
Delegating Supersingular Isogenies over Fp2 with
Cryptographic Applications

Robi Pedersen1 and Osmanbey Uzunkol2

robi.pedersen@esat.kuleuven.be, osmanbey.uzunkol@gmail.com,

1 imec-COSIC, ESAT, KU Leuven, Belgium
2 Information und Kommunikation, Flensburg University of Applied Sciences,

Flensburg, Germany

Abstract. Although isogeny-based cryptographic schemes enjoy the low-
est key sizes amongst current post-quantum cryptographic candidates,
they unfortunately come at a high computational cost, which makes their
deployment on the ever-growing number of resource-constrained devices
difficult. Speeding up the expensive post-quantum cryptographic opera-
tions by delegating these computations from a weaker client to untrusted
powerful external servers is a promising approach. Following this, we
present in this work mechanisms allowing computationally restricted de-
vices to securely and verifiably delegate isogeny computations to poten-
tially untrusted third parties. In particular, we propose two algorithms
that can be seamlessly integrated into existing isogeny-based protocols
and which lead to a much lower cost for the delegator than the full, local
computation. For example, we reduce the public-key computation step
of SIDH/SIKE [30,39] to about 11% of the local computation cost, and
the zero-knowledge proof of identity from [30] to about 4% for the prover
and almost free for the verifier, respectively, at the NIST security level 1.

Keywords: Isogeny-based cryptography · Post-quantum cryptography
· Secure computation outsourcing · Lightweight cryptography

1 Introduction

Delegation of Cryptographic Primitives. In recent years, interconnected devices
using new computational paradigms such as cloud, edge and mobile comput-
ing, and interactions of those with technologies like the industrial internet of
things, big data and artificial intelligence, are steadily increasing in numbers.
As a result, delegating expensive computations from clients such as RFID-cards
and low power sensors with constrained resources or capabilities to powerful ex-
ternal resources has become a highly active and an indispensable research and
development area. In particular, delegation of costly computations to much more
powerful external devices with large-scale computational capabilities has gained
an increasing interest, not only among researchers, but especially also among

practitioners requiring to utilize these technologies effectively within their (po-
tential) solutions/products while guaranteeing sufficient interoperability.

Delegation of sensitive computation to potentially malicious external devices
and services, however, comes with some additional challenges, such as requir-
ing security of the clients’ inputs/outputs as well as verifiability of the outputs
coming from these external devices and services. A particular case of interest
is the delegation of cryptographic algorithms and protocols. The security and
verifiability properties of cryptographic delegations were first formalized in a
security model introduced by Hohenberger and Lysyanskaya [29], introduced in
the context of the delegation of modular exponentiations, since these are expen-
sive cryptographic operations required by several pre-quantum cryptographic
algorithms and protocols. In this model, delegation algorithms are realized by a
joint implementation of a computational task Alg performed with a weak, trusted
client T together with a set of untrusted external servers U . T makes queries to
U in such a way that their interaction T U realizes Alg in a joint manner. The
goal is to reduce the computational cost of T while guaranteeing the security of
its inputs and outputs, and the possibility of verifying the correctness of the out-
puts of U . The one honest-but-curious program model (HBC) introduced in [29]
assumes that U always returns correct results, but may try to extract sensitive
data. On the other hand, The one-malicious version of a two untrusted program
model (OMTUP) assumes that U consists of two servers such that at most one
of these two servers acts maliciously while T does not know which one of these
two servers is malicious [29].

Isogenies and Cryptography. Many currently deployed public-key cryptographic
primitives, such as encryption schemes, digital signatures, key encapsulation
mechanisms (KEMs) or key exchange algorithms, are based on the infeasibility
of either the factorization or discrete logarithm problems. Possible efficient im-
plementations of Shor’s algorithm [38] on large scale quantum computers could
render these schemes insecure against such quantum adversaries. This threat
resulted in the United States’ National Institute of Standards and Technology
(NIST) launching a post-quantum cryptography standardization process at the
end of 2017. Of the 69 initially proposed key-establishment and signature proto-
cols, a list of 15 main and alternate candidates (9 encryption and KEMs, 6 digital
signature schemes) have progressed to the third round of scrutiny, announced in
July 2020 [36].

One of these alternate candidates is the key encapsulation scheme SIKE [39]
which is based on the intractability of the Supersingular Isogeny Diffie-Hellman
problem (SIDH) originally proposed by Jao and De Feo [30]. Isogeny-based as-
sumptions are first used by Stolbunov [42] in 2010, after rediscovering the previ-
ous work of Couveignes [21] from 2006 about hard homogeneous spaces, in order
to propose a quantum resistant isogeny-based Diffie-Hellman-like key agreement
scheme. The scheme in [42] is based on the difficulty of computing an isogeny
of a smooth degree between two ordinary elliptic curves. However, Childs, Jao
and Soukharev showed in 2014 that a quantum adversary can extract private
keys of this scheme in subexponential time by using the fact that the endomor-

phism rings of the ordinary elliptic curves over finite fields are commutative [15].
Instead of using ordinary elliptic curves, a quantum resistant key agreement
scheme is proposed in [30], using isogenies between supersingular elliptic curves
over finite fields under the SIDH-assumption. The endomorphism rings of super-
singular elliptic curves are not commutative, thus the attack introduced in [15]
does not directly affect this scheme. Besides the key agreement scheme in [30]
and SIKE [39], several other cryptographic schemes based on the supersingular
elliptic curves have been recently proposed in the literature ranging from group
key agreement schemes [3,26], zero-knowledge proofs of identity [30], identifica-
tion and signature schemes [27] and hash functions [12,25] to verifiable delay
functions [24].

Motivation. The significant advantage of isogeny-based cryptographic schemes
are the much smaller key sizes when compared to their lattice- or code-based
post-quantum counterparts. However, as highlighted by [1, p.14] (and also noted
in [9]) “The main drawback to SIKE is that its performance (measured in
clock cycles) is roughly an order of magnitude worse than many of its com-
petitors. Much work has been done to optimize implementations, including the
compressed-key version, and it is hoped that such optimizations continue”. Fur-
thermore, as pointed out in [35] (and also noted in [37]), post-quantum cryp-
tographic schemes are especially required to also work efficiently on resource-
constrained devices with highly limited processing storage, power and battery
life to be able to utilize them in lightweight environments, which is highly desired
for various applications requiring certain interoperability properties.

Following our initial work [37], we address this problem in this paper and
study the secure and verifiable delegation of isogeny computations between su-
persingular elliptic curves over Fp2 in order to reduce the computational cost of
resource-constrained clients requiring to utilize different isogeny-based crypto-
graphic schemes.

Previous Work. In [37], two isogeny delegation algorithms were proposed in
the HBC and OMTUP assumptions using the security model of Hohenberger
and Lysyanskaya [29]. The first, ScIso, allowed to delegate the computation of
any isogeny with revealed kernel, while allowing to map along hidden elliptic
curve points or multiply unprotected points with hidden scalars. The shroud-
ing of points was done using lookup-tables of the form {(i, `iP)}i∈{1,...,e−1},
{(i, `iQ)}i∈{1,...,e−1} for generators 〈P,Q〉 ∈ E[`e], which allowed the efficient
generation of random elliptic curve points from the same torsion group. The sec-
ond algorithm, HIso, used ScIso as a subroutine and allowed to hide the kernel
and the codomain of the delegated isogeny. ScIso was used to reduce the cost of
Jao and DeFeo’s identification protocol [30] to 6 . . . 14% of the cost of local com-
putation for the NIST level-2 prime p503 using the OMTUP assumption (where
the range depends on if the random points are constructed from a secure subset
or from the entire torsion group). HIso allowed to delegate the second step of
SIDH-like protocols (e.g. the key exchange and public-key encryption protocols
from [30] or the decapsulation step in SIKE [2,39]), reducing the cost of this step

to ∼ 60% of the local computation cost for the same prime using OMTUP. The
work of [37] did not propose a protocol to delegate public-key computations.

Our Contributions. The main contribution of this paper is to propose two new
delegation algorithms for isogeny computations using the security model of Ho-
henberger and Lysyanskaya [29] in the HBC and OMTUP assumptions, and to
show how to apply these to different isogeny-based cryptographic protocols and
computing the respective gains for the delegator. In particular,

1. We introduce a new difficulty assumption called the decisional point preimage
problem (DPP) that is implicitly used in the identification protocol of [30].
Furthermore, we show that it reduces to the decisional supersingular product
problem (DSSP) introduced in [30].

