
Upslices, Downslices, and Secret-Sharing with Complexity of 1.5n

Benny Applebaum
Tel-Aviv University

Tel-Aviv, Israel
benny.applebaum@gmail.com

Oded Nir
Tel-Aviv University

Tel-Aviv, Israel
odednir123@gmail.com

April 12, 2021

Abstract

A secret-sharing scheme allows to distribute a secret s among n parties such that only some pre-
defined “authorized” sets of parties can reconstruct the secret, and all other “unauthorized” sets learn
nothing about s. The collection of authorized/unauthorized sets can be captured by a monotone function
f : {0, 1}n → {0, 1}. In this paper, we focus on monotone functions that all their min-terms are sets of
size a, and on their duals – monotone functions whose max-terms are of size b. We refer to these classes
as (a, n)-upslices and (b, n)-downslices, and note that these natural families correspond to monotone
a-regular DNFs and monotone (n− b)-regular CNFs. We derive the following results.

1. (General downslices) Every downslice can be realized with total share size of 1.5n+o(n) < 20.585n.
Since every monotone function can be cheaply decomposed into n downslices, we obtain a similar
result for general access structures improving the previously known 20.637n+o(n) complexity of
Applebaum, Beimel, Nir and Peter (STOC 2020). We also achieve a minor improvement in the
exponent of linear secrets sharing schemes.

2. (Random mixture of upslices) Following Beimel and Farràs (TCC 2020) who studied the com-
plexity of random DNFs with constant-size terms, we consider the following general distribution
F over monotone DNFs: For each width value a ∈ [n], uniformly sample ka monotone terms of
size a, where k = (k1, . . . , kn) is an arbitrary vector of non-negative integers. We show that, ex-
cept with exponentially small probability, F can be realized with share size of 20.5n+o(n) and can
be linearly realized with an exponent strictly smaller than 2/3. Our proof also provides a candidate
distribution for “exponentially-hard” access structure.

We use our results to explore connections between several seemingly unrelated questions about the
complexity of secret-sharing schemes such as worst-case vs. average-case, linear vs. non-linear and
primal vs. dual access structures. We prove that, in at least one of these settings, there is a significant
gap in secret-sharing complexity.

1 Introduction

Secret-sharing schemes, introduced by Shamir [34] and Blakley [13], are a central cryptographic tool with
a wide range of applications including secure multiparty computation protocols [10, 15], threshold cryptog-
raphy [19], access control [30], attribute-based encryption [24, 38], and oblivious transfer [35, 37]. In its
general form [26], an n-party secret-sharing scheme for a family of authorized sets F ⊆ 2[n] (referred to as
access structure) allows to distribute a secret s into n shares, s1, . . . , sn, one for each party, such that: (1)
every authorized set of parties, A ∈ F , can reconstruct s from its shares; and (2) every unauthorized set of
parties, A /∈ F , cannot reveal any partial information on the secret even if the parties are computationally
unbounded. For example, in the canonical case of threshold secret sharing the family F contains all the sets
whose cardinality exceeds some certain threshold. For this case, Shamir’s scheme [34] provides a solution
whose complexity, measured as the total share-size

∑
i |si|, is quasi-linear, O(n log n), in the number of

parties n. Moreover, Shamir’s scheme is linear, that is, each share can be written as a linear combination of
the secret and the randomness that are taken from a finite field. This form of linearity turns to be useful for
many applications. (See Appendix A.1 for a formal definition of secret sharing and linear secret sharing.)

The complexity of general secret-sharing schemes. Determining the complexity of general access struc-
tures is a basic, well-known, open problem in information-theoretic cryptography. Formally, given a (mono-
tone) access structure1 F we let SSize(F) := minD realizes F |D|, where |D| denotes the total share size
of a secret-sharing scheme D. For over 30 years, since the pioneering work of Ito et al. [26], all known
upper-bounds on SSize(F) are tightly related to the computational complexity of the characteristic function
F . Here we think of F as the monotone function that given a vector x ∈ {0, 1}n outputs 1 if and only if
the corresponding characteristic set A = {i : xi = 1} is an authorized set. Specifically, it is known that the
complexity of an access structure is at most polynomial in the representation size of F as a monotone CNF
or DNF [26], as a monotone formula [11], as a monotone span program [27], or as a multi-target monotone
span program [12]. This leads to an exponential upper-bound of 2n(1−o(1)) for any n-party access structure
F .

On the other hand, despite much efforts, the best known lower-bound on the complexity of an n-party
access structure is Ω(n2/ log n) due to [17]. Moreover, we have no better lower-bounds even for non-
explicit functions! This leaves a huge exponential gap between the upper-bound and the lower-bound. For
the case of linear schemes, a counting argument (see, e.g., [9]) shows that for most monotone functions
F : {0, 1}n → {0, 1}, the complexity of the best linear secret-sharing (LSS) scheme, denoted by LSSize(F),
is at least 2n/2−o(n).2 Furthermore, Pitassi and Robere [32] (building on results of [33, 31]) prove that for
every n there exists an explicit n-input function F such that LSSize(F) = 2Ω(n). In his 1996 thesis [4],
Beimel conjectured that an exponential lower-bound of 2Ω(n) also holds for the general case. Resolving this
conjecture has remained one of the main open problems in the field of secret sharing [5]. Taking a broader
view, similar exponential communication-complexity gaps exist for a large family of information-theoretic
secure computation tasks [21, 25, 3, 23, 7]. Among these, secret-sharing is of special interest due to its
elementary nature: Secret data is only stored and revealed without being processed or manipulated.

1Monotonicity here means that for any A ⊂ B it holds that A ∈ F ⇒ B ∈ F . It is not hard to see that a non-monotone access
structure does not admit a secret-sharing scheme, and therefore this requirement is necessary.

2The bound holds for any finite field. From now on when the field is unspecified we take it, by default, to be the binary field.
This only makes our positive results stronger.

1

Recent advances: slices, multislices and general access structures. In the past three years, the seem-
ingly tight correspondence between computational complexity and secret-sharing complexity was chal-
lenged by several works. In a breakthrough result, Liu, Vaikuntanathan and Wee [29, 28] showed that any
general access structure can be realized with complexity of 20.994n, thus breaking the formula-size (or even
circuit-size) barrier of 2n−o(n). The exponent was further reduced to 0.64 in follow-up works of Applebaum,
Beimel, Farràs, Nir and Peter [1, 2]. From a technical point of view, all these works reduced the problem
of realizing a general monotone function F to the problem of realizing the simpler case of slice functions
and multislice functions (originally referred to as “fat slices” by [28]). Formally, (a : b, n)-multislices are
monotone functions that are unconstrained on inputs x of weight wt(x) ∈ [a, b], but must take the value 0
on lighter inputs, and the value 1 on heavier inputs. An (a : a, n)-multislice is referred to as an (a, n)-slice.
Roughly, the results of [28] were obtained by a sequence of 3 reductions: (1) Secret sharing for slice func-
tions with sub-exponential share size of 2Õ(

√
n) based on constructions of Conditional Disclosure of Secrets

(CDS) [29]; (2) Secret sharing for ((0.5 − ε)n, (0.5 + ε)n, n)-multislices (aka ε-midslice) with non-trivial
cost of 2cn for some c < 1 based on slice functions; and (3) Secret sharing for general access structures with
2cn complexity based on midslice secret sharing. The work of [1] showed how to improve Step 3 based on
combinatorial covers, and the work of [2] improved the second step by presenting and constructing robust-
CDS schemes. A combination of these results allows us to realize any n-party access structure by a secret
sharing scheme of complexity 20.64n+o(n) and by a linear secret sharing scheme of complexity 20.762n+o(n).

Intriguing questions. This state of affairs leaves open several intriguing questions. Firstly, what is the
best-achievable exponent of secret-sharing schemes? Secondly, which access structures are the hardest to
realize? While the above results do not seem to yield sub-exponential share size, they also do not give rise
to a candidate “hard” access structure. That is, to the best of our knowledge, we do not have an explicit can-
didate distribution over access structures whose cost is 2Ω(n) even if one restricts the attention to the current
schemes. Indeed, it was recently observed by Beimel and Farràs [8] that a randomly chosen monotone func-
tion is likely to be a (n/2− 1, n/2 + 2, n)-multislice, and therefore it can be realized with sub-exponential
complexity.

2 Our Contribution

We make progress towards answering the above questions by shifting the focus from slices and multislices
to downslices and upslices. Before stating our results, let us introduce these new access structures.

2.1 Upslice and Downslices

A monotone function f : {0, 1}n → {0, 1} is an (a, n)-upslice if all its min-terms are of size exactly a.
Similarly to (a, n)-slice functions, an (a, n)-upslice is unconstrained for inputs of weight a and takes the
value 0 on lighter inputs, however, in contrast to slice functions, an input y of weight larger than a takes the
value 1 only if there exists a smaller input x ≤ y of weight a on which the function takes the value 1.3 This
means that f is the pointwise smallest function among all the monotone functions that agree with f on inputs
of weight a. Downslices are defined in a dual way. That is, a monotone function f is a (b, n)-downslice if
all its max-terms are of size exactly b. This means that f is unconstrained over b-weight inputs, takes the
value 1 on heavier inputs, and (unlike slice functions) evaluates to 0 on an input y of weight smaller than b

3We use the standard partial order over strings that is induced by inclusion over the corresponding characteristic sets. That is,
x ≤ y if for every index i it holds that xi ≤ yi.

2

only if there exists a larger input x ≥ y of weight b on which the function evaluates to 0. Accordingly, f
is the pointwise largest function among all the monotone functions that agree with f on inputs of weight b.
(An example of upslices and downslices is depicted in Figure 1.)

Figure 1: An example of a 2-upslice access structure F and a 2-downslice access structure G. Both access
structures are defined over 4 parties and colored nodes correspond to authorized sets. Note that in this
example F and G agree on sets of size 2.

Why Upslices and Downslices? Upslices and downslices are natural classes of monotone functions. In-
deed, (a, n)-upslices (resp., (b, n)-downslices) are exactly the functions that can be represented by logical
formulas in a Disjunctive Normal Form (resp., Conjunctive Normal Form) in which each term (resp., clause)
consists of exactly a variables (resp., n − b variables). Therefore, these function families capture the basic
computational models of regular monotone-DNFs and regular monotone-CNFs. Additionally, every mono-
tone function can be decomposed into a disjunction of its upslices, i.e., f =

∨
a∈[n] fa where fa is the

(a, n)-slice function that agrees with f on its a-weight inputs (hereafter referred to as the a-upslice of f).
Similarly, f can be written as a conjunction of its downslices. Using standard closure properties of secret
sharing, we conclude that the secret-sharing complexity of worst-case monotone functions is at most n times
larger than the secret-sharing complexity of downslices/upslices. This should be contrasted with the status
of “simple” slice functions whose complexity seems significantly smaller (i.e., sub-exponential) than the
complexity of general monotone functions. Indeed, one can show that the complexity of an a-slice function
f is the smallest among all monotone functions that agree with f on inputs of weight a (ignoring low-order
terms).4 For general values of a and b, the best known secret sharing schemes of (a, n)-upslices and (b, n)-
downslices are based on their DNF and CNF representations and therefore have total share size of

(
n
a

)
and(

n
b

)
, respectively. Up to logarithmic improvements, these worst-case bounds have remained unchanged even

for the special case of (2, n)-upslices that correspond to graph access structures [14] (not to be confused with
forbidden graph access structures [36] that correspond to (2, n)-slices). See [8] for additional references.

2.2 Worst-Case Downslices

In Section 4 we show that every (b, n)-downslice admits a secret sharing scheme with complexity of
(3/2)n+o(n). Using the completeness of downslices this allows us to improve the complexity of general

4To see this, observe that if f is the a-slice of a monotone function g, we can write f as f = (g∧Ta−1)∨Ta+1 where Tk is the
k threshold function over n-bit inputs. By using standard closure properties of secret sharing, one can therefore transform a secret
sharing for g into a secret sharing for f with an additive cost of O(logn).

