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Abstract

The secure multi-device instant messaging ecosystem is diverse, varied, and under-
represented in academia. We create a systematization of knowledge which focuses
on the challenges of multi-device messaging in a secure context and give an overview
of the current situation in the multi-device setting. For that, we analyze messenger
documentation, white papers, and research that deals with multi-device messaging.
This includes a detailed description of different patterns for data transfer between
devices as well as device management, i.e. how clients are cryptographically linked or
unlinked to or from an account and how the initial setup can be implemented. We then
evaluate different instant messengers with regard to relevant criteria, e.g. whether they
achieve specific security, usability, and privacy goals. In the end, we outline interesting
areas for future research.
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1 Introduction

Since the early 2000s, the ways that people communicate have changed dramatically.
One of those changes has come with the advent of encrypted Instant Messenger (IM)
applications, which make end-to-end encrypted communication ubiquitous, cheap,
and easy. Anecdotally, some people want to be able to have the same conversation
on multiple devices, which we define as a messaging client (device) the user can use
to interact with the messaging system (e.g. App, Browser, CLI, etc.). This additional
requirement has led to the creation of “Secure Multi-Device Messaging”, which we
define as programs that send end-to-end encrypted messages between users, who may
interact with those messages from more than one device each.

These multi-device messengers differ in how they achieve their corresponding defini-
tion of security. We consider these differences significant enough to warrant additional
attention. Many of the implemented solutions were created as part of commercial
products and the number of academic publications on the topic is fairly limited.

Therefore, our work also incorporates white papers of IMs explaining their security
models, evaluates the security properties of the corresponding protocols as well as
giving an overview of the approaches that are used. This includes the used techniques
for exchanging necessary cryptographic keys, synchronizing messages, and device
management.

Nevertheless, we identified three academic papers of interest. Unger et al. [43] created
a systematization of knowledge (SoK) on secure messaging in 2015. The messenger
market being very fast-paced, a lot of new technologies and IMs have evolved since then,
the Double Ratchet protocol by Marlinspike [26] making end-to-end encryption (E2EE)
readily available to the public being just one of them. Therefore, the SoK by Unger
et al. is not up-to-date in all aspects anymore. Although the topic of multi-device is
addressed, it is no longer appropriate in the context of the increasing number of devices
that users own today. Atwater and Hengartner [3] describe a way of distributing keys
among multiple devices for cryptographically secure operations by using threshold
cryptography, which tackles the problem but also introduces complexity for the user.
Campion et al. [7] propose a different mechanism for using secure instant messaging
on multiple devices built on top of already existing protocols, trying to scale better
than existing protocols like the Sesame protocol [27]. With little current literature being
available, it is hard to quickly gain an overview over the current state of the art.

We hope this systematization of knowledge can remediate the situation somewhat
and simplify understanding the secure multi-device messaging ecosystem in early 2021.
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1 Introduction

1.1 Group Messaging vs. Multi-Device Messaging

Thinking about multiple devices of one user, the scenario does not seem to be different
from group messaging at the first glance: There are multiple devices participating in
one chat, they need to exchange messages and could send them from one to another,
except that more than one device belongs to the same user. But on closer inspection,
problems stand out that do not occur in the group messaging setting. First, devices that
belong to the same user should also be perceived as belonging to the same user. This
problem is not solved by simply using group messaging in all cases of the protocols
and techniques that will be presented. Second, the usage of group IM protocols could
disclose metadata in terms of the number of devices that are present for each user.
Third, group messaging does not solve the authorization for adding or removing
devices. Another protocol is needed in order to be able to add or remove devices to or
from all conversations of a particular user who decides, which devices may manage
other devices of the same user. It also needs to ensure that—opposed to standard group
messaging—the corresponding operations to devices are applied to all conversations of
the user, as users probably want to be able to read and write messages on all devices.
Fourth, the administration operations addressed of authenticating devices of one user to
other devices of the same user has a different security model than in group messaging,
as “one can easily assume the devices will be physically close at some point” [7]. And
last, whereas users have a high probability for coming online regularly, the same does
not necessarily apply to all devices, as they can be offline for a very long time. This has
implications on the security properties of the protocols, like the time an (encrypted)
message must be stored for a device being offline.

1.2 Methodology

We first identified different IMs that might be relevant to our report. Since many
similar messengers exist, we limited our analysis to messengers of some notability.
Therefore, we only considered IMs listed on the Wikipedia list “Comparison of cross-
platform instant messaging clients” [12]. We then pruned the resulting collection of IMs,
removing all messengers that do not implement E2EE and multi-device functionality,
as well as those we believed to be discontinued. Furthermore, we excluded IMs that
do not provide a documentation of their E2EE and multi-device implementation. For
the remaining messengers we tried to gain an understanding of how they implemented
their multi-device functionality by reviewing academic and non-academic literature
and media, such as relevant papers, white papers, talks, and protocol definitions. For
some IMs we also examined the functionality and implementation ourselves. During
this stage, we also reviewed additional protocols that we were aware of that had been
proposed, but not implemented yet. We then tried to classify the protocols according
to common properties and evaluated them under a number of security goals.

We had a closer look at the following IMs and their respective protocols and commu-
nication methods:
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1 Introduction

WhatsApp First released in 2009, WhatsApp is one of the most used messengers in the
world with more than 2 billion registered users as of February 2020 [46]. The company
was bought by Facebook in 2014 [13].

Facebook Messenger Facebook Messenger is the chat client used for communication
between members of the Facebook Platform. In January 2021, there were 1.3 billion
users using the Facebook Messenger App actively on a monthly basis [36].

Signal Signal was developed by a development group called Open Whisper Systems
since 2013 [25]. As an open source project, the source code is hosted on GitHub.1

Element Element (known as Riot before July 2020) is an open source messenger2 that
implements the Matrix protocol and was first released in 2016. Because of its federated
architecture, users can host their own servers.

Threema The Swiss company Threema created the homonymous messenger in 2012

[40]. Since then, it has advertised end-to-end encryption and a high level of data
protection and complete anonymity while using the app. The (web) apps are open
source software,3 the server components however are currently proprietary and cannot
be audited by the public.

Telegram Telegram was first released in 2013 [38]. The messenger, originally devel-
oped in Russia, also offers an open platform for creating bots and other clients in
addition to a custom encryption protocol. The source code for some of the apps is
publicly available,4 but the server code has not been published. As of January 2021,
Telegram has around 500 million active users per month [36].

iMessage Integrated into the Messages app of most of Apples operating systems,
iMessage is a proprietary IM only available on Apple devices. No source code is
publicly available.

Keybase Mostly known for being a public key directory, Keybase also provides an
end-to-end encrypted messaging platform, with clients available for most platforms. In
2019, Keybase reported about 400, 000 users. Keybase was acquired by Zoom in 2020

[19].

Skype First published in 2003, then acquired by eBay in 2005 and by Microsoft in 2011,
Skype has supported optional end-to-end encrypted chats since 2018. Skype originally
featured a peer-to-peer architecture, but this was later removed [34].

1Signal source code: https://github.com/signalapp
2Element source code: https://github.com/vector-im
3Source code for the Threema apps: https://github.com/threema-ch
4Source code for the Telegram apps and libraries: https://github.com/TelegramMessenger
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1 Introduction

Viber With more than 260, 000 reported active users, Viber is mostly popular in East-
ern Europe, Russia, the Middle East, and some Eastern Markets [44].

Wickr Wickr was founded in 2012, and has focused on security and privacy since
inception. Wickr publicated a white paper explaining its encryption in 2015 and
publicated one of its crypto protocols in 2017 [50].

Wire Wire was founded in 2014, with many of its founding members coming from
Skype. Unlike many competitors, Wire focuses mainly on the enterprise market. Since
2016 communication via Wire is end-to-end encrypted per default and source code for
its clients has been released [51]. Rumors have it that Wire cryptographers can play the
guitar exceptionally well!

As we focused on IMs with good notability, we did not consider all messengers that
claim to have multi-device support in some way. For the messengers in focus, we first
want to evaluate criteria regarding messaging in a multi-device context (see chapter 2)
and after that criteria regarding managing multiple devices, i.e. clients, of one user (see
chapter 3). The criteria being evaluated can be classified into three different categories:

Security

• whether a method provides Forward Secrecy and Post-Compromise Security

• how linking of devices is achieved

Usability

• the time complexity for encrypting messages

• whether the devices can independently send messages (without the help of other
devices)

• how information is exchanged during device linking

• whether old messages are decryptable on new devices

• whether accounts, messages, or user verifications can be recovered

Privacy

• whether the devices need to be known by the server

• whether the devices are known to other users
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2 Multi-Device Messaging

2.1 Context

In this chapter we describe the protocols and procedures that are necessary to actually
transfer data between different devices in a multi-device messaging context. Data
in this context can mean any application-specific data and is not solely restricted to
messages being exchanged actively by a user (we call them user messages). In addition
to user messages, other data, such as read receipts, status messages, and metadata, is
also part of the data transmitted between devices. We call those meta messages.

We differentiate between communication between devices that belong to one user
(same-owned devices) and devices that belong to different users. For the latter case,
we describe the communication between two users with multiple devices only since
the communication between more users is not substantially different from a protocol
perspective for the protocols we have examined.

At this point, we assume that both users who want to communicate have a set of
trusted devices. How these devices gain and lose their trusted status is described in
chapter 3. Furthermore, we assume that there is a central service (that is possibly
aware of all devices) and all devices know how to interact with that central service.
We define central service as a service that can be provided by central infrastructure of
the messaging service provider or by a group of decentralized servers. The role of this
service depends on the underlying security architecture. The devices are also aware of
each other if required by the corresponding protocol.