2. We extend and improve our previous work [37], which proposed the ScIso
and HIso subroutines under the HBC and OMTUP assumptions:
(a) We present a new approach to isogeny delegation called Iso, which allows

to delegate isogeny computations with unprotected kernel and to map
along public and hidden points. Iso does not require (random) elliptic
curve point generation using lookup-tables, which eliminates the large
local memory requirement of ScIso on the delegator’s side, while also
speeding up the delegation algorithms.

(b) We show how to break the HIso subroutine of [37] using pairings, and dis-
cuss some new approaches to hide the codomain curve in the delegation
algorithms.

(c) Using Iso as a subroutine, we present a new delegation algorithm, IsoDe-
tour, which allows to delegate the computation of an isogeny without
revealing the kernel. This allows IsoDetour to be used to compute public
keys, a question left open in [37]. The security of IsoDetour is based on
the newly proposed DPP problem.

Our algorithms based on the OMTUP assumption rely on twisted Edwards
curves, while our delegation algorithms under the HBC assumption utilize
the arithmetic of Montgomery curves on the Kummer line. Mapping be-
tween these curve types can be performed very efficiently, allowing seamless
integration of the delegation algorithms into cryptographic protocols using
either type.

3. We further introduce the concept of delegation-friendly primes, which allows
the delegation of public key computation in the standard SIDH-setting using
our proposed IsoDetour algorithm.

4. We show how to apply our algorithms to the protocols introduced in
[3,12,24,25,26,27,30] and benchmark our delegation algorithms to crypto-
graphic protocols based on the isogenies of supersingular elliptic curves
over Fp2 for various standardized SIKE primes (p434, p503, p610, p751) cor-
responding to NIST’s security levels 1, 2, 3 and 5. We also indicate the
necessary communication costs between the delegator and the servers. Com-
pared to the approach of [37], Iso allows to reduce the delegator’s cost in
the identification protocol of [30] to about 4% of the local computation cost

in the OMTUP and 7% in the HBC assumption for p503, without the need
of lookup-tables. On the other hand, IsoDetour allows to reduce the cost of
SIDH-type public-key generation to 11% and 20% for OMTUP and HBC, re-
spectively, reducing the overall cost of such protocols when compared to [37].

Outline. This work is structured as follows. Section 2 revisits the technical back-
ground needed throughout this work and introduces a new hardness assumption,
called the decisional point preimage problem. We then present our proposed
isogeny delegation algorithms in the following two sections: Section 3 introduces
Iso, which allows to delegate an isogeny with disclosed kernel, while mapping
along hidden points. Two implementations of Iso are presented, one in the HBC
and one in the OMTUP assumption. Section 4 will then introduce IsoDetour,
which uses Iso as a subroutine and further allows hiding the kernel generator
of the delegated isogeny. In Section 5, we apply our delegation algorithms to
different isogeny-based protocols and assess the theoretical cost reduction, and
compare them with benchmarks. Section 6 concludes our findings.

Acknowledgements. The authors would like to thank Frederik Vercauteren
for discussions and valuable feedback during this work.

2 Background

2.1 Elliptic curves and isogenies

We work with supersingular elliptic curves over the base field Fp2 with the Frobe-
nius trace tπ = ∓2p, where p is a prime. The group structure of points on elliptic
curves of this type is given as follows [40,43,45]:

E(Fp2) ' (Z/(p± 1)Z)2 . (1)

In most isogeny-based cryptographic schemes, e.g. SIDH [30] and SIKE [39],
the case tπ = −2p is used. The elliptic curves with tπ = 2p correspond to the
quadratic twists of these curves, i.e. curves having the same j-invariant which
become first isomorphic over Fp4 . We follow this trend and simply refer to the
cases tπ = 2p simply as the twists.

We slightly abuse notation and write e.g. P ∈ E for P ∈ E(Fp2). We write
E[τ] to indicate the τ -torsion group on E(Fp2) for τ ∈ Z non-zero. Torsion
groups of specific points and the generators of these groups are written with the
specific point as index, e.g. we write A ∈ E[τA] and 〈PA, QA〉 = E[τA], where
we assume A to have full order, i.e. |〈A〉| = τA. We further use the shorthands
Zτ = Z/τZ and e.g. ZA = Z/τAZ.

Isogenies. Isogenies are homomorphisms between two elliptic curves, that are
also algebraic maps [22,40]. Separable isogenies are uniquely defined by their
kernel. In the cryptographic schemes treated in this work, these kernels are
subgroups of torsion groups, generated by a primitive point. For example, the
group generated by A ∈ E[τA],

〈A〉 = {λA|λ ∈ ZA} ⊂ E[τA],

defines the isogeny α : E → E/〈A〉 with kerα = 〈A〉. Any other primitive point
within 〈A〉 generates the same isogeny, so we can define the equivalence class

[A] := {λA|λ ∈ ZA, λ coprime to τA}

of elements defining the same isogeny kernel. One can efficiently verify if two
points in E[τA] belong to the same equivalence class by checking if they define
the same isogeny or by using pairings.

Codomain curves of isogenies are generally written in index notation, e.g.
EA = E/〈A〉, EAB = E/〈A,B〉, where the index represents (the equivalence
class of) the kernel generator of the isogeny. We will represent points on elliptic
curves with a superscript corresponding to the index of the elliptic curve they
are defined on, e.g. if P ∈ E, then PA ∈ EA and PAB ∈ EAB , where we
assume the used map to be clear from context. The same holds for point sets,
e.g. {P,Q}A = {PA, QA} ⊂ EA.

In order to allow efficient isogeny computations between elliptic curves, tor-
sion groups E[τ] need τ to be smooth [30]. For most cryptographic applications,
we require several smooth torsion groups of approximately the same size. This
can be guaranteed by choosing p+ 1 =

∏n
i=1 τi, where τi ≈ τj for all i, j and all

smooth. By this choice, supersingular elliptic curves consist of the smooth torsion
groups E[τi] for i = 1, . . . , n. Each of these torsion groups is generated by two
elements, 〈Pi, Qi〉 = E[τi], so any point can be written as a linear combination
of these two generators.

2.2 Elliptic curve arithmetic

Computational costs. Typical elliptic curve arithmetic operations include point
addition and doubling, scalar multiplications and isogeny computation. Each
of these operations can be reduced to manipulations on Fp2 . In this section, we
establish cost estimates for these operations in terms of the cost of multiplications
m of elements over Fp2 . To this end, we assume that squaring on Fp2 costs
0.8m, while additions and comparison operations are negligible in comparison.
Expensive inversions are circumvented by using projective coordinates.

We denote by A and D the theoretical cost estimates of point addition and
point doubling on E, respectively, by S(τ) the cost estimate of a (large) scalar
multiplication of a point by a scalar in Zτ and by I(τ, µ) the cost estimate of
computing a (large) τ -isogeny, and mapping µ points along this isogeny. Since
τ =

∏n
i=1 `

ei
i is smooth, we can approximate the cost of a τ -isogeny as the

sum of the costs of individual `eii -isogenies. These in turn are computed using

ei
2 log2 ei consecutive `i-isogenies, using the balanced scenario described in [30].
At every step, we need to perform a scalar multiplication by `i and an isogeny
evaluation of degree `i. We denote these respective costs as S`i and I`i . If we
also map along additional points, each of these is mapped at a cost of P`i . Using
the results from [37], we can then express

I(τ, µ) =

n∑
i=1

(I`i + S`i + µP`i)
ei
2

log2 ei . (2)

Note that recent results in [5] reduce the asymptotic complexity of `-isogeny
computations from Õ(`) to Õ(

√
`). However, this advantage only manifests itself

from ` ' 100 upwards. Even though we will be working with torsion groups τ
that potentially have maxi{`i} > 100, these τ -isogeny computations will only
be performed on the server-side. The cryptographic protocols in this work will
generally be based on very small primes ` ∈ {2, 3, 5, . . . }, unless stated otherwise.

Montgomery curves. Montgomery curves are elliptic curves of the form

Ea,b : bY 2Z = X3 + aX2Z +XZ2 ,

with b 6= 0 and a2 6= 4. Arithmetic operations and isogeny computations on
Montgomery curves are particularly efficient if they are reduced to the Kummer
line E/〈±1〉 by mapping out the Y -coordinate and reducing points to the X
and Z coordinates [20,34]. Points on the Kummer line form no longer a group,
and addition operations have to be substituted by differential additions, which
require 3 inputs (P , Q and P − Q) to compute P + Q. Note that arithmetic
operations and isogeny computations are independent of the parameter b [18].
In fact, changing b only allows to move between a curve and its isomorphisms or
its quadratic twist, the latter being unified on the Kummer line. Thus, working
on Montgomery curves does not only have the advantage of efficient arithmetic,
but it also allows to easily switch between isomorphic curves and quadratic twists
without the requirement of working in extension fields [16].

