
Size, Speed, and Security: An Ed25519 Case
Study

? Cesar Pereida García1, Sampo Sovio2

1 Tampere University, Tampere, Finland
cesar.pereidagarcia@tuni.fi

2 Huawei Technologies Oy, Helsinki, Finland
sampo.sovio@huawei.com

Abstract. Ed25519 has significant performance benefits compared to
ECDSA using Weierstrass curves such as NIST P-256, therefore it is
considered a good digital signature algorithm, specially for low perfor-
mance IoT devices. However, such devices often have very limited re-
sources and thus, implementations for these devices need to be as small
and as performant as possible while being secure. In this paper we de-
scribe a scenario in which an obvious strategy to aggressively optimize
an Ed25519 implementation for code size leads to a small memory foot-
print that is functionally correct but vulnerable to side-channel attacks.
This strategy serves as an example of aggressive optimizations that might
be considered by cryptography engineers, developers, and practitioners
unfamiliar with the power of Side-Channel Analysis (SCA). As a solu-
tion to the flawed implementation example, we use a computer-aided
cryptography tool generating formally verified finite field arithmetic to
generate two secure Ed25519 implementations fulfilling different size re-
quirements. After benchmarking and comparing these implementations
to other widely used implementations our results show that computer-
aided cryptography is capable of generating competitive code in terms
of security, speed, and size.

Keywords: applied cryptography; public key cryptography; EdDSA;
Ed25519; side-channel analysis; computer-aided cryptography

1 Introduction

The growing number of IoT devices around us is ever increasing, and thus the
need to secure these devices and their communication is of utmost importance.
Moreover, due to their nature, the attack surface of IoT devices is higher com-
pared to commodity PCs and servers, as attackers are able to get physical access
to them, thus exposing them to both physical and remote attacks, resulting in
new threat scenarios. Cryptography engineers face multiple challenges when se-
curing these devices as cryptography implementations must be not only secure

? This research was done while the author was an intern at Huawei Technologies Oy.



2 Cesar Pereida García, Sampo Sovio

but also competitive in terms of speed and size since these are constrained de-
vices with limited power, memory, and processing resources.

EdDSA, and more specifically Ed25519 [7], is a popular algorithm choice for
digital signatures in the IoT world as it is small, fast, and it does not require
fresh randomness per signature thus reducing the risk of using a faulty random
number generator (RNG). EdDSA instead computes a deterministic nonce as
a function of the hashed message and the private key, and in general, it pro-
vides a more robust security against several attacks when compared to ECDSA.
During the development of Ed25519, choices were made to decrease the chances
of implementation flaws and unintentional information leakage. However, these
secure choices need to be clearly understood by cryptography engineers, as a
small deviation from the original specification can lead back to insecure imple-
mentations.

Cryptography engineers must follow general recommendations and coding
best practices when implementing algorithms that receive confidential informa-
tion as input values. These recommendations are mostly to protect against Side-
Channel Analysis (SCA), and failing to follow any of the best practices can
have devastating effects on the practical security of any implementation. Some
of these best practices include: (i) using algorithms that execute in constant-
time, i.e., the runtime of the algorithm is independent from the input secret
value; (ii) avoiding branching based on secret values; (iii) avoiding table-lookups
indexed by secret values; (iv) avoiding looping through a piece of code with a
bound dictated by a secret value. Generally speaking, cryptography engineers
must be aware that any line of code they write dealing with secret values, must
not leak any information through either execution time, EM emanations, power
consumption, microarchitecture components, temperature, or any other so-called
side-channel, thus all of them must be considered for IoT security.

In this work we present a case study on how aggressive optimizations aiming
for a small memory footprint can lead to SCA vulnerabilities on an otherwise
secure Ed25519 implementation. We describe the rationale for the aggressive
optimizations from the point of view of a cryptography engineer without SCA
expertise, trying to meet the requirements, and then we briefly analyse why
the approach is insecure against an adversary with SCA expertise. As a coun-
termeasure, we replace the flawed implementation with a secure one generated
with the help of ECCKiila [5], a computer-aided cryptography tool. We compare
the performance of the computer-aided Ed25519 against other well established
implementations on Intel and ARM architectures.

In summary, Section 2 gives an overview of background information and
related work. Section 3 describes the example of a flawed implementation due
to aggressive optimizations and its implications, we give a brief side-channel
analysis. Section 4 describes two implementations generated with the help of
ECCKiila and provides a performance comparison against other well established
Ed25519 implementations. We conclude in Section 5.



Size, Speed, and Security: An Ed25519 Case Study 3

2 Background

2.1 EdDSA

The Edwards-curve Digital Signature Algorithm (EdDSA) is an elliptic curve
variant of the Schnorr signature system [27], thus it is a deterministic digital
signature scheme constructed over twisted Edwards curves. Despite being a rel-
atively new cryptographic primitive, EdDSA has gained traction over the last five
years on both, the research community, and industry, due to being fast, secure,
and hard to implement wrong—at least compared to ECDSA. Notably, EdDSA
does not require fresh randomness for each signature generated—therefore it is
more resilient against side-channel analysis (SCA)—and no special cases for the
point at infinity need to be handled due to exception free formulas for point
addition. EdDSA is generally defined by eleven parameters. An odd prime p
defining the Galois field GF (p), two elements a, d ∈ GF (p) defining the twisted
Edwards curve.

