
1

ROSE: Robust Searchable Encryption with
Forward and Backward Security and Practical

Performance
Peng Xu, Member, IEEE, Willy Susilo, Senior Member, IEEE Wei Wang, Member, IEEE, Tianyang Chen,

Qianhong Wu, Member, IEEE, Hai Jin, Fellow, IEEE

Abstract—Dynamic searchable symmetric encryption (DSSE) has been widely recognized as a promising technique to delegate
update and search queries over an outsourced database to an untrusted server while guaranteeing the privacy of data. Many efforts
on DSSE have been devoted to obtaining a good tradeoff between security and performance. However, it appears that all existing
DSSE works miss studying on what will happen if the DSSE client issues irrational update queries carelessly, such as duplicate
update queries and delete queries to remove non-existent entries (that have been considered by many popular database system in
the setting of plaintext). In this scenario, we find that (1) most prior works lose their claimed correctness or security, and (2) no single
approach can achieve correctness, forward and backward security, and practical performance at the same time. To address this
problem, we study for the first time the notion of robustness of DSSE. Generally, we say that a DSSE scheme is robust if it can keep the
same correctness and security even in the case of misoperations. Then, we introduce a new cryptographic primitive named
key-updatable pseudo-random function and apply this primitive to constructing ROSE, a robust DSSE scheme with forward and
backward security. Finally, we demonstrate the efficiency of ROSE by analyzing its computation and communication complexities and
testing its search performance. The experimental results show that ROSE has a very efficient search performance over a large dataset.

Index Terms—Searchable Symmetric Encryption; Forward and Backward Security; Robustness; Key-Updatable Pseudo-Random
Function

F

1 INTRODUCTION

S EARCHABLE symmetric encryption (SSE) enables a client
to outsource his encrypted data to an honest-but-curious

server while keeping the ability to issue keyword search
queries over these ciphertexts [1], [2]. Dynamic SSE (DSSE)
adds new capabilities for the client to update the outsourced
database, such as adding new entries and deleting some
existent entries [3]. In terms of security, a DSSE scheme
guarantees that the curious server can infer the information
as little as possible about the outsourced database and the
issued search and update queries from the client. This
security is described by the notion of leakage functions that
define the types of leaked information to the server. In
practice, the cores of designing a DSSE scheme are tradeoffs
between efficiency, such as storage or communication cost or

• P. Xu, T. Chen, and H. Jin are with the National Engineering Research
Center for Big Data Technology and System, Services Computing Tech-
nology and System Lab, Hubei Engineering Research Center on Big Data
Security, School of Cyber Science and Engineering, Huazhong University
of Science and Technology, Wuhan, China. P. Xu is also with the Shenzhen
Huazhong University of Science and Technology Research Institute, Shen-
zhen, China. Emails: {xupeng, chentianyang, hjin}@mail.hust.edu.cn.

• W. Susilo is with the Institute of Cybersecurity and Cryptology, School
of Computing and Information Technology, University of Wollongong,
Australia. Email: wsusilo@uow.edu.au.

• W. Wang is with the Cyber-Physical-Social Systems Lab, School of
Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, China. Emails: viviawangww@gmail.com.

• Q. Wu is with the School of Electronic and Information Engineering,
Beihang Univerisity, Beijing, China. Email: qianhong.wu@buaa.edu.cn.

search performance, and the amount of leaked information.
At present, forward and backward security [4] is an impor-

tant property of DSSE to mitigate the devastating leakage-
abuse attacks [5], [6] by ensuring that (1) the newly updated
entries cannot be linked with the previous update and
search queries (called forward security [7]), and (2) the
deleted entries cannot be found by the subsequent search
queries (called backward security [8]). Specifically, backward
security includes three different types of leakage (Type-I to
Type-III ordered from most to least secure). As results, some
well-known DSSE schemes were designed in the past three
years for obtaining forward-and-backward security while
achieving high efficiency as much as possible [9], [8], [10],
[11]. Table 1 lists these DSSE schemes and compares their
efficiency and forward-and-backward security. It shows that
the DSSE schemes with forward and Type-III backward
security are much more practical than the others.

Our Motivation. It is unfortunate that most of these
DSSE schemes are ineffective or insecure if the client issues
the irrational update queries carelessly, such as adding
or deleting the same entry repeatedly and deleting the
non-existent entry. In short, these schemes cannot be ro-
bust, since such irrational update queries are hard to be
avoided in practice, and many popular database systems,
like MySQL, have considered them. The remaining DSSE
schemes are robust, but their computation and communica-
tion costs are very high. Referring to Table 1, the details of
the above problems are as follows.

Schemes Dianadel [8], ORION [11], and HORUS [11] can-
not guarantee forward security when adding or deleting the

2

Table 1: Comparisons with prior forward-and-backward secure works. N is the total number of keyword/file-identifier
pairs, W is the number of distinct keywords, and F is the total number of files. For keyword w, aw is the total number
of inserted entries, dw is the number of delete queries, dmax is the supported maximum number of delete queries, nw
is the number of files currently containing w, sw is the number of search queries that occurred, iw is the total number
of add queries, and s′w is a number having s′w ≤ sw (s′w is explained in Sec. 7). All schemes except ROSE and QOS have
aw = nw + dw. Specifically, ROSE has aw = nw + s′w + dw, and QOS has aw = iw + dw. RT is the number of round trips
for search until that the server obtains the matching file identifiers. BS stands for backward security. The notation Õ hides
polylogarithmic factors.

Scheme Robust Computation Communication Client BSSearch Update Search RT Update Storage
Moneta [8] " Õ(awlogN + log3N) Õ(log2N) Õ(awlogN + log3N) 3 Õ(log3N) O(1) I

Fides [8] " O(aw) O(1) O(aw) 2 O(1) O(W logF) II
Dianadel [8] % O(aw) O(logaw) O(nw + dwlogaw) 2 O(1) O(W logF) III

Janus [8] % O(nw · dw) O(1) O(nw) 1 O(1) O(W logF) III
Janus++ [10] % O(nw · dmax) O(dmax) O(nw) 1 O(1) O(W logF) III
MITRA [11] % O(aw) O(1) O(aw) 2 O(1) O(W logF) II
ORION [11] % O(nwlog2N) O(log2N) O(nwlog2N) O(logN) O(log2N) O(1) I
HORUS [11] % O(nwlogdwlogN) O(log2N) O(nwlogdwlogN) O(logdw) O(log2N) O(W logF) III
FB-DSSE [12] % O(aw) O(1) O(F) O(1) O(F) O(W logF) I

SDa [13] % O(aw + logN) O(logN) O(aw + logN) 2 O(logN) O(1) II
SDd [13] % O(aw + logN) O(log3N) O(aw + logN) 2 O(log3N) O(1) II
QOS [13] % O(nwlog iw + log2W) log3N O(nwlog iw + log2W) O(logW) O(log3N) O(1) III
Aura [14] % O(nw) O(1) O(nw) 1 O(1) O(W · dmax) II

SEED [Sec. 5] % O(aw) O(1) O(nw) 2 O(1) O(W logF) III
ROSE [Sec. 7] " O((nw + s′w + 1)dw) O(1) O(nw) 2 O(1) O(W logF) III

same entry repeatedly. Suppose that the database is empty;
then, the client successively adds the same keyword/file-
identifier pair (w, id) twice. In Dianadel, it is trivial for the
server to find that these two add queries are for adding the
same keyword, which contradicts with forward security. In
ORION and HORUS, these two add queries have distinctly
different procedures in the view of the server. Hence, the
server can find the relationship between these two add
queries, which makes ORION and HORUS fail to guarantee
forward security. In addition, these two schemes are also not
forward secure when deleting the same entry repeatedly for
the same reason. Although both ORION and HORUS try
to hide the above mentioned differences by running some
dummy operations, their methods fail to achieve the aim.

After deleting a non-existent entry, schemes Dianadel
and Janus [8], Janus++ [10], SDa and SDd [13], Aura[14], and
MITRA [11] disallow the client to add the entry in the future.
More generally, these seven schemes restrict the client to re-
add the already deleted keyword/file-identifier pairs. This
restriction contradicts the fact that the keywords of data rely
on the data’s content, and some keywords of data may be
deleted and then recovered along with the constant update
of the data’s content in practice. Hence, a DSSE scheme
will be much more effective in practice if it can break the
restriction. However, Dianadel and Janus explicitly men-
tioned that they fail to achieve the breakthrough. Janus++
has the same problem since it has the same essence as Janus
when deleting an entry, except that their delete queries
are based on puncturable encryptions [10], [15] in public-
key and symmetric-key settings, respectively. Besides, if the
same entry has been duplicately added, then scheme FB-
DSSE [12] can not return the correct search result in future.
Scheme QOS [13] fails to delete an entry that has been added
twice or more, since a delete query of QOS only deletes the

latest corresponding add query. This problem results that
the QOS client may receive incorrect search results from the
server.

All existing DSSE works miss studying robustness. But,
schemes Moneta [8] and Fides [8] unintentionally achieve
this feature with a very high cost. Specifically, in terms
of communication cost, these two schemes need to return
all matching ciphertexts, including the ciphertexts of the
deleted entries, to the client from the server, and then the
client decrypts the received ciphertexts. Hence, they waste
the communication cost to transfer the non-expected cipher-
texts. Furthermore, after decrypting those ciphertexts, the
client in both Moneta and Fides re-adds the non-removed
entries to the server using a new secret key. Moneta applies
a two-round ORAM [16], thus it is efficient in terms of
round trip. However, it takes much more computation and
bandwidth costs than Fides. More details are in Table 1.

Our Contributions. A simple idea to alleviate from the
above problems requires the client to query the update his-
tory before issuing each update query. However, this idea
is impractical since it largely increases either the number
of search queries or the client’s storage cost. Moreover,
it cannot enable the client to re-add the already deleted
entries. Hence, we aim to construct a new DSSE scheme with
robustness, forward and backward security, and practical
performance. We start by investigating the robustness of
some other prior DSSE works (Sec. 2) and introducing some
background knowledge about searchable encryption and
forward and backward security (Sec. 3). Our contributions
can be summarized as follows.

1) To the best of our knowledge, this paper is the
first one to define robustness of DSSE (Sec. 4). A
robust DSSE scheme means that it can keep the
same correctness and security regardless of whether

3

the client adds or deletes the same keyword/file-
identifier pair repeatedly or deletes the non-existent
keyword/file-identifier pair or not. Correspond-
ingly, we extend the original definition of backward
security to contain the multiple timestamps of the
duplicate update queries. In contrast, only one
timestamp was defined in the original definition,
since it implicitly assumes that no duplicate update
query occurs.

2) To help understanding our ultimate DSSE scheme,
we first construct a basic DSSE scheme named SEED
(Sec. 5). SEED is forward and Type-III backward
secure, practical, but not robust. Table 1 shows that
SEED has the optimal complexity in most terms of
computation and communication costs, except for
the same storage cost as most of the prior works.
SEED does not apply any expensive operation, such
as the modular exponentiation or bilinear mapping
that was used in schemes Σoφoς [7], Janus, and
Janus++. Hence, SEED is also of independent inter-
est in achieving high performance.

3) To transform SEED to our ultimate DSSE scheme,
we define a new cryptographic primitive called key-
updatable PRF and construct its instance based on
an early PRF scheme [17] (Sec. 6). This instance
is provably secure under the decisional Diffie-
Hellman (DDH) assumption in the random oracle
(RO) model. It enables a client to outsource his PRF
values to a server and then allows the server to
update the original secret key of those PRF values to
a new one when receiving a key-update token from
the client. In concept, key-updatable PRF is distinct
from the notion of key-homomorphic PRF [18], even
though both of them can update the secret key of
PRF values since they use entirely different inputs
to achieve the key update. More details about their
differences are in Sec. 6.

4) Finally, we construct a robust DSSE scheme named
ROSE (Sec. 7). ROSE is forward and Type-III back-
ward secure under the adaptive attacks. It has the
same complexity as SEED in most terms of compu-
tation and communication costs except for search
performance. Since ROSE applies an ingenious de-
sign to make s′w ≤ Min(sw, nw + 1) hold, where
Min(sw, nw + 1) stands for the minimum one of sw
and (nw + 1), ROSE has the same search complexity
as Janus and Janus++ in the worst case. Moreover,
in practice, ROSE takes much less search time than
Janus and Janus++, since the number of expensive
operations in ROSE, such as modular exponentia-
tion, is linear with O(s′w ·dw) rather than O(nw ·dw),
and s′w < nw usually holds except for some par-
ticular case. Hence, ROSE also has practical search
performance. Sec. 8 tests the search performance of
ROSE comprehensively.