Using the results from [7,20], the cost of point addition and doubling on
E(Fp2) can be estimated by

A = 4.6m and D = 3.6m,

respectively. Scalar multiplications are performed in dlog2 τe steps of the Mont-
gomery ladder algorithm [34] for the total estimated cost of [37]

S(τ) = Mdlog2 τe −A , where M = A+D = 8.2m. (3)

These cost estimates assume that the Z-coordinate of P −Q is scaled to 1, which
we will guarantee in our protocols, unless stated otherwise. Using the optimized
results from [17], we find

I3 = 10m, S3 = 8.2m, P3 = 5.6m,
I4 = 10.8m, S4 = 7.2m, P4 = 7.6m,

for the parameters in the isogeny computation (2).

Twisted Edwards curves. Twisted Edwards curves are elliptic curves of the form

Ec,d : cX2Z2 + Y 2Z2 = Z4 + dX2Y 2 ,

with d 6= 0, 1 and c 6= 0. While there are many coordinate representations in
[6], the extended coordinates introduced in [28] are of particular interest for this
work. In [28], point coordinates are extended by a fourth element T = XY/Z,
which allows for efficient arithmetic with

A = 9m and D = 7.2m.

If −c is a square in Fp2 , unsing the isomorphism X → X/
√
−c results in an

even more efficient addition of A = 8m. Scalar multiplications can be performed
using the double-and-add method, bound by the cost

S(τ) = Mdlog2 τe −A , where M = A+D = 16.2m. (4)

While the arithmetic is noticeably slower than the one on Montgomery curves,
points on twisted Edwards curves form a group and allow more versatile con-
structions. For an overview of isogeny-related costs on twisted Edwards curves
we refer to [4].

Mapping between Montgomery and Twisted Edwards curves. There is a one-to-
one correspondence between Montgomery and twisted Edwards curves [6], and
switching between equivalent curves can be done using the following maps

c =
a+ 2

b
, d =

a− 2

b
and a =

c+ d

c− d
, b =

4

c− d
.

By writing the curve parameters in projective coordinates, we avoid inversions
and reduce these maps to simple additions on Fp2 . To map points between these
curves, we can use the maps [6,10,33]

(XM : ZM) = (ZE + YE : ZE − YE)

(XE : YE : ZE) = (XM (XM + ZM) : YM (XM − ZM) : YM (XM + ZM)) ,

while TE = XEYE/ZE = XM (XM −ZM) can be easily computed from the other
coordinates. While the point map from Montgomery to twisted Edwards curves
is given by two finite field additions (assumed to have negligible cost), the inverse
way can be computed in 3m, or in 3.8m if TE is computed as well.

Communication cost. In order to give an idea of the amount of data exchanged
between the delegator and the server, we express their communication costs
in bits. Let b(p) = dlog2 pe denote the amount of information in a log2 p-bit
number. Elements in Fp2 then contain 2b(p) bits of information. We note that
elliptic curves in Montgomery form are fully defined by the parameter a ∈ Fp2
and that points can be represented on their Kummer line, i.e. as P = (X : Z),
where X,Z ∈ Fp2 . If Z = 1, which can always be achieved by a single inversion,

a point can completely be expressed by its X-coordinate. Thus, in most cases
(unless stated otherwise), both points and elliptic curves contain 2b(p) bits of
information. For twisted Edwards curves, we need both curve parameters and
points are expressed using four elements in Fp2 . By setting Z = 1, we can reduce
this to two elements, X and Y , and recover T by a simple multiplication. Then,
both points and elliptic curves each contain 4b(p) bits of information. In the
case p ≈

∏n
i=1 τi with ∀i, j : τi ≈ τj , elements in Zτi can be expressed using

approximately b(p)/n bits.

2.3 Security model

The security model for delegating cryptographic computations used throughout
this paper was originally proposed by Hohenberger and Lysyanskaya [29]. In this
model, delegation algorithms are split into a trusted component T and a set of
untrusted servers U . The delegator makes oracle queries to the servers such that
their interaction T U results in the correct execution of an algorithm Alg with
the goal of reducing the computational cost of T when compared to the local
execution of Alg. Since U might potentially be malicious, the delegator needs to
both ensure that U is not able to extract any sensitive data from the interaction,
and be able to verify that the results returned by U are computed correctly.
The full adversary in this model A = (E ,U) further includes the environment
E , representing any third party, that should also not be able to extract sensitive
data, while having a different view of the inputs and output of Alg as U does.

The outsource input/output specification (or outsource-IO) distinguishes se-
cret (only T has access), protected (T and E have access) and unprotected (ev-
eryone has access) inputs and outputs, while non-secret inputs are further sub-
divided into honest and adversarial, depending on whether they originate from
a trusted source or not.

An important assumption of this model is that, while the servers in U and
the environment E might initially devise a joint strategy, there is no direct com-
munication channel between the different servers within U or between U and the
environment E after T starts using them. However, they could try to establish
an indirect communication channel via the unprotected inputs and un/protected
outputs of Alg. To mitigate this threat, T should ensure that the adversarial,
unprotected input stays empty (see also Remark 2.4 in [29]), while the non-secret
outputs do not contain any sensitive data. This is formalized in the following
definition:

Definition 1 (Outsource-security). [29] Let Alg be an algorithm with outsource-
IO. The pair (T,U) constitutes an outsource-secure implementation of Alg if:

– Correctness: T U is a correct implementation of Alg.
– Security: For all PPT adversaries A = (E ,U), there exist PPT simulators

(S1,S2) that can simulate the views of E and U indistinguishable from the
real process.
• Pair One: EV IEWreal ∼ EV IEWideal (E learns nothing.)

• Pair Two: UV IEWreal ∼ UV IEWideal (U learns nothing.)
The details of these experiments can be found in Definition 2.2 of [29]. If U
consists of multiple servers, then there is a PPT-simulator S2,i for each of
their views.

Adversarial models differ along the number and intent of servers. The models
we will analyze in this work are the following.

Definition 2 (Honest-but-curious [14]). The one honest-but-curious pro-
gram model defines the adversary as A = (E ,U), where U consists of a single
server that always returns correct results, but may try to extract sensitive data.

Definition 3 (OMTUP [13,29,44]). The one-malicious version of a two un-
trusted program model defines the adversary as A = (E , (U1,U2)) and assumes
that at most one of the two servers U1 or U2 deviates from its advertised func-
tionality (for a non-negligible fraction of the inputs), while T does not know
which one.

We refer to the paper of Hohenberger and Lysyanskaya [29] for other secu-
rity models without any honest party, namely the two untrusted program model
(TUP) and the one untrusted program model (OUP). We discuss models without
honest entity in Section 3.3.

We formalize T ’s efficiency gain due to the delegation, as well as its ability
to verify correctness of U ’s outputs in the following definition.

Definition 4 ((α, β)-outsource-security [29]). A pair of algorithms (T,U)
are an (α, β)-outsource secure implementation of an algorithm Alg, if

– (T ,U) are an outsource-secure implementation of Alg,
– for all inputs x, the running time of T is at most an α-multiplicative factor

of the running time of Alg(x),
– for all inputs x, if U deviates from its advertised functionality during the

execution of T U (x), then T will detect the error with probability ≥ β.

2.4 Cryptographic protocols and difficulty assumptions

Let E be a supersingular elliptic curve defined over Fp2 . Cryptographic protocols
in the SIDH setting are generally based on the following commutative diagram:

E EA

EB EAB

α

β β′

α′

In general, E is a publicly known starting curve with at least two coprime torsion
groups 〈PA, QA〉 = E[τA] and 〈PB , QB〉 = E[τB], whose generators are also
publicly known. Let 〈A〉 = kerα and 〈B〉 = kerβ and let EA and EB be the

respective codomains of α and β. Then the commutativity of the upper diagram
is given by choosing kerα′ = 〈AB〉 and kerβ′ = 〈BA〉.

These commutative diagrams can then used to build cryptosystems. For in-
stance, the key agreement protocol SIDH [30] assigns E[τA] to Alice and E[τB]
to Bob. After choosing A = PA + aQA ∈ E[τA] for a secret a ∈ ZA, Alice
computes and publishes her public key (EA, P

A
B , Q

A
B), while Bob does the same

(EB , P
B
A , Q

B
A) for B = PB + bQB ∈ E[τB] and b ∈ ZB . Both can then compute

the shared public key EAB by computing α′ from AB = PBA + aQBA ∈ EB [τA] or
β′ from BA = PAB + bQAB ∈ EA[τB]. In a similar way, an identification protocol
is proposed in [30]: the owner of a public key (EA, P

A
B , Q

A
B) can prove its knowl-

edge of the secret a that generates it. This is done by the prover committing
to (EB , EAB) for a random B ∈ E[τB], and then, depending on the received
challenge c ∈ {0, 1}, either revealing (B,BA) or AB . This interaction is repeated
until the desired soundness is reached.