E : ax2 + y2 = 1 + dx2y2 (1)

An element B ∈ E different from the neutral element. An integer c and an
odd prime ` such that #E = 2c`. An integer b defining the size of the EdDSA
public keys and EdDSA signatures in bits, an integer n defining the scalar size, an
encoding of the elements in GF (p), a hash function H and an optional “prehash”
function PH. Choosing parameter is outside of the scope of our work, but we
refer the reader to Bernstein et al. [7], RFC 8032 [19] and FIPS 186-5 [1].

Generally speaking, EdDSA is composed by three algorithms, namely, key
generation, signature generation, and signature verification. Each of these al-
gorithms is composed by several specific algorithms, which when converted to
code, dictate the security properties of the whole EdDSA scheme.

2.2 Ed25519

Originally described by Bernstein et al. [7], Ed25519 is EdDSA instantiated
with a twisted Edwards curve that is birationally equivalent to Curve25519 [6].
Ed25519 is allegedly the most widely used instance of EdDSA, and it is instan-
tiated with the parameters present in Table 1.

Key Generation. Given a random and uniformly chosen private key k, the user
hashes it using the chosen hash functionH such thatH(k) = (h0, h1, ..., h2s−1) =
(a, b) where a is a private scalar value, b is an auxiliary key, and then computes
the public key A = [a]B.

Signature Generation. Given the private scalar a, the auxiliary key b, and a
hash function H, the signature (R,S) on the message M is created by

r = H(b,M) R = [r]B

h = H(R,A,M) S = (r + ha) mod `
(2)



4 Cesar Pereida García, Sampo Sovio

Description Symbol Value
Power for GF (p) p 2255 − 19
Element in GF (p) a −1

Non-square element in GF (p) d −121665/121666
Base point B (x, y) from [7]

Order of base point ` 2252 + 27742317777372353535851937790883648493
Key length s 256

log2(cofactor) c 3
Scalar size n 254

Hash function H SHA-512
Prehash function PH None

Table 1. Ed25519 domain parameters.

Signature Verification. Given the base point B, the public key A, and the
signature tuple (R,S), on the message M , the EdDSA signature is valid if h =
H(R,A,M) satisfies the equation

8SB = 8R+ 8hA (3)

Security. The mathematical security of EdDSA (and Ed25519) is similar to
that of other ECC primitives, namely, it relies on the hardness of the Elliptic
Curve Discrete Logarithm Problem (ECDLP), i.e., given a known base B and an
elliptic curve element [r]B, it is infeasible to compute the integer r. Additionally,
during EdDSA construction several choices were made to avoid common flaws
and vulnerabilities affecting the well established ECDSA. Some of these choices
include: (i) the usage of a deterministic ephemeral nonce instead of a random
nonce per signature, avoiding potential issues with a faulty RNG; (ii) the usage
of twisted Edwards curves providing complete addition law and thus avoiding
special cases that can be exploited; (iii) provide an open and freely available
reference implementation that is secure in the mathematical model and also
against SCA.

2.3 Ed25519 Implementations

In 2011, together with the original mathematical and technical description of the
new Ed25519, Bernstein et al. [7] released multiple implementations of their new
digital signature algorithm to the public domain through the eBACS project [8].
The objective was to promote the widespread adoption of the new primitive by
providing implementations suitable for different architectures and systems with
different requirements. The original release included a portable, slow but secure
implementation written in C language named ref, a portable and faster im-
plementation with competitive performance also written in C language named
ref10, and two additional x86_64-specific, fast and highly optimized implemen-
tations written in assembly language named amd64-64-24k and amd64-51-30k
using radix 264 and 251 for field element representation, respectively. Shortly



Size, Speed, and Security: An Ed25519 Case Study 5

after, the so-called donna3 implementation was released which included high
performance, portable 32-bit and 64-bit implementations for Ed25519.

Built on top of the reference implementation, Bernstein et al. [9] released
NaCl as an easy-to-use high-speed software library offering several state-of-the-
art implementations for several types of cryptographic primitives such as en-
cryption, decryption, and signing. Similarly, libsodium4 was born as a fork of
NaCl to expand on the original API while supporting a variety of compilers and
operating systems, becoming the de-facto library for Ed25519 at that time.

In 2015, BoringSSL added support5 for Ed25519 to its codebase. Differ-
ent to previous implementations, instead of using custom finite field arithmetic
code, BoringSSL adopted formally verified finite field arithmetic generated with
fiat-crypto6 [15].

In 2017 monocypher7 was released, including its own implementation of
Ed25519 influenced by the ref10 implementation. This specific implementa-
tion targets devices with limited resources, and it offers a compact and portable
implementation compatible with libsodium.