To summarize, this paper investigates many prior DSSE
schemes from a new perspective, i.e., robustness, and finds
that all prior forward and backward secure DSSE schemes
are either not robust or impractical. Hence, we are interested
in tackling this problem and constructing ROSE. To achieve

this work, we introduce key-updatable PRF for the first time
and take it as the critical component to construct ROSE.

2 DSSE SCHEMES REVISITED

SSE was first introduced by Song et al. with an instance
that has search performance linear with the size of the
database [1]. Later, Chang et al. proposed a forward secure
SSE scheme, but its search performance is still linear [19].
Curtmola et al. were the first to formally define information
leakage and proposed an SSE scheme in the static setting,
and this scheme has the sub-linear search performance [2].
DSSE was first introduced by Kamara et al. [3]. In this sec-
tion, we investigate some other well-known DSSE schemes
regarding their robustness and find that only two of them
are robust, but no single scheme has robustness, forward
and backward security, and practical performance at the
same time.

There are two DSSE schemes that explicitly assume the
client never issues the irrational update queries. Clearly,
these schemes are not robust. For example, Cash et al.
[20] and Stefanov et al. [4] proposed two practical DSSE
schemes with small leakage, but Cash et al. mentioned that
“We assume throughout that the client never tries to add a
record/keyword pair that is already present”, and Stefanov et
al. assumed that “deletions happen only after additions”.

Although the other DSSE schemes do not explicitly state
the above assumption, most of them are still not robust. We
categorize them into the following three types according to
their flaws caused by the irrational update queries.

When issuing the same add query repeatedly, the prior
DSSE schemes in [3], [21], [22], [23], [9], [24] cannot keep
their claimed correctness or security. For example, in [21],
[22], [9], the information leakage caused by the duplicate
add queries will be beyond the limitation of their security
definitions, especially the extra leakage about the relation-
ship of those add queries; in [3], the duplicate add queries
will insert several copies of the same data into the database;
however, the subsequent delete query can just remove
one copy of them, in other words, the delete task cannot
be achieved completely; in [9], the duplicate add queries
cause some data to be replaced improperly, such that the
subsequent search query cannot be achieved correctly; in
[24], scheme CLOSE-FB may fail to delete entries or disallow
the client to re-add a deleted entry due to it randomly
decrypts entries and perform deletion during a search; and
in [23], for a keyword, if the client issues a search query in
the middle of two duplicate add queries, the relationship
between those two add queries will be leaked, which is
beyond the leakage amount defined in that work. When
issuing the same delete query repeatedly, the prior DSSE
schemes in [21], [25] leak the relationship of those duplicate
delete queries, which is beyond their security definitions.
The DSSE schemes in [26], [27], [7], [28] disallow the client
to re-add an already deleted entry. Otherwise, the re-added
entry will be deleted by the server mistakenly. This mistake
causes the subsequent search query to return incomplete
results.

Fortunately, there are two prior DSSE schemes, named
DOD-DSSE and FAST in [29], [30], respectively, that are
robust. In terms of security, DOD-DSSE is forward and

4

backward secure, since no relationship among queries is
leaked; FAST is forward secure but not backward secure. In
terms of performance, when issuing an update or search
query, DOD-DSSE requires the client to fetch all related
data (which has a size linear with the maximum number
of keywords or files) from the server, update those data
locally if the current query is an update one, and re-
add the updated or original data to the server; thus, this
scheme takes very high computation and communication
costs; FAST has a practical search and update performance.
In addition, DOD-DSSE must set the maximum numbers of
keywords and files when initializing it.

3 BACKGROUND

Notations. Let λ ∈ N be the security parameter. Symbol
x

$← X means randomly picking x from the set or space X .
Symbol |x| means the binary size of the element x. Symbol
|X |means the number of elements in the set X . Symbol x||y
means concatenating strings x and y. Symbol {0, 1}i means
the 0/1 strings of length i ∈ N. Symbol {0, 1}∗ means the
0/1 strings with an arbitrary length. Symbol poly(λ) means
a polynomial in parameter λ. Let ⊥ be the abort symbol.

Symmetric Encryption (SE). Given a security parameter
λ ∈ N, an SE scheme with the key space KSE = {0, 1}λ,
the plaintext spaceMSE = {0, 1}∗, and the ciphertext space
CSE consists of two algorithms SE=(SE.Enc, SE.Dec) with the
following syntax:

• SE.Enc(K,m) takes a secret key K ∈ KSE and a
plaintext m ∈ MSE as inputs and probabilistically
generates a ciphertext ct.

• SE.Dec(K, ct) takes a secret key K and a ciphertext
ct ∈ CSE as inputs and recovers a plaintext M ∈MSE
or returns ⊥.

An SE scheme must be correct in the sense that given any
ciphertext ct ← SE.Enc(K,m) of a secret key K ∈ KSE and
a plaintext m ∈ MSE, algorithm SE.Dec can always recover
the plaintext m from ct using the secret key K . In terms
of security, a popular requirement of SE is the semantic
security under chosen plaintext attack (SS-CPA). Roughly,
an SS-CPA secure SE scheme guarantees that without the
correct secret key, no probabilistic polynomial time (PPT)
adversary can distinguish any two SE ciphertexts of the
same binary size.

Pseudorandom Function. Let F : KF × XF → YF be an
efficient function with the key space KF, the domain XF,
and the range YF. It is called a PRF if for all sufficiently
large security parameter λ ∈ N and PPT adversary A, its
advantage defined as

AdvPRF
A,F(λ) = |Pr[AF(K,·)(λ) = 1]− Pr[Af(·)(λ) = 1]|

is negligible in λ, whereK $← KF and f is a random function
from XF to YF.

Searchable Encryption. A dynamic search-
able symmetric encryption (DSSE) scheme Σ =
(Σ.Setup,Σ.Update,Σ.Search) consists of algorithm
Σ.Setup and protocols Σ.Update and Σ.Search both
between a client and a server:

• Σ.Setup(λ): the client takes a security parameter λ as
input and initializes (K,σ,EDB), where K is a secret
key for the client, σ is the client’s local state, and
EDB is an empty encrypted database that is sent to
the server.

• Σ.Update(K,σ, op, (w, id); EDB): this protocol is for
adding an entry to or deleting an entry from EDB as
the client’s request. In it, the client takes his secret
key K , local state σ, query type op ∈ {add, del}, and
a keyword/file-identifier pair (w, id) as inputs; the
server takes EDB as input. After the protocol, the pair
(w, id) is added to or deleted from EDB.

• Σ.Search(K,σ,w; EDB): this protocol is for searching
EDB as the client’s query. In it, the client takes his se-
cret key K, local state σ, and a keyword w as inputs;
the server takes EDB as input. After the protocol, the
results matching keyword w are returned from the
server to the client.

Informally, Σ is correct if protocol Σ.Search always re-
turns correct results with an overwhelming probability for
each query. We refer readers to [3] for the formal definition.
In terms of security, the adaptive security of DSSE is cap-
tured by the indistinguishability between a real and an ideal
game, and both games allow an adversary to adaptively
perform update and search queries. Intuitively, a secure
DSSE scheme guarantees that a PPT adversary should not
learn any information about the content of EDB and the
queries issued by the client, except some explicit leakage.
The adaptive security of a DSSE scheme is parameterized
by a (stateful) leakage function L = (LStp,LUpdt,LSrch)
that captures the information learned by the adversarial
server throughout the execution of the DSSE scheme, and
the components of L express the information leaked by
Σ.Setup, Σ.Update, and Σ.Search respectively.

Definition 1 (Adaptive Security of DSSE). A DSSE scheme
Σ is said to be L−adaptively secure if for all sufficiently large
security parameter λ ∈ N and PPT adversary A, there is an
efficient simulator S = (S.Setup,S.Update,S.Search) such that

|Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S,L(λ) = 1]|

is negligible in λ, where games RealΣA(λ) and IdealΣA,S,L(λ) are
defined as:

• RealΣA(λ): Initially, generate (K,σ,EDB)← Σ.Setup(λ)
and send EDB to A. Then, A adaptively issues update
(resp. search) queries with input (op, w, id) (resp. w)
and observes the real transcripts generated by these issues.
A eventually outputs a bit.

• IdealΣA,S,L(λ): In this game, A sees the simulated tran-
scripts instead of the real ones. Initially, S simulates
EDB by running S.Setup(LStp(λ)). Then, A adap-
tively issues update (resp. search) queries with input
(op, w, id) (resp. w) and observes the simulated tran-
scripts generated by S.Update(LUpdt(op, w, id)) (resp.
S.Search(LSrch(w))). Eventually, A outputs a bit.

Forward and Type-III Backward Security. We briefly
recall the definitions of forward and Type-III backward
securities (for more details, please refer to [7], [8], [12].).
Let Q be a list of all issued update and search queries.

5

Each entry of Q is either an update query (u, op, (w, id))
or a search query (u,w), where u > 0 is the timestamp
of the corresponding query and gradually increases with
the number of queries. Before going ahead, we recall three
leakage functions.

For a keyword w, function sp(w) is to return the times-
tamps at which keywordw is searched, function TimeDB(w)
is to return all timestamp/file-identifier pairs of keyword
w that have been added to but not deleted from EDB,
and function DelHist(w) is to return all insertion/deletion-
timestamps pairs of keyword w if there is a file identifier id
such that (w, id) has been added to EDB and subsequently
deleted from EDB. The above three functions are formally
constructed from the query list Q as follows.

sp(w) = {u|(u,w) ∈ Q}
TimeDB(w) = {(u, id)|(u, add, (w, id)) ∈ Q

and ∀u′, (u′, del, (w, id)) /∈ Q}
DelHist(w) = {(uadd, udel)|∃id, (uadd, add, (w, id)) ∈ Q

and (udel, del, (w, id)) ∈ Q}
With the above leakage functions, forward and Type-III

backward securities are defined as follows.

Definition 2 (Forward Security). An L−adaptively secure
DSSE scheme Σ is forward secure iff the update leakage function

LUpdt(op, w, id) = L′(op, id)

where L′ is a stateless function.

Definition 3 (Type-III Backward Security). An L−adaptively
secure DSSE scheme Σ is Type-III backward secure iff the
update and search leakage functions LUpdt and LSrch can
be written as

LUpdt(op, w, id) = L′(op, w)

LSrch(w) = L′′(sp(w), TimeDB(w), DelHist(w))

where both L′ and L′′ are stateless functions.

Note that the definitions of both leakage functions
TimeDB(w) and DelHist(w) implicitly assume that no du-
plicate update query is issued. The reason is that for each
keyword/file-identifier pair, only one insertion/deletion
timestamp is returned. Hence, these two leakage functions
and the Type-III backward security are not suitable for a
robust DSSE scheme (the definitions of Type-I and Type-
II backward securities also have the same problem). For-
tunately, this problem does not exist in the definition of
forward security.

4 ROBUST SEARCHABLE ENCRYPTION

Syntax. Roughly, a robust DSSE scheme allows the client
to issue duplicate update queries and delete non-existent
keyword/file-identifier pairs while guaranteeing that (1)
the search protocol always returns the correct set of file
identifiers, (2) the client can re-add the already deleted
keyword/file-identifier pairs, and (3) the security is consis-
tent. Hence, we define robust DSSE as follows.

Definition 4 (Robust DSSE). Let Σ be a DSSE scheme. Σ is said
to be robust if it can keep the same correctness and security even

if the client adds or deletes the same keyword/file-identifier pairs
repeatedly and re-adds the already deleted keyword/file-identifier
pairs.

General Backward Security Definition. Taking the case
of duplicate update queries into account, we slightly ex-
tend the definitions of leakage functions TimeDB(w) and
DelHist(w) and name the resulting leakage functions as
exTimeDB(w) and exDelHist(w) respectively. Their formal
definitions are as follows, where U denotes the set of all
satisfactory timestamps.

exTimeDB(w) = {(U , id)|∀u ∈ U , (u, add, (w, id)) ∈ Q
and ∀u′ > u, (u′, del, (w, id)) /∈ Q}.

exDelHist(w)

= {(Uadd,Udel)|∃id, ∀uadd ∈ Uadd and udel ∈ Udel,
(uadd, add, (w, id)) ∈ Q and (udel, del, (w, id)) ∈ Q}

In addition, both exTimeDB(w) and exDelHist(w) must be
the maximal set to contain all possible elements.

With the above new leakage functions, we define the
general Type-III backward security as below.