We revisit some of the security assumptions upon which isogeny-based cryp-
tographic protocols are based. Note that we only show the ones that are explicitly
used in this work. For other hard problems, we refer for example to [30].

Problem 1 (Computational Supersingular Isogeny Problem (CSSI) [30]). Given
the triplet (EB , P

B
A , Q

B
A), find an element in [B] ⊂ E[τB].

Problem 2 (Decisional Supersingular Product Problem (DSSP) [30]). Let α :
E → EA. Given a tuple (E,EA, E1, E2, α, α

′), determine from which of the
following distributions it is sampled

– E1 is a random curve with |E| = |E1| and α′ : E1 → E2 is a random
τA-isogeny,

– E1 × E2 is chosen at random among those isogenous to E × EA and where
α′ : E1 → E2 is a τA-isogeny.

We further define the following difficulty assumption and show that it is at
least as hard as DSSP.

Problem 3. Decisional Point Preimage Problem (DPP) Let β : E → EB .
Given (E,EB , A,A

′B), where A ∈ E[τA], and A′B ∈ EB [τA], decide whether
[A] = [A′].

Theorem 1. Let ADPP be an adversary against the Decisional Point Preim-
age Problem. Then, ADPP can be used as a subroutine against the Decisional
Supersingular Product Problem.

Proof. Let ADPP be an adversary to the DPP problem which, upon receiving
the tuple (E,EB , A,A

′B), returns b = 1 if [AB] = [A′B] and b = 0 other-
wise. Then, we can construct an adversary BADPP

DSSP against DSSP, which returns
b = 0 in the first and b = 1 in the second case of Problem 2. Upon receiv-
ing (E,EA, EB , EC , α, α

′), BADPP

DSSP extracts kernel generators 〈S〉 = kerα and

〈S′B〉 = kerα′, then sends the query (E,EB , S, S
′B) to ADPP. BADPP

DSSP returns
what ADPP returns, since if [S] = [S′], then EB × EC is isogenous to E × EA
and we have b = 1, otherwise b = 0.

3 Delegating isogenies

Throughout this section, we assume that the delegator T is able to generate
elements in Z uniformly at random in an efficient manner. We further assume
that T knows a representation of any of its secret and protected points in terms
of the public torsion group generators.

3.1 Advertised server functionality

Let E be an elliptic curve and K,M ⊂ Z × E(Fp2) two distinct sets of scalar-
point pairs. The first set, K, represents the kernel of the delegated isogeny, i.e.
such that K =

∑
(a,P)∈K aP is the kernel generator. The second set,M, contains

points to be mapped along this isogeny and multiplied with the associated scalar.
Thus, given an input (E,K;M) from the delegator, a server first determines the
kernel generator K, then uses it to define the isogeny φ : E → EK and finally
the computes the set MK := {aPK | (a, P) ∈ M}, where PK = φ(P). The
server then returns (EK ;MK). We write the delegation step as follows

(EK ;MK)← U(E,K;M).

Note that the case K = ∅ results in U performing scalar multiplications. In the
case of multiple servers (Ui)i∈{1,...,n}, we will distinguish the different Mi and
Ki using the appropriate index. In order to reduce the communication cost, we
assume that servers return all points scaled with Z = 1.

Notation. For pairs in either Ki or Mi, if the scalar is 1, we omit it and write
e.g. P instead of (1, P). If the kernel set K consists of a single such point, we
further drop the set brackets. Multiple pairs with the same point are merged,
e.g. we write {(a, P), (b, P), (c, P)} as {({a, b, c}, P)}.

3.2 The Iso-Algorithm

We propose our first isogeny delegation algorithm Iso:

Definition 5 (The Iso-algorithm). The isogeny delegation algorithm Iso takes
as inputs a supersingular elliptic curve E/Fp2 , a kernel set K ⊂ Z×E(Fp2), and
two scalar-point pair sets H0,H ⊂ Z× E(Fp2), then computes the isogeny
φ : E → EK and produces the output (EK ;HK0 ,HK), where K =

∑
(a,P)∈K aP

and HK(0) = {aPK | (a, P) ∈ H(0)}. The inputs E,K,H0 are all honest, unpro-

tected parameters, while H contains secret or (honest/adversarial) protected scalars
and honest, unprotected points. The outputs EK and HK0 are unprotected while
HK is secret or protected. We write

(EK ;HK0 ,HK)← Iso(E,K;H0,H).

In Figures 1 and 2, we show how a delegator T can use the advertised server
functionality from Section 3.1 in order to implement Iso in an outsource-secure
way under the HBC and OMTUP assumptions. The delegation subroutines are
organized according to 5 main steps:

Gen: Generation of auxiliary elements
Shr: Shrouding of hidden elements using the auxiliary elements
Del: Delegation to the server
Ver: Result verification
Out: Result recovery and output

Note that the HBC case does not need a verification step by assumption. The
idea behind Figure 1 is relatively trivial but effective: the delegator hides the se-
cret/protected scalars simply by not disclosing them to the server and computing
the scalar multiplication on the codomain point itself.

Honest-but-curious approach.

Gen: No auxiliary elements are needed.
Shr: Set H′ = {Q | (a,Q) ∈ H}.
Del: Delegate (EK ;HK0 ∪H′K)← U(E,K;H0 ∪H′).
Out: Compute HK = {aQK | (a,Q) ∈ H, QK ∈ H′K}, then return (EK ;HK0 ,HK).

Fig. 1. Implementation of Iso in the HBC assumption

The OMTUP case of Figure 2 is a bit more complex, but will result in a lower
cost for the delegator when compared to the HBC case. The underlying idea (for
N = 1) is that the delegator shrouds the secret/protected scalars as a linear
combination of small and large random scalars. The large scalars are distributed
between the two servers in order to prevent reconstruction of the secrets, while
the small scalars are kept secret by the delegator and used to ultimately verify
correctness of the returned points. The size of the small scalars influences the
cost for the delegator and the verifiability of the protocol. To further increase
verifiability, the delegator can add more random scalars to the mix by increasing
N , which leads to multiple, interconnected verification conditions, and results
in an even higher verifiability, albeit at a higher cost for the delegator. There
is an optimal trade-off between these two parameters, depending on the desired
verifiability. We will discuss this trade-off further in Section 3.2.

Hiding a point. If the delegator wants to map along a secret or (honest/adversarial)
protected elliptic curve point A = P+aQ ∈ E[τA], then T simply has to delegate

(EK ;HK0 ∪ {P},HK ∪ {aQK})← Iso(E,K;H0 ∪ {P},H ∪ {(a,Q)}) ,

OMTUP approach.

Gen: For each (a,Q) ∈ H, choose N ∈ N, then (assuming Q ∈ E[τ]) generate
• small non-zero scalars c1, . . . , cN , d1, . . . , dN ∈ {−2t−1, . . . , 2t−1}, and
• random scalars r0, s0, s1, . . . , sN−1 ∈ Zτ .

Shr: For each (a,Q) ∈ H, compute ri = −si+cis0+dir0 for i = 1, . . . , N−1. Define
σ =

∑N−1
i=1 (si + ri) and let γ be the smallest integer > 1 coprime to τ , then

compute sN = γ−1(dNr0 + cNs0 + σ − a) and rN = −sN + cNs0 + dNr0. Set

H′1 = {({s0, . . . , sN}, Q) | (a,Q) ∈ H} , H′2 = {({r0, . . . , rN}, Q) | (a,Q) ∈ H} ,

with the scalars in random order.
Del: Delegate

(EK ;HK0 ∪H′K1)← U1(E,K;H0 ∪H′1)

(E′K ;H′K0 ∪H′K2)← U2(E,K;H0 ∪H′2) .

Ver: Verify, if EK
?
= E′K and HK0

?
= H′K0 , and for i = 1, . . . , N , if

(siQ)K + (riQ)K
?
= ci(s0Q)K + di(r0Q)K .

Out: If any of the verifications fail, return ⊥, otherwise compute

HK =

{
rNQ

K − (γ − 1)sNQ
K +

N−1∑
i=1

(siQ
K + riQ

K)
∣∣∣(a,Q) ∈ H

}

and return (EK ;HK0 ,HK).

Fig. 2. Implementation of Iso in the OMTUP assumption

and compute AK = PK + aQK . We assume that a representation of A in the
normal form is always known, as will always be the case in the cryptographic
protocols that we discuss in this paper. We will generally write

(EK ;HK0 ,HK ∪ {AK})← Iso(E,K;H0,H ∪ {A})

for the sake of conciseness. This notation also suggests itself due to the same
verifiability for the recovery of AK as for aQK , since P is fully verifiable. Nev-
ertheless, we have to pay attention to the fact that the cost in the recovery step
increases by one elliptic curve addition and that H0 implicitly contains P .