2.2 Transferring Data Between Di�erent Devices of One User

Some protocols used for multi-device messaging transfer data between same-owned
devices. It should be noted that not all protocols deal with data transfer between
same-owned devices, OpenPGP being a well known example for a protocol that does
not [6]. Lesser known examples for protocols that do not synchronize data between
same-owned devices include the Surespot [35] and ADAMANT messengers [1].

In OpenPGP’s case, synchronization between devices is considered out of scope, and
features such as synchronized read receipts are only available because the surrounding
environment, in this case IMAP, provides them. The downside is that these additional
features may be designed insecurely. If the surrounding environment does not provide
those features, they simply do not exist. This is the case with ADAMANT, which does
not track which messages a user has seen beyond a single client and thus lacks a feature
that is quite common for other messaging services.
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2 Multi-Device Messaging

For those protocols that do transfer data between same-owned devices, a common
use case is the synchronization of metadata, such as contact books, read receipts, or the
transfer of keys used for decrypting incoming data. Protocols that follow the reflection
pattern (see subsection 2.2.2) also transfer received messages and, depending on the
specific implementation, messages that should be sent between devices that belong to
one user.

We do not believe that the different patterns for transferring data between trusted
devices, when E2EE is not necessary, require in-depth explanation. For protocols that
leverage E2EE and data transfer between same-owned devices, two patterns exist: The
first pattern is to encrypt the data and store it on a server while the decryption keys are
known to authorized devices only. These devices can then access or update the data.
The second pattern is to encrypt and transfer the data directly between devices.

2.2.1 Storing Data on a Server

For the simplest form of the first pattern, only one key exists, which is known to
all devices and can decrypt all data that should be shared. We believe this is how
ProtonMail synchronizes contacts between devices [30]. XMPP-OX, an extension to
the XMPP protocol that uses OpenPGP to achieve E2EE, also achieves multi-device
functionality by encrypting the OpenPGP key of the user and storing it on a server that
only allows authorized clients to access it.

A1 A3A2

Server

k V

V

k V

k
V

(a) Synchronization via a server with a single vault.

A1 A3A2

Server

k V
1

V1

k V
2

k V
3

V2 V3

k
V1

(b) Synchronization via a server with multiple
vaults.

Figure 2.1: Sharing data between same-owned devices via a server.

While this approach allows for the synchronization of arbitrary data without re-
strictions and limits the number of encryptions that need to occur to share a piece of
data, it also allows an attacker access to all data of all devices if only a single device
is compromised. Additionally, to guarantee that a device you once trusted cannot
continue to decrypt the shared data, you need to either guarantee that the relevant key
was deleted from the device or re-encrypt all data with a different key that needs to be
shared among all other devices.

The Matrix protocol proposes to use multiple keys instead, with each key granting
access to a subset of the data [9]. These subsets may be overlapping, so that different
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2 Multi-Device Messaging

keys can access different instances of the same data. If a device wants access to a piece
of data it does not yet have access to, it queries all other devices for a device that is
willing to share the corresponding secret. That device then encrypts the data for the
requesting device and transfers it directly. Since keys do not need to be known to all
devices of a user, this approach allows for more selective sharing. If a key is breached
or needs to be deprecated, the blast radius can be much smaller if the data it has access
to was appropriately selected.

2.2.2 Using Messages to Exchange Data

As already mentioned, the second pattern is the direct transfer of data between trusted
devices of one user. “Direct” does not imply that the communication is not routed
through a server, but it does imply that the main task of the server is to organize data
delivery, as opposed to storing the data. A popular approach, used by the messengers
Wickr, Wire, Viber, Signal and presumably other messengers that implement the Signal
protocol, and the XMPP extension OMEMO, is to not differentiate between devices of
one user and those of other users, but to just treat data transfer exactly the same for
both cases.

The outgoing data is encrypted for the target devices. If the protocol dictates unique
keys per device, the data is encrypted once per device but it is also possible to use
unique keys per user instead and to encrypt the data once per user. The originating
device then sends the data to all devices it believes should have access to the data.
Thus, the same data may be sent to devices of the same user as well as devices of other
users in the same transaction. It should be noted that this does not imply that the data
exchange between devices of different users and devices of one user looks the same,
since additional types of data may be transferred between devices of one user.

The main upsides of this implementation are that data sharing between same-owned
devices can sit on top of the default message sending infrastructure and that the
mapping of one key per device without data stored on a server in the long-term makes
key deprecation as easy as stopping to encrypt data with that specific key. However,
the number of necessary encryptions scales linearly with the number of devices. This
might pose a problem for some workloads, especially if data needs to be shared with
same-owned devices and a large number of devices that belong to different users at
the same time.

A different option is the so-called reflection pattern. With the reflection pattern, not
all devices are treated equally. A single device acts as a coordinator and is responsible
for distributing or mirroring the data to all other devices. This coordinator is often
static, in the sense that the same device is the coordinator every time. The coordinator
builds a channel to all non-coordinator devices. This channel, which is usually either
a WebSocket or WebRTC connection, may be a direct peer-to-peer connection or via
a server that knows how to reach all devices. If a non-coordinator device wants to
transfer data to other same-owned devices, it sends that data to the coordinator device
via the established channel. The coordinator device then sends the data to all same-
owned devices. If the coordinator itself wants to transfer data to other same-owned
devices the first step is skipped. This option is used by both Threema and WhatsApp
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2 Multi-Device Messaging

for their web clients. The biggest usability challenge with this approach is that the
coordinator needs to be online when other devices want to share data. This, combined
with the static nature of the coordinator, limits the usability of non-coordinator devices
somewhat.

A variation of this pattern, that as far as we know has not been implemented yet,
was proposed by Threema [41]. For this variation, the coordinator is not a device
but a server and all devices share the same group key, which is used to encrypt and
decrypt messages from and to other devices. Since the coordinator is a server and not
a user device, this variation eliminates the original weakness of one device needing
to be online when synchronizing data between other devices. Additionally, as the
coordinator is not a device owned by the user, it does not have access to this group key
and thus does not have access to the shared data.

A1 A2

A3

kA3

kA2

(a) Synchronization via direct messages. Keys may
be the same.

A1

A3

A4

kA3

kA2

k A4

A2

(b) Synchronization via a device that acts as mirror.

A1

A2

A3

kA

kA

k A

M

(c) Synchronization via a server that acts as mirror.

Figure 2.2: Different message sending patterns between different devices of one user.
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2 Multi-Device Messaging

2.3 Transferring Data to a Di�erent User

This section deals with sending data from one user’s device to one or more devices of
a different user. There are many variations in how a message can be sent to another
user depending on the underlying security architecture. Without E2EE, users have to
trust all intermediate services of the messenger, which cannot be assumed with the use
of publicly available messenger services for end consumers. The needed trust in the
server depends on the communication. A large public group possibly could not require
encryption at all, as the content is available to the public. Only message authenticity
is necessary in that case. Using E2EE, messages are encrypted with a key unknown
to the server, which is why they cannot be read by the server without first breaking
the encryption. After encrypting a message with some kind of E2EE key, there are
multiple ways for distribution. Nevertheless, often an intermediate (central) service is
used to buffer the encrypted user messages until at least one device of the recipient has
fetched the message or a specific timeout is reached. In a peer-to-peer implementation,
messages can also be buffered by a device of the sending user (instead of by a server)
until the message is delivered.

As the distribution of messages without E2EE does not fulfill our definition of secure,
because all intermediate services would have to be trusted ones, the focus will be
on methods that leverage E2EE. The first option is a shared key that is known to
all participating devices and can be used for E2EE. For the second option, messages
are encrypted per user with the corresponding receiving user’s key. For the third
option, a secure channel with separate keys exists between each device pair of the
communicating users. Fourth and last, the sending device can encrypt the message
with its own key and all receiving devices know that key for decryption. The different
patterns we identified are shown in Figure 2.3.

2.3.1 Without End-to-end Encryption

Not using E2EE allows very simple ways of distributing messages. After creating a
message with the corresponding metadata, there are two possibilities for sending it.

Often, a central service is the heart of the messenger’s infrastructure. It can be
seen as a trusted central server. These central servers have the task of receiving sent
user messages and storing them in (often persistent) memory for being fetched later
on. Some meta messages like read receipts can also be stored on the server, whereas
live meta messages only reflect a current status like the other user being online or
typing. Any of the recipient’s devices can fetch these messages from the server after
authenticating.

Alternatively, they can be sent to the receiving devices via a server-push architecture.
As a result the messages not being end-to-end encrypted, the user messages can be
accessed as plaintext and the server is able to read the content. Nevertheless, saving
the messages on the server in plaintext helps in achieving good usability as messages
can be easily synchronized between same-owned devices.
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2 Multi-Device Messaging

A1 B1

A2

User A User B

B2

User B's
storage

(a) Without E2EE.

A1 B1
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User A User B
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(b) E2EE using a shared group key.
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User A User B

1B2

kB

kA

(c) E2EE per recipient.

1A1 1B1

2A2

User A User B
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(d) E2EE per device pair.

A1 B1

A2

User A User B

B2

kA1

kA2
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(e) E2EE per sending device.

Figure 2.3: Different message sending patterns between two users with two devices each.
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2 Multi-Device Messaging

The Telegram messenger service uses this pattern for Cloud Chats and Public Chats
[39], the same applies to Facebook Messenger’s and Skype’s chats that do not utilize
E2EE (also see subsection 3.2.4).