In 2018 Tuveri and Brumley [28] added unofficial support for Ed25519 in
OpenSSL through their libsuola ENGINE, by leveraging Ed25519 computa-
tions to the libsodium library. Official support was later added to the code base
during the same year with the release of the newer version OpenSSL 1.1.18.

At the time of writing, most of the widely used general-purpose TLS and
cryptography libraries support Ed25519. One notable exception is the mbedTLS
library which is currently under development with an unspecified release date9.
It is worth noting that despite the variety of implementations, most of them use
code from the original reference implementations. This ultimately confirms that
the original goal of widespread adoption of Ed25519 was achieved by providing
robust reference implementations for other projects10.

2.4 Related Work

Although EdDSA is a secure signature algorithm, it is susceptible to attacks de-
rived from implementation flaws and SCA. Despite making secure design choices
to minimize the probability of bad implementations, EdDSA still requires spe-
cialized knowledge and attention to detail during implementation, to avoid leak-
ing confidential information that renders the primitive insecure.

Samwel et al. [26] demonstrate that failing to protect the auxiliary key b
for any given signature can potentially lead to full key recovery, allowing an
attacker to forge signatures. More specifically, the authors apply Differential
3 https://github.com/floodyberry/ed25519-donna
4 https://github.com/jedisct1/libsodium
5 https://boringssl.googlesource.com/boringssl/+/4fb0dc4b031df7c9ac9d91fc34536e4e08b35d6a
6 https://github.com/mit-plv/fiat-crypto
7 https://monocypher.org/
8 https://www.openssl.org/blog/blog/2018/09/11/release111/
9 https://github.com/ARMmbed/mbedtls/pull/3245

10 https://ianix.com/pub/ed25519-deployment.html

https://github.com/floodyberry/ed25519-donna
https://github.com/jedisct1/libsodium
https://boringssl.googlesource.com/boringssl/+/4fb0dc4b031df7c9ac9d91fc34536e4e08b35d6a
https://github.com/mit-plv/fiat-crypto
https://monocypher.org/
https://www.openssl.org/blog/blog/2018/09/11/release111/
https://github.com/ARMmbed/mbedtls/pull/3245
https://ianix.com/pub/ed25519-deployment.html


6 Cesar Pereida García, Sampo Sovio

Power Analysis (DPA) on the underline SHA-512 function of the WolfSSL library
to recover the auxiliary key b during the computation of the ephemeral nonce
r, which allows them to ultimately forge signatures for any message of their
choosing.

Romailler and Pelissier [24] propose the first differential fault attack (DFA)
on Ed25519 against an 8-bit Arduino nano device. The authors introduce a fault
to the output of the hash function, however this value is not public, thus they
need to bruteforce the value in order to exploit it to forge signatures.

Following the same attack principle, Samwel and Batina [25] introduce a
fault during the computation of R, resulting in R′ and therefore in a faulty hash
computation h′. Using a single pair of correct and faulty signatures, the authors
are able to recover the private scalar a solving a simple system of equations and
consequentially, forge signatures for any given message.

Similarly, Ambrose et al. [3] study the effects of DFA on deterministic digital
signature schemes, including EdDSA. In their work, the authors propose sev-
eral attacks against EdDSA using DFA and describe the place and the type of
fault that is needed allowing them to recover enough confidential information
to forge signatures. Moreover, the authors discuss practical countermeasures
against DFA, and possible changes to EdDSA to protect against this type of
attacks.

On the software side, Poddebniak et al. [23] demonstrate a practical cross-VM
fault attack against EdDSA by using the Rowhammer technique from a mali-
cious VM to introduce faults to the target VM running Minisign. The authors
successfully recover the private scalar a that allows them to forge signatures.

Exploiting the hardware translation lookaside buffers (TLBs), Gras et al.
[17] recover the full keys for an insecure Ed25519 implementation on libgcrypt
v1.6.3. Finally, Gras et al. [16] show a system that synthesizes new (port)
contention-based side-channels. The authors demonstrate the working system
on both, secure and insecure implementations of Ed25519 on libgcrypt.

3 When Optimization Goes Wrong

In this section we focus on how a relatively small change to the reference imple-
mentation trying to reduce the memory footprint, leads to a functionally correct
but insecure implementation of Ed25519. The implementation that we describe
in here is a custom implementation, thus this is not a real implementation af-
fecting any system nor an open source cryptography library. However, we believe
that this flawed implementation is a representative of aggressive optimizations
that might be considered by cryptography engineers and practitioners in order
to achieve specific memory requirements.

Implementation description. In the original work, Bernstein et al. [7] describe
two different algorithms for scalar multiplication to be used during Ed25519: a
fixed-point scalar multiplication for key and signature generation, and a double-
scalar multiplication for signature verification. Additionally, each scalar multipli-
cation algorithm requires a recoded scalar value in a suitable form for the chosen



Size, Speed, and Security: An Ed25519 Case Study 7

scalar multiplication algorithm, thus this involves additional recoding algorithms
which also affect the overall implementation size.