Definition 5 (General Type-III Backward Security). An
L−adaptively secure DSSE scheme Σ is general Type-III back-
ward secure iff the update and search leakage functionsLUpdt
and LSrch can be written as

LUpdt(op, w, id) = L′(op, w)

LSrch(w) = L′′(sp(w), exTimeDB(w), exDelHist(w))

where both L′ and L′′ are stateless functions.

Clearly, the general Type-III backward security definition
implies the traditional Definition 3 if no duplicate update
query is issued. By the same method, the traditional Type-I
and Type-II backward securities can be extended to obtain
more generality.

5 SEED: A BASIC SCHEME

In this section, we show how to construct SEED, a prac-
tical forward and Type-III backward secure DSSE scheme.
Although SEED is not robust, it is heuristic for constructing
ROSE.

Algorithm 1 describes algorithm SEED.Setup and two
protocols SEED.Update and SEED.Search. Roughly, for each
keyword, SEED constructs a hidden chain relationship to
connect all keyword-searchable ciphertexts of the keyword
in sequence, in which the latest and earliest generated
ciphertexts are located at the head and the tail of the chain,
respectively. When receiving a keyword search trapdoor
from the client, the server determines the first matching
ciphertext that is located at the head of the corresponding
chain and decrypts out an index that can guide the server
to find the next matching ciphertext. By carrying on in the
same way, the server can determine all matching cipher-
texts. Finally, the server stops the search if the matching
ciphertext located at the chain’s tail is found and returns all
found ciphertexts, and then the client decrypts out the file
identifiers. In terms of security, SEED is forward secure since
all ciphertexts are independently generated in the view of

6

Algorithm 1 Algorithm SEED.Setup and Protocols SEED.Update and SEED.Search

Setup(λ)

1: Initialize a PRF function F : KF×XF → YF with YF = {0, 1}λ
2: Initialize a cryptographic hash function H : {0, 1}∗ →
{0, 1}3λ+1

3: Initialize two empty maps LastUp and EDB and σ ←
LastUp

4: Let op ∈ {add, del} with the binary codes add = 1 and
del = 0

5: (K1,K2)
$← KF ×KF, K3

$← KSE, and KΣ ← (K1,K2,K3)
6: Send EDB to the server

Update(KΣ, σ, op, (w, id); EDB)

Client:
1: (id′, op′)← LastUp[w]

2: L ← F(K1, w||id||op), R
$← {0, 1}λ, and C ←

SE.Enc(K3, id)
3: if (id′, op′) = (NULL,NULL) then
4: D ← H(F(K2, w||id||op), R)⊕ (op||03λ)
5: else
6: L′ ← F(K1, w||id′||op′) and T ′ ← F(K2, w||id′||op′)
7: if op = add then
8: D ← H(F(K2, w||id||op), R)⊕ (op||0λ||L′||T ′)
9: else

10: X ← F(K1, w||id||add)
11: D ← H(F(K2, w||id||op), R)⊕ (op||X||L′||T ′)
12: end if
13: end if
14: Update LastUp[w]← (id, op)
15: Send ciphertext (L,R,D,C) to the server

Server:
1: Store EDB[L]← (R,D,C)

Search(KΣ, σ, w; EDB)

Client:
1: (id, op)← LastUp[w]
2: if (id, op) = (NULL,NULL) then
3: return ⊥
4: end if
5: L← F(K1, w||id||op) and T ← F(K2, w||id||op)

6: Send search trapdoor (L, T) to the server
Server:

1: (Lt, Rt, Dt, Ct, T t)← (NULL,NULL,NULL,NULL,NULL)
2: I ← ∅ and D ← ∅
3: repeat
4: (R,D,C)← EDB[L]
5: op||X||L′||T ′ ← D ⊕H(T,R)
6: if op = del then
7: if Lt 6= NULL then
8: Dt ← H(T t, Rt)⊕ (add||0λ||L′||T ′)
9: Update EDB[Lt]← (Rt, Dt, Ct)

10: end if
11: Remove ciphertext (L,R,D,C) from EDB
12: D ← D ∪ {X}
13: end if
14: if op = add and L ∈ D then
15: if Lt 6= NULL then
16: Dt ← H(T t, Rt)⊕ (add||0λ||L′||T ′)
17: Update EDB[Lt]← (Rt, Dt, Ct)
18: end if
19: Remove ciphertext (L,R,D,C) from EDB
20: end if
21: if op = add and L /∈ D then
22: (Lt, Rt, Dt, Ct, T t)← (L,R,D,C, T)
23: Orderly add C to I
24: end if
25: L← L′ and T ← T ′

26: until (L = 0λ and T = 0λ)
27: Send I to the client

Client:
1: if I = ∅ then
2: Update LastUp[w]← (NULL,NULL)
3: return ⊥
4: end if
5: for i = 1 to |I| do
6: idi ← SE.Dec(K3, I[i])
7: end for
8: Update LastUp[w]← (id1, add)
9: return {idi|i ∈ [1, |I|]}

the adversary, and the newly generated ciphertexts cannot
be found by the server using prior search trapdoors. SEED
is also Type-III backward secure since the server cannot
decrypt out the file identifiers contained in the matching
ciphertexts.

Setup. The client runs algorithm SEED.Setup to ini-
tialize a PRF function, a hash function, and two empty
maps LastUp and EDB, randomly picks three secret keys
(K1,K2,K3), and sends EDB to the server whereas LastUp
is stored locally.

Update. When updating a keyword/file-identifier pair
(w, id) with operation type op, the client generates and
sends a keyword-searchable ciphertext (L,R,D,C) to the
server, where L is an index, R is a random number, and
D and C are two sub-ciphertexts. It is easy to generate
the components L, R, and C (line 2). The only somewhat
complicated work is to generate D. Before the generation,
the client retrieves the last updated file identifier and op-
eration type (id′, op′) from LastUp according to w (line 1).
If they do not exist, namely, it is the first time to issue the
update query of keyword w, then the client generates D by
encrypting op||03λ (lines 3 and 4). Otherwise, the client com-
putes both the index L′ and the decryption token T ′ of the

ciphertext generated in the last update query of keyword
w and then generates D by encrypting op||X||L′||T ′, where
X = 0λ if op = add or X = F(K1, w||id||add) otherwise, the
index of the ciphertext generated in a prior update query
for adding (w, id) (lines 6-12). Finally, the client updates
LastUp[w] locally to record the newest update information
of keyword w (line 14). Note that regardless of op = add
or del, the client always sends a ciphertext to the server.
Protocol SEED.Update does not remove any ciphertext from
EDB. This work will be performed in protocol SEED.Search.

Search. When issuing a search query of keyword w,
the client computes both the index L and the decryption
token T of the ciphertext that was generated in the last
update query of w, and L and T constitute the search trap-
door (lines 1-5). Upon receiving (L, T), the server initializes
(Lt, Rt, Dt, Ct, T t) and does the following steps:

1) Retrieve ciphertext (R,D,C) from EDB according
to L and decrypt out op||X||L′||T ′ (lines 4 and 5):

2) If op = del, it means that ciphertext (L,R,D,C) is
used to tell the server that which ciphertext must
be removed, then the server updates Dt such that
Dt contains L′||T ′ if (Lt, Rt, Dt, Ct) is existent,
removes (L,R,D,C) from EDB, and inserts X into

7

1. After Adding id1 and id2, Deleting id1, and Adding id4
Chain Tail Chain Head

Chain Head Chain Tail

L1, R1

D1 : add||0λ||0λ||0λ
C1 : id1

L2, R2

D2 : add||0λ||L1||T1

C2 : id2

L3, R3

D3 : del||L1||L2||T2

C3 : id1

L4, R4

D4 : add||0λ||L3||T3

C4 : id4

2. After Searching w

L2, R2

D2 : add||0λ||0λ||0λ
C2 : id2

L4, R4

D4 : add||0λ||L2||T2

C4 : id4

Figure 1: An Example of SEED.

list D, where X is the index of the ciphertext that
will be removed later (lines 6-13);

3) If op = add and L ∈ D, it means that the
client wants to remove ciphertext (L,R,D,C),
then the server updates Dt such that Dt contains
L′||T ′ if (Lt, Rt, Dt, Ct) is not empty and removes
(L,R,D,C) from EDB (lines 14-20);

4) If op = add and L /∈ D, it means that ciphertext
(L,R,D,C) is valid, the server sets (Lt, Rt, Dt, Ct)
to be the ciphertext and T t to be the decryption
token of Dt and inserts C into I (lines 21-24);

5) Set (L, T) to be (L′, T ′) and repeat the above steps
until L = 0λ and T = 0λ, namely until the cipher-
text located at the tail of the hidden chain of w has
been found (lines 25 and 26).

Finally, the server returns I . Then the client decrypts
out the expected file identifiers and updates LastUp[w] to
record the information about the ciphertext located at the
head of the hidden chain of w if such ciphertext is existent;
otherwise, it empties LastUp[w] (lines 1-9).

Example. For keyword w, suppose the client adds file
identifiers id1 and id2, deletes id1, and adds file identi-
fier id4 in sequence. Figure 1 shows the four ciphertexts
{(Li, Ri, Di, Ci)|i ∈ [1, 4]} that are generated by protocol
SEED.Update. These ciphertexts contain a hidden chain re-
lationship by letting Di encrypt Li−1 and Ti−1 for i ∈ [2, 4].
Specifically, D3 additionally encrypts L1. Now, we have
LastUp[w] = (id4, add).

When issuing a search query of w, the client sends
search trapdoor (L4, T4) to the server. Upon receiving this
trapdoor, the server does the following four steps:

1) In the first step, the server retrieves (R4, D4, C4)
from EDB[L4] and decrypts out op||X||L′||T ′ =
add||0λ||L3||T3 using T4; since both op = add and
L4 /∈ D hold, the server sets (Lt, Rt, Dt, Ct, T t) ←
(L4, R4, D4, C4, T4), inserts C4 into I , and sets
L = L3 and T = T3;

2) In the second step, the server retrieves (R3, D3, C3)
from EDB[L3] and decrypts out op||X||L′||T ′ =
del||L1||L2||T2; since both op = del and Lt 6=
NULL hold, the server updates D4 such that D4

contains add||0λ||L2||T2, removes (L3, R3, D3, C3)
from EDB, inserts L1 into D, and sets L = L2 and
T = T2;

3) In the third step, the server does the similar
work as it did in the above first step. After com-

pleting this step, we have (Lt, Rt, Dt, Ct, T t) =
(L2, R2, D2, C2, T2), C2 ∈ I , L = L1, and T = T1;

4) In the fourth step, the server retrieves (R1, D1, C1)
from EDB and decrypts out op||X||L′||T ′ =
add||0λ||0λ||0λ; since both op = add and L1 ∈ D
hold, the server updates D2 such that D2 con-
tains add||0λ||0λ||0λ, removes (L1, R1, D1, C1) from
EDB, and sets L = 0λ and T = 0λ.

Finally, since both L = 0λ and T = 0λ hold, the server
stops the search and returns I = {C4, C2} to the client.
The client decrypts out file identities {id4, id2} and updates
LastUp[w] = (id4, add). Figure 1 also shows the remainder
ciphertexts in EDB and their new hidden chain relationship
after the search.

Correctness and Security Analysis. Suppose that the
client does not add or delete the same keyword/file-
identifier pair repeatedly and re-add the already deleted
keyword/file-identifier pair. It is very easy to verify the
correctness of SEED, since the indexes of all keyword-
searchable ciphertexts are generated by a PRF function with
different inputs, and the sub-ciphertexts D and C of each
keyword-searchable ciphertext can be correctly decrypted
using the corresponding decryption token. In terms of secu-
rity, SEED achieves forward and Type-III backward security
like Dianadel, Janus, and Janus++ did. Formally, we have the
following theorem whose proof is provided in Supplemen-
tary Material A.

Theorem 1. Let the cryptographic hash function H be
modelled as a random oracle. Assuming F is a secure
PRF, SEED is an adaptively secure DSSE scheme with
LStp(λ) = λ, LUpdt(op, w, id) = ∅, and LSrch(w) =
{sp(w),TimeDB(w),DelHist(w)}.

Robustness Analysis. In protocol SEED.Update, the
index of each keyword-searchable ciphertext is determin-
istically generated. When adding or deleting the same
keyword/file-identifier pair repeatedly, the generated ci-
phertexts have the same index. This feature leaks the re-
lationship of update queries and breaks forward security.
It also breaks the correctness since the later generated ci-
phertext replaces the former one in EDB, which makes the
hidden chain relationship among ciphertexts incomplete.

