same assumption twice, we let f-alg† be f-alg with its
arguments swapped, i.e. f-alg†(k, x) := f-alg(x, k).

We now describe each of the games. In the real pseudorandomness game
Gprf-alg,0, the adversary submits values x to the oracle EVAL. Upon the first
call, a random key k is sampled, then the oracle returns f-alg evaluated on k and

14 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Gprf-alg,0

EVAL(x)

if k = ⊥ :
k←$ {0, 1}len(f-alg)

return f-alg(k, x)

Gprf-alg,1.EVAL(x)

if T [x] = ⊥ :
T [x]←$ {0, 1}len(f-alg)

return T [x]

Fig. 8: Oracles of the
pseudorandomness
game (Gprf-alg,b).

x. In the ideal game Gprf-alg,1, the oracles returns in-
stead truly random values, memorized in table T . Our
main theorem assumes pseudorandomness of xtr-alg
with alg ∈ H, formalized in game Gprf-alg,b with f-alg =
xtr-alg, dual pseudorandomness Gprf-alg,b with f-alg =
xtr†-alg and pseudorandomness of xpd-alg with alg ∈ H,
formalized in Gprf-alg,b with f-alg = xpd-alg.

3.3 Salted Oracle Diffie-Hellman (SODH)

The decisional Diffie-Hellman assumption (DDH) states
that, given two honestly generated group elements X =
gx and Y = gy, the Diffie-Hellman secret gxy is indistin-
guishable from a uniformly random group element [23].
To account for extraction and active adversaries, the
oracle Diffie-Hellman assumption (ODH) keeps gxy pri-
vate and states that the values extracted from an honest
Diffie-Hellman secret are pseudorandom, even if the adversary is given an oracle
where it can submit values Z and sees, e.g., hash(Zx) [2,24]. The variant of oracle
Diffie-Hellman that we consider (SODH) additionally accounts for salting: the
adversary also submits a salt value s and sees xtr(s, Zx). Our assumption states
that, even in this case, xtr(s, gxy) is pseudorandom.

DHGEN()

g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

XTR(X,Y, salt)

assert L[X] 6= ⊥
∧ grp(X) = grp(Y) = grp
∧ alg(salt) ∈ H

alg ← alg(salt)
if b ∧ L[Y] 6= ⊥ :
h← dh〈sort(X,Y)〉
if S[h, salt] = ⊥ :
S[h, salt]←$ {0, 1}len(alg)

return S[h, salt]
return xtr-alg(salt, Y L[X])

Fig. 9: Oracles of the (monolithic) game
Gsodh2grp,b for the group description grp,
where gen(grp) returns the group gener-
ator, ord(g) the order of the generator
and sort(X,Y) sorts shares X and Y lex-
icographically. alg(salt) returns the algo-
rithm tag of the adversary’s salt.

TLS 1.3 supports an extensi-
ble set G of group descriptions,
currently {secp256r1, secp384r1,
secp521r1, x25519, x448}. Accord-
ingly, we tag all group elements
(X, gx, Y, . . .) with some grp ∈ G,
and write, e.g., grp(X) to access
their group description.

The Gsodh2grp,b game defined in
Fig. 9 captures this property as fol-
lows. The adversary calls DHGEN to
instruct the game to generate hon-
est Diffie-Hellman shares; their pri-
vate exponents are stored in table L.
The adversary calls XTR to use them
to extract secrets for some chosen
key shares and salt; the oracle checks
that these argument are well-formed
and that at least the first share has
been honestly generated. In the real
game (b = 0), or if the second share
is dishonest, the oracle then computes xtr(salt, Y x) and returns it to the adver-
sary. Otherwise (b = 1 and both shares are honest), the oracle samples a fresh

Key-schedule Security for the TLS 1.3 Standard 15

value and returns it to the adversary. For consistency between repeated queries,
this value is memorized in table S indexed by sorted key shares and salt.

Contrary to the PRF-ODH assumptions of Brendel, Fischlin, Günther and
Janson [24], our assumption treats client and server key shares symmetrically.
It is also agile in its hash algorithms (the algorithm tag of salt is chosen by the
adversary), modelling the fact that honest TLS clients and servers may use the
same shares with different algorithms. On the other hand, it does not require
agility in the group description (grp is a fixed parameter of the game), since
the key shares exchanged by TLS always carry this parameter, encoded as a
named group descriptor. Just as in [24], one can give a heuristic argument for
the validity of the assumption, by proving it in the random oracle model under
a computational Diffie-Hellman assumption.

SODH implies PRF-ODH. Besides, SODH allows the adversary to choose
the salt based on both shares, whereas PRF-ODF only allows for dependency
on one of the shares. This is required in TLS 1.3 as the salt used by the client
depends on server messages that may be modified by the adversary. In contrast,
prior analysis of TLS 1.3, e.g., [35], give guarantees only to clients that use the
same salt as the server. (In [35] this is modeled by setting lost to true whenever
cidi 6= cid′i. We conjecture their proofs would not go through if the contributive
identifier cidi only consisted of key shares.)

4 Key Schedule Syntax and Security

We reason about the TLS 1.3 key schedule in terms of its three elementary
operations extract (xtr), expand (xpd) and computation of Diffie-Hellman secrets.
This section first introduces an abstract key schedule syntax and refines it to
capture TLS 1.3 as part of a bigger class of TLS-like key schedules. We then
define key schedule security and state our theorem for TLS-like key schedules.

4.1 Key Schedule Syntax

Our formalization interprets the key schedule as a directed graph where nodes
describe key names (this is different from the data-flow graph in Fig. 1 where
nodes describe operations and from the call graphs of packages for SSP). Each
node (name) n has 0, 1 or 2 ingoing edges, depending on whether it is a base
key (no parents), a result of an xpd operation (1 parent) or a result of an xtr
operation (2 parents). We capture this by the parent name function PrntN which
maps each name to its (ordered) pair of parents (each of which can be ⊥). In
addition to the set of names N and the graph description (encoded as PrntN),
a key schedule has a function Label which maps the name and a resumption bit
to a derivation label. We conveniently model hmac operations by using xpd with
empty label as an alias for hmac. By sound cryptographic practice, a key should
be either used for xpd or for hmac, so if a node has an empty label, it is not
allowed to have siblings. Similarly, xtr operations only yield a single child, and
the multiple children of xpd operations are derived using distinct labels.

16 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Definition 4.1 (Key Schedule Syntax). A key schedule ks = (N, Label,PrntN)
consists of a set of names N and two functions

Label : N × {0, 1} → {0, 1}96 ∪ {⊥}
PrntN : N → (N ∪ ⊥)× (N ∪ ⊥)

with the previously described restrictions.

es 7→ 0salt, psk
hs 7→ esalt, dh

as 7→ hsalt, 0ikm

Fig. 10: parent names
for xtr operations

The table on the right side of Fig. 1 introduces the TLS
key schedule in terms of the parent name function PrntN,
which maps each key to up to two parent names. Stating
and proving our theorem in terms of the concrete TLS
key schedule requires listing and treating each xpd oper-
ation individually. Instead, we prove our theorem for all
TLS-like key schedules (of which the TLS key schedule
as described in Fig. 1 is an instance). We consider a key schedule as TLS-like
if it aligns with TLS in terms of base keys and xtr operations and treats the
psk name as the main root from which all keys except for the base keys can
be reached. Moreover, a TLS-like key schedule only has a single loop. This loop
contains the psk and models resumptions.

Definition 4.2 (TLS-like Key Schedule Syntax). A key schedule ks =
(N, Label,PrntN) is TLS-like if its graph satisfies the above restrictions, its set of
names N contains at least the names 0salt, psk, es, esalt, dh, hs, hsalt, 0ikm, as, rm
and the parent name function PrntN maps 0salt, dh and 0ikm to (⊥,⊥), maps
es, hs and as according to Fig. 10, maps psk to (rm,⊥) and each of the remaining
names n to some pair (n1,⊥) with n1 6= ⊥.

4.2 Key Handles

Complex derivation steps make it crucial to maintain administrative handles in
the game state, both for internal bookkeeping and security modeling as well as
for communication with the adversary. For honest keys, i.e., those sampled by
the model, computed based on honest Diffie-Hellman secrets and derived via xtr
and xpd from honest base keys, the adversary is not given the key itself, but
rather a handle which the adversary can use to instruct the game to perform
further computations on the key. We define handles as nested data records which
each keep track of a step used to compute the associated key. We have several
base handles for PSKs and DH secrets as well as their dummy zero values for
noDH and noPSK mode and base handles for a fixed 0salt and fixed 0ikm (left
upper triangle and right upper triangle in Fig. 2, respectively).

dh〈sort(X,Y)〉 Diffie-Hellman secret
h = psk〈ctr , alg〉 application PSK
noDH fixed zero Diffie-Hellman secret
noPSK〈alg〉 fixed zero PSK
0salt fixed zero salt
0ikm〈alg〉 fixed zero initial key material (IKM)

Key-schedule Security for the TLS 1.3 Standard 17

DHEXP
DHGEN

DH Nkdh Ldh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0K0salt,0..d
0K0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Kpsk, 0
Kpsk, 1..d

1
0 Lpsk

0

A

HASH Hash0

GETO*,0..d

GETbinder, 0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d XPDXPN, 0..d

KI*, 0..d
0 LI*

Z

KO*, 0..d
0 LO*

Z
SETO*,0..d

SETI*,0..d
GETI*,0..d

Qdh
UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

(a) Real Game Gks0

SETO*, 0..d
KO*, 0..d

1 UNQO* LO*

SETpsk,0
DHEXP
DHGEN
XTRes/hs,as,0..d
XPDCXP,0..d

GETO*,0..d

F

(b) Ideal Game Gks1(S)

Fig. 11: Key schedule security games with internal keys I∗ and output keys O∗.
We write 0Kn as an abbreviation for Nkn → LZ

n . We initialize K with 0 values as
mentioned in Section 4.2 (See Fig. 23b in the Appendix for a formal discussion)

All other handles are then built from the base handles via inductively apply-
ing the following two constructors:

xtr〈name, left parent handle, right parent handle〉.
xpd〈name, label, parent handle, other arguments〉.

For example, given a handle to the early master secret hes, the handle to the
client early transport secret (derived from the early master secret in one step)
is defined as

hcet = xpd〈cet, c e traffic, hes, tes〉

where tes is the transcript of the protocol messages exchanged so far, and
‘c e traffic’ is the constant byte string label prescribed in the RFC for this
derivation step.

The handle always determines the named functionality (the index cet) and
its algorithm descriptor, in case it is agile, written alg(hcet). We write tagh(k)
for key k tagged with this algorithm. For convenience, we write len(hcet) as an
alias for len(alg(hcet)). When we write hcet we assume that this handle is of the
above form. The handle indicates the actual key-derivation step, in this case

kcet = xpd(kes, c e traffic, des).

Recall that, to support agility, our keys carry an algorithmic descriptor as
metadata. In the example above, the derivation depends on the hash algorithm

18 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Xpdn,`

Parameters

n : name
` : level

PrntN : N → (N⊥ ×N⊥)
Labels : N × {0, 1} → {0, 1}96

State

no state

XPDn,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
(k1, hon)← GETn1,`(h1)
if n = psk :
`← `+ 1
k ← xpd(k1, (label, args))

else
d← HASH(args)
k ← xpd(k1, (label, d))

h← SETn,`(h, hon, k)
return h

Xtrb
n,`

Parameters

n : name
` : level
b : bit
PrntN : N → (N⊥ ×N⊥)
Labels : N × {0, 1} → {0, 1}96

State

no state

XTRn,`(h1, h2)

n1, n2 ← PrntN(n)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)
k ← xtr(k1, k2)
hon ← hon1 ∨ hon2

if b ∧ hon2 :
k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SETn,`(h, hon, k)
return h

DH

Parameters

G : set of groups
ord : G→ N

State

E : table

DHGEN(grp)

assert grp ∈ G
g ← gen(grp)
x←$Zord(grp)

X ← gx

E[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X]; k ← Y x

hon ← honX ∧ honY

h← SETdh(h, hon, k)
return h

Fig. 12: Code for key derivation

for the xpd derivation step. The algorithm is defined by the handle hes and
implicitly passed to xpd as part of kes.

The handle data also defines a level: the number of resumptions it records,
counting from 0 and adding one for each node with a resumption label. We write
level(hcet) for this level. Note that we use handle data also to communicate the
handshake mode to the key schedule. A noDH Diffie-Hellman handle signals a
psk_ke mode, while a noPSK〈alg〉 PSK handle signals a dh_ke mode. Similarly,
we introduce handles 0ikm〈alg〉 for the dummy key value 0len(alg) as well as 0salt
for the 1-bit-long 0-key. This is because hmac (see Fig. 19) pads keys with zeroes
up to their block length and thus, storing multiple zero values would introduce
redundancy in the model without a correspondence in real-life.

Key-schedule Security for the TLS 1.3 Standard 19

4.3 Key Schedule Security Model

We aim to capture that the key schedule produces keys which are pseudorandom
and unique. We define the security of the key schedule with the help of an ideal
functionality which returns uniformly random and unique keys to the adversary.
Security of a key schedule then demands that the real execution of the key
schedule is indistinguishable from a simulated execution of the key schedule,
performed by a simulator who does not have access to the honest keys provided
to the adversary by the ideal functionality.

We describe the real execution of the key schedule as a game Gks0, written in
pseudocode. Following the SSP methodology outlined in Section 2, we split the
pseudocode of the game Gks0 into several packages, the functionality and mean-
ing of each of which we describe in the subsequent subsections. Fig. 11a depicts
the composed game Gks0—recall that this graph is not merely an illustration, it
is part of the formal definition of Gks0.

Similarly, we describe an ideal game Gks1(S), parametrized by a simulator
S, see Fig. 11b. The K1

O∗,0..d and LO∗ package which we define in Section 4.5
constitute the ideal functionality, namely, the K1

O∗,0..d package samples a uni-
formly random key for handles which correspond to honest keys with a name
n ∈ O∗ and some level 0 ≤ ` ≤ d—our notion of honesty corresponds to what is
referred to as freshness in the key exchange literature. We elaborate on honesty
in Section 4.6. The LO∗ package, in turn, ensures that each handle corresponds
to a different key, modeling key uniqueness for both honest and dishonest keys.

The game Gks0 exposes SETpsk,0 and DHGEN oracles to allow the adversary
to set honest Diffie-Hellman shares as well as (potentially dishonest) application
PSKs. The adversary can then instruct the game to perform key derivations
using Xtr and Xpd oracles. Finally, the output keys can be accessed by the GET
oracle on the (real) key package K0

O∗,0..d. Real key packages store concrete keys
and do not rely on randomness.

In turn, in the ideal game (Fig. 11b), the K1
O∗,0..d packages answer the ad-

versary’s GET queries for output keys while the simulator is responsible for all
other responses (and does not see the results returned to the adversary in a GET.
The (ideal) key packages K1

O∗,0..d answer with a randomly sampled key (see code
in Fig. 14) once the simulator decides a key should be available. This cleanly
models the functionality of a key schedule, where after the protocol execution
the participants have access to a shared, random key.

Definition 4.3 (Key Schedule Advantage). For a key schedule ks = (N, Label,
PrntN), a natural number d, a simulator S and an adversary A which makes
queries for at most d levels we define the advantage

Adv(A, Gks0, Gks1(S)) :=
∣∣Pr
[
1 = A → Gks0]− Pr

[
1 = A → Gks1(S)

]∣∣ ,
where Gks1(S) is defined in Fig. 11b and Gks0 is defined in Fig. 11a.

20 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

4.4 Xtr and Xpd Key Derivation

The oracles XPDn(h1, r, args) and XTRn(h1 , h2) implement the functionality of
the key schedule, i.e., they perform key derivations. Both oracles are parametrized
by the name of the key they generate. While XTR (defined in the middle column
of Fig. 12) takes the two handles as inputs, the XPD oracles (defined in the left
column of Fig. 12) gets a resumption bit and args as input in addition to its
input handle. The resumption bit is used by the Label function when deriving
the bind value to differentiate between application and resumption PSKs.

Throughout this paper, a key k consists of a value and a tag that indicates a
hash algorithm, written alg(k). Recall that keys are tagged and that the xtr and
xpd functions use the hash algorithms which is indicated by the tag of their key
k, and produce keys with the same tag.

Agile transcript hash (Hash) and Diffie-Hellman (DH) TLS 1.3 supports a
variety of hash algorithm and (elliptic-curve) groups. As for keys and handles, we
implement this agility by tagging transcripts and group elements; alg(t) returns
the algorithm to be used for hashing transcript t and grp(X) returns the group
for operations on group element X.

To facilitate the proof, we separate the computation of transcript hash val-
ues and Diffie-Hellman secrets into their own individual packages. The package
Hash0 has an oracle HASH(t) that evaluates hash(t) for any supported hash func-
tion alg(t); its straightforward code is given in Appendix A.1. (The proof also
involves an idealized package Hash1 that guarantees collision freeness.)

LP
n

UNQn(h, hon, k)

if (∃ h? : Logn [h?] = (h′, hon′, k)
∧ level(h) = r ∧ level(h?) = r′) :

P (r, hon, r′, hon′)
Logn [h]← (h, hon, k)
return h

P the command P (r, hon, r′, hon′) is

Z ∅
A if hon = hon′ = 0 ∧ r = r′ = 0 :

throw abort
F throw abort

Fig. 13: L package

The package DH, has two oracles, de-
fined in Fig. 12: DHGEN samples x, stores
x, and returns a share X = gx; DHEXP
exponentiates a tagged group element Y
of the same group with the private ex-
ponent of X. The main purpose of this
package is to hide private exponents. This
will be employed in the proof to justify an
idealization step based on an SODH as-
sumption for each supported group. The
last line of the DHEXP oracle calls the
oracle SET of a key package to record
the derived DH secret. Note that a Diffie-
Hellman share is honest exactly if it has
a key in the exponent table E . DHEXP
therefore consults the table also for the
share Y to determine its honesty.

4.5 Keys and Logs

We store keys in K packages which contain an array of keys and honesty infor-
mation, indexed by the handle. See Fig. 14 for the code of K and Fig. 13 for the
code of L. Contrary to other key handles that have a name and a level, the

Key-schedule Security for the TLS 1.3 Standard 21

Kb
n,`

State

K : key table

SETn,`(h, hon, k?)

assert name(h) = n
assert level(h) = `

assert alg(k?) = alg(h)
if Kn,`[h] 6= ⊥

return h

k ← untag(k?)
assert len(h) = |k|
if b :

if hon :
k←$ {0, 1}len(h)

UNQn(h, hon, k)
Kn,`[h]← (k, hon)
return h

GETn,`(h)

assert Kn,`[h] 6= ⊥
(k∗, hon)← Kn,`[h]
k ← tagh(k∗)
return (k, hon)

Fig. 14: K package

handles for DH secrets and 0-Keys are used globally
across levels. We model this by a separate Nk pack-
age (Fig. 15) that has a single array for all keys and
a SETn oracle (without level). To allow for uniform code
of Xtrhs,`, the GETdh,` oracles of Nk are parametrized by
the level but ignore it when retrieving the key.

As discussed in Section 4.3, we use the Kb package
to express security properties. The real game (b = 0)
stores the concrete key values in an array, whereas the
ideal game (b = 1) replaces the key values of honest
keys with a random value of the same length. In addi-
tion, the K package employs the UNQ oracle of package L
to model key uniqueness. To this end, L keeps track of all
key values passed to UNQ, indexed by their handle and
their honesty, and implements different uniqueness guar-
antees, depending on its pattern parameter P : (1) the F
(full) pattern guarantees full uniqueness, causing UNQ
to throw an abort if two key values collide, regardless
of handle level or honesty; (2) the A (application PSK)
pattern guarantees application PSK uniqueness, caus-
ing UNQ to throw an abort if two dishonest application
PSK values collide, where application PSKs are detected
based on the level of their handle; (3) the (Z) (zero) pat-
tern does not provide any guarantees. The proof relies
on additional patterns (see Appendix A.2).

The SET oracle guarantees that multiple calls with
repeated handles return immediately and do not affect
the state of key packages. This allows for multiple calls
to SET and together with the close mirroring of key com-

Nkn

SETn(h, hon, k)

assert name(h) = n
if Kn [h] 6= ⊥

return h

UNQn(h, hon, k)
Kn [h]← (k, hon)
return h

GETn,0..d(h)

assert Kn [h] 6= ⊥
(k, hon)← Kn [h]
return (k, hon)

Fig. 15: Nk package

putations in our handle structure guar-
antees that honest parties with the same
handle will also retrieve the same key,
irrespective of the order of their SET
calls. Finally, note that while the K pack-
ages store untagged keys, the GET oracle
copies additional information (algorithm
and name) from the handle to the key to
pass it to the caller as part of the tagged
key.

4.6 Application Key Registration & Honesty

Key honesty is a crucial concept to model the guarantee that honest keys, when
returned to the adversary, look pseudorandom. A key handle h (which we recall
contains the entire derivation history) is marked as honest if either the last PSK

22 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

was honest or the last Diffie-Hellman secret was honest. A Diffie-Hellman secret
is honest if both shares are honest, i.e., were both generated by DHGEN.

Check
XPDn,`(h1, r, args)

if n = bind :
if r = 0,assert level(h1) = 0
if r = 1,assert level(h1) > 0

elseif n ∈ S ∩ early :
binder ← BinderArgs(args)
hbinder ← BinderHand(h1, args)
(k,_)← GETbinder,`(hbinder)
assert binder = k

elseif n ∈ S :
X,Y ← DhArgs(args)
hdh ← DhHand(h1)
assert hdh = dh〈sort(X,Y)〉
binder ← BinderArgs(args)
hbinder ← BinderHand(h1, args)
(k,_)← GETbinder,`(hbinder)
assert binder = k

h← XPDn,`(h1, r, args)
return h

Fig. 16: Check code

The honesty of an application PSK depends
on the adversary’s choice when invoking the SET
oracle (Fig. 14): If the key is registered as hon-
est (hon = 1), a fresh key is sampled instead
of the one supplied by the adversary while oth-
erwise the key is used as-is. The handle pro-
vided by the adversary is validated for correct
structure by the checks assert level(h) = ` and
assert name(h) = n for ` = 0 and n = psk.

Also note that the L for an application PSK,
ensures that the same application PSK is not
registered twice, removing modeling redundancy.
Recall that, fortunately, the supported hash-
algorithms in TLS 1.3 have pairwise-distinct tag
lengths, and thus, one cannot register the same
PSK value with different algorithms.

4.7 Front-End Check

The XPD oracle of the Check package, see Fig. 16
filters calls to Xpd and enforces usage restrictions
for the key schedule that the TLS 1.3 handshake
guarantees and that key schedule security relies
on. Check ensures that the resumption flag is con-
sistent with the level of the PSK; that the shares contained in the transcript
correspond to the shares used in the DH computation, and that the binder tag
included in the transcript of later stages (at the end of the last ClientHello
message) is the same that was computed and checked in the early stage. We
need Check to enforce this property at (at least) one node—called separation
point—on the path to each output key.
Definition 4.4 (Separation Points).
For a key schedule ks = (N, Label,PrntN), we call S ⊆ N a set of separation
points, if it satisfies the following two requirements:
– For each n ∈ O the path from psk to n contains an n′ ∈ S.
– If there exists a path from dh to a n ∈ O, then it contains an n′ ∈ S.

In addition, to express our assumptions, for each xpd operation in the key sched-
ule, we choose one representative child. I.e., XPR ⊆ N is a representative set for
ks if psk, esalt ∈ XPR and for each name n ∈ N with only a single parent (these
are the xpd nodes), either n or exactly one sibling of n is contained in XPR.

4.8 Key Schedule Theorem

Theorem 4.5. Let ks be a TLS-like key schedule with representative set XPR
and a set of separation points S. Let d ∈ N. Let PO∗ := {n : ∃n′ ∈ O∗ : (n,_) =

Key-schedule Security for the TLS 1.3 Standard 23

PrntN(n′)} and SO∗ :=
⋃
{ChldrnN(n1) | n1 ∈ PO∗}. There exists an efficient

simulator S such that for all adversaries A which make queries for at most d
resumption levels, use at most sn,`,alg = thon=1

n,alg honest and thon=0
n,alg dishonest

parent keys for algorithm alg to generate keys with name n at level `, and let
tn,alg be max{thon=0

n,alg , thon=1
n,alg }.

Adv(A, Gks0, Gks1(S)) ≤∑
alg∈H

(
Adv(A → Rmain

cr → Ralg,hash, Gcrhash-alg,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j → Ralg,f , Gcrhash-alg,b)

)
+ max

i∈{0,1}

[∑
grp∈G

Adv(Ai → Rmain
sodh → R

grp
sodh2, Gsodh2grp,b)

+ 2 · min
alg∈H

Adv(Ai → Rmain
sodh → R

alg
sodh-cr, Gcrhash-alg,b)

+
∑

alg∈H

(∑
0≤`≤d

[
ses,`,alg · Adv(Ai → Rmain

es,`,alg, Gprxtr-alg†,b)
+shs,`,alg · Adv(Ai → Rmain

hs,`,alg, Gprxtr-alg,b)
+sas,`,alg · Adv(Ai → Rmain

as,`,alg, Gprxtr-alg,b)

+
∑

n∈XPR
sn,`,alg · Adv(Ai → Rmain

n,`,alg, Gprxpd-alg,b)
]

+ 2 ·
[(∑

0≤`≤d

sesalt,`,alg
)
· Adv(Ai → Rmain

esalt,pi,alg, Gprxpd-alg,b)
+ Adv(Ai → Rmain

esalt,pi-cr,alg, Gcrhash-alg,b)
]

+
∑

n∈SO∗∩XPR
2 ·
[(∑

0≤`≤d

sn,`,alg
)
· Adv(Ai → Rmain

n,pi,alg, Gprxpd-alg,b)
+ Adv(Ai → Rmain

n,pi-cr,alg, Gcrhash-alg,b)
]

+2−len(alg) ·
[
(c+ 1) · t2esalt,alg+(2c+ 6) · t2es,alg +

∑
n∈PO∗

((2c+ 6) · t2n,alg)
])]

,

Ai defined in Appendix D.1, modifies A without significantly changing its
complexity: it behaves as A except that it returns i on some aborts; Rmain

∗ :=
Rch-map → R∗ when replacing ∗ by cr, Z, D or sodh; Rmain

∗,alg := Rch-map → Ralg
∗

when replacing ∗ by n, pi, n, pi-cr , esalt, pi or esalt, pi-cr ; Rmain
∗,`,alg := Rch-map →

R∗,` → Ralg
∗,` when replacing ∗ by es, hs, as, n; the simulator S is marked in grey

in Fig. 26b; Ralg,f is defined in Lemma A.2, Rsodh is defined in Fig. 32a, Res,`
is defined in Fig. 34a, Rhs,` and Ras,` are defined analogously, and Rn,` for n ∈
XPR and 0 ≤ ` ≤ d are defined in Fig. 34b; Ralg

n,` for n ∈ XPR ∪ {es, hs, as} are
defined in Lemma E.6; Ralg

sodh-cr and Rgrp
sodh2 are defined in Lemma E.1, Resalt,pi

is defined in Fig. 32c and Rn∈PO∗,pi is defined in Fig. 32d; c is a small constant
which depends on the min-entropy of the distribution xtr(k, Ulen(alg)), where k
is a fixed key and U2len(alg) denotes the uniform distribution of strings of length
len(alg).

24 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Theorem 4.5
Main Theorem

Lemma E.1
SODH:
mod-to-mon

Lemma A.1
agile coll.-res.

Lemma A.2
coll.-res.
xtr,xpd

Lemma E.6
Pseudo-Rand.:
mod-to-mon

Lemma E.9
Preimage-res.:
mod-to-mon

Lemma E.2
SODH to mon.

Lemma E.3
SODH 4-to-2

Lemma E.4
SODH non-agile

Lemma E.5
gen. transform

Lemma E.7
pi-to-pr

Lemma E.8
Code Equiv.

Lemma E.10
Slicing

Theorem C.1
Modular Theorem

Lemma C.2
Map-Intro

Lemma C.3
Main Reduction

Lemma C.4
Xpd-inlining

Lemma C.5
Map-Outro

Claim C.5.1
Injectivity

Claim C.5.2
Func. Equiv.

Theorem D.1
Core Theorem

Lemma D.2
Coll. Resistance

Lemma D.3
D-pattern

Lemma D.4
R-esalt

Lemma D.5
SODH

Lemma D.6
KI-hybrid

Lemma D.7
Preimage

Claim D.10.1
Id. Order

Lemma D.11
Xtr-1

Lemma D.12
Xtr-2

Lemma D.13
Xtr-3

Lemma D.14
Xpd

Claim D.7.1
Code Equiv.

Claim D.7.2
Co-Dep. Events

Lemma D.9
Co-Dependance

Reductions to monolithic assumptions

Handle map

Core key schedule proof

Fig. 17: Proof Tree

Key-schedule Security for the TLS 1.3 Standard 25

5 From Key Schedule to Key Exchange and TLS

To complement our analysis of the key schedule, we return to its integration
within TLS 1.3. We re-state the handshake protocol in terms of calls to the
concrete key schedule interface, and give an informal argument of key-exchange
security based on the idealized key schedule, following the general proof structure
of the SIGMA-I paradigm. Fig. 18 describes the TLS 1.3 handshake, refining the
outline at the top of Fig. 1, but still omitting details. Its code delegates all key
derivations to the key schedule to obtain keys at each step of the protocol. It uses
some of these keys, and returns the others to the record layer: nextKeys advances
the key-schedule to derive traffic secrets for 0-RTT data (kcet), for handshake
messages (kcht, ksht), and for 1-RTT data (kcat, ksat); and two exporter secrets
(keem, keam).

Initially, the client offers a list of shares {gxj

j } over disjoint groups gj (iden-
tified here by their tagged generators) each produced by gendh (Section 4.4).
The client may also indicate support for groups without offering shares, but this
can be ignored from the key schedule perspective, as it just involves an extra
roundtrip (called hello-retry-request) to get the share. The client also offers a list
of pre-shared key objects kpsk,i, each associated with a label labeli and tagged
with its hash algorithm alg(kpsk,i) and a flag res(kpsk,i) that indicates whether
it refers to an application PSK or an internal resumption PSK. Although the
PSK label only represents its local name, the binder ki

binder (computed as the
HMAC of the client’s offer under a key derived from kpsk,i with either a ext
binder or res binder label) guarantees that the peers agree on the flag, the
label and the key value when a PSK is selected. The distinction between appli-
cation and resumption PSKs matters because they imply different identities. For
resumption PSK, it is the certificate in the original pure Diffie-Hellman hand-
shake from which the PSK originates. Without the ext or res label, a malicious
server A can install the resumption PSK of a session as an application PSK
at another (honest) server B, allowing A to forward a resumption from C to B
(with mixed psk_dhe_ke key exchange, and thus honest keys) without agree-
ment on the peer’s identity. Our proof addresses this issue by mapping PSKs,
at a significant complexity cost. The list of PSK can be empty, leaving the
hash algorithm undefined. Our model handles this without loss of generality,
by adding a dishonest PSK shared by all clients and servers for each algorithm.
This matches the concrete key computation, which uses a string of 0s of the
hash algorithm’s digest length if no PSK is provided. The list of Diffie-Hellman
shares can also be empty, causing TLS to use a default Diffie-Hellman secret
built as a bitstring of zeros (whose length matches the hash algorithm digests).
This is similarly modelled by adding unsafe singleton group descriptors. Upon
receiving the client hello (CH) message, the server chooses one of the offered
PSKs and one of the offered shares, checks the binder for the selected PSK, and
indicates its choice in the server hello message (SH). 0-RTT is permitted only
if the server picks the first offered psk0. If the server picks any other PSK, the
client discards its early secret and restarts with a fresh key schedule instance.
If the server sends a certificate (C), it signs the transcript containing the hellos

26 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Fig. 18: TLS 1.3 handshake, built on top of the key schedule. Functions gendh and
nextKeys model key-schedule computations. Following the standard, handshake traffic
secrets are used to derive both finished messages (deriveFin) and the record keys for
protecting handshake messages [. . .]kcht . We mark output keys that must not be re-
vealed to a key-exchange adversary by [. . .]. QUIC uses handshake traffic secrets, and
thus cannot be composed with TLS 1.3 generically. Application traffic secrets are used
to encrypt NST messages, and thus cannot be used in generic compositions. Hence,
only the exporter secrets enjoys Bellare-Rogaway key-indistinguishability [9].

(CH, SH), binders, encrypted extensions (EE) and certificate (C), and sends the
signature in the certificate verify (CV) message. It finally creates and sends a
MAC in the server finished (SF) message. Interestingly, the application traffic
key is derived from a transcript that only contains the server’s finished MAC,
before the client confirms the server (and its own) identity, a pattern sometimes
called 0.5-RTT. Once the client finished MAC is created, the handshake outputs
a fresh PSK to resume the connection in the future, using the full transcript up
to the client finished (CF) message to derive the resumption secret and a ticket
nonce to derive individual resumption PSKs. Interestingly, some TLS messages
(including the NewSessionTicket that carry resumption tickets) are sent after
the completion of the handshake.