For fixed-point scalar multiplication, the original implementation follows a
standard technique first discussed by Pippenger [22]. The technique consists of
computing the scalar multiplication as a sum of precomputed values with the
addition of supporting negative coefficients. This algorithm by itself does not
prevent nor protect against SCA, but instead allows to load all the precomputed
values into memory and then compute the correct value by using arithmetic oper-
ations that do not branch or otherwise reveal the secret value through the index
accessed. After an analysis, the authors decide that a balance on performance
versus memory size is reached by storing 256 curve points consuming a total of
30 kilobytes of RAM. In fact, the authors mention that is possible to reduce the
table size by half at the expense of 8 additional elliptic curve doubles. While this
change already potentially reduces the size of the table by half, it might not be
enough for a constrained device, and more aggressive optimizations for code size
might be considered.

For the double-scalar algorithm the original implementation uses standard
techniques similar to the windowed Non-Adjacent Form (wNAF) scalar multi-
plication [21] which allows them to compute the result for both scalar values in
a single call, instead of performing a more costly fixed-point and variable-point
scalar multiplications. This algorithm achieves a fast result at a low memory
cost, as it does not require a precomputed table. However the algorithm ex-
ecution is highly dependent on its inputs, thus it is specially suitable during
signature verification where all the input values are public.

Considering these two algorithms to achieve the same result, namely a scalar
multiplication, an appealing approach to reduce code size is not only to use
the algorithm with the smallest memory footprint but also the most flexible
algorithm that can be adapted for multiple use cases. Therefore, the double-
scalar multiplication algorithm is a good candidate that can be adapted for
usage in key generation, signature generation, and signature verification.

Our custom implementation continues with this idea, by simply adding con-
ditional branches at the top of the double-scalar multiplication algorithm, we are
able to cover all use cases for Ed25519: if the input value to the function contain-
ing the variable-point is empty then the algorithm is equivalent to a fixed-point
scalar multiplication; if the input value to the function containing the fixed-point
is empty then the algorithm is equivalent to a variable-point scalar multiplica-
tion; otherwise it is the standard double-scalar multiplication. By following this
approach the implementation saves more than 30 KB of code since it does not
require a 30 KB precomputed table, and it only uses a single algorithm for fixed-
point, variable-point, and double-point scalar multiplication—and consequently
only one algorithm for scalar recoding.

SCA Analysis.We now give a brief analysis from a SCA perspective to demon-
strate the vulnerabilities enabled by the previous modifications to the original
implementation.



8 Cesar Pereida García, Sampo Sovio

Recall that prior to the scalar multiplication computation, the integer rep-
resenting the scalar value must be recoded into a different form. The algorithm
used for recoding, as any other algorithm dealing with secret information, must
behave in a constant-time fashion, that is, no correlation must be observable
between the input value and the execution of the algorithm in order to prevent
SCA leakage. The reference implementation achieves this by cleverly using arith-
metic and bitwise operations to recode the scalar as digits in the range [−8, 7].
These arithmetic and bitwise operations do not branch nor loop based on the
scalar value, thus they are secure against SCA. However, one problem arises
when using the double-scalar multiplication as a fixed-point scalar multiplica-
tion, as the recoding algorithm used for the latter is different than in the former.
The recoding algorithm for double-scalar multiplication is based on the work by
Avanzi [4], a left-to-right recoding variant commonly used during wNAF scalar
multiplication. This variant in particular branches out according to individual
bits of the scalar value, therefore its usage is only suitable when the scalar is
a public value and does not need SCA protection, however this is not the case
when using it for fixed-point scalar multiplications as in our vulnerable imple-
mentation. Despite being known to leak information, recoding algorithms were
mostly ignored on SCA research as attacking them requires techniques with fine
granularity allowing to capture leakage at a single-branch level. It was until re-
cently, when ul Hassan et al. [18] demonstrated that it is possible to recover the
scalar value by performing a microarchitecture attack on the wNAF recoding
algorithm used in Mozilla’s NSS during secp384r1 ECDSA computation.

A second, and more well known, SCA vulnerability in our example imple-
mentation is the double-scalar multiplication algorithm itself. Even if a SCA
secure recoding algorithm is in use, the scalar multiplication algorithm itself is
vulnerable against a SCA attacker, since its execution is highly dependent on the
wNAF representation of the scalar value. While the double-scalar multiplication
algorithm has not been exploited in the past, it follows the same execution flow
of the wNAF scalar multiplication algorithm, which has been repeatedly shown
to be vulnerable [12, 2, 29]. On a high level, this scalar multiplication algorithm
performs an elliptic curve point double for each recoded scalar digit, and an
elliptic curve point addition only when the recoded scalar digit is non-zero, thus
the general idea is that a SCA attacker is able to recognize the zero and non-
zero digits of the recoded scalar value, as well as being able to identify which
was the value of the digit since it is the index of the multiplier accessed from
the precomputed table during the elliptic curve point addition, giving enough
information to ultimately recover the private key.

