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Abstract. ROLLO is a candidate to the second round of NIST Post-
Quantum Cryptography standardization process. In the last update in
April 2020, there was a key encapsulation mechanism (ROLLO-I) and
a public-key encryption scheme (ROLLO-II). In this paper, we propose
an attack to recover the syndrome during the decapsulation process of
ROLLO-I. From this syndrome, we explain how to perform a private key-
recovery. We target two constant-time implementations: the C reference
implementation and a C implementation available on GitHub. By getting
power measurements during the execution of the Gaussian elimination
function, we are able to extract on a single trace each element of the
syndrome. This attack can also be applied to the decryption process of
ROLLO-II.

Keywords: ROLLO, side-channel attack, power consumption analysis, key-
recovery attack, single-trace analysis, rank metric, LRPC codes

1 Introduction

Nowadays number theory based cryptography, like RSA [1] or ECDSA [2], is
efficient but weak against the Shor’s quantum algorithm [3]. The existence of
quantum algorithms pushed the National Institute of Standards and Technology
(NIST) to anticipate the time when an efficient quantum computer will be able
to execute these algorithms and break commonly used public-key cryptography.
In late 2016, the NIST started the Post-Quantum Cryptography (PQC) stan-
dardization process to get signatures and, key encapsulation mechanisms (KEM)
or public-key encryption schemes (PKE), resisting to both classical and quan-
tum attacks. Among the classical schemes, as McEliece [4] or NTRU [5], there
are recent proposals based on rank metric. Error-correcting codes in rank metric
allow to reduce some drawbacks of Hamming metric, like the key-sizes. In the
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second round of this standardization process, there were two proposals in rank
metric, namely ROLLO [6] and RQC [7]. Both were not selected for the third
round due to some algebraic attacks [8,9]. Nonetheless, the NIST encouraged the
community to study rank metric cryptosystems [10]. They seem to be a good al-
ternative to cryptosystems in Hamming metric, but were not studied enough at
that point regarding side-channel analysis and embedded implementations. In-
deed, public-key cryptosystems are commonly used in embedded systems. Thus
it is essential to identify potential leakage to improve their resistance against
side-channel attacks and ensure their security in practice. Kocher introduced
side-channel attacks in 1996 [11]. An attacker can use information provided by
a side-channel to extract secret data from a device executing a cryptographic
primitive. The information leakage is exploited without having to tamper with
the device. The first side-channel attack against a code-based cryptosystem was
proposed in 2008 for McEliece in Hamming metric [12]. It was then followed
by numerous others in more than a decade of research, with timing or power
consumption attacks. More recently, there were two papers combining physical
attacks with algebraic properties [13,14]. We do not detail more those attacks
since there are out of our scope.

Related works. Two recent papers related to side-channel attacks on code-based
cryptography in rank metric have been published [15,16]. Both exploit timing
leakage of LRPC codes [17]. In this work, we focus on constant-time implemen-
tations of schemes using LRPC codes. We target two constant-time implementa-
tions of ROLLO, and in particular the Gaussian elimination function. The first
one is provided by the authors of ROLLO’s proposal to the NIST [6]. The second
one only provides an implementation of ROLLO-I for a 128 bits of security [18].

Our contribution. To the best of our knowledge, this is the first single trace
attack against different versions of the constant-time Gaussian elimination for
error-correcting codes in rank metric. We show that the power consumption
during the decapsulation/decryption process can provide enough information to
make an efficient attack on ROLLO schemes. Our attack allow us to recover
various secret data such as:

– the private key in both cryptosystems via the syndrome recovery,
– the shared secret in ROLLO-I key encapsulation mechanism, or the en-

crypted message in ROLLO-II public-key encryption.

We finally present two countermeasures to make the implementations resistant
to the proposed attack.

Organization of the paper. In Section 2, we recall elementary notions of error-
correcting codes in rank metric as well as ROLLO schemes. In Section 3, we detail
attacks on both implementations: the reference one using rbc_library and the
proposal on GitHub. We also provide some experimental results for ROLLO-I-
128. We discuss two different countermeasures in Section 4. Finally, we conclude
this paper in Section 5.
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2 Background

ROLLO’s submission is based on ideal Low-Rank Parity-Check (LRPC) codes.
The latter were introduced in 2013 [17]. In this section, we first give some de-
tails on ideal LRPC codes, then recall the ROLLO proposal to the NIST PQC
standardization process.

2.1 Rank metric codes

In the following sections, we denote by q a power of a prime number, and let m,
n, and, k be positive integers such that n > k.
A linear code C over Fqm of length n and dimension k is a subspace of Fn

qm . It
is denoted by [n, k]qm , and can be represented by a parity-check matrix H ∈
F(n−k)×n
qm such that

C = {x ∈ Fn
qm ,H.x

T = 0}.

An element x = (x1, · · · , xn) ∈ C is called a codeword. For an element x ∈ Fn
qm ,

the syndrome of x is defined as the vector s = H.xT .
Considering the rank metric, the distance between two vectors x and y in Fn

qm

is defined by
d(x,y) = ‖x− y‖= ‖v‖= rank(M(v)),

where M(v) is the matrix (vi,j) 1≤i≤n
1≤j≤m

.

The support of a vector x = (x1, · · · , xn) ∈ Fn
qm is defined as the subset of Fqm

spanned by the basis of x. Namely, the support of x is given by

Supp(x) = 〈x1, · · · , xn〉Fq .

Given a polynomial Pn ∈ Fq[Z] of degree n and a vector v ∈ Fn
qm , an ideal

matrix generated by v is a n× n matrix defined by

IM(v) =


v(Z) mod Pn

X · v(Z) mod Pn

...
Xn−1 · v(Z) mod Pn

 .