Key-schedule Security for the TLS 1.3 Standard 27

Towards a Handshake Security Model In key-exchange, two sessions are
partnered if they have the same key handles, and a session is fresh if all its keys
are honest and neither the session itself not its partner session were revealed.
With this definition, key-indistinguishability of the key-exchange follows concep-
tually from indistinguishability of the key schedule. In practice, this notion of
freshness is too limited. With partnering, it implicitly authenticates transcript
and PSK identities, but does not capture certificate-based authentication (which
uses long-term secrets), and does not provide explicit key confirmation (with-
out interpreting the certificate verify and finished messages in the transcript).
I.e., one needs to extend the model to capture the derivation of finished keys
from the handshake traffic secrets (with a standard KDF), and the computation
of finished MAC and transcript signatures (with standard UNF-CMA). The
uniqueness property of handles then suffices to prove agreement across resump-
tion levels for the TLS 1.3 handshake, regardless of the handshake mode (PSK
or mixed) in the session history. Our key-schedule model allow for adversari-
ally chosen application PSKs and ephemeral Diffie-Hellman shares, thus enables
adaptive corruption of signing keys in the key exchange. If one considers signing
keys as long-term keys and PSKs as ephemeral, then our model is stronger than
perfect forward secrecy, since (a) we have security before the long-term signing
key is corrupted, (b) we have security against passive adversaries, but also (c)
we allow for adversarially chosen ephemeral values and (d) we have security if
the adversary did not tamper with the peer’s share.

6 Lessons Learned & Afterthoughts on the Key Schedule

We now discuss changes to the key schedule that would improve its security and
simplify its analysis and may be of independent interest for other protocols.

Simplify SODH. The salted Diffie-Hellman computation extracts entropy from
the DH secret and mixes it with the PSK-derived salt (which is under adversar-
ial influence). A separate DH extraction, preferably hashing the (sorted) public
shares together with the secret, followed by a dual PRF, would enable a proof
based on the simpler and better understood Oracle Diffie-Hellman assumption.
The hashing of shares would also remove the need to map DH secrets (currently
computable from multiple pairs of shares), and would enable the use of a more
abstract functionality such as a CCA-secure KEM (as in TLS 1.2 [17]). These
changes would thus also ease the integration of post-quantum secure primitives.

Eliminate PSK mapping. Similarly, directly applying domain-separation for
computations based on application and resumption PSKs via distinct labels
would remove the need to map PSKs and argue via inclusion of binders at
separation points indirectly. Both proposals follow the same design pattern: first
sanitize input key materials, to prevent malleability (DH secrets) and collisions
(dishonest resumption PSKs and adversarially-chosen application PSKs).

Avoid Agile Assumptions Our development supports multiple hash algo-
rithms without requiring any hash-agile assumptions, by observing that the hash
functions currently used by TLS 1.3 have pairwise-distinct digest lengths. This

28 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

is brittle, e.g. adding support for SHA3 with the same lengths as SHA2 would
require to formally account for cross-algorithm collisions. This may be prevented
by tagging the outputs of all extractors and KDFs with hash algorithms. Simi-
larly, we may avoid the current need for agile (S)ODH assumptions by tagging
group elements with both a group descriptor and a single extraction algorithm.

Prevent PSK Reflections. Drucker and Gueron note that TLS 1.3 is subject
to reflection attacks due to its symmetric use of PSKs [38]. Hence, in our model,
the same PSK handle may either be used by two parties, as intended, or by
the same party acting both as a client and as a server. This is a security risk,
inasmuch as applications may embed identity information in PSK identifiers to
benefit from their early authentication. It may also enable key synchronization
attacks and other variants of key compromise impersonation [16] when identities
are also symmetrical. When using PSKs, the standard unfortunately forbids
certificate-based authentication, which would otherwise provide more detailed,
role-specific identity information. At the key schedule level, it may be possible
to enforce better separation by tagging PSK identifiers with roles.

Enforce Stronger Modularity. Applied cryptographers often complain that,
in TLS 1.2, the subtle interleaving of the handshake with the record layer hinders
its analysis based on the well-established Bellare-Rogaway [9] security model [45].
While TLS 1.3 tries to enforce cleaner separation between handshake and record
keys, it still fails in some important places. Notably, the handshake traffic secrets,
meant to be released to the record layer (be it TLS, DTLS, or QUIC) are also
used by the handshake to derive finished keys. Similarly, some handshake mes-
sages are encrypted under keys derived from application traffic secrets (e.g. New
Session Ticket, carrying resumption PSKs, late client authentication, and key
updates). This complicates the modeling of data stream security, as application
data may be interleaved with handshake messages (e.g. the same QUIC packet
may contain both data and session tickets). To prevent such issues, and many
others, we suggest the RFC document more explicitly its application interface.

Acknowledgements

We thank Benjamin Dowling for collaboration at the early stages of this work
during his internship at Microsoft Research Cambridge and insightful follow-up
discussions relating our work to his own line of research.

References
1. C. Abate, P. G. Haselwarter, E. Rivas, A. V. Muylder, T. Winterhalter, C. Hrit,cu,

K. Maillard, and B. Spitters. Ssprove: A foundational framework for modular
cryptographic proofs in coq. Cryptology ePrint Archive, Report 20201/397, 2021.
https://eprint.iacr.org/2021/397.

2. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 143–158. Springer, Heidelberg, Apr. 2001.

https://eprint.iacr.org/2021/397

Key-schedule Security for the TLS 1.3 Standard 29

3. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS
2015, pages 5–17. ACM Press, Oct. 2015.

4. N. J. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In 2013 S&P, pages 526–540. IEEE, May 2013.

5. G. Arfaoui, X. Bultel, P.-A. Fouque, A. Nedelcu, and C. Onete. The privacy of the
TLS 1.3 protocol. PoPETs, 2019(4):190–210, Oct. 2019.

6. N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt. DROWN: Breaking TLS using SSLv2. In T. Holz and
S. Savage, editors, USENIX Security 2016, pages 689–706. USENIX, Aug. 2016.

7. C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann. Augmented
secure channels and the goal of the TLS 1.3 record layer. In M. H. Au and A. Miyaji,
editors, ProvSec 2015, volume 9451 of LNCS, pages 85–104. Springer, Heidelberg,
Nov. 2015.

8. M. Bellare. New proofs for NMAC and HMAC: Security without collision resis-
tance. Journal of Cryptology, 28(4):844–878, Oct. 2015.

9. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Hei-
delberg, Aug. 1994.

10. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

11. B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In 2015 S&P, pages 535–552. IEEE,
May 2015.

12. K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference im-
plementations for the TLS 1.3 standard candidate. In 2017 S&P, pages 483–502.
IEEE, May 2017.

13. K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Zanella-
Béguelin. Downgrade resilience in key-exchange protocols. In 2016 S&P, pages
506–525. IEEE, May 2016.

14. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko,
A. Rastogi, N. Swamy, S. Zanella-Béguelin, and J.-K. Zinzindohoué. Implementing
and proving the TLS 1.3 record layer. In IEEE Security & Privacy. IEEE, 2017.

15. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-Y. Strub. Triple
handshakes and cookie cutters: Breaking and fixing authentication over tls. In
IEEE Symposium on Security & Privacy (Oakland), 2014.

16. K. Bhargavan, A. Delignat-Lavaud, and A. Pironti. Verified contributive channel
bindings for compound authentication. In NDSS 2015. ISOC, Feb. 2015.

17. K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella
Béguelin. Proving the TLS handshake secure (as it is). In J. A. Garay and R. Gen-
naro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 235–255.
Springer, Heidelberg, Aug. 2014.

18. K. Bhargavan and G. Leurent. Transcript collision attacks: Breaking authentica-
tion in TLS, IKE and SSH. In NDSS 2016. ISOC, Feb. 2016.

19. B. Blanchet. CryptoVerif: Computationally sound mechanized prover for crypto-
graphic protocols. In Formal Protocol Verification, volume 117, page 156, 2007.

30 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

20. B. Blanchet. Composition theorems for CryptoVerif and application to TLS 1.3.
In CSF, pages 16–30, July 2018.

21. B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. ProVerif 2.00: automatic
cryptographic protocol verifier. User Manual, 2018.

22. H. Böck, J. Somorovsky, and C. Young. Return of bleichenbacher’s oracle threat
(ROBOT). In W. Enck and A. P. Felt, editors, USENIX Security 2018, pages
817–849. USENIX, Aug. 2018.

23. D. Boneh. The decision Diffie-Hellman problem. In ANTS, volume 1423 of LNCS.
Springer, Heidelberg, 1998.

24. J. Brendel, M. Fischlin, F. Günther, and C. Janson. PRF-ODH: Relations, in-
stantiations, and impossibility results. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 651–681. Springer, Hei-
delberg, Aug. 2017.

25. R. Bricout, S. Murphy, K. G. Paterson, and T. van der Merwe. Analysing and
exploiting the mantin biases in RC4. Cryptology ePrint Archive, Report 2016/063,
2016. http://eprint.iacr.org/2016/063.

26. C. Brzuska, E. Cornelissen, and K. Kohbrok. Cryptographic security of the
MLS rfc, draft 11. Cryptology ePrint Archive, Report 20201/137, 2021. https:
//eprint.iacr.org/2021/137.

27. C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and M. Kohlweiss. State
separation for code-based game-playing proofs. In T. Peyrin and S. Galbraith, edi-
tors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 222–249. Springer,
Heidelberg, Dec. 2018.

28. C. Brzuska, M. Fischlin, N. Smart, B. Warinschi, and S. Williams. Less is more:
Relaxed yet composable security notions for key exchange. Cryptology ePrint
Archive, Report 2012/242, 2012. http://eprint.iacr.org/2012/242.

29. C. Brzuska, K. Kohbrok, and M. Kohlweiss. From the Monolithic Age to Agile
Composite Assumptions. Preprint, Feb. 2021.

30. S. Chen, S. Jero, M. Jagielski, A. Boldyreva, and C. Nita-Rotaru. Secure com-
munication channel establishment: TLS 1.3 (over TCP fast open) vs. QUIC. In
K. Sako, S. Schneider, and P. Y. A. Ryan, editors, ESORICS 2019, Part I, volume
11735 of LNCS, pages 404–426. Springer, Heidelberg, Sept. 2019.

31. C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe. A comprehen-
sive symbolic analysis of TLS 1.3. In B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, ACM CCS 2017, pages 1773–1788. ACM Press, 2017.

32. C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016
S&P, pages 470–485. IEEE, May 2016.

33. H. Davis and F. Günther. Tighter proofs for the sigma and tls 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029, 2020. https://eprint.
iacr.org/2020/1029.

34. D. Diemert and T. Jager. On the tight security of tls 1.3: Theoretically-sound
cryptographic parameters for real-world deployments. Cryptology ePrint Archive,
Report 2020/726, 2020. https://eprint.iacr.org/2020/726.

35. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis
of the TLS 1.3 handshake protocol candidates. In I. Ray, N. Li, and C. Kruegel,
editors, ACM CCS 2015, pages 1197–1210. ACM Press, Oct. 2015.

36. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis
of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology
ePrint Archive, Report 2016/081, 2016. http://eprint.iacr.org/2016/081.

http://eprint.iacr.org/2016/063
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2021/137
http://eprint.iacr.org/2012/242
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
http://eprint.iacr.org/2016/081

Key-schedule Security for the TLS 1.3 Standard 31

37. B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the
TLS protocol. In E. Foo and D. Stebila, editors, ACISP 15, volume 9144 of LNCS,
pages 270–288. Springer, Heidelberg, June / July 2015.

38. N. Drucker and S. Gueron. Selfie: reflections on TLS 1.3 with PSK. Cryptology
ePrint Archive, Report 2019/347, 2019. https://eprint.iacr.org/2019/347.

39. F. Dupressoir, K. Kohbrok, and S. Oechsner. Bringing state-separating proofs to
easycrypt - a security proof for cryptobox. Cryptology ePrint Archive, Report
20201/326, 2021. https://eprint.iacr.org/2021/326.

40. M. Fischlin and F. Günther. Replay attacks on zero round-trip time: The case
of the TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 60–75. IEEE, 2017.

41. M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson. Data is a stream:
Security of stream-based channels. In R. Gennaro and M. J. B. Robshaw, ed-
itors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 545–564. Springer,
Heidelberg, Aug. 2015.

42. M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key confirmation in key
exchange: A formal treatment and implications for TLS 1.3. In 2016 S&P, pages
452–469. IEEE, May 2016.

43. P. Gaži, K. Pietrzak, and M. Rybár. The exact PRF-security of NMAC and HMAC.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 113–130. Springer, Heidelberg, Aug. 2014.

44. J. Iyengar and M. Thomson. QUIC. IETF draft, 2019.
45. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. Authenticated confidential channel

establishment and the security of TLS-DHE. Journal of Cryptology, 30(4):1276–
1324, Oct. 2017.

46. M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and D. Venturi. (De-
)constructing TLS 1.3. In A. Biryukov and V. Goyal, editors, INDOCRYPT 2015,
volume 9462 of LNCS, pages 85–102. Springer, Heidelberg, Dec. 2015.

47. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 400–425. Springer, Heidelberg, Aug. 2003.

48. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
Heidelberg, Aug. 2010.

49. H. Krawczyk. A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages
1438–1450. ACM Press, Oct. 2016.

50. H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. Cryptology ePrint
Archive, Report 2015/978, 2015. http://eprint.iacr.org/2015/978.

51. X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. Multiple handshakes security of TLS
1.3 candidates. In 2016 S&P, pages 486–505. IEEE, May 2016.

52. G. Lowe. A hierarchy of authentication specification. In 10th Computer Security
Foundations Workshop (CSFW ’97), pages 31–44. IEEE Computer Society, 1997.

53. U. Maurer. Constructive cryptography - a primer (invited paper). In R. Sion,
editor, FC 2010, volume 6052 of LNCS, page 1. Springer, Heidelberg, Jan. 2010.

54. N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-
protocol attack on the TLS protocol. In T. Yu, G. Danezis, and V. D. Gligor,
editors, ACM CCS 2012, pages 62–72. ACM Press, Oct. 2012.

55. K. G. Paterson and T. van der Merwe. Reactive and proactive standardisation of
TLS. In Security Standardisation Research, pages 160–186, 2016.

https://eprint.iacr.org/2019/347
https://eprint.iacr.org/2021/326
http://eprint.iacr.org/2015/978

32 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

56. C. Patton and T. Shrimpton. Partially specified channels: The TLS 1.3 record
layer without elision. Cryptology ePrint Archive, Report 2018/634, 2018.

57. P. Rogaway and Y. Zhang. Simplifying game-based definitions - indistinguisha-
bility up to correctness and its application to stateful AE. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 3–
32. Springer, Heidelberg, Aug. 2018.

hash(t)

t∗ ← untag(t)
alg ← alg(t)
d∗ ← hash-alg(t∗)
d← tagalg(d∗)
return d

xtr-alg(k1, k2)

k ← hmacalg(k1, k2)
return k

hmacalg(k, t)

ipad ← 0x36blocksize(alg)

opad ← 0x5Cblocksize(alg)

k† ← k‖0|ipad|−|k|

inner ← hash-alg(k† ⊕ ipad)‖t

d← hash-alg((k† ⊕ opad)‖inner)
return d

xpd-alg(k1, (label, d))

if label = [] :
return hmacalg(k1, d)

t ← (len(alg), tls13 ‖label, d)‖0x01
k ← hmacalg(k1, t)
return k

xtr(k1, k2)

if alg(k1) = ⊥ :
alg ← alg(k2)
k2 ← untag(k2)

else alg ← alg(k1)
k1 ← untag(k1)

k ← hmacalg(k1, k2)
return tagalg(k)

xpd(k1, (label, d))

alg ← alg(k1)
k1 ← untag(k1)
k ← xpd-alg(k1, label, d)
return tagalg(k)

Fig. 19: Specification of the hash, hmacalg, xtr and xpd algorithms according to
standard. Recall from Fig. 1 that xpd with empty label executes hmacalg. Tuple
notation (., .) denotes an injective encoding of pairs, while concatenation .||.
is a non-injective operation on pairs of strings. Observe that hmacalg pads each
input key to blocklength by adding zeroes. We assume that blocklength is always
greater than algorithm length. For Sha-256, for example, the blocklength is 512
bits. The blocklength of an algorithm is determined by the cipher it internally
iterates.

Key-schedule Security for the TLS 1.3 Standard 33

A Agile and Composed Assumptions and Notions

Recall that TLS 1.3 supports multiple algorithms for xtr [8] (used to extract keys
and MAC tags) and xpd [48]. Therefore, our proof for the TLS 1.3 key schedule
(see Appendix 4) also relies on assumptions for multiple algorithms, so-called
agile assumptions. We model agile assumptions by agile functions. Their inputs
are tagged with an algorithm, and the agile function executes the algorithm in
the tag on the input. For details, see Section 4.4. Note that there, we also discuss
agility for supporting multiple groups in Diffie-Hellman computations.

Additionally, our proof of the TLS 1.3 key schedule relies on defining reduc-
tions via cuts in graphs as illustrated in Fig. 6 and Fig. 6 in Section 2. Thus, in
this appendix, we formalize all assumptions via security games which we write
as a composition of several packages. Of particular important will be Key and
Log packages which conceptually play the same role as the K and L packages
introduced in Section 4.5. However, in the proof and assumptions, we rely on a
greater variety of Key and Log packages with different abort patterns than just
A, and F . We introduce our various Key and Log packages in Appendix A.2.

We discuss agile collision-resistance in Appendix A.1. Section A.3 contains
several security games for xtr and xpd, including the SODH assumption. In Ap-
pendix E, we then reduce our composed assumptions to the monolithic assump-
tions that were introduced in Section 3.

A.1 Agile Collision-Resistance

We reduce the collision-resistance of xtr and xpd to the collision-resistance of
hash. The following result is folklore and the closest attribution we could find is
a talk by Hugo Krawczyk at the 8th BIU Winter School on Cryptography7. We
refer to Fig. 19 for the specification of xtr and xpd.

Lemma A.1 (Collision Resistance of xtr and xpd). For all adversaries A,
f ∈ {xtr, xpd} and any alg ∈ H

Adv(A, Gcrf-alg,b) ≤ Adv(A → Rf , Gcrhash-alg,b)

Fig. 20 defines the collision-resistance game Gacrf,b for a given agile function
f, with a table Hash that records input texts t and their digests d = f(t). In the
ideal game (b = 1), the oracle aborts when the adversary submits a text whose
digest collides with a prior entry in the table. We denote the collision-resistance
advantage of an adversary A against agile function f by Adv(A, Gacrf,b). Recall
that f can be any out of the set {hash, xtr, xpd}. When f = hash, then we introduce
the following abbreviation:

Hashb := Gacrhash,b for b ∈ {0, 1}

7 https://cyber.biu.ac.il/wp-content/uploads/2017/08/KE3_Hugo_BIU_
Feb2018.pdf

https://cyber.biu.ac.il/wp-content/uploads/2017/08/KE3_Hugo_BIU_Feb2018.pdf
https://cyber.biu.ac.il/wp-content/uploads/2017/08/KE3_Hugo_BIU_Feb2018.pdf

34 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Gacrf,b

HASH(t)

assert alg(t) ∈ H
if Hash[t] 6= ⊥ :

return Hash[t]
d← untag(f(t))
if b ∧ d ∈ range(Hash) :

throw abort
Hash[t]← d

return d

Fig. 20: Game Gacrf,b.

The difference between Gacrf,b and the
collision-resistance game Gcrf-alg,b, given in Fig. 7
in Section 3.1, is that Gacrf,b is parametrized by a
set of supported algorithms H and that the HASH
oracle of Gacrf,b asserts that the tag of the input
is indeed in the set H. Note that H can be any
set of algorithms (as long as the computational as-
sumptions hold for that set). Lemma A.2 relies on
H containing only hash-algorithms with different-
length outputs. All other statements in this arti-
cle (as long as they do not rely on Lemma A.2)
do not require any specific properties from H. We
now relate that agile collision-resistence to non-
agile collision-resistance (see Fig. 7 in Section 3.1).

Lemma A.2 (Agile Collision Resistance). For all adversaries A and f ∈
{hash, xtr, xpd} and a set H where each alg ∈ H has a different output length,
we have that

Adv(A, Gacrf,b) ≤
∑

alg∈H
Adv(A → Ralg,f , Gcrhash-alg,b)

where Ralg,f = Ralg → Rf , Ralg for alg ∈ H is defined in Fig. 21 using an
arbitrary order < on H, and Rf is taken from Lemma A.1.

Ralg

HASH(t)

assert alg(t) ∈ H
if Hash[t] 6= ⊥ :

return Hash[t]
if alg(t) = alg :

return HASH(untag(t))
d← untag(f(t))
if d ∈ range(Hash)

∧ alg(t) < alg :
throw abort

Hash[t]← d

return d

Fig. 21: Reduction Ralg.

Proof. The proof of this lemma relies on H only con-
taining hash-functions with different output length.
As a result of the output length being different,
conceptually, in the agile collision-resistance game
Gacrf,b, we could instead maintain different tables
Hashalg, since the intersection of the ranges for dif-
ferent alg ∈ H is empty. The proof thus follows via
hybrid argument over alg ∈ H using an arbitrary or-
der < on H and algfst being the smallest algorithm
in H with respect to the order < and alglst being the
largest algorithm in H with respect to the order <.
By construction of Ralg, we have

Ralgfst → Gcralgfst,0 code≡ Gacrf,0

Ralglst → Gcralglst,1 code≡ Gacrf,1 (1)

and for all alg < alglst with successor alg′, we have

Ralg → Gcralg,1 code≡ Ralg′ → Gcralg′,0 (2)

Key-schedule Security for the TLS 1.3 Standard 35

We then use the telescopic sum argument and triangle inequality for a standard
hybrid arguments:∣∣Pr

[
1← A→ Gacrf,0]− Pr

[
1← A→ Gacrf,0]∣∣

(1)=
∣∣Pr
[
1← A→ Ralgfst → Gcralgfst,0]− Pr

[
1← A→ Ralglst → Gcralglst,1]∣∣

(2)=

∣∣∣∣∣∣
∑

alg∈H
Pr
[
1← A→ Ralg → Gcrf-alg,0]− Pr

[
1← A→ Ralg → Gcrf-alg,1]∣∣∣∣∣∣

≤
∑

alg∈H
Adv(A → Ralg, Gcrf-alg,b)

≤
∑

alg∈H
Adv(A → Ralg → Rf , Gcrhash-alg,b)

This concludes the proof of Lemma A.2.

A.2 Handles, Key Packages, Uniqueness Logs

We now turn to the Key and Log packages, see Fig. 22 for their formal description.
As the K and L package, the Key package is an array for storing keys and their
honesty and Log contains a table to notice collisions. In comparison to L, the
Log package has more patterns as well as a novel mapping mechanism.
Patterns. Instead of the patterns A (apsk), F (full) and Z (zero), now, there
are also a D (dishonest), and a R (rewarding) pattern. In the case of an R abort,
the special symbol win is returned instead of abort. The patterns are written in
a table in Fig. 22 rather than inlined as if -then-branches.
Mapping. The Log now also contains a mapping parameter map which affects
UNQ as follows: If map = ∞, then for all collisions on dishonest keys, UNQ
returns the first handle with this key value. If map = 1, only the first collision
between two distinct handles h and h′ such that (1) they have the same key
value, (2) exactly one of the handles has level 0, is mapped, i.e., the second
handle is mapped to the first. For each key value, such mapping is only done
once when map = 1.

Jumping ahead, we note that map = ∞ will be used for DH mappings and
map = 1 will be used for APSK mappings in the proof of Lemma C.2. In
Lemma A.3, we prove that the simplified K and L packages are equivalent to
the special cases of Key and Log.

Lemma A.3 (Simplified key package equivalence). For any name n:

K0
n,0..d → LZ code≡ Key0

n,0..d → LogZ
n (3)

K1
n,0..d → LF code≡ Key1

n,0..d → LogF
n (4)

K1
n,0

K0
n,1..d

→ LA code≡
Key1

n,0

Key0
n,1..d

→ LogA
n (5)

36 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Keyb
n,`

SETn,`(h, hon, k?)

assert name(h) = n
assert level(h) = `

assert alg(k?) = alg(h)
k ← untag(k?)
assert len(h) = |k|
if Qn(h) 6= ⊥ :

return Qn(h)
if b :

if hon :
k←$ {0, 1}len(h)

h′ ← UNQn(h, hon, k)
if h′ 6= h :

return h′

Kn,`[h]← (k, hon)
return h

GETn,`(h)

assert Kn,`[h] 6= ⊥
(k∗, hon)← Kn,`[h]
k ← tagh(k∗)
return (k, hon)

LogP,map
n

Qn(h)

if Logn[h] = ⊥ :
return ⊥

else (h′,_,_)← Logn[h]
return h′

UNQn(h, hon, k)

if (∃ h′ : Logn [h′] = (h′, hon′, k)
∧ level(h) = r ∧ level(h?) = r′) :

if map(r, hon, r′, hon′Jn[k]) :
Logn [h]← (h′, hon, k)
Jn [k]← 1
return h′

if (∃ h? : Logn [h?] = (h′, hon′, k)
∧ level(h) = r ∧ level(h?) = r′) :

P (r, hon, r′, hon′)
Logn [h]← (h, hon, k)
return h

P the command P (r, hon, r′, hon′) is

Z ∅
A if hon = hon′ = 0 ∧ r = r′ = 0 :

throw abort
D if hon = hon′ = 0 : throw abort
R if hon = hon′ = 0 : throw abort

else throw win
F throw abort

map the command map(r, hon, r′, hon′, Jn [k]) is

0 0
1 hon = hon′ = 0 ∧

∧ r 6= r′ ∧ 0 ∈ {r, r′} ∧ Jn [k] 6= 1
∞ hon = hon′ = 0

Fig. 22: Oracles that define the Keyb
n,` (left) and Logn package (right).

SET(h, hon, k) registers a key value k for handle h with honesty status hon.
The key value and its honesty can be accessed via GET. When map =∞, UNQ
returns the first handle that registered the same key; when map = 1, UNQ
returns the first handle, but only if this is the first collision between an applica-
tion PSK (level = 0) and an application PSK (level > 0); see discussion before
Lemma C.2. We omit to write map when map = 0. Collisions in unmapped keys
can cause aborts as specified by the pattern P ∈ {Z,A,D,R, F}. Note that the
asserts name(h) = psk and level(h) = 0 ensure that h = psk〈ctr , alg〉.

Key-schedule Security for the TLS 1.3 Standard 37

Proof. We first start with the differences in the code of K and Key and then turn
to the differences in the code of L and Log.

Code of Key The SET oracle of Key, as opposed to the SET oracle of K, uses Q
to ensure consistent input-output behavior on a repeated handled h. If map =
0, then UNQ(h, ∗, ∗) always returns h (unless it aborts). Thus, for the cases
considered in Eq. 3-5, using Q or K for this purpose is equivalent.

Similarly, the SET oracle of Key does not store hon and k in K if h′ 6= h.
However, this never happens in the cases Eq. 3-5, since map = 0 and thus, these
lines are irrelevant for the behaviour of Key for the cases we consider.

Another difference is that the SET oracle of Key always queries UNQ and also
when b = 0. This affects Eq. 3 and 5. However, in the case that the pattern is
Z, the query has no effect (Eq. 3). And if the level is 1 or higher, then the query
also has no effect when the pattern is A (Eq. 5).

Code of Log Since we compare cases where map = 0, the map = 1 and map =
∞ branches of Log are irrelevant. The different encoding of A is equivalent, and
the patterns D, R and F do not appear in Eq. 3-5.

Nkeyn

SETn(h, hon, k)

assert name(h) = n
if Qn(h) 6= ⊥ :

return Qn(h)
h′ ← UNQn(h, hon, k)
if h′ 6= h :

return h′

Kn [h]← (k, hon)
return h

GETn,0..d(h)

assert Kn [h] 6= ⊥
(k∗, hon)← Kn [h]
k ← tagh(k∗)
return (k, hon)

(a) Nkey

Nkey0salt

State

K0salt : key table
Initial state:
K0salt [0salt]← 0

Nkey0ikm

State

K0ikm : key table
Initial state:
for alg ∈ H :

K0ikm [0ikm〈alg〉]← 0len(alg)

Nkeydh

State

Kdh : key table
Initial state:
for alg ∈ H :

Kdh [noDH〈alg〉]← 0len(alg)

Keypsk,0

State

Kpsk,0 : key table
Initial state:
for alg ∈ H :

K0psk,0[noPSK〈alg〉]← 0len(alg)

(b) Initial State

Fig. 23: Nkey and state initialization

38 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Nkey For Diffie-Hellman keys, 0salt, and 0ikm, we use package indices that have
no level, since keys need to be available on all levels. Uniqueness proofs would
suffer from introducing unnecessary redundancy and thus, we introduce a Nkey
package which stores the relevant keys globally and returns them without con-
sidering the level from which they were requested. That is, Nkey exposes a SETn
oracle without a level and GETn,` oracles for all levels ` ∈ {0, .., d}. Note that
some of the handles and keys miss attributes commonly stored in the tags of
keys and handles, and thus, the SETn oracle of Nkey performs less checks on
them.

In particular, we use the packages Nkey0salt , Nkeydh and Nkey0ikm. We pro-
vide the code of Nkeyn in Figure 23a. We initialize the state of the Nkeyn pack-
ages as specified in Figure 23b. For n ∈ {0salt, 0ikm}, this is necessary, since
we do not expose a SETn query to the adversary and since these packages only
store fixed zero-values. These zero-values corresponds to setting missing values
to a zero string which is of the same length as the output of alg, as specified
by the TLS RFC. Note that for 0ikm, we store a 0-value for each algorithm alg
of the length which corresponds to the algorithm, but for 0salt, we only store a
single 1-bit-long 0-key. This is because hmac (see Fig. 19) pads keys with zeroes
up to their block length and thus, storing multiple zero values would introduce
redundancy in the model without a correspondence in real-life.

Equivalence As the K and Key package, the Nkey packages are code-equivalent
to the Nk packages introduced in Section 4.5 when composed with a zero log.

Lemma A.4 (Simplified Nkey package equivalence). For any name n:

Nk→ LZ code≡ Nkey→ LogZ

Proof. The SET oracle of Nkey, as opposed to the SET oracle of Nk, uses Q to
ensure consistent input-output behavior on a repeated handled h. since map =
0, the UNQ(h, ∗, ∗) always returns h (unless it aborts). Thus, as we considerd
P = Z, using Q or K for this purpose is equivalent.

A.3 Pseudorandomness Assumptions

We now turn to our pseudorandomness assumptions, all depicted in Fig. 24. All
of the games are structured as sketched in Section 2, i.e., an ideal (upper) Key1

package stores honest and random input keys (as well as dishonest, concrete keys
which are chosen by the adversary), then some package retrieves these keys via
GET and stores the result in a lower Keyb package. If b = 0, the concrete keys
are stored. If b = 1 and the handle is honest, then a uniformly random key is
drawn by the lower Key1 package instead. The adversary can retrieve keys via
GET to the lower Keyb package. We add a HASH1 package for performing hash-
computation—that package is already idealized, i.e., collision-free as to avoid
collisions on input so that these are exclusively pseudorandomness assumptions.

Firstly, we assume that xpd, when keyed with a uniformly random key, be-
haves like a pseudorandom function. See Fig. 24a for the corresponding security

Key-schedule Security for the TLS 1.3 Standard 39

game. Since the computation of the psk requires to increase the level, we for-
mulate a separate game Gxpdb

psk,` in Fig. 24c. We also formulate a separate
pseudorandonmness game Gxpdb

esalt,` in Fig. 24b for the derivation of esalt and
its siblings, since the pattern on the LogR

esalt package is R when we apply the
pseudorandomness assumption for esalt and its siblings.

Analogously to the assumptions for xpd, we formulate three assumptions on
xtr, one for each of the three extraction operations. Namely, we assume that
xtr, when given a uniformly random kpsk (as second input) and a fixed k0salt (as
first input) returns a pseudorandom key—this could be a statistical extractor as-
sumption, but since this property has not been proven statistically, we formulate
it as a computational assumption. Dually, we assume that xtr, when given a uni-
formly random khsalt (as first input) and a fixed k0ikm (as second input) returns
a pseudorandom key. This property could also hold statistically, and its compu-
tational variant is implied by the pseudorandom function properties of hmac, on
which xtr is built [48,8,43]. The corresponding games are stated in Fig. 24d and
Fig. 24f. The assumption on xtr in Fig. 24e is a special case as it contains an
Xtr1 package (and an LogR package). The importance of Xtr1 is that it samples
a random key if the Diffie-Hellman secret is honest. Therefore, output key values
whose handles correspond to derivations based on honest Diffie-Hellman secrets
do not depend on their inputs, regardless of whether the bit in the lower Keyb

hs
package is 0 or 1. For all other keys, the game models pseudorandomness based
on the esalt honesty using the same argument as the other xtr assumptions.
Salted Oracle Diffie-Hellman The game Gsodhb in Fig. 24g formalizes the
SODH assumption introduced in Section 3.3 in terms of the Xtr, DHKey and DH
packages (See Fig. 12): If the bit b in the Xtrhs is set to 1 and the Diff-Hellman
key (in DHKey) is honest, the output key is sampled at random.

To make this assumption meaningful (i.e., not trivially wrong), it is crucial
for the assumption that the pattern on LOGesalt ensures that all keys are unique—
regardless of whether they are honest or dishonest—since all of these keys are
set by the adversary, and a colliding key pair would allow for a trivial attack,
since the concrete computation on these keys would be the same whereas two
randomly sampled keys are highly likely to be different.
Pre-image resistance We now turn to pre-image resistance, i.e., it should
be hard for an adversary to find a pre-image of a uniformly random string. We
need pre-image resistance in two forms modeled as GpiP

O∗ (Fig. 24h) and GpiP
esalt

(Fig. 24i). The first allows us to require full (pattern F) uniqueness for output
keys which requires that honestly generated output keys are collision-free (as
opposed to the D pattern that only restricts collisions between two dishonest
keys). Pre-image resistance as modeled in GpiP

esalt is used to replace theR pattern
(where the adversary directly wins if it can cause an collision with an honest key,
see Lemma D.4) with an D pattern by observing that it is hard for an adversary
to cause the winning condition.