3

access structures. Formally, following [2], we define the secret-sharing exponent of a monotone function
f : {0, 1}n → {0, 1}, denoted by S(f) := n−1 · log2 SSize(f) and define the (worst-case) secret-sharing
exponent S to be S = lim supn→∞maxf∈M(n) S(f), whereM(n) is the family of all monotone functions
over {0, 1}n (equivalently, all n-party access structures). We prove the following theorem.

Theorem 2.1 (Main theorem). Every access structure over n parties can be realized by a secret-sharing
scheme with a total share-size of 1.5n+o(n). That is, S ≤ log 3

2 < 0.585.

Recall that the previous best exponent, due to [2], was 0.637. The proof of the theorem is based on
two schemes for (βn, n)-downslices. The first scheme is tailored to low downslices with β ≤ 1/2 and
achieves an exponent of β, and the second scheme is tailored to high downslices with β ≥ 1/2 and achieves
an exponent of H2(β) − (1 − β) where H2 is the binary entropy function. The most expensive downslice
corresponds to the case where β = 2/3 and has an exponent of log(3

2). (See Figure 2 in Section 4.) The
two schemes are based on adaptation of previous tools, such as robust-CDS and combinatorial covers, to the
current setting. See Section 4 for details.

Linear schemes. We also obtain a minor improvement for the exponent of linear secret-sharing schemes.
Let S` denote the linear exponent, that is defined analogously to S, except that SSize(F) is replaced with
LSSize(F), the minimal complexity of a linear scheme that realizes F .

Theorem 2.2 (Worst-case linear exponent). Every access structure over n parties can be realized by a
linear secret sharing scheme with a total share-size of 20.7576n+o(n). That is, the linear exponent S` is at
most 0.7576.

Recall that the previous best linear exponent, due to [2], was 0.762. Again the theorem is based on LSS
for (βn, n)-downslices for an arbitrary density β. Unfortunately, a naive approach that mimics the proof
of Theorem 2.2 yields an exponent of 1

2 + β
2 or, for β > 0.5, an exponent of H2(β) − 1

2(1 − β). For
densities larger than 1/2, the exponent can be as large as 0.772 which is strictly larger than the exponent
0.762 that is achieved by [2]. To overcome this difficulty, we introduce several additional tools that are
tailored to the linear setting. Most notably, we present a bootstrapping technique that starts with an LSS for
a target downslice with a given density γ, transforms it into an LSS for upslices of various densities and then
exploits the new schemes, to obtain a better LSS for the target (γn, n)-downslice. We apply this procedure
iteratively to several key values of γ, and use these pivots to propagate the improvement to all other values
of β. See Section 5 for details.

2.3 Random Upslices and Mixed DNFs

Following [8], we study the complexity of randomly-chosen upslices. For this we define a family of distri-
butions over monotone-DNFs that is parameterized by an arbitrary vector k = (k1, . . . , kn) of non-negative
integers. We sample a DNF from the k-DNF distribution as follows: For each width parameter a, select
ka random clauses uniformly at random from the set of all possible

(
n
a

)
monotone a-clauses. We prove the

following theorem.

Theorem 2.3 (Average case exponents). For every non-negative vector k, a randomly chosen k-DNF f can
be realized with complexity of 20.5n+o(n) except with exponentially small probability of 2−Ω(n). For linear
schemes, we get an exponent which is strictly smaller than 2/3.

4

Observe that there is a polynomial gap between the average-case complexity and the best-known worst-
case complexity. It is instructive to compare this gap with the results of Beimel and Farràs [8] who
considered (1) The uniform distribution over all access structures, and (2) the uniform distribution over
(a = O(1), n)-upslices with exactly ka min-terms for an arbitrary value of ka. For these distributions, [8]
have established super-polynomial gaps between the average case complexity and the best-known worst-
case complexity. Our results may indicate that such dramatic gaps are an artifact of the chosen distribution.
Technically, the proof of Theorem 2.3 extends the ideas of [8] to handle arbitrary large values of a ∈ [n].
(We note that the proof of [8] suffers from an aa dependency and so it cannot be applied to (a = Ω(n), n)-
upslices.)

Candidate hard distribution. We believe that random upslices form a good candidates for exponentially-
hard distributions. Concretely, the proof of Theorem 2.3 suggests that the hardest case (for existing schemes)
corresponds to the uniform distribution over (n/2, n)-upslices with

√(
n
n/2

)
= 2n/2+o(n) min-terms. (Equiv-

alently, random DNF that contains
√(

n
n/2

)
random monotone terms of width n/2). We believe that identi-

fying such a candidate hard distribution is a valuable first step towards achieving further progress either at
the upper-bound front or at the lower-bound front.

Is the worst-case/average-case gap real? Recall that in the average-case, we derive an exponent of 0.5
for general schemes and an exponent slightly better than 2/3 for linear schemes, whereas the worst-case
exponents are log(3/2) and slightly over 3/4 respectively. Admittedly, we do not know whether this gap is
“real”, and as far as we can see, there may be a way to reduce the worst-case exponents to the average-case
ones. (We do not have good candidates for separation either.) While we cannot prove the existence of such
a gap, we can relate it to other central questions in the complexity of secret sharing like the power of non-
linearity and closure under duality. Define the dual access structure of an n-party access structure f to be
the n-party access structure that accepts of all sets x whose complements x̄ are unauthorized under f , i.e.,
DUAL(f)(x) = 1− f(x̄). We prove the following gap theorem.

Theorem 2.4 (Gap theorem). At least one of the following gaps hold:

1. (Duality gap) There exists an n-party monotone access structure5 f whose secret-sharing exponent is
strictly smaller than the secret-sharing exponent of its dual.

2. (Non-linearity gap) The (general) secret sharing exponent S is strictly smaller than the linear secret
sharing exponent S`.

3. (Average-case gap) Every k-DNF distribution can be realized, except with exponentially small prob-
ability, with an exponent S̄ that is strictly smaller than the worst-case secret sharing exponent S.

Let us elaborate on the first two possibilities. The first item asserts that SSize(f) < SSize(DUAL(f)) ·
2Ω(n). The absence of a duality gap, hereafter referred to as the duality hypothesis, asserts that SSize(f) =
SSize(DUAL(f)) ·2o(n). That is, the primal and dual access structure have similar secret-sharing complexity
up to sub-exponential difference. This hypothesis is known to hold for LSS, and, to the best of our knowl-
edge, its status for general secret-sharing schemes is wide open. In fact, a recent paper of Csirmaz [18]
refers to a stronger version of this hypothesis (e.g., SSize(f) = SSize(DUAL(f)) as a long-standing open

5Formally, for asymptotic purposes one should think of f as a sequence of access structures {fn : {0, 1}n → {0, 1}}n∈N.

5

problem. Item 1 asserts that the complexity-gap between primal and dual structures may be exponentially
large.

The second item asserts that there is an exponential gap between linear-schemes and non-linear schemes
even in the worst-case! While we can prove such a result for concrete cases (e.g., random slice functions),
we do not know whether non-linearity significantly helps for worst-case functions, and one may guess that
eventually the two exponents S` and S will collapse to, say 1/2. Item 2 asserts that this is not the case.

Proving Theorem 2.4. To prove the theorem, we show that, under the duality hypothesis, one can im-
prove Theorem 2.3 so that a random DNF, that is sampled from an arbitrary k-DNF distribution, can be
realized with an exponent that is strictly smaller than 0.5, except with exponentially small probability. If, in
addition, there is no Average-case gap, we get that the worst-case exponent S is smaller than 0.5. Since it is
known that the linear exponent S` cannot be smaller that 0.5 (e.g., by counting), we conclude that the linear
exponent must be strictly larger than the general exponent. (See Section 6.)

3 Preliminaries

General. By default, all logarithms are taken to base 2. For positive integers k ≤ n, we let
(
n
≥a
)

:=∑
a≤i≤n

(
n
i

)
. We use the following standard estimate for the binomial coefficients(

n

k

)
= Θ(k−1/22H2(k/n)n) (1)

where H2(·), denotes the binary entropy function, that maps a real numberα ∈ (0, 1) to H2(α) = −α logα−
(1− α) log(1− α) and is set to zero for α ∈ {0, 1}.

Secret sharing. Standard background on secret-sharing schemes and on slices, multislices, downslices,
and upslices, are deferred to Appendix A. Let us just mention the following complexity conventions. Given
a (monotone) access structure f : {0, 1}n → {0, 1}we let SSize(f) := minD realizes f |D|,where |D| denotes
the total share size of a secret-sharing schemeD. The exponent ofF , denoted by S(F) is n−1·log2 SSize(F).
If F is a collection of n-party access structures then

SSize(F) := max
f∈F

SSize(f), and S(F) := max
f∈F

S(f).

When F = {Fn} is a sequence of collections Fn of n-party access structures we think of SSize(F) as a
function of n, and define the secret-sharing exponent S(F) to be S(F) := lim supn→∞ S(Fn). All these
definitions naturally extend to the linear setting as well.

We denote by D(b, n) (resp., D`(b, n)) the secret-sharing exponent (resp., the LSS exponent) of (b, n)-
downslices and by D(β) (resp., D`(β)) the secret-sharing exponent (resp., the LSS exponent) of (βn, n)-
downslices. The notation U(a, n),U`(a, n),U(α) and U`(α) is defined analogously for the secret-sharing
exponents and LSS exponents of (a, n)-upslices and (αn, n)-upslices. The secret-sharing exponents and
LSS exponents of (a : b, n)-multislices and (αn : βn, n)-multislices are denoted by M(a : b, n),M`(a :
b, n),M(α : β) and M`(α : β).

6

3.1 Covers

We will make use of the following combinatorial concept of “covers”.

Definition 3.1 (Covering a slice). We say that a collection of subsets G = {Gi} over a ground set [n]
upcovers a slice t if for every set A of size t, exists a set Gi ∈ G such that A ⊆ Gi. Analogously, we say that
G downcovers a slice t, if for every set A of size t, exists a set Gi ∈ G such that Gi ⊆ A.

We start by introducing a fact about combinatorial covering designs by Erdős and Spenser:

Fact 3.2 ([20]). For every positive integers a ≤ b ≤ n, there exists a family G = {Gi}Li=1 of b-subsets of [n]

that upcovers the slice a where G is of size L = L(n, a, b) ≤
[(
n
a

)
/
(
b
a

)] [
1 + log

(
b
a

)]
.

We will make use of the following dual fact.

Fact 3.3. For every positive integers a ≤ b ≤ n, there exists a family G = {Gi}Li=1 of a-subsets of [n] that

downcovers the slice b where G is of size L = L(n, a, b) ≤
[(

n
n−b
)
/
(
n−a
n−b
)] [

1 + log
(
n−a
n−b
)]
.

Moreover, for some constant C > 1, a random family G of a-subsets of n of size at least L̄(n, a, b) =[(
n
a

)
/
(
b
a

)]
· n downcovers the slice b except with probability C−n.

The reader should note that
[(
n
a

)
/
(
b
a

)]
=
[(

n
n−b
)
/
(
n−a
n−b
)]

.

Proof. Whenever a collection {Gi}Li=1 upcovers the slice a, the collection of complement sets
{
Ḡi
}L
i=1

downcovers the slice n− a. Fact 3.2 therefore implies the first part.
For the “Moreover” part. Sample G by sampling each Gi uniformly at random among all a-subsets of

[n]. Fix some b-subset B ⊆ [n]. For every i ∈ [L], the probability that Gi ⊆ B is p =
(
b
a

)
/
(
n
a

)
, and

therefore
Pr[∀i, Gi * B] ≤ (1− p)L = (1− p)n/p < e−n,

where the equality follows by noting that L̄(n, a, b) ·p = n. Therefore, by a union bound over all sets of size
b, the probability that there is some b-set that does not contain anyGi is at most

(
n
b

)
·e−n < 2n ·e−n = 1/Cn

for C = e/2.