For a keyword w, suppose the client deletes id, searches
w, and re-adds id in sequence. Let (Ld, Rd, Dd, Cd) and
(La, Ra, Da, Ca) be the two ciphertexts generated by these
delete and re-add queries. According to the line 11 of pro-
tocol SEED.Update, Dd contains La. Hence, when searching
w, the server decrypts Dd and obtains La. When re-adding
id, the server can link this re-add query with the previous
delete query according to the known La. In addition,
re-adding an already deleted keyword/file-identifier pair
breaks the correctness of SEED due to the same reason as
issuing duplicate update queries.

To summarize, SEED is not correct and forward se-
cure if the client adds or deletes the same keyword/file-
identifier pairs repeatedly or re-adds the already deleted
keyword/file-identifier pairs. To address this problem, we
will introduce key-updatable PRF and apply it to construct-
ing ROSE.

8

6 KEY-UPDATABLE PRF
Syntax and Security Definition. Let P be a PRF function. If
P is key updatable, then for any two secret keys K1 and K2,
there is a key-update token that can update the PRF values
with K1 to the PRF values with K2. In terms of security, key
updatable PRF is indistinguishable with a random function
under the non-trivial attacks. We define key-updatable PRF
and its security as below.

Definition 6 (Key-Updatable PRF). Let P : KP×XP → YP be
an efficient PRF function. We say that P is a secure key-updatable
PRF if the following properties hold:

• For all keys K1 and K2 ∈ KP and x ∈ XP, there are
two efficient algorithms P.UpdateToken : KP × KP →
KP and P.KeyUpdate : KP × YP → YP, such that given
key-update token ∆K1→K2

← P.UpdateToken(K1,K2),
equation P.KeyUpdate(∆K1→K2

,P(K1, x)) = P(K2, x)
holds.

• For all sufficiently large λ and PPT adversary A, its
advantage defined as AdvPRF

A,P(λ) = |Pr[ExptPRF
A,P(λ) =

1] − 1
2 | is negligible in λ, where experiment ExptPRF

A,P(λ)
is defined in Figure 2.

In addition, we say that the key-update tokens are combinable
if there is an efficient operation � s.t. ∆K1→K2

� ∆K2→K3
=

∆K1→K3
holds for any three keys K1, K2, and K3.

Let (K1,K2) be two randomly chosen secret keys. In
experiment ExptPRF

A,P(λ), adversary A takes key-update to-
ken ∆K1→K2

as input, adaptively issues queries to ora-
cles P(K1, ·) and f(·), and outputs n number of challenge
PRF inputs {x1, ..., xn}; then, randomly giving one of sets
{P(K1, xi)|i ∈ [1, n]} and {f(xi)|i ∈ [1, n]} to A, we say
that A wins in this experiment if he can correctly guess
which set is given. During the experiment, A cannot query
oracles P(K1, ·) or f(·) with these challenge PRF inputs.

ExptPRF
A,P(λ):

b
$← {0, 1}, (K1,K2)

$← KP × KP, and ∆K1→K2 ←
P.UpdateToken(K1,K2);

Let f : XP → Yp be a random function;
(x1, · · · , xn, st)← AP(K1,·),f(·)(λ,∆K1→K2

), where
xi ∈ XP for i ∈ [1, n] and n = poly(λ);

If b = 1, b′ ← AP(K1,·),f(·)({P(K1, xi)|i ∈
[1, n]}, st);

Else b′ ← AP(K1,·),f(·)({f(xi)|i ∈ [1, n]}, st);
Return 1 if b = b′; otherwise, return 0;

Note that in the above, A never queries P(K1, xi) or
f(xi) for i ∈ [1, n]; otherwise, it can trivially guess b.

Figure 2: Experiment on the Security of Key-Updatable PRF.

Key-Updatable PRF vs. Key-Homomorphic PRF. Both
key-updatable and key-homomorphic PRFs can alter the
original secret key of PRF values to a new secret key.
However, they apply different ways to achieve this work.
Let F : KF × XF → YF be a key-homomorphic PRF [18],
namely given any two F(K1, x) and F(K2, x), there is an
efficient procedure ⊗ such that F(K1⊕K2, x) = F(K1, x)⊗
F(K2, x) holds. Suppose to alter the secret key K1 of values

{F(K1, xi)|i ∈ [1, n]} to any another secret key K3 ∈ KF,
key-homomorphic PRF must take many PRF values {F(K1⊕
K3, xi)|i ∈ [1, n]} as inputs and compute F(K3, xi) =
F(K1, xi) ⊗ F(K1 ⊕ K3, xi) for i ∈ [1, n], where n ∈ N.
In contrast, to achieve the analogous work, key-updatable
PRF takes only one key-update token ∆K1→K3

as input and
computes P(K3, xi) = P.KeyUpdate(∆K1→K3

,P(K1, xi))
for i ∈ [1, n]. It is clear that key-updatable PRF is much more
efficient than key-homomorphic PRF for updating the secret
key of PRF values. Specifically, the generation of ∆K1→K3

does not rely on {xi|i ∈ [1, n]}.
A Key-Updatable PRF Instance. Referring to an early

PRF instance [17], it is easy to construct a key-updatable PRF
instance. Let G be a finite cyclic and multiplicative group of
prime order q, where |q| = poly(λ) and H : {0, 1}∗ → G
is a cryptographic hash function. Given KP = Z∗q , XP =
{0, 1}∗, and YP = G, a key-updatable PRF instance can be
constructed as

P(K,x) = H(x)K

∆K1→K2
= P.UpdateToken(K1,K2) = K−1

1 ·K2

P.KeyUpdate(∆K1→K2 ,P(K1, x)) = P(K1, x)∆K1→K2

where (K,K1,K2) ∈ KP and x ∈ XP. Additionally, this
instance has the property of a combinable key-update token
when setting operation � to be the multiplicative operation
of group Z∗q .

Security Analysis. The security of the above key-
updatable PRE instance relies on the DDH assumption in
the RO model.

Definition 7 (DDH Assumption). Let G be a finite cyclic and
multiplicative group of prime order q where |q| = poly(λ). We
say that the DDH assumption holds if for all sufficiently large
λ and PPT adversary A, its advantage defined as AdvDDH

A =
|Pr[A(gα, gβ , gαβ) = 1]− Pr[A(gα, gβ , gγ) = 1]| is negligible
in λ, where (α, β, γ)

$← Z∗q × Z∗q × Z∗q .

Formally, in terms of security, we have the following the-
orem whose proof is provided in Supplementary Material B.

Theorem 2. Let the cryptographic hash function H be modelled as
a random oracle. The above key-updatable PRF instance is secure
under the DDH assumption in the RO model.

7 ROSE: OUR ULTIMATE SCHEME

In this section, we analyze the fatal design flaws of SEED in
the aspect of robustness, outline three key ideas to transform
SEED, apply key-updatable PRF to realizing these ideas and
constructing ROSE, and finally analyze ROSE.

Two Fatal Design Flaws of SEED. Referring to the
previous robustness analysis of SEED, there are two fatal
design flaws: one is the deterministic generation of the
ciphertexts’ indexes; another is that the ciphertext generated
by a delete query leaks the index of the ciphertext that
will be generated by the subsequent re-add query if there
is a relevant search query that occurs in the middle of the
delete and re-add queries.

Three Key Ideas. To tackle the above first design flaw,
our first idea is to design a probabilistic algorithm to
generate each ciphertext’s index, such that all ciphertexts
have different indexes even if they are generated by the

9

Algorithm 2 Algorithm ROSE.Setup and Protocol ROSE.Update.

Setup(λ)

1: Initialize a traditional PRF function F : KF × XF → YF
with YF = {0, 1}λ and a key-updatable PRF function
P : KP × XP → YP with the property of a combinable key-
update token and KP = YP = {0, 1}λ

′
, where λ′ = poly(λ)

s.t. F and P have the exact same security in practice
2: Initialize two hash functions G : {0, 1}∗ → {0, 1}λ and

H : {0, 1}∗ → {0, 1}2λ+λ′+2

3: Initialize three empty maps LastKey, LastUp, and EDB
4: Let op ∈ {add, del, srch} with the binary codes add = 01,
del = 00, and srch = 10

5: Assume the file identifier id0 = 0λ is an invalid one that
never is used by any real file

6: KSE
$← KSE, KΣ ← (LastKey,KSE), and σ ← LastUp

7: Send EDB to the server
Update(KΣ, σ, op, (w, id); EDB)

Client:
1: (K′, S′)← LastKey[w]
2: if (K′, S′) = (NULL,NULL) then

3: (K′, S′)
$← KP ×KF and LastKey[w]← (K′, S′)

4: end if
5: R

$← {0, 1}λ and L← G(P(K′, w||id||op), R)
6: C ← SE.Enc(KSE, id)
7: (id′, op′, R′)← LastUp[w]
8: if (id′, op′, R′) = (NULL,NULL,NULL) then
9: D ← H(F(S′, w||id||op), R)⊕ (op||02λ+λ′)

10: else
11: L′ ← G(P(K′, w||id′||op′), R′) and T ′ ← F(S′, w||id′||op′)
12: if op = add then
13: D ← H(F(S′, w||id||op), R)⊕ (op||0λ

′
||L′||T ′)

14: else
15: X ← P(K′, w||id||add)
16: D ← H(F(S′, w||id||op), R)⊕ (op||X||L′||T ′)
17: end if
18: end if
19: Update LastUp[w]← (id, op,R)
20: Send ciphertext (L,R,D,C) to the server

Server:
1: Store EDB[L]← (R,D,C)

duplicate update queries. However, this idea also causes
a new problem that concerns how to delete the ciphertexts
generated by the previous duplicate add queries. Suppose
the client adds the same keyword/file-identifier pair n times
and then issues a delete query to remove them. Since our
first idea makes the n previously generated ciphertexts have
n different indexes, the subsequent ciphertext for deleting
them must contain these n indexes if applying the original
design of protocol SEED.Update. Clearly, it is inefficient.
Hence, our second idea is to encrypt a constant-size delete
token instead of all relevant indexes when issuing a delete
query, and this delete token enables the server to find all
ciphertexts that were generated by the previous duplicate
and relevant add queries.

To tackle the above second design flaw, our third idea
is that after issuing each search query of a keyword, the
client will randomly choose new secret keys to generate
the ciphertexts in the subsequent update queries of the
keyword. Suppose the client issues a search query at
timestamp us. This idea is advantageous in guaranteeing
that the update queries issued before us are independent of
the update queries issued after us in the view of the server.
However, it also causes a new challenge that concerns how
to delete the ciphertexts that were generated before the last
search query. Without loss of generality, for a keyword
w, suppose the client adds id, searches w, and deletes id
in sequence. Let (La, Ra, Da, Ca) and (Ld, Rd, Dd, Cd) be
the two ciphertexts generated by these add and delete
queries. According to the third idea, these two ciphertexts
were generated with different secret keys. Hence, the delete
token (introduced in our second idea) contained in Dd is
ineffective for deleting the ciphertext with index La. For-
tunately, key-updatable PRF can overcome this challenge. It
can update the secret key of the delete token to the secret key
of index La, such that the updated delete token has the same
secret key with index La. Hence, it can be used to delete the
ciphertext with index La. More details are introduced in the
following construction of ROSE.

Setup. Algorithm 2 describes algorithm ROSE.Setup.

The client runs this algorithm to initialize a traditional PRF,
a key-updatable PRF, two cryptographic hash functions,
and three empty maps LastKey, LastUp, and EDB, chooses
a secret key KSE of symmetric encryption, generates the
secret key KΣ of ROSE, and sends EDB to the server
whereas LastUp is stored locally. Note that LastKey will
record the up-to-date secret key of each keyword that is used
to generate ciphertexts, and the operation types include the
search query srch in addition to add and del.

Update. Algorithm 2 also describes protocol
ROSE.Update. When updating a keyword/file-identifier
pair (w, id) with operation type op = add or del, the client
randomly picks the secret keys (K ′, S′) of w and inserts
them into LastKey[w] if it is for the first time to issue the
update query of w; otherwise, it retrieves the keys from
LastKey[w] (lines 1-4). Then, the client generates and sends
a keyword-searchable ciphertext (L,R,D,C) to the server.
Although the ciphertext of ROSE has the same components
as SEED, ROSE novelly applies the above first and second
ideas to generate L and D. To generate L, the client
computes the key-updatable PRF value P(K ′, w||id||op)
and takes this value and random number R as inputs to
compute L = G(P(K ′, w||id||op), R) (line 5). To generate D,
ROSE has a procedure similar to SEED except that in ROSE,
D contains the delete token X = P(K ′, w||id||add) rather
than some ciphertext’s index if op = del (lines 15 and 16).
Finally, the client updates LastUp[w] locally to record the
newest update information (id, op,R) of keyword w (line
19).