Definition A.5 (Advantages). For a set N and PrntN with XPN ⊆ N and
n ∈ XPN , we define the xpd pseudorandomness advantages

40 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

QCN,UNQCN

Qn1,UNQn1

GETn1,

HASH

XpdCN,

Qn1
UNQn1

Keyn1,

QCN
UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN

D

D

1

b

HASH
Hash1

n1, :=Prnt(n)
CN:=ChldrnN(n1)

(a) Game Gxpdb
n,` for b ∈ {0, 1}

QCN,UNQCN

GETn1,

HASH

XpdCN,

Keyn1,

QCN
UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN
Logesalt

D

D

1

b

HASH
Hash1

 n1, :=Prnt(esalt)
 CN:=ChldrnN(n1)

R

Qn1,UNQn1

Qn1
UNQn1

(b) Game Gxpdb
esalt,` for b ∈ {0, 1}

Qpsk,UNQpsk

Qrm,UNQrm

GETrm,
Xpdpsk,

Qrm
UNQrm

Keyrm,

Qpsk
UNQpsk

Keypsk, +1

SETpsk, +1

GETpsk, +1

SETrm,

XPDpsk,

Logrm

Logpsk

D

D1

1

b

(c) Game Gxpdb
psk,` for b ∈ {0, 1}

Qes,UNQes

Qpsk,UNQpsk

GET0salt,
Xtres,

0Key0salt,

Qes
UNQes

Keyes,
SETes,

GETes,

XTRes,

LogesDb

GETpsk,

Qpsk
UNQpsk

Keypsk,
SETpsk,

LogpskD11

0

GET0salt,1.. -1, +1..d

(d) Game Gxtr1b
es,` for b ∈ {0, 1}

Qhs,UNQhs

Qesalt,UNQesalt

GETesalt,
Xtrhs,

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,
SEThs,

GEThs,

SETdh
GETdh,1.. -1, +1..d

XTRhs,

Logdh

Loghs

Z

Db

GETdh,

Qesalt
UNQesalt

Keyesalt,
SETesalt,

LogesaltR1

1

(e) Game Gxtr2b
hs,` for b ∈ {0, 1}

Qas,UNQas

GET0ikm,
Xtras,

0Key0ikm

Qn
UNQn

Keyas,
SETas,

GETas,

XTRas,

LogasD
b

GEThsalt,

Qhsalt
UNQhsalt

Keyhsalt,
SEThsalt,

LoghsaltD1

0

Qhsalt,UNQhsalt

GET0ikm,1.. -1, +1..d

(f) Game Gxtr3b
as,` for b ∈ {0, 1}

GETesalt,0..d
Xtrhs,0..d

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Logdh

Loghs

Z

D0

GETdh,0..d

Qesalt
UNQesalt

Keyesalt,0..d

SETesalt,0..d
Logesalt

R0

b

DHEXP
DHGEN

DH
SETdh

(g) Game Gsodhb for b ∈ {0, 1}
HASH

GETPO*,0..d

HASH

XpdSO*,0..d

KeySOPO,0..d

SETSO*,0..d

GETSO*\PO*,0..d

SETPO*\ (SO* O*),0..d

XPDSO*,0..d

LogSOPO\O*
LogO*

P

1

Hash1
PO*:={n1:
n1, =PrntN(n) for n O*}
SO*:= ChldrnN(n)
SOPO:=SO* PO*

QSOPO
UNQSOPO

D

(h) Games GpiP
O∗ for P ∈ {D,F}

GETn1,0..d

HASH

XpdCN,0..d

Qn1
UNQn1

Keyn1,0..d

QCN
UNQCN

KeyCN,0..d
SETCN,0..d

GETCN,0..d

SETn1,0..d

XPDCN,0..d

Logn1

LogCN

D

P

1

1

HASH
Hash1

 n1, :=Prnt(esalt)
 CN:=ChldrnN(n1)

(i) Games GpiP
esalt for P ∈ {R,D}

Fig. 24: Pseudorandomness and pre-image-resistance games

Key-schedule Security for the TLS 1.3 Standard 41

Adv(A, Gxpd0
n,`, Gxpd1

n,`) :=
∣∣Pr
[
1 = A → Gxpd0

n,`

]
− Pr

[
1 = A → Gxpd1

n,`

]∣∣
Adv(A, Gxpd0

psk,`, Gxpd1
psk,`) :=

∣∣Pr
[
1 = A → Gxpd0

psk,`

]
− Pr

[
1 = A → Gxpd1

psk,`

]∣∣
Adv(A, Gxpd0

esalt,`, Gxpd1
esalt,`) :=

∣∣Pr
[
1 = A → Gxpd0

esalt,`

]
− Pr

[
1 = A → Gxpd1

esalt,`

]∣∣ .
Additionally, we define the xtr pseudorandomness advantages

Adv(A, Gxtr10
es,`, Gxtr11

es,`) :=
∣∣Pr
[
1 = A → Gxtr10

es,`

]
− Pr

[
1 = A → Gxtr11

es,`

]∣∣
Adv(A, Gxtr20

hs,`, Gxtr21
hs,`) :=

∣∣Pr
[
1 = A → Gxtr20

hs,`

]
− Pr

[
1 = A → Gxtr21

hs,`

]∣∣
Adv(A, Gxtr30

as,`, Gxtr31
as,`) :=

∣∣Pr
[
1 = A → Gxtr30

as,`

]
− Pr

[
1 = A → Gxtr31

as,`

]∣∣ .
The SODH advantage is defined as

Adv(A, Gsodh0, Gsodh1) :=
∣∣Pr
[
1 = A → Gsodh0]− Pr

[
1 = A → Gsodh1]∣∣ .

Finally, we define the pre-image resistance advantages as

Adv(A, GpiD
O∗ , GpiF

O∗) :=
∣∣Pr
[
1 = A → GpiD

O∗

]
− Pr

[
1 = A → GpiF

O∗

]∣∣
Adv(A, GpiR

esalt , GpiD
esalt) :=

∣∣Pr
[
1 = A → GpiR

esalt
]
− Pr

[
1 = A → GpiD

esalt
]∣∣

For a pair of games G0, G1, we use the abbreviation Adv(A, G0, G1) := Adv(A, Gb).

42 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

B Key Schedule Theorem

In this appendix, we show that Theorem 4.5 follows from Theorem C.1 (proved
in Appendix C) and Lemma E.1, Lemma E.6 and Lemma E.9 (proved in Ap-
pendix E). We start by re-stating Theorem 4.5.

Recall that XPR is the set of output key name representatives of Xpd pack-
ages. The need for such representatives arise from us indexing both Xtr packages
and Xpd packages by output keys. As psk is the main root of the key schedule it
is natural to pick it as a representative; as esalt plays a special role in our proof
due to SODH, it is also a natural choice. The other representatives are picked
arbitrarily among siblings.

Theorem 4.5. Let ks be a TLS-like key schedule with representative set XPR
and a set of separation points S. Let d ∈ N. Let PO∗ := {n : ∃n′ ∈ O∗ : (n,_) =
PrntN(n′)} and SO∗ :=

⋃
{ChldrnN(n1) | n1 ∈ PO∗}. There exists an efficient

simulator S such that for all adversaries A which make queries for at most d
resumption levels, use at most sn,`,alg = thon=1

n,alg honest and thon=0
n,alg dishonest

parent keys for algorithm alg to generate keys with name n at level `, and let
tn,alg be max{thon=0

n,alg , thon=1
n,alg }.

Adv(A, Gks0, Gks1(S)) ≤∑
alg∈H

(
Adv(A → Rmain

cr → Ralg,hash, Gcrhash-alg,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j → Ralg,f , Gcrhash-alg,b)

)
+ max

i∈{0,1}

[∑
grp∈G

Adv(Ai → Rmain
sodh → R

grp
sodh2, Gsodh2grp,b)

+ 2 · min
alg∈H

Adv(Ai → Rmain
sodh → R

alg
sodh-cr, Gcrhash-alg,b)

+
∑

alg∈H

(∑
0≤`≤d

[
ses,`,alg · Adv(Ai → Rmain

es,`,alg, Gprxtr-alg†,b)
+shs,`,alg · Adv(Ai → Rmain

hs,`,alg, Gprxtr-alg,b)
+sas,`,alg · Adv(Ai → Rmain

as,`,alg, Gprxtr-alg,b)

+
∑

n∈XPR
sn,`,alg · Adv(Ai → Rmain

n,`,alg, Gprxpd-alg,b)
]

+ 2 ·
[(∑

0≤`≤d

sesalt,`,alg
)
· Adv(Ai → Rmain

esalt,pi,alg, Gprxpd-alg,b)
+ Adv(Ai → Rmain

esalt,pi-cr,alg, Gcrhash-alg,b)
]

+
∑

n∈SO∗∩XPR
2 ·
[(∑

0≤`≤d

sn,`,alg
)
· Adv(Ai → Rmain

n,pi,alg, Gprxpd-alg,b)
+ Adv(Ai → Rmain

n,pi-cr,alg, Gcrhash-alg,b)
]

+2−len(alg) ·
[
(c+ 1) · t2esalt,alg+(2c+ 6) · t2es,alg +

∑
n∈PO∗

((2c+ 6) · t2n,alg)
])]

,

Key-schedule Security for the TLS 1.3 Standard 43

Ai defined in Appendix D.1, modifies A without significantly changing its
complexity: it behaves as A except that it returns i on some aborts; Rmain

∗ :=
Rch-map → R∗ when replacing ∗ by cr, Z, D or sodh; Rmain

∗,alg := Rch-map → Ralg
∗

when replacing ∗ by n, pi, n, pi-cr , esalt, pi or esalt, pi-cr ; Rmain
∗,`,alg := Rch-map →

R∗,` → Ralg
∗,` when replacing ∗ by es, hs, as, n; the simulator S is marked in grey

in Fig. 26b; Ralg,f is defined in Lemma A.2, Rsodh is defined in Fig. 32a, Res,`
is defined in Fig. 34a, Rhs,` and Ras,` are defined analogously, and Rn,` for n ∈
XPR and 0 ≤ ` ≤ d are defined in Fig. 34b; Ralg

n,` for n ∈ XPR ∪ {es, hs, as} are
defined in Lemma E.6; Ralg

sodh-cr and Rgrp
sodh2 are defined in Lemma E.1, Resalt,pi

is defined in Fig. 32c and Rn∈PO∗,pi is defined in Fig. 32d; c is a small constant
which depends on the min-entropy of the distribution xtr(k, Ulen(alg)), where k
is a fixed key and U2len(alg) denotes the uniform distribution of strings of length
len(alg).

The proof of Theorem 4.5 follows from first reducing the security of the
key schedule to modular assumptions (Theorem C.1) and then, in Appendix E,
reducing the modular assumptions (defined in Appendix A) to their mono-
lithic counterparts (defined in Section 3). We now first state Theorem C.1 and
Lemma E.1, Lemma E.6 and Lemma E.9 and then show that they imply Theo-
rem 4.5.
Theorem C.1. Let ks be a TLS-like key schedule with representative set XPR
and separation points S. Let d ∈ N. There is an efficient simulator S such that
for all adversaries A which make queries for at most d resumption levels,

Adv(A, Gks0, Gks1(S))
≤ Adv(A → Rmain

cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

+ max
i∈{0,1}

[
Adv(Ai → Rmain

sodh , Gsodhb)

d−1∑
`=0

(
Adv(Ai → Rmain

es,` , Gxtrb
es,`)

+Adv(Ai → Rmain
hs,` , Gxtrb

hs,`)
+Adv(Ai → Rmain

as,` , Gxtrb
as,`)

+
∑

n∈XPR

(
Adv(Ai → Rmain

n,` , Gxpdb
n,`)
))

+Adv(Ai → Rmain
esalt,pi , Gpib

esalt)
+Adv(Ai → Rmain

O∗,pi , Gpib
O∗)
]
,

where Ai defined in Appendix D.1, modifies A without significantly changing
its complexity: it behaves as A except that it returns i on some aborts; where

44 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Rmain
∗ := Rch-map → R∗ when replacing ∗ by cr, (Z, f), (D, f), sodh, es, hs,

as, n, O∗, pi or esalt, pi, the simulator S is marked in grey in Fig. 26b, Rsodh
is defined in Fig. 32a, Res,` is defined in Fig. 34a, Rhs,` and Ras,` are defined
analogously, and Rn,` for n ∈ XPR and 0 ≤ ` ≤ d is defined in Fig. 34b, Resalt,pi
is defined in Fig. 32c and RO∗,pi is defined in Fig. 32d.

Lemma E.1 (Salted-ODH Advantage). For all A, it holds that

Adv(A, Gsodh0, Gsodh1) ≤ 2 · min
alg∈H

Adv(A → Ralg
sodh-cr, Gcrhash-alg,b)+∑

grp∈G
Adv(A → Rgrp

sodh, Gsodh2grp,b),

where Ralg
sodh-cr := Rsodh4 → Ralg

sodh2-cr,alg and Rgrp
sodh := Rsodh4 → Rsodh2 →

Rgrp. We define the reductions Rsodh4 and Rgrp in Lemma E.2 and Lemma E.4,
respectively, and we describe Ralg

sodh2-cr,alg and Rsodh2 in Lemma E.3.

Lemma E.6 (Advantages). Let n ∈ XPR and let (n1,_) = PrntN(n). Let
A be an adversary that generates at most sn,`,alg honest keys for algorithm alg
with name n1 at level ` via SETn1 ,`(∗, 1, ∗) queries. The xpd pseudorandomness
advantage is bounded by

Adv(A, Gxpd0
n,`, Gxpd1

n,`)

≤
∑

alg∈H
sn,`,alg·Adv(A → Ralg

n,`, Gprxpd-alg,b) (6)

Adv(A, Gxpd0
psk,`, Gxpd1

psk,`)

≤
∑

alg∈H
spsk,`,alg·Adv(A → Ralg

psk,`, Gprxpd-alg,b) (7)

Adv(A, Gxpd0
esalt,`, Gxpd1

esalt,`)

≤
∑

alg∈H
sesalt,`,alg·Adv(A → Ralg

esalt,`, Gprxpd-alg,b) (8)

Let A be an adversary that generates at most ses,`,alg honest keys for algorithm
alg with name psk at level ` via SETpsk,`(∗, 1, ∗) queries. The xtr pseudorandom-
ness advantage is bounded by

Adv(A, Gxtr10
es,`, Gxtr11

es,`)

≤
∑

alg∈H
ses,`,alg·Adv(A → Ralg

es,`, Gprxtr†-alg,b) (9)

Let A be an adversary that generates at most ses,`,alg honest keys for algo-
rithm alg with name esalt at level ` via SETesalt,`(∗, 1, ∗) queries. Let nalg is

Key-schedule Security for the TLS 1.3 Standard 45

an upper bound on the sum of UNQesalt and SETesalt,` queries made by A, and
let c be a small constant which depends on the min-entropy of the distribution
f(k, Ulen(alg)), where k is a fixed key and U2len(alg) denotes the uniform distribution
of strings of length len(alg). The xtr pseudorandomness advantage is bounded by

Adv(A, Gxtr20
hs,`, Gxtr21

hs,`)

≤
∑

alg∈H
shs,`,alg·Adv(A → Ralg

hs,`, Gprxtr-alg,b) + (c+ 1) ·
n2

alg

2len(alg) (10)

Let A be an adversary that generates at most sas,`,alg honest keys for algorithm
alg with name hsalt at level ` via SEThsalt,`(∗, 1, ∗) queries. The xtr pseudoran-
domness advantage is bounded by

Adv(A, Gxtr30
as,`, Gxtr31

as,`)

≤
∑

alg∈H
sas,`,alg·Adv(A → Ralg

as,`, Gprxtr-alg,b) (11)

The reductions are defined as follows:

Ralg
n,` := Rrmprio,xpd

n,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
psk,` := Rrmprio,xpd

psk,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
esalt,` := Rrmprio,xpd

esalt,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
es,` := Rrmprio,xtr

es,` → Rf-alg
G-M-Pr-io , where f = xtr†

Ralg
hs,` := Rrmprio,xtr

hs,` → Rf-alg
G-M-Pr-io , where f = xtr

Ralg
as,` := Rrmprio,xtr

as,` → Rf-alg
G-M-Pr-io , where f = xtr

For Rf-alg
G-M-Pr-io, see Lemma E.5. Reduction Rrmprio,xpd

n,` is defined in Fig. 54
(code) and Fig. 50b (graph), Rrmprio,xpd

psk,` is defined in Fig. 55 (code) and Fig. 50f
(graph), Rrmprio,xpd

esalt,` is defined in Fig. 54 (code) and Fig. 50d (graph), Rrmprio,xtr
es,`

is defined in Fig. 51 (code) and Fig. 49b (graph), Rrmfprio,xtr
hs,` is defined in Fig. 52

(code) and Fig. 49d (graph), and Rrmprio,xtr
as,` is defined in Fig. 53 (code) and

Fig. 49f (graph).

46 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Lemma E.9. Let A be an adversary that generates at most thon=1
es,alg honest and

thon=0
es,alg dishonest es keys, and let tes,alg be max{thon=0

es,alg , t
hon=1
es,alg }. We have

Adv(A, GpiR
esalt , GpiD

esalt) (12)

≤
∑

alg∈H
2 ·
[
sesalt,alg·Adv(A → Ralg

esalt,pi , Gprxpd-alg,b)

+Adv(A → Ralg
esalt,pi-cr , Gcrhash-alg,b) + (c+ 3) ·

t2es,alg

2len(alg)

]
,

where Ralg
esalt,pi :=RP IE → Rmprio,xpd

n,0 → Rxpd-alg,D,D/R
G-M-Pr-io and

Ralg
esalt,pi-cr :=RP IE → Rmprio,xpd

n,0 → Rcr,xpd,D/R → Ralg,xpd,

c is a small constant which depends on the min-entropy of xpd on random inputs
and R is an abbreviation for R : ChldrnN(es) → {R,D} being defined as R on
esalt and D everywhere else.

Let the parent set of O∗ be defined as PO∗ := {n1 : ∃n ∈ O∗ : (n1,_) =
PrntN(n)} and the sibling set of O∗ as SO∗ :=

⋃
n1∈PO∗ ChldrnN(n1). Let A

be an adversary such that for each n in the representative set SO∗ ∩ XPR, A
generates at most sn,alg = thon=1

n,alg honest and thon=0
n,alg dishonest n keys for n1 with

(n1,_) = PrntN(n), and let tn,alg be max{thon=0
n,alg , thon=1

n,alg }. We have

Adv(A, GpiD
O∗ , GpiF

O∗) (13)

≤
∑

alg∈H,n∈SO∗∩XPR
2 ·
[
sn,alg·Adv(A → Ralg

n,pi , Gprxpd-alg,b)

+Adv(A → Ralg
n,pi-cr , Gcrhash-alg,b) + (c+ 3) ·

t2n,alg

2len(alg)

]
,

where Ralg
n,pi :=RP IO

n → Rmprio,xpd
n,0 → Rxpd-alg,D,D/F

G-M-Pr-io and

Ralg
n,pi-cr :=RP IO

n → Rmprio,xpd
n,0 → Rcr,xpd,D/F → Ralg,xpd,

c is a small constant which depends on the min-entropy of xpd on random inputs,
and F : ChldrnN(n1)→ {D,F} is F on the intersection of O∗ and ChldrnN(n1)
and D, else.

We now show that Theorem 4.5 follows from Theorem C.1, Lemma E.1,
Lemma E.6 and Lemma E.9.

Adv(A, Gks0, Gks1(S))
Theorem C.1
≤

Adv(A → Rmain
cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

Key-schedule Security for the TLS 1.3 Standard 47

+ max
i∈{0,1}

[
Adv(Ai → Rmain

sodh , Gsodhb)

+
d−1∑
`=0

[
Adv(Ai → Rmain

es,` , Gxtrb
es,`)

+Adv(Ai → Rmain
hs,` , Gxtrb

hs,`)
+Adv(Ai → Rmain

as,` , Gxtrb
as,`)

+
∑

n∈XPR
Adv(Ai → Rmain

n,` , Gxpdb
n,`)
]

+Adv(Ai → Rmain
esalt,pi , Gpib

esalt)
+Adv(Ai → Rmain

O∗,pi , Gpib
O∗)
]

Lemma E.6, E.9 and E.1
≤

Adv(A → Rmain
cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

+ max
i∈{0,1}

[
Adv(Ai → Rmain

sodh → Rsodh2, Gsodh2b)

+
∑

alg∈H

(
2 · Adv(Ai → Rmain

sodh → Rsodh-cr, Gcralg,b)

+
d−1∑
`=0

[
ses,`,alg · Adv(Ai → Rmain

es,`,alg, Gprxtr-alg,b)

+shs,`,alg · Adv(Ai → Rmain
hs,`,alg, Gprxtr-alg,b)

+sas,`,alg · Adv(Ai → Rmain
as,`,alg, Gprxtr-alg,b)

+
∑

n∈XPR
sn,`,alg · Adv(Ai → Rmain

n,`,alg, Gprxpd-alg,b)
]

+ 2 ·
[(d−1∑

`=0
sesalt,`,alg

)
· Adv(A → Rmain

esalt,pi,alg, Gprxpd-alg,b)

+ Adv(A → Rmain
esalt,pi-cr,alg, Gcrxpd-alg,b)

]
+

∑
n∈SO∗∩XPR

2 ·
[(d−1∑

`=0
sn,`,alg

)
· Adv(A → Rmain

n,pi,alg, Gprxpd-alg,b)
+ Adv(A → Rmain

n,pi-cr,alg, Gcrxpd-alg,b)
]

+2−len(alg) ·
[
(c+ 1) · t2esalt,alg+(2c+ 6) · t2es,alg +

∑
n∈PO∗

((2c+ 6) · t2n,alg)
])]

This concludes the proof of Theorem 4.5. It remains to show Theorem C.1,
Lemma E.1, Lemma E.6 and Lemma E.9.

48 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

C Key Schedule Theorem based on Modular Assumptions

Theorem C.1. Let ks be a TLS-like key schedule with representative set XPR
and separation points S. Let d ∈ N. There is an efficient simulator S such that
for all adversaries A which make queries for at most d resumption levels,

Adv(A, Gks0, Gks1(S))
≤ Adv(A → Rmain

cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

+ max
i∈{0,1}

[
Adv(Ai → Rmain

sodh , Gsodhb)

d−1∑
`=0

(
Adv(Ai → Rmain

es,` , Gxtrb
es,`)

+Adv(Ai → Rmain
hs,` , Gxtrb

hs,`)
+Adv(Ai → Rmain

as,` , Gxtrb
as,`)

+
∑

n∈XPR

(
Adv(Ai → Rmain

n,` , Gxpdb
n,`)
))

+Adv(Ai → Rmain
esalt,pi , Gpib

esalt)
+Adv(Ai → Rmain

O∗,pi , Gpib
O∗)
]
,

where Ai defined in Appendix D.1, modifies A without significantly changing
its complexity: it behaves as A except that it returns i on some aborts; where
Rmain
∗ := Rch-map → R∗ when replacing ∗ by cr, (Z, f), (D, f), sodh, es, hs,

as, n, O∗, pi or esalt, pi, the simulator S is marked in grey in Fig. 26b, Rsodh
is defined in Fig. 32a, Res,` is defined in Fig. 34a, Rhs,` and Ras,` are defined
analogously, and Rn,` for n ∈ XPR and 0 ≤ ` ≤ d is defined in Fig. 34b, Resalt,pi
is defined in Fig. 32c and RO∗,pi is defined in Fig. 32d.

The proof of Theorem C.1 is outlined in Fig. 25a, 25b, 25c, 26a and 26b,
each of which describes a game in a sequence of 4 game-hops which constitute
the proof of Theorem 4.5. We first discuss a proof overview before turning to
the proof. First, recall that the key schedule security model stores keys in a
redundant fashion (a) due to possible equal values of a dishonest resumption
psk (level(h) > 0) and an adversarially registered application psk (level(h) = 0)
and (b) due to the equal values of the DH keys corresponding to (Xa, Y) and
(X,Y a).

Lemma C.2 introduces a Map package (see Fig. 25b for the game with the
Map package and the left column of Fig. 29 for the code of Map) to remove the
redundantly stored keys—note that the LogA1

psk and the LogZ∞
dh package now use

the map = 1 and the map = ∞ code of Log (see Fig. 22 for the code). As a
result, any adversary playing against Gcore0 (defined in Fig. 25b) cannot create

Key-schedule Security for the TLS 1.3 Standard 49

(this particular) redundancy anymore since the Keypsk,` and DHKeydh packages
do not store key when the mapping code is triggered.

Lemma C.3 then reduces the indistinguishability of Gks0Map (Fig. 25b) and
Gks1Map (Fig. 25c) to the indistinguishability of Gcore0 and Gcore1(Score) using
reduction Rcore. The indistinguishability of Gcore0 and Gcore1(Score) will be
established in Theorem D.1 in Appendix D and contains the main technical
argument of this article.

In Lemma C.4, we inline the Xpdn,0..d code into Map for n ∈ O∗ and call
the result Map-Xpd (see Fig. 25c and Fig. 26a for the two games and the mid-
dle column of Fig. 29 for the code of Map-Xpd). The proof is a simple inlining
argument.

Finally, Lemma C.5 establishes the (perfect) indistinguishability of GksMap-Xpd

and Gks1(S). The proof of Lemma C.5, essentially, removes or rather inverts the
mapping on the output keys in order to recover the ideal functionality. Invert-
ing the handle mapping, however, requires that it is injective. Conceptually, it
is also clear that injectivity of the handle mapping needs to play a role in the
proof: We prove uniqueness of output keys which means that equal keys imply
equal handles. The injectivity proof ensures that the mapping did not introduce
additional collisions and that the proof of Theorem D.1 indeed suffices to es-
tablish the uniqueness of output keys in Gks1(S). In summary, Lemma C.3 is
the core argument, that Lemma C.2 is proven via a mechanical invariant proof,
Lemma C.5 is proven via a conceptually interesting invariant proof and that
Lemma C.4 is a straightforward inlining argument.

We now state each of the 4 lemmas, then show that Theorem 4.5 follows from
them and Theorem D.1 and then prove each lemma in turn.

Lemma C.2 (Map-Intro). For all adversaries A which make queries for at
most d resumption levels,

Pr
[
1 = A → Gks0] = Pr

[
1 = A → Gks0Map] .

In particular Gks0 func
≡ Gks0Map.

Lemma C.3 (Main). For all PPT adversaries A which make queries for at
most d resumption levels,

Adv(A, Gks0Map, Gks1Map)
=Adv(A → Rch-map, Gcore0, Gcore1(Score)),

where Rch-map and Score are marked in grey in Fig. 25b.

Lemma C.4 (Xpd-Inlining). For all PPT adversaries A which make queries
for at most d resumption levels,

Pr
[
1 = A → Gks1Map] = Pr

[
1 = A → GksMapxpd] .

In particular Gks1Map code≡ GksMapxpd.

50 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

DHEXP
DHGEN

DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

A

HASH Hash0

GETO*,0..d

GETbinder, 0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d

XPDXPN, 0..d

KeyI*, 0..d
0 LogI*

Z

KeyO*, 0..d
0 LogO*

Z
SETO*,0..d

SETI*,0..d
GETI*,0..d

Qdh
UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

(a) Game Gks0.

Qdh
UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

GETbinder, 0..d
XPDXPN, 0..d

XPDXPN, 0..d

DH
SETdh

DHEXP
DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

XTRes/as/hs,0..d
XPDXPN, 0..d 0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

A1

HASH Hash0

Map

DHEXP
DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

KeyI*, 0..d
0 LogI*

SETI*,0..d
GETI*,0..d Z

KeyO*, 0..d
0 LogO*

GETO*,0..d

Z
SETO*,0..d

(b) Game Gks0Map code
≡ Rch-map → Gcore0.

GETbinder, 0..dXPDXPN, 0..d

XPDXPN, 0..d

XTRes/as/hs,0..d
XPDXPN, 0..d

DH
SETdh

DHEXP
DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0
Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1

Map

DHEXP
DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

KeyI*, 0..d
1 LogI*

SETI*,0..d
GETI*,0..d D

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

Qdh
UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

(c) Game Gks1Map code
≡ Rch-map →

Gcore1(Score).

Fig. 25: Overview over Proof of Theorem 4.5

Key-schedule Security for the TLS 1.3 Standard 51

DHEXP
DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdC*, 0..d

XTRes/as/hs,0..d
XPDC*, 0..d 0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0
Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1

Map-
Xpd

DHEXP
DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d
KeyI*, 0..d

1 LogI*
D

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

SETI*,0..d
GETI*,0..d

XPDXPN, 0..d
GETbinder, 0..d

DH
SETdh Qdh

UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

(a) Game GksMapxpd.

Qdh
UNQdh

Qpsk
UNQpsk

QI*
UNQI*

QO*
UNQO*

XPDXPN, 0..d

XPDXPN, 0..d
GETbinder, 0..d

DH
SETdh

DHEXP
DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdC*, 0..d

XTRes/as/hs,0..d
XPDC*, 0..d 0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0
Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1Map-
Xpd-

Remap

DHEXP
DHGEN

SETpsk,0

Check

XTRes/as/hs,0..d

KeyI*, 0..d
1 LogI*

D

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
GETbinder,0..d
SETO*,0..d

SETI*,0..d
GETI*,0..d

(b) Game Gks1.

Fig. 26: Overview over proof of Theorem 4.5

52 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Lemma C.5 (Map-Outro). For all PPT adversaries A which make queries
for at most d resumption levels,

Pr
[
1 = A → GksMapxpd] = Pr

[
1 = A → Gks1(S)

]
.

In particular, GksMapxpd func
≡ Gks1(S).

Theorem 4.5 directly follows from Lemma C.2-Lemma C.5 and Theorem D.1:

Adv(A, Gks0, Gks1(S))
Lm. C.2= Adv(A, Gks0Map, Gks1(S))
Lm. C.5= Adv(A, Gks0Map, GksMapxpd)
Lm. C.4= Adv(A, Gks0Map, Gks1Map)
Lm. C.3= Adv(A → Rch-map, Gks0core, Gks1core(Score)),
Th. D.1
≤ Adv(A → Rmain

cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}

Adv(A → Rmain
j,f , Gacrhash,b)

+ max
i∈{0,1}

Adv(Ai → Rmain
sodh , Gsodhb)

+ Adv(Ai → Rmain
esalt,pi , Gpib

esalt) + Adv(Ai → Rmain
O∗,pi , Gpib

O∗)+
d−1∑
`=0

(
Adv(Ai → Rmain

es,` , Gxtrb
es,`) + Adv(Ai → Rmain

hs,` , Gxtrb
hs,`)+

Adv(Ai → Rmain
as , Gxtrb

as,`) +
∑

n∈XPR

(
Adv(Ai → Rmain

n,` , Gxpdb
n,`)
))
,

where XPR is the representative set required by the theorem,Rmain
∗ := Rch-map →

R∗ when replacing ∗ by cr, (Z, f), (D, f) sodh, es, hs, as, n, O∗, pi or esalt, pi.

C.1 Proof of Lemma C.2 (Map-Intro)

In the following proof, we rely on an index function idx(h) that is equal to
name(h) if name(h) ∈ {0salt, dh, 0ikm} and name(h), level(h), else.
Invariant

(1) exponent table consistency: Eleft = Eright

∀h, let i := idx(h), n := name(h):
(2a) K and Log: for (Ki,Logn) = (K left

i ,Logleft
n) and (Ki,Logn) = (K right

i ,Logright
n)

(i) Logn[h] = ⊥ ⇒ Ki[h] = ⊥
(ii) Logn[h] = (h′, ∗, ∗) with h′ 6= h⇒ Ki[h] = ⊥

(iii) Logn[h] = (h′, hon, k) with h′ 6= h⇒ Logn[h′] = (h′, hon, k)

Key-schedule Security for the TLS 1.3 Standard 53

(iv) Logn[h] = (h, hon, k)⇔ Ki[h] = (k, hon) 6= ⊥
(v) Logleft

n [h] 6= ⊥ ⇒ Logleft
n [h] = (h, ∗, ∗)

(vi) Logright
n [h], n /∈ {psk, dh} 6= ⊥ ⇒ Logright

n [h] = (h, ∗, ∗)
(vii) ∀n′ : Logn′ [h] 6= ⊥ ⇒ name(h) = n′

(viii) Log[h] = (h′, ∗, k)⇒ |k| = len(h) = len(h′) ∧ alg(h) = alg(h′)
(ix) n ∈ {0ikm, 0salt, dh} ⇒ (Kn[h] 6= ⊥ ⇒ level(h) = ⊥)
(x) ∀` : n /∈ {0ikm, 0salt, dh} ⇒ (Kn,`[h] 6= ⊥ ⇒ level(h) = `)

(2b) Available keys (mapped-unmapped):

M right
i [h] = h′ 6= ⊥ ⇒ Logright

n [h′] = (h′, ∗, ∗)

(2c) Available keys (right-left):

M right
i [h] = h′ 6= ⊥ ⇐⇒ Logleft

n [h] = (h, ∗, ∗)

(2d)

M right
i [h] 6= ⊥ ⇒

xtr〈n, h1, h2〉 = h ∧ idx(h1) = i1 ∧ idx(h2) = i2 ⇒

M right
i1

[h1] 6= ⊥ ∧M right
i2

[h2] 6= ⊥∧

Mi[h] = xtr〈n,M right
i1

[h1],M right
i2

[h2]〉
xpd〈n, label, h1, args〉 = h ∧ idx(h1) = i1 ∧ n 6= psk ⇒

M right
i1

[h1] 6= ⊥∧

M right
i [h] = xpd〈n, label,M right

i1
[h1], args〉

xpd〈psk, label, h1, args〉 = h ∧ idx(h1) = i1 ⇒

M right
i1

[h1] 6= ⊥∧

Logpsk [xpd〈psk, label,M right
i1

[h1], args〉] = (M right
i [h], ∗, ∗)

(2e) J-Map:

∀k : (∃h 6= h′ ∧ level(h) = 0 ∧ level((h′) 6= 0∧

Logright
psk [h] = (_, 0, k)

∧ Logright
psk [h′] = (_, 0, k))

}
⇒ Jpsk [k] = 1

(3) Mapping keeps name and algs: M right
i [h] 6= ⊥ ⇒

(a) name(M right
i [h]) = name(h)∧

(b) alg(M right
i [h]) = alg(h).