An [ns, nt]qm -code C, generated by the vectors (gi,j)i∈[1,···,s−t]
j∈[1,···,t]

∈ Fn
qm , is an ideal

code if a generator matrix in systematic form is of the form

G =

 IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

 .

In [6], the authors restrain the definition of ideal LRPC (Low-Rank Parity Check)
codes to (2, 1)-ideal LRPC codes that they used for all variants of ROLLO.
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Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two vectors
of Fn

qm , such that Supp(h1,h2) = F , and Pn ∈ Fq[Z] be a polynomial of degree
n. A [2n, n]qm-code C is an ideal LRPC code if it has a parity-check matrix of
the form

H =

IM(h1)
T IM(h2)

T

 .

To decode the LRPC codes, we use the Rank Support Recovery (RSR) algo-
rithm described in ROLLO submission [6] and recalled in Algorithm 4 (see Ap-
pendix A).

2.2 ROLLO

ROLLO is a second round submission to the post-quantum standardization pro-
cess launched by the NIST in 2016. Since the last update in April 2020, it
is composed of two cryptosystems: ROLLO-I, a Key-Encapsulation Mechanism
(KEM), and ROLLO-II, a Public-Key Encryption (PKE). Both are described in
Figure 1. We use the following notations:

– Fqm is the vector space isomorphic to Fq[z]/(Pm), where Pm is an irreducible
polynomial of degree m over Fq.

– Fn
qm is the vector space isomorphic to Fqm [Z]/(Pn), where Pn is an irreducible

polynomial of degree n over Fq.

We unify tables of parameters from ROLLO’s specification into Table 1. For the
three security levels, q = 2. The name of each variant gives the targeted security
level, e.g. ROLLO-I-128 is a 128-bit security level. The parameters d and r
correspond respectively to the private key and error’s ranks. The parameters n
and m can respectively be obtained with the degrees of Pn and Pm.

Instance d r Pn Pm

ROLLO-I-128 8 7 Z83 + Z7 + Z4 + Z2 + 1 z67 + z5 + z2 + z + 1

ROLLO-I-192 8 8 Z97 + Z6 + 1 z79 + z9 + 1

ROLLO-I-256 9 9 Z113 + Z9 + 1 z97 + z6 + 1

ROLLO-II-128 8 7 Z189 + Z6 + Z5 + Z2 + 1 z83 + z7 + z4 + z2 + 1

ROLLO-II-192 8 8 Z193 + Z15 + 1 z97 + z6 + 1

ROLLO-II-256 9 8 Z211 + Z11 + Z210 + Z8 + 1 z97 + z6 + 1

Table 1: ROLLO’s parameters for each security level.
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Alice: KeyGen
Generate a support F of rank d
Generate (x,y) from F
sk = (x,y, F )
Compute the public key
pk(Z) = x−1(Z) · y(Z) mod Pn Bob: Enc

Generate a support E of rank r
Pick randomly two elements
(e1, e2) from E
c(Z) = e2(Z) + e1(Z) · pk(Z)
mod Pn

Encaps Encrypt
K = ciphertext =

Hash(E) M ⊕ Hash(E)

Alice: Dec
Compute the syndrome
s(Z) = x(Z) · c(Z) mod Pn

Recover the support of the
error E = RSR(F, s, r)

Decaps Decrypt
K = M =

Hash(E) ciphertext ⊕ Hash(E)

pk

sk

c

ROLLO-I ROLLO-II

ROLLO-I ROLLO-II

ciphertext

Fig. 1: ROLLO-I (KEM) and ROLLO-II (PKE) cryptosystems.

In the following, we will focus on the vulnerabilities of the implementations
of Gaussian elimination process. The latter is used several times in ROLLO
cryptosystems, namely to compute:

– the support S of the syndrome s

– the support of the error (e1, e2) letting us recover the shared secret in the
case of ROLLO-I or encrypt/decrypt a message in the case of ROLLO-II ;

– the intersections of two vector spaces during the decoding of the syndrome
(Algorithm 4 - RSR). These intersections determine the support E of the
error:

E ←
⋂

1≤i≤d

f−1i · S,

with F = 〈f1, . . . , fd〉 the support of the private key.

Thus, the leakage coming from implementations of Gaussian elimination can
allow a side-channel attacker to recover all the secret data. In the next section,
we explain the attack on the syndrome. This analysis can be performed to recover
the other mentioned data.
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3 Side-channel attack on Gaussian elimination in
constant-time

Gaussian elimination is applied to the syndrome matrix S =M(s) ∈Mn,m(F2)
to calculate its support. We know that the syndrome is first computed as:

s(Z) = x(Z) · c(Z) mod Pn,

with x, c, s ∈ Fqm [Z]/(Pn). From this, with the knowledge of the syndrome s
and the ciphertext c, we can compute x, a part of the private key as:

x(Z) = s(Z)× c(Z)−1 mod Pn.

With the knowledge of x, it is possible to perform a full recovery of the private
key. First, we can get the second part of the private key y by computing

y(Z) = pk(Z)× x(Z) mod Pn.

Then, the support of y and x gives the last part of the private key F .

In addition, Gaussian elimination is in constant-time which means that each op-
eration in the function is timing independent from data. This requires to process
each row in each column thus an attacker could be able to recover all values in
the syndrome matrix. In the case of a non constant-time Gaussian elimination,
it is possible to treat only the rows under the pivot row, therefore the values
in rows above remain unknown by the attacker. Thus, constant-time gives an
advantage to a side-channel attacker.
The second effect of the constant-time is that, inside the power trace, there is a
pattern of the mask for one iteration. Once the attacker found the exact location
of this pattern, it becomes straightforward to find the locations for each other
iteration.