Search. Algorithm 3 describes protocol ROSE.Search. In
contrast to SEED, protocol ROSE.Search has the following
two key differences. When issuing a search query, the
ROSE client generates and sends not only a search trapdoor
but also a keyword-searchable ciphertext with operation
type op = srch to the server, and the ciphertext contains
a key-update token of key-updatable PRF, which will be
disclosed to the server in due course for updating the secret
key of delete tokens. When receiving a search trapdoor,
ROSE has a search procedure similar to SEED except for

10

Algorithm 3 Protocol ROSE.Search(KΣ, σ, w; EDB).
Client:

1: (id′, op′, R′)← LastUp[w]
2: if (id′, op′, R′) = (NULL,NULL,NULL) then
3: return ⊥
4: end if
5: (K′, S′)← LastKey[w]
6: L′ ← G(P(K′, w||id′||op′), R′) and T ′ ← F(S′, w||id′||op′)
7: (K,S)

$← KP × KF, op ← srch, R
$← {0, 1}λ, and

∆K→K′ ← P.UpdateToken(K,K′)
8: L ← G(P(K,w||id0||op), R), D ← H(F(S,w||id0||op), R) ⊕

(op||∆K→K′ ||L′||T ′), and C ← SE.Enc(KSE, id0)
9: Update LastUp[w]← (id0, op,R) and LastKey[w]← (K,S)

10: Send search trapdoor (L′, T ′) and ciphertext (L,R,D,C) to
the server

Server:
1: Store EDB[L]← (R,D,C)
2: (Lt, Rt, Dt, Ct) ← (L,R,D,C), (opt,∆t) ← (srch,NULL),

and (L′t, T ′t)← (L′, T ′)
3: I ← ∅ and D ← ∅
4: repeat
5: (R′, D′, C′)← EDB[L′]
6: op′||X ′||L′′||T ′′ ← D′ ⊕H(T ′, R′)
7: if op′ = del then
8: Remove ciphertext (L′, R′, D′, C′) from EDB
9: D ← D ∪ {X ′} B Note that X ′ ∈ YP if op′ = del

10: Dt ← Dt ⊕ (0λ
′+2||L′t ⊕ L′′||T ′t ⊕ T ′′) B Note that

operation ⊕ is handled before operation ||
11: Update EDB[Lt]← (Rt, Dt, Ct)
12: (L′t, T ′t)← (L′′, T ′′)
13: end if
14: if op′ = add then
15: if ∃A ∈ D s.t. L′ = G(A,R′) then
16: Remove ciphertext (L′, R′, D′, C′) from EDB
17: Dt ← Dt ⊕ (0λ

′+2||L′t ⊕ L′′||T ′t ⊕ T ′′)
18: Update EDB[Lt]← (Rt, Dt, Ct)
19: (L′t, T ′t)← (L′′, T ′′)
20: else

21: (Lt, Rt, Dt, Ct)← (L′, R′, D′, C′)
22: (L′t, T ′t)← (L′′, T ′′) and opt ← op′

23: I ← I ∪ {C′}
24: end if
25: end if
26: if op′ = srch then
27: if opt = srch and ∆t 6= NULL then
28: Remove ciphertext (L′, R′, D′, C′) from EDB
29: Dt ← Dt ⊕ (00||∆t ⊕ (∆t �X ′)||L′t ⊕ L′′||T ′t ⊕ T ′′)
30: Update EDB[Lt]← (Rt, Dt, Ct)
31: (L′t, T ′t)← (L′′, T ′′)
32: ∆t ← ∆t �X ′ B Note that X ′ ∈ KP if op′ = srch
33: end if
34: if (opt = srch and ∆t = NULL) or (opt 6= srch) then
35: (Lt, Rt, Dt, Ct)← (L′, R′, D′, C′)
36: (L′t, T ′t)← (L′′, T ′′) and (opt,∆t)← (op′, X ′)
37: end if
38: for all A ∈ D do
39: A← P.KeyUpdate(X ′, A)
40: end for
41: end if
42: L′ ← L′′ and T ′ ← T ′′

43: until (L′ = 0λ and T ′ = 0λ)
44: if I = ∅ then
45: Remove all previously found ciphertexts
46: end if
47: Send I to the client

Client:
1: if I = ∅ then
2: LastKey[w]← (NULL,NULL)
3: LastUp[w]← (NULL,NULL,NULL)
4: return ⊥
5: end if
6: for i = 1 to |I| do
7: idi ← SE.Dec(KSE, I[i])
8: end for
9: return {idi|i ∈ [1, |I|]}

the following: (1) the ROSE server applies the delete tokens
disclosed from the already found ciphertexts to test if a new
found ciphertext can be removed; and (2) when finding a
matching ciphertext with operation type op = srch, the
ROSE server decrypts out a key-update token, applies the
token to update the secret key of all previously disclosed
delete tokens, and removes this ciphertext in some case (this
step is for saving the time cost of the next search query).
The details of protocol ROSE.Search are as below.

When issuing a search query of keyword w, the client
retrieves the last secret keys (K ′, S′) from LastKey[w] and
takes them as inputs to compute both the index L′ and the
decryption token T ′ of the ciphertext that was generated
in the last update or search query of w, and L′ and T ′

constitute the search trapdoor (lines 1-6). Then, the client
picks two new random secret keys (K,S), computes the
key-update token ∆K→K′ , and takes (K,S) and (op =
srch,w, id0) as inputs to generate a keyword-searchable
ciphertext (L,R,D,C), where id0 = 0λ does not stand for
any real file, and D contains op||∆K→K′ ||L′||T ′ (lines 7 and
8). Finally, the client updates LastUp[w] and LastKey[w] to
the information about the current search query and these
two new secret keys, respectively, and sends (L′, T ′) and
(L,R,D,C) to the server.

Recall that all ciphertexts of each keyword are con-
nected by a hidden chain relationship. Thus, in the chain
of keyword w, let (Lt, Rt, Dt, Ct) and (L′, R′, D′, C ′) be
two adjacent ciphertexts and (Lt, Rt, Dt, Ct) be in front
of (L′, R′, D′, C ′). Let (opt,∆t, L′t, T ′t) be the operation
type, the key-update token, the ciphertext’s index, and the
decryption token that are contained in Dt. Upon receiv-
ing (L′, T ′) and (L,R,D,C) from the client, the server
inserts (R,D,C) into EDB[L] and sets (Lt, Rt, Dt, Ct) ←
(L,R,D,C) and (opt,∆t, L′t, T ′t) ← (srch,NULL, L′, T ′)
at the beginning (lines 1 and 2).

Next, the server will repeat finding a new matching
ciphertext and then handle this ciphertext in different ways
until all matching ciphertexts are found. The specific steps
are as follows:

1) The server retrieves the ciphertext (R′, D′, C ′) from
EDB[L′] and decrypts out op′||X ′||L′′||T ′′ (lines 5
and 6);

2) If op′ = del, it means that the retrieved ciphertext
is only for deleting some previous ciphertexts, and
X ′ is the delete token; then, the server removes
the ciphertext (L′, R′, D′, C ′) from EDB, inserts the
delete token X ′ into D, updates Dt such that Dt

11

Chain Tail Chain Head

1. After Adding id1 and id2, Searching w (The First Time), Adding id2, and Deleting id2

L1, R1

D1 : add||0λ||0λ||0λ
C1 : id1

L2, R2

D2 : add||0λ||L1||T1

C2 : id2

Using keys (K1, S1)

L3, R3

D3 : srch||∆K2→K1||L2||T2

C3 : id0

L4, R4

D4 : add||0λ||L3||T3

C4 : id2

L5, R5

D5 : del||XK2||L4||T4

C5 : id2

Using keys (K2, S2)

2. Aftering Searching w (The Second Time)
Chain Tail Chain Head

L1, R1

D1 : add||0λ||0λ||0λ
C1 : id1

L3, R3

D3 : srch||∆K2→K1||L1||T1

C3 : id0

L6, R6

D6 : srch||∆K3→K2 ||L3||T3

C6 : id0

Using keys (K1, S1) Using keys (K2, S2) Using keys (K3, S3)

3. After Searching w (The Third Time)
Chain Tail Chain Head

L1, R1

D1 : add||0λ||0λ||0λ
C1 : id1

L6, R6

D6 : srch||∆K3→K1||L1||T1

C6 : id0

L7, R7

D7 : srch||∆K4→K3||L6||T6

C7 : id0

Using keys (K1, S1) Using keys (K3, S3) Using keys (K4, S4)

Figure 3: An Example of ROSE.

contains L′′||T ′′ rather than L′t||T ′t, and resets
(L′t, T ′t)← (L′′, T ′′) (lines 7-13);

3) If op′ = add, the steps are as follows:

a) If ∃A ∈ D s.t. L′ = G(A,R′), it means
that the retrieved ciphertext matches up to
a known delete token; then, the server re-
moves the ciphertext (L′, R′, D′, C ′) from
EDB and applies the same way as the server
does in the lines 10-12 to updateDt and reset
(L′t, T ′t) (lines 15-19);

b) Otherwise, the retrieved ciphertext is
a valid one; then, the server inserts
the sub-ciphertext C ′ into I and resets
(Lt, Rt, Dt, Ct), (L′t, T ′t), and opt (lines
20-24);

4) If op′ = srch, the steps are as follows:

a) If opt = srch and ∆t 6= NULL, it means that
the two adjacent ciphertexts (Lt, Rt, Dt, Ct)
and (L′, R′, D′, C ′) were generated by two
previous search queries, and the server has
known the key-update tokens contained in
Dt and D′ respectively; then, the server can
remove one of these ciphertexts to save the
time cost of the next search query while
maintaining the search correctness. Specif-
ically, in this case, the server removes the
ciphertext (L′, R′, D′, C ′) from EDB, com-
bines the key-update tokens ∆t and X ′ to
the new token ∆t�X ′, updates Dt such that
Dt contains (∆t � X ′)||L′′||T ′′, and resets
(L′t, T ′t) and ∆t (lines 27-33);

b) Otherwise, the server resets (Lt, Rt, Dt, Ct),
(L′t, T ′t), and (opt,∆t) (lines 34-37);

c) Finally, the server updates the secret key
of all known delete tokens using the key-
update token X ′ (lines 38-40);

5) The server resets (L′, T ′) ← (L′′, T ′′) and repeats
the above steps for finding the next matching ci-
phertext until L′ = 0λ and T ′ = 0λ, namely until all
matching ciphertexts are found (lines 42 and 43).

Finally, the server returns I . Then the client empties
LastKey[w] and LastUp[w] if I is empty and decrypts out
the expected file identifiers (lines 1-9).

Example. For keyword w, suppose the client adds
file identifiers id1 and id2, searches w, duplicately adds
id2, and deletes id2 in sequence. According to protocols
ROSE.Update and ROSE.Search, the client orderly uploads
five ciphertexts to the server, these ciphertexts contain a
hidden chain relationship as the first part of Figure 3 shows,
and we assume that ciphertexts with indexes L1 and L2

are generated using secret keys (K1, S1), and the other
ciphertexts are generated using secret keys (K2, S2).

Next, suppose the client searches w again. The second
part of Figure 3 shows the remainder ciphertexts and their
relationships after the search. Specifically, according to pro-
tocol ROSE.Search, the client sends search trapdoor (L5, T6)
and ciphertext (L6, R6, D6, C6) to the server, where cipher-
text (L6, R6, D6, C6) is generated using secret keys (K3, S3).
Upon receiving those messages, the server inserts ciphertext
(L6, R6, D6, C6) into EDB and performs the following steps:

1) The server retrieves ciphertext (L5, R5, D5, C5) and
decrypts out del||XK2

||L4||T4; since this ciphertext
has operation type op = del, the server removes it,
updates D6 such that D6 contains L4||T4 instead
of L5||T5, and inserts the delete token XK2

into D
(lines 7-13 of protocol ROSE.Search);

2) The server retrieves ciphertext (L4, R4, D4, C4) and
decrypts out add||0′||L3||T3; since this ciphertext
has operation type op = add, and L4 = G(XK2

, R4)
holds, the server removes this ciphertext and up-
dates D6 again such that D6 contains L3||T3 instead
of L4||T4 (lines 15-19 of protocol ROSE.Search);

3) The server retrieves ciphertext (L3, R3, D3, C3), de-
crypts out srch||∆K2→K1

||L2||T2, and updates the
secret key K2 of the delete token XK2

to the secret
key K1 using the key-update token ∆K2→K1

(lines
38-40 of protocol ROSE.Search); let XK1

be the up-
dated delete token;

4) The server retrieves ciphertext (L2, R2, D2, C2) and
decrypts out add||0′||L1||T1; since this ciphertext
has operation type op = add, and L2 = G(XK1

, R2)
holds, the server removes this ciphertext and up-
dates D3 such that D3 contains L1||T1 instead of
L2||T2 (lines 15-19 of protocol ROSE.Search);

5) The server retrieve the final ciphertext
(L1, R1, D1, C1) and sends C1 to the client
according to the lines 21-23 and 47 of protocol
ROSE.Search.