54 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

(4) Children derive their value from their parent(s)
For Logn = Logleft

n and Logn = Logright
n

Logn[h] 6= ⊥ ⇒
xtr〈n, h1, h2〉 = h ∧ name(h1) = n1 ∧ name(h2) = n2 ⇒

Logn1 [h1] = (h1, hon1, k1) 6= ⊥∧
Logn2 [h2] = (h2, hon2, k2) 6= ⊥∧
k = xtr(k1, k2) ∧ hon = (hon1 ∨ hon2)∧
Logn[h] = (∗, hon, k)

xpd〈n, label, h1, args〉 = h ∧ name(h1) = n1 ⇒
Logn1 [h1] = (h1, hon1, k1) 6= ⊥∧
k = xpd(k1, label, args)∧
Logn[h] = (∗, hon1, k)

(5) Consistent logs for input keys:

n = i = dh ∨ (i = (psk, 0) ∧ n = psk)⇒

(Logleft
n [h] 6= ⊥)⇔ (M right

i [h] 6= ⊥)⇔ (Logright
n [h] 6= ⊥)

Logleft
n [h] 6= ⊥ ⇒
Logleft

n [h] = (h, hon, k)∧

Logright
n [h] = (M right

i [h], hon′, k′)∧
(hon, k) = (hon′, k′)

(6) Identical keys and honesty:
K left

i [h] = Kright
i′ [M right

i [h]]

Property (1) Exponent table: Only DHGEN writes to the exponent table and
the code is identical in both games, since the Map package only forwards the call.

(2a) The proof of (2a) is a local argument over the Key and Log packages.
Namely, assume that (2a) holds before a SETn,`′ call. We want to show that
(2a) still holds. Firstly, if a write operation on Kn,` is made at position h, then
UNQn(h, ∗, ∗) did not abort and returns h′ = h and as a consequence, Logn[h]
was written to with some value (h, ∗, ∗) and thus, (2a) (i) + (ii) and the ⇐
direction of (iv) are satisfied. Analogously, when Logn[h] = (h, hon, k) is written,
then Kn,`[h] is written to with (k, hon) and thus also the ⇒ direction of (iv)
follows.

For (iii), observe that if UNQn writes (h′, hon, k) into Logn[h] for some h′ 6=
h, then one of the map patterns was active and found an entry Logn[h′] =
(h′, hon, k), thus, this entry exists in Logn[h′] = (h′, hon, k) and (iii) is satisfied.

For (v) and (vi) observe that the left Logn packages do not have a map
pattern. Similarly the right Logn packages for n 6∈ {dh, psk} do not have a map
pattern.

Key-schedule Security for the TLS 1.3 Standard 55

For (vii), since SETi′(h, hon, k) for i′ = n′ = dh or i′ = (n′, `) asserts that
name(h) = n′, all handles h which appear in UNQn(h, hon, k) indeed have name
n and thus n)name(h).

For (viii), consider a SETn,`(h, hon, k) query. Since SETn,` checks that |k| =
len(h), if a write operation on Logn is performed (i.e., Qn(h) returns ⊥), then
for Logn[h] = (h′, hon, k), we have that |k| = len(h) as required. If h = h′, then
alg(h) = alg(h′). If h 6= h′, then observe that 2a (iii) implies that Logn[h′] =
(h′, hon, k) and thus len(h′) = |k|. Since mapping from algorithms to length is in-
jective, this also implies that alg(h′) = alg(h). Similarly for (x), SETn,`(h, hon, k)
asserts level(h) = `.

Finally, for (ix) observe that for n ∈ {0salt, 0ikm}, SETn(h, hon, k) is never
used and the only values in K are those set by the initialization. For dh observe
that the SETn(h, hon, k) is used only in the DH package which only generates
handles of the form dh〈sort(X,Y)〉 which are of level 0 as required. This concludes
the proof of (2a).

(2b) Note that the handles on the right-hand sides of Mi′ are returned by a
SETn,` query (for a potentially different index i := (n, `)) on a Key package.
Now, we claim that for all handles h′ which are returned by SETn,`, we have
that Logn[h′] = (h′, ∗, ∗). Firstly, when Qn(h) returns a handle h′, then by 2a
(iii), we have that Logn[h′] = (h′, ∗, ∗). In turn, if UNQn(h, hon, k) returns a
h′ 6= h, then Logn[h] = (h′, hon, k) and by 2a (iii), Logn[h′] = (h′, ∗, ∗). In turn,
if UNQn(h, hon, k) returns a h, then Logn[h] = (h, hon, k) and we also return h
in the end of the SETn,` call.

(2c) Code inspection yields that ifMn,`[h] is written to on the right, then on the
left, we make a SETn,`(h, ∗, ∗) query, and conversely. After the SETn,`(h, ∗, ∗)
query, Logn[h] is defined and by 2a (v), it is equal to Logn[h] = (h, ∗, ∗).

(2d)

XTRn,` First observe that in the XTRn,` oracles, the code of Map asserts that
for i1, i2 ← PrntIdx(n, `) both M right

i1
[h1] 6= ⊥ and M right

i2
[h2] 6= ⊥. Moreover,

the XTRn,` oracle of Map constructs as handle h = xtr〈n, h1, h2〉 and calls
its own XTRn,`′ with handles (M right

i1
[h1],M right

i2
[h2]) and level computed

as `′ choose← level(M right
i1

[h1]), level(M right
i2

[h2]). Oracle XTRn,`′ returns handle
h = xtr〈n,M right

i1
[h1],M right

i2
[h2]〉, since it returns the handle it constructs:

The Keyright
n,`′ packages to which XTRn,`′ writes does not change the handle

but returns it unmodified (condition (2a) (vi)).
XPDn,` If n 6= psk, the analysis is analogous to XTRn,`. For n = psk, the only

difference is that the SETpsk,`′ query of the XPDpsk,`′ oracle goes to the
Keypsk,`′ package which has an active mapping in the Logright

psk package. Since
the Keypsk package, on query SETpsk,`′(h, hon, k), returns a handle h∗ such
that Logright

psk [h] = (h∗, ∗, ∗) and since Map writes M right
n,` [h] ← h∗, we have

that indeed Logright
n [h] = (M right

n,` [h], ∗, ∗) after the call as required.

56 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

(2e) First observe that Jpsk is monotonous, i.e., if Jpsk [k] = 1, it is never set to a
different value than 1. The interesting case is when before a SETpsk,`(h, hon, k)
call, Jpsk [k] = ⊥ and there exists a handle h′ 6= h such that level(h) = 0 ∧
level((h′) 6= 0 or level(h′) = 0 ∧ level(h) 6= 0 and Logright

psk [h′] = (_, 0, k). In this
case, the map code for map = 1 will return 1 and thus, Jpsk [k]← 1 is written.

(3) Assuming that (3a) holds so far, consider a new call to XPDn,` or XTRn,` and
let (i1, i2)← PrntIdx(n, `). Since the handles are constructed based on previous
handles, and the name function is defined based on the handle construction (2d),
xpd〈n,M right

i1
[h1], args〉 and xpd〈n, h1, args〉 have the same name if name(h1) =

name(M right
i1

[h1]) (else, either the name of xpd〈n,M right
i1

[h1], args〉 or the name
of xpd〈n, h1, args〉 would not be well-defined, since the name of h1 needs to
be parent of n) which holds by induction hypothesis. The only exception is
XPDpsk,1..d and SETpsk,0 in the case that a mapping in the Logpsk package occurs.
By induction hypothesis (condition 2a (v) and (vii)), all handles already stored
in Logpsk have name equal to psk, and since Logright

psk returns a handle which is
already stored in Logright

psk , this handle also has name psk.
Analogously to the XPD case, the induction hypothesis implies that name(h1) =

name(M right
i1

[h1]) and name(h2) = name(M [h2]) and thus, xtr〈n, h1, h2〉 and
xtr〈n,M right

i1
[h1],M right

i1
[h2]〉 have the same name.

Assuming (3b) holds so far, we proceed by induction over the oracle calls. Let
i := idx(h) and (i1,_) ← PrntIdx(i). By induction hypothesis, alg = alg(h1) =
alg(M right

i1
[h1]). Moreover, as handles inherit their algorithm from the first psk,

we also have

alg(xpd〈n, label, h1, args〉) = alg(h1)

alg(h1) = alg(M right
i1

[h1])

Putting these together with 2d, for n 6= psk, we obtain:

alg(xpd〈n, label, h1, args〉)
=alg(h1) (parent-child)

=alg(M right
i1

[h1]) (induction hypothesis)

=alg(xpd〈n, label,M right
i1

[h1], args〉) (child-parent)

=alg(M right
i [xpd〈n, label, h1, args〉]) (2d)

The analysis for xtr is analogous, except that we need to apply the induction hy-
pothesis on both parent handles and rely on algorithm consistency of the parent
handles, i.e., either both have the same algorithm or only one has an algorithm
since the Xtr package code asserts alg(h1) = alg(h2) if both are defined.

We now turn to the case that n = psk. If M right
psk,`[xpd〈n, label, h1, args〉] =

h′ = xpd〈n, label,M right
i1

[h1], args〉, the analysis is analogous. Else if h′ 6= xpd〈n,
label,M right

i1
[h1], args〉, then due to 2d, Logright

psk [h] = (h′, ∗, ∗) and by 2a (viii),

Key-schedule Security for the TLS 1.3 Standard 57

alg(h) = alg(h′) as required. Lastly, let us consider SETpsk,0(h, hon, k) and
here, we consider the case that a write operation on Logpsk is performed, i.e.
Logright

psk [h] = (h′, hon, k) and note that M right
psk,0[h] then contains h′. Due to 2a

(viii), alg(h) = alg(h′) = alg(Mpsk,0[h]) as required.

(4) Assume (4) holds as induction hypothesis. We only need to consider the case
that a write operation on Logn is performed. Note that we do not need argue
about Map. Instead, we only argue over Xpdn,` and Xtrn,` and the Keyn,` and Logn

packages they call. Let (n1, n2) ← PrntN(n). In an XPDn,`(h1, label, args) call,
GETn1(h1) returns a handle only if Logn1 [h1] = (h1, hon1, k1) (condition 2a iv).
Thus, when XPDn,`(h1, label, args) makes a SETn,`(h, hon, k) query (which in-
duces a write operation on the Logn), then Logn1 [h1] = (h1, hon1, k1) 6= ⊥, as re-
quired. Moreover, XPDn,`(h1, label, args) computes key k as xpd(k1, (label, args)),
computes handle h as xpd〈n, label, h1, args〉 and sets honesty hon := hon1. Thus,
Logn[h] stores a triple (∗, hon, k) as required. The argument for XTRn,` is anal-
ogous.

(5) The SETdh queries are identical on both sides, as Map forwards all DHEXP
queries. Therefore, the same UNQ queries are made to Logright

dh and Logleft
dh and

thus,
Logleft

dh [h] 6= ⊥ ⇔ Logright
dh .

Since SET0,psk(h, hon, k) is forwarded by Map and these are the only queries
to Logpsk which use a handle h with level(h) = 0 (since Keypsk,` asserts that
level(h) = `) we have that for handles h with level(h) = 0, the same queries are
made to Logleft

psk and Logright
psk and thus,

level(h) = 0⇒ Logleft
psk [h] 6= ⊥ ⇔ Logright

psk .

In case that Logleft
n [h] 6= ⊥, by 2a (v), Logleft

n [h] = (h, ∗, ∗). Moreover, since the
queries are the same on both sides, the hon and k values are identical, i.e., if
Logleft

n [h] = (h, hon, k) and Logright
n [h] = (h′, hon′, k′), then (hon, k) = (hon′, k′).

Moreover, since Logright
n [h] returns h′ and Keypsk,` (resp. NKeydh) returns h′ to

Map, we also have that M right
i [h]← h′ and thus, h′ = M right

i [h].
Property (6)

SETpsk,0(h, hon, k): SETpsk,0(h, hon, k) changes at most level 0 entries in Logleft
psk ,

Logright
psk and M right

psk,0 due to the level assert in SETn,`. By (5), these three are
equivalent. If no changes are made, then condition (6) holds by induction
hypothesis. If changes are made, then M right

psk,0[h], Logleft
psk [h] and Logright

psk [h]
are defined. By (5), we have that Logleft

psk [h] = (h, k, hon) and thus, by (2a
iv), we also have that K left

psk [h] = (k, hon). Moreover, by (5), M right
psk,0[h] 6= ⊥

and Logright
psk [h] = (M right

psk,0[h], k′, hon′) and (k′, hon′) = (k, hon). By 2a (iii),
we have that Logright

psk [M right
psk,0[h]] = (M right

psk,0[h], k, hon) and thus, by 2a (iv),
Kright

psk [M right
psk,0[h]] = (k, hon), as required.

58 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

DHGEN: Invariant (6) does not refer to E .
DHEXP: Oracle DHEXP(X,Y) changes at most entries in Logleft

dh , Logright
dh and

M right
dh . By (5), these three are equivalent. If no changes are made, then con-

dition (6) holds by induction hypothesis. If changes are made, thenM right
dh [h],

Logleft
dh [h] and Logright

dh [h] are defined. By (5), we have that Logleft
dh [h] =

(h, k, hon) and thus, by (2a iv), we also have that K left
dh [h] = (k, hon).

Moreover, by (5), M right
dh [h] 6= ⊥ and Logright

dh [h] = (M right
dh [h], k′, hon′) and

(k′, hon′) = (k, hon). By 2a (iii), we have that Logright
dh [M right

dh [h]] = (M right
dh [h],

k, hon) and thus, by 2a (iv), Kright
dh [M right

dh [h]] = (k, hon), as required.
XTRn,`: Let h := xtr〈h1, , h2〉 be the handle which XTRn,`(h1, h2) returns. First

observe that M right
n,` remains unchanged except for position M right

n,` [h] which
might either be overwritten or be written to for the first time. We now
consider each of the two cases in turn.
Case I: If M right

n,` [h] already contained a value h′, then due to (2d), before
and after the call, we have that M right

n,` [h] is equal to xtr〈M [h1],M [h2]〉 and
thus M right

n,` [h] remains unchanged. Moreover observe that K right
n,∗ is never

overwritten: Only SETright
n,∗ makes a write access to Kn,∗[h]. If Kn,∗[h] 6= ⊥,

then, by (2a i), Logn[h] 6= ⊥ and thus, Qn returns on a SETn,∗ query before
a write to Kn,∗ is performed. Let `′ = level(M right

n,` [h]), then, since 2c and
2a guarantee that K left

n,` [h], M right
n,` [h] and Kright

n,`′ [M right
n,` [h]] have been defined

before the current call, no state is changed and (6) follows by induction
hypothesis.
Case II: If M right

n,` [h] did not contain a value before this call, then we rely
on (2d) to see that M right

n,` [h] = xtr〈M right
i1

[h1],M right
i2

[h2]〉 for (i1, i2) ←
PrntIdx(n, `) and (n1, n2) ← PrntN(n). Since Mi1 [h1] and Mi2 [h2] were de-
fined before the call already.
– Using (4) and (2a (v)), we know that Logleft

n [h] = (h, honleft, kleft) with
kleft = xtr(K left

n1,∗[h1],K left
n2,∗[h2]), and

– using (4) and (2a (vi)), we know that Logright
n [M right

i [h]] = (M right
i [h], honright,

kright) with kright = xtr(Kright
n1,∗ [Mi1 [h1],Kright

n2,∗ [Mi2 [h2]]).
– Using (2a (iv)), we also know that K left

n,` [h] = (kleft, honleft) and K right
n,∗ [h] =

(kright, honright).
– Using (6) as induction hypothesis, we obtain that k1, hon1 = K left

n1,`[h1] =
Kright

n1,∗ [M right
n1,` [h1]] and k2, hon2 = K left

n2,`[h1] = Kright
n2,∗ [M right

n2,` [h1]].
Therefore, as required:

K left
n,` [h] = (kleft, honleft)

= (xtr(K left
n1,`[h1].k,K left

n2,`[h2].k),K left
n1,`[h1].hon ∨K left

n2,`[h2].hon)
= (xtr(k1, k2,), hon1 ∨ hon2)
= (xtr(Kright

n1,∗ [Mi1 [h1]].k,Kright
n2,∗ [Mi2 [h2]].k),

Kright
n1,∗ [Mi1 [h1]].hon ∨Kright

n2,∗ [Mi2 [h2]].hon) = K right
n,∗ [Mn,`[h]]

Key-schedule Security for the TLS 1.3 Standard 59

XPDn,`: If n 6= psk, then the analysis is analogous to XTRn,`. Let us now consider
XPDpsk,` with h = xpd〈psk, label, h1, args〉. Now, in the analysis of XPDpsk,`,
condition (2d) yield that eitherM right

psk,`[h] = xpd〈psk, label,M right
rm,`−1[h1], args〉

or some h? 6= xpd〈psk, label,M right
rm,`−1[h1], args〉. In the case that M right

psk,`[h] is
equal to xpd〈psk, label,M right

rm,`−1[h1], args〉 (level >0), the analysis is analo-
gous to XTRn,`, except that Logright

psk [h] = (h, ∗, ∗) now follows from (2d)
instead of (2a) vi (since psk is one of the exceptions specified in (2a)). Let us
now turn to the case that M right

psk,`[h] = h? 6= xpd〈psk, label,M right
rm,`−1[h1], args〉

(level=0). By condition 2d M right
rm,`−1[h1] 6= ⊥ and Kright

rm,∗ [M right
rm,`−1[h1]] =

(k1, hon1) 6= ⊥. Denote by hon := hon1 and k := xpd(k1, args). We ob-
tain the following two equations:

Logright
psk [xpd〈psk, label,M right

rm,`−1[h1], args〉] = (h?∗, ∗) (due to 2d) (14)

Logright
psk [xpd〈psk, label,M right

rm,`−1[h1], args〉] = (∗, hon, k) (due to 4) (15)

⇒ Logright
psk [xpd〈psk, label,M right

rm,`−1[h1], args〉] = (h?, hon, k) (Eq.14+15) (16)

Logright
psk [h?] = (h?, hon, k) (2a iii+Eq.16) (17)

⇒ K right
psk,level(h?)[h

?] = (k, hon) (2a iv+Eq.17)

⇒ K right
psk,level(Mright

psk [h])
[M right

psk [h]] = (k, hon)

Analogously to XTRn,`, we haveKright
n1,level(Mright

i1
[h1])

[M right
i1

[h1]] = (k1, hon1) 6=

⊥ implies that K left
n1,∗[h1] = (k1, hon1). Using (6) on h1 and (4), we obtain

that K left
n,` [h] = (xpd(k1, args), hon1) = (k, hon), as required.

GETn,` : Since GETn,` does not perform write operations, the invariant follows
from the induction hypothesis.

Same input-output-behaviour We want to prove that if the invariant holds,
then the left game and the right game give identical answers to each query. We
consider each query separately in turn and first argue that the left game aborts
if and only if the right game aborts. We then argue that if the game do not
abort, then they return the same answer.

DHGEN There are no asserts in the code, and the oracle always returns the
public share.

DHEXP The assert that grp(X) = grp(Y) is identically evaluated in both games.
The assert E[X] 6= ⊥ is evaluated consistently in both games due to invariant
property (1) which states that Eleft = Eright. Both games return the same
pair of public shares which they received as input (regardless of whether
mapping occurs).

SETpsk,0(h, hon, k) Map passes on SETpsk,0(h, hon, k) unchanged and the four
asserts in the SETpsk,0(h, hon, k) are evaluated on the same inputs and
do not rely on state, i.e., assert name(h) = psk, assert level(h) = 0,
assert alg(k) = alg(h) and assert len(h) = |untag(k?)|. Thus, either both or

60 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

none of the two games abort. If they don’t abort, let us consider the following
cases.
Case I there are no level 0 entries for (0, k) in Logright

psk : Due to (5), there
are also no level 0 entries for k in Logleft

psk . Thus, none of the two games
aborts.

Case II there is a level 0 entry for (0, k) in Logright
psk : Due to (5), there is

also a level 0 entry in Logleft
psk .

(a) There is no level > 0 entry for (0, k) in Logright
psk . Therefore, the

map = 1 code of the Logright
psk package does not trigger and both

games abort.
(b) There is a level > 0 entry for (0, k) in Logright

psk . By (2e), we have
that J [k] = 1. Therefore, the map = 1 code of the Logright

psk package
does not trigger and both games abort.

Moreover, if there is no abort, both games return the same handle as they
received. In the left game, this is ensured by the Key package code, and in
the right game, this is ensured by the Map code.

XTRn,`/XPDn,` For XTRn,`, consider the assert assert alg(h1) = alg(h2) which
is evaluated if alg(h1) 6= ⊥ and alg(h2) 6= ⊥. Since 3(b) ensures that Mn,`

preserves algorithms (including the case that algorithms are undefined), this
assert fails on the right if and only if fails on the left.
We now consider the asserts when reading keys in the XTRn,` oracle of the
Xtr package via GET queries. Where the left game reads a keys for handles
h1 and h2, the right game reads keys for M right

i1
[h1] and M right

i2
[h2], where

i1 = idx(h1) and i2 = idx(h2). Due to 2c (and using 2a (iv)), M right
i1

[h1] and
M right

i2
[h2] are defined if and only if K left

i1
[h1] and K left

i2
[h2] are defined, and,

due to 2b (and using 2a (iv)), when M right
i1

[h1] 6= ⊥ and M right
i2

[h2] 6= ⊥,
then also Kright

idx(Mright
i1

[h1])
[M right

i1
[h1]] 6= ⊥ and Kright

idx(Mright
i2

[h2])
[M right

i2
[h2]] 6= ⊥.

The read asserts for XPDn,` are analogous.
We now consider asserts when writing keys in the XTRn,` oracle via SET
queries. Here, the analysis of asserts is almost analogous to SETpsk,0(h, hon, k),
except that now, some of the values used in the asserts have previously been
retrived via a GET query. Firstly, assert name(h) = n holds, since h is con-
structed as xtr〈n, h1, h2〉 and h1 and h2 have the correct name due to 2a (vii)
(and 2a (iv)), thus, h is a valid handle with name(h) = n. Analogously, the
level of a handle is inherited from the level of one of the parent handles, and
since only one of the parent handles has a level (neither 0ikm, nor 0salt, nor
dh have a level due to 2a (ix)) and this level is the same as the level of the
Xtrn,` package (due to the code of XTRn,` and 2a (x)), if XTRn,` makes a
SETn,`(h, hon, k) query, then level(h) = ` and assert level(h) = ` is satisfied.
For assert alg(k) = alg(h), we observe that GET tags keys consistently with
the algorithm contained in the handle. Finally, assert len(h) = |untag(k?)| is
satisfied since 2(a) (viii) (and 2a (iv)) is satisfied on a GET and xtr preserves
the key length.

Key-schedule Security for the TLS 1.3 Standard 61

The asserts for XPDn,` are analogous, except for n = psk where the level is
increased by 1 before setting the key in the XPD code on the right and on
the left. Since level(xpd〈psk, label, h1, args〉) = level(h1) + 1, this increase is
consistent between the handle and the SETpsk,`+1 query.
If an XTRn,` query does not abort, then XTRn,`(h1, h2) returns xtr〈n, h1, h2〉
on both sides, since this handle is constructed by Map on the right and
by Xtr on the left. Analogously for XPDn,`(h, label, args), the call returns
xpd〈n, label, h1, args〉 on both sides whenever it does not abort.

GETn,` Due to (2b, 2c and 2a (iv)), the entry M right
n,` [h] is defined if and only

if the values Kright
n,level(Mright

n [h])
[M right

n,` [h]] and K left
n,` [h] are defined. It follows

from (6) that the same value is returned.

C.2 Proof of Lemma C.3 (Main)

Observe that

Gks0Map code≡ Rch-map → Gcore0 (18)

Gks1Map code≡ Rch-map → Gcore1(Score) (19)

in Fig. 25b and Fig. 25c, respectively. Therefore, based on A, we can define a
new adversary B := A → Rch-map in the analysis:

Adv(A, Gks0Map, Gks1Map)
=

∣∣Pr
[
1 = A → Gks0Map]− Pr

[
1 = A → Gks1Map]∣∣

Eq.18&19=
∣∣Pr
[
1 = A → (Rch-map → Gcore0)

]
− Pr

[
1 = A → (Rch-map → Gcore1(Score)

]
)
∣∣

=
∣∣Pr
[
1 = (A → Rch-map)→ Gcore0]− Pr

[
1 = (A → Rch-map)→ Gcore1(Score)

]∣∣
=

∣∣Pr
[
1 = B → Gcore0]− Pr

[
1 = B → Gcore1(Score)

]∣∣
= Adv(B, Gcore0, Gcore1)
= Adv(A → Rch-map, Gcore0, Gcore1),

C.3 Proof of Lemma C.4 (Xpd-Inlining)

See Fig. 25c and Fig. 26a for the two games and the left and middle column
of Fig. 29 for the code of Map and Map-Xpd, respectively. In Fig. 27, we depict
the code of XPDn of Map for n ∈ O∗ in the left-most column. From the left to
the middle column, we inline the XPDn code of the Xpdn package, marked in
pink. From the middle to the right column, we observe that n1 and n′1 carry
the same value, and that label and label ′ carry the same value. We thus just use
n1 and label and remove the lines n′1,_ ← PrntN(n) and label ′ ← Labels(n, r).
Moreover, in the middle column, we branch on whether n = psk. Since n ∈ O∗
and psk /∈ O∗, we always execute the else branch and can omit the branch for
n = psk.

62 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Map

XPDn∈O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉

h′ ← XPDn,`1 (Mi1 [h1], r, args)

Mn[h]← h′

return h

Map→ Xpd

XPDn∈O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
n1,_← PrntN(n)
label ′ ← Labels(n, r)
h′ ← xpd〈n, label ′,Mi1 [h1], args〉
(k1, hon)← GETn1,`1 (Mi1 [h1])
if n = psk :
`1 ← `1 + 1
k ← xpd(k1, (label, args))

else
d← HASH(args)
k ← xpd(k1, (label, d))

()← SETn,`1 (h′, hon, k)
Mn[h]← h′

return h

Map-Xpd

XPDn∈O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
n1,_← PrntN(n)

h′ ← xpd〈n, label,Mi1 [h1], args〉
(k1, hon)← GETn1,`1 (Mi1 [h1])

d← HASH(args)
k ← xpd(k1, (label, d))
()← SETn,`1 (h′, hon, k)
Mn[h]← h′

return h

Fig. 27: Inlining proof (Lemma C.4)

C.4 Proof of Lemma C.5 (Map-Outro)

The proof proceeds by showing the following two claims.

Claim C.5.1 (Injectivity) For all n ∈ O∗, the mapping Mn,` is injective, i.e.,
if Mn,`[h] = Mn,`[h′], then h = h′.

For the proof of this claim, we refer to Appendix C.5.

Map

PrntIdx(es, `)

return (0salt), (psk, `)

PrntIdx(hs, `)

return (esalt, `), (dh)

PrntIdx(as, `)

return (hsalt, `), (0ikm)

PrntIdx(n, `)n∈XPN

(n1,_)← PrntN(n)
return (n1, `), ()

Fig. 28: Index function of Map. See Fig. 29 for the code of the oracle of Map.

Key-schedule Security for the TLS 1.3 Standard 63

Map

SETpsk,0(h, hon, k)

Mpsk[h]← SETpsk,0(h, hon, k)
return h

DHGEN()

return DHGEN()

DHEXP(X,Y)

h← dh〈sort(X,Y)〉
h′ ← DHEXP(X,Y)
if Mdh[h] = ⊥ :

Mdh[h]← h′

return h

XTRn∈{es,hs,as},`(h1, h2)

i1, i2 ← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
assert Mi2 [h2] 6= ⊥

`′
choose← level(Mi1 [h1]), level(Mi2 [h2])

h← xtr〈n, h1, h2〉
h′ ← XTRn,`′(Mi1 [h1],Mi2 [h2])
Mn,`[h]← h′

return h

XPDn∈XPN,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
h′ ← XPDn,`1 (Mi1 [h1], r, args)

if n = psk : `← `+ 1
Mn,`[h]← h′

return h

GETn∈O∗,`(h)

assert Mn,`[h] 6= ⊥
return GETn,level(Mn,`[h])(Mn,`[h])

Map-Xpd

SETpsk,0(h, hon, k)

Mpsk[h]← SETpsk,0(h, hon, k)
return h

DHGEN()

return DHGEN()

DHEXP(X,Y)

Unchanged from Map on the left

XTRn∈{es,hs,as},`(h1, h2)

Unchanged from Map on the left

XPDn∈XPN\O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
h′ ← XPDn,`1 (Mi1 [h1], r, args)
if n = psk : `← `+ 1
Mn,`[h]← h′

return h

XPDn∈O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
n1,_← PrntN(n)
h′ ← xpd〈n, label,Mi1 [h1], args〉
(k1, hon)← GETn1,`1 (Mi1 [h1])
d← HASH(args)
k ← xpd(k1, (label, d))
()← SETn,`(h, hon, k)
Mn,`[h]← h′

return h

GETn∈O∗,`(h)

assert Mn,`[h] 6= ⊥
return GETn,level(Mn,`[h])(Mn[h])

Map-Xpd-Remap

SETpsk,0(h, hon, k)

Mpsk[h]← SETpsk,0(h, hon, k)
return h

DHGEN()

return DHGEN()

DHEXP(X,Y)

Unchanged from Map on the left

XTRn∈{es,hs,as},`(h1, h2)

Unchanged from Map on the left

XPDn∈XPN\O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
h′ ← XPDn,`1 (Mi1 [h1], r, args)
if n = psk : `← `+ 1
Mn,`[h]← h′

return h

XPDn∈O∗,`(h1, r, args)

i1,_← PrntIdx(n, `)
assert Mi1 [h1] 6= ⊥
label← Labels(n, r)
`1 ← level(Mi1 [h1])
h← xpd〈n, label, h1, args〉
n1,_← PrntN(n)

(k1, hon)← GETn1,`1 (Mi1 [h1])
d← HASH(args)
k ← xpd(k1, (label, d))
()← SETn,`(h, hon, k)
Mn,`[h]← h

return h

Fig. 29: Oracles of Map, Map-Xpd, Map-Xpd-Remap for ` ∈ {0 . . . d}. `′ choose←
level(Mn1 [h1]), level(Mn2 [h2]) assigns to `′ the value level(Mn1 [h1]) if it is not
⊥ and level(Mn2 [h2]), else.

64 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Claim C.5.2 (Functional Equivalence) If for all n ∈ O∗, the mapping Mn,`

is injective, then GksMapxpd func
≡ Gks1(S)

We prove Claim C.5.2 using injective variable renaming in the KeyO∗,0..d

packages. Namely, for all n ∈ O∗, ` ∈ {0, . . . , d}, we rename Mn,`[h] to h. The
renaming is well-defined for all values in the range of Mn,`, since there are no
two distinct h and h′ with Mn,`[h] = Mn,`[h′] by Claim C.5.1. In addition, the
condition assert Mn,`[h] 6= ⊥ in Map (on the left) and assert Kn,`[h] 6= ⊥ (on
the right) in Key are satisfied for the same handles h.

To show that this is indeed true, we now provide a detailed invariant ar-
gument, analogous to the proof of Lemma C.2. Namely, we think as right of
the state of GksMapxpd (and add a superscript right) and as left of the state of
Gks1(S) (and add a superscript left). Now, consider the following relations:

(0) Eleft = Eright

(1) ∀n ∈ {dh, 0ikm, 0salt } : M left
n = M right

n

K left
n = Kright

n

Logleft
n = Logright

n

(2) ∀` ∈ {0..d} , n ∈ N \ (O∗ ∪{dh, 0ikm, 0salt }) : M left
n,` = M right

n,`

K left
n,` = Kright

n,`

Logleft
n = Logright

n

(3) ∀` ∈ {0..d} , n ∈ O∗ : M left
n,` [h] = ⊥ ⇔ Kright

n,` [h] = ⊥

K left
n,`′ [M left

n,` [h]] = Kright
n,` [h]

for `′ = level(M left
n,` [h])

Logleft
n [M left

n,` [h]] = (M left
n,` [h], hon, k)⇔ Logright

n [h] = (h, hon, k)

(0) holds since only the GENDH query of DH writes to E (a) on the same
inputs and (b) without reading any state.

(1) holds since Mn, Kn and Logn, for n ∈ {0salt, 0ikm} are initialized with
the same values and never modified/written to. For n = dh, only the DHEXP
oracle makes SETdh queries which write toMdh andKdh. The code of the DHEXP
oracle remains unchanged from GksMapxpd to Gks1(S), and it only depends on
state which is equal, namely the table E, which we discussed in (0).

(2) For n ∈ N \(O∗∪{dh, 0ikm, 0salt }), only XPDn,∗ or XTRn,∗ queries write
toMn,∗, Kn,∗ and Logn. They have identical code in GksMapxpd and Gks1(S) and
only read state which is equal (by induction hypothesis). Thus, the levels of the
tables which are modified are also identical.