We analyzed two constant-time implementations of Gaussian elimination and
discovered possible leakage through power consumption. The first one has been
provided at the end of the second round of the NIST PQC standardization pro-
cess and is available on the ROLLO candidate webpage [6]. We refer to it as the
reference implementation. It uses the rbc_library [19], which provides different
functions to implement schemes using rank metric codes. The second implemen-
tation has been recently published on GitHub [18]. We refer to it as the GitHub
implementation.

We denote by ⊗ the multiplication between a scalar and a row of a matrix and
by ⊕ the bitwise XOR between two bits or two rows of a matrix. The bitwise
AND is represented by ∧ and the bitwise NOT by ¬.

3.1 Information leakage of the reference implementation

The reference implementation is based on Algorithm 1, which was first intro-
duced in [20]. The input matrix is composed of n rows and m columns. The
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algorithm outputs the matrix in systematic form and its rank. The first inner
for loop (line 4) fixes the ones in the diagonal (corresponding to the pivots) and
the second inner for loop (line 13) removes the ones in the pivot column. In both
inner for loops in Algorithm 1, mask ∈ F2 is computed and multiplied with spe-
cific rows of the syndrome matrix. However, the multiplication of a 32-bit word
(u0, . . . , u31)2 with zero or one provides information leakage in the power traces.
This allows us to recover all the mask values computed during the process, then,
the initial syndrome matrix.

Algorithm 1: Gaussian elimination in constant time
Input: S ∈Mn,m(F2)
Output: S ∈Mn,m(F2) in systematic form and rank = min(dimension, n)

1 dimension = 0
2 for j = 0, · · · ,m− 1 do
3 pivot_row = min(dimension, n− 1)
4 for i = 0, · · · , n− 1 do
5 mask = spivot_row,j ⊕ si,j
6 tmp = mask ⊗ si
7 if i > pivot_row then
8 spivot_row = spivot_row ⊕ tmp
9 else

10 dummy = spivot_row ⊕ tmp
11 end
12 end
13 for i = 0, · · · , n− 1 do
14 if i 6= j then
15 mask = si,j

16 tmp = mask ⊗ spivot_row

17 if dimension < n then
18 si = si ⊕ tmp
19 else
20 dummy = si ⊕ tmp
21 end
22 end
23 end
24 dimension = dimension+ spivot_row,i

25 end

Our attack consists in recovering the syndrome matrix

S = n

y

m−−−−−−−−−−−−−−−−−−−−−−−→
s0,0 s0,1 · · · s0,m−1
s1,0 s1,1 · · · s1,m−1
...

...
. . .

...
sn−1,0 sn−1,1 · · · sn−1,m−1

 , (1)
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where si,j ∈ F2 for (i, j) ∈ J0, n − 1K × J0,m − 1K. We denote by Sj the matrix
obtained after the treatment of the j-th column of S and by Sj [k], the k-th
column of the matrix Sj . The recoveredmask values from the two inner for loops
lead to a system of linear equations. This system is obtained from two steps
described below.

After the first inner for loop in Algorithm 1: we recover the mask values
spivot_row,j ⊕ si,j . If mask = 0, then the pivot row is unchanged. Otherwise,
the i-th row is added to the pivot row. Then, the first loop provides the indices
of rows XORed to the pivot row. We define

σj = (δ0,j , δ1,j , . . . , δn−1,j), where δi,j =

{
0 if mask = 0

1 if mask = 1
,

the vector containing all mask values recovered after the j-th iteration. We also
define the matrix

Jk =

1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0

...
...

...
...

δ0,k δ1,k . . . 1 . . . δn−1,k

...
...

...
...

0 0 . . . 0 . . . 1




k-th row

k-th column

,

involved in the computation of the system of linear equations. For example,
considering the pivot row of index 0. After the first inner for loop, the syndrome
matrix given in Equation 1 is under the form

∑n−1
i=0 δi,0si,0

∑n−1
i=0 δi,0si,1 · · ·

∑n−1
i=0 δi,0si,m−1

s1,0 s1,1 · · · s1,m−1
...

...
. . .

...
sn−1,0 sn−1,1 · · · sn−1,m−1

 .

In other words, we can compute it as

J0 × S =

 1 δ1,0 · · · δn−1,0

0 In−1

× S,

where In−1 denotes the identity matrix of size n−1 and 0 a column of n−1 zeros.

We notice in lines 7− 8 in Algorithm 1 that only rows with index greater than
the pivot row index are added to the pivot row. Thus, after the treatment of the
column j, we define δi,j = 0 for i ≤ pivot_row.
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After the second inner for loop in Algorithm 1: the recovered mask values
correspond to the coefficients si,j of the matrix obtained after the first inner
for loop. We denote by σ′j = (δ′0,j , . . . , δ

′
j−1,j , ∗, δ′j+1,j , . . . , δ

′
n−1,j) the vector

composed of mask values. The item ∗ represents the pivot that is not processed
in the second loop. For the attack, ∗ is replaced by one.
On one hand, during the treatment of the j-th column, σ′j completes the system
of linear equations. Assuming we want to recover the column 0, we use a linear
solver on the system

J0 × S[0] = (σ′0)
t.

On the other hand, the vector σ′j allows us to recover all the operations performed
on rows. These operations are taken into account in solving the system of linear
equations of the (j + 1)-th column. For this, we define the matrix

J ′k =

1 0 . . . δ′0,k . . . 0

0 1 . . . δ′1,k . . . 0

...
...

...
...

0 0 . . . 1 . . . 0

...
...

...
...

0 0 . . . δ′n−1,k . . . 1




k-th row

k-th column

.