4 General secret-sharing for downslices

Recall that D(β) and D`(β) denote the secret-sharing exponent and LSS exponent of (βn, n)-downslices.
The classical CNF-based scheme [26] that enumerates over all of the max-terms of size βn, yields an LSS
exponent of H2(β). One can also get an exponent of 0.637 via the general-purpose secret-sharing scheme
of [2]. In this section, we improve these results and show that D(β) ≤ log(3/2) for any β.

Theorem 4.1. Every n-party downslice access structure can be realized with complexity of 2log(3/2)n+o(n).
Additionally, for LSS, D`(β) ≤ 1

2 + β
2 and, for β > 0.5, it holds that D`(β) ≤ H2(β)− 1

2(1− β).

The linear exponent will be improved in the next section. Before proving Theorem 2.1, we will need the
following simple observation whose proof is deferred to Appendix C.1.

Observation 4.2. Let f be an access structures over n parties, and assume that Fi, the i-downslice of f ,
can be realized (resp., linearly realized) with total share size of Si for every i ∈ [0, n]. Then, f can be
realized (resp., linearly realized) with share size of

∑n
i=0 Si ≤ nmaxi Si.

7

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Fix some access structure f over n parties and let Fb denote the (b, n)-downslice of
f . By Theorem 4.1 the access structure Fb can be realized with total share size Sb of at most 2log(3

2)n+o(n),
and so by Observation 4.2, f can be realized with complexity of maxb(Sb) · n ≤ 2log(3

2)n+o(n).

The proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3 (low-density downslices). Secret sharing for (b, n)-downslices can be realized (resp., linearly
realized) with share size of 2b+o(n) (resp., 2b/2+n/2+o(n)). Consequently, for any constant β ∈ [0, 1], it holds
that

D(β) ≤ β and D`(β) ≤ 1

2
+
β

2
.

The proof of Lemma 4.3 appears in Section 4.1 and it is based on a scheme for multislices that will be
employed also in the next sections. Lemma 4.3 presents an improvement over previously known schemes
for (b, n)-downslices in the regime b ∈ [0, 0.637n], i.e., as long as the level b is smaller than the exponent
of [2]. Higher levels, for which Lemma 4.3 provides no improvement, are treated by the following lemma.

Lemma 4.4 (high-density downslices). For every integers n and b ∈ (0.5n, n], every (b, n)-downslice can
be realized with share size of [(

n

n− b

)
/

(
2n− 2b

n− b

)]
· 2n−b+o(n),

and can be realized by a linear scheme with share size[(
n

n− b

)
/

(
2n− 2b

n− b

)]
· 2(3n−3b)/2+o(n).

Consequently, for every constant β ∈ (0.5, 1], it holds that

D(β) ≤ H2(β)− (1− β) and D`(β) ≤ H2(β)− 1

2
(1− β).

We note that the maximal value of D(β) is log
(

3
2

)
and it is obtained when β = 2/3. Therefore, a com-

bination of Lemma 4.3 and Lemma 4.4 yield Theorem 4.1. The proof Lemma 4.4 is deferred to Section 4.2
and is based on a general cover-reduction that will be also useful for the next sections.

The exponents of the above lemmas together with the CNF-based exponent and the exponent of [2] are
depicted in Figure 2.

4.1 Low-density downslices via multislices

Secret sharing schemes for (a : b, n) multislice access structures were considered in [28, 1, 2], for the special
cases of “mid-slices” where a =

(
1
2 − δ

)
n, b =

(
1
2 + δ

)
n for some constant δ ∈ [0, 0.5]. It is possible to

generalize the scheme of [2] that was originally designed to handle mid-slices to handle any pair a < b ∈ [n]
as follows. Recall that, for every constants 0 ≤ α < β ≤ 1, we let M(α : β) (resp., M`(α : β)) denote the
exponent (resp., LSS exponent) of (αn : βn, n)-multislice access structures.

8

Figure 2: A description of the exponents of four general schemes for (βn, n)-downslices. The horizontal
axis represents the density β of the slice, and the vertical axis represents the resulting exponents. The solid
red curve corresponds to the exponent of the CNF-based scheme. The constant exponent of the general
access structures scheme of [2] appears as the dashed blue line. The dotted green straight line represents the
exponent that is achieved by the scheme of Lemma 4.3, and the dotted green curve which starts at x = 0.5
represents the scheme for downslices of Lemma 4.4.

Lemma 4.5 (multislice lemma). For every a < b ∈ [n], every (a : b, n)-multislice access structure can
be realized by a secret-sharing scheme with share size

(
b
≥a
)
· 2o(n) and by a linear scheme with share

size
√(

b
≥a
)
· 2n/2+o(n). Consequently, for every constants 0 ≤ α < β ≤ 1, the exponent M(α : β) of

(αn : βn, n)-multislice access structures satisfies

M(α : β) ≤

{
βH2

(
α
β

)
if α > β/2

β if α ≤ β/2
,

and, for the linear case, the exponent M`(α : β) satisfies

M`(α : β) ≤

{
1
2 + β

2 ·H2

(
α
β

)
if α > β/2

1
2 + β

2 if α ≤ β/2
.

The proof follows the exact steps of the proof of Lemma 5.10 from [2] except that we use a more
general setting of parameters. See Appendix B for details. By using multislices to implement downslices,
we derive Lemma 4.3.

Proof of Lemma 4.3. Let F be a (b, n)-downslice and let F ′ be the (0 : b, n)-multislice of F . Observe that
F equals F ′, and so by Lemma 4.5 it can be implemented with the desired share sizes since

(
b
≥0

)
= 2b.

9

4.2 Reducing high-density downslices to low downslices

In order to prove Lemma 4.4 we reduce the problem of realizing (b, n)-downslices for b > 0.5n to the
problem of realizing (b′, n′)-downslices over a smaller set of parties n′ < n and for density b′ = n′/2. This
is, in fact, a special case of the following more general reduction that will be also applied in its full power
later in Section 5.

Lemma 4.6 (cover reduction lemma). Let v < b ≤ n be positive integers. If (b− v, n− v)-downslices can
be realized (resp., linearly realized) with share size z(b − v, n − v) then (b, n)-downslices can be realized
(resp., linearly realized) with share size of[(

n

n− b

)
/

(
n− v
n− b

)][
1 + log

(
n− v
n− b

)]
· z(b− v, n− v) (2)

Consequently, for every constants 0 < α ≤ β < 1, if (αm,m)-downslices can be realized (resp., linearly
realized) with exponent of z′(α) then (βn, n)-downslices can be realized with an exponent of

H2(β)− (1− β)

(
H2(α)− z′(α)

1− α

)
. (3)

The proof of Lemma 4.6 is deferred to Section 4.3.

Remark 4.7 (Generalizations of Lemma 4.6 and completeness of downslices). The proof of Lemma 4.6
relies on downcovers. One can use upcovers to prove a similar lemma that reduces low-density downslices
to high-density downslices. Moreover, both, Lemma 4.6 and its low-to-high variant, can be also proved for
the dual setting of upslices. So overall, Lemma 4.6 represents four possible transformations. (The other three
will not be used in this work.) By combining these reductions with the completeness of downslices/upslices
(Observation 4.2), we conclude that it is possible to reduce a general access structures to downslices or
upslices of specific density.

We are now ready to realize high-density downslices.

Proof of Lemma 4.4. Let f be a (b, n)-downslice with b ∈ (0.5n, n]. Let v = 2b − n, and observe that
v ∈ (0, b] since b ∈ (0.5n, n]. We use the cover reduction lemma (Lemma 4.6) to realize f based on secret-
sharing scheme for downslices with parameters (b−v, n−v) = (n−b, 2n−2b).6 The latter can be realized
(non-linearly) with share size of 2n−b+o(n) by Lemma 4.3. Overall, Lemma 4.6 yields a (non-linear) scheme
for f with total share size of[(

n

n− b

)
/

(
2n− 2b

n− b

)][
1 + log

(
2n− 2b

n− b

)]
· 2n−b+o(n)

which equals
[(

n
n−b
)
/
(

2n−2b
n−b

)]
· 2n−b+o(n). In the linear case, we realize (n− b, 2(n− b))-downslices using

the linear secret-sharing scheme promised by Lemma 4.3. This results in the desired share size:[(
n

n− b

)
/

(
2n− 2b

n− b

)][
1 + log

(
2n− 2b

n− b

)]
· 2(3n−3b)/2+o(n)

which equals
[(

n
n−b
)
/
(

2n−2b
n−b

)]
· 2(3n−3b)/2+o(n). If we plug in b = βn for a constant β ∈ (0.5, 1] and make

use of (1), the general and linear share sizes translate to 2(H2(β)−2(1−β)+(1−β))n+o(n) and 2(H2(β)−2(1−β)+ 3
2

(1−β))n+o(n),
leading to the desired exponents.

6This choice of v can be shown to be optimal for both for the general and linear case.

10

4.3 Proof of the cover reduction

The proof of Lemma 4.6 is based on the following construction.

Construction 4.8. Let F be a (b, n)-downslice. We share the secret s according to F as follows:

1. Pick a family G = {Gi}Li=1 of sets of size v that downcovers the slice b.

2. For every Gi ∈ G define the access structure Fi over the participant’s set [n] \Gi as follows:

Fi(x
′) = F (x′ ∪Gi)

where x′ is viewed as a subset of [n] \Gi.

3. Split the secret s with an (L-out-of-L) LSS scheme to random shares s1, . . . , sL ∈ {0, 1} such that
s1 ⊕ · · · ⊕ sL = s. For every 1 ≤ i ≤ L share si according to the access structure Fi.

Claim 4.9. Construction 4.8 realizes the access structure F .

Proof. It suffices to show that F =
∧
i Fi. Assume that x is authorized under F , we will show that it is also

authorized by Fi for every i. Fix i and let x′ = x ∩ Ḡi, we claim that x′ is authorized under Fi. Indeed, by
definition, Fi(x′) = F (x′ ∪Gi) which is 1 since x′ ∪Gi contains x and is therefore authorized under F .

Next, assume that x is unauthorized under F . Since F is a (b, n)-downslice, x must be a subset of some
unauthorized set B of size b, and by the down-covering property there exists an index i ∈ [L] such that Gi
is a subset of the same set B. Again letting x′ = x ∩ Ḡi, we then get that x′ ∪ Gi ⊆ B, and therefore
Fi(x

′) = F (x′ ∪Gi) = 0. The claim follows.

Claim 4.10. For every 1 ≤ i ≤ L, Fi is a (b− v, n− v)-downslice access structure.

Proof. Fix a maximal unauthorized set x′ ⊂ [n] \Gi of Fi. We show that x′ contains exactly b− v parties.
For this, it suffices to show that x = x′ ∪ Gi is a maximal unauthorized set of F . By definition, x′ ∪ Gi is
unauthorized under F . Moreover, every strict super-set y of x′ ∪Gi must be F -authorized. Otherwise, if y
is F -unauthorized then the set y′ = y ∩ Ḡi must be also Fi-unauthorized and since y′ is a strict-super set of
x′, this contradicts the fact that x′ is max-unauthorized under Fi. Finally, since any max-term of F is of size
b, the max-terms of Fi is of size b− v.

Share size analysis: Due to Fact 3.3 we can pick a family G for step 1 of the scheme of size

L =

[(
n

n− b

)
/

(
n− v
n− b

)][
1 + log

(
n− v
n− b

)]
,

and for every set in G we use a secret sharing scheme with share size z(b − v, n − v), which results in the
desired share size. This completes the proof of the first part of Lemma 4.6.

The “Consequently” part follows immediately by plugging-in b = dβne, v = dβ−α1−αne, and noting that
αn = b−v

n−v converges to α when n goes to infinity. Observe that the exponent of (αn(n − v), (n − v))-
downslices is the same as the exponent, z′(α), of α-downslice.7 Now, by applying (1) and noting that
βn = b/n = dβne/n converges to β when n grows, we derive an exponent of

H2(β)− 1− β
1− α

H2(1− α) + z′(α) · 1− β
1− α

,

which equals the expression in (3), as required.
7More generally, whenever |g(n)−g′(n)| = o(n), the exponent of (g(n), n)-downslices is equal to the exponent of (g′(n), n)-

downslices. To see this, observe that (g(n), n)-downslices can be written as a sub-exponential formula over (g′(n), n)-downslices.