(3) Let us now consider how the oracles XPDn,` and GETn,` with n ∈ O∗

affect condition (3). GETn,∗ only performs read operations and thus does not
modifyMn,∗, Kn,∗ and Logn. Before turning to the induction step, notice that it
suffices to prove line 2 of condition (3). The reason is that if K left

n,`′ [M left
n,` [h]] 6= ⊥,

then Logleft
n [M left

n,` [h]] = (M left
n,` [h], hon, k), borrowing condition (2a) (iv) from the

Key-schedule Security for the TLS 1.3 Standard 65

proof of Lemma C.2 (since that part of the proof is local over Key and Log).
The same statement holds on the right, and therefore, using line 2 of condition
(3), the hon and k values in the Log are equal, too, i.e., Logleft

n [M left
n,` [h]] =

(M left
n,` [h], hon, k)⇔ Logright

n [h] = (h, hon, k).
We now assume that (1), (2) and (3) hold and prove via induction over XPDn,`

for n ∈ O∗ that line 2 of (3) holds after calling XPDn,`. Consider the XPDn,`

oracle in GksMapxpd. If M left
n,` [h] = ⊥ and XPDn,` writes into M left

n,` [h], then the
XPDn,` oracle in Gks1(S) writes into Kright

n,` [h], since by induction assumption,
Kright

n,` [h] has not been written to before. Moreover, by injectivity of the mapping,
K left

n,`′ [M left
n,` [h]] with `′ = level(M left

n,` [h]) has not been written to before (since
there is no other handle h′ with M left

n,∗ [h′] = M left
n,` [h]) and thus receives the same

value k as Kright
n,` [h], which concludes the proof of Claim C.5.2.

C.5 Injectivity

Claim C.5.1 (Injectivity) For all n ∈ O∗, the mapping Mn,` is injective, i.e.,
if Mn,`[h] = Mn,`[h′], then h = h′.

Proof. The proof proceeds by induction over oracle calls to the Map-XPD package.
We use the notation Mn,∗ to denote Mn,` for some arbitrary ` and by overload-
ing of notation to also denote Mn for n ∈ {0salt, dh, 0ikm}. psk(h) is a helper
function which takes as input handle h and deconstructs it until finding a psk
handle (which will have the same level as h). Similarly, dh(h) deconstructs h until
finding a dh handle (which has no level). rm(h) reconstructs h until finding a rm
handle (which will have one level less than h). We use similar helper functions
for further key names when needed. In the following invariant, we use (but omit
to state) (2a) (iv) and (2d) which were stated in the invariant of Lemma C.2
and can be proven analogously.
Invariant

(1) Arguments: If Mn,∗[h] = Mn,∗[h′] = h′′, then recursively on the handle
structure, args(h) = args(h′) = args(h′′) (including the labels), recursing
until one of the handles reaches a level 0 psk handle.

(2) Binder property: level 0 and level > 0 binders are different, i.e., for all
handles h and h′ with name(h) = name(h′) = binder , level(h) = 0 and
level(h′) := `′ > 0, we have that

Kbinder,level(Mbinder,0[h])[Mbinder,0[h]]
6=Kbinder,level(Mbinder,`′ [h′])[Mbinder,`′ [h′]].

(3a) PSK mapping:
Mn,∗[h] = Mn,∗[h′] ∧ h 6= h′

∧ psk(h) 6= psk(h′)⇒ level(h) 6= level(h′) ∧ 0 ∈ {level(h), level(h′)}
(3b) DH mapping:

Mn,∗[h] = Mn,∗[h′] ∧ h 6= h′

∧ psk(h) = psk(h′)⇒ level(h) = level(h′) ∧ dh(h) 6= dh(h′)

66 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

(4) Injectivity:
∀n ∈ NS≤, h, h′ : Mn,∗[h] = Mn,∗[h′] 6= ⊥ ⇒ h = h′,

where NS≤ contains S and its decendants within the same level (no psk).

Assume (1)–(4) hold before an oracle call. We show that (1)–(4) still holds af-
terwards.
Property (1): If Mn,∗[h] = h′, then the handles Mn,∗[h] and h′ match re-
cursively on their args and labels. Below, we see that the matching is either
propagated, or irrelevant (since there are no args).

SETpsk,0: This oracle may only be called for ` = 0 and h has therefore to be
of the structure psk〈ctr , alg〉 (otherwise, the Keypsk,0 package aborts in an
assert) which does not contain any args.

DHGEN: This oracle does not use handles.
DHEXP: h and h′ are of the form dh〈X,Y 〉 for some X,Y which does not contain

any args.
XTRn,`: Both h and h′ do not add new args and the condition already holds for

the included handles.
XPDn,`: The args (including the labels) added to h and h′ are consistently used

in the Map and Xpd packages.

Property (2):

XPDbinder,`: Let h be the response to the oracle call and h′ ∈ Mbinder,∗ 6= h
with ` = level(h) 6= level(h′) = `′ and 0 ∈ {level(h), level(h′)}. Observe that
Label(binder , r) is different for r = 0 and r = 1 and, as Check enforces r = 0
for level 0 and r = 1 otherwise, label(h) 6= label(h).
Moreover, due to (1), the labels in h̃ := Mbinder,∗[h] and h̃′ := Mbinder,∗[h′]
are different, too and the two binder values are stored in Kbinder,∗[h̃] and
Kbinder,∗[h̃′], respectively. Since Logbinder uses an F -pattern, values do not
repeat and thus, Kbinder,∗[h̃] are Kbinder,∗[h̃′] are different as required.

Otherwise: Mbinder,∗ is not modified.

Property (3a):

SETpsk,0(h, hon, k): W.l.o.g. Logpsk,0[h] = ⊥ before the call since else the state
is not modified. Logpsk,0[h] = ⊥ implies that Kpsk,0[h] = ⊥ before the call
(via a local argument over Log and Key which we explicitly stated in 2a (iv)
in the proof of Lemma C.2).
Case I There exists h′′ 6= h with level(h′′) = 0 and Log[h′′] = (∗, 0, k): The

A pattern aborts now.
Case II There exists no h′′ 6= h with level(h′′) = 0 and Log[h′′] = (∗, 0, k):

The A pattern does not abort and J [k] = ⊥ before the call.
(a) There is a h′ 6= h with level(h′) 6= 0 und Log[h′] = (∗, 0, k). The game

sets J [k]← 1 and condition (3a) continues to hold.
(b) There is no h′ 6= h with level(h′) 6= 0 und Log[h′] = (∗, 0, k): No new

mapping occurs and thus (3a) continues to hold.

Key-schedule Security for the TLS 1.3 Standard 67

XPDpsk,`(hrm, r, args): Let h be the response from the oracle call. Observe that
level(h) 6= 0. If there is no h′ 6= h with Mpsk,∗[h] = Mpsk,∗[h′], condition
(3a) holds. In the other case, let h′ be such that h′ 6= h with Mpsk,∗[h] =
Mpsk,∗[h′].
Case I level(h′) = 0, (3a) holds.
Case II level(h′) 6= 0.

(a) args = args(h′). In this case, since the resumption bit is 1 for both,
and both have the same args, the only value which can be differ-
ent and lead to h 6= h′ is the rm handle, i.e., rm(h) 6= rm(h′). By
(2d) in Lemma C.2, since Mpsk,∗[h] = Mpsk,∗[h′], we also have that
Mrm,∗[Orm(h)] = Mrm,∗[rm(h′)]. Now, due to (4), this implies that
rm(h) = rm(h′) in contradiction to rm(h) 6= rm(h′). Thus, this case
is impossible.

(b) args 6= args(h′). This is impossible as (1) ensures recursive consis-
tency on the arguments.

XPDn,`(h1, r, args), n 6= psk: Let h be the response from the oracle call. Ob-
serve that Key.SET will either aborts or returns the handle unmodified. If
there exists h′ 6= h such that Mn[h] = Mn[h′] then args(h) = args(h′) and
parent(h) = parent(h′) (code of map package) Due to (3a) applied to the
parents and level(h) = level(parent(h)) and level(h′) = level(parent(h′)) (3a)
also holds for h and h′.

XTRn,`(h1, h2) Observe that (3a) follows from an analogous argument for XTRes,`

and XTRas,`. For XTRhs,` the argument follows from applying (3a) to the
esalt parent handles.

DHEXP: Let h be the response from the oracle call. Let h′ 6= h with Mpsk [h] =
Mpsk [h′]. h and h′ are of the form dh〈X,Y 〉 for some X,Y and therefore
psk(h) = psk(h′) = ⊥ in contradiction to h′ 6= h and therefore (3a) holds.

Property (3b):

XTRhs,`(hesalt , hdh): Let h be the response from the oracle call. Let h′ 6= h with
Mhs,∗[h] = Mhs,∗[h′] and psk(h) = psk(h′). By (1) args(h) = args(h′) and
therefore esalt(h) = esalt(h′). Since h′ 6= h it follows that dh(h) 6= dh(h′) and
therefore (3b).

Otherwise: Since the psk is equal, both handles indeed have the same level. The
inequality of the dh shares follows from using (3b) on the parent handles and
the close relation between parents and children ((2d) from Lemma C.2).

Property (4):

XPDn,`(h1, r, args) We first consider n ∈ S since this is the most intricate case.
Let h be the response from the oracle call. Towards contradiction, let h′ 6= h
with Mn[h] = Mn[h′]. Observe that args(h) = args(h′) due to (1).
Case I psk(h) = psk(h′) then by (3b) dh(h) 6= dh(h′). Observe that Check

ensures that DHArgs(args) 6= DHArgs(args′) and therefore, it follows that
args(h) 6= args(h′) in contradiction to the observation args(h) = args(h′).

Case II psk(h) 6= psk(h′) then due to (3a) level(h) 6= level(h′) and 0 ∈
{level(h), level(h′)}.

68 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

(a) Label(n, 0) 6= Label(n, 1) in contradiction to args(h) = args(h′).
(b) Let hbinder := BinderHand(h, args(h)), and we denote h′binder :=

BinderHand(h′, args(h′)). As level(hbinder) = level(h), level(h′binder) =
level(h′), level(hbinder) 6= level(h′binder) and 0 is contained in the
set {level(hbinder), level(h′binder)}, due to (2), we have that k :=
Kbinder,0[Mbinder [hbinder]] and k′ := Kbinder,`′ [Mbinder,∗[h′binder]] are
not equal. Check ensures that k = BinderArgs(args(h)) and k′ =
BinderArgs(args(h′)) and therefore args(h) 6= args(h′) in contradic-
tion to args(h) = args(h′).

We now consider n such that n comes after a separation point on the path
from psk, then (4) follows directly from (4) on the parents and using the
relation to the parent handles via (2d) of Lemma C.2. In turn if n comes
before a separation point on the path from psk, there is no write on Mn,∗.

D Core Key Schedule Theorem

The proof of Theorem D.1 is outlined in Fig. 31. The core step of the proof
(Lemma D.6) is a two-dimensional hybrid argument outlined in Fig. 32. The
first hybrid argument is over resumption levels and follows a standard pattern.
The inner hybrid argument then proceeds over the graph structure of the key
schedule. This is where the generalized statement of a key schedule is conve-
nient: While we argue in Lemmas D.11, D.12, D.13 explicitely about the xtr
assumptions, reasoning over all xpd assumptions proceeds by a generic argu-
ment (Lemma D.14) and is independent of the actualy set of xpd packages and
the number of keys derived.

Before we can proof this lemma, we need a sequence of 4 game hops. In
the first step (Lemma D.2) we idealize collission resistence of the Hash package
(which is used to hash transcripts). The second step (Lemma D.3) changes the
pattern in the Log packages from Z to D. The proof of Lemma D.3 reduces
to collision-resistance and also relies on an inductive argument called the co-
dependance lemma. Namely, we show that once collision-resistance of the hash-
function is idealized, aD abort on one key requires that there has been a collision
before and therefore, since every collision requires a previous collision, no colli-
sion can occur. In the third step (Lemma D.4) we add an rewarding abort on the
esalt key where we return a special winning symbol to the adversary (which al-
lows the adversary to trivially distinguish) if the adversary can cause a collision
containing an honest esalt key. This can only increase an adversary’s distinguish-
ing probability, so, it suffices to show that we can bound the resulting advantage.
With the collision-freeness of esalt we can (globally) apply the Gsodh assumption
to idealize Diffie-Hellman secrets (Lemma D.5). At this point we can idealize the
xtrand xpdassumptions using the central hybrid argument (Lemma D.6). Finally
we use preimage-resistance (Lemma D.7) to remove the rewarding aborts intro-
duced in Lemma D.4. We then observe that the game (Fig. 31h) can be split in
simulator and ideal functionality as desired.

Key-schedule Security for the TLS 1.3 Standard 69

Theorem D.1 (Core). Let ks be a TLS-like key schedule with XPR. Let d be
an integer. Let Score be the efficient simulator defined in Fig. 30a. Then, for all
adversaries A which make queries for at most d resumption levels, we have that

Adv(A, Gcore0, Gcore1(Score))

≤
∑

R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai → Resalt,pi , Gpib
esalt) + Adv(Ai → RO∗,pi , Gpib

O∗)+
d−1∑
`=0

(
Adv(Ai → Res,`, Gxtrb

es,`) + Adv(Ai → Rhs,`, Gxtrb
hs,`)+

Adv(Ai → Ras, Gxtrb
as,`) +

∑
n∈XPR

(
Adv(Ai → Rn,`, Gxpdb

n,`)
))
,

where XPR is the required representation set, Gcore0 and Gcore1(Score) are
defined in Fig. 30, Rcr is defined in Fig. 31a, Rsodh is defined in Fig. 32a, Res,`
is defined in Fig. 34a, Rhs,` and Ras,` are defined analogously, and Rn,` for
n ∈ XPR and 0 ≤ ` ≤ d is defined in Fig. 34b, Resalt,pi is defined in Fig. 32c
and RO∗,pi is defined in Fig. 32d.

KeyN*, 0..d
0 LogN*

DHEXP
DHGEN

DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

A1

HASH Hash0
HASH

GETO*,0..d

Z

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
0

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

(a) Game Gcore0.

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

DHEXP
DHGEN

DH
SETdh

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

KeyI*, 0..d
1 LogI*

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..d
1 Logpsk

D1

HASH Hash1
HASH

D

QO*
UNQO*

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

(b) Game Gcore1(Score), Score in grey.

Fig. 30: Games for Theorem D.1

D.1 Proof of Theorem D.1

Lemma D.2 (Collision-Resistance).

Adv(A, Gcore0, GcoreHash) ≤ Adv(A → Rcr, Gacrhash,b),

where GcoreHash is defined in Fig. 31a, and Rcr is marked in grey in Fig. 31a.

70 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

DHEXP
DHGEN

DH
SETdh

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

A1

HASH Hash1
HASH

GETO*,0..d

Z

(a) Game GcoreHash.

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdCXP, 0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

D1

HASH Hash1
HASH

GETO*,0..d

D

XTRes/as/hs,0..d
XPDCXP, 0..d

DHEXP
DHGEN

DH
SETdh

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
0

(b) Game GcoreD

KeyN*, 0..d
0

Logesalt

LogN*\esalt

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

D1

HASH Hash1
HASH

GETO*,0..d

D

R

DHEXP
DHGEN

DH
SETdh

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
0

(c) Game GcoreResalt.

KeyN*, 0..d
0

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

D1

HASH Hash1
HASH

GETO*,0..d

Logesalt

LogN*\esalt
D

R

DHEXP
DHGEN

DH
SETdh

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

(d) Game GcoreSODH

KeyN*, 0..i
KeyN*, i+1..d

1
0

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..i
Keypsk, i+1..d

1
0 Logpsk

D1

HASH Hash1
HASH

GETO*,0..d

DHEXP
DHGEN

DH
SETdh Qdh

UNQdh

Qpsk
UNQpsk

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

Logesalt

LogN*\esalt
D

R

QN*
UNQN*

(e) Game Gcorehyb:`

KeyN* C 0..i+1
KeyC N*, 0..i

KeyN* C i+2..d
KeyC N*, i+1..d

1

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..i
Keypsk, i+1..d

1
0 Logpsk

D1

HASH Hash1
HASH

GETO*,0..d
1
0
0

DHEXP
DHGEN

DH
SETdh

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

Logesalt

LogN*\esalt
D

R

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

(f) Game Gcorehyb:`−1,c

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

XTRes/as/hs,0..d
XPDXPN, 0..d

KeyI*, 0..d
1

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0..d
1 Logpsk

1

D1

HASH Hash1
HASH

KeyO*, 0..d
1 LogO*

GETO*,0..d

D
SETO*,0..d

LogI*

Logesalt

D

R

SETdh
DHEXP
DHGEN

DH

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

QO*
UNQO*

(g) Game Gcoreki

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

DHEXP
DHGEN

DH
SETdh

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

KeyI*, 0..d
1 LogI*

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..d
1 Logpsk

D1

HASH Hash1
HASH

D

QO*
UNQO*

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

(h) Game Gcore1(Score), Score in grey.

Fig. 31: Proof overview for Theorem D.1

Key-schedule Security for the TLS 1.3 Standard 71

Lemma D.3 (D-Pattern).

Adv(A, GcoreHash, GcoreD) ≤
Adv(A → RZ,xtr, Gacrxtr,b) + Adv(A → RZ,xpd, Gacrxpd,b)+
Adv(A → RD,xtr, Gacrxtr,b) + Adv(A → RD,xpd, Gacrxpd,b),

where GcoreHash is defined in Fig. 31a, GcoreD is defined in Fig. 31b, RZ,xtr
is marked in grey in Fig. 33a, RZ,xpd is marked in grey in Fig. 33b, RD,xpd is
marked in grey in Fig. 33c, and RD,xtr is marked in grey in Fig. 33d.

Lemma D.4 (Resalt). For every adversary A, there exists two adversaries
A0 and A1 of essentially the same runtime such that

Adv(A, GcoreResalt, Gcore1(Score)) ≤ max
i∈{0,1}

Adv(Ai, GcoreHash, GcoreD),

where GcoreResalt is defined in Fig. 31b, and for i ∈ {0, 1}, Ai behaves as A
except that it outputs bit i when receiving a win abort value.

Lemma D.5 (SODH Lemma).

Adv(A, GcoreResalt, GcoreSODH) = Adv(A → Rsodh, Gsodhb),

where GcoreSODH is defined in Fig. 31c, and Rsodh is marked in grey in Fig. 32a.

Lemma D.6 (Hybrid Lemma). For all ` = 0..d− 1,

Adv(A, Gcorehyb:`, Gcorehyb:`+1)
≤Adv(A → Res,`, Gxtrb

es,`) + Adv(A → Rhs,`, Gxtrb
hs,`)

+ Adv(A → Ras,`, Gxtrb
as,`) +

∑
n∈XPR

(
Adv(A → Rn,`, Gxpdb

n,`)
)
,

where Gcorehyb:` is defined in Fig. 31e.

Lemma D.7 (Pre-image-resistance).

Adv(A, Gcoreki, Gcore1(Score))
≤Adv(A → Resalt,pi , GpiR

esalt , GpiD
esalt) + Adv(A → RO∗,pi , GpiD

O∗ , GpiF
O∗),

where Resalt,pi is defined in Fig. 32c and RO∗,pi is defined in Fig. 32d.

From Lemma D.2-D.7, we obtain Theorem D.1 by observing that

GcoreSODH = Gcorehyb:0 and Gcoreki = Gcorehyb:d (20)

and then applying a standard hybrid argument, included here for completeness:

72 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Adv(A, Gcore0, Gcore1(Score))
Lm. D.2
≤ Adv(A → Rcr, Gacrb) + Adv(A, GksHash, Gcore1(Score))

Lm. D.3
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + Adv(A, GcoreD, Gcore1(Score))

Lm. D.4
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai, GcoreResalt, Gcore1(Score))

Lm. D.5=
∑

R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai, GcoreSODH, Gcore1(Score))
Eq. 20
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai, Gcoreki, Gcore1(Score)) + Adv(Ai, Gcorehyb:0, Gcorehyb:d)
tele. sum
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai, Gcoreki, Gcore1(Score)) +
d−1∑
`=0

Adv(Ai, Gcorehyb:`, Gcorehyb:`+1)

Lm. D.6
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai, Gcoreki, Gcore1(Score))+
d−1∑
`=0

(
Adv(Ai → Res,`, Gxtrb

es,`) + max
i∈{0,1}

Adv(Ai → Rhs,`, Gxtrb
hs,`)+

Adv(Ai → Ras, Gxtrb
as,`) +

∑
n∈XPR

(
Adv(Ai → Rn,`, Gxpdb

n,`)
))

Lm. D.7
≤

∑
R∈{Rcr,RZ ,RD}

Adv(A → R, Gacrb) + max
i∈{0,1}

Adv(Ai → Rsodh, Gsodhb)

+ Adv(Ai → Resalt,pi , Gpib
esalt) + Adv(Ai → RO∗,pi , Gpib

O∗)+
d−1∑
`=0

(
Adv(Ai → Res,`, Gxtrb

es,`) + Adv(Ai → Rhs,`, Gxtrb
hs,`)+

Adv(Ai → Ras, Gxtrb
as,`) +

∑
n∈XPR

(
Adv(Ai → Rn,`, Gxpdb

n,`)
))
,

Key-schedule Security for the TLS 1.3 Standard 73

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyNE*, 0..d
0 LogNE*

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETNI*,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETpsk,0..d
SETpsk, 1..d

0

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

D1

HASH Hash1
HASH

GETO*,0..d

D

GETesalt,0..d
Xtrhs,0..d

Qdh
UNQdh

Nkeydh

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Logdh

Loghs

Z

D0

GETdh,0..d

Qesalt
UNQesalt

Keyesalt,0..d

SETesalt,0..d
Logesalt

R0

b

DHEXP
DHGEN

DH
SETdh

 NE*:=N*
 NI*:= I*

(a) Game GcoreSODH if b = 0 and game
GcoreSODH if b = 1. Reduction RSODH is
marked in grey.

Rxpdn,`

XPDn,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
(k1, hon)← GETn1,`(h1)
d← HASH(args)
k ← HASHxpd(k1, (label, d))
if n = psk :
h← SETn,`+1(h, hon, k)

else
h← SETn,`(h, hon, k)

return h

Rxtrb
n,`

XTRn,`(h1, h2)

n1, n2 ← PrntN(n)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)
k ← HASHxtr(k1, k2)
hon ← hon1 ∨ hon2

if b ∧ hon2 :
k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SETn,`(h, hon, k)
return h

(b) Rxtrn for n ∈ {es, hs, as} and Rxpdn for
n ∈ XPN .

QISE
UNQISEKeyISE, 0..d

1

DhKeydh Logdh
Qdh
UNQdh

SETpsk,0

SETISE,0..d
GETISE,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN SE, 0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0..d
1 Logpsk

1

D1

Hash1HASH

XTRes/as/hs,0..d
XPDXPN, 0..d

QOSE
UNQOSE

KeyOSE, 0..d
1 LogOSE

GETOSE,0..d

D
SETOSE,0..d

LogISE
D

SETdh
DHEXP
DHGEN

DH

GETn1,0..d

HASH

XpdSE,0..d

Qn1
UNQn1

Keyn1,0..d

QSE
UNQSE

KeySE,0..d

SETSE,0..d

GETSEO,0..d

XPDSE,0..d

Logn1

Logesalt
LogSE\{esalt}

D

P

1

1

n1, :=PrntN(esalt)
SE:=ChldrnN(n1)

SETn1,0..d

GETSEI,0..d

SEO:=SE O*
SEI :=(SE I*)\{n1}
OSE:=O* SE
ISE :=I* (SE {n1})

GET0salt,0..d
GET0ikm,0..d

HASH

D

(c) Game Gcoreki if P = R. Reduction
RPIesalt is marked in grey.

HASH

KeyI*, 0..d
1

DhKeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN SO*, 0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Keypsk, 0..d
1 Logpsk

1

D1

HASH

XTRes/as/hs,0..d
XPDXPN SO*, 0..d

LogI*
D

SETdh
DHEXP
DHGEN

DH

GETPO*,0..d

HASH

XpdSO*,0..d

KeySOPO,0..d

SETSO*,0..d

GETO*,0..d

SETPO*\SO*,0..d
GETSO*\ (PO* O*),0..d

XPDSO*,0..d

LogSOPO\O*
LogO*

P

1

Hash1
PO*:={n1:
n1, =PrntN(n) for n O*}
SO*:= ChldrnN(n)
SOPO:=SO* PO*

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

QSOPO
UNQSOPO

D

(d) Game Gcore1(Score) if P = F . Reduc-
tion RPIO is marked in grey.

Fig. 32: Reductions for the lemmas related to Theorem D.1

74 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

DHEXP
DHGEN

DH

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

RXtres/as,0..d
RXtrhs,0..d
RXpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

A1

HASH Hash1
HASH

GETO*,0..d

Z

HASHxpd Gacrxpd,0

HASHxtr Gacrxtr,b

(a) Game RZ,xtr → Garcxtr,b, reduction
RZ,xtr in grey.

DHEXP
DHGEN

DH

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

RXtres/as,0..d
RXtrhs,0..d
RXpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

A1

HASH Hash1
HASH

GETO*,0..d

Z

HASHxpd Gacrxpd,b

HASHxtr Gacrxtr,1

(b) Game RZ,xpd → Garcxpd,b, reduction
RZ,xpd in grey.

DHEXP
DHGEN

DH

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

RXtres/as,0..d
RXtrhs,0..d
RXpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

D1

HASH Hash1
HASH

GETO*,0..d

D

HASHxpd Gacrxpd,b

HASHxtr Gacrxtr,1

(c) Game RD,xpd → Garcxpd,b, reduction
RD,xpd in grey.

DHEXP
DHGEN

DH

XTRes/as/hs,0..d
XPDXPN, 0..d

QN*
UNQN*

KeyN*, 0..d
0 LogN*

Nkeydh Logdh
Qdh
UNQdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

RXtres/as,0..d
RXtrhs,0..d
RXpdXPN, 0..d

0Key0salt,0..d
0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

0

D1

HASH Hash1
HASH

GETO*,0..d

D

HASHxpd Gacrxpd,0

HASHxtr Gacrxtr,b

(d) Game RD,xtr → Garcxtr,b, reduction
RD,xtr in grey.

Fig. 33: Reductions for Lemma D.2

D.2 Proof of Lemma D.3

The high-level idea for the proof of Lemma D.3 is to (a) first idealize collision-
resistance for xtr and xpd, then (b) introduce D abort patterns in a perfect
equivalence step and then (c) de-idealize collision-resistance of xtr and xpd.
Hybrid argument For each n ∈ {es, hs, as}, we decompose Xtrn into Rxtrn
and Gacrxtr,0, and for each n ∈ XPR, we decompose Xpdn into Rxpdn and
Gacrxpd,0, see Fig. 33a (using b = 0) for the resulting game RZ,xtr → Garcxtr,0

and Fig. 32b for the code of Rxtrn, the difference with Xtrn and Xpdn is marked
in pink.

We establish the following code equivalences:

Gcore0 code≡ RZ,xtr → Garcxtr,0 (21)

RZ,xtr → Garcxtr,1 code≡ RZ,xtr → Garcxpd,0 (22)

RZ,xtr → Garcxpd,1 code≡ RD,xtr → Garcxpd,1 (23)

RD,xtr → Garcxpd,0 code≡ RD,xtr → Garcxtr,1 (24)

RD,xtr → Garcxtr,0 code≡ GcoreD (25)

Key-schedule Security for the TLS 1.3 Standard 75

We turn to proving the code equivalences (21)-(25) shortly and now first show
that (21)-(25) together imply Lemma D.3. The proof is a standard hybrid ar-
gument which we include for completeness. Below, we mark in pink the terms
which are 0 due to (22)-(24). For all adversaries A, we have:

Adv(A, GcoreHash, GcoreD)
(21)+(25)= Adv(A,RZ,xtr → Garcxtr,0,RD,xtr → Garcxtr,0)
≤ Adv(A,RZ,xtr → Garcxtr,0,RZ,xtr → Garcxtr,1)

+Adv(A,RZ,xtr → Garcxtr,1,RZ,xpd → Garcxpd,0)
+Adv(A,RZ,xpd → Garcxpd,0,RZ,xpd → Garcxpd,1)
+Adv(A,RZ,xpd → Garcxpd,1,RD,xpd → Garcxpd,1)
+Adv(A,RD,xpd → Garcxpd,1,RD,xpd → Garcxpd,0)
+Adv(A,RD,xpd → Garcxpd,0,RD,xtr → Garcxtr,1)
+Adv(A,RD,xtr → Garcxtr,1,RD,xtr → Garcxtr,0)

≤ Adv(A → RZ,xtr, Gacrxtr,b) + Adv(A → RZ,xpd, Gacrxpd,b)
+Adv(A → RD,xtr, Gacrxtr,b) + Adv(A → RD,xpd, Gacrxpd,b),

It remains to prove (21)-(25). GcoreHash is functionally equivalent to RZ,xtr →
Garcxtr,0 by inlining the code of the HASHxtr and Hashxpd oracles of Gacrxtr,0 and
Gacrxpd,0. After inlining, the only difference is the line which asserts that the
input is in the domain of the function to be analyzed. We here observe that in-
deed, the inputs are correctly formatted, i.e., (k1, k2) ∈ dom(xtr), k1, (label, d) ∈
dom(xpd). Therefore, (21) holds. Analogously, (25) holds. Equations (22) and
(24) follow by graph pattern matching in Figure 33. The only code equivalence
which remains to prove is (23) which we formulate in the following claim:

Claim D.7.1

RZ,xtr → Garcxpd,1 code≡ RD,xtr → Garcxpd,1

Aborts of the hash-functions cover aborts in the key packages We
now prove Claim D.7.1. To show that RZ,xtr → Garcxpd,1 is code-equivalent to
RD,xtr → Garcxpd,1, we prove that none of the D-patterns in the Logn packages
ever trigger an abort. Towards this goal, for each n ∈ E := N \{dh, 0salt, 0ikm},
we define an event En in RD,xtr → Garcxpd,1, namely, the event that if the
Logn had a D pattern, then it would abort. The event En can be evaluated as a
predicate on the current Logn state and the input to the UNQn query. We define
the events as monotonous, i.e., if event En only has a starting time but no end
time.

We note the following properties about the events En, n ∈ E :

(0) For all n ∈ E : En does not holds at time 0 in RZ,xtr → Garcxpd,1.
(1) If En happens for the first time in time t, then no other event En′ with

n′ 6= n happens for the first time in time t.

76 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

(2) If En holds at time t1, then there must be a time t2 ≤ t1 and n′ ∈ E with
n′ 6= n such that En′ holds at time t2.

(0) holds by definition of the events. (1) holds because the events are all defined
on disjoint sets of variables since they are defined on disjoint packages. The
interesting argument is (2) which we prove in Claim D.7.2. Given (0), (1) and
(2), by Lemma D.9, the events En are what we call co-dependent events, i.e.,
one of them always requires another one to have happened before, and thus,
none of the events En ever occurs in the game. Thus, we can insert the line
if hon = hon′ = 0 : throw abort to the Logn code of all nE without changing
the behaviour of the game, i.e., we can switch all patterns from Z to D. This
concludes the proof of Claim D.7.1, lest the proofs of Lemma D.9 and of (2). We
now first prove (2).

Claim D.7.2 If En holds at time t1, then there must be a time t2 ≤ t1 and
n′ ∈ E with n′ 6= n such that such that En′ holds at time t2.

Proof. We idealized xtr and xpd w.r.t. collision-resistance, key derivations are
injective operations. We call a collision a situation where the same key value is
stored under two different handles in some key table Kn,` with n ∈ E . Given a
key’s handle, we can uniquely identify the input key value and its arguments,
and if the mapping from handles to keys was injective so far and there is no
collision on the xtr or xpd operation, then the mapping continues to be injective.
Dishonest keys are always derived exclusively from dishonest values and due to
the ∞ mapping pattern, dishonest Diffie-Hellman keys are unique. Thus, for all
derived key names n ∈ E with n 6= psk, Claim D.7.2 follows.

The most interesting case is n = psk, since dishonest application PSKs are
adversarially chosen and not derived values. By the previous argument, we al-
ready know that, amongst dishonest resumption PSKs, no collisions occur. Ad-
ditionally, due to the A1 pattern in KEYpsk,0..d, we already know that amongst
dishonest application PSKs, no collisions occur. It remains to argue about colli-
sions between dishonest resumption PSKs and dishonest application PSKs. Note
that due to the mapping for KEYpsk,0..d, the first such collision (per key value) is
removed such that P (r, hon, r′, hon′) is never executed. Additionally, note that a
3-way collision already implies that there must be a collision either amongst two
dishonest application PSKs or amongst two dishonest resumption PSKs, which
we already know cannot occur, which concludes the proof of Claim D.7.2.

D.3 Co-Dependence Lemma

In this appendix, we show that if two non-simultaneous events circularly depend
on each other and if they do not hold at time 0, then they cannot occur. That
is, to show that two events E1 and E2 do not occur, it suffices to show that
(a) neither E1 nor E2 hold at time 0 and that (b) if one of the events occurs,
the other must have already occurred in time strictly before. The proof of this
statement proceeds via induction over time. We call such circularly depending
events co-dependent.

Key-schedule Security for the TLS 1.3 Standard 77

Induction over time

We abstract time by the number of queries t made by the adversary.

Definition D.8 (Co-dependent Events). Let G be a game, let N be a set,
and for n ∈ S, let En be an event on G. We call En, n ∈ N co-dependent on G
if they satisfy the following properties:

(0) For all n ∈ N : En does not holds at time 0 on G.
(1) If En happens for the first time in time t, then no other event En′ with

n′ 6= n happens for the first time in time t.
(2) If En holds at time t1, then there must be a time t2 ≤ t1 and n′ ∈ S with

n′ 6= n such that such that En′ holds at time t2.

Lemma D.9 (Co-Dependance). Let G be a game, let N be a set, and for
n ∈ N , let En be an event on G. If the events En, n ∈ S are co-dependent on
G, then for all adversaries A and for all n ∈ N , we have

Pr[En in A → G] = 0.

Proof. By induction over the time. By (0), neither of the events En, n ∈ S,
holds at time 0. Assume towards contradiction, that there is a time point t and
an event En such that En holds at time t. Then, there is a smallest t1 ≤ t such
that there exists some n′ ∈ N such that En′ holds at time t1. By (2), there is
a time point t0 ≤ t1 and an event En′′ with n′′ 6= n′ such that En′′ holds at
time t0. By (1), it must be that t0 < t1 in contradiction to t1 being the smallest
time point with an event holding at the time. Thus, such a smallest time point
cannot exist.