For example, for the treatment of column 1 we consider the matrix

S0 =

 (σ′0)
t

0
In−1


︸ ︷︷ ︸

=J′
0

×J0 × S.

More generally, during the treatment of the column j, for j ≥ 1, we consider

Sj−1 =

 ∏
k=j−1,...,0

J ′k × Jk

× S.

In case there is no pivot in a column, all the mask values are equal to zero, thus
J ′k × Jk = In.
Finally, to recover the column j, we solve the system of linear equations

Jj × Sj−1[j] = (σ′j)
t.
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3.2 Information leakage of the GitHub implementation

In this section, we denote by 1 = (11 . . . 11)︸ ︷︷ ︸
m

and 0 = (00 . . . 00)︸ ︷︷ ︸
m

.

In [18], the authors introduced a row reduction in constant-time given in Algo-
rithm 2, that can be seen as a generalization of the one presented in Algorithm 1.

Algorithm 2: Row reduction in constant-time
Input: S ∈Mn,m(F2)
Output: S ∈Mn,m(F2) in row echelon form and its rank = pivot_row

1 pivot_row = 0
2 for j = 0, · · · ,m− 1 do
3 for i = 0, · · · , n− 1 do

4

if spivot_row,j == 0 then
mask1 = 1

else
mask1 = 0

end
if si,j == 1 then

mask2 = 1
else

mask2 = 0
end
if i ≥ pivot_row then

mask3 = 1
else

mask3 = 0
end

5 spivot_row ← spivot_row ⊕ (si ∧ (mask1 ∧ (mask2 ∧mask3)))
6 si ← si ⊕ (spivot_row ∧ (mask2 ∧mask3))
7 end
8 if spivot_row,j = 1 and pivot_row < n then
9 pivot_row = pivot_row + 1

10 end
11 end

At the end of Algorithm 2, we obtain a matrix under the row echelon form. In
order to ensure this, three masks are first computed according to coefficients
and pivot processed. Each mask is equal to 1 or 0. The three masks influence



Side-Channel Attack on ROLLO PQC scheme 11

the operations on rows (lines 5-6 in Algorithm 2) as presented in Figure 2.
We notice that two paths (in red) lead to bitwise XOR on rows. First, when
mask1 = mask2 = mask3 = 1, the pivot coefficient is fixed to one. This happens
at most once per loop over j. Then, when mask2 = mask3 = 1 independently
from mask1, the other ones in the processed column j are removed.

mask1

mask2

mask3

sp ← sp ⊕ si

si ← si ⊕ sp

sp ← sp

si ← si

mask3

sp ← sp

si ← si

sp ← sp

si ← si

mask2

mask3

sp ← sp

si ← si ⊕ sp

sp ← sp

si ← si

mask3

sp ← sp

si ← si

sp ← sp

si ← si

1

1

1 0

0

1 0

0

1

1 0

0

1 0

Fig. 2: Operations on matrix rows according to mask values. In red, paths leading
to XOR on rows with sp the pivot row and si the processed row.

In Algorithm 2, we observe two sources of leakage. The first one consists of
the computation of mask1, mask2 and mask3. In the GitHub implementation,
considering the function bf_compute_mask (given in Figure 3), we notice that
if the processed coefficient, defined as "bit" in line 6, is equal to one, all bits
of mask2 are set to one, otherwise all bits are set to zero (lines 7-8). The same
kind of operations are observed for mask1 and mask3.
However, the leakage from flipping all the bits to 1 or to 0 differs. We deduce
that it is possible to recover the masks values.

1 int bf_compute_mask(bf_element_t *mask , bf_element_t *a, uint8_t
bit_position)

2 {
3 // Determine the processed bit
4 uint8_t pos = bit_position / 64u;
5 // Determine the bit position
6 uint8_t bit = (( uint64_t) (pos * (a->high >> (bit_position - 64

u))) ^ (1u-pos)*(a->low >> bit_position)) & 0x1u;
7 mask ->low = -((uint64_t) bit);
8 mask ->high = (uint64_t) -((uint8_t) bit) & ROLLO_I_BF_MASK_HIGH;
9 }

Fig. 3: Function to compute mask2 introduced in Algorithm 2 and from GitHub
implementation [18].

The second source of leakage comes from the bitwise AND and XOR applied
on the syndrome matrix rows. Indeed, in lines 5-6 in Algorithm 2, the rows are
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XORed with either zero or non-zero row according to the masks values. The
second source of leakage has not been exploited because it is equivalent to what
we observe with the masks recovery. However, it is always a good point of interest
for side-channel attacks.

As in the previous attack, the masks values recovery allows us to obtain a system
of linear equations. We define three vectors containing respectively the values of
mask1, mask2 and mask2 ∧mask3 after the iteration j:

σmask1,j = (δ0,j , . . . , δn−1,j), σmask2,j = (δ′0,j , . . . , δ
′
n−1,j),

σmask2∧mask3,j = (δ′′0,j , . . . , δ
′′
n−1,j),

with δi,j ,δ′i,j , δ′′i,j = 0 or 1 when mask1,mask2,mask2 ∧mask3 = 0 or 1.
As we can see in Figure 2, when mask1 = 1, only one path leads to operations
on rows. Moreover, once we have mask1 = mask2 = mask3 = 1, mask1 = 0
until the end of the column treatment. Then, we have three cases for the pivot:

– If the vector σmask1,j contains only zeros, then the leading coefficient in the
pivot row is already one.

– If the vector σmask1,j contains only ones then either the pivot is on the last
row and we need to consider mask2 and mask3 or the column does not
contain a pivot.

– If the vector σmask1,j contains zeros and ones, the position of the last one is
the index of the added row to the pivot row in the column j.