Outsource-security in the HBC case We analyze some properties of the
protocol in Figure 1 leading to the following theorem.

Theorem 2. Under the honest-but-curious assumption, the outsourcing algo-

rithm (T ,U) given in Figure 1 is a
(
O
(

1
log log τ

)
, 1
)

-outsource secure imple-

mentation of Iso, where τ is the smooth degree of the delegated isogeny.

Correctness. Correctness is given by the homomorphism property of isogenies.

Cost. We define µ0 = #H0 and µ = #H. For every point in H, we have to
compute one scalar multiplication at the cost of S(τA), for Q ∈ E[τA]. Assuming
the different torsion groups have approximately the same size (which will always
be the case in our delegation schemes), we find THBC(µ, τA) = µS(τA). The local
computation, assuming K ∈ E[τK] and τK =

∑
i `
ei
i on the other hand would

amount to I(τK , µ0 + µ), so that we find

αHBC(µ0, µ, τA, τK) =
µS(τA)

I(τK , µ0 + µ)
=

µ(Mdlog2 τAe −A)∑
i(I`i + S`i + (µ0 + µ)P`i)

ei
2 log2 ei

Assuming µ small and τA ≈ τK ,3 we find

αHBC(µ0, µ, τA, τK) = O

(
log τA

log τK log log τK

)
= O

(
1

log log τK

)

Security. Neither U nor E can gain any information about the hidden parameters
a, due to the fact that they are never disclosed in any form. In every round, the
simulators S1 and S2 simply proceed as in the real execution of the protocol.
Therefore EVIEWreal ∼ EVIEW ideal and UVIEWreal ∼ UVIEW ideal.

Outsource-security in the OMTUP case We analyze some properties of
the protocol in Figure 2 leading to the following theorem.

Theorem 3. Under the OMTUP assumption, the outsourcing algorithm (T , (U1,U2))

given in Figure 2 is an
(
O
(

t
log τ log log τ

)
, 1− 1

(N+1)2Nt

)
-outsource secure imple-

mentation of Iso, where τ is the smooth degree of the delegated isogeny.

Correctness. Since for i = 1, . . . , N , we have ri = −si+cis0+dir0, the verification
conditions hold due to the homomorphism property of isogenies. At the end, the
delegator returns for each (a,Q) ∈ H

rNQ
K−(γ − 1)sNQ

K +

N−1∑
i=1

(siQ
K + riQ

K)

= ((rN + sN)− γsn + σ)QK

= ((cNs0 + dNr0)− γγ−1(cNs0 + dNr0 + σ − a) + σ)QK

= aQK .

3 Note that we can easily assume S(τA) ≈ S(τK) for τA ≈ τK . On the other hand,
this approximation does not in general hold for I(τA, n) and I(τK , n), so that we
substitute τA → τK in our formula and not the other way around.

Verifiability. The malicious server can not successfully return a wrong codomain
curve or map of H0, since the delegator compares it to the honest server’s result.
Yet, the malicious server could try to cheat on the point maps in H. The only
options are points that still satisfy all the verification conditions. Assume without
loss of generality that U1 is the malicious server and wants to return a wrong
s1Q

K by shifting it with another point X1, i.e. it returns s1Q
K + X1 instead.

In order for the according verification condition to still hold, the server will also
have to shift S = s0Q

K by some point Y . Thus, in order for the verification
condition to still hold, the malicious server has to guarantee that

s1Q
K +X1 − c1(s0Q

K + Y) = s1Q
K − c1s0QK , implying X1 − c1Y = 0.

Since the server does not know c1 it has to guess it, which it only can do with
a probability of at most 2−t. Furthermore, by shifting S by Y , all the other
verification conditions have to be rectified as well, i.e. Xi − ciY = 0 for all
i = 1, . . . , N . In order to be successful, the malicious server is thus required to
solve the linear system 1 −c1

. . .
...

1 −cN

 ,

which can only be done by guessing all c1, . . . , cN correctly. As a final challenge,
the server also has to identify which of the (at least) N + 1 scalars given to it
corresponds to s0. Hence, the probability of a malicious server succeeding with
this attack for Q ∈ E[τA] is thus bounded by (N + 1)−12−Nt.

Cost. We again define µ0 = #H0 and µ = #H. Since the points in H are
shrouded independently, we derive the delegator’s cost per point in H. In the
shrouding step, the delegator has to compute 2m per ri and another 3m for sN ,
thus 2Nm+ 3m, assuming γ−1 is known on the underlying field. In the verifica-
tion step, the delegator has to compute 2NA as well as 2N scalar multiplications.
In order to compare the points on both sides of the verification equation, we need
to scale them to the same Z-value. This can be achieved by multiplying each
side with the opposing Z coordinate for a total cost of 2Nm.

Finally in the output step the delegator, already knowing the terms siQ
K +

riQ
K for i = 1, . . . , N − 1 from the verification step, is left to compute NA +

S(γ − 1). In the cryptosystems used throughout this work, γ ∈ {2, 3}, so that
the cost of the verification step is bound by (N + 1)A.

Naively, the scalar multiplications in the verification step would cost 2NS(2t),
but we can easily decrease this by realizing that all of the scalar multiplications,
which the delegator has to perform, are multiples of the same two points, i.e.
s0Q

K and r0Q
K . Thus we need to perform the doubling part of the double-and-

add algorithm only once per point. We can even go further and reduce the total
addition part for the different N by grouping the repeating patterns.

To this end, assume we want to compute the multiplications c1Q, . . . , cNQ
for the scalars ci = (ci,0 . . . ci,t−1)2 and for any point Q. We first ignore the

sign of the ci and define the sets Ci = {j | ci,j = 1} and the index power set
S = P({1, . . . , N}), excluding the empty set. For each k ∈ S, let

Ak =

(⋂
i∈k

Ci

)∖(⋃
j /∈k

Cj

)
enumerate all possible distinct areas in the Venn diagram of those sets. Then,
after having computed all the doubling operations 2Q, . . . , 2t−1Q, the delegator
computes the sums

Qk =
∑
j∈Ak

2jQ (5)

for each k ∈ S, then adds the appropriate sets for each ci, i.e.

ciQ =
∑
k∈Si

Qk , (6)

where Si = {k ∈ S | i ∈ k}. Finally, the delegator applies the correct sign to the
result of (6).

With this in mind, we can express the maximal number of point additions in
these two steps. Let ω = #S = 2N − 1 and ωi = #Si = 2N−1 and let ω0 denote
the number of empty sets Ak. We assume t > ω, which will later be guaranteed
by our choices of N and t. Since |

⋃
k Ak| ≤ t and Ak ∩ Ak′ = ∅ ∀k 6= k′,

the number of additions the delegator has to perform in order to compute the
different Qk in (5) is at most t, reduced by the number of non-empty sets (the
“missing” additions will later be done between those sets) thus t− (ω − ω0).

In (6), the delegator can use a tree structure to add the different sets. It
is easy to verify, that |

⋂m
i=1 Si| = 2−m|Si| = 2N−1−m. If the delegator chooses

the order of the sum in (6), for e.g. c1Q, in such a way as to start with all the
elements in S1∩S2, then it has already computed half of c2Q too, so that in the
first step it needs 2N−1 − 1 additions while in the second, only 1 + (2N−2 − 1)
are left. If we start the computation of c1Q with S1∩S2∩S3, then S1∩S2, then
S2 ∩ S3 and the computation of c2Q with S2 ∩ S3, we can compute c3Q with
only 3+2N−3−1 additions. Proceeding similarly with further computations, we
find that for the computation of ciQ, T needs to perform

(2i−1 − 1) + (2N−i − 1)

additions. Summing over i = 1, . . . , N , we find that T has to add at most
2(2N −N − 1)− ω0 sets, after subtracting the number of empty sets. Including
the initial doubling operations, we find the total maximal cost of

SN (t) = Mt+ (2N − 2N − 2)A

for N parallel scalar multiplications ciQ, where M = D +A.

Remark 1. At this point, we would like to note that this approach is only possible
for points in a group and is in particular not realizable on the Kummer line of

Montgomery curves. Furthermore, on Montgomery curves, the delegator could
not even compute e.g. siQ + riQ, using differential addition, since he would be
lacking the knowledge of (si − ri)Q, which we can’t get from one of the servers
without revealing information.

We can finally express4

TOMTUP(µ, t) = µ
[
(4N + 3)m+ 3NA+A+ 2SN (2t)

]
= µ

[
(4N + 3)m+ 2Mt+ (2N+1 −N − 3)A

]
.