D.4 Proof of Lemma D.4 (Resalt)

In order to prove Lemma D.4, given an adversary A, we define an adversary
A0 and an adversary A1 such that one of them has a bigger advantage than A
and then, Lemma D.4 follows. Namely, for i ∈ {0, 1}, we define Ai as running
A internally and observing whether the game aborts with win. If so, then Ai

returns i. Else, Ai runs A until A terminates and returns whatever A returns.
Note that by construction of our simulator Score, the game Gcore1(Score) never
aborts with win and thus, whenever the symbol win appears, the adversary must
be interacting with GcoreResalt and not Gcore1(Score) so that the distinguishing
advantage increases by returning the right fixed bit i in this case. We now perform
the probability analysis via up-to-bad reasoning for completeness.

We denote by ER the event that a game returns win. Conditioning on event
ER not occurring, Ai and A behave identically:

α := Pr
[
A → Gcore1(Score) = 1

]
= Pr

[
Ai → Gcore1(Score) = 1

]
β := Pr

[
A → GcoreD = 1|¬ER

]
= Pr

[
Ai → GcoreResalt = 1|¬ER

]

78 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Moreover, in Gcore1(Score), the event ER does not occur. This means that for
i ∈ {0, 1}

α = Pr
[
A → Gcore1(Score) = 1

]
= Pr

[
Ai → Gcore1(Score) = 1

]
β = Pr

[
A → GcoreD = 1|¬ER

]
= Pr

[
Ai → GcoreResalt = 1|¬ER

]
Pr
[
Ai → GcoreResalt = 1|ER

]
= i

We can now prove Lemma D.4 as follows:

Adv(A, GcoreD, Gcore1(Score)) def= (26)∣∣Pr
[
A → GcoreD = 1

]
− Pr

[
A → Gcore1(Score) = 1

]∣∣ (27)
=
∣∣Pr[ER] · Pr

[
A → GcoreD = 1

∣∣ ER

]
+ Pr[¬ER] · β − α

∣∣
If Pr[ER]·Pr

[
A → GcoreD = 1

∣∣ ER

]
+Pr[¬ER]·β−α ≤ 0, we upper bound (27)

by Pr[ER]+Pr[¬ER]·β−α. If α−Pr[ER]·Pr
[
A → GcoreD = 1

∣∣ ER

]
−Pr[¬ER]·

β ≤ 0, then (27) is upper bounded by α − Pr[ER] · Pr
[
A → GcoreD = 1

∣∣ ER

]
and thus, (27) is equal or smaller than

≤max
(
| Pr[¬ER] · β − α| ,
|Pr[ER] + Pr[¬ER] · β − α|

)
= max

i∈{0,1}

∣∣Pr[ER] Pr
[
Ai → GcoreResalt = 1

∣∣ ER

]
+ Pr[¬ER] · β − α

∣∣
= max

i∈{0,1}

(∣∣Pr
[
Ai → GcoreResalt = 1

]
− Pr

[
Ai → Gcore1(Score) = 1

]∣∣)
=Adv(A, GcoreResalt, Gcore1(Score)),

which concludes the proof of Lemma D.4.

D.5 Proof of Lemma D.5

We can separate out the graph of the Gsodh0 game from GcoreResalt, and call
the remaining part of the graph the reduction Rsodh, see Fig. 32a. We then have
that

GcoreResalt code≡ Rsodh → Gsodh0.

Similarly, we can separate out the graph of the Gsodh1 game from GcoreSODH,
using the same remaining graph Rsodh, see Fig. 32a, and we obtain

GcoreSODH code≡ Rsodh → Gsodh1.

Putting these two equations together, we obtain
Adv(A, GcoreHash, GcoreSODH)

=
∣∣Pr
[
A → GcoreHash]− Pr

[
A → GcoreSODH]∣∣

=
∣∣Pr
[
A → (Rsodh → Gsodh0])− Pr

[
A → (Rsodh → Gsodh1])∣∣

=
∣∣Pr
[
(A → Rsodh)→ Gsodh0]− Pr

[
(A → Rsodh)→ Gsodh1]∣∣

= Adv(A → Rsodh, Gsodhb)
This concludes the proof of Lemma D.5.

Key-schedule Security for the TLS 1.3 Standard 79

GETes,

SETpsk,

Qes
UNQes

KeyeN* c 0.. +1
Keyc eN*, 0..

KeyeN* c +2..d
Keyc eN*, +1..d
Keyes,0.. -1
Keyes, +1..d

1

Nkeydh Logdh
Qdh
UNQdh

SETpsk,0

Xtres,0.. -1
Xtres, +1..d
Xtras,0..d
Xtrhs,0..d
XpdXPN, 0..d

0Key0ikm

GETdh,0..d

0

Z

Qpsk
UNQpsk

Keypsk, 0.. -1
Keypsk, +1..d+1

1
0

1

HASH Hash1
HASH

GETeO*,0..d
GETes, 0.. -1
GETes, +1..d

1
0
0

XTRes,0.. -1
XTRes, +1..d
XTRas/hs,0..d
XPDXPN, 0..d

QeN*
UNQeN*

LogeN*

Logesalt

D

R

SETdh
DHEXP
DHGEN

DH

GET0salt,
Xtres,

0Key0salt,

Qes
UNQes

Keyes,

SETes,

XTRes,

Loges
Db

GETpsk,

Qpsk
UNQpsk

Keypsk, Logpsk
D11

0

0

GET0salt,1.. -1
GET0salt, +1..d

(a) Reduction Rn,` is marked in grey for
n ∈ XPN \ {psk, esalt}. Reductions Rpsk,`

and Resalt,` are defined analogously.

GETCN,

GETCN,

SETn1,

Nkeydh Logdh
Qdh
UNQdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

Xtres/as,0..d
Xtrhs,0..d
XpdeCXP, 0..d
XpdCN, 0.. -1
XpdCN, +1..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

0

Z

Qpsk
UNQpsk

Keypsk, 0..i
Keypsk, i+1..d

1
0 Logpsk

1

D1

GETO*,0..d

XTRes/as/hs,0..d
XPDeCXP, 0..d
XPDCN, 0.. -1
XPDCN, +1..d

LogeN*

Logesalt

D

R

SETdh
DHEXP
DHGEN

DH

QCN
UNQCN

GETn1,

HASH

XpdCN,

Qn1
UNQn1

Keyn1,

QCN
UNQCN

KeyCN,

SETCN,

XPDCN,
Logn1

LogCN

D

D

1

b

HASH Hash1
HASH

n1, :=PrntN(n)
 CN:=ChldrnN(n1)

 E:={n1} CN
 eN*:=N* E
 eI* :=I* E
 eO*:=O* E

 eXPN:=XPN CN

KeyeN* c 0..
Keyc eN*, 0.. -1

 KeyeN* c +1..d
Keyc eN*, +1..d
KeyE,0.. -1
KeyE, +1..d

1
1
0
0

Qn1
UNQn1

QeN*
UNQeN*

(b) Reduction Rn,` is marked in grey for
n ∈ XPN \ {psk, esalt}, where Rn,` is de-
fined in Fig. 34b. The reductions for n ∈
{psk, esalt} are defined analogously.

Fig. 34: Reductions for the proof of Lemma D.6.

D.6 Idealization Order and additional Notation

Before turning to the proof of Lemma D.6 we introduce the concept of ide-
alization order as well as notation for sets (used throughout the paper and
summarized in Table 1).

N The set of all (key) names
N∗ N \{psk, dh}
I∗ The set of internal keys {n ∈ N∗ | ChldrnOp(n) = out}
O∗: The set of output keys {n ∈ N∗ | ChldrnOp(n) = out}
O: O∗ ∪{psk}
S: The set of separation points (Definition 4.4)
XPN : The set of expand names {n ∈ N : PrntOp(n) = xpd}
XPR: The set of representatives (Section 4.7)

Table 1: Notation

Additional Notation The function PrntN of the key schedule syntax (Defi-
nition 4.1) induce a parent operation function PrntOp, a children name func-
tion ChldrnN, a sibling name function SblngN and a children operation function

80 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

ChldrnOp. By slight abuse of notation, we use PrntOp(ChldrnN(n)) to denote the
(identical) parent operation of all children of n.

ChldrnN : N →{0, 1}N

n 7→
{
n′ ∈ N

∣∣∣∣PrntN(n′) = n,_ ∨
PrntN(n′) = _, n

}
SblngN : N →{0, 1}N

n 7→ {n′ ∈ N | PrntN(n) = PrntN(n′)}
PrntOp : N →{base, xtr , xpd }

n 7→

base if PrntN(n) = (⊥,⊥)
xpd if PrntN(n) = (_,⊥)
xtr Otherwise

ChldrnOp : N →{xt, xp, out }

n 7→

{
out if ChldrnN(n) = ∅
PrntOp(ChldrnN(n)) otherwise

IdealizationOrder(ks, <)

1 : io[1] := {psk, 0salt, dh, 0ikm}
2 : c← 1
3 : while io[c] (N

4 : nc ← min{n ∈ N \ io[c] :
5 : (n1, n2)← PrntN(n) ∧
6 : {n1, n2} ⊆ io[c]⊥ ∧
7 : SblngN(n) 6⊆ io[c]}
8 : io[c+ 1]← io[c] ∪ SblngN(nc)
9 : c← c+ 1

10 : m ← c

11 : return io,m, (n1, . . . , nm−1)

Fig. 35: Idealization Order

Idealization Order For the inner hy-
brid argument over the graph structure
of the key schedule (Lemma D.6), we
need to follow an idealization order—
intuitively we reduce to the assumptions
once the Key packages for the parent
names have been idealized which allows
us to idealize the Key packages of the out-
put keys as well.

While this is similar to the order
in which the key schedule is executed,
there is an significant difference. The key
schedule computes one output key per
step while the idealization proceeds with
one operation or input key. While gener-
ating one key at a time is more natural in
the functional interface of the key sched-
ule (and sometimes necessary as tran-
scripts may depend on keys siblings) the xpd assumption crucially relies on
domain separation between the siblings and therefore needs to consider them all
at the same time.

Definition D.10 (Idealization Order). Let ks = (N, Label,PrntN)be a TLS-
like key schedule and m ∈ N. An Idealization Order io for ks is a total order on
m subsets of N together with a sequence of names n1, . . . , nm−1 such that

– io[1] = {psk, 0salt, dh, 0ikm}

Key-schedule Security for the TLS 1.3 Standard 81

– io[1] ⊂ · · · ⊂ io[m] = N

– ∀1 ≤ c < m : nc ∈ io[c], io[c+ 1] = io[c] ∪ SblngN(nc)

For 1 ≤ c ≤ m we denote by N < c the set of names before c, N ∩ io[c] and
by c ≤ N the set of names after c, N \ io[c]

Claim D.10.1 (Idealization Order) Every TLS-like key schedule has an ide-
alization order.

Proof. Let < be a total order on N . Note that min computes the minimum with
respect to <. The assignment in line 4 is well-defined: Let n be in N \ io[c].
Since n is reachable from psk (Definition 4.2), there is a path from psk to n.
As there is a first element on this path not in io[c], the set {n ∈ N \ io[c] :
(n1, n2) ← PrntN(n) ∧ {n1, n2} ⊆ io[c]⊥ ∧ SblngN(n) 6⊆ io[c]} is non-empty.
As io[c] (io[c+ 1] and N is finite, the algorithm terminates and io[m] = N

D.7 Proof of Lemma D.6

The proof of Lemma D.6 relies on the idealization order (Definition D.10), which
is guaranteed to exist by Claim D.10.1.

Lemma D.11 (XTR1). For nc = psk, we have that

Adv(A, Gkshyb:`,c, Gkshyb:`,c+1) ≤ Adv(A → Res,`, Gxtrb
es,`),

where Res,` is defined in Fig. 34a.

Lemma D.12 (XTR2). For nc = esalt

Adv(A, Gkshyb:`,c, Gkshyb:`,c+1) ≤ Adv(A → Rhs,`, Gxtrb
hs,`),

where Rhs,` is defined analogously to reduction Res,` in Fig. 34a.

Lemma D.13 (XTR3). For nc = hsalt, we have that

Adv(A, Gkshyb:`,c, Gkshyb:`,c+1) ≤ Adv(A → Ras,`, Gxtrb
as,`),

where Ras,` is defined analogously to reduction Res,` in Fig. 34a.

Lemma D.14 (XPD). For ChldrnOp(nc) = xpd, we have that

Adv(A, Gkshyb:`,c, Gkshyb:`,c+1) ≤ Adv(A → Rn,`, Gxpdb
n,`),

where Game Gxpdb
n,` for b ∈ {0, 1} is defined in Fig. 24a for n /∈ {psk, esalt},

in Fig. 24b for n = esalt and in Fig. 24c for n = psk. For n /∈ {esalt, esalt},
where Rn,` is defined in Fig. 34b. The reductions for n ∈ {psk, esalt} are defined
analogously.

82 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

From Lemma D.11, Lemma D.12, Lemma D.13, and Lemma D.14 we obtain
Lemma D.6 by observing that

Gkshyb:` = Gkshyb:`,1 and Gkshyb:`+1 = Gkshyb:`,m

and a standard hybrid argument, which we include for completeness:

Adv(A, Gkshyb:`, Gkshyb:`+1)
=Adv(A, Gkshyb:`,1, Gkshyb:`,m)

≤
m−1∑
c=1

Adv(A, Gkshyb:`,c, Gkshyb:`,c+1)

=Adv(A → Res,`, Gxtrb
es,`) + Adv(A → Rhs,`, Gxtrb

hs,`)

+ Adv(A → Ras,`, Gxtrb
as,`) +

∑
n∈XPR

(
Adv(A → Rn,`, Gxpdb

n,`)
)
,

Each of the lemmas are derived using the following pattern. We have a big
game Gb

big which we split into a reduction R and a smaller game Gb
small, i.e.,

Gb
big

code≡ R → Gb
small, and then, we use the following equations:

Adv(A, G0
big, G

1
big)

=
∣∣Pr
[
1 = A → G0

big
]
− Pr

[
1 = A → R→ G1

big
]∣∣

=
∣∣Pr
[
1 = A → (R→ G0

small)
]
− Pr

[
1 = A → (R→ G1

small)
]∣∣

=
∣∣Pr
[
1 = (A → R)→ G0

small)
]
− Pr

[
1 = (A → R)→ G1

small
]∣∣

=Adv(A → R, G0
small , G

1
small)

Key-schedule Security for the TLS 1.3 Standard 83

E Reductions to Standard Assumptions

In this appendix, we relate the compositional assumptions we introduced in
Appendix A to the standard, monolithic assumptions we defined in Section 3.
The appendix proceeds in the order in which the assumptions are used in the
proof of Theorem 4.5. Appendix E.1 relates the modular Gsodhb game (Fig-
ure 24g) to the monolithic Gsodh2grp,b assumption (Figure 9). Appendix E.2 in-
troduces a parametrized generic game G-M-Pr-ioin,f,b,collin,collOut

Out which is useful
for the proofs of the pseudorandomness and pre-image resistance assumptions.
Lemma E.5 states how indistinguishability of G-M-Pr-ioin,f,b,collin,collOut

Out with
b = 0 and b = 1 relates to the monolithic (non-agile) pseudorandomness game
Gprf-alg,b (Figure 8). The proof of this relation is of independent interest and
thus carried out in a companion paper [29]. Using Lemma E.5, Appendix E.3
upper bounds the advantage of an adversary A playing against the pseudoran-
domness games Gxtr1es,`, Gxtr2hs,`, Gxtr3as,`, Gxpdn,` by the advantage of an
adversary A → R against the monolithic pseudorandomness game Gprf-alg,b (for
a suitable reduction R). Finally, Appendix E.4 upper bounds the advantage of
an adversary playing against the pre-image resistance games GpiP

O∗ and GpiP
esalt

by the advantage of an adversary A → R against the monolithic pseudorandom-
ness game Gprf-alg,b (for a suitable reduction R) as well as collision-resistance of
xpd. This reduction also relies on Lemma E.5.

E.1 Composed SODH Security to Monolithic SODH Assumption

In this section, we upper bound the advantage of an adversary A against the
game Gsodhb (see Fig. 24g) by the advantage of an adversary A → Rgrp

sodh against
the monolithic game Gsodh2b,grp (Fig. 9, Section 3.3). Since Gsodh2b,grp considers
a fixed group grp and Gsodhb is agile in the group, the proof contains a hybrid
argument leading to the upper bound in Lemma E.1 which sums over all groups.
In turn, there is no hybrid argument summing over all hash-algorithms, since
Gsodh2grp,b is agile in the set of hash-algorithms—the same Diffie-Hellman secret
can be used with several hash-functions. The proof of Lemma E.1 additionally
invokes collision-resistance of one of the hash-functions supported by Gsodh2b,grp.
Note that we only rely on the non-agile collision-resistance of a single hash-
function here. We now restate Lemma E.1 for convenience.

Lemma E.1 (Salted-ODH Advantage). For all A, it holds that

Adv(A, Gsodh0, Gsodh1) ≤ 2 · min
alg∈H

Adv(A → Ralg
sodh-cr, Gcrhash-alg,b)+∑

grp∈G
Adv(A → Rgrp

sodh, Gsodh2grp,b),

where Ralg
sodh-cr := Rsodh4 → Ralg

sodh2-cr,alg and Rgrp
sodh := Rsodh4 → Rsodh2 →

Rgrp. We define the reductions Rsodh4 and Rgrp in Lemma E.2 and Lemma E.4,
respectively, and we describe Ralg

sodh2-cr,alg and Rsodh2 in Lemma E.3.

84 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

The proof of Lemma E.1 will directly follow from Lemma E.2, Lemma E.3 and
Lemma E.4, which we state now. Afterwards, we show that the three lemmas,
together with Lemma A.2 imply Lemma E.1 and then prove each of the three
lemmas in turn.

Lemma E.2. For all adversaries A

Adv(A, Gsodhb) = Adv(A → Rsodh4, Gagsodh4b),

where game Gagsodh4b and reduction Rsodh4 are defined in Fig. 36a.

Lemma E.3. For all adversaries A

Adv(A, Gagsodh4b)

≤Adv(A → Rsodh2, Gagsodh2b) + 2 · Adv(A → Ralg
sodh2-cr,alg, Gacrxtr,b),

where Gagsodh2b and Rsodh2 are defined in Fig. 40, and Ralg
sodh2-cr,alg is described

in the proof of Lemma E.3.

Lemma E.4. For all adversaries A

Adv(A, Gagsodh2b) ≤
∑

grp∈G
Adv(A → Rgrp, Gsodh2grp,b),

where Gsodh2grp,b is defined in Fig. 9, and Rgrp is defined in Fig. 41.

Proof of Lemma E.1 Let A be an adversary. We derive Lemma E.1 as follows

Adv(A, Gsodhb)
L. E.2= Adv(A → Rsodh4, Gagsodh4b)
L. E.3= Adv(A → Rsodh4 → Rsodh2, Gagsodh2b) + Adv(A → Rcr

sodh2, Gacrxtr,b)
L. E.4=

∑
grp∈G

Adv(A → Rsodh4 → Rsodh2 → Rgrp, Gsodh2b)

+ min
alg∈H

Adv(A → Ralg
sodh2−cr, Gcrxtr-alg,b).

Thus, it remains to prove Lemma E.2, Lemma E.3 and Lemma E.4 each in turn.

Key-schedule Security for the TLS 1.3 Standard 85

GETesalt,0..d

XTR
HON

RdhXtrhs,0..d

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Loghs
D0

Qesalt
UNQesalt

Keyesalt,0..d

SETesalt,0..d
Logesalt

R0

DHEXP
DHGEN

Gagsodh4b

(a) Game Gagsodh4b, reduction Rsodh4 in gray.

SETesalt,0..d

GETesalt,0..d

XTR
HON

RdhXtrhs,0..d

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Loghs
D0

Qesalt
UNQesalt

Keyesalt,0..d Logesalt
R0

DHEXP
DHGEN

Gagsodh4b

Mod-Sodh4

(b) Game Gagsodh4b, package Mod-Sodh4 in gray.

RdhXtr

XTRhs,`∈{0..d}(h1, h2)

n1, n2 ← PrntN(n)
h← xtr〈hs, h1, h2〉
(k1, hon1)← GETesalt,`(h1)
h← dh〈sort(X,Y)〉
hon2 ← HON(X) ∧ HON(Y)
k ← XTR(h2, k1)
hon ← hon1 ∨ hon2

h← SEThs,`(h, hon, k)
return h

(c) Code of RdhXtr.

SETesalt,0..d

GETesalt,0..d
Xtrhs,0..d

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Logdh

Loghs

Z

D0

GETdh,0..d

Qesalt
UNQesalt

Keyesalt,0..d Logesalt
R0

b

DHEXP
DHGEN

DH
SETdh

Mod-Sodh

(d) Game Gsodhb, package Mod-Sodh in gray.

Fig. 36: Reduction Rsodh4 and packages RdhXtr, Mod-Sodh4, Mod-Sodh for the
proof of Lemma E.2

Proof of Lemma E.2 Reduction Rsodh4 is defined in Fig. 36a. We need to
show that for b ∈ {0, 1}

Gsodhb code≡ Rsodh4 → Gagsodh4b) (28)

and then for all adversaries A,

Adv(A, Gsodhb) (28)= Adv(A,Rsodh4 → Gagsodh4b) = Adv(A → Rsodh4, Gagsodh4b)

and Lemma E.2 follows. Thus, it suffices to prove Equation 28. In Fig. 36b,
we decompose Gagsodh4b into several packages, and in Fig. 36d, we decompose
Gsodhb into several packages. Observe that the package graphs in Fig. 36b and
Fig. 36d are identical except for Mod-Sodh4b and Mod-Sodhb. Thus, in Fig. 37 and
Fig. 38, we provide inlined versions of Mod-Sodh4b and Mod-Sodhb and compare
their behaviour. See the captions of Fig. 37 and Fig. 38 for the remaining steps
to of the proof of Eq. 28.

86 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Mod-Sodh := DH
Xtr → Nkey→ Log

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X]; k ← Y x

hon ← honX ∧ honY

assert name(h) = dh
if Log[h] 6= ⊥ :

(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Logn [h′] = (h′, hon′, k)
∧ level(h) = r ∧ level(h?) = r′) :

if map(r, hon, r′, hon′Jn[k]) :
Logn [h]← (h′, hon, k)
Jn [k]← 1
h′′ ← h′

else
if (∃ h? : Logn [h?] = (h′, hon′, k)

∧ level(h) = r ∧ level(h?) = r′) :
P (r, hon, r′, hon′)

Logn [h]← (h, hon, k)
h′′ ← h

if h′′ 6= h :
return h′′

Kn [h]← (k, hon)
return h

Gagsodh4b

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X]; k ← Y x

hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Logn [h′] = (h′, hon′, k)

if hon = hon′ = 0 :
Log[h]← (hon, k, h′)

return h′

Log[h]← (hon, k, h)

K[h]← k

return h

Fig. 37: Mod-Sodh func= Gagsodh4b for the DHEXP oracle. The observation here is
that (a) the Log package has an ∞ map and an Z pattern which simplifies the
code and the name of the handle is always correct.

Key-schedule Security for the TLS 1.3 Standard 87

Mod-Sodh := DH
Xtr → Nkey→ Log

XTRhs,`(h1, h2)

n1, n2 ← PrntN(hs)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)

assert Kdh [h2] 6= ⊥
(k∗, hon2)← Kdh [h2]
k2 ← tagh(k∗)
k ← xtr(k1, k2)
hon ← hon1 ∨ hon2

if b ∧ hon2 :

k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SEThs,`(h, hon, k)
return h

Mod-Sodh-Hyb

XTRhs,`(h1, h2)

n1, n2 ← PrntN(hs)

h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)

assert Kdh [h2] 6= ⊥
(k∗, hon2)← Kdh [h2]
k2 ← tagh(k∗)

k ← xtr(k1, k2)
if b ∧ hon2 :

k? ←$ {0, 1}len(k)

k ← tagalg(k1)(k
?)

hon ← hon1 ∨ hon2

h← SEThs,`(h, hon, k)
return h

RdhXtr→ Gagsodh4b

XTRhs,`(h1, h2)

h← xtr〈hs, h1, h2〉
(k1, hon1)← GETesalt,`(h1)
dh〈sort(X,Y)〉 ← h2

hon2 ← L(X) 6= ⊥ ∧ L(Y) 6= ⊥
assert K[h2] 6= ⊥
assert alg(k1) ∈ H
dh〈sort(X,Y)〉 ← h2

if ¬b ∨ L[X] = ⊥
∨ L[Y] = ⊥ :

k∗ ← xtr-alg(k1,K[h2])
else

if S[h2, k1] 6= ⊥ :
S[h2, k1]←$ {0, 1}len(alg(k1)))

k∗ ← S[h2, k1]
k ← tagalg(k1)(k

∗)
hon ← hon1 ∨ hon2

h← SEThs,`(h, hon, k)
return h

Fig. 38: In Column 1, the inlined Nkey package is marked in blue. From Column
1 to 2 the honesty and key calculation (marked in pink) is moved further down.
From Column 2 to 3 is slightly more complex. First observe that in Column 3 the
honesty of the Diffie-Hellmann shares is recomputed (the first such computation
is marked in pink). Secondly the XTR code inlined from Gagsodh4 (displayed in
blue) operates on untagged keys and uses the non-agile xtr function. Algorithm
tags are re-added by the reduction code. While the code in the last column
utilizes the S table to store randomly sampled values to give consistent oracle
answers, the code in column 2 relies in the fact that the SET oracle will discard
the value of a second invocation with the same handle h (due to the call to the Q
oracle). Finally observe that the assert alg(k1) ∈ H is guaranteed to succeed as
the algorithm of the esalt was already verified upon storage in the Key package.

88 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Game1

Game6

parameter: grp, b = 0 b = 1

DHGEN(grp)

assert grp ∈ G
g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X];
k ← Y x

hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Log[h′] = (h′, hon′, k)
if hon = hon∗ = 0 :

Log[h]← (h′, hon, k)
return h′

Log[h]← (h, hon, k)
K[h]← k

return h

XTR(h, salt)

assert K[h] 6= ⊥
assert alg(salt) ∈ H
dh〈sort(X,Y)〉 ← h

if ¬b ∨ L[X] = ⊥
∨ L[Y] = ⊥ :

return xtr-alg(salt,K[h])
if S[h, salt] 6= ⊥ :
S[h, salt]←$ {0, 1}len(alg(salt)))

return S[h, salt]

Game2

Game5

parameter: grp, b = 0 b = 1

DHGEN(grp)

assert grp ∈ G
g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X];
k ← Y x

hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Log[h′] = (h′, hon′, k)
if hon = hon∗ = 0 :

Log[h]← (h′, hon, k)
return h′

Log[h]← (h, hon, k)
K[h]← 1
return h

XTR(h, salt)

assert K[h] = 1
assert alg(salt) ∈ H
dh〈sort(X,Y)〉 ← h

if L[X] = ⊥ :
X,Y ← swap(X,Y)

if L[Y] = ⊥ ∨ ¬b :
return xtr-alg(salt, Y L[X])

if S[h, salt] 6= ⊥ :
S[h, salt]←$ {0, 1}len(alg(salt)))

return S[h, salt]

Game3

Game4

parameter: grp, b = 0 b = 1

DHGEN(grp)

assert grp ∈ G
g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X];
k ← xtr-alg(0salt, Y x)
hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Log[h′] = (h′, hon′, k)
if hon = hon∗ = 0 :

Log[h]← (h′, hon, k)
return h′

Log[h]← (h, hon, k)
K[h]← 1
return h

XTR(h, salt)

assert K[h] = 1
assert alg(salt) ∈ H
dh〈sort(X,Y)〉 ← h

if L[X] = ⊥ :
X,Y ← swap(X,Y)

if L[Y] = ⊥ ∨ ¬b :
return xtr-alg(salt, Y L[X])

if S[h, salt] 6= ⊥ :
S[h, salt]←$ {0, 1}len(alg(salt)))

return S[h, salt]

perfect Gacr

Gacrperfect

Gsodh2

Fig. 39: Game hops relating Gagsodh4b and Gsodh2b

Key-schedule Security for the TLS 1.3 Standard 89

Proof of Lemma E.3 The proof proceeds in 5 game hops, depicted in Fig. 39.
Let A be an adversary. First, observe that Game1 ≡ Gagsodh40 and Game6 ≡
Gagsodh41, i.e.,

Adv(A, Gagsodh40, Gagsodh41) = Adv(A, Game1, Game6).

From Game1 to Game2 (and from Game6 to Game5), we replace reading K[h] in
XTR with its re-computation. As the same value is computed again, this change
is immaterial. Note that the values stored in K[h] are now not used anywhere
anymore and we replace them with 1. Thus,

Adv(A,Game1,Game6) = Adv(A, Game2, Game5).

From Game2 to Game3 (and from Game5 to Game4), we replace line k ← Y x of
the DHEXP oracle with k ← xtr-alg(0salt, Y x). Unless the adversary queries
DHEXP on values X,Y and X ′, Y ′, such that Y x 6= Y ′

x′ but xtr-alg(0salt, Y x) =
xtr-alg(0salt, Y ′L[X′]) this change is perfectly indistinguishable. Formally, this
step reduces collision-resistance, i.e., for z ∈ {2, 5}, let reduction Rcr,z

sodh2 be the
reduction which emulates game Game6 and forwards all xtr calls to its own HASH
oracle. We encode both reductions Rcr,z

sodh2 for z ∈ {2, 5} into a single reduction
Rcr

sodh2 which starts by sampling z←$ {2, 5} and then runs Rcr,z
sodh2. We obtain

Adv(A, Game2, Game5) (29)

≤Adv(A, Game3, Game4) + 2 · Adv(A → Ralg
sodh2-cr, Gcrxtr-alg,b)

Inequality 29 holds for all alg ∈ H. Thus, we can take the minimum over alg ∈ H
and obtain

Adv(A, Game2, Game5)

≤Adv(A, Game3, Game4) + 2 · min
alg∈H

Adv(A → Ralg
sodh2-cr, Gcrxtr-alg,b)

Finally, we reduce the difference between Game3 and Game4 to Gagsodh2b. I.e.,
we define reduction Rsodh2 in Fig. 40 such that

Game3
func≡ Gagsodh20 and Game4

func≡ Gagsodh21. (30)

and thus,

Adv(A, Game3, Game4) ≤Adv(A → Rsodh2, Gagsodh20, Gagsodh21) (31)

Where the equivalence of Rsodh2, Gagsodh2b and Game3/4 follows by simulating
the honesty oracle HON in the following way: For each call to DHGEN the reduc-
tion forwards the call to Gagsodh2b and then marks the returned share as honest
in its honesty table H all further honesty checks can then be answered using this
table. In addition, the calls to the xtr functions are replaced by calls to the XTR
oracle of Gagsodh2b and thus no longer need access to the secret exponents. The
call to xtr in DHEXP needs to use a tagged 0salt value for this to work. Observe
also that the call to the xtr and equivalently XTR only is executed for dishonest
shares whereas the call in the XTR oracle of Game3/4 needs to take care of both
the honest and dishonest case.

90 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Gamei∈{3,4} b ∈ {0, 1}

DHGEN()

assert grp ∈ G
g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

E[X]← x

return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← E[X] 6= ⊥
honY ← E[Y] 6= ⊥
assert honX = 1
x← E[X];
k ← xtr-alg(0salt, Y x)
hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Logn [h′] = (h′, hon′, k)
if hon = hon∗ = 0 :
Logn [h]← (h′, hon, k)
return h′

Logn [h]← (h, hon, k)
Kn [h]← 1
return h

XTR(h, salt)

assert K[h] = 1
assert alg(salt) ∈ H
dh〈sort(X,Y)〉 ← h

if E[X] = ⊥ :
X,Y ← swap(X,Y)

if E[Y] = ⊥ ∨ ¬b :
return xtr-alg(salt, Y L[X])

if S[h, salt] 6= ⊥ :
S[h, salt]←$ {0, 1}len(alg(salt)))

return S[h, salt]

HON(X)

return E[X] 6= ⊥

Rsodh2

DHGEN(grp)

X ← DHGEN(grp)

H[X]← 1
return X

DHEXP(X,Y)

assert grp(X) = grp(Y)
h← dh〈sort(X,Y)〉
honX ← H[X]
honY ← H[X]
assert honX = 1

k ← XTR(X,Y, tagalg(0salt))
hon ← honX ∧ honY

if Log[h] 6= ⊥ :
(hon, k, h′)← Log[h]
return h′

if (∃ h′ : Logn [h′] = (h′, hon′, k)
if hon = hon∗ = 0 :
Logn [h]← (h′, hon, k)
return h′

Logn [h]← (h, hon, k)
Kn [h]← 1
return h

XTR(h, salt)

assert K[h] = 1
assert alg(salt) ∈ H
dh〈sort(X,Y)〉 ← h

if H[X] 6= 1
(X,Y)← swap(X,Y)

k ← XTR(X,Y, salt)

return k

HON(X)

return H[X]

Gagsodh2b

DHGEN(grp)

assert grp ∈ G
g ← gen(grp)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

XTR(X,Y, salt)

assert L[X] 6= ⊥
∧ grp(X) = grp(Y)
∧ alg(salt) ∈ H

alg ← alg(salt)
if b ∧ L[Y] 6= ⊥ :
h← dh〈sort(X,Y)〉
if S[h, salt] = ⊥ :
S[h, salt]←$ {0, 1}len(alg)

return S[h, salt]
return xtr-alg(salt, Y L[X])

Fig. 40: Rsodh2 → Gagsodh20 code= Game3 (left), Rsodh2 → Gagsodh21 code= Game4
(middle) and Gsodh2b (right).