We determine the system of linear equations as previously with two matrices
depending respectively of mask1 and mask2 ∧mask3:

Jk =

1 0 . . . 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0 . . . 0

...
...

...
...

...
0 0 . . . 1 . . . 1 . . . 0

...
...

...
...

...
0 0 . . . 0 . . . 0 . . . 1




k

pivot index

J ′k =

1 0 . . . δ′′0,k . . . 0

0 1 . . . δ′′1,k . . . 0

...
...

...
...

0 0 . . . 1 . . . 0

...
...

...
...

0 0 . . . δ′′n−1,k . . . 1




k

k

.

The vector σmask2,j depends on the coefficients processed in the column j. There-
fore, σmask2,0 gives us the first column as there is no pre-processing on rows. After
the first iteration, we have to consider XORs performed on rows of the matrix
during the treatment of the column j − 1.
For example, after the treatment of the column 0, the positions of the executed
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XORs are given in the resulting matrix J ′0 × J0. Thus, for the column 1, we use
a linear solver on the system

J ′0 × J0 × S[0] = (σmask2,1)
t.

More generally, to recover the column j ≥ 1, we have to solve the system of
linear equations  ∏

k=j−1,..,0

J ′k × Jk

× S[j] = (σmask2,j)
t.

3.3 Experimental results of our side-channel analysis

In this section, we demonstrate the practicability of the attack on an ARM Se-
curCore SC300 32-bit processor (equivalent to CORTEX-M3). We implemented
ROLLO-I-128 in C. The first implementation corresponds to the reference one
and the second to the GitHub version [18].

ROLLO-I-128 traces are captured with a Lecroy SDA 725Zi-A oscilloscope with
a bandwidth of 2.5 GHz. We put a trigger right before the execution of the
Gaussian elimination. The measurements for the reference implementation are
given in Figure 4. The power trace of the first inner for loop (line 4 - Algorithm
1) is given in Figure 4a and the power trace of the second inner for loop (line
13 - Algorithm 1) is given in Figure 4b. We can observe the difference of power
consumption when 32-bit words are multiplied either by one or by zero. Even if it
is possible to distinguish the treatment of a bit at one or zero with a single trace,
we averaged ten traces to slightly reduce the impact of noise. The difference of
pattern leads us to recover the mask values of the two inner for loops. For
example, we observe in Figure 4 the beginning of the treatment of column 0:

σ0 = (0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, · · ·),

σ′0 = (∗, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, · · ·).
The source code of the attack for the reference implementation is given in Ap-
pendix C.
The measurement for the GitHub implementation is given in Figure 5. We can
first observe the difference of patterns for the three masks values at each inner
iteration. For a better understanding, we highlight each time the computation
of the different masks. Thus, we obtain

σmask1,1 = (1, 1, 1, 0, 0, 0, 0, . . .)

σmask2,1 = (1, 0, 1, 0, 0, 1, 0, . . .)

σmask3,1 = (0, 0, 1, 1, 1, 1, 1, . . .)

}
σmask2∧mask3,1 = (0, 0, 1, 0, 0, 1, 0, . . .).

We can perform the attack from the recovered masks values. The source code of
the attack for the GitHub implementation is given in Appendix D.
Other variations can be observed but are not exploited here.
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(a) Full trace and a zoom of the first inner loop

(b) Full trace and a zoom of the second inner loop

Fig. 4: Measurements for the reference implementation - traces of the two inner
loops in Gaussian elimination for the processing of one column in ROLLO-I-128:
in green the treatment when the bit is 0 and in red when the bit is 1.
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Fig. 5: Measurement for the GitHub implementation - trace of the treatment of
one column in ROLLO-I-128.

3.4 Experimentation with a Cortex-M4 and comparison

In this section, we show that the attack is also applicable on a ARM Cortex-M4.
For the experimentation we use the ROLLO-I-128 implementation provided in
the mupq git [21] on a STM32F4 ChipWhisperer microcontroller. The traces are
captured with a RTO2000 oscilloscope with bandwidth 3GHz. We put a trigger
right before the execution of the Gaussian elimination.
The measurement of eight executions of the main loop in the Gaussian elimi-
nation is given in Figure 6. The distinction between the execution of the first
and the second inner loop in Algorithm 1 is simple: we just have to look at the
bottom of the measurement. Thus, it is possible to determine the start and the
end of each inner loop.

Figure 7 provides measurements obtained with a Cortex-M4. Similarly to Fig-
ure 4 with a Cortex-M3, the traces are annotated with rectangles and colors:
green for a mask at 0 and red for a mask at 1.
We notice that in Figure 4a the difference between a mask at 0 and a mask at
1 is more pronounced than in Figure 7a. In fact, in the latter, the difference of
power consumption between both masks is smaller and requires to look carefully
at the end of the pattern to distinguish them. For Figure 4b and Figure 7b, the
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Fig. 6: Measurement of eight executions of the main loop in the Gaussian elimi-
nation.

patterns for a mask at 0 and a mask at 1 are similar. However, we notice that the
decreasing power in the pattern of a mask at 0 is more accentuated in Figure 7b.
Because of a lack of space, we did not develop the automation of our leakage
detection. Nonetheless, we manage afterwards to perform a template analysis on
our measured traces.

4 Countermeasures

In this section, we propose two solutions to protect the future implementations
against our attack. It is important to remark that the implementations with the
countermeasures remain in constant-time.

4.1 First countermeasure for the reference implementation

The first countermeasure consists in reducing the differentiation between a multi-
plication of a word by zero or by one. For this, we mask the coefficients processed.
In the first inner for loop, we split the pivot row into two parts. Thus, for each
iteration, we compute

spivot_row = s1pivot_row ⊕ s2pivot_row,

with s1pivot_row, s2pivot_row ∈ F2m . The variable tmp (line 6 - Algorithm 1) is
then computed as

tmp = (mask′ ∧ (si ⊕ s2pivot_row)) ∨ (¬mask′ ∧ s2pivot_row),

with mask′ = ¬(mask − 1). Then, we can update the pivot row by computing

spivot_row = s1pivot_row ⊕ tmp.