12

Finally, suppose that it is the third time the client
searches w. The client sends search trapdoor (L6, T6) and
ciphertext (L7, R7, D7, C7) to the server. The third part of
Figure 3 shows the remainder ciphertexts and their rela-
tionships after the search. This part mainly shows that in
the special case that the conditions in the lines 26 and 27
of protocol ROSE.Search hold, ciphertext (L3, R3, D3, C3)
is removed, the key-update tokens ∆K2→K1

and ∆K3→K2

are combined to the key-update token ∆K3→K1
, and

D6 is updated to contain ∆K3→K1
||L1||T1 instead of

∆K3→K2
||L3||T3 (lines 28 and 32 of protocol ROSE.Search).

Analysis on Correctness, Security, and Robustness.
Suppose that the client does not add or delete the same
keyword/file-identifier pairs repeatedly or re-add the al-
ready deleted keyword/file-identifier pairs. It is very easy
to verify the correctness of ROSE due to reasons similar to
SEED. Without the assumption, it is also easy to verify the
correctness of ROSE, since for a keyword, (1) all ciphertexts
generated by the update and search queries, including
by the duplicate update queries, have independent storage
addresses and construct a hidden chain relationship well, (2)
this chain can guide the server to find all matching cipher-
texts in an orderly manner from chain head to chain tail, (3)
the key-updatable feature of PRF P enables delete queries
to remove all previously added and relevant ciphertexts,
(4) the duplicate delete queries do not affect the search
results, and (5) the re-added ciphertexts cannot be removed
by the previously issued delete queries. Hence, ROSE is
robust in terms of correctness.

In terms of security, we prove that without the above as-
sumption, ROSE is forward and general Type-III backward
secure. It also implies that with the above assumption, ROSE
is forward and Type-III backward secure, since the general
Type-III backward security implies the traditional Type-III
backward security. Formally, we have the following theorem
whose proof is provided in Supplementary Material C. It is
easy to summarize and conclude that ROSE is robust.

Theorem 3. Let the cryptographic hash functions H and G be
modelled as two random oracles. Suppose that the client can add
or delete the same keyword/file-identifier pairs repeatedly and re-
add the already deleted keyword/file-identifier pairs, and F and P
are two secure PRF functions, then ROSE is an adaptively secure
DSSE scheme with LStp(λ) = λ, LUpdt(op, w, id) = ∅, and
LSrch(w) = {sp(w), exTimeDB(w), exDelHist(w)}.

Performance Analysis. Table 1 has listed the compu-
tation and communication complexities of ROSE. When
issuing an update query, the client takes a constant com-
putation complexity to generate a constant-size ciphertext
and send this ciphertext to the server by an one-pass com-
munication; finally, the server stores this ciphertext in EDB.
When issuing a search query, the client takes a constant
computation complexity to generate a constant-size search
trapdoor and a constant-size ciphertext and sends them to
the server; then, the server finds all matching ciphertexts
and sends the valid ones of them to the client; finally,
the client takes the computation complexity linear with
the number of the received ciphertexts to decrypt out file
identifiers in the symmetric-key setting. For each keyword,
the client stores a pair of PRF’s secret keys and a triple (file
identity, operation type, random number) locally. Hence, ROSE

is very practical in most aspects.
The only one slightly complicated work in ROSE is to

find all matching ciphertexts. For keyword w, suppose that
the client has issued the add queries nw times, the delete
queries dw times, and the search queries sw times. Thus,
for keyword w, database EDB has stored nw ciphertexts
with operation type op = add, s′w ciphertexts with oper-
ation type op = srch, and dw ciphertexts with operation
type op = del at most, where s′w ≤ Min(sw, nw + 1)
holds since the redundant ciphertexts with operation type
op = srch are removed according to the lines 28-32 of
protocol ROSE.Search. Under the above assumption, the
complexity of searching w over EDB mainly consists of the
complexity O(dw) for removing Type-del ciphertexts, the
complexity O(nw · dw) for finding or removing Type-add
ciphertexts, and the complexity O(s′w · dw) for updating the
secret keys of the delete tokens. To summarize, the search
complexity of protocol ROSE.Search is O((nw + s′w + 1)dw).

8 IMPLEMENTATIONS

System Environment. We develop SEED and ROSE both
in C++ and apply libraries Crypto++ [31] and Relic Toolkit
[32] to implement their cryptographic primitives, where
Crypto++ provides hash functions SHA-3 family and sym-
metric encryption AES-128, and Relic Toolkit provides the
calculations on the NIST P-256 elliptic curve to implement
key-updatable PRF. Hash function SHA-3 is also used to
implement the traditional PRF. Both the developed SEED
and ROSE can achieve the 128-bit security level in practice.
Our experiments are performed on a desktop computer with
an Intel Core I5-8259U 2.3 GHz CPU (four cores), 32 GB of
DDR4 RAM, and Ubuntu Server 18.04.

Evaluation Methodology. Both SEED and ROSE clearly
have good performances in most aspects. Thus, our experi-
ments focus on the computation performances of protocols
Update and Search both of SEED and ROSE, i.e., the average
time costs of the client to issue an update query and a
search query, and the average time costs of the server
to find one matching ciphertext over different datasets. Let
dw and s′w be the numbers of the Type-del and Type-srch
ciphertexts, respectively.

For testing the search performance of SEED, we set up
12 datasets. Each dataset has in total 105 ciphertexts of the
same keyword, including the Type-del ciphertexts. These
datasets have different values of dw, where the maximum
value of dw is 600. By testing the search performances
over these datasets, we can find the slight influence of
the different values of dw on the time cost. We do not set
dw to be a very large value, since the Type-del ciphertexts
appear only after the last search query in practice (protocol
SEED.Search has removed the Type-del ciphertexts that
were generated before the last search query).

For testing the search performance of ROSE, we set up
48 datasets. All datasets have the same total number of
ciphertexts of the same keyword but different numbers of
Type-del or Type-srch ciphertexts. The total number is also
105. The maximum values of dw and s′w are 600 and 400,
respectively. We also do not set dw to be a very large value
due to the same reason as SEED. We do not consider the
number of ciphertexts generated by the duplicate update

13

50 100 200 300 400 500 600
dw: The Number of Ciphertexts with

 Operation Type op = del

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Se
arc

h T
im

e (
us)

Figure 4: Search Performance of SEED.

50 100 200 300 400
s′w: The Number of ciphertexts with

 Opertion Type op = srch

0
50

100
150
200
250
300
350
400
450
500

Se
arc

h T
im

e (
us)

dw=600 dw=200
dw=500 dw=100
dw=400
dw=300

Figure 5: Search Performance of ROSE.

queries, including the queries to re-add the already deleted
keyword/file-identifier pairs, since such kinds of update
queries do not increase the extra computation and commu-
nication costs.

Update Evaluation. In protocol SEED.Update, the client
takes an average time of approximately 10.53 microseconds
(resp. 11.08 microseconds) to generate a ciphertext for is-
suing an add query (resp. a delete query). To achieve
the same work in protocol ROSE.Update, the average time
costs of the client are 819.78 microseconds and 1205.60
microseconds, respectively.

Search Evaluation. In protocol SEED.Search, the client
takes an average time of approximately 1.86 microseconds
to generate a search trapdoor. Figure 4 shows the average
time costs of the sever to find one matching ciphertext
respectively over these 12 datasets, which have dw ∈
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} re-
spectively. When dw = 50, the average time cost is ap-
proximately 5.75 microseconds; with the increase in dw, the
search performance has slight degradation; when dw = 600,
the average time cost is approximately 6.20 microseconds.
It is clear that SEED has very practical search performance,
and the number of Type-del ciphertexts affect the search
performance insignificantly.

In protocol ROSE.Search, the client takes an average time
of approximately 876.32 microseconds to generate a search
trapdoor and a Type-srch ciphertext. Let Ddw,s′w denote
these 48 datasets, where dw ∈ {100, 200, 300, 400, 500, 600}
and s′w ∈ {50, 100, 150, 200, 250, 300, 350, 400}. Figure 5
shows the average time costs of the server to find one
matching ciphertext over these 48 datasets. For example,
the average time cost to find one matching ciphertext over
dataset D100,50 is approximately 67.57 microseconds; over

dataset D600,400, the average time cost is approximately
558.33 microseconds. With the increase in dw and s′w, al-
though the average time cost increases significantly, the
performance is still very efficient, especially for the dataset
with smaller dw but larger s′w.

In addition, suppose that there are many matching ci-
phertexts of a search query. A reasonable concern might
be the time cost of the client to decrypt out file identi-
fiers using AES after receiving many ciphertexts from the
server. However, it is not a major undertaking. Now, an
Advanced Encryption Standard instruction set (AES-NI) is
integrated into many processors, including the CPU we
deploy. With the help of AES-NI, the performance of AES
encryption/decryption can be very high, such as the perfor-
mance shown by Intel1. Hence, we do not pay attention to
the decryption performance of the client.

9 CONCLUSIONS

To the best of our knowledge, this work is for the first time
to study the correctness, security and performance of DSSE
under the assumption that the client can issue the irrational
update queries. Under this assumption, we find that (1)
most prior DSSE schemes cannot guarantee their claimed
correctnexss or security, and (2) while a few prior DSSE
schemes seem robust, they do not formally study the ro-
bustness, and they either entail very high computation and
communication costs or obtain the weak security. To tackle
all the above problems, we formally define the robustness of
DSSE and propose ROSE, the first robust DSSE scheme with
forward and backward security and practical performance.
To construct ROSE, we introduce SEED as a stepping stone,
analyze the design flaws of SEED in achieving robustness,
introduce for the first time key-updatable PRF, and trans-
form SEED to ROSE by applying this new kind of PRF. In
terms of performance, we analyze the performance of ROSE
comprehensively and test the search performances of both
SEED and ROSE on large datasets. The experimental results
show that both SEED and ROSE are very efficient.

REFERENCES

[1] D. X. Song, D. A. Wagner, and A. Perrig, “Practical
techniques for searches on encrypted data,” in 2000 IEEE
Symposium on Security and Privacy, Berkeley, California, USA,
May 14-17, 2000, 2000, pp. 44–55. [Online]. Available:
https://doi.org/10.1109/SECPRI.2000.848445

[2] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved definitions and
efficient constructions,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, 2006, pp. 79–88. [Online].
Available: https://doi.org/10.1145/1180405.1180417

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic
searchable symmetric encryption,” in the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, 2012, pp. 965–976. [Online]. Available:
https://doi.org/10.1145/2382196.2382298

[4] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014, 2014. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2014/practical-
dynamic-searchable-encryption-small-leakage

1. Intel AES-NI Performance Testing: online at
https://software.intel.com/en-us/articles/intel-aes-ni-performance-
testing-on-linuxjava-stack/.