Scalar multiplications are a basic operation for digital signature algorithms,
thus an attacker with SCA capabilities would have opportunity to recover a
secret key not only during key generation but also during signature generation.
We reckon that specifically for Ed25519, an attacker would require (near) perfect
traces as no practical lattice attacks have been demonstrated against it but we
speculate is only a matter of time before it is possible.



Size, Speed, and Security: An Ed25519 Case Study 9

4 Computer-Aided Ed25519

It is easy to see from the analysis presented in Section 3 that an easy fix to
the SCA flaws presented is to either use a well established cryptography library
providing an Ed25519 implementation, revert back to the reference implemen-
tation best suited to our needs, or implement constant-time versions of those
algorithms leaking sensitive information. However, we decided to explore a dif-
ferent approach. We decided to make use of a cryptography tool to generate
“new” Ed25519 implementations, and then we compared them to other available
implementations. This approach serves two purposes, it allows us: (i) to analyze
the easiness of producing and implementing different SCA-secure Ed25519 im-
plementations with the added benefit of (partial) formal verification; (ii) and to
compare the performance among computer-aided and widely used implementa-
tions.

For the computer-aided Ed25519 implementations, we used the ECCKiila11

cryptography tool created by Belyavsky et al. [5]. The tool uses the fiat-crypto
project to generate formally verified Galois Field (GF) arithmetic [15] for many
ECC curves including Ed25519, and on top of this layer it generates complete
EC arithmetic. Everything generated as portable code for 32-bit and 64-bit ar-
chitectures, therefore useful for several use cases.

New implementations. Harnessing the power of ECCKiila, we created two
portable and SCA-secure Ed25519 implementations with different memory size
requirements targeting different architectures: (i) a full-fledge portable imple-
mentation with a 30 KB precomputed table filling up an average L1 mem-
ory cache which we call ecckiila-precomp; and a lighter 32-bit implementa-
tion with a small 2.5 KB precomputed table suitable for smaller devices which
we call ecckiila-no-precomp. The ecckiila-precomp implementation uses a
constant-time fixed-point scalar multiplication based on the comb method [14,
9.3.3] and regular-NAF scalar recoding [20], while ecckiila-no-precomp uses
a constant-time variable-point scalar multiplication and regular-NAF scalar re-
coding. Both implementations use the variable-time double-point scalar multi-
plication based on textbook wNAF [4] and Shamir’s trick [14, 9.1.5].

Once we generated all the EC arithmetic using the tool, we were left with the
task of adding EdDSA specific algorithms and creating the upper API layer. For
the missing Ed25519 specific algorithms—i.e., point decompression, multiply and
add, and modular reduction by the order of the base point—we ported them from
the ref10 implementation and adapted them accordingly. Then we implemented
the public API layer on top them, resulting in a working implementation.

4.1 Benchmarking

After generating two computer-aided Ed25519 implementations, we decided to
benchmark their performance and compare them against our aggressively op-
timized implementation from Section 3 (called overoptimized) and against
11 https://gitlab.com/nisec/ecckiila/

https://gitlab.com/nisec/ecckiila/


10 Cesar Pereida García, Sampo Sovio

other widely used implementations. For benchmarking we used the SUPER-
COP12 framework developed as part of the EBACS [8] project. SUPERCOP is a
well established and well known cryptography benchmarking framework contain-
ing several different implementations for all types of cryptographic primitives,
including hash functions, stream ciphers, block ciphers, key exchange, digital
signatures, etc. Moreover, SUPERCOP runs on several architectures, allowing
us to expand our comparison of implementations to include Intel and ARM
architectures for 32 and 64 bits.

SUPERCOP already ships with the original reference implementations in its
code, and in addition we included and adapted donna, monocypher, ecckiila-
-no-precomp and ecckiila-precomp to its required API in order to bench-
mark their performance. It is worth mentioning that adapting these implemen-
tations to SUPERCOP’s required API does not affect their performance, but
the reported values in this work might differ from each project self-reported val-
ues. This is due to each implementation using different RNG and hash function
implementations—i.e., for our benchmarks all of the Ed25519 implementations
use SUPERCOP’s own RNG and hash functions.

Intel Setup. For both 64-bit and 32-bit benchmarks our setup consists of an
Intel Xeon E5-1650 v2 Ivy Bridge EP at 3.50GHz running Ubuntu 18.04 LTS
“Bionic Beaver”. We disabled TurboBoost and set the frequency scaling governor
to performance.

ARM Setup. For both 64-bit and 32-bit benchmarks our setup consists of a
Raspberry Pi 3B equipped with a quad-core 1.2GHz Broadcom BCM2837 64-bit
CPU and 1GB RAM, running Ubuntu 18.04 LTS “Bionic Beaver”. The 64-bit
aarch64 has Linux kernel version 5.4.0-1026-raspi, and the 32-bit armv7l
has Linux kernel version 5.4.0-1015-raspi. We disabled frequency scaling via
software.

SUPERCOP Setup. SUPERCOP and all the implementations were compiled
with stock gcc version 7.5.0, and using the -O3 optimization level. The reported
values are in thousands of clock cycles and they correspond to the median value
of many measurements (as defined by SUPERCOP) for an operation on a 59-byte
message.