If i ≤ pivot_row, we have

dummy = s1pivot_row ⊕ tmp.
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(a) Full trace and a zoom of the first inner loop

(b) Full trace and a zoom of the second inner loop

Fig. 7: Measurement for the processing, on the Cortex M4, of one column in the
Gaussian elimination from the reference implementation.
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The same operations are performed in the second inner for loop by replacing
the pivot row by the processed row si. With this countermeasure, whether the
mask is zero or one, we always perform the same operations, namely two bitwise
ANDs between non-zero and zero words. Thus, we are not able to distinguish
different patterns when mask equals 0 or 1. We applied the same set up as in
Section 3.3 to illustrate this in Figure 8.

Fig. 8: First for loop trace of Gaussian elimination with masking countermeasure.

4.2 Second countermeasure for both implementations

The second countermeasure is based on shuffling. The treatment of each column
is performed randomly by using an algorithm generating a random permutation
of a finite set such as the Fisher-Yates method (described in Algorithm 3). The
choice is left to the developer under condition of a good implementation.
For the reference implementation, a list containing the coefficients indexes is
randomized before the two inner for loops. Then, at each iteration the pivot
row is chosen randomly and the other coefficients in a column are processed
following the order of the randomized list. This countermeasure is presented in
Appendix E (Algorithm 5). As the indexes are shuffled before the two inner
for loops, there is no correlation between the masks of the first for loop (line 8
- Algorithm 5) and the masks of the second for loop (line 19 - Algorithm 5).
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Algorithm 3: FisherYatesShuffle
Input: L list of n elements
Output: the list L shuffled

1 for i = n− 1, · · · , 0 do
2 j = random() mod i
3 exchange Li and Lj

4 end

For the GitHub implementation, a similar countermeasure is presented in Ap-
pendix E (Algorithm 6). Before each iteration on rows, the pivot row is chosen
randomly and the indexes are shuffled using Fisher-Yates method.

With the randomization countermeasure, an attacker can distinguish patterns
related to the masks values for both implementations but not determine the
order of elements. Moreover, a brute force attack is not achievable. Indeed, an
adversary has n! possibilities for each column which implies a total of (n! )m
possibilities to recover the syndrome matrix. Thus, only the number of zeros
and ones on the matrix will be known.

We provide in Table 2 the performances analysis for the SC300 processor of
the impact of our countermeasures. This impact depends on the board and the
used random number generator. We counted the cycles by using IAR Embedded
Workbench IDE for ARM5 compiler C/C++ with high-speed optimization level.

implementation Reference GitHub
countermeasure masking randomization without randomization without
# cycles (×106) 3,15 2,5 1,82 2,9 2,22

Table 2: Impact factor of Gaussian elimination with and without countermea-
sures for ARM securCore SC300 processor.

5 Conclusion and perspectives

We show in this paper that constant-time implementations of Gaussian elimina-
tion provided in [6] and [18] are both sensitives to power consumption attacks.
The weakness, directly linked to the mask used to avoid timing attacks, allows us
to make the first attack by side-channel on the last implementation version given
by the authors of ROLLO. We can also applied our attack on another implemen-
tation of ROLLO-I-128. These attacks can lead to a full recovery of the private

5 https://www.iar.com/knowledge/learn/debugging/
how-to-measure-execution-time-with-cyclecounter/

https://www.iar.com/knowledge/learn/debugging/how-to-measure-execution-time-with-cyclecounter/
https://www.iar.com/knowledge/learn/debugging/how-to-measure-execution-time-with-cyclecounter/
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key using a single trace. To secure the implementations, we propose two different
countermeasures. The first one can be applied to [6] by hiding the values of the
mask. The second countermeasure can be applied to both implementations. The
idea is to treat each row in a column of the matrix in a random way. It adds
randomness which makes our attack not exploitable in practice anymore. Other
attacks as CPA or DPA could not be applied because of single-trace only. We
base our work on traces got from Cortex-M3 and Cortex-M4. We show that the
attacks are feasible in both cases even though there is some difference in the
traces.
The constant-time Gaussian elimination function is in the rbc_library library.
This library is also used in the implementation of the RQC scheme. Even though
the Gaussian elimination in constant time is not used in the RQC implementa-
tion, the entire library should be analyzed to find possible leakage. In particular,
we want to analyze the Karatsuba function used in both ROLLO implementation
and the polynomial multiplication for computation over ideal codes in RQC.
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A Rank Support Recovery Algorithm

Algorithm 4: Rank Support Recovery (RSR) algorithm
Input: An Fq-subspace F = 〈f1, · · · , fd〉, s = (s1, · · · , sn) a syndrome of an

error e, r the error’s rank weight
Output: A candidate E for the support of e

1 // Part 1 : Compute the vector space EF
2 Compute S = 〈s1, · · · , sn〉
3 // Part 2 : Recover the vector space E

4 Pre-compute every Si = f−1
i .S for i = 1 to d

5 E ←
⋂

1≤i≤d

Si

6 return E

B Toy example for the attack for the reference
implementation

Let us take a small example, with q = 2, m = 5 and n = 7, to illustrate the
information leakage that we found.

Assume we want to recover the following
matrix 

1 1 1 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 0 0 1 0


corresponding to the syndrome s ∈ F7

25 .