14

[5] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, 2015, pp. 668–679. [Online].
Available: https://doi.org/10.1145/2810103.2813700

[6] Y. Zhang, J. Katz, and C. Papamanthou, “All your
queries are belong to us: The power of file-injection
attacks on searchable encryption,” in 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., 2016, pp. 707–720. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/zhang

[7] R. Bost, “σoφoς : Forward secure searchable encryption,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, 2016, pp. 1143–1154. [Online]. Available:
https://doi.org/10.1145/2976749.2978303

[8] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, 2017, pp. 1465–1482. [Online].
Available: https://doi.org/10.1145/3133956.3133980

[9] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient
updates,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, 2017, pp. 1449–1463. [Online].
Available: https://doi.org/10.1145/3133956.3133970

[10] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad,
V. Vo, and S. Nepal, “Practical backward-secure searchable
encryption from symmetric puncturable encryption,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, 2018, pp. 763–780. [Online]. Available:
https://doi.org/10.1145/3243734.3243782

[11] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric
searchable encryption,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, 2018, pp. 1038–1055.
[Online]. Available: https://doi.org/10.1145/3243734.3243833

[12] C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic
searchable symmetric encryption with forward and stronger
backward privacy,” in Computer Security - ESORICS 2019 -
24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part II, 2019, pp.
283–303. [Online]. Available: https://doi.org/10.1007/978-3-030-
29962-0 14

[13] I. Demertzis, J. G. Chamani, D. Papadopoulos, and
C. Papamanthou, “Dynamic searchable encryption with
small client storage,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020.
[Online]. Available: https://www.ndss-symposium.org/ndss-
paper/dynamic-searchable-encryption-with-small-client-storage/

[14] S.-F. Sun, R. Steinfeld, S. Lai, X. Yuan, A. Sakzad, J. K. Liu,
S. Nepal, and D. Gu, “Practical non-interactive searchable
encryption with forward and backward privacy,” 2021.
[Online]. Available: https://www.ndss-symposium.org/ndss-
paper/practical-non-interactive-searchable-encryption-with-
forward-and-backward-privacy/

[15] M. D. Green and I. Miers, “Forward secure asynchronous
messaging from puncturable encryption,” in 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, 2015, pp. 305–320. [Online]. Available:
https://doi.org/10.1109/SP.2015.26

[16] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient
oblivious RAM in two rounds with applications to searchable
encryption,” in Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part III, 2016, pp.
563–592. [Online]. Available: https://doi.org/10.1007/978-3-662-
53015-3 20

[17] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-
random functions and kdcs,” in Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and

Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, 1999, pp. 327–346. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X 23

[18] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan,
“Key homomorphic prfs and their applications,” in Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, 2013, pp. 410–428. [Online]. Available:
https://doi.org/10.1007/978-3-642-40041-4 23

[19] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Applied Cryptography and
Network Security, Third International Conference, ACNS 2005, New
York, NY, USA, June 7-10, 2005, Proceedings, 2005, pp. 442–455.
[Online]. Available: https://doi.org/10.1007/11496137 30

[20] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation,” in 21st Annual
Network and Distributed System Security Symposium, NDSS 2014,
San Diego, California, USA, February 23-26, 2014, 2014. [Online].
Available: https://www.ndss-symposium.org/ndss2014

[21] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography and Data Security
- 17th International Conference, FC 2013, Okinawa, Japan, April
1-5, 2013, Revised Selected Papers, 2013, pp. 258–274. [Online].
Available: https://doi.org/10.1007/978-3-642-39884-1 22

[22] F. Hahn and F. Kerschbaum, “Searchable encryption with secure
and efficient updates,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, 2014, pp. 310–320. [Online]. Available:
https://doi.org/10.1145/2660267.2660297

[23] A. A. Yavuz and J. Guajardo, “Dynamic searchable symmetric
encryption with minimal leakage and efficient updates on
commodity hardware,” in Selected Areas in Cryptography - SAC
2015 - 22nd International Conference, Sackville, NB, Canada, August
12-14, 2015, Revised Selected Papers, 2015, pp. 241–259. [Online].
Available: https://doi.org/10.1007/978-3-319-31301-6 15

[24] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic
searchable symmetric encryption with constant client storage
cost,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1538–1549, 2021.
[Online]. Available: https://doi.org/10.1109/TIFS.2020.3033412

[25] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and
W. Lou, “Searchable symmetric encryption with forward
search privacy,” IEEE Trans. Dependable Secur. Comput.,
vol. 18, no. 1, pp. 460–474, 2021. [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2894411

[26] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. N. Garofalakis, “Practical private range search revisited,”
in Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, 2016, pp. 185–198. [Online]. Available:
https://doi.org/10.1145/2882903.2882911

[27] I. Demertzis and C. Papamanthou, “Fast searchable encryption
with tunable locality,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, 2017, pp. 1053–1067. [Online].
Available: https://doi.org/10.1145/3035918.3064057

[28] I. Demertzis, C. Papamanthou, and R. Talapatra, “Effi-
cient searchable encryption through compression,” PVLDB,
vol. 11, no. 11, pp. 1729–1741, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p1729-demertzis.pdf

[29] T. Hoang, A. A. Yavuz, and J. Guajardo, “Practical and secure
dynamic searchable encryption via oblivious access on distributed
data structure,” in Proceedings of the 32nd Annual Conference on
Computer Security Applications, ACSAC 2016, Los Angeles, CA,
USA, December 5-9, 2016, 2016, pp. 302–313. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2991088

[30] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized I/O efficiency,”
IEEE Trans. Dependable Sec. Comput., 2018. [Online]. Available:
https://doi.org/10.1109/TDSC.2018.2822294

[31] C. L. 8.1.0, https://www.cryptopp.com, 2019, last accessed 22
April 2019.

[32] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary
for Cryptography,” https://github.com/relic-toolkit/relic, 2014,
last accessed 22 April 2019.

15

APPENDIX A
SECURITY PROOF OF SEED

To prove the forward and Type-III backward security
of SEED, we construct a simulator S , which takes leak-
age functions LStp(λ) = λ, LUpdt(op, w, id) = ∅, and
LSrch(w) = {sp(w),TimeDB(w),DelHist(w)} as inputs to
simulate algorithm SEED.Setup and protocols SEED.Update
and SEED.Search respectively, and demonstrate that the
simulated SEED is indistinguishable from the real SEED
under the adaptive attacks. Algorithm 4 describes the simu-
lator S . Specifically, the simulator S consists of the following
three phases.

Setup Phase. In this phase, simulator S takes leakage
function LStp(λ) = λ as input, initializes an empty database
EDB for the server, an empty map UpdateList for recording
the updated ciphertexts and their decryption tokens, and
a variable u of timestamp, and sends EDB to the server.
It is clear that S.Setup(LStp(λ)) is indistinguishable from
the real algorithm SEED.Setup, since the simulated database
EDB is the same as a real database.

Update Phase. When adversary A issues an update
query (op, w, id), simulator S takes leakage function
LUpdt(op, w, id) as input, computes the timestamp u of
this update query, randomly picks a ciphertext and its
decryption token (L,R,D,C, T), inserts (L,R,D,C, T) into
UpdateList[u], and sends (L,R,D,C) to the server. Accord-
ing to the security of PRF F, the randomness of oracle H,
and the security of symmetric encryption, the simulated
ciphertext (L,R,D,C) has the same distribution as the real
ciphertext that is generated by protocol SEED.Update in the
RO model. Hence, S.Update(LUpdt(op, w, id)) is indistin-
guishable from the real protocol SEED.Update.

Search Phase. When adversaryA issues a search query
w, simulator S takes leakage functionLSrch(w) as input and
performs the following steps:

1) S computes the timestamp u of this search query
and extracts the timestamp u′s of the last search
query of w if w has been searched before; otherwise,
it sets u′s = 0, and extracts the timestamps of all
update queries of w that have occurred after the
timestamp u′s (lines 1-3);

2) If both n = 0 and u′s = 0 hold, it means that
adversaryA never issue a update query of w; then,
S returns ⊥ (lines 4-6);

3) S extracts the timestamp u0 of the last add query
having u0 < u′s and u0 ∈ TimeDB(w) and sets
u0 = 0 if there is no such kind of add query (line
7); if both n = 0 and u0 = 0 hold, it means that
either adversary A never issue an add query before
timestamp u′s or all added ciphertexts of w before
timestamp u′s have been removed by the adversary
A’s delete queries; then, S returns ⊥ (lines 8-10);

4) S retrieves (L0, R0, D0, C0, T0) from
UpdateList[u0]; if both n = 0 and u0 6= 0
hold, it means that adversary A never issued any
update query after timestamp u′s, and there are
still some matching ciphertexts that were added
before timestamp u′s; then, S sends search trapdoor
(L0, T0) to the server and returns all file identifiers

in TimeDB(w) after receiving the response from the
server (lines 11-15);

5) S retrieves (Ln, Rn, Dn, Cn, Tn) from
UpdateList[un], and programs random oracle
H such that all ciphertexts updated after timestamp
u′s contain the correct information and construct
a hidden chain relationship with the ciphertexts
updated before timestamp u′s (lines 16-26);

6) Finally, S sends search trapdoor (Ln, Tn) to the
server and returns all file identifiers in TimeDB(w)
after receiving the response from the server (lines 27
and 28).

Upon receiving the search trapdoor from simulator S
in the above steps, the server implements the real search
procedure to find all matching ciphertexts, except that the
hash function H works as a random oracle. Moreover, the
search results are correct since random oracle H has been
programmed well. Hence, S.Search(LSrch(w)) is indistin-
guishable from the real protocol SEED.Search in the RO
model.

To summarize, the above simulator S takes leakage func-
tions LStp(λ) = λ, LUpdt(op, w, id) = ∅, and LSrch(w) =
{sp(w),TimeDB(w),DelHist(w)} as inputs and simulates
an ideal game of SEED that is indistinguishable from an real
game of SEED under the adaptive attacks in the RO model.

APPENDIX B
SECURITY PROOF OF KEY-UPDATABLE PRF

Suppose A is a PPT adversary to break the key-
updatable PRF instance in the experiment ExptPRF

A,P. Algo-
rithm 5 constructs a simulator S that can simulate the exper-
iment ExptPRF

A,P in the RO model and leverage the capability
of the adversary A to break the DDH assumption.

Next, we will prove that S correctly simulates the exper-
iment ExptPRF

A,P in the view ofA if Z = gαβ ; otherwise,A has
no advantage to correctly guess b.

When Z = gαβ , for any x, we have gβ·r = H(x) and
P(K1, x) = gαβr = gK1·βr = H(x)K1 . It means that S cor-
rectly simulates function P(K1, ·) even if it does not know
K1. In addition, it is clear that the constructed function f(·)
is a random one. Hence, we have that S is indistinguishable
from the experiment ExptPRF

A,P in the view of A if Z = gαβ .
Formally, we have

Pr[ExptPRF
A,P(λ) = 1] = Pr[S(gα, gβ , gαβ) = 1].

When Z = gγ , for any x, we have P(K1, x) = gγr

where r is random. It implies that for i ∈ [1, n], P(K1, xi) is
indistinguishable from f(xi), since gγ has the same random
distribution with R, and A cannot query P(K1, xi) or f(xi).
Summarily, A has no advantage to correctly guess b if
Z = gγ . Formally, we have

Pr[S(gα, gβ , gγ) = 1] =
1

2
.

According to the definition of the DDH assumption and
the above results, we have

|Pr[S(gα, gβ , gαβ) = 1]− Pr[S(gα, gβ , gγ) = 1]|

= |Pr[ExptPRF
A,P(λ) = 1]− 1

2
| = AdvPRF

A,P(λ).

16

Algorithm 4 The Construction of S in the Ideal Game of SEED

Setup(LStp(λ))

1: Initialize EDB← ∅, an empty map UpdateList, and a global
variable u← 0

2: UpdateList[0]← (0λ,NULL,NULL,NULL, 0λ)
3: Send EDB to the server

Update(LUpdt(op, w, id))

1: u← u+ 1 B the timestamp of the current update query
2: (L,R,D,C, T)

$← {0, 1}λ×{0, 1}λ×{0, 1}3λ+1×CSE×{0, 1}λ
3: UpdateList[u]← (L,R,D,C, T)
4: Send ciphertext (L,R,D,C) to the server

Search(LSrch(w))

1: u← u+ 1 B the timestamp of the current search query
2: Extract the timestamp u′s of the last search query from

sp(w) where u′s = 0 if sp(w) = ∅
3: Extract all timestamps {u1, · · · , un} between u′s and u from

both TimeDB(w) and DelHist(w) where ui < uj if i < j
4: if n = 0 and u′s = 0 then
5: return ⊥
6: end if
7: Extract the maximum timestamp u0 less than u′s from

TimeDB(w), where u0 = 0 if u′s = 0 or no such kind of
u0 exists

8: if n = 0 and u0 = 0 then
9: return ⊥

10: end if
11: (L0, R0, D0, C0, T0)← UpdateList[u0]
12: if n = 0 and u0 6= 0 then
13: Send search trapdoor (L0, T0) to the server
14: return all file identifiers in TimeDB(w) after receiving the

response from the server
15: end if
16: (Ln, Rn, Dn, Cn, Tn)← UpdateList[un]
17: for i = n to 1 do
18: (Li−1, Ri−1, Di−1, Ci−1, Ti−1)← UpdateList[ui−1]
19: if ui is the timestamp of an add query then
20: Program H s.t. H(Ti, Ri) = Di ⊕ (add||0λ||Li−1||Ti−1)
21: else
22: Let uadd be the timestamp s.t. (uadd, ui) ∈ DelHist(w)
23: (Ladd, Radd, Dadd, Cadd, T add)← UpdateList[uadd]
24: Program H s.t. H(Ti, Ri) = Di ⊕ (del||Ladd||Li−1||Ti−1)
25: end if
26: end for
27: Send search trapdoor (Ln, Tn) to the server
28: return all file identifiers in TimeDB(w) after receiving the

response from the server

Algorithm 5 The Contruction of S in the RO Model

S(gα, gβ , Z) B Note that Z = gαβ or gγ

1: Initialize two empty maps HList and FList
2: b

$← {0, 1}, ∆
$← KP, and R $← G

3: (x1, · · · , xn, st)← AH(·),P(K1,·),f(·)(λ,∆)
4: if b = 1 then
5: b′ ← AH(·),P(K1,·),f(·)({P(K1, xi)|i ∈ [1, n]}, st)
6: else
7: b′ ← AH(·),P(K1,·),f(·)({f(xi)|i ∈ [1, n]}, st)
8: end if
9: return 1 if b = b′; otherwise, return 0

H(x)

1: if x has been queried before then
2: (r, gβ·r)← HList[x]
3: else

4: r
$← Z∗q and HList[x]← (r, gβ·r)

5: end if
6: return gβ·r

P(K1, x)

1: Query H(x) if x was never queried before
2: (r, gβ·r)← HList[x]
3: return Zr B It implies that K1 = α and K2 = α ·∆

f(x)

1: if x has been queried before then
2: (r,Rr)← FList[x]
3: else
4: r

$← Z∗q and FList[x]← (r,Rr)
5: end if
6: return Rr

It means that if the DDH assumption holds, the advantage
of A must be negligible when it breaks the security of the
key-updatable PRF instance in the RO model.