11

5 Linear secret sharing for downslices

In this section we present a LSS for general access structures with an exponent of 0.7576 (Theorem 2.2). As
in Section 4, this is done by showing that downslices can be linearly realized with this exponent.

Theorem 5.1. Every n-party downslice access structure can be linearly realized with complexity of 20.7576n+o(n).

The proof of Theorem 5.1 is based on a bootstrapping procedure which strongly exploits the duality
properties of LSS.

Section Organization In Section 5.1 we describe a property of linear schemes for dual access structures.
In Section 5.2 we reduce downslices to upslices and vice versa. In Section 5.3 we iteratively employ these
reductions together with tools from the previous section, to obtain a LSS for downslices with lower expo-
nents than before. Lastly in Section 5.4 we prove Theorem 2.2. Some additional optimizations for low
downslices (that do not affect Theorem 5.1) appear in Appendix C.3.

5.1 Exploiting duality

Definition 5.2 (Dual Access structures). The dual access structure of an n-party access structure f is an
n-party access structure, denoted by DUAL(f), that consists of all sets x whose complements x̄ are unau-
thorized under f . Viewing f as a function, this means that for every input x

DUAL(f)(x) = 1− f(x̄).

Consequently, the complement of every min-term of f is a max-term of the dual DUAL(f), and the comple-
ment of every max-term of f is a min-term of DUAL(f).

We make the following observation.

Fact 5.3 (Duals of slice access structures). Let f be an access structure. Then:

1. If f is an (a, n)-slice then its dual is an ((n− a), n)-slice.

2. If f is an (a, n)-upslice then its dual is a ((n− a), n)-downslice, and vice versa.

3. If f is an (a : b, n)-multislice then its dual is an (n− b : n− a, n)-multislice.

It is known that for linear schemes the total share size of an access structure is equal to the total share
size of its dual.

Fact 5.4 ([22]). A linear secret sharing scheme for an access structure f can be converted into a linear
scheme for the dual access structure DUAL(f) with the same total share size.

By Fact 5.4, Fact 5.3, Lemma 4.3, and Lemma 4.4, we get the following corollary.

Corollary 5.5 (Duality reduction). For every integers a ≤ n, the LSS complexity of the family of (a, n)-
downslices equals to the LSS complexity of the family (n− a, n)-upslices.

By Lemma 4.4 and Lemma 4.3, for any constant 0 < α < 1, the family of (αn, n)-upslices can be
linearly realized with an exponent of

U`(α) ≤

{
H2(α)− 1

2(α) if α < 1
2

1
2 + 1−α

2 if α ≥ 1
2

.

12

5.2 High-density downslices from low-density upslices and mid-range multislices

In the following lemma we improve the exponent of a (c, n)-downslice f by decomposing it into two access
structures: one that has the same min-terms as f up to a specific size u (which will be realized using low-
density upslices), and one that is simply the (u : c, n) multislice of f .

Lemma 5.6 (Reducing downslices to upslices). Let u ≤ c < n be integers. Given a LSS that realizes (a, n)-
upslices with an exponent of U′`(a, n) and a LSS that realizes the (u : c, n)-multislices with an exponent of
M′`(u : c, n), there exists a LSS that realizes (a, n)-downslices with an exponent of

D`(c, n) ≤ min
u

[
max

(
max
i≤u

{
U′`(i, n)

}
,M′`(u : c, n)

)]
+ o(1),

where o(1) stands for a quantity that tends to zero as n increases, regardless of the values of u and c.

Proof. It suffices to show that for every u ≤ c any downward-induced (c, n) access structure f can be
realized with an exponent of

max

(
max
i≤u

{
U′`(i, n)

}
,M′`(u : c, n)

)
+ o(1). (4)

Fix some u ∈ [0, c]. Define fu,c to be the (u : c, n)-multislice of f , and fup
0,u as the disjunction of the first

u upslices of f . More formally, fup
0,u :=

u∨
i=0

fi where fi is the i-upslice of f . Clearly, fup
0,u can be linearly

realized with an exponent of maxi≤u {U′`(i, n)}+O(n−1 log n) (just duplicate the secret u times and deal
the i-th copy via the access structure fi). Consequently, the access structure fup

0,u ∨ fu,c can be linearly
realized with an exponent of (4). We complete the proof by showing that f = fup

0,u ∨ fu,c.
For inputs x such that |x| ≤ u, f(x) = fup

0,u(x) and fu,c(x) = 0. For inputs x such that u < |x| ≤ c, it
holds that (1) f(x) = fu,c(x), and (2) fup

0,u ≤ f since the min-terms of fup
0,u are a subset of those of f . We

therefore conclude that for such inputs f(x) = fup
0,u(x) ∨ fu,c(x). Finally, for inputs x with |x| > c, both

f(x) and fu,c(x) take the value 1, and so equality holds in this case as well.

5.3 Bootstrapping (c, n)-downslices

In this section we construct an LSS for (c, n)-downslices via an iterative process. In each iteration, we will
start with an LSS for (c, n)-downslices and end-up with a new LSS for (c, n)-downslices whose exponent is
at least as good as the one achieved in the previous iteration. Each iteration i is composed of three steps: (1)
We generate LSS for all downslices of density larger than c; (2) We generate LSS for all upslices of density
smaller than n − c; (3) We use the current schemes for (u, n)-upslices for u < ui for some parameter ui
to obtain a new LSS for (c, n)-downslices. Note that the target slice c is kept fixed across iterations. The
structure of a single iteration that consists of the three reductions is depicted below. The process is formally
defined in Construction 5.7.

Construction 5.7 (Bootstrapping downslices). Given integer n, a target slice c < n, and time-bound t ∈ N,
initialize an LSS for (c, n)-downslice based on Theorem 4.1 and set D`(c, n)[0] to be its exponent, and
repeat the following steps for i ∈ [t] iterations:

1. For every d ∈ (c, n], apply the cover reduction (Lemma 4.6) and transform the current LSS for (c, n)-
downslices to an LSS for (d, n)-downslices with exponent

D`(d, n)[i+ 1] = H2(d/n)− (1− d/n)

(
H2(c/n)−D`(c, n)[i]

1− c/n

)
+ o(1). (5)

13

Three reductions of Construction 5.7

1. The cover reduction (Lemma 4.6): Transform
a scheme for (c, n)-downslices with to a scheme for
downslices with higher density.

2. Duality reduction: Transform high downslices to
low upslices (Corollary 5.5): Transform a scheme for
downslices of high density in (c, n] to a scheme for up-
slices with low density in [0, n− c).

3. Reducing high downslices to low upslices
(Lemma 5.6): For an integer u ≤ c, transform a scheme
for upslices in the range [0, u] and a scheme for the (u :
c, n)-multislice to a scheme for the c-downslice.

Figure 3: We place all slices on an horizontal axis with an arrow which represents the direction of the
transformation.

2. For every d ∈ (c, n], apply the duality reduction (Corollary 5.5) and transform the LSS for (d, n)-
downslices to an LSS for (n− d, n)-upslices with an exponent of

U`(n− d, n)[i+ 1] = D`(d, n)[i+ 1]. (6)

3. Construct an LSS for (c, n)-downslices by applying Lemma 5.6 where (j, n)-upslices for every j <
n − c are instantiated with the LSS that were derived in the previous step. Accordingly, the new LSS
for (c, n)-downslices has an exponent of

D`(c, n)[i+ 1] = min
u≤c

[
max

(
max
j≤u

U`(j, n)[i+ 1],M0
` (u : c, n)

)]
+ o(1). (7)

where M0
` (a : b, n) denotes the linear exponent of (a : b, n)-multislice access structures that is

achieved in Lemma 4.5.

Now by Lemma 4.6, Corollary 5.5 and Lemma 5.6, for any parameter t, Construction 5.7 yields an LSS
for (c, n)-downslices. For a given γ ∈ [0, 1] and constant t, we can define a function Φt(γ) that captures the
asymptotic exponent that is achieved for (γn, n)-downslices after running Construction 5.7 for t iterations.
Formally,

Φ0(γ) :=

{
1
2 + 1

2γ if γ ≤ 1
2

H2(γ)− 1
2(1− γ) if γ > 1

2

is set to be the exponent derived from Theorem 4.1. Then by (5), (6) and (7)

Φi+1(γ) := min
υ∈[0,γ]

[
max

(
max
χ∈[0,υ]

(U′`(χ, γ),M′`(υ, γ)

)]
,

14

where

U′`(χ, γ) := H2(χ)− χ
(

H2(γ)− Φi(γ)

1− γ

)
,

and

M′`(υ, γ) :=

{
1
2 + 1

2γH2(υ/γ) if γ/2 < υ < γ
1
2 + 1

2γ if υ < γ/2
.

We therefore conclude that

Lemma 5.8. For every constant t ∈ N and constant γ ∈ [0, 1], and for all n’s, the LSS constructed by
invoking Construction 5.7 for t steps on (γn, n), has an exponent of Φt(γ) + ε(n) where ε(n) tends to zero
when n grows.

Lemma 5.8 suffices for proving Theorem 5.1 (see Section 5.4).

Remark 5.9. Assuming the duality hypothesis, the same bootstraping idea can be employed for general
(non-linear) schemes. However, it does not yield better general exponents than the ones shown in the
previous section for any downwslice .

5.4 Proof of Theorem 5.1

A natural approach for proving Theorem 5.1 would be to run the bootstrapping scheme for each possible
target c ∈ [n], and then glue together all the (c, n)-downslices. This approach fails since the exponents of
some slices will still be too high. Instead we will apply Construction 5.7 for only two concrete values of c
and use the cover reduction to handle downslices of higher densities. Downslices with low density will be
treated by Lemma 4.5. Details follow.

By applying Construction 5.7 with γ1 = 0.5 and γ2 = 0.535 for t = 7 times, we derive the following
claim from Lemma 5.8.

Claim 5.10. Set γ1 = 0.5 and γ2 = 0.535. The family of (γ1n, n)-downslices and the family of (γ2n, n)-
downslices can be linearly realized with exponents of z1 = 0.736 and z2 = 0.748.

Let f be a (d, n)-downslice. We distinguish between the following cases.

1. For d ∈ [0, 0.5n] linearly realize f by Lemma 4.3 with a maximal exponent of 0.75.

2. For d ∈ [0.5n, 0.535n] linearly realize f by applying the cover reduction (Lemma 4.6) instantiated
with the LSS for (0.5n, n)-downslices of Claim 5.10. This yields an exponent of

H2(d/n)− (1− d/n)
H2(γ1)− z1

1− γ1
< H2(d/n)− 0.528(1− d/n) (8)

which is upper-bounded by 0.751 for d ∈ [0.5n, 0.535n].

3. For d ∈ [0.535n, n] linearly realize f by applying the cover reduction (Lemma 4.6) instantiated with
the LSS for (0.535n, n)-downslices of Claim 5.10. This yields an exponent of

H2(d/n)− (1− d/n)
H2(γ2)− z2

1− γ2
< H2(d/n)− 0.534(1− d/n) + o(1) (9)

which is upper-bounded by 0.7576 for d ∈ [0.535n, n].

The proof of Theorem 5.1 follows.

Remark 5.11. A more careful analysis allows to obtain a better exponent for values of d ≤ 0.535n. We
sketch this result in Appendix C.3.

15

6 Random upslices

Recall that, for a vector of non-negative integers k = (k1, . . . , kn), the k-DNF distribution is defined by
selecting, for each parameter a, ka clauses uniformly at random from the set of all possible

(
n
a

)
monotone

a-clauses. (We allow repetitions though this choice does not change the results.) When k = (0a−1ka0
n−a)

is supported on a single level a, we refer to this distribution as a random (a, ka, n)-upslice. Observe that this
special case is complete in the following sense.