2.3.2 End-to-end Encryption With Shared Group Key

Assuming that E2EE is a desired feature, the process of sending a message is slightly
different as messages need to be encrypted for specific recipients. One way of en-
crypting messages is using a shared key that is known to all devices partaking in the
communication. Therefore, a method for agreeing on and exchanging that particular
key or key material is necessary. A sending device can then encrypt messages with a
shared key once. If required by the protocol, the message can also be authenticated
either by a key that is associated to the sending user’s account or via a key that is
owned by a specific device and is also associated with the account. The distribution
can be the responsibility of the server, so that a sending device can send the message
once along with an identifier of the receiving user (server-side fanout via user identity).
Note that this is optional, if it is required for the server not to know metadata like
user-device associations. In that case, targeting a user’s account as identity instead
of the user’s devices directly, without the server knowing any metadata, requires the
receiver to have a device that receives messages and synchronizes them among the
other same-owned devices, e.g. via the reflection pattern (also see subsection 2.2.2 and
subsection 2.3.3). Otherwise, the sender can provide a list of desired receiver device
identifiers.

Shared group keys do not provide Forward Secrecy (FS) or Post-Compromise Security
(PCS) per se. Breaking the key that is used for encryption does not only enable to
decrypt messages of one user but the messages of all users in that conversation. Thus,
a method for creating and exchanging new entropy is required in order to change keys
on a regular basis in order to achieve FS and on demand to achieve PCS. This exchange
can happen in different ways, including pairwise channels (see subsection 2.3.4) or
targeting subgroups. As an example, the Messaging Layer Security (MLS) protocol
allows for an efficient key rotation algorithm that scales logarithmically for a large
number of partaking devices [5, 24].

2.3.3 End-to-end Encryption Per Recipient

In the following method, the sender is given a key for encrypting the message for
the recipient. We distinguish different methods for a device to decrypt the messages.
On the one hand, same-owned devices can simply share a key among each other. In
this case, each of the same-owned devices can decrypt messages with that key. In its
simplest form, this requires a long-term valid key. Therefore, no FS can be achieved in
this case, which is why this approach is rarely used in practice. One example that uses
a long-term valid key is XMPP OX (XEP-0374) [32].

A more elaborate protocol was proposed by Campion et al. [7] and is based on
the Signal protocol. It takes care of synchronizing the internal state of the necessary
ratchets for key derivation via a secure multicast channel between same-owned devices.
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2 Multi-Device Messaging

Thus, each device can encrypt and decrypt using the same key material. The receiving
party needs to synchronize the per-user-ratchet too. As a result, the receiver is unable to
distinguish which device sent the message, which can be a desired privacy feature. FS
is achieved by the properties of the Signal channel and the Double Ratchet mechanism
that creates new entropy [26].

On the other hand, sharing a long-term key is a potential security risk, e.g. when a
device is compromised. This can be solved by declaring one of the recipient’s devices as
a primary device. The primary device will receive the messages sent by the sender first.
It is able to decrypt the messages and has the task of synchronizing the other devices,
as being described in section 2.2. Some protocols use a primary device for both sending
and receiving messages. Thus, in that case all messages from secondary devices need to
be transferred to the primary in a secure way first, before being end-to-end encrypted
for the receiver. This approach is currently being used by WhatsApp and WhatsApp Web
so that exactly one secondary device will be able to receive or send messages [16].

2.3.4 End-to-end Encryption Per Device Pair (Client Fanout)

Instead of having one key per user, it is also possible to use one key (pair) per de-
vice. Every message must be encrypted and sent once per recipient’s linked device.
Therefore, this approach sometimes is also called Client Fanout [31] because instead of
server-side distribution, the sending client is responsible for encrypting and sending
data to every recipient’s device individually. The concept of Client Fanout can be used
for encrypting group chats but it can also be applied to the multi-device context as
messages are sent to all recipient’s devices like it is the case in a group chat.

This can still happen via a (central) service that stores the messages in a queue
for being received later on. But in comparison to other techniques, the server is not
responsible for finding the right recipient’s devices directly. The sending device has to
explicitly name the receiving devices. As a result, the sending device needs to know all
encryption keys of the receiving devices and therefore the number of existing devices.
The encryption effort and the amount of data being sent over the network scales linearly
with the number of recipient devices [11].

One widespread protocol using that technique is Signal’s Sesame protocol which was
introduced in 2017 [27, 7]. It is in turn implemented into many other messengers like
Facebook Messenger for optional secret chats [14] and Wire [7]. Here, a Signal channel
is established between every device to ensure E2EE and all the security properties of
the Signal protocol itself, i.e. mainly FS and PCS.

2.3.5 End-to-end Encryption Per Sending Device (Sender Keys)

The following method describes E2EE using a shared channel between multiple (re-
ceiving) devices. In comparison to the first approach mentioned in subsection 2.3.3,
each sending device has its own encryption key for that particular conversation. In
the group-messaging context, this is also called Sender Keys. When establishing the
conversation, the key of participating device is distributed to all other receiving de-
vices, e.g. via a secured pairwise channel as outlined in subsection 2.3.4 which can be

14



2 Multi-Device Messaging

temporary. After the initial exchange of keys, the sending device needs to encrypt each
message only once with its own key. Thereafter, the ciphertext can be sent to a server
for distribution (server-side fanout) or to the receiving devices directly. These devices
in turn can decrypt the message with the key shared beforehand.

The shared key in this case could also be derived from a shared ratchet-state in order
to achieve FS by ratcheting the state each time a message from a particular device is
received.

A shared secured channel as such is used in the Matrix Megolm protocol specification.
Megolm5 relies on the Olm “peer-to-peer encryption” protocol in order to exchange a
ratchet state that is used to derive symmetric encryption keys per sending device [4].

2.4 Messenger Overview

The following section shall give a comparison of the evaluated messengers regarding
the criteria related to multi-device messaging. The results were primarily taken from
our experiments and official security white papers of the corresponding messengers
[14, 18, 26, 27, 28, 29, 42, 45, 47].

End-to-end Encryption (E2EE) Like stated in the introduction, only messengers that
support E2EE in some way were evaluated like shown in Table 2.1. There are three
messengers that do not provide E2EE by default: Facebook Messenger, Telegram, and
Skype. Whereas Facebook Messenger uses the Signal protocol for Secret Conversations
[14] and synchronizes the messages sent to all devices of the sender and receiver,
Telegram’s Secret Chats are not synchronized across devices. Skype uses the Signal
protocol too but it does not synchronize the messages of Private Conversations across
multiple devices.

Forward Secrecy (FS) Forward Secrecy in our model describes the property of a pro-
tocol to be resistant against passive attackers decrypting past messages despite having
gathered keys at a particular point in time. In our definition, this comprised all keys
of one device, e.g. an identity private key or message encryption keys. Passive in this
case means that no impersonation attacks are executed.

Messengers that use the Signal protocol utilize the Double Ratchet Mechanism [26]
to derive a new encryption key for each message with a one-way function. After a new
key is derived via the key derivation function, the old key cannot be recovered easily
and efficient attackers cannot recover the old keys for previous messages. This is done
across all pairwise channels being used. Viber uses an approach very similar to Signal’s
but the implementation is entirely separate [45].

The Matrix protocol and therefore the Element messenger uses the Megolm protocol
to exchange messages with a Sender Keys configuration as described in subsection 2.3.5.
This key for a specific message – like in the Signal protocol – is also derived from the

5An overview of the algorithm can be found in the Matrix project’s GitLab repository: https:
//gitlab.matrix.org/matrix-org/olm/-/blob/4bae4134eb115859038de4e8eab11b22baf80b0c/
docs/megolm.md
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previous key via a key derivation function (on all sending and receiving devices instead
of every device pair). But unlike in the Signal protocol, Matrix proposes to store the
“earliest value of the ratchet” [17] in order to be able to decrypt past messages by
sharing the ratchet state with another or new device. Therefore, an attacker having
compromised that state is able to decrypt all following messages by deriving the
following keys. The Megolm standard proposes that applications should provide a way
to delete the old ratchet states, which is why we evaluate this as partial FS.

iMessage does not achieve FS, because it uses a per-message symmetric encryption
key that “is encrypted using RSA-OAEP to the public key of the receiving device” [2].
We assume that this key pair is static, as it is generated on the activation of iMessage
on a new device. If the private key is compromised, the per-message key of captured
messages and thus the messages can be decrypted by a passive attacker.

The protocols used by Threema and Telegram do not leverage a ratcheting algorithm
or a comparable mechanism, so the same key is used for encrypting multiple messages.
Threema only achieves FS via transport encryption [42], thus FS is not achieved against
an attacker who has access to the servers used by Threema. We rate this as no FS being
achieved.

Telegram’s protocol allows for, and official Telegram clients require, regular rotation
of the communication keys used for secret chats, either after 100 messages or after one
week. The previously used keys are then deleted [37], which achieves FS according to
our model. However, compared to Signal, the number of messages that an attacker,
who has access to one key, can decrypt is much greater.

Keybase stores a symmetric encryption / decryption key that is shared with new
devices in order to decrypt old messages [20], so it does not provide FS according to
our definition.

Post-Compromise Security (PCS) Post-Compromise Security in our model is defined
as an attacker not being able to decrypt future messages after having compromised
keys. This is often achieved by introducing new entropy and creating new encryption
keys as a “healing event”.