−→

The searched matrix is defined as

S =



s0,0 s0,1 s0,2 s0,3 s0,4
s1,0 s1,1 s1,2 s1,3 s1,4
s2,0 s2,1 s2,2 s2,3 s2,4
s3,0 s3,1 s3,2 s3,3 s3,4
s4,0 s4,1 s4,2 s4,3 s4,4
s5,0 s5,1 s5,2 s5,3 s5,4
s6,0 s6,1 s6,2 s6,3 s6,4



After the execution of the Gaussian elimination process, we guess from the power
consumption analysis the masks in the first and second loops:
1. masks in the first loop for each column:

(∗, 1, 1, 1, 0, 0, 0), (1, ∗, 1, 0, 1, 1, 0), (1, 0, ∗, 0, 1, 0, 1), (1, 1, 1, ∗, 0, 1, 1),
(1, 1, 1, 0, ∗, 1, 0)

2. masks of the second loop for each column:

(∗, 0, 0, 0, 1, 1, 1), (1, ∗, 1, 1, 0, 0, 1), (0, 1, ∗, 1, 0, 1, 0), (1, 1, 1, ∗, 0, 1, 0),
(1, 1, 1, 0, ∗, 1, 1),
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with ∗ the pivot. As explained in Section 3.1, the ∗ are replaced by one.

Let us focus on recovering the two first columns of the syndrome matrix. The
recovered masks vector of the first loop (1, 1, 1, 1, 0, 0, 0) provides the additions
on the pivot row 0:

J0 × S =

 1 1 1 1 0 0 0

0 I6

× S[0] =



s0,0 + s1,0 + s2,0 + s3,0
s1,0
s2,0
s3,0
s4,0
s5,0
s6,0


.

The masks vector of the second loop σ′0 = (1, 0, 0, 0, 1, 1, 1) is the solution vector
of the system of linear equations where si,j are unknowns. Thus, by applying a
SageMath6 linear solver on the system

J0 × S[0] = (1 0 0 0 1 1 1)t,

we find the solution (1, 0, 0, 0, 1, 1, 1), which corresponds to the first column of
the syndrome matrix (see Appendix C for the source code). At the end of the
process of the first column, we have the matrix

S0 =

 (σ′0)
t
0
I6

× J0 × S.

For the second column, the recovered masks vector of the first loop is (1, 0, 1, 0,
1, 1, 0). However, as explained in Section 3.1, only the rows for which the index
row is greater than the index pivot row are added to the pivot row. Thus, in
the recovered masks vector, we replace one by zero for i < 1. This gives us the
vector σ1 = (0, 0, 1, 0, 1, 1, 0). In addition, the masks vector of the second loop is
σ′1 = (1, 1, 1, 1, 0, 0, 1).

1 0 0 0 0 0 0

0 1 1 0 1 1 0

0 I5


︸ ︷︷ ︸

J1

× S0[1] = (1 1 1 1 0 0 1)t.

The result of this system corresponds to the vector (1, 0, 1, 1, 1, 1, 0).
At the end, we have the matrix

S1 =

 1
(σ′1)

t
0

0 I5

× J1 × S0.

We perform the same for the three remaining columns.
6 https://www.sagemath.org/

https://www.sagemath.org/
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C Source code for the attack on the reference
implementation using SageMath

1 def matrix_equation(pivot_index , mask_firstloop ,
mask_secondloop , nbrow):

2

3 # Initialization of the two matrices that will
determine the system of equations

4 Meq1 = identity_matrix(Zmod (2),nbrow)
5 Meq2 = identity_matrix(Zmod (2),nbrow)
6

7 # Placing coefficients at 1 for the additions on the pivot
row , defined thanks to the ’masks ’ of the first loop

8 for i in range(len(mask_firstloop)):
9 if(mask_firstloop[i]):

10 Meq1[pivot_index ,i]=1
11

12 # Placing coefficients at 1 for the additions on rows with
the leading coefficient at 1, defined thanks to the masks
of the second loop

13 for i in range(len(mask_secondloop)):
14 if(mask_secondloop[i]):
15 Meq2[i,pivot_index ]=1
16

17 return Meq1 ,Meq2
18

19 def matrix_equation_columnindex(masks_firstloop ,
masks_secondloop ,nbrow ,columnindex):

20

21 M =[]
22

23 # Initialization of M with the matrices of equations
24 for i in range(columnindex +1):
25 M.append(matrix_equation(i, masks_firstloop[i],

masks_secondloop[i], nbrow))
26

27 return M
28

29 def equations_to_solve(masks_firstloop , masks_secondloop ,
nbcolumn ,nbrow ,columnindex):

30

31 # Initiatialization of the matrices to define the system of
equations

32 Meq = matrix_equation_columnindex(masks_firstloop ,
masks_secondloop ,nbrow ,columnindex)

33

34 # Multiplication of the matrices to determine all the
equations for the column "columnindex"

35 Stmp = Meq [0][0]
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36 for i in range(columnindex):
37 Stmpbis = Meq[i][1]* Stmp
38 Stmp =Meq[i+1][0] * Stmpbis
39

40 #Solving the system of equations
41 S = Stmp.solve_right(matrix(Zmod (2),masks_secondloop[

columnindex ]).transpose ())
42

43 return S

D Source code for the attack on the GitHub
implementation using SageMath

1 # matrix_equation returns a matrix of all the additions made
on rows to get the system of equation for given pivot
index and masks.

2 def matrix_equation(index_column , pivot_index , mask1 , mask2 ,
mask3 , nbrow):

3 copy_pivot_index = pivot_index
4

5 # If mask1 is full of ones then the column does not
contain a pivot or the pivot is on the last row.