Observation 6.1. For every k = (k1, . . . , kn) the following holds. If, for every a ∈ [n], a random (a, ka, n)-
upslice can be realized (resp., linearly realized) with total share size of at most Sa except with probability
ε, then, a random k = (k1, . . . , kn) can be realized (resp., linearly realized) with an complexity of at most∑
Sa except with probability nε.

Proof. A random k-DNF f can be written as f =
∨
a fa where each fa is a random (a, ka, n)-upslice.

Hence, we can share f by duplicating the secret n times and sharing the ath copy according to fa. The
claim follows by applying union-bound.

We can therefore reduce Theorem 2.3 to the following refined statements (Theorem 6.2 and Theo-
rem 6.3) about random (a, ka, n)-upslices. Specifically, we prove the following theorem in Section 6.1.

Theorem 6.2 (random upslices). Let a ∈ [n], k ≤
(
n
a

)
and let f be a randomly chosen (a, ka, n)-upslice.

Then, with probability 1− 2−Ω(n),

SSize(f) ≤

√(

n
α∗n

)
· 2o(n) if a ∈ [0, α∗n]√(

n
a

)
· 2o(n) if a ∈ [α∗n, n]

,

where α∗ ∼ 0.157 is the root of 0.25 H2(α) − α. Moreover, under the duality hypothesis, with probability
1− 2−Ω(n), the function f can be realized with an exponent of at most 1

2 H2(λ) ∼ 0.491, where λ is the root
of 1

2 H2(λ)− (1− λ) H2(λ
1−λ).

The first part of the theorem (without the duality hypothesis), shows that, for every density α ∈ [0, 1], a
random (αn, n)-upslice can be realized, whp, with an exponent of 0.5. Thus, by Observation 6.1, the non-
linear part of Theorem 2.3 follows. We further mention that we did not attempt to optimize the exponent for
a ≤ α∗n, and indeed a better exponent can be achieved in this case.

Moving on to the second (“Moreover”) part of the theorem, recall that the duality hypothesis asserts that
for every f = {fn}, it holds that SSize(f) ≤ SSize(DUAL(f)) · 2o(n)8 and note that this part implies the
gap Theorem (Theorem 2.4), based on Observation 6.1 and the outline given in Section 2.

We move on to handle the linear case.

Theorem 6.3 (LSS for random upslices). Let a ∈ [n], k ≤
(
n
a

)
and let f be a randomly chosen (a, ka, n)-

upslice. Then, with probability 1− 2−Ω(n), it holds that

LSSize(f) ≤
(
n

a

)1/3

· 2
n
3

+o(n).

Moreover, with probability 1− 2−Ω(n), f can be realized with an exponent of at most 0.6651 < 2/3, where
0.6651 = H2(λ)− (1− λ) H2(λ

1−λ) for the λ which is the root of H2(λ)− 3
2(1− λ) H2(λ

1−λ)− 1
2 .

Together with Observation 6.1, Theorem 6.3 implies the non-linear part of Theorem 2.3. The proof
of Theorem 6.3 appears in Section 6.2.

8In fact, a weaker hypothesis suffices that applies duality only to the family of (a : b, n)-multislices; See Lemma 6.4.

16

6.1 Proof of Theorem 6.2

Given a random (a, ka, n)-upslice f we realize f via one of the following two schemes depending on ka.
Let t be some threshold parameter that will be chosen later.

1. If ka ≤ t realize f via a DNF scheme with complexity of ka.

2. If ka > t, set b to be the smallest integer solution of the inequality

t ≥
[(
n

a

)
/

(
b

a

)]
· n. (10)

If the min-terms of f downcover the slice b (that is, f(x) = 1 for every x of weight at least b) realize
f via the (a : b, n)-multislice of f with the general scheme for multislices promised by Lemma 4.5.
Otherwise, realize f via DNF and call this event “failure”.

We analyze the complexity of the construction. We set t to
√(

n
a

)
. For ka ≤ t we rely on the first scheme

and get complexity of at most t =
√(

n
a

)
, as required. We move on to the case where ka ≥ t. By Fact 3.3,

the probability of “failure” is 2−Ω(n) and so by Lemma 4.5, the complexity in this case is
(
b
≥a
)
· 2o(n). We

will show that (
b

≥ a

)
≤

√(

n
α∗n

)
· 2o(n) if a ∈ [0, α∗n]√(

n
a

)
· 2o(n) if a ∈ [α∗n, n]

, (11)

Let us start with the case of a ≥ α∗n. We claim that(
b

≥ a

)
≤
(
b

a

)
· 2o(n) ≤

?

√(
n

a

)
· 2o(n). (12)

Indeed, by plugging t =
√(

n
a

)
into (10) and rearranging the terms, we get that b is the smallest integer

that satisfies
(
b
a

)
≥ n ·

√(
n
a

)
. Therefore, (?) holds. To establish the first inequality, it suffices to show that

a+ o(n) ≥ b/2, or, equivalently, that
(

2a
a

)
· 2o(n) ≥

(
b
a

)
. By (?) it suffices to show that

(
2a
a

)
· 2o(n) ≥

√(
n
a

)
.

Taking logarithms from both sides, the inequality holds whenever 2a + o(n) > 0.5 H2(a/n)n which is
indeed the case for any a > α∗n.

Next we deal with the case where a < α∗n. By (10), in this regime, b grows monotonically with a and
so in this case it holds that b < 2α∗. Therefore(

b

≥ a

)
≤
(

2α∗n

≥ a

)
≤
(

2α∗n

α∗n

)
· 2o(n) ≤

√(
n

α∗n

)
· 2o(n),

where the last inequality follows from the previous case. This completes the proof of the first part of Theo-
rem 6.2 (without the “Moreover” part.)

Proving the “Moreover” part under the duality hypothesis. Now we assume the duality hypothesis and
derive the last part of the proof. We will need the following lemma that is implied by the duality conjecture
and the multislice lemma (Lemma 4.5).

17

Lemma 6.4. Assuming the duality hypothesis, if (a : b, n)-multislices can be realized with share size of
S, then the dual (n − b : n − a, n)-multislices can be realized with share size of S · 2o(n). Specifically,
(a : b, n)-multislice can be realized with share size of

(
n−a
≥n−b

)
· 2o(n).

It can be verified that the above lemma outperforms the original (a : b, n)-multislice construction
(Lemma 4.5) whenever b > n− a.

Getting back to the proof of Theorem 6.2, we will now realize random (a, n)-upslices with the same
scheme but with different parameters and ingredients. We will analyze this scheme for a ∈ [0, α∗∗n], where
α∗∗ ∼ 0.686 is the solution of the equation

H2(α) + (1− α∗) H2

(
α

1− α∗

)
− 1

2
H2(α∗) = 0

and α∗ ∼ 0.157 is defined as before to be the root of 0.25 H2(α) − α. For a random (a, n)-upslice f , we
will run the previous scheme with the following changes. In step (2) we will set b to be the smallest integer
solution of the inequality√(

n

n− b

)
≥
[(
n

a

)
/

(
b

a

)]
· n =

[(
n

n− b

)
/

(
n− a
n− b

)]
· n. (13)

If in step (2) the min-terms of f downcover the slice b, we realize the (a : b, n)-multislice of f by the
new construction (Lemma 6.4) with share size

(
n−a
≥n−b

)
· 2o(n). If the min-terms do not downcover the slice

b, the process fails (and we use DNF-based secret sharing). In addition, we set the threshold t to
√(

n
b

)
.

Claim 6.5. Under the duality hypothesis, for any a ∈ [0, α∗∗n] and any k, the above scheme realizes a

randomly chosen (a, k, n)-upslice with total share size of
√(

n
n−b
)
· 2o(n) except with probability 2−Ω(n).

Proof. First observe that, by Fact 3.3, the scheme fail with probability at most 2−Ω(n). Conditioned on not

failing, the share size is max(
(
n−a
≥n−b

)
, t) and since t =

√(
n
b

)
=
√(

n
n−b
)

it suffices to prove the following
inequalities (

n− a
≥ n− b

)
≤
(
n− a
n− b

)
· 2o(n) ≤

??

√(
n

n− b

)
· 2o(n).

Indeed, since b is the minimal integer that satisfies (13), we conclude that (??) holds. The first inequality
can be established by showing that n− b+o(n) ≥ (n−a)/2, or, equivalently, that

(2(n−b)
n−b

)
·2o(n) ≥

(
n−a
n−b
)
.

By (??) it suffices to show that
(2(n−b)
n−b

)
· 2o(n) ≥

√(
n
n−b
)
. Taking logarithms from both sides and dividing

by n, we get that the inequality holds whenever 2(1 − b/n) + o(1) ≥ 0.5 H2(b/n) which holds whenever
b/n ≤ 1 − α∗ + o(1). We conclude the argument by showing that b/n ≤ 1 − α∗ + o(1). Since b is
monotonically increasing with a (by (13)) and since a ≤ α∗∗n, we may focus on the case where a = α∗∗n.
Let β = b/n. Taking logarithms from both sides of (13) and dividing by n, we can write 1

2 H2(β) =
H2(α∗∗) − βH2(α∗∗/β) + o(1), which, by the definition of α∗∗, guarantees that β ≤ 1 − α∗ + o(1), as
required. This completes the proof of Claim 6.5.

18

Combining the two schemes together. Overall we now can realize random (a, n) upslices where a ∈
[α∗n, α∗∗n] with share size

min

(√(
n

a

)
· 2o(n),

√(
n

n− b

)
· 2o(n)

)
(14)

where b = b(a, n) is the minimal integer that satisfies (13). Denote by a0 the value for which the two
expressions in (14) are equal, i.e., b(a0, n) = n − a0. We will later calculate a0 and show that it is about
0.421n. For now let us record the fact that a0 < n/2 and that, consequently, for any a > a0 it holds
that b(a, n) > b(a0, n) = n − a0 > n/2 (since b(a, n) monotonically increases with a). Next, observe

that, the bound (14) on the complexity for an (a, n) upslice simplifies to
√(

n
a

)
· 2o(n) when a ≤ a0 and

to
√(

n
n−b
)
· 2o(n) when a > a0. Furthermore, the first expression monotonically increases with a for

a < a0 < n/2, and the second expression monotonically decreases with a for a > a0 (since b(a, n) > n/2
and since b(a, n) increases with a). Hence, the upslice with the maximal share size in the given range will
be the (a0, n)-upslice. We move on to calculate a0. Let a = αn and b = βn, by plugging (13) into the
equation b(a, n) = n− a, we conclude that α0 = a0/n is the solution to the equation

1

2
H2(1− α) = H2(1− α)− (1− α) H2

(
α

1− α

)
,

and therefore α0 ∼ 0.421. Therefore (14) is upper-bounded by
√(

n
a0

)
· 2o(n) ≤ 20.5 H2(α0)n+o(n). We

conclude that random (a, n)-upslices can be realized with an exponent of 0.5 H2(α0) ≤ 0.491 whenever
a ∈ [α∗n, α∗∗n]. We complete the proof by noting that all random upslices below α∗n and above α∗∗n can
also be realized with exponents below 0.491 due to the first scheme.

6.2 Proof of Theorem 6.3

We begin by proving the first part of Theorem 6.3 (without the moreover part). The construction is identical
to the first construction presented in Section 6.1, except that the threshold t is selected differently to be(
n
a

)1/3 · 2n/3. Again for ka ≤ t we rely on the first scheme and get complexity of at most t =
(
n
a

)1/3 · 2n/3,
as required. For ka ≥ t, by Fact 3.3 failure happens with 2−Ω(n) probability, and, by Lemma 4.5, conditioned

on not failing, the share complexity is at most 2n/2+o(n) ·
√(

b
≥a
)
. To complete the first part of the proof, it

suffices to show that the latter quantity is at most
(
n
a

)1/3 · 2n3 +o(n). This follows from the following claim(
b

≥ a

)
≤
(
b

a

)
· 2o(n) ≤

?