Key-schedule Security for the TLS 1.3 Standard 91

Rgrp

DHGEN(grp∗)

if grp = grp∗ :
return DHGEN()

assert grp ∈ G
g ← gen(grp∗)
q ← ord(g)
x←$Zq

X ← gx

L[X]← x

return X

XTR(X,Y, salt)

grp∗ ← grp(X)
if grp∗ = grp

return XTR(X,Y, salt)
assert L[X] 6= ⊥
∧ grp(X) = grp(Y)
∧ alg(salt) ∈ H

alg ← alg(salt)
if grp∗ > grp ∧ L[Y] 6= ⊥ :
h← dh〈sort(X,Y)〉
if S[h, salt] = ⊥ :
S[h, salt]←$ {0, 1}len(alg)

return S[h, salt]
return xtr-alg(salt, Y L[X])

Fig. 41: Oracles of re-
duction Rgrp.

Proof of Lemma E.4 Let < be an arbitrary order
on G with grpfst being the smallest group in G with re-
spect to the order <, let grplst being the largest group
in G with respect to the order < and for grp < grplst,
let grp + 1 be the direct successor of grp according to
the order <. The proof proceeds via a hybrid argu-
ment over grp ∈ G in the order <. For reduction Rgrp
(Fig. 41), we have the following equalities:

Rgrpfst → Gsodh2grpfst,0 code≡ Gagsodh20 (32)

Rgrplst → Gsodh2grplst,1 code≡ Gagsodh21 (33)

Rgrp → Gsodh2grp,1 code≡ (34)
Rgrp+1 → Gsodh2grp+1,0

where grp < grplst. Given Equations (32)-(34), we can
then use a telescopic sum and the triangle inequality,
as is standard for for hybrid arguments.

Adv(A,→ Gagsodh2b)
(32)+(33)= |Pr

[
1← A→ Rgrpfst → Gsodh2grpfst,0]

−Pr
[
1← A→ Rgrplst → Gsodh2grplst,1] |

(34)=

∣∣∣∣∣ ∑
grp∈G

Pr
[
1← A→ Rgrp → Gsodh2grp,0]

−Pr
[
1← A→ Rgrp → Gsodh2grp,1] ∣∣∣∣∣

≤
∑

grp∈G
Adv(A → Rgrp, Gsodh2grp,b)

This concludes the proof of Lemma E.4.

E.2 Generic Games

In this subsection, we introduce a parametrized,
generic pseudorandomness game G-M-Pr-ioin,f,b,collin,collOut

Out (described in Fig-
ure 42a and Figure 42c) for an (agile) function f, input name in, output names
Out, idealization bit b, input collision resistance pattern coll in, and output col-
lision resistance pattern collOut. These patterns are used in the input Key1,collin

in
package and output Keyb,collOut

Out package of G-M-Pr-ioin,f,b,collin,collOut
Out . We show

in a companion paper [29] that the generic pseudorandomness game reduces to
the monolithic non-agile pseudorandomness game Gprf-alg,b introduced in Sec-
tion 3 and re-state this result here in Lemma E.5. We parametrize the game

92 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

G-M-Pr-ioin,f,b,collin,collOut
Out by an injective handle constructor inj〈·〉 and a func-

tion OutIndex : dom inj〈·〉 → Out which maps a handle h constructed using inj〈·〉
to (name(h), level(h)).

Lemma E.5 (Monolithic to Composite). Let H be a set of algorithms,
where ∀alg, alg′ ∈ H. alg 6= alg′ =⇒ ∀x. |alg(x)| 6=

∣∣alg′(x)
∣∣. Let the H-

agile function f and the non-agile function f-alg be as described in Fig. 42b.
Let in be an index, and let Out be a set of indices. Further let coll in, collOut ∈
{Z∞, D,D1, R, F}. Then for all adversaries A against G-M-Pr-iof,b, we have

Adv(A,G-M-Pr-ioin,f,b,collin,collOut
Out) ≤∑

alg∈H
nalg · Adv(A → Rf-alg,collin,collOut

G-M-Pr-io , Gprf-alg,b) + (c+ 1) ·
n2

alg

2len(alg) , (35)

where Rf-alg,collin,collOut
G-M-Pr-io := RcollOut

o,Out → Rcollin
{F,R} → Rcollin\{F,R}

i → Ralg,alg →
RM → RGpr is defined in [29], nalg,hon=1 is the number of SETin(h, 1, ∗) queries
which the adversary makes for handles h with alg(h) = alg, nalg,hon=0 is the
number of SETin(h, 0, ∗) queries which the adversary makes for handles h with
alg(h) = alg, nalg = max{nalg,hon=1, nalg,hon=0} and c is a small constant which
depends on the min-entropy of the distribution f(k, Ulen(alg)), where k is a fixed
key and U2len(alg) denotes the uniform distribution of strings of length len(alg).
The pattern of reduction Rcollin

{F,R} depends on coll in. If coll in /∈ {R,F}, Rcollin
{F,R}

and the final term can be omitted.
See Fig. 8 for the oracle descriptions of Gprf-alg,b and Fig. 42a and Fig. 42c

for package composition and oracle descriptions of G-M-Pr-iof,b.

Lemma E.5 takes care of multi-to-single instance reductions and agile-to-
non-agile reductions. Note that we treated SODH separately, since (a) the base
assumption remains agile (since the same Diffie-Hellman secrets are processed
by different algorithms) and (b) the G-M-Pr-ioin,f,b,collin,collOut

Out game does not
account for exponentiation/DH operations.

In Appendix A.1, we reduced agile to non-agile collision-resistance for algo-
rithms with disjoint output domains. It remains to provide reductions for pseudo-
randomness games and pre-image resistance games to G-M-Pr-ioin,f,b,collin,collOut

Out ,
which we carry out in Appendix E.3 and Appendix E.4, respectively.

E.3 Pseudorandomness Assumptions

In this appendix, we prove Lemma E.6 (Appendix B), i.e., we upper bound
the advantage of an adversary A playing against the pseudorandomness games
Gxtr1es,`, Gxtr2hs,`, Gxtr3as,`, Gxpdn,` by the sum of advantages of an ad-
versary A → R against the pseudorandomness game Gprf-alg,b introduced in
Section 3 for a suitable reduction R and summing over the algorithms alg.
Recall that the proof of this relation will rely on the generic pseudorandom-
ness game G-M-Pr-ioin,f,b,collin,collOut

Out which we introduced in Appendix E.2 and

Key-schedule Security for the TLS 1.3 Standard 93

GETin
M-Pr-iof

O
Keyin

QOut-
UNQOut-

KeyOut LogOut-

Login-

collOut

collinQin-
UNQin-

1

SETOut

Qin-,UNQin-

QOut-,UNQOut-

GETOut

SETin

b

(a) Composed G-M-Pr-ioin,f,b,collin,collOut
Out Game.

f(k, args)

alg ← alg(k)
k ← untag(k)
k′ ← f-alg(k, args)
return tagalg(k′)

(b) Agile function f.

M-Pr-iof

Parameters

in input index
Out output indices
inj handle constructor
OutIndex index function

O(h, args)

(k, hon)← GETin(h)
kout ← f(k, args)
hout ← inj〈h, args〉
i← OutIndex(hout)
assert i ∈ Out
return SETi(hout, hon, kout)

(c) Oracles of M-Pr-iof . For Key and Log, see Figure 22.

Fig. 42

Lemma E.5, which relates G-M-Pr-ioin,f,b,collin,collOut
Out to Gprf-alg,b. We now re-

state Lemma E.6.

Lemma E.6 (Advantages). Let n ∈ XPR and let (n1,_) = PrntN(n). Let
A be an adversary that generates at most sn,`,alg honest keys for algorithm alg
with name n1 at level ` via SETn1 ,`(∗, 1, ∗) queries. The xpd pseudorandomness
advantage is bounded by

Adv(A, Gxpd0
n,`, Gxpd1

n,`)

≤
∑

alg∈H
sn,`,alg·Adv(A → Ralg

n,`, Gprxpd-alg,b) (6)

Adv(A, Gxpd0
psk,`, Gxpd1

psk,`)

≤
∑

alg∈H
spsk,`,alg·Adv(A → Ralg

psk,`, Gprxpd-alg,b) (7)

Adv(A, Gxpd0
esalt,`, Gxpd1

esalt,`)

≤
∑

alg∈H
sesalt,`,alg·Adv(A → Ralg

esalt,`, Gprxpd-alg,b) (8)

Let A be an adversary that generates at most ses,`,alg honest keys for algorithm
alg with name psk at level ` via SETpsk,`(∗, 1, ∗) queries. The xtr pseudorandom-
ness advantage is bounded by

94 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Adv(A, Gxtr10
es,`, Gxtr11

es,`)

≤
∑

alg∈H
ses,`,alg·Adv(A → Ralg

es,`, Gprxtr†-alg,b) (9)

Let A be an adversary that generates at most ses,`,alg honest keys for algo-
rithm alg with name esalt at level ` via SETesalt,`(∗, 1, ∗) queries. Let nalg is
an upper bound on the sum of UNQesalt and SETesalt,` queries made by A, and
let c be a small constant which depends on the min-entropy of the distribution
f(k, Ulen(alg)), where k is a fixed key and U2len(alg) denotes the uniform distribution
of strings of length len(alg). The xtr pseudorandomness advantage is bounded by

Adv(A, Gxtr20
hs,`, Gxtr21

hs,`)

≤
∑

alg∈H
shs,`,alg·Adv(A → Ralg

hs,`, Gprxtr-alg,b) + (c+ 1) ·
n2

alg

2len(alg) (10)

Let A be an adversary that generates at most sas,`,alg honest keys for algorithm
alg with name hsalt at level ` via SEThsalt,`(∗, 1, ∗) queries. The xtr pseudoran-
domness advantage is bounded by

Adv(A, Gxtr30
as,`, Gxtr31

as,`)

≤
∑

alg∈H
sas,`,alg·Adv(A → Ralg

as,`, Gprxtr-alg,b) (11)

The reductions are defined as follows:

Ralg
n,` := Rrmprio,xpd

n,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
psk,` := Rrmprio,xpd

psk,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
esalt,` := Rrmprio,xpd

esalt,` → Rf-alg
G-M-Pr-io , where f = xpd

Ralg
es,` := Rrmprio,xtr

es,` → Rf-alg
G-M-Pr-io , where f = xtr†

Ralg
hs,` := Rrmprio,xtr

hs,` → Rf-alg
G-M-Pr-io , where f = xtr

Ralg
as,` := Rrmprio,xtr

as,` → Rf-alg
G-M-Pr-io , where f = xtr

For Rf-alg
G-M-Pr-io, see Lemma E.5. Reduction Rrmprio,xpd

n,` is defined in Fig. 54
(code) and Fig. 50b (graph), Rrmprio,xpd

psk,` is defined in Fig. 55 (code) and Fig. 50f
(graph), Rrmprio,xpd

esalt,` is defined in Fig. 54 (code) and Fig. 50d (graph), Rrmprio,xtr
es,`

is defined in Fig. 51 (code) and Fig. 49b (graph), Rrmfprio,xtr
hs,` is defined in Fig. 52

(code) and Fig. 49d (graph), and Rrmprio,xtr
as,` is defined in Fig. 53 (code) and

Fig. 49f (graph).

Key-schedule Security for the TLS 1.3 Standard 95

Proof. We now prove Inequalities 6-11, i.e., we show that the indistinguishabil-
ity games for xtr and xpd can be reduced to the G-M-Pr-io game, defined in
Fig. 42a. Roughly, all reductions follow by emulating additional Key packages
(for the case of xtr) and the Hash1 package (for the case of xpd). The conceptu-
ally most interesting aspect is the translation between handles. Oracle O(h, args)
of G-M-Pr-ioin,f,b,collin,collOut

Out constructs a handle as some injective function of
h and args, and this injective functions will be 〈n, h, args〉 or 〈n, args, h〉 in all of
the theorems. However, this is not what the Xtr and Xpd packages use. Xtr uses
the pair of handles 〈n, h1, h2〉 while 〈n, h1, args〉 in G-M-Pr-io corresponds to
using the key k2 as args in the handle 〈n, h1, k2〉 rather than the handle h2. Due
to patterns on the input key packages, however, there is an injective mapping
from keys to handles and thus, handles which use keys and handles which use
handles bijectively map to one another. A similar argument applies to Xpd which
uses as args for the handle construction the transcript, while G-M-Pr-io uses the
hashed transcript digest d = hash(t). Again, due to the idealization bit of the
hash package Hash1 being 1, the mapping from digests to transcripts is injective
(in the system) and handles can use both interchangeably. We now proceed to
prove the Inequalities 6-11 individually.

Inequality 6 We define reduction Rrmprio,xpd
n,` with the property that for b ∈

{0, 1}

Gxpdb
n,`,

code≡ Rrmprio,xpd
n,` → G-M-Pr-io(n1 ,`),xpd,b,D,DCN

CN (36)

where we re-state Gxpdb
n,` in Fig 50a for convenience. From there, it follows

directly that for all adversaries A,

Adv(A, Gxpdb
n,`) ≤ Adv(A → Rrmprio,xpd

n,` , G-M-Pr-io(n1 ,`),xpd,b,D,DCN
CN)

and with Inequality 35, Inequality 6 directly follows.
It remains to provide the code equivalence proof of Equation 36. The game

Rrmprio,xpd
n,` → G-M-Pr-iob is provided in Figure 49f with the code of reduction
Rrmprio,xpd

n,` provided in Figure 54. As discussed in the high-level overview of
the proof, reduction Rrmprio,xpd

n,` exports to the adversary handles which rely on
transcripts and internally uses handles which rely on digests (hashed transcript).
We prove Equation 36 by inlining the O oracle of M-Pr-ioxpd into Rrmprio,xpd

n,`

from the 1st to the 2nd column of Figure 54, highlighted in pink. Rrmprio,xpd
n,`

exposes an XPDn’,` oracle for each n′ which has the same parents as n. Since
n′ is prepended in the construction of the handle 〈n′, h1, args〉, the handle can
either be ill-formed or have the name n′. It thus suffices if assert i ∈ {(n′, `)}
checks for the pair (n′, `). From the middle to the right column, this assert is
then omitted entirely, since it subsumed by the first lines of the SETn′,`(h, hon, k)
which cover assert name(h) = n′ and assert level(h) = `.

Inequality 7 The proof is similar to the proof of Inequality 6, but we include
it for completeness. We define reduction Rrmprio,xpd

psk,` with the property that for

96 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

b ∈ {0, 1}

Gxpdb
psk,`,

code≡ Rrmprio,xpd
psk,` → G-M-Pr-io(rm,`),xpd,b,D,D1

{(psk,`+1)} (37)

where we re-state Gxpdb
psk,` in Fig 50e for convenience. From there, it follows

directly that for all adversaries A,

Adv(A, Gxpdb
psk,`) ≤ Adv(A → Rrmprio,xpd

psk,` , G-M-Pr-io(rm,`),xpd,b,D,D1
{(psk,`+1)})

and with Inequality 35, Inequality 7 directly follows.
It remains to provide the code equivalence proof of Equation 37. The game

Rrmprio,xpd
psk,` → G-M-Pr-io(rm,`),xpd,b,D,D1

{(psk,`+1)} is provided in Figure 49f and see Fig-
ure 55 for the code of reduction Rrmprio,xpd

psk,` . In contrast to Rrmprio,xpd
n,` , the psk

is a special case as its xpd arguments are used unmodified (and in particular
no digest is computed). Consequently no handle-mapping is needed. We prove
Equation 37 by inlining the O oracle of M-Pr-ioxpd into Rrmprio,xpd

psk,` from the
1st to the 2nd column of Figure 55, highlighted in pink. Rrmprio,xpd

psk,` exposes
an XPDpsk,` oracle. Since psk is prepended in the construction of the han-
dle 〈psk, h1, args〉, the handle can either be ill-formed or have the name psk.
It thus suffices if assert i ∈ {(psk, ` + 1)} checks for the pair (psk, ` + 1).
Also note the here, there is a level transition due to the psk. From the 2nd to
the 3rd column, this assert is then omitted entirely, since it subsumed by the
first lines of the SETpsk,`+1(h, hon, k) which cover assert name(h) = psk and
assert level(h) = ` + 1. From the 3rd to the last column the calculation of the
level and the key are swapped, highlighted in pink again which yields the psk
case of the XPD code as required.
Inequality 8 The proof is analogous to the proof of Inequality 8, we discuss it
briefly here. The reduction Rrmprio,xpd

esalt,` is defined as Rrmprio,xpd
n,` (Figure 54) with

n = esalt and satisfies the analogous Equality to Equality 36, i.e., for b ∈ {0, 1}

Gxpdb
esalt,`,

code≡ Rrmprio,xpd
esalt,` → G-M-Pr-io

(n1 ,`),xpd,b,D,(DCN\{esalt}||Resalt)
CN . (38)

We re-state Gxpdb
esalt,` in Fig 50c for convenience. As previously, from Equa-

tion 38, it follows directly that for all adversaries A,

Adv(A, Gxpdb
esalt,`)

≤Adv(A → Rrmprio,xpd
esalt,` , G-M-Pr-io

(n1 ,`),xpd,b,D,(DCN\{esalt}||Resalt)
CN)

and with Inequality 35, Inequality 8 directly follows. The code equivalence proof
of Equation 38 is identical to the code equivalence proof of Equation 38 since
the difference between the game G-M-Pr-io

(n1 ,`),xpd,b,D,(DCN\{esalt}||Resalt)
CN and the

game G-M-Pr-io(n1 ,`),xpd,b,D,DCN
CN is merely the R pattern for esalt in Logesalt ,

but since we do not inline the Logesalt package in the inlining proof, the two
inlining proofs are identical. See Figure 54.

Key-schedule Security for the TLS 1.3 Standard 97

Inequality 9 We define reduction Rrmprio,xtr
es,` with the property that for b ∈

{0, 1}
Gxtr1b

es,`,
code≡ Rrmprio,xtr

es,` → G-M-Pr-io(psk,`),xtr†,b,D1,D
{es} (39)

where we re-state Gxtr1b
es,` in Fig 49a for convenience. From there, it follows

directly that for all adversaries A,

Adv(A, Gxtr1b
es,`) ≤ Adv(A → Rrmprio,xtr

es,` , G-M-Pr-io(psk,`),xtr†,b,D1,D
{es})

and with Inequality 35, Inequality 9 directly follows.
It remains to provide the code equivalence proof of Equation 39. The game

Rrmprio,xtr
es,` → G-M-Pr-iob is provided in Figure 49b with the code of reduc-

tion Rrmprio,xtr
es,` provided in Figure 51. As discussed in the high-level overview

of the proof, reduction Rrmprio,xtr
es,` exports to the adversary handles which rely

on handles and internally relies on handles which rely on concrete key values.
We prove Equation 39 by inlining M-Pr-ioxtr† into Rrmprio,xtr

es,` from the 1st to
the 2nd column of Figure 51, highlighted in pink. From the 2nd to third col-
umn, we then replace the function xtr† by swapping its inputs and applying its
dual xtr. Moreover, the composed package now uses xtr〈es, h1, h2〉 as handle for
the SETes,`(h, hon, k) query instead of xtr〈es, k1, h2〉 which is a bijective map-
ping since Nkey0salt only contains a single handle (see Figure 23b). Additionally,
we also remove the OutIndex computation and the assert that its result be in
{(es, `)}. This justified, since the first line of SETes,`(h, hon, k) asserts anyway
that name(h) = es and level(h) = `. Finally, since internally and externally, the
same handles are used now, the queries GETes,`, Qes and UNQes are directly
forwarded. This concludes the proof of Equation 39.
Inequality 10 We define reduction Rrmprio,xtr

hs,` with the property that for b ∈
{0, 1}

Gxtr2b
hs,`,

code≡ Rrmprio,xtr
hs,` → G-M-Pr-io(esalt,`),xtr,b,R,D

{hs} (40)

where we re-state Gxtr2b
es,` in Fig 49c for convenience. From there, it follows

directly that for all adversaries A,

Adv(A, Gxtr1b
hs,`) ≤ Adv(A → Rrmprio,xtr

hs,` , G-M-Pr-io(esalt,`),xtr,b,R,D
{hs})

It remains to provide the code equivalence proof of Equation 40. The game
Rrmprio,xtr

hs,` → G-M-Pr-iob is provided in Figure 49f with the code of reduction
Rrmprio,xtr

hs,` provided in column 1 of Figure 51. The Qhs and UNQhs query are
defined at the very bottom of the 1st column, highlighting text which is only
part of UNQhs but not of Qhs in blue as in UNQ. As in the proof of Equation 39,
the reduction Rrmprio,xtr

hs,` exports to the adversary handles which rely on handle
values and internally uses handles which are built on concrete key values.

From the 1st to the 2nd column, we inline the code of the O oracle of M-Pr-io
(highlighted in pink). From the 2nd to the 3rd column, we replace the handle
computation of hout so that it uses the handle h2 instead of the key k2. This

98 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

mapping is injective, since these k2 keys are all dishonest and the Nkeydh package
exposes each dishonest keys only once due to the ∞ mapping. Moreover, note
that handles of honest and dishonest keys are disjoint and thus, this change does
not lead to confusions and/or more/less collisions in Loghs.

Due to the disjointness between the handles in Khs,` in the Keyhs,` package
and the handles in Khs,` in Rcmprxtrhs,`, we now also move the code of the
SEThs,` query from Rcmprxtrhs,` → M-Pr-ioxtr into the Keyhs,` package.

Since now, external handles (i.e., those used by the adversary) are equal to
internal handles (i.e., those which constitute the indices of Khs,`), the GEThs,`,
UNQhs and Qhs queries can be directly forwarded to Keyhs,` and Loghs, respec-
tively.

Moreover, we perform several minor changes from column 2 to column 3.
We move the line (k1, hon1)← GEThs,` upwards and change the computation of
the honesty (you can verify the equivalence of the changes by going through the
honesty truth table). Finally, we also rename several of the variables and remove
redundant computation. In particular, note that the first line of the Keyhs,`

package asserts that name(h) = hs and level(h) = `, subsuming the check that
i ∈ {(hs, `)}. All changes are highlighted in pink.

From the 3rd to the 4th column, we essentially swap the order of the if −else
branches by computing k ← xtr(k1, k2) first and then overwriting it by a random
key if needed. The SEThs,`(h, hon, k) query is thus also moved outside of the
branch since both branches perform it. Finally, if hon2 is replaced by if 1∧hon2.
Inequality 11 We define reduction Rrmprio,xtr

as,` with the property that for b ∈
{0, 1}

Gxtr3b
as,`,

code≡ Rrmprio,xtr
as,` → G-M-Pr-io(hsalt,`),xtr,b,D,D

{as} (41)

where we re-state Gxtr3b
as,` in Fig 49e for convenience. From there, it follows

directly that for all adversaries A,

Adv(A, Gxtr1b
as,`) ≤ Adv(A → Rrmprio,xtr

as,` , G-M-Pr-io(hsalt,`),xtr,b,D,D
{as})

It remains to provide the code equivalence proof of Equation 41 which is
conceptually similar to the proof of Equation 39 except that the key is now
the left input to xtr rather than the right input, and we have three handles in
Nkey0ikm rather than one handle, see Figure 23b.

The game Rrmprio,xtr
as,` → G-M-Pr-iob is provided in Figure 49f with the code

of reduction Rrmprio,xtr
as,` provided in Figure 53. As in the previous proofs, reduc-

tion Rrmprio,xtr
as,` exports to the adversary handles which rely on handle values and

internally relies on handles which rely on concrete key values. We prove Equa-
tion 39 by inlining M-Pr-ioxtr into Rrmprio,xtr

as,` from the 1st to the 2nd column
of Figure 53, highlighted in pink. From the 2nd to third column, we now use
xtr〈as, h1, h2〉 as handle for the SETas,`(h, hon, k) query instead of xtr〈as, h1, k2〉
which is a bijective mapping since Nkey0ikm three handles for distict key val-
ues (see Figure 23b). Additionally, we also remove the OutIndex computation
and the assert that its result be in {(as, `)}. This is justified, since the first line

Key-schedule Security for the TLS 1.3 Standard 99

of SETas,`(h, hon, k) asserts anyway that name(h) = as and level(h) = `. Fi-
nally, since internally and externally, the same handles are used now, the queries
GETas,`, Qas and UNQas are directly forwarded. This concludes the proof of
Equation 41.

E.4 Pre-image resistance

Similarly to pseudorandomness, we now relate the pre-image resistance advan-
tages to the generic pseudorandomness game G-M-Pr-ioin,f,b,collin,collOut

Out Game.
Before turning to the proof of Lemma E.9, we state and prove two helper lemmas.
Lemma E.7 relates pseudorandomness and pre-image resistance, and Lemma E.8
relates games using the Xpdn,0 package to G-M-Pr-ioin,f,b,collin,collOut

Out .

Lemma E.7 (Pre-image-resistance to Pseudorandomness). Consider the
game G-M-Pr-ioin,xpd,1,D,P

Out , where P is either D or Q, where Q is either D||Resalt
or DOut\O∗ ||FOut∩O∗ , both of which are defined below Inequality 42. For all ad-
versaries A, the following holds:

Adv(A → R, G-M-Pr-ioin,xpd,1,D,D
Out , G-M-Pr-ioin,xpd,1,D,Q

Out)

≤
∑

alg∈H
2 ·
[
nalg·Adv(A → Rxpd-alg,F,D/Q

G-M-Pr-io , Gprxpd-alg,b) (42)

+Adv(A → Rcr,xpd,D/P → Ralg,xpd, Gcrxpd-alg,b)

+
n2

alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg) + (c+ 1) ·
n2

alg,hon=1

2len(alg)

]
,

where nalg,hon=1 is the number of SETn1,∗(h, 1, ∗) queries which the adversary
makes for handles h with alg(h) = alg, nalg,hon=0 is the number of SETn1,∗(h, 0, ∗)
queries which the adversary makes for handles h with alg(h) = alg, nalg =
max{nalg,hon=1, nalg,hon=0} reduction Rcr,xtr,P is defined in Figure 44, and re-
duction Rcr,xtr,D/P samples Rcr,xtr,D or Rcr,xtr,P uniformly at random, and
reduction Rxpd-alg,F,P

G-M-Pr-io is defined in Lemma E.5, and Rxpd-alg,F,D/Q
G-M-Pr-io samples one

out of the reductions Rxpd-alg,F,D
G-M-Pr-io and Rxpd-alg,F,Q

G-M-Pr-io uniformly at random.

D||Resalt : Out → {D,R} DOut\O∗ ||FOut∩O∗ : Out → {D,F}

n 7→
{
R, if n = esalt
D otherwise

n 7→
{
F, if n ∈ O∗

D otherwise

Proof. Inequality 42 encodes several reductions into one by sampling one out of
two reductions (in order to obtain a concise inequality) and relies on reductions
from Lemma A.2 and Lemma E.5. We start by reformulating Inequality 42 in

100 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

the following more intuitive way:

Adv(A, G-M-Pr-ioin,xpd,1,D,D
Out , G-M-Pr-ioin,xpd,1,D,Q

Out)

≤Adv(A, G-M-Pr-ioin,xpd,1,F,D
Out , G-M-Pr-ioin,xpd,0,F,D

Out)
+Adv(A → Rcr,xpd,D, Gacr0,xpd, Gacr1,xpd)
+Adv(A → Rcr,xpd,Q, Gacr0,xpd, Gacr1,xpd)

+Adv(A, G-M-Pr-ioin,xpd,1,F,Q, G-M-Pr-ioin,xpd,0,F,Q
Out)

+
∑

alg∈H
2 ·
(n2

alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg)

)
, (43)

We derive Inequality 42 from Inequality 43 by upper-bounding (43) as follows:∑
alg∈H

(
nalg,hon=1·Adv(A → Rxpd-alg,F,D

G-M-Pr-io , Gprxpd-alg,b) (44)

+Adv(A → Rcr,xpd,D → Ralg,xpd, Gcrxpd-alg,b)
+Adv(A → Rcr,xpd,Q → Ralg,xpd, Gcrxpd-alg,b)

+nalg,hon=1·Adv(A → Rxpd-alg,F,Q
G-M-Pr-io , Gprxpd-alg,b)

+2 ·
(n2

alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg) +(c+ 1) ·
n2

alg,hon=1

2len(alg)

))
,

by replacing

Adv(A → Rcr,xpd,P, Gacr0,xpd, Gacr1,xpd) by∑
alg∈H

Adv(A → Rcr,xpd,P → Ralg,xpd, Gcrxpd-alg,b)

for P ∈ {D,Q} using Lemma A.2 and replacing

Adv(A, G-M-Pr-ioin,xpd,1,F,P, G-M-Pr-ioin,xpd,0,F,P
Out) by∑

alg∈H
nalg,hon=0·Adv(A → Rxpd-alg,F,P

G-M-Pr-io , Gprxpd-alg,b) + (c+ 1) ·
n2

alg,hon=1

2len(alg)

using Lemma E.5. From (44), we then obtain Inequality 42 by encoding the two
collision-resistance reductions into a single one and by encoding the two pseudo-
randomness reductions into a single one. It thus remains to prove Inequality 43.

The proof of Inequality 43 proceeds by a sequence of game-hops. In the first
game hop, the input Log patterns is switched from a D to an F pattern:

Pr
[
1 = A → G-M-Pr-ioin,xpd,1,D,D

Out

]
≤Pr

[
1 = A → G-M-Pr-ioin,xpd,1,F,D

Out

]
+

n2
alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg) (45)

Key-schedule Security for the TLS 1.3 Standard 101

To see that Inequality 45 holds, first note that the adversary yields no informa-
tion about the honest keys stored in Key1

in, since (a) they are sampled uniformly
at random and (b) the output Key1

n packages overwrite concretely derived values
by random ones. Thus, the adversary does not see any dependent operations on
the input keys, unless the F pattern on Login aborts. The adversary creates up to
nalg,hon=0 dishonest keys for algorithm alg, each of which has a nalg,hon=1

2len(alg) chance of
agreeing with an honest key. Thus, we lose an additive term of nalg,hon=0·nalg,hon=1

2len(alg) .
In addition, since the F pattern also aborts on collisions between two honest
keys, we also lose a birthday bound in the number of honest keys, i.e., n2

alg,hon=1
2len(alg) .

We now apply the pseudorandomness assumption and thus, by definition and
triangle inequality, we obtain:

Pr
[
1 = A → G-M-Pr-ioin,xpd,1,F,D

Out

]
≤Pr

[
1 = A → G-M-Pr-ioin,xpd,0,F,D

Out

]
+

Adv(A, G-M-Pr-ioin,xpd,1,F,D
Out , G-M-Pr-ioin,xpd,0,F,D

Out)

GETin
HASHR-M-Pr-ioxpd

O
Keyin

QOut-
UNQOut-

KeyOut LogOut-

Login-

P

FQin-
UNQin-

1

SETOut

Qin-,UNQin-

QOut-,UNQOut-

GETOut

SETin

0

Gacrxpd,b

Fig. 44: Collision Resistance Reduction for G-M-Pr-io where P is either D,
FOut∩O∗ ||DOut\O∗ or Resalt ||DCN\{esalt}.

R-M-Pr-ioxpd

Oxpd(h, args)

(k, hon)← GETin(h)
kout ← HASH(k, args)
hout ← inj〈h, args〉
i← OutIndex(hout)
assert i ∈ Out
return SETi(hout, hon, kout)

Fig. 43: Code of R-M-Pr-ioxpd

Next, we use collision-resistance of xpd. We de-
compose the M-Pr-io package into reduction
R-M-Pr-ioxpd (Fig. 44) and game Gcr0,xpd and
then apply the collision-resistance assumption.

Pr
[
1 = A → G-M-Pr-ioin,xpd,0,F,D

Out

]
= Pr

[
1 = A → Rcr,xpd,D → Gcr0,xpd] (46)

≤Pr
[
1 = A → Rcr,xpd,D → Gcr1,xpd]+

Adv(A → Rcr,xpd,D, Gcr0,xpd, Gcr1,xpd)

We now observe that we can replace the pattern D on the output keys by
the pattern FA||DB in a perfect equivalence step, analogously to the proof of
Lemma D.2. Since the input keys are unique and Gcr1,xpd aborts on colliding
derived keys, the F patterns on the output are not triggered. Subsequently, we
de-idealize collision-resistance:

102 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Pr
[
1 = A → Rcr,xpd,D → Gcr1,xpd]

= Pr
[
1 = A → Rcr,xpd,Q → Gcr1,xpd]

≤Pr
[
1 = A → Rcr,xpd,Q → Gcr0,xpd]+

Adv(A → Rcr,xpd,Q, Gcr1,xpd, Gcr0,xpd)

The next proof step is the inverse analogue of Equality 46. I.e., we recompose
reduction R-M-Pr-ioxpd and game Gcr0,xpd into game M-Pr-io. Afterwards, we
apply the pseudorandomness assumption.

Pr
[
1 = A → Rcr,xpd,Q → Gcr0,xpd]

= Pr
[
1 = A → G-M-Pr-ioin,xpd,0,F,Q

Out

]
≤Pr

[
1 = A → G-M-Pr-ioin,xpd,0,F,Q

Out

]
+

Adv(A, G-M-Pr-ioin,xpd,1,F,Q
Out , G-M-Pr-ioin,xpd,0,F,Q

Out)

Finally, we perform the analogous (inverse) transformation of Inequality 45 and
replace the F pattern on the input keys by a D pattern. We note, once again
that the adversary has no information on the input keys and thus, we lose a
random guessing probability as well as collisions between honest keys.

Pr
[
1 = A → G-M-Pr-ioin,xpd,1,F,Q

Out

]
≤Pr

[
1 = A → G-M-Pr-ioin,xpd,1,D,Q

Out

]
+

n2
alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg)

Lemma E.7 then follows from the triangle inequality.

We can now turn to showing that games which use the Xpdn,0 package can
be closely related to G-M-Pr-ioin,f,b,collin,collOut

Out . The proof of this statement will
be closely related to the proof of Equation 36.