Results. Table 2 and Table 3 show the results of our benchmarks for Intel and
ARM architectures, respectively. Without surprise, donna is the most performant
among all the implementations on both architectures, and it specially excels on
the Intel architecture, where it is twice as fast as ref10. Another observation is
that monocypher shows good results for being an implementation with a smaller
memory footprint targeting IoT devices.

Our results confirm that optimizing for memory size not only has detrimen-
tal results for security, but also for speed, as observed in the overoptimized
results where we observe a decreased performance by 2.5x at the cost of saving

12 https://bench.cr.yp.to/supercop.html

https://bench.cr.yp.to/supercop.html


Size, Speed, and Security: An Ed25519 Case Study 11

Architecture Implementation Sign Verify KeyGen

x86_64

ref10 140 (� base) 455 (� base) 135 (� base)
ref 1560 (O11.1x) 5218 (O11.4x) 1531 (O11.3x)

amd64-64-24k 64 (N2.18x) 225 (N2.02x) 60 (N2.25x)
amd64-51-30k 66 (N2.12x) 210 (N2.16x) 62 (N2.17x)

donna 64 (N2.18x) 217 (N2.09x) 59 (N2.28x)
monocypher 230 (O1.64x) 525 (O1.15x) 210 (O1.55x)

overoptimized 264 (O1.88x) 455 (O1.00x) 227 (O1.68x)
ecckiila-precomp 101 (N1.38x) 280 (N1.62x) 96 (N1.4x)

x86

ref10 399 (� base) 1155 (� base) 374 (� base)
ref 4137 (O10.3x) 14105 (O12.2x) 4086 (O10.9x)

amd64-64-24k − − −
amd64-51-30k − − −

donna 310 (N1.28x) 962 (N1.20x) 291 (N1.28x)
monocypher 533 (O1.33x) 1347 (O1.16x) 471 (O1.25x)

overoptimized 958 (O2.40x) 1155 (O1.00x) 914 (O2.44x)
ecckiila-no-precomp 1133 (O2.83x) 1231 (O1.06x) 1075 (O2.87x)

ecckiila-precomp 427 (O1.07x) 1228 (O1.06x) 368 (N1.01x)
Table 2. Comparison of timings on Intel architecture. � is the baseline. N means a
speedup (better) w.r.t. baseline. O means a slowdown (worst) w.r.t. baseline. Timings
are given in clock cycles (thousands).

Architecture Implementation Sign Verify KeyGen

aarch64

ref10 245 (� base) 688 (� base) 238 (� base)
ref 2924 (O11.9x) 9579 (O13.9x) 2425 (O10.1x)

amd64-64-24k − − −
amd64-51-30k − − −

donna 196 (N1.25x) 638 (N1.07x) 162 (N1.46x)
monocypher 422 (O1.72x) 812 (O1.18x) 366 (O1.53x)

overoptimized 726 (O2.96x) 688 (O1.00x) 635 (O2.66x)
ecckiila-precomp 270 (O1.10x) 808 (O1.17x) 261 (O1.09x)

armv7l

ref10 597 (� base) 1755 (� base) 582 (� base)
ref 9933 (O16.6x) 28642 (O16.3x) 8442 (O14.5x)

amd64-64-24k − − −
amd64-51-30k − − −

donna 508 (N1.17x) 1508 (N1.16x) 495 (N1.17x)
monocypher 983 (O1.64x) 2505 (O1.42x) 987 (O1.69x)

overoptimized 1622 (O2.71x) 1800 (O1.02x) 1534 (O2.63x)
ecckiila-no-precomp 2134 (O3.57x) 2237 (O1.27x) 2050 (O3.52x)

ecckiila-precomp 815 (O1.36x) 2213 (O1.26x) 732 (O1.25x)
Table 3. Comparison of timings on ARM architecture. � is the baseline. N means a
speedup (better) w.r.t. baseline. O means a slowdown (worst) w.r.t. baseline. Timings
are given in clock cycles (thousands).



12 Cesar Pereida García, Sampo Sovio

slightly more than 30 KB of memory used for precomputed tables during scalar
multiplication.

For our two computer-aided implementations the results show, on the one
hand, that ecckiila-no-precomp achieves similar size and performance results
as overoptimized on the Intel 32-bit architecture, with the added benefit of
being secure against SCA. On the other hand, we were positively surprised to
observe that ecckiila-precomp outperforms ref10 on the Intel 64-bit architec-
ture and has very similar results on the Intel 32-bit architecture.

We note that on ARM architecture both ecckiila-no-precomp and ecckiila-
-precomp clearly lag behind when compared to their Intel counterpart. We spec-
ulate that these underperforming results on ARM are due to internal parameters
in the ECCKiila tool used during code generation. These parameters try to cal-
culate the correct size of the precomputed tables, however these parameters were
not fine-tuned for our ARM benchmark devices. Our devices were incapable of
internally generating the precomputed tables due to intensive computation by
fiat-crypto, thus we generated them externally. We believe the ARM results
could improve by correctly tweaking these parameters. In light of our results,
it is interesting to observe that ECCKiila generates competitive portable ECC
code that can potentially outperform handwritten, highly optimized code.