(
n

a

)2/3

· 2−n/3+o(n).

Indeed, by plugging t =
(
n
a

)1/3 · 2n/3 into (10) and rearranging the terms, we get that b is the smallest

integer that satisfies
(
b
a

)
≥ n ·

(
n
a

)2/3 · 2−n/3. Therefore, (?) holds. To establish the first inequality, it
suffices to show that a + o(n) ≥ b/2, or, equivalently, that

(
2a
a

)
· 2o(n) ≥

(
b
a

)
. By (?) it suffices to

show that
(

2a
a

)
· 2o(n) ≥

(
n
a

)2/3 · 2−n/3. Taking logarithms from both sides, the inequality holds whenever
2a + o(n) > (2

3 H2(a/n) − 1/3)n which is indeed the case for every a ∈ [n]. This completes the proof of
the first part of the theorem (without the moreover part).

To prove the “Moreover” part, we make use of the following lemma which is implied by the multislice
construction (Lemma 4.5) and the duality closure of linear schemes (Fact 5.4):

19

Lemma 6.6 (LSS for multislices). Let a, b ∈ [0, n] be integers, then the family of (a : b, n)-multislices can

be linearly realized with share size
√(

n−a
≥n−b

)
· 2n/2+o(n).

It can be verified that the above lemma outperforms the original linear (a : b, n)-multislice construction
(Lemma 4.5) whenever b > n− a.

This time for a random (a, n)-upslice f , we will run the previous linear scheme with the following
changes. In step (2), we will set b to be the smallest integer solution of the inequality(

n

b

)1/3

· 2n/3 ≥
[(
n

a

)
/

(
b

a

)]
· n =

[(
n

n− b

)
/

(
n− a
n− b

)]
· n. (15)

In addition, we set the threshold t to
(
n
b

)1/3 · 2n/3.

Claim 6.7. For any a ∈ [n] and any k, the above scheme realizes a randomly chosen (a, k, n)-upslice with
total share size of

(
n
n−b
)1/3 · 2n/3.

Proof. First observe that by Fact 3.3 we fail with probability at most 2−Ω(n). Conditioned on not failing,
the share size is max(

√(
n−a
≥n−b

)
· 2n/2+o(n), t) and since t =

(
n
b

)1/3 · 2n/3 =
(
n
n−b
)1/3 · 2n/3 it suffices to

show that √(
n− a
≥ n− b

)
· 2n/2+o(n) ≤

(
n

n− b

)1/3

· 2n/3 · 2o(n). (16)

We prove (16) by establishing the following inequalities(
n− a
≥ n− b

)
≤
(
n− a
n− b

)
· 2o(n) ≤

??

(
n

n− b

)2/3

· 2−n/3+o(n).

Indeed, since b is the minimal integer that satisfies (15), we conclude that (??) holds. The first inequality
can be established by showing that n− b+o(n) ≥ (n−a)/2, or, equivalently, that

(2(n−b)
n−b

)
·2o(n) ≥

(
n−a
n−b
)
.

By (??) it suffices to show that
(2(n−b)
n−b

)
· 2o(n) ≥

(
n
n−b
)2/3 · 2−n/3. Taking logarithms from both sides and

dividing by n, we get that the inequality holds whenever 2(1− b/n) + o(1) ≥ (2
3 H2(b/n)− 1/3) which is

indeed the case for every b ∈ [n]. This completes the proof of Claim 6.7.

Combining the two schemes together. Overall we now can linearly realize random (a, n) upslices with
share size of

min

((
n

a

)1/3

· 2n/3+o(n),

(
n

n− b

)1/3

· 2n/3+o(n)

)
(17)

where b = b(a, n) is the smallest integer that satisfies (15). Similarly to the analysis in the proof for the
general (non-linear) case, denote by a0 the value for which the two expressions in (17) are equal, i.e.,
b(a0, n) = n − a0. We will later calculate a0 and show that it is about 0.4595n. For now let us record the
fact that a0 < n/2 and that, consequently, for any a > a0 it holds that b(a, n) > b(a0, n) = n− a0 > n/2
(since b(a, n) monotonically increases with a). Getting back to (17) observe that the complexity for an
(a, n) upslice is

(
n
a

)1/3 · 2n/3+o(n) when a ≤ a0 and
(
n
n−b
)1/3 · 2n/3+o(n) when a > a0. Furthermore, the

first expression monotonically increases with a for a < a0 < n/2, and the second expression monotonically
decreases with a for a > a0 (since b(a, n) > n/2 and since b(a, n) increases with a). Hence, the upslice

20

with the maximal share size in the given range will be the (a0, n)-upslice. We move on to calculate a0. Let
a = αn and b = βn, by plugging (15) into the equation b(a, n) = n − a, we conclude that α0 = a0/n is
the solution to the equation

1

3
+

1

3
H2(1− α) = H2(1− α)− (1− α) H2

(
α

1− α

)
,

and therefore α0 ∼ 0.4595. It follows that (17) is upper-bounded by
(
n
a0

)1/3 · 2n/3+o(n) ≤ 2n
H2(α0)+1

3
+o(n).

We conclude that a random (a, n)-upslice can be linearly realized with an exponent of H2(α0)+1
3 ≤ 0.6651

for any a, and the “Moreover” part of Theorem 6.3 follows.

Acknowledgement

We thank Amos Beimel and Naty Peter for valuable discussions.

References

[1] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing schemes for
general and uniform access structures. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryp-
tology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume
11478 of Lecture Notes in Computer Science, pages 441–471. Springer, 2019.

[2] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust condi-
tional disclosure of secrets. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 280–293. ACM, 2020.

[3] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication overhead. In
A. J. Menezes and S. A. Vanstone, editors, CRYPTO ’90, volume 537 of LNCS, pages 62–76. Springer-
Verlag, 1990.

[4] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

[5] A. Beimel. Secret-sharing schemes: A survey. In Y. Meng Chee, Z. Guo, S. Ling, F. Shao, Y. Tang,
H. Wang, and C. Xing, editors, Coding and Cryptology – Third International Workshop, IWCC 2011,
volume 6639 of LNCS, pages 11–46. Springer-Verlag, 2011.

[6] A. Beimel and B. Chor. Universally ideal secret-sharing schemes. IEEE Trans. on Information Theory,
40(3):786–794, 1994.

[7] A. Beimel, A. Gabizon, Y. Ishai, and E. Kushilevitz. Distribution design. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 81–92. ACM, 2016.

[8] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access struc-
tures and graphs. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th
International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part
III, volume 12552 of Lecture Notes in Computer Science, pages 499–529. Springer, 2020.

21

[9] Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear secret-sharing schemes for forbidden
graph access structures. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part
II, volume 10678 of Lecture Notes in Computer Science, pages 394–423. Springer, 2017.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-
tolerant distributed computations. In 20th STOC, pages 1–10. ACM, 1988.

[11] J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser,
editor, CRYPTO ’88, volume 403 of LNCS, pages 27–35. Springer-Verlag, 1988.

[12] M. Bertilsson and I. Ingemarsson. A construction of practical secret sharing schemes using linear
block codes. In J. Seberry and Y. Zheng, editors, AUSCRYPT ’92, volume 718 of LNCS, pages 67–79.
Springer-Verlag, 1992.

[13] G. R. Blakley. Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS National Computer
Conference, volume 48 of AFIPS Conference proceedings, pages 313–317. AFIPS Press, 1979.

[14] Carlo Blundo, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the information rate of secret
sharing schemes (extended abstract). In Advances in Cryptology - CRYPTO ’92, 12th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings,
pages 148–167, 1992.

[15] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In 20th STOC,
pages 11–19. ACM, 1988.

[16] B. Chor and E. Kushilevitz. Secret sharing over infinite domains. J. of Cryptology, 6(2):87–96, 1993.

[17] L. Csirmaz. The size of a share must be large. J. of Cryptology, 10(4):223–231, 1997.

[18] László Csirmaz. Secret sharing and duality. J. Math. Cryptol., 15(1):157–173, 2020.

[19] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In J. Feigenbaum,
editor, CRYPTO ’91, volume 576 of LNCS, pages 457–469. Springer-Verlag, 1991.

[20] Paul Erdos and John Spencer. Probabilistic Methods in Combinatorics. Academic Press, 1974.

[21] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In 26th STOC, pages
554–563. ACM, 1994.

[22] Anna Gal. Combinatorial methods in Boolean function complexity. PhD thesis, University of Chicago,
1996.

[23] M. Göös, T. Pitassi, and T. Watson. Zero-information protocols and unambiguity in arthur-merlin
communication. Algorithmica, 76(3):684–719, 2016.

[24] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In 13th CCS, pages 89–98. ACM, 2006.

[25] Y. Ishai and E. Kushilevitz. On the hardness of information-theoretic multiparty computation. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 439 – 455.
Springer-Verlag, 2004.

22

[26] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structure. In
Globecom 87, pages 99–102. IEEE, 1987. Journal version: Multiple assignment scheme for sharing
secret. J. of Cryptology 6(1), 15-20, (1993).

[27] M. Karchmer and A. Wigderson. On span programs. In 8th Structure in Complexity Theory, pages
102–111. IEEE Computer Society, 1993.

[28] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 699–708. ACM, 2018.

[29] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential barrier for
general secret sharing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume 10820 of
Lecture Notes in Computer Science, pages 567–596. Springer, 2018.

[30] M. Naor and A. Wool. Access control and signatures via quorum secret sharing. In 3rd CCS, pages
157–167. ACM, 1996.

[31] T. Pitassi and R. Robere. Strongly exponential lower bounds for monotone computation. In 49th
STOC, pages 1246–1255. ACM, 2017.

[32] T. Pitassi and R. Robere. Lifting nullstellensatz to monotone span programs over any field. In 50th
STOC, pages 1207–1219. ACM, 2018.

[33] R. Robere, T. Pitassi, B. Rossman, and S. A. Cook. Exponential lower bounds for monotone span
programs. In 57th FOCS, pages 406–415. IEEE Computer Society, 2016.

[34] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[35] B. Shankar, K. Srinathan, and C. Pandu Rangan. Alternative protocols for generalized oblivious trans-
fer. In S. Rao, M. Chatterjee, P. Jayanti, C. S. Ram Murthy, and S. K. Saha, editors, 9th ICDCN,
volume 4904 of LNCS, pages 304–309. Springer-Verlag, 2008.

[36] Hung-Min Sun and Shiuh-Pyng Shieh. Secret sharing in graph-based prohibited structures. In Pro-
ceedings IEEE INFOCOM ’97, The Conference on Computer Communications, Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies, Driving the Information Revolution,
Kobe, Japan, April 7-12, 1997, pages 718–724, 1997.

[37] T. Tassa. Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography,
58(1):11–21, 2011.

[38] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571
of LNCS, pages 53–70. Springer-Verlag, 2011.

23

A Omitted Preliminaries

A.1 Secret Sharing

We present the definition of secret-sharing schemes, similar to [6, 16]. For the privacy of these schemes, we
use the following notation: For two random variables X and Y , we say that X ≡ Y if they are identically
distributed.

Definition A.1 (Partial access structures). Let P = {P1, . . . , Pn} be a set of parties. A partial access
structure is a pair of collections Γ = (Γno,Γyes), where Γno,Γyes ⊆ 2P are non-empty collections of sets
such that B 6⊆ A for every A ∈ Γno, B ∈ Γyes.9 Sets in Γyes are called authorized, and sets in Γno are
called unauthorized. If Γno ∪ Γyes = 2P then Γ is called an access structure and will be denoted by the
collection of authorized sets Γyes. We represent a subset of parties A ⊆ P by its characteristic string xA =
(x1, . . . , xk) ∈ {0, 1}n, where for every j ∈ [n] it holds that xj = 1 if and only if Pj ∈ A. Accordingly,
an access structure Γ = (Γno,Γyes) will also be described by the monotone function F : {0, 1}n → {0, 1},
where F (xA) = 1 for every subset of parties A ∈ Γyes and F (xA) = 0 for every set A ∈ Γno. Similarly, a
partial access structure will be associated with a partial function from {0, 1}n to {0, 1}.