The Signal protocol and messengers using it do this by creating a new ratchet state
essentially every message roundtrip, i.e. each time both sides of a conversation send a
message, new keys are generated, a new key exchange is performed, and a new secret is
used for the double ratchet mechanism [26]. A passive attacker who has compromised
a set of message encryption keys can therefore only decrypt the messages up to the
end of the current roundtrip. Viber uses the same approach and PCS is achieved here
too.

For iMessage, we did not find a away to rotate the keypair used for encrypting
messages, therefore there is no PCS according to our definition if a passive attacker
gathered the private key.

Keybase introduces a healing event by rotating the symmetric group encryption keys
for all conversations channels when a device is removed from an account. This is
done by generating new symmetric encryption keys and sending them to all remaining
same-owned devices and corresponding devices of other users for each communication
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channel. Hence, a passive attacker cannot decrypt messages in the future, if any device
is removed. As this does not happen automatically, and may not happen at all, we do
not consider PCS as fully achieved, even though this removal of a device can be viewed
as a “healing event”.

Threema does not have such an algorithm, as messages are only encrypted with a
static key exchanged once via a Diffie-Hellmann key exchange when the communication
is established [42].

Because the Telegram messenger rotates the keys periodically in order to achieve FS
it also attains PCS.

Sending Complexity The time complexity of sending messages depends on the un-
derlying protocol and messaging pattern. Messengers that share one identity for
encrypting messages across all devices (see subsection 2.3.3), like Threema and What-
sApp, only need to encrypt the messages to be sent once. Those messengers that use
encryption per device pair (see subsection 2.3.4) however have to encrypt each message
for every receiving device and therefore have time complexity of O(n) for sending a
message. This does not apply to messengers that use the Signal protocol but do not
support E2EE for multiple devices like Skype. Element as an example for the Sender
Keys pattern (see subsection 2.3.5) or Keybase with a shared group key (see subsec-
tion 2.3.2) only need to encrypt the message once for all recipients – with the sender
key or group key respectively.

Independent Sending Independent sending in our context means that devices can
send messages to other users (or same-owned devices) without the help of other
devices that need to be online. With some approaches like the primary device and
reflection pattern, this is not possible as one device plays a major role in representing
the user to servers or other users. As already described in subsection 2.2.2, all non-
primary devices send their messages to the primary first. If this primary device is not
available, no message can be sent. The current WhatsApp and Threema web clients,
for example, cannot be used without the primary (phone) being online. To tackle that
problem, Threema describes a new approach with a mediator server and changing
primary devices [41]. In that case, every device will be able to send messages if the
mediator server is available.

Other architectures are not dependent on a single primary as they utilize encryption
identities per device. They therefore do not need to exchange messages with a primary
but can encrypt messages to other users on their own. This applies to Facebook
Messenger, iMessage, Signal, Viber, Wickr, and Wire.

As Telegram only supports E2EE between specific device pairs and otherwise does
not encrypt messages to other users via E2EE, Telegram can also be seen as being able
to send messages independently.

In Element, and the corresponding Megolm protocol, every device in a conversation
has its own sender key and therefore can encrypt and sign messages without other
devices. The same applies to Keybase, with the difference that here the group-wide
key comes into play, despite devices signing messages with their own key [20].
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Device Opacity From a privacy standpoint, multi-device messaging could unintention-
ally leak information about other users. This can be the case if the messenger (publicly)
shows, which devices another user owns. Depending on the level of information that
is shown to other users, that could lead to surveillance, but the information leakage
could be a necessary trade-off if required by the underlying architecture.

Those messengers that use a user level identity (also see section 3.1), like Threema
and WhatsApp, the receiver cannot necessarily distinguish which devices the other
user has (as long as this is not built into the protocol).

In Signal and many other messengers using the protocol with device level identities,
the protocol requires the sender to encrypt the message once for every receiving device
with that devices key. Thus, the senders needs to be explicitly aware of all devices
that belong to a communication partner. Facebook Messenger and Wire furthermore
provide a graphical user interface for inspecting the participating devices’ public keys
and device types (Desktop, Tablet, Phone) and make this an explicit feature. The
Element messenger shows a similar amount of information. Keybase even shows
a detailed timeline of added and removed devices and keys publicly based on the
username.

Skype and Telegram do not display information on other user’s devices. Furthermore,
Secret Chats always exchange new random keys when the communication channel is
established. Therefore, it is not clear which device sent which message.

18



2 Multi-Device Messaging

Table 2.1: Comparison of multi-device messaging related criteria.
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E2EE with shared group key

Keybase O(1)

E2EE per recipient

Telegram † † O(1)‡

Threema O(1)

WhatsApp O(1)

E2EE per device pair

Facebook Messenger † † O(n)†

iMessage O(n)

Signal O(n)

Skype † † O(1)‡

Viber O(n)

Wickr O(n)

Wire O(n)

E2EE per sending device

Element (Matrix) O(1)

Provides property.
Partially provides property.
Does not provide property.

† Only supported in secret chats.
‡ E2EE only supported between two devices and not in the multi-device setting.
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After the previous chapter investigated the different ways how devices can exchange
data in a multi-device setting, this chapter builds up on this and considers how users
can manage their devices.

We introduce the general distinction between identities on the user and device level.
Next, adding new devices, an essential aspect of multi-device messaging, is examined.
Depending on the specific messaging pattern that is used different keys need to be
shared, created, and linked to the user. Therefore, we evaluate different patterns how
devices are linked to users’ accounts cryptographically. The way the required initial
information is distributed varies and influences security and usability, which is why
we consider this next. This also includes access to old messages on a new device.

If it is possible to add new devices, the next question is how to remove devices, in
particular on the cryptographic level. Ideally, removed devices can no longer access
old messages, receive new ones, and perform actions on behalf of the user. We then
consider recovering instant messaging accounts in case users loose access to all of their
devices. For recovery, the account with all its related information such as message
history and also verification of chat partners needs to be considered. Moreover, we
discuss security considerations specifically occurring in the context of multi-device
management.

Finally, we evaluate the device management related criteria of section 1.2 for the
different messengers. This results in an overview of differences between messengers as
well as their underlying messaging protocols.

3.1 User and Device Identity

In messaging protocols without multi-device support, messages are sent to a single
receiving device. Therefore, the terms device and user can be used interchangeably. But
as soon as users are allowed to add more devices, one needs to differentiate between
identities on the user level and on the device level.

The main reason why the concept of identities needs to be considered is that users
want to make sure they are communicating with the expected communication partner.
Otherwise, users who encrypt a message cannot know whether the keys they are
using for encryption belong to the assumed communication partner or an attacker and
thus whether secure encryption was actually achieved. This means that users need to
exchange or verify keys in the real world to ensure that the encrypted connection is
really between themselves and not with any other person. Therefore, in the context of
messaging, identity is all about the (public) keys of a user. The relation to the real-world
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identity has to be made outside of the messenger, e.g. by comparing a fingerprint of
the public keys in person.

(a) Device level identity. (b) User level identity.

Figure 3.1: Different identity levels depending on key distribution.

Consequently, the concept of identity is closely linked to how keys are managed.
Figure 3.1 shows an abstract example. Keys can belong to exactly one device of a
user, thus they form an identity on the device level. Each device has its distinct key.
Alternatively, keys can be shared across a few or all devices of a user. In this case, they
are part of the user level identity.

User level keys and device level keys are often not used exclusively but instead used
at the same time for different purposes and keys. The simplest way of associating a key
with the user level identity is to hold a distinct copy of the key on each device and to
copy it onto new devices as they are added. Such a key can then be used by all devices
to represent a single user to the outside.

Both user level identities and device level identities have different advantages and
disadvantages that make them more suitable for different use cases. These differences
are outlined in the following sections.

3.2 Adding More Devices

3.2.1 Concepts per Messaging Pattern

How adding devices works in the first instance depends on the used messaging pattern,
i.e., how data is transferred and encrypted between devices of different users. For each
messaging pattern presented in section 2.3, this section explains what data needs to
be shared and presents implementation approaches. While this provides an overview
based on the messaging patterns, the utilized methods are presented in more detail
afterwards.
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Without End-to-end Encryption The technically simplest solution is a messenger with-
out end-to-end encryption, as each new device only needs to be authenticated to the
server. This can be achieved e.g. by a password-based login or by having an existing
device share an authentication token.

On the one hand, this simplicity allows for the best possible usability. On the other
hand, per definition this setup does not implement end-to-end encryption, and thus
does not fall under our definition of secure. However, it is therefore an interesting
baseline for assessing the usability drawbacks that improved security introduces.

End-to-end Encryption With Shared Group Key When a shared group key is used, the
new device needs to get that key. While a group key might be updated if a new user
joins a group of multiple users, this is not really necessary if only a new device of an
already participating user is added. Nevertheless, it might be done anyway depending
on the specific protocol.

Furthermore, it needs to be distinguished whether identities are managed on a device
or user level, as introduced in section 3.1. In case of device level identities, not only
the server will need to know of the new device, but also the communication partners.
On the one hand, this is necessary so that the new device can be notified about group
key updates without another device of the user being online. On the other hand,
communication partners should be able to verify the authenticity of messages. For that,
they must know e.g. the public key of the new device.

With user level identities, the new device needs to get access to user level private
keys and synchronize with the other devices of the user. Depending on the protocol,
the server might need to know of the new device to distribute messages to it.

Keybase, a messenger that uses a group key to encrypt all chat messages, uses device
identities. The new device receives the group keys and is added to the user’s sigchain,
a public cryptographically linked list of events affecting the user’s account [22], so
that communication partners are aware of the new device [20, 21]. The corresponding
entry includes a signing and an encryption key. With the first one, communication
partners can verify the authenticity of messages, and with the latter one they can send
new group keys also to that device, e.g. when the group key is rotated or a new
conversation is initiated.