6 # In the first case we return the identity matrix ,
7 # Else the position of the first zero on mask1 determines

the pivot ’s position.
8 if(mask1.count (0) ==0):
9 if(mask2 [-1]& mask3[-1] == 1):

10 pivot_position= nbrow -1
11 else:
12 return identity_matrix(Zmod (2),nbrow), copy_pivot_index
13 else:
14 if(mask1.index (0) ==0):
15 pivot_position= pivot_index
16 else:
17 pivot_position = mask1.index (0) -1
18

19 # Initialization of the two matrices that will determine
the system of equations

20 Mpivot = identity_matrix(Zmod (2),nbrow)
21 Mrows = identity_matrix(Zmod (2),nbrow)
22

23 # Then the matrix Mpivot get an additionnal one that
indicates which row has been added to pivot row

24 Mpivot[pivot_index ,pivot_position] = 1
25

26 # The pivot row is added to the processed row when (mask2
[i] and mask3[i])=1.

27 # We use those mask to determine when operations on the
rows have been performed except for the pivot row.



26 Cheriere-Mortajine-Richmond-El Mrabet

28 # All the operations are represented by a one in the
matrix Mrows at the position i (number of the processed
row) and the pivot index.

29 for i in range(nbrow):
30 if((mask2[i]& mask3[i])==1):
31 Mrows[i,pivot_index ]=1
32

33 # Meq is the matrix representation of all the addition to
make to get the system of equation

34 Meq = Mrows*Mpivot
35 copy_pivot_index = pivot_index + 1
36 return Meq , copy_pivot_index
37

38 def matrix_equation_columnindex(mask1s , mask2s ,mask3s ,nbrow ,
columnindex):

39 M =[]
40 pivot_index =0
41 # Initialization of M with the matrices of equations
42 for i in range(columnindex):
43 R = matrix_equation(i, pivot_index , mask1s[i], mask2s[i],

mask3s[i],nbrow)
44 # In the case there is no pivot in a column , the index

pivot is unchanged
45 pivot_index = R[1]
46 M.append(R[0])
47

48 return M
49

50 def solution_vector(mask2s ,columnindex):
51 # Return the vector solution of the system of equation for

the column "columnindex"
52 return matrix(Zmod (2),mask2s[columnindex ])
53

54 def equations_to_solve(mask1s , mask2s ,mask3s ,nbcolumn ,nbrow ,
columnindex):

55 # In the case we want to recover the column 0 of the
matrix , the vector mask2 gives directly the solution

56 if(columnindex ==0):
57 S = solution_vector(mask2s ,columnindex)
58 return S
59

60 # Initiatialization of the matrices to define the system of
equations

61 Meq = matrix_equation_columnindex(mask1s ,mask2s ,mask3s ,
nbrow ,columnindex)

62

63 # Multiplication of the matrices to determine all the
equations for the column "columnindex"

64 Stmp = identity_matrix(Zmod (2),nbrow)
65 for i in range(columnindex):
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66 Stmp = Meq[i]*Stmp
67

68 #Solving the system of equations
69 v_sol = solution_vector(mask2s ,columnindex)
70 S = Stmp.solve_right(v_sol.transpose ()).transpose ()
71

72 return S

E Algorithms for countermeasures with randomization

Algorithm 5: Gaussian elimination in constant time with randomiza-
tion

Input: S ∈Mn,m(F2)
Output: S ∈Mn,m(F2) in systematic form

1 mask = dimension = 0
2 L← array containing indexes 0, . . . , n− 1
3 for j = 0, · · · ,m− 1 do
4 pivot_row = min(dimension, n− 1)
5 randpivot = random(pivot_row + 1, n− 1)
6 exchange spivot_row and srandpivot

7 L = FisherYatesShuffle(L)
8 for i = 0, · · · , n− 1 do
9 randrow = L[i]

10 mask = spivot_row,j ⊕ srandrow,j

11 tmp = mask ⊗ srandrow

12 if randrow > pivot_row then
13 spivot_row = spivot_row ⊕ tmp
14 else
15 dummy = spivot_row ⊕ tmp
16 end
17 end
18 L = FisherYatesShuffle(L)
19 for i = 0, · · · , n− 1 do
20 randrow = L[i]
21 if randrow 6= j then
22 mask = srandrow,j

23 tmp = mask ⊗ spivot_row

24 if dimension < n then
25 srandrow = srandrow ⊕ tmp
26 else
27 dummy = srandrow ⊕ tmp
28 end
29 end
30 end
31 dimension = dimension+ spivot_row,i

32 end



28 Cheriere-Mortajine-Richmond-El Mrabet

Algorithm 6: Row echelon form in constant time with randomization
Input: S ∈Mn,m(F2)
Output: S ∈Mn,m(F2) in row echelon form and its rank = pivot_row

1 pivot_row = 0
2 L← array containing indexes 0, . . . , n− 1
3 for j = 0, · · · ,m− 1 do
4 randpivot = random(pivot_row + 1, n− 1)
5 exchange spivot_row and srandpivot

6 L = FisherYatesShuffle(L)
7 for i = 0, · · · , n− 1 do
8 randrow = L[i]
9 if spivot_row,j == 0 then

10 mask1 = 1
11 else
12 mask1 = 0
13 end
14 if srandrow,j == 1 then
15 mask2 = 1
16 else
17 mask2 = 0
18 end
19 if randrow ≥ pivot_row then
20 mask3 = 1
21 else
22 mask3 = 0
23 end
24 spivot_row ← spivot_row ⊕ si ∧ (mask1 ∧ (mask2 ∧mask3))
25 srandrow ← srandrow ⊕ spivot_row ∧ (mask2 ∧mask3)
26 end
27 if spivot_row,j = 1 and pivot_row < n then
28 pivot_row = pivot_row + 1
29 end
30 end
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