Definition A.2 (Secret-sharing schemes). A secret-sharing scheme, with domain of secrets S, domain of
random strings R, and finite domains of shares S1, . . . , Sn, is a deterministic function D : S × R → S1 ×
· · · × Sn. A dealer distributes a secret s ∈ S according to D by first sampling a random string r ∈ R with
uniform distribution, computing a vector of shares D(s, r) = (s1, . . . , sn), and privately communicating
each share si to party Pi. For a set A ⊆ P , we denote DA(s, r) as the restriction of D(s, r) to its A-entries
(i.e., the shares of the parties in A).

A secret-sharing scheme D realizes a partial access structure Γ = (Γno,Γyes) if the following two
requirements hold:

Perfect Correctness. The secret s can be reconstructed by any authorized set of parties. That is, for any set
B =

{
Pi1 , . . . , Pi|B|

}
∈ Γyes there exists a reconstruction function ReconB : Si1 × · · · × Si|B| → S

such that for every secret s ∈ S and every random string r ∈ R, it holds that ReconB (DB(s, r)) = s.

Perfect privacy. Any unauthorized set cannot learn anything about the secret from its shares. Formally,
for any set T =

{
Pi1 , . . . , Pi|T |

}
∈ Γno, every pair of secrets s, s′ ∈ S, it holds that DT (s, r) ≡

DT (s′, r), where r is sampled with uniform distribution from R.

The secret size in a secret-sharing scheme D is defined as log |S| and the share size of the scheme D
is defined as the largest share size, i.e., max1≤i≤n {log |Si|}.10 The scheme D is a linear secret-sharing
scheme over a finite field F if S = F, R = F` for some integer ` ≥ 1, the sets S1, . . . , Sn are vector spaces
over F, and the function D : F`+1 → S1 × · · · × Sn is a linear mapping over F. By default, linearity is
defined over the binary field F2.

The definition of secret-sharing scheme can be naturally extended to collections of n-party access struc-
tures F . In this case, D receives (a description of) an access structure f ∈ F as an auxiliary input, and Df
should realize f for every f ∈ F .

Next, we define threshold secret-sharing schemes, and provide some known result for such schemes.
9We do not require that 2P \ Γno and Γyes are equal or that they are monotone (this simplifies our presentation).

10The share size is sometimes defined to be the total share size, i.e.,
∑

1≤i≤n log |Si|. However, since the two differ by at most
a linear factor of n, the difference is not important in our context.

24

Definition A.3 (Threshold secret-sharing schemes). We say that an n-party secret-sharing scheme is a k-
out-of-n secret-sharing scheme if it realizes the access structure Γk,n = {A ⊆ P : |A| ≥ k}.

Theorem A.4 ([34]). For every integers 1 ≤ k ≤ n, there is a linear k-out-of-n secret-sharing scheme
realizing Γk,n for secrets of size m in which the share size is max {m,O(log n)}.

A.2 Slices, multislices, downslices and upslices

We formally define four different types of “slice access structures” that will be used as key components in
our general constructions. Throughout this section, we fix some complete access structure f over n parties.
The following definitions were extensively used by [28]. For string x, x′ ∈ {0, 1}n, we write x ≤ x′ if for
every i ∈ [n], xi ≤ x′i. We let wt(x) denote the Hamming weight of x.

Definition A.5 (Slices and Multislices). For a ≤ b ∈ [n], we define the (a : b)-multislice of f to be the
access structure F : {0, 1}n → {0, 1} for which

F (x) =

0 if wt(x) < a

f(x) if wt(x) ∈ [a, b]

1 if wt(x) > b

.

We say that F is (a : b, n)-multislice access-structure (or just (a : b, n)-slice) if F is an (a : b)-multislice of
some n-party access structure f . An (a : a)-multislice is refereed to as an a-slice.

As already mentioned, our constructions strongly exploit the following fine-grained variants of slice
access structures.

Definition A.6 (Upslices). For a ∈ [n], we define the a-upslice of f to be the access structure F : {0, 1}n →
{0, 1} for which

F (x) =

0 if wt(x) < a

f(x) if wt(x) = a

1 ⇐⇒ ∃x′ : wt(x′) = a, x′ ≤ x, f(x′) = 1 if wt(x) > a

.

We say that F is an (a, n)-upslice access structure (or just (a, n)-upslice) if F is an (a, n)-upslice of some
n-party access structure f .

Observe that F is (a, n)-upslice if and only if all its min-terms are at level a.

Definition A.7 (Downslices). For b ∈ [n], we define the b-downslice of f to be the access structure F :
{0, 1}n → {0, 1} for which

F (x) =

0 ⇐⇒ ∃x′ : wt(x′) = b, x ≤ x′, f(x′) = 0 if wt(x) < b

f(x) if wt(x) = b

1 if wt(x) > b

.

We say that F is a (b, n)-downslice access structure (or just (b, n)-downslice) if F is a b-slice of some
n-party access structure f .

Observe that F is a (b, n)-downslice if and only if all its max-terms are at level b.

25

B Proof of Lemma 4.5: Secret sharing for multislice access structures

To prove Lemma 4.5 we generalize the proof of [2, Lemma 5.10]. There are only slight deviations from the
original proof, and we provide the full proof here for the completeness of the paper. Our starting point is
the definition of [2] of a family of access structures we call somewhat-regular access structures. The best
secret sharing scheme known for this family is based on Robust Conditional Disclosure of Secrets Protocols,
which are defined and studied in [2].

Definition B.1 ((k, c, d)-somewhat-regular access structure). Let Π be a partition of the set of n parties P to
k equal-sized sets (I1, . . . , Ik), and integers 0 ≤ c < d ≤ n/k. A (partial) access structure Γ = (Γno,Γyes)
over n parties is (Π, c, d)-somewhat-regular if for every A ∈ Γno ∪ Γyes and every i ∈ [k],

c ≤ |A ∩ Ii| ≤ d. (18)

In other words, Γ puts no restriction on sets A ⊂ [n] that violate (18) for some i. We sometimes omit Π and
refer to Γ as being (k, c, d)-somewhat-regular.

Remark B.2. We can take a fully defined access structure F and “puncture it” according to a given partition
Π and parameters (c, d) and derive a (Π, c, d)-somewhat-regular version of F , denoted by FΠ,c,d, where
FΠ,c,d is undefined on inputs x for which some xi has weight greater than d or smaller than c.

The combination of Lemma 5.5 and Theorem 4.5 from [2] lead to the following lemma:

Lemma B.3. For every (k, c, d)-somewhat-regular access structure F over n parties there exists a secret
sharing scheme with share sizes of m ·

∑d
j=c

(
n/k
j

)
for each party, where m equals:

m = 2o(n) ·
[d−c∑
j=0

(
d

c+ j

)]k−1

·
[
(n/k) log

(
n/k

d

)]k
,

Respectively m` for linear schemes is given by

m` ≤ O(2n/2) ·
[d−c∑
j=0

(
d

c+ j

)
log

(
n/k

d

)] k−1
2

.

We now prove a probabilistic lemma, which will allow us to compose O(n) somewhat-regular access
structure to one multislice access structure. Fix a proximity parameter ε to be n0.3, and a < b ∈ [n0.85, n−
n0.85] (We will deal with general a and b in the end of the section with an addition of 2o(n) to the share size).
Let Π = (I1, . . . , Ik) be a partition of [n] to k =

√
n subsets of size n/k =

√
n each. In the following, we

say that an input x ∈ {0, 1}n is good for the i-th block of Π, if the sub-string xi ∈ {0, 1}
√
n is of Hamming

weight at least a/
√
n − ε and at most b/

√
n + ε. We say that x is good for the partition Π if x is good for

all the blocks i ∈ [k] of Π. If x is not good then it is called bad. We will use the following lemma.

Lemma B.4. There exists a collection of λ = O(n) partitions Π1, . . . ,Πλ of [n] to
√
n subsets of size

√
n

each, such that every n-bit string x of Hamming weight n0.85 < a ≤ wt(x) ≤ b < n− n0.85 is good for at
least 0.7λ of the partitions.

The hidden constant in the big-O notation depends on a and b.

26

Proof. We use the probabilistic method to choose at random such a collection of size λ = O(n), and see
that with positive probability all inputs are good for at least 0.7λ of the partitions.

Fix an input x of weight a ≤ wt(x) ≤ b. We start the analysis by sampling a partition Π with uniform
distribution. We first focus on a single block i, and denote by Yj,i the indicator random variable that is equal
to 1 if and only if the j-th bit of the i-th block is 1. For every i ∈ [

√
n], the

√
n variables {Yj,i}j∈[

√
n]

are negatively associated (see [2, Lemma A.7]). We now denote Yi =
∑

j Yj,i to be the random variable
representing the number of ones of x that are placed in the i-th block of Π. Due to the linearity of expectation,
and to x being of weight between a and b, the expectation µ of Yi satisfies a/

√
n ≤ µ ≤ b/

√
n. The

probability that x is bad for the i-th block is a sum of two probabilities, that x puts too many ones or too few
in the block. These two probabilities behave the same asymptotically, so we will analyze only the former
probability. By the negative associativity, we can use the Chernoff bound and get that

Pr

[
Yi ≥

b√
n

+ ε

]
= Pr

[
Yi ≥

b√
n

(1 + ε

√
n

b
)

]
≤ e−

ε2
√
n

3b = e−Ω(n0.1),

where the last equation follows from our choice of ε = n0.3. Dealing only with b > n0.85 allows to apply
the Chernoff bound as 0 < ε

√
n
b < n−0.05 < 1

Now by union bound over all blocks, the probability that x is bad for the partition Π is at most

p =
√
ne−Ω(n0.1) = o(1).

Finally, if we independently sample λ partitions, the probability that x is bad for at least 0.3λ of the partitions
is, by a Chernoff bound, at most 2−Ω(λ). By taking λ = Cn for sufficiently large constant C, the latter
probability is smaller than 2−n, so the lemma follows by applying a union bound over all possible inputs.

We can now realize a scheme for (a : b, n) multislice access structures.

Lemma B.5. Let F be an (a : b, n) multislice access structure with n0.85 < a < b < n − n0.85. Then, F
can be realized by a secret-sharing scheme with share size of m′ · O(n log n), assuming that any (k, c, d)-
somewhat-regular access structure can be realized by a secret-sharing scheme with share size of m′, where

k =
√
n, c = a/

√
n− n0.3, and d = b/

√
n+ n0.3.

Proof. We start by considering an (a : b, n) partial multislice access structure. Recall that such access
structure is defined only over the inputs whose Hamming weight is in the interval [a, b].

Construction B.6. We realize such an access structure F as follows:

1. Let L = (Π1, . . . ,Πλ) be the list of partitions of length λ = O(n) promised by Lemma B.4.

2. Share s into λ shares (σ1, . . . , σλ) via a λ/2-out-of-λ threshold secret-sharing scheme (using fresh
randomness).

3. For every i ∈ [λ] share each σi with a different random string ri by a secret-sharing scheme realizing
the (k, c, d)-somewhat-regular access structure FΠi,c,d (as defined in Remark B.2).

We analyze the construction. Fix some input x of Hamming weight a ≤ wt(x) ≤ b. Let I ⊂ [λ] denote
the set {i : x is good for Πi}, and recall that, by Lemma B.4, the set I is of size at least 0.7λ. Observe
that F (x) = FΠi,c,d(x) for every i ∈ I . If F (x) = 1 then at least 0.7λ shares σi, where i ∈ I , can be
reconstructed by the parties in x and s can be recovered. If F (x) = 0 then at least 0.7λ shares σi, where

27

i ∈ I , are kept perfectly hidden (due to the privacy of FΠi,c,d) and so s remains perfectly hidden (i.e., we
can perfectly simulate the view of the parties that participate in x).11

We use Shamir’s secret-sharing scheme [34] to implement the threshold part and so each σi is of length
O(log λ) (see Theorem A.4). Hence, the share size per party is O(m′λ log λ) = O(m′n log n) where m′ is
the size of shares of the underlying somewhat-regular scheme.