The cost reduction can then be expressed as follows

αOMTUP(µ0, µ, t, τ) =
TOMTUP(µ, t)

I(τ, µ0 + µ)
=
µ
[
(4N + 3)m+ 2Mt+ (2N+1 −N − 3)A

]∑
i(I`i + S`i + (µ0 + µ)P`i)

ei
2 log2 ei

Assuming N is fixed and since t > 2N−1, the dominating term in the numerator
is 2µMt. Dropping scalar factors and assuming µ, µ0 to be small, we find

αOMTUP(t, τ) = O

(
t

log τ log log τ

)
.

Security. Let A = (E ,U1,U2) be a PPT adversary that interacts with a PPT
algorithm T in the OMTUP model. We reduce our analysis to a single pair
(a,Q) ∈ H as it extends naturally to multiple hidden scalars. We assume a ∈ Zτ
and Q ∈ E[τ].

– Pair One: EVIEWreal ∼ EVIEW ideal

If the input a is not secret, S1 simply behaves as in the real execution of
the protocol. If a is secret, then in round i, S1 generates 2(N + 1) random
scalars u0, . . . , uN , v0, . . . , vN and makes the queries:

(EK ,HK0 ∪H′K1)← U1(E,K,H0 ∪ {({u0, . . . , uN}, Q)}),
(E′K ,H′K0 ∪H′K2)← U2(E,K,H0 ∪ {({v0, . . . , vN}, Q)}).

to the servers, then verifies if all the outputs are correct. If either EK , E
′
K ,H0,H′0

is incorrect, S1 returns (Y ip , Y
i
u, replace

i) = (⊥, ∅, 1). If either of the results

in HK1 or HK2 is incorrect, then with probability (N + 1)−12−Nt, S1 gener-
ates a random Y ← E and returns (Y ip , Y

i
u, replace

i) = (Y, ∅, 1). In any other

case, S1 returns (Y ip , Y
i
u, replace

i) = (∅, ∅, 0). S1 saves its own state and the
state of the servers.
The inputs in the ideal scenario are chosen uniformly at random. In the real
scenario, all inputs r0, s0, . . . , sN−1 are chosen at random, while r1, . . . , rN , sN
are indistinguishable from random. Now, in the ith round, if the servers be-
have honestly, then both T and S1 correctly execute Iso, the latter choosing

4 We omit N from the function’s input parameters as it depends on the choice of t,
as will be shown in Section 3.2.

not to replace the output. If either server returns a wrong EK or HK0 , then
this will result in both T and S1 returning ⊥. If either server returns a
wrong H′K1 or H′K2 , then both T and S1 return ⊥ with probability at most
1 − (N + 1)−12−Nt. In the converse case, where the servers succeed in re-
turning an undetected wrong output to T , S1 simulates this by returning a
random point on the elliptic curve. Thus, even if one of the servers behaves
dishonestly in the ith round, we have EVIEWi

real ∼ EVIEW
i
ideal. It follows

that EVIEWreal ∼ EVIEW ideal.

– Pair Two: UVIEWreal ∼ UVIEW ideal

The same PPT simulator S2 works for a secret or (honest/adversarial) pro-
tected. In round i, S2 generates 2(N+1) random scalars u0, . . . , uN , v0, . . . , vN
and makes the queries

(EK ,HK0 ∪H′K1)← U1(E,K,H0 ∪ {({u0, . . . , uN}, Q)}),
(E′K ,H′K0 ∪H′K2)← U2(E,K,H0 ∪ {({v0, . . . , vN}, Q)}).

to the servers. Then S2 saves its own state and the states of the servers. The
inputs in the ideal scenario are chosen uniformly at random. In the real sce-
nario, all inputs r0, s0, . . . , sN−1 are chosen at random, while r1, . . . , rN , sN
are indistinguishable from random to the servers. In the ith round of the real
scenario, T always re-randomizes its inputs to the servers, while in the ideal
experiment, S2 always creates new, random queries. Thus, for each round, we
have UVIEWi

real ∼ UVIEW
i
ideal and it follows that UVIEWreal ∼ UVIEW ideal.

The parameter t. In some particular scenarios, the parameter t can not only
influence the verifiability and cost of the underlying system, but also its security.
Related attacks become unfeasible, if the size of t reflects the security of the
underlying cryptosystem against both classical and quantum attackers, i.e. in
general we need to ensure that guessing all c1, . . . , cN correctly is at least as
hard as some targeted security level 2λ, i.e.

(N + 1)2Nt ≈ 2λ , or t ≈ λ

N
.

In this case, using the result from Section 3.2, the protocol cost per hidden point
becomes

µ−1TOMTUP(µ, λ/N) = (4N + 3)m+
2λ

N
(D +A) +

(
2N+1 −N − 3

)
A .

By minimizing this cost with respect to N , we can find optimal values of N for
different λ. This will be discussed in Section 5 in more detail.

Note that choosing tN = λ further implies a verifiability of 1−O(2−λ), which
is very close to 1 for a cryptographically sized λ.

Communication versus computational cost. While algorithms under the
OMTUP-assumptions will turn out to be more efficient than the algorithms
under the HBC-assumption, the communication cost is generally much higher
since we have to send and receive at least 2(N+1) elements per shrouded scalar,
instead of only one. While the OMTUP case from Figure 2 has the goal of opti-
mizing the cost, we can also easily implement the OMTUP case as two parallel
invocations of the HBC case, one for each server, and compare the results. This
strongly reduces communication, but increases the computational effort by the
delegator to the same as in the HBC case. In general, it is possible to transform
the OMTUP approach into different sets of trade-offs between these two possi-
bilities. An easy (although not very optimal) way of doing this is to reduce N ,
which reduces the communication cost while increasing the computational effort
by the delegator at the same time.

3.3 Difference to delegation of modular exponentiations

In delegation schemes of modular exponentiations (e.g. [14,29,32]), a delega-
tor usually wants to outsource the computation of (a, u) → ua for elements
u ∈ Z∗p and a ∈ Zq, for some previously defined p, q. In general, both u and a
are secret or (honest/adversarial) protected. In order to shroud elements in an
efficient way, the delegator has lookup-tables at its disposal, which consist of
pairs (α, gα) ∈ Zq × Z∗p that can be easily combined to obtain new pairs, e.g.
(α1, g

α1) ◦ (α2, g
α2) = (α1 + α2, g

α1 · gα2) = (α1 + α2, g
α1+α2). Next to being

used in the shrouding step, these pairs also allow the delegator to compute part
of the result itself by a single multiplication by e.g. multiplying the combination
of the server’s results by a final gα to compute ua.

We want to point out a few key differences to isogeny delegation schemes.
First of all, in contrast to modular exponentiations, the domain and codomain of
isogenies are different (except in the trivial case where K = ∅), and more impor-
tantly, these are a priori unknown to the delegator. This means that the delegator
not only has to verify if the codomain is correct, but also can not generate points
on the codomain before the delegation step is completed. This also means that
lookup-tables with points in the domain and codomain curves are not possible,
hence the delegator can compute the final result only from linear combinations
of elements the server(s) returned. Another circumstance of isogenies is that el-
liptic curves can not be combined in an easy way without computing isogenies,
which means that combinations, such as (A,EA) ◦ (B,EB) = ((A,B), EAB) are
not available to the delegator, since they would defeat the purpose of delegation
in the first place.

Now we turn our attention to what the delegator actually can do. One of
the most important properties of isogenies in this context is that they are group
homomorphisms. This means that linear combinations of points on the domain
curve still hold on the codomain curve and can therefore be used to shroud and
verify points, as Iso does. In order to verify the codomain curve, there seems to
be no efficient way except for including at least one honest server, which will
consistently return the correct curve and verify the malicious servers’ results

against it. The honest server is also necessary to verify if mapped points are
correct. If none of the servers were honest, all points could be scaled by some
previously determined factors, returning wrong results, which would still satisfy
the verification conditions. In the case of unprotected points, malicious servers
could even return any point instead of the desired ones.

4 Shrouding isogenies

4.1 Hiding the kernel generator

An attempt of hiding the kernel generator of a delegated isogeny was presented
with the HIso algorithm of [37]. We show that this scheme is not secure and that
the secret can be recovered using pairings. We then present new approaches of
hiding the kernel generator of a delegated isogeny.