With MLS [5], there is a protocol in development that provides a method to efficiently
update a group key. Thus, it may not only be used for group communication but also
for multi-device messaging (in 1:1 chats and in groups). Similar to the aforementioned
differentiation, this can be implemented either on a user or on a device level. This
corresponds to the question whether leafs in the MLS tree represent devices or users. In
the device level approach, an existing device can add the new device to all conversations
and groups. The new device may also be linked to the user account by one of the
methods explained in subsection 3.2.2. For the user level approach, devices of a user
would need to share keys and synchronize. For that, different approaches are possible,
e.g. a mediator server as proposed by Threema [41], synchronizing internal states as
presented by Campion et al. [7], or the devices of a user could maintain their own MLS
tree to derive user level key material [11].
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End-to-end Encryption Per Recipient Messengers like WhatsApp or Threema6 use a
pattern we describe as primary device and reflection pattern [48, 42]. As explained in
subsection 2.3.3, secondary devices do not connect to the server, but send and receive
messages via the primary device. Therefore, a secure communication channel between
the primary and the secondary device needs to be established. Information required
to set up this channel and mutually authenticate is often exchanged by having the
secondary device display a QR code that the primary device can scan. The end-to-end
encrypted communication channel is then not only used to transfer messages but also
for synchronizing metadata. This includes contact lists, chat history, and everything
else that should be displayed on the secondary device. As the primary device and
reflection pattern requires the primary device to be online for the secondary device
to send and receive messages anyway, only a minimum of data might be exchanged
directly, while most of it can be shared later when needed. If a central service is used
in the messaging protocol, it does not need to be informed about the new device and
may only be involved in the setup of the communication channel.

Another approach, as outlined in subsection 2.3.3, is to share a long-term key among
the devices. In that case, this long-term key needs to be shared securely with the new
device, e.g. via a service that stores encrypted keys [32]. The new device may be
notified about public keys of communication partners.

In the concept proposed by Campion et al. [7], a new ratchet is created with every
communication partner so that new devices cannot read old messages. One of the
existing devices sends the corresponding update and also shares the new ratchets with
the new device. Other already existing devices of the user are notified about the new
device so that they from now on synchronize their internal states also with the new
device.

In the new concept of Threema [41] where a mediator server is used to distribute
messages, the so-called Threema ID’s private key (similar to a main or identity key) has
to be shared with new devices. The new device derives further keys from that and can
authenticate to the mediator server by that. Other devices of the user need to be made
aware of the new device, so that messages will also be reflected to the new device.
As further data such as contacts, group chats, or settings is synchronized among the
devices by using the mediator server, the new device will also receive that information.
While the published concept does not provide all details yet, it can be assumed that a
secure way of sharing the private key will be implemented, e.g. via a QR code similar
to the current procedure in Threema’s web client for pairing devices. Notifying other
devices of the user about the new device will probably be done by sending messages
to the other devices, similar to the synchronization mentioned before. As the proposed
concept aims to conceal the devices from communication participants and even the
chat server, those are not involved in the process of adding new devices.

End-to-end Encryption Per Device Pair (Client Fanout) This pattern is used within the
Signal protocol, so many messengers building on top of this protocol use it. There,

6Threema’s version in production as of writing (web client), thus without their planned mediator server.
We cover their new approach later in this paragraph.

23



3 User Device Management

messages are encrypted for each receiving device. The server is notified about the new
device, so that communication partners and same-owned device also encrypt for the
new device. Therefore, the new device creates own prekeys which are uploaded to
the server. Additionally, in messengers that use the Signal protocol and link devices,
an existing device shares the identity key which the new device needs to perform the
Extended Triple Diffie-Hellman [27, 28]. For this initial setup, a secure connection
between the mobile device and a new one is set up via QR codes. Groups and contacts
are imported from the mobile device.

Messengers that use the Signal protocol but maintain device identities and do not
link the devices of a user do not share the identity key, but the new device creates an
own one. Communication partners might get a warning that a new unverified device
has been added to the chat and that they should verify the new device’s identity (key).

Those two different approaches correspond to the two variants outlined in the Sesame
Algorithm [27]. Either devices have their own identity key or all devices of a user
share one identity key so that the devices are linked together, as we will explain in
subsection 3.2.2.

End-to-end Encryption Per Sending Device (Sender Keys) In the Matrix protocol where
device level Sender Keys are used [17], the new device authenticates to the server based
on the password associated with the user’s account. It creates a device identity key and
prekeys similar to the Signal protocol. These are uploaded to the server and for every
current conversation the new device exchanges Sender Keys with its communication
partners via secure peer-to-peer channels. To verify the new device, a procedure called
cross-signing is used, which is explained in section 3.2.2.

3.2.2 Cryptographically Linking a New Device to an Account

This section mainly deals with the question of how communication partners trust new
devices. While a central server might check that only authorized devices send and
receive messages, users will probably want to check this on their own, as they may
mistrust the server. Otherwise, if they do not verify the identity of the communication
partner, they could easily become victims of a man-in-the-middle attack. In the multi-
device context, this slightly modifies the question “Do I really talk to Alice?” to “Do I
really talk to a device of Alice?”. Therefore, this sections presents ways how devices can
be cryptographically linked to a user account, so that other users can validate this. In
this context, a user account is everything identity related that belongs to the same user.
This comprises all devices that appear under the same user identifier, e.g. username,
phone number, or email address.

For example, if a messenger allows comparing key fingerprints to verify the iden-
tity of communication partners, cryptographically linking devices helps that this key
fingerprint comparison does not have to be performed again with the new device.
Instead, trust transfers to the new device. Some messengers however do not implement
a linking mechanism. While users can still verify that a device belongs to a user, this
requires more effort as the verification needs to be done with each device separately.
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User Level Encryption The simplest way is concealing details about own devices from
communication partners. Thus, the question whether to trust a certain device, never
arises. This applies to all patterns that implement user level encryption, i.e. sharing
a long-term key among all devices, the multi-device concept for Signal as proposed
by Campion et al. [7] where internal states are synchronized between the devices, and
all patterns that use the reflection pattern. In addition, it provides the benefit that
communication partners do not know by which device a message was sent.

Sharing the Identity Key All patterns using device identities need to actually link
devices cryptographically. Signal uses the per-user model of the Sesame Algorithm [27]
to implement multi-device support. There, the identity key is shared across all devices
of a user. This is the key that is used for authenticating the communication and which
should be verified e.g. by fingerprint comparison. The messaging protocol can still use
device specific keys, but by including the identity key in the key agreement protocol,
every device is authenticated as belonging to the same user.
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Figure 3.2: Extended Triple Diffie-Hellman (X3DH) key agreement with user level identity keys
and device level ephemeral and prekeys, based on [28].

As depicted in Figure 3.2, the key agreement protocol uses multiple keys. User A
and B each have an identity key IKA and IKB respectively. This key is shared among
all devices of a user and therefore on the user level. The ephemeral keys EK and the
prekeys SPK and OPK are device level keys, that means, every device has its own.
If another device A2 of user A would like to send messages to user B, it would use
the same shared identity key IKA and an ephemeral key EKA2 and perform the key
agreement protocol with every device of user B. Since the new device A2 had to know
the identity key IKA to successfully execute the key agreement protocol, the devices of
B know that it belongs to user A and trust it.

Cross-signing However, not all messengers share an identity key to ensure trust. In
the Matrix protocol, every device maintains its own key and there is no encryption
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or decryption key on a user level. Hence, other users cannot trust a claimed new
device without further proof. In the early days of Matrix, there was no concept for this
and users needed to verify the identity of each new device manually. Obviously, that
approach lacks usability and that is why something called cross-signing was evaluated.
The first draft for cross-signing [8] worked on the device level, while the current
approach is based on the user level.

1A1 1B1

2A2

User A User B 

Figure 3.3: Device level cross-signing.

In device level cross-signing, depicted in Figure 3.3, devices of the same user and of
different users sign each other with the device’s keys, building up a web of trust. This
web of trust can be described as a directed graph, where an edge from device A1 of
user A to device B1 of user B corresponds to a signature of B1’s device key made by
A1’s device key, meaning that A1 attests that it verified B1. If there is no direct path
from device A2 (of user A) to device B1 (of user B), they will only trust each other if:

• there is a path from A2 to B1 only consisting of devices from A and B,

• and there is a path from B1 to A2 only consisting of devices from A and B,

• and if there are no revocations of that attestations.

By that, users do not need to manually verify each other’s devices. Instead, they can
rely on the attestations of their communication partners about their devices, which
reduces the manual effort and thus increases usability.

However, this concept includes several problems [10]. First, revocations of devices
or rather the corresponding signatures need to be handled carefully. An attacker who
compromised one device could revoke all other devices of that user and take over the
account. The second problem about revocations is that they do not indicate why a
device was revoked. A revocation could mean the device has been lost, stolen, or the
user just does not want to use it any longer. The third problem is that revocations can
partition the graph. Thereby, devices not involved in the revocation, i.e. which are
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neither the revoking nor the revoked device, could lose the trust between them. This,
plus the fact that the graph can become very complex, entails considerable difficulties
for the users. Additionally, there is no way to centrally manage attestations as every
device issues its own.

That is why a new cross-signing concept was developed [10]. While Matrix previously
handled everything on device level, this new concept introduces some keys on the user
level. Instead of devices signing each other, all devices are signed by the self-signing
key of a user to express that they are associated with the user’s account.