We move on to handle the case where F is defined over all inputs. This part of the construction is quite
straightforward. Recall that such an access structure takes the value 0 over light inputs, the value 1 over
heavy inputs, and may take arbitrary values in between. Letting F ′ denote the partial (a : b, n) multislice
access structure that agrees with12 F over the inputs with Hamming weight between a and b, we realize F
as follows:

1. Share s via a (b+ 1)-out-of-n secret-sharing scheme and give the i-th share, denoted by ui, to the i-th
party.

2. Share s via 2-out-of-2 secret-sharing into s0 and s1.

3. Share s0 via a a-out-of-n secret-sharing scheme and give the i-th share, denoted by vi, to the i-th
party.

4. Share s1 to all parties according to F ′ (using Construction B.6) and give the i-the share, denoted by
wi, to the i-th party.

Correctness: Any input x of weight at least b + 1 can reconstruct s via the u shares, and any input x with
Hamming weight between a and b which is authorized (i.e., F (x) = 1) can recover s0 and s1 (via the v and
w shares) and can therefore recover s.

Privacy: A coalition that corresponds to light inputs learns nothing from the u shares and the v shares
(due to the privacy of the threshold schemes) and therefore learns nothing about s. A medium-slice coalition
that is unauthorized (i.e., F (x) = 0) learns nothing from the u shares (due to the privacy of the threshold
scheme) and learns nothing from the w shares (due to the privacy of the F ′ scheme) and so it learns nothing
on s.

Since each wi is of length O(m′n log n) and the bit-length of ui and vi is O(log n), the share size per
party is O(m′n log n) +O(log n) = O(m′n log n).

We now conclude the proof of Lemma 4.5, by putting together Lemma B.5 and Lemma B.3, which
results in a secret sharing scheme for (a : b, n) multislice access structures with a total share size of:

m = 2o(n) ·
[b−a√

n
+2n0.3∑
j=0

(
b/
√
n+ n0.3

a/
√
n− n0.3 + j

)]√n−1

·
[
(
√
n) log

(√
n

b/
√
n

)]√n
·O(n log n),

which equals (
b/
√
n

≥ a/
√
n

)√n
· 2o(n).

11Note that when i /∈ I there are no guarantees on the share σi, e.g., it is possible that F (x) = 0 and the parties in x can recover
σi or that F (x) = 1 and the parties in x would have no information on σi. However, since we use a threshold scheme to share s,
this does not affect the correctness and privacy of the construction.

12We say that a pair of partial functions f and g agree with each other if they take the same value on every input x for which both
functions are defined.

28

For the linear case we get that

m` ≤ O(2n/2) ·
[b−a√

n
+2n0.3∑
j=0

(
b/
√
n+ n0.3

a/
√
n− n0.3 + j

)
log

(√
n

b/
√
n

)]√n−1
2

·O(n log n),

which equals

m` =

√(
b/
√
n

≥ a/
√
n

)√n
· 2n/2+o(n).

Recall that so far we handled multislices where n0.85 < a < b < n − n0.85. Generalizing our scheme to
any (a : b, n) multislice f is relatively simple. We first realize the (n0.85 : n − n0.85, n) multislice of f ,
and then add the missing min-terms of f of size < n0.85 with a DNF scheme and the missing max-terms of
size > n− n0.85 with a CNF scheme. The total additive cost to the share size is then O

(
n
(

n
n0.85

))
= 2o(n).

Lastly we see that by Fact C.2

√(b/√n
≥a/
√
n

)√n
≤
(
b
≥a
)
· 2o(n), which concludes the proof and will allow us to

work with latter simpler expression from now on.

C Proofs and Facts

C.1 Proof of Observation 4.2

We claim that

f =

n∧
i=0

Fi.

Fix an input x and let a denote its Hamming weight. We show that the RHS evaluates to f(x). If f(x) = 0
then Fa(x) = 0 and so the RHS also evaluates to zero. The case of f(x) = 1 follows by observing that:
(1) By definition, Fi(x) = 1 for all i ≤ a; and (2) Since f is monotone, f(y) = 1 for every y ⊃ x, and
therefore Fi(x) = 1 for all i ≥ a.

Based on the above equality, we can distribute a secret s according to f as follows: Distribute s ∈ {0, 1}
into n single-bit shares via (n+ 1)-out-of-(n+ 1) secret-sharing and share the i-th share via Fi. The overall
complexity is

∑n
i=0 Si ≤ nmaxi Si.

C.2 Simple inequalities

Fact C.1. Let a ≤ b, k be integers such that k|a and k|b. Then it holds that
(b/k
a/k

)k
≤
(
b
a

)
Proof. Fix a and k, we prove by induction over b. For the base case where b = a it holds that

(a/k
a/k

)k
=

1k = 1 =
(
a
a

)
as desired. Next we assume that

(b/k
a/k

)k
≤
(
b
a

)
and show that

((b+k)/k
a/k

)k
≤
(
b+k
a

)
. First we

see that(
b+ k

a

)
=

(
b

a

)
·
k∏
i=1

(b+ i) ·
k∏
i=1

(b− a+ i)−1 ≥
(
b/k

a/k

)k
·
k∏
i=1

(b+ i) ·
k∏
i=1

(b− a+ i)−1.

29

and that (
b/k

a/k

)k
=

(
(b+ k)/k

a/k

)k
·
(
b+ k

k

)−k
·
(
b− a+ k

k

)k
.

If we combine the two parts it remains to show that
∏k
i=1(b+i)·(b−a+k)k∏k
i=1(b−a+i)·(b+k)k

≥ 1, which is true since for every

positive integers a, b, i, k such that b > a and 1 ≤ i ≤ k it holds that b−a+k
b−a+i ≥

b+k
b+i .

Fact C.2. Let a ≤ b ≤ n be integers such that
√
n|a and

√
n|b. Then it holds that

(b/√n
≥a/
√
n

)√n
≤
(
b
≥a
)
·2o(n)

Proof. We denote M = b/2 when a < b/2, and M = a otherwise. Then(
b/
√
n

≥ a/
√
n

)√n
≤
(
b− a+ 1√

n
·
(
b/
√
n

M/
√
n

))√n
≤
(
b− a+ 1√

n

)√n(b

M

)
≤
(

b

≥ a

)
· 2o(n),

where the middle inequality is a result of Fact C.1 with k =
√
n.

C.3 LSS for downslices with constant density below 0.5

In Section 5.4 we did not try to optimize the exponent of LSS for every specific downslice. In this section
we prove a refined bound for the exponent of LSS of a given downslice.

Theorem C.3. LSS for (b, n)-downslices can be realized with the following exponents:

D`(b, n) ≤

H2(b/n)− 0.534(1− b/n) + o(1) if 0.535n < b < n

H2(u∗b/n)− 0.534u∗b/n if 0.135n ≤ b ≤ 0.535n

H2(b/n)− 0.534(b/n) + o(1) if 0 < b < 0.135n

,

where u∗b ∈ [b] is the value of u that solves the equation H2(u/n)− 0.534u/n− 1
2 −

b
2n ·H2(u/b) = 0.

For every β-downslice, Theorem C.3 yields an exponent Eβ that is better than the exponent, H2(β), of the
CNF-based scheme, and is worse than than 1

2 H2(β) that can be shown to lower-bound the linear exponent
of β-downslices. (The lower bound follows from counting arguments for span programs similarly to the
lower bound for slice access structures given in [9]

Proof. The proof is given by showing three different (though closely related) schemes. The scheme for the
first case of 0.535n < b < n is that described in Section 5.4 summarized by (9), and the other two use it as
a building block. Both schemes for the latter cases are applicable for a wide range of slices, but one is better
for the range [0, 0.135n] and the other for [0.135n, 0.535n]. We start by showing the scheme for the slices
in the low range:

Claim C.4. For b < β0n where β0 ∼ 0.408 is the maximizer of the expression H2(β) − 0.534(β), it holds
that D`(b, n) ≤ H2(b/n)− 0.534(b/n) + o(1).

Proof of Claim C.4. The proof relies on the following variant of Lemma 5.6.

Fact C.5. Let b < n be integers, then

D`(b, n) ≤ max
i≤b+1

{U`(i, n)}+ o(1) = max
j≥n−(b+1)

{D`(j, n)}+ o(1).

30

Proof of Fact C.5. It suffices to prove the inequality since the equality follows from the duality of LSS
(Corollary 5.5). For a (b, n)-downslice f , let fi be the i-upslice of f . Since the min-terms of f can-

not be bigger than b + 1, it holds that f =
b+1∨
i=0

fi and we can linearly realize f with an exponent of

maxi≤b+1 {U`(i, n)}+ o(1).

We now combine Fact C.5 with the upper-bound obtained in (9) (the first case of Theorem C.3), and bound
the exponent of (b, n) downslices by the exponent of low upslices:

D`(b, n) ≤ max
j≤b+1

{H2(j/n)− 0.534j/n}+ o(1) ∀b ∈ [n− 0.535n, n].

Then since H2(j/n) − 0.534(j/n) is monotonically increasing with j until j = bβ0nc, the expression can
be simplified to the desired one for every b < β0n.

Next we describe the scheme for slices in the range [0.135n, 0.535n].

Claim C.6. For every b ∈ [0.135n, 0.58n], every (b, n)-downslice can be linearly realized with an exponent
of

D`(b, n) ≤ min
u∈[b]

[
max

(
H2(u/n)− 0.534u/n,

1

2
+

b

2n
·H2(u/b)

)]
+ o(1).

Proof of Claim C.6. We start from (9), with an exponent of D`(d/n) ≤ H2(d/n) − 0.534(1 − d/n) for
every d ∈ [0.535n, n]. Then, by duality (Corollary 5.5), we have linear schemes for upslices in the range
[0, 0.465n] with the same share size as their duals. Next, we apply Lemma 5.6 on the downslice b with our
new schemes for upslices and get the following exponents:

D`(b, n) ≤ min
u∈[b],u<0.465n

[
max

(
max
j≤u

(H2(j/n)− 0.534j/n) ,M`(u : b, n)

)]
+ o(1).

We then realize the (u : b, n) multislice with the following exponent promised by Lemma 4.5:

M`(u : b, n) ≤

{
1
2 + b

2n ·H2

(
u
b

)
if u > b/2

1
2 + b

2n if u ≤ b/2
. (19)

The RHS of (19) is monotonically non-increasing in u, and maxj≤u(H2(j/n)−0.534j/n) is monotonically
non-decreasing in u. Therefore if they intersect, the minimum of the maximums between them will be their
value at their intersection point. For every b ∈ [0.135n, 0.58n], we verify numerically that the RHS of (19)
and H2(u/n)−0.534u/n intersect on some u∗ < 0.465n. Furthermore, u∗ > b/2 and maxj≤u∗(H2(j/n)−
0.534j/n) = (H2(u∗/n) − 0.534u∗/n). Therefore we can simplify the last expression to the desired one
and conclude the proof of Claim C.6.

This completes the proof of Theorem C.3.

31

	Introduction
	Our Contribution
	Upslice and Downslices
	Worst-Case Downslices
	Random Upslices and Mixed DNFs

	Preliminaries
	Covers

	General secret-sharing for downslices
	Low-density downslices via multislices
	Reducing high-density downslices to low downslices
	Proof of the cover reduction

	Linear secret sharing for downslices
	Exploiting duality
	High-density downslices from low-density upslices and mid-range multislices
	Bootstrapping downslices
	Proof of Theorem 5.1

	Random upslices
	Proof of Theorem 6.2
	Proof of Theorem 6.3

	Omitted Preliminaries
	Secret Sharing
	Slices, multislices, downslices and upslices

	Proof of Lemma 4.5: Secret sharing for multislice access structures
	Proofs and Facts
	Proof of Observation 4.2
	Simple inequalities
	LSS for downslices with constant density below 0.5