APPENDIX C
SECURITY PROOF OF ROSE

The security proof of ROSE is analogous to the proof
of SEED. To prove the forward and general Type-III back-
ward security, we construct a simulator S , which takes
leakage functions LStp(λ) = λ, LUpdt(op, w, id) = ∅,
and LSrch(w) = {sp(w), exTimeDB(w), exDelHist(w)} as
inputs to simulate algorithm ROSE.Setup and protocols
ROSE.Update and ROSE.Search respectively, and demon-
strate that the simulated ROSE is indistinguishable from the
real ROSE under the adaptive attacks. Algorithm 6 describes
the simulator S . Specifically, the simulator S consists of the
following three phases.

Setup Phase. In this phase, simulator S takes leakage
function LStp(λ) = λ as input, initializes an empty database
EDB, four empty maps CipherList, UList, PList and TList,
and a variable u of the timestamp, and sends EDB to the

server. Taking a timestamp as input, maps CipherList and
TList return a ciphertext and the corresponding decryption
token, respectively, both of which are generated by the
update or search query at the input timestamp; map
UList returns a key-update token that is generated by the
search query at the input timestamp; map PList returns
a pair of PRF P values, where one of them is used by the
update query at the input timestamp to generate a cipher-
text. It is clear that S.Setup(LStp(λ)) is indistinguishable
from the real algorithm ROSE.Setup, since the simulated
database EDB is the same as a real database.

Update Phase. When adversary A issues an update
query (op, w, id), simulator S takes leakage function
LUpdt(op, w, id) as input, computes the timestamp u of this
update query, randomly picks a ciphertext (L,R,D,C),
inserts this ciphertext into CipherList[u], and sends this
ciphertext to the server. According to randomness of oracles
H and G and the security of symmetric encryption, the simu-
lated ciphertext (L,R,D,C) has the same distribution as the
real ciphertext that is generated by protocol ROSE.Update in
the RO model. Hence, S.Update(LUpdt(op, w, id)) is indis-

17

Algorithm 6 The Construction of S in the Ideal Game of ROSE

Setup(LStp(λ))

1: Initialize EDB ← ∅, four empty maps CipherList, UList,
PList and TList, and a global variable u← 0

2: CipherList[0] ← (0λ,NULL,NULL,NULL) and TList[0] ←
0λ

3: Send EDB to the server
Update(LUpdt(op, (w, id)))

1: u← u+ 1 B the timestamp of the current update
operation

2: (L,R,D,C)
$← {0, 1}λ × {0, 1}λ × {0, 1}2λ+λ′+2 × CSE

3: CipherList[u]← (L,R,D,C)
4: Send ciphertext (L,R,D,C) to the server

Search(LSrch(w))

1: u← u+ 1 B the timestamp of the current search query
2: Extract the timestamp u0 of the last search query from sp(w)

where u0 = 0 if sp(w) = ∅
3: Extract all timestamps {u1, · · · , un} between u0 and u from

both exTimeDB(w) and exDelHist(w) and exclude the re-
peated timestamps, where ui < uj if i < j

4: if n = 0 and u0 = 0 then
5: return ⊥
6: end if
7: Extract the maximum timestamp umax less than u0 from

exTimeDB(w), where umax = 0 if u0 = 0 or no such kind of
umax exists

8: if n = 0 and umax = 0 then
9: return ⊥

10: end if
11: (Lu, Ru, Du, Cu)

$← {0, 1}λ × {0, 1}λ × {0, 1}2λ+λ′+2 × CSE
12: CipherList[u]← (Lu, Ru, Du, Cu)

13: Pu
$← YP and TList[u]← Tu

$← YF

14: UList[u]← ∆u
$← KP

15: Program G s.t. G(Pu, Ru) = Lu
16: if n = 0 and umax 6= 0 then
17: (Lu0 , Ru0 , Du0 , Cu0) ← CipherList[u0] and Tu0 ←

TList[u0]
18: Program H s.t. H(Tu, Ru) = Du ⊕ (srch||∆u||Lu0 ||Tu0)
19: Send search trapdoor (Lu0 , Tu0) and ciphertext

(Lu, Ru, Du, Cu) to the server
20: return all file identifiers in exTimeDB(w) after receiving

the response from the server

21: end if
22: for each (Uadd,Udel) ∈ exDelHist(w) and U ∈

exTimeDB(w) do
23: umin ← Min(Uadd ∪ Udel) or Min(U)
24: if PList[umin] = (NULL,NULL) then
25: PList[umin]← (Padd, Pdel)

$← YP × YP
26: else
27: (Padd, Pdel)← PList[umin]
28: end if
29: Orderly extract all key-update tokens {∆1, · · · ,∆m} with

their timestamps between umin and u from UList
30: for all v ∈ Uadd ∪ Udel or U , PList[v] 6= (NULL,NULL),

TList[v] 6= NULL, and umin < v < u do
31: if m 6= 0 then
32: PList[v]← (P

∏m
i=1 ∆−1

i
add , P

∏m
i=1 ∆−1

i
del)

33: else
34: PList[v]← (Padd, Pdel)
35: end if
36: Set TList[v]← Tv

$← YF
37: end for
38: end for
39: (Lun , Run , Dun , Cun) ← CipherList[un] and Tun ←

TList[un]
40: for i = n to 1 do
41: (Padd, Pdel)← PList[ui]
42: (Lui−1 , Rui−1 , Dui−1 , Cui−1)← CipherList[ui−1]
43: Tui−1 ← TList[ui−1]
44: if ui is corresponding to an add query then
45: Program G s.t. G(Padd, Rui) = Lui

46: Program H s.t. H(Tui , Rui) = Dui ⊕
(add||0λ||Lui−1 ||Tui−1)

47: else
48: Program G s.t. G(Pdel, Rui) = Lui

49: Program H s.t. H(Tui , Rui) = Dui ⊕
(del||Padd||Lui−1 ||Tui−1)

50: end if
51: end for
52: Program H s.t. H(Tu, Ru) = Du ⊕ (srch||∆u||Lun ||Tun)
53: Send search trapdoor (Lun , Tun) and ciphertext

(Lu, Ru, Du, Cu) to the server
54: return all file identifiers in exTimeDB(w) after receiving

the response from the server

tinguishable from the real protocol ROSE.Update.
Search Phase. When adversaryA issues a search query

w, simulator S takes leakage functionLSrch(w) as input and
performs the following steps:

1) S computes the timestamp u of this search query
and extracts the timestamp u0 of the last search
query of w if w has been searched before; otherwise,
it sets u0 = 0 and extracts the timestamps of all
update queries of w that occurred after timestamp
u0 (lines 1-3);

2) If both n = 0 and u0 = 0 hold, it means that
adversary A never issued an update query of w;
then, S returns ⊥ (lines 4-6);

3) S extracts the timestamp umax of the last add query
of w having umax < u0 and sets umax = 0 if u0 = 0
or there is no such kind of add query (line 7); if
both n = 0 and umax = 0 hold, it means that either
adversary A never issued an add query of w before
timestamp u0 or all added ciphertexts of w before

timestamp u0 have been removed by the adversary
A’s delete queries; then, S returns ⊥ (lines 8-10);

4) S randomly picks a ciphertext (Lu, Ru, Du, Cu),
inserts this ciphertext into CipherList[u], randomly
picks Pu from YP, a decryption token Tu from YF
and a key-update token ∆u from KP, inserts Tu
and ∆u into TList[u] and UList[u] respectively, and
programs oracle G such that Lu can be correctly
generated by taking Pu and Ru as inputs (lines11-
15);

5) If both n = 0 and umax 6= 0 hold, it means that
A does not issue any update query of w after the
last search query (or timestamp u0), and there
are still some matching ciphertexts that were added
before the last search query (or timestamp u0);
then, S retrieves the ciphertext (Lu0 , Ru0 , Du0 , Cu0)
from CipherList[u0] and the corresponding decryp-
tion token Tu0 from TList[u0], programs oracle H
such that ciphertext (Lu, Ru, Du, Cu) contains the
correct information and constructs a hidden chain

18

relationship with ciphertext (Lu0
, Ruo

, Du0
, Cu0

),
sends search trapdoor (Lu0

, Tu0
) and ciphertext

(Lu, Ru, Du, Cu) to the server, and returns all file
identifiers in exTimeDB(w) after receiving the re-
sponse from the server (lines 16-21); (Note that if
n 6= 0 holds, it means that A issued some update
queries of w after the last search query (or times-
tamp u0); then, S will compute some values for the
ciphertexts generated by those update queries and
program oracles G and H such that these ciphertexts
can be correctly found or removed by the server
when receiving a correct search trapdoor.)

6) For each (Uadd,Udel) ∈ exDelHist(w) and U ∈
exTimeDB(w), S performs the following steps (lines
22-38):

a) Extracts the minimum value umin from
Uadd ∪ Udel or U (line 23);

b) Randomly picks (Padd, Pdel) from YP × YP
if PList[umin] is empty; otherwise, retrieve
(Padd, Pdel) from PList[umin] (lines 24-28);

c) Extracts all key-update tokens with times-
tamps between umin and u (line 29);

d) Finally, for all v ∈ Uadd ∪ Udel or U ,
PList[v] 6= (NULL,NULL), TList[v] 6=
NULL, and umin < v < u, computes a
pair of PRF P values according to the above
extracted key-update tokens, picks a random
delete token, and inserts them into the corre-
sponding maps (lines 31-38);

7) For the ciphertexts stored in CipherList with times-
tamps {u1, ..., un}, programs oracles G and H ac-
cording to their operation types and precomputed
values stored in maps PList and TList, such that
these ciphertexts can be correctly found or removed
by the server in the future (lines 39-51);

8) Programs oracle H such that the ciphertext
(Lu, Ru, Du, Cu) can be connected with cipher-
text CipherList[un] by a hidden chain relationship,
sends search trapdoor (Lun

, Tun
) and ciphertext

(Lu, Ru, Du, Cu) to the server, and returns all file
identifiers in exTimeDB(w) after receiving the re-
sponse from the server (lines 52-54).

In the above steps, upon receiving the search trapdoor
from simulator S , the server implements the real search
procedure to find all matching ciphertexts, except that the
hash functions G and H work as two random oracles. More-
over, the search results are correct since oracles G and H
have been programmed well. Hence, S.Search(LSrch(w))
is indistinguishable from the real protocol ROSE.Search in
the RO model.

To summarize, the above simulator S takes leakage func-
tions LStp(λ) = λ, LUpdt(op, w, id) = ∅, and LSrch(w) =
{sp(w), exTimeDB(w), exDelHist(w)} as inputs and simu-
lates an ideal game of ROSE that is indistinguishable from
an real game of ROSE under the adaptive attacks in the RO
model.