The self-signing key can be either shared with all devices or only with a subset of
devices. As a result, only devices that know the self-signing key can add new devices.
Through this, it is theoretically possible that a user arranges own devices by trust so
that only a few devices are able to authorize new devices. For example, a temporary,
short-term web session might not require this privilege.

A's self-signing
key 

A's user-signing
key 

A's device 1 A's device 2 

A's master key 

B's self-signing
key 

B's user-signing
key 

B's device 1 B's device 2 

B's master key 

Figure 3.4: User level cross-signing in Matrix, based on [10].

As depicted in Figure 3.4, the self-signing key of a user is used to sign each device of
that user. Furthermore, there are two other user level keys in Matrix. The user-signing
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key is utilized for verifications with other users and the master key signs all these
other user level keys of the user, i.e. the self-signing key and the user-signing key.
When users compare the key fingerprints and verify each other, they sign the master
key of the other user with their user-signing key. As this master signing key signed
the self-signing key which then signed the device keys, users can trust all devices of
their communication partner after such a verification. If a new device is added, this is
accordingly signed by the self-signing key so that trust is automatically established by
the previously explained mechanism.

The concept of user level cross-signing includes similarities to sharing the identity key.
The major difference is, that in cross-signing the user level keys do not necessarily need
to be shared with other devices as they are not used in the actual messaging. While a
shared identity key mixes trust and encryption, those two parts are separated in user
level cross-signing. As adding and removing devices as well as verification with other
users happens significantly less frequent than message encryption and decryption, the
user level cross-signing keys need to be used only rarely and can therefore be managed
and stored more securely. The identity key in the Signal protocol, however, is used
continuously and therefore at a higher risk of being compromised. In terms of security
and removing devices, cross-signing provides some further advantages, as will be
presented in section 3.3.

Two other messengers that also use cross-signing are Wickr and Keybase. In Wickr,
every user has an identity key that signs all the devices [18]. Therefore, this is user level
cross-signing. Keybase does not have user level keys for the purpose of cross-signing
and instead uses device level cross-signing. Any device can add a new device by
signing it. This is then added to the user’s public sigchain, a cryptographically linked
list of events that affect the user’s account [22]. By that, communication partners can
see all devices of a user and verify that each has been authorized and really belongs to
the user.

3.2.3 Methods to Exchange Required Information

As the previous sections showed, certain information needs to be exchanged initially.
This can include user level private keys and public keys of the new device, but also
old messages and metadata. While the kind of data that is exchanged differs and is
related to the pattern that is used for linking devices, the ways how to exchange that
information are independent of that. However, these approaches differ in terms of
usability.

Secure Connection Establishment via QR Codes A common way to exchange the re-
quired data is by setting up an end-to-end encrypted connection between an existing
and the new device. Often, this is done via QR codes. For example, Threema uses the
SaltyRTC protocol [15] for establishing a connection between both devices securely, as
shown in Figure 3.5. In the end, these devices can communicate end-to-end encrypted
either peer-to-peer or via a relay server [42]. Therefore, the new device, a web client,
creates a so-called permanent key pair and an authentication token.
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Figure 3.5: Threema web client connection establishment.

The permanent public key and the authentication token are shared with the primary
device via a QR code the primary device can scan. The primary device also creates a
new permanent key pair and both devices will connect to a signaling server so that they
can exchange handshake messages. The primary device will send its permanent public
key to the new device, encrypted with the authentication token that was provided
within the QR code. Assuming information exchange via QR code is secure, the
primary device can be sure to know the correct public key of the new device, and the
new device can be sure to know the correct public key of the primary device, because
it has been encrypted with the authentication token only the primary device knows.
To conclude this handshake, both devices create session key pairs, exchange the public
session keys, and agree on how to communicate afterwards, either peer-to-peer or via
a relay server.

If the communication between both devices is not only needed for an initial setup,
but also used e.g. for ongoing exchange of messages, both devices can re-establish the
connection with the same permanent keys. They can start directly with the handshake
where they agree on new session keys and how to communicate afterwards.

While using QR codes for information exchange can improve the usability as users
do not need to enter data manually, it is only possible if one device is able to display
a QR code and the other device is able to scan this QR code. Keybase also uses
a QR code based approach to exchange required information. However, out of the
explained reason, Keybase additionally offers the alternative that users type the data
by themselves. For that, information is encoded as random words [21].

Verify New Device and Utilize Messaging Protocol While the previous approach is used
to set up a new channel independent of the actual messaging (e.g. WebRTC or Web-
Socket), it is also possible to exchange data directly via the messaging protocol if
encryption happens on a device level. Therefore, an old and the new device need to
verify their device identity keys so that they can communicate securely.
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After the new device successfully logged in at the server and uploaded its device
key, current devices of the user are notified and asked to verify the new device. This
verification is similar to fingerprint comparison when verifying other users. After both
devices acknowledged each other, they can exchange messages end-to-end encrypted
and, because they verified each other’s public keys, be sure to actually communicate
with each other.

In contrast to establishing a secure connection via QR codes, this approach uses
the actual messaging protocol and not another channel. It only works for protocols
where encryption and decryption is implemented on a device level. Since users only
need to verify the new device and do not need to exchange any data manually, it may
be perceived as a more usable alternative. Especially for devices that are not able to
display or scan QR codes for information exchange, this is a much better way. Still, this
approach can probably only be used if the new device can at least somehow prove that
it belongs to the same user account. In Matrix this is done by a username/password
login on the server. Otherwise, this functionality could be used to spam users with
verification requests.

Encrypted Secret Storage Both methods explained previously have the downside that
at least one existing device needs to be online. Even in cases where devices can
send and receive messages independently of each other, this is required for the initial
setup where e.g. private keys are shared. This can be a problem if users just want
to log in on a temporary device and do not have another device at hand. To remove
that restriction, necessary private keys can be stored on a server, similarly to what is
described in subsection 2.2.1. This concept is implemented in Matrix [9] in addition
to the previously explained one. After authenticating with the account password, the
new device needs to be cryptographically linked to the user account as explained in
section 3.2.2 on cross-signing. The new device can retrieve the encrypted self-signing
key from the server, decrypt it with another passphrase that has been defined especially
for encrypting and storing the shared secrets, and afterwards perform all the required
steps to link itself to the user account.

Password Based Key Derivation Additionally, it is possible to derive user level private
keys from passwords, e.g. using a key derivation function, instead of creating them
randomly. While this is possible in theory, no relevant messenger we are aware of
does this. The problem is that from the security perspective, only truly random chosen
passwords and keys with enough entropy guarantee security. Unfortunately, it is very
difficult if not unfeasible for users to remind such random or high entropy passwords.
Additionally, due to the input constraints mobile devices bring, it is very inconvenient
for users to enter long and secure passwords on those. Because of that, messengers
create keys instead of deriving them from passwords. Related to this, some messengers
use passwords as additional protection to access private keys that are stored in a server
side backup. While this is a bit more secure than deriving keys directly from passwords
because the server can prevent attackers from gaining access to an encrypted backup,
strong passwords are still required, as otherwise the encrypted keys in the backup
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could be easily decrypted (e.g. by the server or an attacker who is able to circumvent
the server-side protection).

3.2.4 Synchronizing Old Messages

A feature required from users is to have a consistent chat history across all their devices.
This includes the ability to read old messages on a recently added device.

But obviously it is not possible to decrypt old messages if forward secrecy is imple-
mented. This has lead to some messengers abandoning forward secrecy, and hence
security, in favor of better usability. For example, in the Megolm protocol of Matrix [17],
it is possible to derive the current ratchet state from any previous one. Thus, an existing
device can share an early ratchet state and the new device can decrypt all messages
sent later. Because of the introduced drawbacks, Matrix speaks of “Partial Forward
Secrecy”. They point out that users should have the possibility to discard previous
key material so that forward secrecy for corresponding previously sent messages is
ensured.

Alternatively, it is always possible that an existing devices shares messages by re-
encrypting and re-sending them. This can be observed in web clients where messages
are shared on demand by the primary device [42].

For messengers where devices send and receive messages independently, this is not
possible because it is not guaranteed that another device is online to share the old
messages. For those it would be possible to share the old messages during the initial
setup because it is often required that an old device is online to perform the initial
setup. However, this would mean encrypting and sending relatively huge amounts of
data and can therefore not be observed in practice for the major messengers.

While the ability to read old messages on a new device of course improves usability,
there are other messengers like Wire that explicitly do not support it, pointing out
privacy concerns [52]. For example, an attacker who gains access to the password can
log in to the account but is not able to retrieve the chat history. As opposed to this
approach, other messengers such as Telegram explicitly advertise high usability and
provide cloud message access [38]. This is easily possible as Telegram does not use
end-to-end encryption.

3.3 Removing Devices

After we considered adding devices in the previous section, we now take a look at how
those devices can be removed. Users might want to remove a certain device because
they do not longer want to use it, it got lost, or stolen. How devices can be removed
securely depends on how keys are managed. Therefore, this is also related to the
linking and identity management in general.

Removing devices becomes a problem when the device to be removed has access to
shared user level keys. If the device is still controlled by the user, those keys can safely
be removed from the device. But this kind of cooperation can not be assumed if the
device is lost or has been stolen. Then, a key rotation of the particular compromised
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keys is required. Depending on the purpose of the keys, a new verification with other
users might be required as a rotation of identity keys can not be differentiated from
a man-in-the-middle attack. This applies to two of the device linking concepts of
subsection 3.2.2, the one where the identity key is shared and the one that uses shared
long-term keys as part of user level encryption.