Pairing attack on HIso. For any given point R = r1P + r2Q ∈ E[τ] with P
and Q known, it is possible to extract the factors r1 and r2 using pairings, i.e.
let e : E × E → G be a pairing between a supersingular elliptic curve E and a
multiplicative group G, then we can compute

e(R,Q) = e(r1P + r2Q,Q) = e(r1P,Q) = e(P,Q)r1 ,

e(P,R) = e(P, r1P + r2Q) = e(P, r2Q) = e(P,Q)r2 ,

and extract the factors r1 and r2 by computing the discrete logarithm using the
Pohlig-Hellman algorithm [41,46], which is efficient for smooth group orders. We
show that given any element R = xA ∈ 〈A〉 for some secret A = a1P + a2Q ∈
E[τ] with 〈P,Q〉 = E[τ] known, we can extract an element in [A]. This is trivial,
if gcd(x, τ) = 1, since then R ∈ [A]. If however gcd(x, τ) 6= 1, we can decompose
x = λτ ′, such that τ ′|τ and gcd(λ, τ) = 1. The attacker can easily compute the
order τ/τ ′ of xA and extract τ ′. It then defines P ′ = τ ′P and Q′ = τ ′Q and
computes e(P ′, Q′), then performs the above attack with

e(xA,Q′) = e(P ′, Q′)λa1 and e(P ′, xA) = e(P ′, Q′)λa2 ,

and can construct λa1P + λa2Q ∈ [A].
The concept of HIso was to delegate part of the way from e.g. E to E/〈A〉

for a secret A ∈ E[`e], by letting the server compute a smaller isogeny in the
same torsion group, E → E/〈`kA〉 for k = 1

3 logl p, then computing the rest of
the way locally. From Ak = `kA = `ka1P + `ka2Q, however, the server can then
extract a1 and a2 and reconstruct A as explained above. Hence, the scheme in
[37] does not satisfy the desired security.

Shrouding isogenies via isogenies. Using the concept of shrouding isogenies
via isogenies, we aim to hide the kernel generator A ∈ E[τA] via the isogenies
generated by a coprime torsion group E[τK] with τK ≈ τA. Let K ∈ E[τK] and
K̂ ∈ E[τK]\〈K〉. We then find the commutative diagram from Figure 3.

E EK

EA EAK

κ

α α′

κ̂

κ′

κ̂′

kerα = 〈A〉 kerα′ = 〈AK〉

kerκ = 〈K〉 kerκ′ = 〈KA〉

ker κ̂ = 〈K̂K〉 ker κ̂′ = 〈K̂AK〉

Fig. 3. Detour from E → EA via EK and EAK and the associated kernel generators

The idea concerning the delegation is to go from E to E/〈A〉 via the path

E
κ−→ EK

α−→ EAK
κ′

−→ EA,

hiding A (or α) via the isogeny AK = κ(A). The knowledge of [AK] does not
give any information about [A] by the DPP-assumption (Problem 3). Note that
our approach necessarily has to take at least three steps, since any linear combi-
nation of A with elements from E[τK] (i.e. any “shortcut”) would always reveal
information about A, simply by mapping out the τK-torsion elements. Similarly,
any shorter isogeny smaller than the length of τA ≈ τK would reduce the security
of the system.

Another important aspect is that any server that has computed the delegation
in Step 3 should not see any information of the delegation performed in Steps
2 or 4 (and vice versa), since the knowledge of K (or K̂AK) and AK can be
used to recover A. This is not the case for Steps 2 and 4, which can be securely
delegated to the same set of servers. We therefore need to work with two sets
of servers in order to be able to perform these four steps. We will denote these
as U1 and U2, each being composed of one or more servers according to the
underlying server assumptions (e.g. HBC, OMTUP, etc). We further note, that
in the OMTUP case, the malicious servers within U1 and U2 might try to
exchange their knowledge about their kernel generators indirectly. We address
these issues in our delegation algorithm.

4.2 The IsoDetour-Algorithm

In this section, we present the IsoDetour-Algorithm, that uses the commutative
diagram from Figure 3 in order to delegate α via a detour over the curves EK
and EAK .

Definition 6 (The IsoDetour-algorithm). The isogeny detour delegation al-
gorithm IsoDetour takes as inputs a supersingular elliptic curve E/Fp2 , a kernel
generator A ∈ E[τA], two scalar-point pair sets H0,H ⊂ Z × E(Fp2)\E[τA],
and a torsion-group indicator I. It then computes the isogeny φ : E → EA
as φ = κ′ ◦ α′ ◦ κ defined via the kernels kerκ = 〈K〉, kerα′ = 〈AK〉 and
kerκ′ = 〈K̂AK〉, where K, K̂ ∈ E[τI], both of full order and such that 〈K̂〉 6= 〈K〉.
IsoDetour then produces the output (EA;HA0 ,HA). The inputs E,H0 are honest,

unprotected parameters. A is secret, or (honest/adversarial) protected and H
contains honest, unprotected points and secret or (honest/adversarial) protected
scalars. The outputs EA and HA0 are unprotected while HA is secret or protected.
We write

(EA;HA0 ,HA)← IsoDetour(E,A, I;H0,H).

The implementation of this algorithm with Iso as a subroutine can be found
in Figure 4. We assume that the generators 〈PI , QI〉 = E[mI] are known.

IsoDetour(E,A, I;H0,H)

1. Generate distinct k, k̂ ∈ Z∗I and let H′0 = H0 ∪ {Q | (a,Q) ∈ H}.
2. Delegate to server (group) U1 (in the OMTUP case, choose tN ≥ λ)

(EK ; {PI , QI}K ∪H′K0 , {A}K)← Iso(E, {PI , (k,QI)}; {PI , QI} ∪ H′0, {A}).

3. Delegate to server (group) U2 (in the OMTUP case, choose tN ≥ λ)

(EAK ; {PI}AK ∪H′AK0 , {k̂QI}AK)← Iso(EK , A
K ; {PI}K ∪H′K0 , {(k̂, QI)}K).

4. Compute K̂AK = PAKI + k̂QAKI . Then extract HAK0 and {QAK | (a,Q) ∈ H} from
H′AK0 and create HAK = {(a,QAK) | (a,Q) ∈ H}.

5. Delegate to server (group) U1

(EA;HA0 ,HA)← Iso(EAK ; K̂AK ,HAK0 ,HAK).

6. Return (EA;HA0 ,HA).

Fig. 4. Implementation of the IsoDetour algorithm given in Definition 6 using the Iso
algorihm from Definition 5 as a subroutine

Mapping points. An important aspect of SIDH and related protocols (such
as SIKE [2,39] and the PKE from [30]) is that there are two large torsion
groups E[τA], E[τB] with generators PA, QA and PB , QB , respectively. Each
party chooses a torsion group, in which it computes its isogeny. Then it trans-
ports the generators of the other torsion group via its isogeny to the codomain
curve in order to create their public key, e.g. the public key of Alice is (EA, P

A
B , Q

A
B).

These point maps turn out to be a problem for the IsoDetour-algorithm, since
for any point L ∈ E[τB] with L /∈ 〈K〉, we have LK ∈ 〈K̂K〉, and thus
LAK ∈ 〈K̂AK〉. This implies is that any element in the τB-torsion group of
E (or EK) will map to O (or 〈KA〉) on E/〈A〉, and we are not able to map
PB , QB along this path. We present two ways to circumvent this problem below.
We also note that due to the security constraints of IsoDetour, we can also not
map points in E[τA] to EA. We note that the latter is also not necessary for the
cryptographic protocols analyzed in this work.

More torsion groups. Assuming the protocol has more torsion groups than two,
we can easily transport Bob’s kernel generators PB , QB ∈ E[τB] by doing a
detour via isogenies defined over a third torsion group. More generally, let p =∏n
i=1 τi ∓ 1 with n > 2, then Alice can delegate the computation of her public

key (EA, P
A
B , Q

A
B) via

(EA; {PB , QB}A, ∅)← IsoDetour(E,A, I; {PB , QB}, ∅),

where I 6= A,B.

Working with twists. We now again look at the case where we have a prime
p = τAτBc − 1, where c is a small cofactor. Given E/Fp2 with #E = p + 1, we
find the torsion group structure

E(Fp2) ' (ZA)2 × (ZB)2.

If there are only these two torsion groups at our disposal on E, we can use twists
to generate “new” torsion groups [16]. To that end, we use the observation, that
the quadratic twist Et satisfies #Et = p−1. Assuming the prime decomposition
p− 1 =

∏m
i=1 f

ei
i , we then have

Et(Fp2) '
m∏
i=1

(Z/feii Z)2 .

Choosing a subset S ⊆ {1, . . . ,m} of the factors τS =
∏
i∈S f

ei
i , such that

τS ≈ τA ≈ τB and all coprime, we can delegate the public key computation via

(EA; {PB , QB}A, ∅)← IsoDetour(E,A, S; {PB , QB}, ∅),

by running over the twists E ' Et → EtK → EtAK → EtA ' EA.
For efficiency reasons, we will have to assume that τS is smooth. There are

not many primes p such that p+1 and τS | p−1 are smooth. We call primes of this
type delegation-friendly primes and generalize them in the following definition.