Lemma E.8 (Generalized Equation (36)). Let n1 be a name and let CN :=
ChldrnN(n1) denote the children of n1. Furthermore, let P be an arbitrary pattern
P : CN → {D,F,R}. Then, for all b ∈ {0, 1},

Gxpdb,P
n,0 ,

code≡ Rrmprio,xpd
n,0 → G-M-Pr-io(n1 ,0),xpd,b,D,P

CN ,0 , (47)

where Gxpdb,P
n,0 is defined in Figure 45a and Rrmprio,xpd

n,0 is defined in Figure 50b.

Key-schedule Security for the TLS 1.3 Standard 103

GETn1,0

HASH

XpdCN,0

Qn1
UNQn1

Keyn1,0

QCN
UNQCN

KeyCN,0

SETCN,0

GETCN,0

SETn1,0

XPDCN,0

Logn1

LogCN

D

P

1

b

HASH
Hash1

n1, :=Prnt(n)
CN:=ChldrnN(n1)

(a) Gxpdb,P
n,0

GETn1,0
M-Pr-ioxpd

O

Keyn1,0

QCN
UNQCN

KeyCN,0 LogOut=CN

Login=n1

patout=P

patin=DQn1
UNQn1

1

SETCN,0

GETCN,0

SETn1,0

HASH

Rmprioxpdn,0

Hash1
XPDn,0

HASH

GETCN,0

b

(b) Game Rrmprio,xpd
n,0 → G-M-Pr-io(n1 ,0),xpd,b,D,DCN

CN,0 where RmprioxpdCN,0 is defined in
Fig. 54

Fig. 45: Reductions for Inequality 47

Proof. We include the graph of Rrmprio,xpd
n,0 → G-M-Pr-io(n1 ,0),xpd,b,D,DCN

CN ,0 in
Figure 45b. The proof of Equation 47 proceeds by inlining the code of M-Pr-io
into RmprioxpdCN ,0, see Figure 54. We also used Figure 54 in the proof of Equa-
tion 36, and indeed, all arguments apply here, since Equation 47 and Equation 36
differ only in the pattern on the output LogP

CN .

With Lemma E.7 and Lemma E.8 at hand, we can now re-state and prove
Lemma E.9 (Pre-Image Resistance) which relates our two pre-image resistance
assumptions (Figure 24i and Figure 24h) directly to monolithic, non-agile pseudo-
randomness and non-agile collision-resistance.

LevelMapd
In,Evl,Out

State

M level map

Parameter

In input names
Evl evaluation names
Out output names
d level count

SETn∈In,0..d(h, hon, k)

assert level(h) = `

assert name(h) = n

alg ← Alg(h)
if Mn,`[h] = ⊥ :
Mn,`[h]← NewHandle(alg, n,M0..d, 0)

return SETn,0(Mn,`[h], hon, k)

XPDn∈Evl,0..d(h1, r, args)

n1,_← PrntN(n)
assert Mn1,`[h1] 6= ⊥
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
Mn,`[h]← XPDn,0(Mn1,`[h1], args)
return Mn,`[h]

GETn∈Out,0..d(h)

assert Mn,`[h] 6= ⊥
return GETn,0(Mn,`[h])

Fig. 46: Code of injective level mapping LevelMap

104 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

GETn1,0

HASH

XpdCN,0

Qn1
UNQn1

Keyn1,0

QCN
UNQCN

KeyCN,0
SETCN,0

GETCN,0

SETn1,0

XPDCN,0

Logn1

LogCN

D

P

1

1

HASH
Hash1

 n1, :=Prnt(n)
 CN:=ChldrnN(n1)

(a) Game Gxpd1,P
n,0 for P : CN → {R,D,F}

GETn1,0..d

HASH

XpdCN,0..d

Qn1
UNQn1

Keyn1,0..d

QCN
UNQCN

KeyCN,0..d
SETCN,0..d

GETCN,0..d

SETn1,0..d

XPDCN,0..d

Logn1

LogCN

D

P

1

1

HASH
Hash1

 n1, :=Prnt(esalt)
 CN:=ChldrnN(n1)

(b) Game GxpdPI,P
esalt for P ∈ {D,R}

Le
ve

lM
ap

d

Hash1

GETn1,0
XpdCN,0

Qn1
UNQn1

Keyn1,0

QCN
UNQCN

KeyCN,0

SETCN,0

GETCN,0

SETn1,0

XPDCN,0

Logn1

LogCN

D

P

1

1

HASH

HASH

GETCN,0..d

SETn1,0..d

XPDCN,0..d {n
1}

,C
N

,C
N

(c) Game Rmprio,xpd
n,` → G-M-Pr-io(n1 ,`),xpd,b,D,DCN

CN,0 for b ∈ {0, 1}, where (n1,_) =
PrntN(n) and CN = ChldrnN(n1). Reduction Rmprio,xpd

n,` in grey.

Fig. 47: Reductions for Inequality 12

Lemma E.9. Let A be an adversary that generates at most thon=1
es,alg honest and

thon=0
es,alg dishonest es keys, and let tes,alg be max{thon=0

es,alg , t
hon=1
es,alg }. We have

Adv(A, GpiR
esalt , GpiD

esalt) (12)

≤
∑

alg∈H
2 ·
[
sesalt,alg·Adv(A → Ralg

esalt,pi , Gprxpd-alg,b)

+Adv(A → Ralg
esalt,pi-cr , Gcrhash-alg,b) + (c+ 3) ·

t2es,alg

2len(alg)

]
,

where Ralg
esalt,pi :=RP IE → Rmprio,xpd

n,0 → Rxpd-alg,D,D/R
G-M-Pr-io and

Ralg
esalt,pi-cr :=RP IE → Rmprio,xpd

n,0 → Rcr,xpd,D/R → Ralg,xpd,

c is a small constant which depends on the min-entropy of xpd on random inputs
and R is an abbreviation for R : ChldrnN(es) → {R,D} being defined as R on
esalt and D everywhere else.

Let the parent set of O∗ be defined as PO∗ := {n1 : ∃n ∈ O∗ : (n1,_) =
PrntN(n)} and the sibling set of O∗ as SO∗ :=

⋃
n1∈PO∗ ChldrnN(n1). Let A

be an adversary such that for each n in the representative set SO∗ ∩ XPR, A

Key-schedule Security for the TLS 1.3 Standard 105

generates at most sn,alg = thon=1
n,alg honest and thon=0

n,alg dishonest n keys for n1 with
(n1,_) = PrntN(n), and let tn,alg be max{thon=0

n,alg , thon=1
n,alg }. We have

Adv(A, GpiD
O∗ , GpiF

O∗) (13)

≤
∑

alg∈H,n∈SO∗∩XPR
2 ·
[
sn,alg·Adv(A → Ralg

n,pi , Gprxpd-alg,b)

+Adv(A → Ralg
n,pi-cr , Gcrhash-alg,b) + (c+ 3) ·

t2n,alg

2len(alg)

]
,

where Ralg
n,pi :=RP IO

n → Rmprio,xpd
n,0 → Rxpd-alg,D,D/F

G-M-Pr-io and

Ralg
n,pi-cr :=RP IO

n → Rmprio,xpd
n,0 → Rcr,xpd,D/F → Ralg,xpd,

c is a small constant which depends on the min-entropy of xpd on random inputs,
and F : ChldrnN(n1)→ {D,F} is F on the intersection of O∗ and ChldrnN(n1)
and D, else.

Proof. We first prove Inequality 12 and then Inequality 13. For Inequality 12,
let CN (es) := ChldrnN(es). To obtain Inequality 12, we combine Inequality 42,
Equality 47 and the following code-equivalence statements:

GpiD
esalt

func≡ RPIE → Gxpd
1,DCN(es)
esalt,0

GpiR
esalt

func≡ RPIE → Gxpd
1,DCN(es)\{esalt}||Resalt
esalt,0 (48)

where RPIE is defined in Figure 47c. The reduction RPIE performs an injective
handle mapping, i.e., the adversary uses handles of any level whereas internally,
RPIE only makes calls with handles h such that name(h) = es and level(h) = 0.
See Figure 46 for the code of LevelMapd

{n1},CN ,CN which is the main building
block of RPIE.

The functional equivalence between game G-M-Pr-ioes,xpd,1,D,P
CN(es),0 and RPIE →

Gxpdb
es,0 follows from the injectivity of the handle mapping, i.e., both games

consume the same number of random strings (of the same length) and RPIE

maps these consistently. This concludes the proof of Equation 48.

We now apply Equality 48, Equality 47 and Inequality 42 successively to
obtain Inequality 12. We introduce the abbreviation DD for DCN(es) and DR

106 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

for DCN(es)\{esalt}||Resalt for sake of conciseness in the 3rd equality below:

Adv(A, GpiR
esalt , GpiD

esalt)
(48)= Adv(A → RPIE, Gxpd

1,DCN(es)
esalt,0 , Gxpd

1,DCN(es)\{esalt}||Resalt
esalt,0)

(47)= Adv(A → RPIE → Rrmprio,xpd
esalt,0 , G-M-Pr-io

(n1 ,0),xpd,1,D,DCN(es)
CN(es),0 ,

G-M-Pr-io
(n1 ,0),xpd,1,D,DCN(es)\{esalt}||Resalt
CN(es),0)

=Adv(A → RPIE → Rrmprio,xpd
esalt,0 , G-M-Pr-io(n1 ,0),xpd,1,D,DD

CN(es),0 ,

G-M-Pr-io(n1 ,0),xpd,1,D,DR
CN(es),0)

Lem. E.7
≤

∑
alg∈H

2 ·
[
nalg·

Adv(A → RPIE → Rrmprio,xpd
esalt,0 → Rxpd-alg,D,DD/DR

G-M-Pr-io , Gprxpd-alg,b)

+Adv(A → RPIE → Rrmprio,xpd
esalt,0 → Rcr,xpd,DD/DR → Ralg, Gcrxpd-alg,b)

+
(n2

alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg) + (c+ 1) ·
n2

alg

2len(alg)

)]
,

which concludes the proof of Inequality 12.

The proof of Inequality 13 proceeds via a hybrid argument over the different
input names in PO∗, i.e., we first slice the game to the different sub-games
keyed only by a single name n ∈ PO∗. While slicing the games according to
n ∈ PO∗, we also apply an injective handle mapping which maps all handles
to level 0 handles in order to avoid the use of multiple input key packages We
now first state Lemma E.10 (slicing), then prove Inequality 13, and then prove
Lemma E.10 (slicing).

Lemma E.10 (Slicing). Let < be some arbitrary complete order on SO∗ ∩
XPR. Then, for all adversaries A, we have

Adv(A, GpiD
O∗ , GpiF

O∗) ≤
∑

n∈SO∗∩XPR
Adv(A → RPIO

n , Gxpd1,D
n,0 , Gxpd1,F

n,0),

where RPIO
n1

is defined in Figure 48b and Figure 46, and Gxpdb,F
n,0 (with P ∈

{D,F}) is defined in Figure 47a.

Using Lemma E.10 (slicing), we now prove Inequality 13. In the following
sequence of inequalities, for n ∈ SO∗ ∩ XPR, we will often need n1 such that
(n1,_) = PrntN(n). In this case, we only write n1 for conciseness of notation.
Moreover, we write CN (n1) for ChldrnN(n1) and F for FCN(n1)∩SO∗ ||DCN(n1)\SO∗ .

Key-schedule Security for the TLS 1.3 Standard 107

Adv(A, GpiD
O∗ , GpiF

O∗)
Lem. E.10
≤

∑
n∈SO∗∩XPR

Adv(A → RPIO
n , Gxpd1,D

n,0 , Gxpd1,F
n,0)

(47)=
∑

n∈SO∗∩XPR
Adv(A → RPIO

n → Rrmprio,xpd
n,0 , G-M-Pr-io(n1 ,0),xpd,1,D,D

CN(n1),0 ,

G-M-Pr-io(n1 ,0),xpd,1,D,F
CN(n1),0)

Lem. E.7
≤

∑
n∈SO∗∩XPR

∑
alg∈H

2 ·
[
nalg·

Adv(A → RPIO
n → Rrmprio,xpd

n,0 → Rxpd-alg,D,D/F
G-M-Pr-io , Gprxpd-alg,b)

+Adv(A → RPIO
n → Rrmprio,xpd

n,0 → Rcr,xpd,D/F → Ralg, Gcrxpd-alg,b)

+
(n2

alg,hon=1

2len(alg) + nalg,hon=0 · nalg,hon=1

2len(alg) + (c+ 1) ·
n2

alg

2len(alg)

)]
,

This concludes the proof of Inequality 13 except for the proof of Lemma E.10
(slicing), which we turn to now.

HASH

GETPO*,0..d

HASH

XpdSO*,0..d

KeySOPO,0..d

SETSO*,0..d

GETSO*\PO*,0..d

SETPO*\ (SO* O*),0..d

XPDSO*,0..d

LogSOPO\O*
LogO*

P

1

Hash1
PO*:={n1:
n1, =PrntN(n) for n O*}
SO*:= ChldrnN(n)
SOPO:=SO* PO*

QSOPO
UNQSOPO

D

(a) Game GpiP
O∗ for P : CN → {R,D}

HASH

GETPO* \ {n1},0
XpdSO*\CN,0

KeyRest,0

SETRest SO*,0
GETSO* \ (CN PO*),0

SETRest\SO*,0

XPDSO*\CN,0

LogO*<n1

1

Hash1

n1, :=PrntN(n)
CN:=ChldrnN(n1)
PO*:={n': n', =PrntN(n'') for n'' O*}
SO*:= ChldrnN(n')
Rest:=(SO* PO*) \ ({n1} CN)
O*<n1 :={n'' O*: n1', =PrntN(n), n1'<n1}
O*>n1 :={n'' O*: n1', =PrntN(n), n1'>n1}

QRest
UNQRest

GETn1,0
XpdCN,0

Qn1
UNQn1

Keyn1,0

QCN
UNQCN

KeyCN,0

SETCN,0

GETCN\PO*,0

SET{n1}\SO*,0

XPDCN,0

Logn1

LogCN

D

P

1

1

HASH

SET{n1} SO*,0

GETCN PO*,0

Le
ve

lM
ap

d

SET{n1}\SO*,0..d

XPDCN,0..d

GETCN\PO*,0..d

GETSO* \ (CN PO*),0..d

XPDSO*\CN,0..d

SETRest\SO*,0..d

DLogRest\O*

LogO*>n1
D

F

PO
*\S

O
*,S

O
*,S

O
*\P

O
*

(b) Game Hpion := RPIO
n → Gxpd1,D

n,0 for n ∈ O∗ ∩XPR. Reduction RPIO
n in grey.

Fig. 48: Reductions for Inequality 13

108 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Proof of Lemma E.10. The proof proceeds via a hybrid argument over the
ordering < of O∗ ∩ XPR, denote by nmin the minimal element in O∗ ∩ XPR,
by nmax the maximal element in O∗ ∩ XPR, by n + 1 the successor of n in the
ordering <, where we also add nmax

1 + 1 to the ordering < as additional new
maximal element. Let A be an adversary, for n ∈ SO∗ ∩ XPR, define Hpion as
the game in Figure 48b, and define Hpionmax+1 as GpiF

O∗ . We need the following
functional equivalences:

GpiD
O∗

func≡ Hpionmin(first hybrid) (49)

RPIO
n → Gxpd1,D

n,0
func≡ Hpion (50)

RPIO
n → Gxpd

1,FCN(n1)∩SO∗ ||DCN(n1)\SO∗

n,0
func≡ Hpion+1 (51)

GpiF
O∗

func≡ Hpionmax+1(last hybrid) (52)

To show that (49)-(52) imply Lemma E.10, we provide the telescopic sum com-
putation for completeness.

Adv(A, GpiD
O∗

func, GpiF
O∗)

(49)+(52)= Adv(A, Hpionmin , Hpionmax+1)
tel. sum
≤

∑
n∈SO∗∩XPR

Adv(A, Hpion, Hpion+1)

(50)+(51)
≤

∑
n∈SO∗∩XPR

Adv(A,RPIO
n → Gxpd1,D

n,0 ,RPIO
n → Gxpd1,F

n,0)

≤
∑

n∈SO∗∩XPR
Adv(A → RPIO

n , Gxpd1,D
n,0 , Gxpd1,F

n,0)

It remains to show Equations (49)-(52) are true. (52) and (50) hold by definition.
(51) can be verified by re-ordering the packages in Fig. 48b (or equivalently, by
taking the unions over the indices). For (49), observe that if n = nmin, then all
patterns in the lower Log packages in Fig. 48b have a D pattern, and thus we
obtain GpiD

O∗ . This concludes the proof of Lemma E.10.

Key-schedule Security for the TLS 1.3 Standard 109

Qes,UNQes

Qpsk,UNQpsk

GET0salt,
Xtres,

0Key0salt,

Qes
UNQes

Keyes,
SETes,

GETes,

XTRes,

LogesDb

GETpsk,

Qpsk
UNQpsk

Keypsk,
SETpsk,

LogpskD11

0

GET0salt,1.. -1, +1..d

(a) Game Gxtr1b
es,` for b ∈ {0, 1}

GETpsk,
M-Pr-ioxtr

O

Keypsk,

Qes
UNQes

Keyes, LogOut=es

Login=psk

patout=D

patin=D1Qpsk
UNQpsk

1

SETes,

GETes, ,Qes,UNQes

SETpsk, , Qpsk, UNQpsk

GET0salt,

Rmprioxtres,

0Key0salt
XTRes,

GET0salt,1.. -1, +1..d

GETes, ,Qes,UNQes

b

(b) Game Rrmprio,xtr
es,` → G-M-Pr-io(psk,`),xtr†,b,D1,D

{(es,`)} , b ∈ {0, 1}, reduction Rrmprio,xtr
es,` in

grey.

Qhs,UNQhs

Qesalt,UNQesalt

GETesalt,
Xtrhs,

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,
SEThs,

GEThs,

SETdh
GETdh,1.. -1, +1..d

XTRhs,

Logdh

Loghs

Z

Db

GETdh,

Qesalt
UNQesalt

Keyesalt,
SETesalt,

LogesaltR1

1

(c) Game Gxtr2b
hs,` for b ∈ {0, 1}

GETpsk,
M-pr-ioxtr

O

Keyesalt,

Qhs
UNQhs

Keyhs, LogOut=hs

Login=esalt

patout=D

patin=RQesalt
UNQesalt

1

SETes,

GEThs, ,Qhs,UNQhs

SETpsk, , Qpsk, UNQpsk

GETdh,

Rmprioxtrhs,

Nkeydh
XTRhs,

SETdh
GETdh,1.. -1, +1..d

GEThs, ,Qhs,UNQhs

Qdh
UNQdh

Logdh
Z

b

(d) Game Rrmprio,xtr
hs,` → G-M-Pr-io(esalt,`),xtr,b,R,D

{(hs,`)} for b ∈ {0, 1}, reduction Rrmprio,xtr
hs,` in

grey.

Qas,UNQas

GET0ikm,
Xtras,

0Key0ikm

Qn
UNQn

Keyas,
SETas,

GETas,

XTRas,

LogasD
b

GEThsalt,

Qhsalt
UNQhsalt

Keyhsalt,
SEThsalt,

LoghsaltD1

0

Qhsalt,UNQhsalt

GET0ikm,1.. -1, +1..d

(e) Game Gxtr3b
as,` for b ∈ {0, 1}

GEThsalt,
M-Pr-ioxtr

O

Keyhsalt,

Qas
UNQas

Keyas, LogOut=as

Login=hsalt

patout=D

patin=DQhsalt
UNQhsalt

1

SETas,

GETas, ,Qas,UNQas

SEThsalt, , Qhsalt, UNQhsalt

GET0ikm,

Rmprioxtras,

0Key0ikm
XTRas,

GET0ikm,1.. -1, +1..d

GETas, ,Qas,UNQas

b

(f) Game Rrmprio,xtr
as,` → G-M-Pr-io(hsalt,`),xtr,b,D,D

{(as,`)} , b ∈ {0, 1}, reduction Rrmprio,xtr
as,` in

grey.

Fig. 49: Reductions for Lemma E.6

110 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

QCN,UNQCN

Qn1,UNQn1

GETn1,

HASH

XpdCN,

Qn1
UNQn1

Keyn1,

QCN
UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN

D

D

1

b

HASH
Hash1

n1, :=Prnt(n)
CN:=ChldrnN(n1)

(a) Game Gxpdb
n,` for b ∈ {0, 1}

GETn1,
M-Pr-ioxpd

O

Keyn1,

QCN
UNQCN

KeyCN, LogOut=CN

Login=n1

patout=D

patin=DQn1
UNQn1

1

SETCN,

GETCN, ,QCN,UNQCN

SETn1, , Qn1, UNQn1

HASH

Rmprioxpdn,

Hash1
XPDn,

HASH

GETCN, ,QCN,UNQCN

b

(b) Game Rmprio,xpd
n,` → G-M-Pr-io(n1 ,`),xpd,b,D,DCN

CN,` for b ∈ {0, 1}, where (n1,_) =
PrntN(n) and CN = ChldrnN(n1). Reduction Rmprio,xpd

n,` in grey.

QCN,UNQCN

GETn1,

HASH

XpdCN,

Keyn1,

QCN
UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN
Logesalt

D

D

1

b

HASH
Hash1

 n1, :=Prnt(esalt)
 CN:=ChldrnN(n1)

R

Qn1,UNQn1

Qn1
UNQn1

(c) Game Gxpdb
esalt,` for b ∈ {0, 1}

GETn1,
M-Pr-ioxpd

O

Keyn1,

QCN
UNQCN

KeyCN, LogCN\{esalt}
Logesalt

Login=n1

D

patin=DQn1
UNQn1

1

SETCN,

GETCN, ,QCN,UNQCN

SETn1, , Qn1, UNQn1

HASH

Rmprioxpdesalt,

Hash1
XPDn,

HASH

GETCN, ,QCN,UNQCN

b
R

(d) Game Rmprio,xpd
esalt,` → G-M-Pr-io

(n1 ,`),xpd,b,D,(DCN\{esalt}||Resalt)
CN,` for b ∈ {0, 1}, where

(n1,_) = PrntN(esalt) and CN = ChldrnN(n1). Reduction Rmprio,xpd
esalt,` in grey.

Qpsk,UNQpsk

Qrm,UNQrm

GETrm,
Xpdpsk,

Qrm
UNQrm

Keyrm,

Qpsk
UNQpsk

Keypsk, +1

SETpsk, +1

GETpsk, +1

SETrm,

XPDpsk,

Logrm

Logpsk

D

D1

1

b

(e) Game Gxpdb
psk,` for b ∈ {0, 1}

GETrm,
M-Pr-ioxpdO

Keyrm,

Qpsk
UNQpsk

Keypsk, +1 LogOut=psk

Login=rm

patout=D1

patin=DQrm
UNQrm

1

SETpsk, +1

GETpsk, +1,Qpsk,UNQpsk

SETrm, , Qrm, UNQrm

Rmprioxpdpsk,
XPDpsk,

b

Qpsk,UNQpsk

(f) Game Rmprio,xpd
psk,` → G-M-Pr-io(rm,`),xpd,b,D,D1

{(psk,`+1)} for b ∈ {0, 1}. Reduction Rmprio,xpd
psk,` in

grey.

Fig. 50: Reductions for Lemma E.6

Key-schedule Security for the TLS 1.3 Standard 111

Rmprioxtres,`

XTRes,`(h1, h2)

n1, n2 ← PrntN(es)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈es, h1, h2〉
(k1, hon1)← GETn1,`(h1)
()← O(h2, k1)

return h

GETes,`(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return GETes,`(h′)

UNQes(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return UNQes(h′)

Qes(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return Qes(h′)

Rmprioxtres,` → M-Pr-ioxtr†

XTRes,`(h1, h2)

n1, n2 ← PrntN(es)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈es, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)

k ← xtr†(k2, k1)

hout ← xtr〈es, k1, h2〉
i← OutIndex(hout)
assert i ∈ {(es, `)}
SETi(hout, hon2, kout)
return h

GETes,`(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return GETes,`(h′)

UNQes(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return UNQes(h′)

Qes(h)

parse xtr〈es, h1, h2〉 = h

(k1,_)← GET0salt,`(h1)
h′ ← xtr〈es, k1, h2〉
return Qes(h′)

Xtr0
es,`

XTRes,`(h1, h2)

n1, n2 ← PrntN(es)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈es, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)
k ← xtr(k1, k2)
hon ← hon1∨ hon2

if b ∧ hon2 :
k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SETes,`(h, hon, k)
return h

Id{GETes,`,UNQes,Qes}

GETes,`(h)

return GETes,`(h)

UNQes(h)

return UNQes(h)

Qes(h)

return Qes(h)

Fig. 51: Gxtr1b
es,`

code≡ Rrmprio,xtr
es,` → G-M-Pr-io(psk,`),xtr†,b,D1,D

{es} code equivalence.

112 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Rmprioxtrhs,`

XTRhs,`(h1, h2)

n1, n2 ← PrntN(hs)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈hs, h1, h2〉
(k2, hon2)← GETn2,`(h2)
if hon2 :

hon ← 1
k←$ {0, 1}len(h)

k∗ ← tagh(k)
assert name(h) = hs
assert level(h) = `

assert alg(k?) = alg(h)
k ← untag(k?)
assert len(h) = |k|
if Qhs(h) 6= ⊥ :

return Qn(h)
if b :

if hon :
k←$ {0, 1}len(h)

h′ ← UNQn(h, hon, k)
if h′ 6= h :

return h′

Kn,`[h]← (k, hon)
else
()← O(h1, k2)
return h

GEThs,`(h)

parse xtr〈hs, h1, h2〉 = h

(k2, hon2)← GETn2,`(h2)
if hon2 :

assert Kn,`[h] 6= ⊥
(hon, k)← Kn,`[h]

else
h′ ← xtr〈hs, h1, k2〉
(k, hon)← GET(h′)

return (k, hon)

UNQhs(h, hon, k)

parse xtr〈hs, h1, h2〉 = h

(k2, hon2)← GETn2,`(h2)
h′ ← xtr〈hs, h1, k2〉
if hon2 : UNQhs,`(h, hon, k)
else : UNQhs,`(h′, hon, k)
return h

Rmprioxtrhs,` → M-Pr-ioxtr

XTRhs,`(h1, h2)

n1, n2 ← PrntN(hs)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈hs, h1, h2〉
(k2, hon2)← GETn2,`(h2)
if hon2 :

hon ← 1
k←$ {0, 1}len(h)

k∗ ← tagh(k)
assert name(h) = hs
assert level(h) = `

assert alg(k?) = alg(h)
k ← untag(k?)
assert len(h) = |k|
if Qhs(h) 6= ⊥ :

return Qn(h)
if b :

if hon :
k←$ {0, 1}len(h)

h′ ← UNQn(h, hon, k)
if h′ 6= h :

return h′

Kn,`[h]← (k, hon)
else

(k1, hon1)← GETn2,`(h1)
kout ← xtr(k1, k2)
hout ← xtr〈hs, h1, k2〉
i← OutIndex(hout)
assert i ∈ {(hs, `)}
()← SETi(hout, hon1, kout)

return h

GEThs,`(h)

Unchanged from the left

UNQhs(h)

Unchanged from the left

Qhs(h)

Unchanged from the left

Rmprioxtrhs,` → M-Pr-ioxtr

XTRhs,`(h1, h2)

n1, n2 ← PrntN(hs)
if alg(h1) 6= ⊥
∧ alg(h2) 6= ⊥ :
assert alg(h1) = alg(h2)

h← xtr〈hs, h1, h2〉
(k1, hon1)← GETn2,`(h1)
(k2, hon2)← GETn2,`(h2)

hon ← hon1 ∨ hon2

if hon2 :
k∗ ←$ {0, 1}len(h)

k ← tagh(k∗)
()← SEThs,`(h, hon, k)

else

k ← xtr(k1, k2)
hout ← xtr〈hs, h1, h2〉

()← SEThs,`(hout, hon, k)
return h

GEThs,`(h)

return GEThs,`(h)

UNQhs(h)

return UNQhs(h)

Qhs(h)

return Qhs(h)

Xtr1
hs,`

XTRhs,`(h1, h2)

n1, n2 ← PrntN(n)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈n, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)
k ← xtr(k1, k2)
hon ← hon1 ∨ hon2

if 1∧ hon2 :
k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SEThs,`(h, hon, k)
return h

Id{GEThs,`,UNQhs,Qhs}

GEThs,`(h)

return GEThs,`(h)

UNQhs(h)

return UNQhs(h)

Qhs(h)

return Qhs(h)

Fig. 52: Code Equivalence: Gxtr21
hs,`

code≡ Rrmprio,xtr
hs,` →

G-M-Pr-io(esalt,`),xtr,b,R,D
{hs}

Key-schedule Security for the TLS 1.3 Standard 113

Rmprioxtras,`

XTRas,`(h1, h2)

n1, n2 ← PrntN(as)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈as, h1, h2〉
(k2, hon2)← GETn2,`(h2)
()← O(h1, k2)

return h

GETas,`(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return GETas,`(h′)

UNQas(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return UNQas(h′)

Qas(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return Qas(h′)

Rmprioxtras,` → M-Pr-ioxtr

XTRas,`(h1, h2)

n1, n2 ← PrntN(as)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈as, h1, h2〉
(k2, hon2)← GETn2,`(h2)
(k1, hon1)← GETn1,`(h1)
k ← xtr(k1, k2)

hout ← xtr〈as, h1, k2〉
i← OutIndex(hout)
assert i ∈ {(as, `)}
SETi(hout, hon1, kout)
return h

GETas,`(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return GETas,`(h′)

UNQas(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return UNQas(h′)

Qas(h)

parse xtr〈as, h1, h2〉 = h

(k2,_)← GET0ikm,`(h2)
h′ ← xtr〈as, h1, k2〉
return Qas(h′)

Xtr0
as,`

XTRas,`(h1, h2)

n1, n2 ← PrntN(as)
if alg(h1) 6= ⊥ ∧ alg(h2) 6= ⊥ :

assert alg(h1) = alg(h2)
h← xtr〈as, h1, h2〉
(k1, hon1)← GETn1,`(h1)
(k2, hon2)← GETn2,`(h2)
k ← xtr(k1, k2)
hon ← hon1 ∨hon2

if b ∧ hon2 :
k? ←$ {0, 1}len(k)

k ← tagalg(k)(k
?)

h← SETas,`(h, hon, k)
return h

Id{GETas,`,UNQas,Qas}

GETas,`(h)

return GETas,`(h)

UNQas(h)

return UNQas(h)

Qas(h)

return Qas(h)

Fig. 53: Code Equivalence: Gxtr3b
es,`

code≡ Rrmprio,xtr
as,` →

G-M-Pr-io(hsalt,`),xtr,b,D,D
{as}

114 Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss

Rmprioxpdn,`

XPDn,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
d← HASH(args)
()← O(h1, (label, d))

return h

GETn,`(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return GETn,`(h′)

UNQn(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return UNQn(h′)

Qn(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return Qn(h′)

Rmprioxpdn,` → M-Pr-ioxpd

XPDn,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
d← HASH(args)
(k1, hon)← GETn1,`(h1)

k ← xpd(k1, (label, d))
hout ← xpd〈n, label, h1, d〉
i← OutIndex(hout)
assert i ∈ {(n, `)}
SETi(hout, hon, kout)
return h

GETn,`(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return GETn,`(h′)

UNQn(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return UNQn(h′)

Qn(h)

parse xpd〈n, label, h1, args〉 = h

d← HASH(args)
h′ ← xpd〈n, label, h1, d〉
return Qn(h′)

Xpdn,`

XPDn,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
(k1, hon)← GETn1,`(h1)
if n = psk :
`← `+ 1
k ← xpd(k1, (label, args))

else
d← HASH(args)
k ← xpd(k1, (label, d))

h← SETn,`(h, hon, k)
return h

Id{GETn,`,UNQn,Qn}

GETn,`(h)

return GETn,`(h)

UNQn(h)

return UNQn(h)

Qn(h)

return Qn(h)

Fig. 54: Code equivalence Gxpdb
n,`

code≡ Rmprio,xpd
n,` → G-M-Pr-io(n1 ,`),xpd,b,D,DCN

CN .

Key-schedule Security for the TLS 1.3 Standard 115

Rmprioxpdpsk,`

XPDpsk,`(h1, r, args)

n1,_← PrntN(psk)
label ← Labels(psk, r)
h← xpd〈psk, label, h1, args〉
()← O(h1, (label, args))

return h

Rmprioxpdpsk,` → M-Pr-ioxpd

XPDpsk,`(h1, r, args)

n1,_← PrntN(psk)
label ← Labels(psk, r)
h← xpd〈psk, label, h1, args〉
(k1, hon)← GETn1,`(h1)
k ← xpd(k1, (label, args))

hout ← xpd〈psk, label, h1, args〉
i← OutIndex(hout)
assert i ∈ {(psk, `+ 1)}
SETi(hout, hon, kout)
return h

Xpdpsk,`

XPDpsk,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
(k1, hon)← GETn1,`(h1)
k ← xpd(k1, (label, args))
`← `+ 1

h← SETn,`(h, hon, k)
return h

Xpdpsk,`

XPDpsk,`(h1, r, args)

n1,_← PrntN(n)
label ← Labels(n, r)
h← xpd〈n, label, h1, args〉
(k1, hon)← GETn1,`(h1)
if n = psk :
`← `+ 1
k ← xpd(k1, (label, args))

else
d← HASH(args)
k ← xpd(k1, (label, d))

h← SETn,`(h, hon, k)
return h

Fig. 55: Code Equivalence: Gxpdb
psk,`

code≡ Rmprio,xpd
psk,` → G-M-Pr-io(rm,`),xpd,b,D,D1

{(psk,`+1)}

	Key-schedule Security for the TLS 1.3 Standard