Device level keys do not need to be rotated, because they are no longer used. There-
fore, they just need to be invalidated, e.g. by revoking a cross-signature. While for
device level cross-signing it is only required to revoke the signature, user level cross-
signing can also require to rotate the cross-signing key if this was shared with the
device that should be revoked.

For web clients where no key is shared, it is even easier as the primary device just
needs to terminate the connection with the device to be removed.

Summarizing, this shows that how keys are managed between the devices directly
correlates to the simplicity of removing devices. Messengers like Signal, where the
user level identity key needs to be shared with all devices, require a key rotation once
any of the devices is compromised. In practice, this implies an account reset including
major efforts for the user. To make this step easier, Campion et al. [7] proposed to
allow an identity key rotation directly inside the messenger, so that users do not need
to create their account from scratch but keep their devices, settings, and old chats. In
contrast, messengers like Matrix where user level keys do not need to be shared with
all devices only require a key rotation if a device that had access to that particular user
level key is compromised. By that, it is theoretically possible to share those keys only
with trustworthy devices, making the process of removing devices easier in most cases.

This directly correlates to the handling of temporary devices like public computers.
If the messenger allows to not share any key at all with that device, this increases
security and usability.

However, while Matrix’s cross-signing concept offers the mentioned differentiation
of more and less trustworthy devices in theory, to our knowledge this has not been
implemented in practice. In the widely used Matrix client Element for example, every
new device gets access to all user level keys. Probably, this kind of differentiation
would be too difficult to understand for users.

3.4 Recovering Accounts, Messages, and Verifications

In case users loose access to all their devices, they expect to be able to recover their
account and ideally even the chat history. For such kind of recovery, we differentiate
three types. First, the account recovery, i.e. the ability to get access to the messenger
account, e.g. the username. Second, message recovery, i.e. the ability to restore
message history. And third, verification recovery, i.e. that the verification with other
users persists after successful recovery and does not need to be done again.

To recover the account, further authentication factors are required, e.g. phone number
or email. They may either be set up when registering the account or added later
optionally. In messengers like Threema where the account is tightly coupled to the
cryptographic identity, i.e. the identity key, a backup of that key material is required
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to prove ownership of the account. Messengers like Signal and WhatsApp even offer
two-factor authentication for re-registration, as we present in the next section.

Recovering messages only works by creating and importing backups. While most
messengers rely on message backups, it is also possible to just create a backup of the
keys in Matrix as the encrypted messages are stored on the server forever. Due to the
missing forward secrecy, the amount of keys that need to be stored is rather small.

Verification recovery requires restoring all key material that is used for verification
with other users. For example in Matrix this comprises the master, the self-signing,
and the user-signing key and in Signal this comprises the identity key of the user. If
that key material is not derived from something but has been generated completely
randomly, a backup is required. Without a backup, verification with other users is lost
and needs to be done again. As many messengers use key fingerprint verification, this
is associated with major efforts as it needs to be done with each communication partner
individually. However, other mechanisms for trust establishment exist that allow an
easy key rotation [43]. In those cases, verification recovery simply works without any
backup. One example for that is Keybase where trust is established by linking the
messenger identity to social media accounts. The effort to recover verifications does
not scale with the number of communication partners but remains constant and does
not even require major efforts.

3.5 Security Considerations

To conclude the section on user device management, we consider some security aspects
and how an attacker might exploit the device management mechanisms.

Two-Factor Authentication for Re-registration and Registration Locks As mentioned
previously, messengers like Signal or WhatsApp offer two-factor authentication if a
user wants to re-register [33, 49]. If this is activated, an additional user-defined PIN
is required besides proving ownership over the phone number to regain access to the
account. In case the user forgot the PIN, it is still possible to perform a re-registration.

For Signal, there is a registration lock which means that the PIN is no longer required
only if no device of the user interacted with the central server for more than seven days.
In WhatsApp, the user can provide an optional email address while initially activating
the two-factor authentication in order to perform PIN resets via email. If no email
was used, one can reset the PIN after seven days. Compared to Signal’s approach, this
cooldown does not require inactivity of all devices during the cooldown period.

Primary Device for Device Management We observed that some messengers such as
Signal only allow a primary device to manage the devices of a user, e.g. only the mobile
device that was used in the registration and linked with the phone number can be used
to add or remove devices. This is a simple measure to prevent some attacks because
the attack surface of attacks against the device management does not scale with the
number of linked devices but remains constant. Consequently, an attacker needs to
compromise the primary device to add own devices or remove other devices of the user.
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When attackers compromises any other device, they can still read and write messages
but at least they cannot add or remove devices. The user can remove the compromised
device if it is noticed, and do not risk being kicked out by the attacker.

While this reduces the general attack surface, it is less comfortable for the user to
only have a single device that allows adding new devices. Therefore, such a primary
device is a special problem if it gets lost or stolen.

However, it needs to be differentiated whether this limitation is enforced by cryptog-
raphy or just by implementing it within the central server. For example, in Signal, on
the one hand, only the primary device can add other devices, but on the other hand,
each device has the necessary information to cryptographically link a new device to the
account. A device would just need to share the identity private key. The only reason
why it is not possible for other devices to add new ones, is that new devices need to be
known by the server and need to upload their prekeys to it.

Notifications for Device Changes To make it possible for users to detect if an attacker
adds a new device, some messengers send notifications when a device is added. For
example, Wire sends an email but in general such notifications can be sent via any
channel or also be displayed inside the messenger application. Telegram does the latter,
as it sends a message informing about the new login and used IP address to each
logged in device.

Reducing Number of Shared Keys As shown in section 3.3 on removing devices, it can
become a problem if the device to be revoked has access to shared keys as they need
to be re-issued if they cannot be deleted securely from the device. Since those key
rotations decrease the usability, they should only be necessary as rarely as possible. To
still keep security, the best way to reduce the need for key rotations is by sharing as
few as possible keys between devices. However, this can decrease the usability, e.g. in
user level cross-signing only devices that have access to shared user-level keys are able
to add new devices. Therefore, it would be the best if users could decide the devices to
share certain keys to. As the considerations behind such a decision are probably too
complicated for most users, it is very difficult to implement in practice, as a good and
understandable abstraction would need to be found.

Threshold Cryptography Another threat in the multi-device setting is the loss of a
device, where a possible attacker can obtain access to its data. Especially shared
cryptographic keys such as identity keys should not get compromised.

To deal with this problem, Atwater and Hengartner [3] suggest threshold cryptog-
raphy. The main idea is to split a cryptographic key and distribute the different parts
across several devices. Then, cryptographic operations using that key can only be
performed by a number of devices together. This limit is called threshold of devices
and can be adjusted as needed. Depending on the desired threshold, an attacker needs
access to at least this certain number of devices in order to compromise the key and
use it to perform malicious operations.
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In multi-device messaging, threshold cryptography could be used for the keys re-
sponsible for message encryption and decryption. As proof of concept, Atwater and
Hengartner integrated their framework Shatter into the messenger ChatSecure [3].
Then, in case a device is lost, the user is able to instruct the remaining devices to not
trust the stolen device anymore. Therefore, the stolen device cannot perform crypto-
graphic operations with the distributed private key anymore. However, as long as the
remaining devices reach the threshold, they have enough information to re-establish
the full original private key and distribute it in new shares. Thus, no key rotation is
necessary, while the stolen device is successfully revoked. Unfortunately, the huge
drawback is that each cryptographic operation needs t devices to be online, where t is
the specified threshold. The certain number of always online devices and accompany-
ing performance losses are disadvantages for message exchange. Furthermore, we do
not see the need for threshold cryptography in message encryption and decryption but
rather in other multi-device related problems like device management.

One example is to hinder attackers from adding or removing devices from one
messaging account by requiring an authorization signature of more than one device.
Specifically for the cross-signing concept from subsection 3.2.2, the user level self-
signing key could be distributed by using threshold cryptography. Then, several distinct
devices would need to agree to sign new devices such that they become trusted.

But for that, also other threshold cryptosystems could be thought of, e.g. multisigna-
ture schemes where no private key exists at all. This would reduce the risk in disclosing
private key material. In their concept, the original private key is constructed in the
initial setup and reconstructed whenever devices are added or removed.

Overall, threshold cryptography introduces complexity for the user. In the concept
of Atwater and Hengartner, not only several devices need to be online, but users need
to understand the underlying concept. Otherwise, they may experience behavior they
do not expect, e.g. they cannot delete or add new devices because they lost access to
the majority of clients they once added that are now necessary for the threshold.

Intercepting Verification Codes Telegram sends verification codes to add a new device.
While this might improve usability, it bears the risk that an attacker intercepts those
verification codes to add an own device. To conduct such an attack, an attacker needs
to initiate the process of adding a new device and, once the corresponding verification
code is sent to the existing devices of the users, intercept it, e.g. by social engineering
or shoulder surfing.

A similar attack is possible by performing an account re-registration. Many phone
number based messengers send a verification code via SMS to verify that the user
really owns the claimed phone number. By intercepting such an SMS verification code,
an attacker can successfully register an own device for a different phone number and
therefore impersonate the user who actually owns that phone number. If communi-
cation partners do not recognize the warning that the identity of the user changed,
they continue to communicate with the attacker and not with the user they assume to
communicate with. To successfully intercept the SMS verification codes, an attacker
can either employ the techniques mentioned to obtain device enrollment verification
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codes or try to eavesdrop SMS messages itself. Compromising one account can im-
prove the success probability of further attacks on other users because the attacker can
impersonate already compromised users and conduct a social engineering attack on
their contacts by asking for verification codes. To prevent such re-registration attacks,
another authentication factor can be requested like explained in the previous section on
two-factor authentication and registration locks. There, the faked proof of controlling
the phone number is not enough to perform a re-registration. Also, users should lock
their phone and ensure that notifications on the lock screen do not reveal sensitive
information. In both attack scenarios, vigilance of users can help to detect and prevent
them.