Finally, one more thing to consider for Ed25519 is that widely used imple-
mentations such as ref10 and donna were originally published almost a decade
ago, so these implementations do not consider new research results [13, 11, 10, 30]
that further improve the security and performance of Ed25519.

5 Conclusion

Our toy example demonstrates, yet again, that implementing one’s own cryp-
tography is a complex task with a small margin for error, specially when strict
requirements must be met. Aggressive optimizations can easily lead to a situation
where both security and speed are greatly reduced at the cost of size as observed
from our experiments, so we hope this serves as a lesson of a strategy to avoid.
If implementation size is the main concern, a possible strategy to adopt is to use
a SCA-secure variable-point scalar multiplication algorithm for key generation,
signature generation, and signature verification. This reduces substantially the
speed of all the operations but is secure and saves memory by avoiding precom-
putation tables, and additional recoding and scalar multiplication algorithms.

More generally, we recommend cryptography engineers, developers, and prac-
titioners to avoid the usage of variable time algorithms on confidential inputs;
the mix usage of SCA-secure and SCA-insecure algorithms, and we recommend
to consider SCA good practices and recommendations if implementing cryptog-
raphy is a must.

Additionally, our results show that computer-aided cryptographic tools have
reached a maturity level where they can compete against code written by cryp-
tography researchers with advanced skills on software and hardware engineering—



Size, Speed, and Security: An Ed25519 Case Study 13

as reflected on their adoption on BoringSSL and NSS[18]—and thus we highly
recommend adopting them as part of the development process.

Acknowledgments.We would like to thank Philip Ginzboorg for the comments
during the development of this research.

The first author thanks the Nokia Foundation for the generous support
through a Nokia Scholarship.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 804476).

References

1. Digital signature standard (DSS). FIPS-PUB 186-5, National Institute of
Standards and Technology (October 2019), https://doi.org/10.6028/NIST.FIPS.
186-5-draft

2. Allan, T., Brumley, B.B., Falkner, K.E., van de Pol, J., Yarom, Y.: Amplifying
side channels through performance degradation. In: Schwab, S., Robertson, W.K.,
Balzarotti, D. (eds.) Proceedings of the 32nd Annual Conference on Computer
Security Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016.
pp. 422–435. ACM (2016), http://dl.acm.org/citation.cfm?id=2991084

3. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differen-
tial attacks on deterministic signatures. In: Smart, N.P. (ed.) Topics in Cryptol-
ogy - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference 2018,
San Francisco, CA, USA, April 16-20, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 10808, pp. 339–353. Springer (2018), https://doi.org/10.1007/
978-3-319-76953-0_18

4. Avanzi, R.M.: A note on the signed sliding window integer recoding and a left-to-
right analogue. In: Handschuh, H., Hasan, M.A. (eds.) Selected Areas in Cryptog-
raphy, 11th International Workshop, SAC 2004, Waterloo, Canada, August 9-10,
2004, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3357, pp.
130–143. Springer (2004), https://doi.org/10.1007/978-3-540-30564-4_9

5. Belyavsky, D., Brumley, B.B., Chi-Domínguez, J., Rivera-Zamarripa, L., Ustinov,
I.: Set it and forget it! turnkey ECC for instant integration. In: ACSAC ’20: Annual
Computer Security Applications Conference, Virtual Event / Au stin, TX, USA,
7-11 December, 2020. pp. 760–771. ACM (2020), https://doi.org/10.1145/3427228.
3427291

6. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006,
9th International Conference on Theory and Practice of Public-Key Cryptogra-
phy, New York, NY, USA, April 24-26, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 3958, pp. 207–228. Springer (2006), https://doi.org/10.1007/
11745853_14

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012), https://doi.org/10.1007/
s13389-012-0027-1

8. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems (September 2020), https://bench.cr.yp.to

https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft
http://dl.acm.org/citation.cfm?id=2991084
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-540-30564-4_9
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://bench.cr.yp.to


14 Cesar Pereida García, Sampo Sovio

9. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) Progress in Cryptology - LAT-
INCRYPT 2012 - 2nd International Conference on Cryptology and Information
Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7533, pp. 159–176. Springer (2012),
https://doi.org/10.1007/978-3-642-33481-8_9

10. Bernstein, D.J., Yang, B.: Fast constant-time gcd computation and modular in-
version. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 340–398 (2019),
https://doi.org/10.13154/tches.v2019.i3.340-398

11. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of ed25519:
Theory and practice. IACR Cryptol. ePrint Arch. 2020, 823 (2020), https://eprint.
iacr.org/2020/823

12. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the
Theory and Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5912,
pp. 667–684. Springer (2009), https://doi.org/10.1007/978-3-642-10366-7_39

13. Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many eddsas. In: van der
Merwe, T., Mitchell, C.J., Mehrnezhad, M. (eds.) Security Standardisation Re-
search - 6th International Conference, SSR 2020, London, UK, November 30 -
December 1, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12529,
pp. 67–90. Springer (2020), https://doi.org/10.1007/978-3-030-64357-7_4

14. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman
and Hall/CRC (2005), https://doi.org/10.1201/9781420034981

15. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In: 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. pp. 1202–1219. IEEE (2019), https://doi.org/10.1109/SP.2019.00005

16. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: Absynthe: Au-
tomatic blackbox side-channel synthesis on commodity microarchitec-
tures. In: 27th Annual Network and Distributed System Security Sym-
posium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020), https://www.ndss-symposium.org/ndss-paper/
absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/

17. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: De-
feating cache side-channel protections with TLB attacks. In: Enck, W., Felt,
A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018. pp. 955–972. USENIX Association (2018),
https://www.usenix.org/conference/usenixsecurity18/presentation/gras

18. ul Hassan, S., Gridin, I., Delgado-Lozano, I.M., García, C.P., Chi-Domínguez, J.,
Aldaya, A.C., Brumley, B.B.: Déjà vu: Side-channel analysis of mozilla’s NSS. In:
Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual Event, USA, November
9-13, 2020. pp. 1887–1902. ACM (2020), https://doi.org/10.1145/3372297.3421761

19. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA).
RFC 8032, 1–60 (2017), https://doi.org/10.17487/RFC8032

20. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algorithms.
In: Preneel, B. (ed.) Progress in Cryptology - AFRICACRYPT 2009, Second In-
ternational Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,

https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.13154/tches.v2019.i3.340-398
https://eprint.iacr.org/2020/823
https://eprint.iacr.org/2020/823
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-030-64357-7_4
https://doi.org/10.1201/9781420034981
https://doi.org/10.1109/SP.2019.00005
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.17487/RFC8032


Size, Speed, and Security: An Ed25519 Case Study 15

2009. Proceedings. Lecture Notes in Computer Science, vol. 5580, pp. 334–349.
Springer (2009), https://doi.org/10.1007/978-3-642-02384-2_21

21. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) Selected Areas in Cryptography, 8th Annual International Workshop, SAC
2001 Toronto, Ontario, Canada, August 16-17, 2001, Revised Papers. Lecture Notes
in Computer Science, vol. 2259, pp. 165–180. Springer (2001), https://doi.org/10.
1007/3-540-45537-X_13

22. Pippenger, N.: On the evaluation of powers and related problems (preliminary ver-
sion). In: 17th Annual Symposium on Foundations of Computer Science, Houston,
Texas, USA, 25-27 October 1976. pp. 258–263. IEEE Computer Society (1976),
https://doi.org/10.1109/SFCS.1976.21

23. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking de-
terministic signature schemes using fault attacks. In: 2018 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-
26, 2018. pp. 338–352. IEEE (2018), https://doi.org/10.1109/EuroSP.2018.00031

24. Romailler, Y., Pelissier, S.: Practical fault attack against the ed25519 and ed-
dsa signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2017, Taipei, Taiwan, September 25, 2017. pp. 17–24. IEEE
Computer Society (2017), https://doi.org/10.1109/FDTC.2017.12

25. Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: The
case of eddsa. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) Progress in Cryptol-
ogy - AFRICACRYPT 2018 - 10th International Conference on Cryptology in
Africa, Marrakesh, Morocco, May 7-9, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 10831, pp. 306–321. Springer (2018), https://doi.org/10.1007/
978-3-319-89339-6_17

26. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking ed25519
in wolfssl. In: Smart, N.P. (ed.) Topics in Cryptology - CT-RSA 2018 - The
Cryptographers’ Track at the RSA Conference 2018, San Francisco, CA, USA,
April 16-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10808,
pp. 1–20. Springer (2018), https://doi.org/10.1007/978-3-319-76953-0_1

27. Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard, G.
(ed.) Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings.
Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer (1989), https:
//doi.org/10.1007/0-387-34805-0_22

28. Tuveri, N., Brumley, B.B.: Start your ENGINEs: Dynamically loadable con-
temporary crypto. In: 2019 IEEE Cybersecurity Development, SecDev 2019,
Tysons Corner, VA, USA, September 23-25, 2019. pp. 4–19. IEEE (2019), https:
//doi.org/10.1109/SecDev.2019.00014

29. Tuveri, N., ul Hassan, S., García, C.P., Brumley, B.B.: Side-channel analysis of
SM2: A late-stage featurization case study. In: Proceedings of the 34th An-
nual Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, December 03-07, 2018. pp. 147–160. ACM (2018), https://doi.org/10.1145/
3274694.3274725

30. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I.: The
ristretto255 group. Tech. rep., IETF CFRG Internet Draft (2019)

https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1007/3-540-45537-X_13
https://doi.org/10.1007/3-540-45537-X_13
https://doi.org/10.1109/SFCS.1976.21
https://doi.org/10.1109/EuroSP.2018.00031
https://doi.org/10.1109/FDTC.2017.12
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-76953-0_1
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1145/3274694.3274725

	Size, Speed, and Security: An Ed25519 Case Study