3.6 Messenger Overview

Similar to the evaluation of messengers with respect to messaging related criteria in
section 2.4, we now take a look at device management related criteria in this section.
Therefore, we investigated the messengers’ whitepapers and documentation, while
some information was collected by examining the apps.

Linking Devices In subsection 3.2.2, we presented the different concepts how devices
can be linked. Now, we evaluate the different messengers based on the concepts they
use for linking a device to an account. Threema and WhatsApp both offer web clients
[42, 48]. This corresponds to the user level encryption pattern as encryption and
decryption takes place on the primary device. Secondary devices can send and receive
messages by using the reflection pattern. Even with the new concept that Threema
plans to introduce [41], they will still use user level encryption since all devices share
the required user level key material. Signal, and therefore also Viber with their own
implementation of the Signal protocol, in combination with the user level variation of
the Sesame Algorithm, share the identity key to link a device to a user account [27, 45].
Some other messengers that use the Signal protocol in combination with the device
level variation of the Sesame Algorithm like Facebook Messenger, Skype, or Wire do
not use Signals concept for multi-device support as they do not link devices at all but
use device identities [14, 29, 53]. There, the key verification needs to be done manually
for each device. Element, as a Matrix client, uses user level cross-signing to link the
devices to an account [10]. Wickr, while using a different protocol, also has an identity
key on the user level that signs each device of the user [18]. Keybase uses device level
cross-signing as any device can sign a new device and add it to the user’s sigchain [21].

Information Exchange For the initial information exchange we only consider mes-
sengers that actually link devices. Most of them use QR codes for that and setup a
connection which is used to exchange all the data. Wickr stores the encrypted identity
private key on the server. For its encryption, a random recovery bundle key is used.
This is then encrypted with a key that is derived from the user’s password and, by
default, also stored on the server. However, the user can optionally choose to only store
the encrypted backup of the identity private key on the server [18]. Element also offers
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such a secret storage where user level keys are backed up. However, Element has this
as an optional feature and uses a separate passphrase for encrypting the keys and not
the account password. Therefore, one could argue that this is more secure than the
secret storage of Wickr. By default, Element asks the current devices whether the new
device, that recently logged in, belongs to the user. After comparing the key fingerprint
with the new device, all the information is exchanged by using the actual messaging
protocol.

Old Chats In this criterion, we analyze the extent messengers allow accessing old
chats. As soon as users add a new device, the chat history made by the already existing
devices is considered as old chats. For best usability, users expect to see their old chats
on the new device.

Threema and WhatsApp mirror old messages to the web client and therefore support
accessing old messages on the new device [42, 48]. How this will look like in the new
Threema concept [41] is not specified. Element, Keybase, and Viber also allow reading
old messages on a new device. Element achieves this by not implementing forward
secrecy so that old messages that stay on the server forever can still by decrypted [17].
For Keybase, also no forward secrecy is implemented and a current device can just
share the symmetric encryption keys that were used for all messages in a chat [20].
Viber asks during device enrollment whether old messages should be shared with
the new device and therefore probably just re-encrypts and resends them. Skype and
Telegram only support this feature in unencrypted chats where the messages are stored
in the cloud in plaintext. In contrast, other messengers such as Facebook Messenger,
iMessage, Signal, Wickr, and Wire do not synchronize old chats with a new device. This
may be due to the necessary effort or messengers like Wire directly point out privacy
concerns [52].

Recover As explained before, we consider three different types of recovery. The
account recovery means that the user can still get access to the account, e.g. the
username, even if currently no device is added. We only regard this as fulfilled if its
very unlikely that the user fails to setup all prerequisites. This is true for a mandatory
second authentication factor that is hard to lose, e.g. a phone number or an email
address, and applies to most messengers we evaluated. Messengers like Element or
Wickr that use passwords allow to recover the account easily, but only if the user
still remembers the password. As this can easily be forgotten, we see the property of
account recovery only as partially fulfilled. Element, like Keybase, also allows to add
a second authentication factor like an email address. While users can gain access to
their account again with that, it is not guaranteed that users set this up because it is
only optional. Threema requires a key backup because the account identifier is tightly
coupled to the cryptographic identity and therefore the key [42]. This needs to be set
up manually and also bears the risk to lose it. That is why we also see this as only
partially providing account recoverability.

Regaining access to old messages after all devices were removed from the account
is only possible through backups. While Element only needs to backup the necessary
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keys, most of the other messengers supporting that feature create a backup of all the
messages. Skype and Telegram can just offer access to the unencrypted messages in the
cloud again after the account itself has been recovered. Facebook Messenger, Keybase,
and Wickr do not allow creating message backups in their app.

However, Keybase still allows users to recover messages. Communication partners
see a warning that the account of the user they want to communicate with has been
reset. They should either verify in person or check that a valid proof is added to
the recently reset account, and can then decide whether they want to accept this and
continue the communication. If users confirm that this was a legitimate account reset
chat history is shared with the other user. By this method it is possible to recover old
chats through the communication partner. This process needs to be completed with
each communication partner separately.

Also recovering the verification with other users is only supported by a few messen-
gers. Element, Signal, Threema, and Wickr allow to recover the previous identity key so
that the key fingerprints that can be compared do not change. Keybase does not offer
to create a backup of the keys but also achieves the recovery of verifications. This is
because of the different authentication mechanism that is provided by Keybase where
users link their messenger identity to other identities, e.g. to social media accounts or
their website [23]. Other messengers do not allow to create a backup of the identity key
and require users to repeat a key fingerprint comparison with each other again. For
iMessage and Viber, we did not even found a way to compare key fingerprints at all.
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Table 3.1: Comparison of user device management related criteria.
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4 Future Work

As a pointer for those interested in further research, we suggest prioritizing the exami-
nation on Signal, Matrix, and Threema. Evaluating these three covers a lot of ground,
because they are different from another. The encryption schema pioneered by Signal
has been widely adopted by numerous other messengers, up to the point where it can
be described as the industry standard.

What this systematization of knowledge does not cover is both the historical and
future perspective. While the ecosystem has settled somewhat, we still see interesting
new developments, especially considering the multi-device messenger niche. The MLS
protocol [5] is currently being standardized and innovations in multi-device messaging
have been announced by Threema [41], with rumors hinting at possible steps forward
by WhatsApp. We also did not investigate whether or not fields adjacent to messaging,
where devices communicate in different contexts, have something to offer to the instant
messaging ecosystem, or if ideas from instant messaging could be applied to make
other contexts more secure.

While MLS improves the scalability of group messaging, it does not directly solve
the multi-device problem according to the differentiation of group and multi-device
messaging we gave in the introduction. Therefore, future work should also research
how the MLS protocol can be utilized for multi-device. Some things we see here is
whether devices or users form the leafs of the MLS tree and, assuming leafs represent
the users, how the devices of a user synchronize each other. Also related to group
messaging, it needs to be assessed how MLS can be employed in a decentralized
environment.

Furthermore, the usage of threshold cryptography in the messaging context can be
further evaluated. For that, we see the need for user research whether this is actually a
desired feature and whether users are able to understand this.

From a non-academic perspective, we believe that the differences we highlighted
also present significant challenges to consumers. The label “secure messenger” is very
broad, and it is not trivial to differentiate between various definitions of security. We
have yet to identify a good communication strategy that allows potentially uninformed
users to quickly identify which messengers correspond to their specific security needs.
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5 Conclusion

The secure messaging ecosystem is diverse and varied. A lot of different messen-
gers claim to achieve security, but for definitions of security that differ in sometimes
significant, and often non-obvious ways. For messengers that support multi-device
messaging the situation is no different. With this systematization of knowledge, we
tried to simplify the process of gaining an overview over the current situation of
the secure multi-device messaging ecosystem. We identified and described different
methodologies for transferring data securely between devices, and evaluated and com-
pared messengers in regard to different security, usability, and privacy objectives, such
as forward secrecy, post-compromise security, sending complexity, and device opacity.

Next, we presented device management which covers the addition and removal of
devices as well as recovery. In the beginning, we explained the concept of user and
device level identities. We identified and explained the different patterns that exist
for linking devices to an account, namely user level encryption, sharing an identity
key, and cross-signing. Further, we considered the initial setup and outlined different
approaches to share required information. After that, we presented trade-offs with
regard to synchronizing chat history with new devices. For the removing of devices, we
showed differences depending on user and device level keys. We presented different
ways how recovery of accounts, messages, and verifications can be achieved. Lastly,
we outlined some security considerations and evaluated messengers regarding security
and usability criteria.

With this, we believe we have covered some of the most important points for under-
standing the differences between these messengers and gave a good starting point for
understanding this specific aspect of the messaging ecosystem in particular.

We do not recommend any messenger over another, since even with our very limited
criteria there is no messenger that fulfills all criteria better than all other messengers.
There are still trade-offs to be made, which also means that there is still room for
improvements. Whether these improvements mean an actual perceivable security,
privacy, or usability increase that consumers want is not something we investigated. A
systematization of knowledge that focuses more on user needs and perceptions could
help to further classify the different approaches that we identified.
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