Definition 7 (Delegation-friendly primes). A delegation-friendly prime is
a prime p with at least two smooth factors τAτB | p± 1 and at least one smooth
factor τS | p∓ 1, such that τA ≈ τB ≈ τS.

A discussion surrounding delegation-friendly primes in the SIDH setting can
be found in Appendix A.

The choice of t. We would like to point out the issues outlined in Remark 2.4
in [29], which in short states that “the adversarial, unprotected input must be
empty”. In the algorithm of Figure 4, the kernel generatorsAK and K̂AK actually
do constitute adversarial unprotected inputs, allowing a covert channel between
the two server sets, that could allow their cooperation in recovering the secret.
As an example, the malicious server in U1 could return a wrong AK which would

covertly include information about K, allowing the extraction of A. Similarly,
after the second delegation phase, U2 might succeed to transmit information
about AK . T has to mitigate this threat and can actually do so by increasing
the parameter t in order to make this attack at least as hard as breaking the
underlying cryptosystem (see discussion in Section 3.2). By choosing tN ≥ λ
for a representative security parameter λ, T can guarantee that the unprotected
inputs are actually honest up to a negligible probability. The same reasoning
would apply to the protected outputs of the third isogeny delegation, that will
determine the output of IsoDetour, yet in none of the cryptosystems analyzed in
this work, protected points are required as an output.

If the outputs are not reused as adversarial unprotected inputs, T can choose
t and N at will, only influencing the cost and verifiability of the protocol. Note
that there is no advantage in choosing N different from 1 in this case.

Outsource-security of IsoDetour. We analyze the security of IsoDetour, sum-
marized in the following theorems.

Theorem 4. Under the honest-but-curious assumption, the outsourcing algo-

rithm (T ,U) given in Figure 4 is an
(
O
(

1
log log τ

)
, 1
)

-outsource secure imple-

mentation of IsoDetour, where τ is the smooth degree of the delegated isogeny.

Theorem 5. Under the OMTUP assumption, the outsourcing algorithm

(T , (U1,U2)) given in Figure 4 is an
(
O
(

λ
log τ log log τ

)
, 1− 1

2t+1

)
-outsource se-

cure implementation of IsoDetour, where τ is the smooth degree of the delegated
isogeny and λ a security parameter. If H = ∅, then IsoDetour is even fully veri-
fiable.

Correctness. Correctness follows from the correctness of Iso and the commuta-
tivity of Figure 3.

Verifiability. Verifiability in the OMTUP setting also derives itself from Iso.
Following the discussion from Section 4.2 and taking t = λ/N , the verifiability
of the first two delegation steps is at least 1−(N+1)−12−λ (see “Verifiability” in
Section 3.2), while in the third step, the delegator can choose it individually for
each point in HAK , assuming they are not later used as unprotected inputs. In
order to decrease the (communication) cost, the delegator should choose N = 1
in the third round, yielding a verifiability of 1− 2−(t+1). This then also bounds
the total verifiability of IsoDetour. If H is empty, IsoDetour has a verifiability of
at least 1− (N + 1)−12−λ.

Cost. In total, the delegator has to delegate three times via Iso, hiding a single
point in the first and in the second case, and µ = #H points in the third. Com-
puting AK and K̂AK costs another two point additions. In the OMTUP case,
the first two cases require t ≥ λ/N , while the third one doesn’t (see discussion

above), and we can choose N = 1. Note that we assume the order of all torsion
groups to be approximately τA. We then find the totals

THBC
IsoDet(µ, τA) = 2Thbc(1, τA) + Thbc(µ, τA) + 2A = (µ+ 2)S(τA) + 2A ,

TOMTUP
IsoDet (µ, t) = 2TOMTUP(1, λ/N) + TOMTUP(µ, t) + 2A

= (8N + 6 + 5µ)m+

(
4λ

N
+ 2tµ

)
M +

(
2N+2 − 2N − 3 + µ

)
A ,

and the associated cost reductions

αHBC
IsoDet(µ, τA) =

THBC
IsoDet(µ, τA)

I(τA, µ0 + µ)
, αOMTUP

IsoDet (µ, t) =
TOMTUP
IsoDet (µ, t)

I(τA, µ0 + µ)
.

Assuming small µ0, µ and limiting t ≤ λ, we find the following behaviors.

αHBC
IsoDet(τ) = O

(
1

log log τ

)
, αOMTUP

IsoDet (τ) = O

(
λ

log τ log log τ

)
.

Security. Security of the individual steps is given by the security of the Iso
algorithm. The only thing T has to pay close attention to, is whatever it transfers
from one delegation to the next. We have shown in Section 4.2, that for the
kernel generators, security is guaranteed for the appropriate choices of t and N ,
i.e. if tN ≥ λ, where λ is the security parameter reflecting the security of the
underlying cryptosystem, then we can regard the adversarial unprotected inputs
(the kernel generators of rounds 2 and 3) as honest unprotected inputs, up to
negligible probability. The extra data that the server sets learn (i.e. excluding
the standard data in Iso) are the following:

– U1: k, k̂, EK , EAK and the generators PI , QI , PA, QAP
K
I , Q

K
I , P

K
A , Q

K
A ,

– U2: AK , EK , EAK and the generators PKI , Q
K
I , P

AK
I , QAKI .

With the information accessible to it, U1 only knows the two horizontal isogenies
from Figure 3. In the first round, A is hidden by the security of Iso, i.e. if U1 were
able to extract A, then it could be used as a subroutine to break Iso. Similarly,
if after the third round, U1 were able to extract A from (EK , EAK), then we
could trivially use it as a subroutine to break CSSI (Problem 1). Concerning
U2, if it were able to extract [A] from AK , then we could use it as a subroutine
to break DPP (Problem 3). Note that we have to pay attention not to give
PKA , Q

K
A to U2 in the second round, otherwise it could recover a from AK using

the attack described in Section 4.1. If U2 knew PA, QA and were able to compute
[PKA], [QKA], then U2 could also be used as a subroutine to break DPP.

Concerning the mapped points in H, the secret and protected parameters are
only given to the servers in the third round. Since the torsion group generators
on EAK are fully verified in the HBC and OMTUP assumptions, the security of
this round reduces to the security of Iso with respect to H.

4.3 Hiding the codomain curve

Note that in some cryptographic protocols, the codomain (e.g. EA) needs to be
hidden as well. As noted in [37], the delegator needs to compute the final part
of the isogeny to EA itself, otherwise there seems to be no efficient way to hide
its result from the servers. Furthermore, the size of this final isogeny would need
to be at least τ ′ ≈ τ2/3 in order to yield security against a database search for
EA [37]. In this way, we can at most have a cost reduction of I(τ2/3, n)/I(τ, n),
which is at least 0.6 for typically used τ .

Since the approach to HIso of [37] was broken in Section 4.1, an alternative
approach using the tools developed throughout this work would need a diagram
as depicted in Figure 5, i.e. a detour via four elliptic curves using two server sets
to get EA, where T computes the last isogeny.

E EK ERK

EA EAK EARK

κ

U2

α

ρ

U1

α′U2

κ̂′
T

ρ̂′
U1

Fig. 5. An approach to hiding the codomain curve EA via the path E → EK →
ERK → EARK → EAK → EA. The server groups to delegate to are also indicated in
the figure. The final isogeny, κ̂′ is computed by the delegator itself.

Unfortunately, with the cost of the delegation schemes themselves we get
α > 85%. With four rounds of delegation, this approach seems unsuitable for
realistic scenarios. In protocols that need a hidden codomain, we therefore as-
sume that the delegator will need to compute them locally, for lack of a better
alternative.

5 Delegation of isogeny-based protocols

In this section, we show how to apply the delegation subroutines to some of
the cryptographic protocols based on supersingular isogenies over Fp2 . In or-
der to assess the computational and communication costs, we will use the 2e2-
torsion groups of the standardized SIKE primes from [31].5 Under the OMTUP-
assumption, we choose the parameters tN = e2/2, which reflects the classical
security of the underlying protocols. The optimal value for N is then 4 for all of
these primes except for p751, where N = 5 gives slightly less than a 5% when
gain compared to N = 4. However, this comes at the cost of a higher com-
munication, so that we will use the more realistic N = 4 throughout our cost
assessment in this section.
5 p434 = 22163137 − 1, p503 = 22503159 − 1, p610 = 23053192 − 1, p751 = 23723239 − 1.

To maximize efficiency, we implement the HBC case on Montgomery curves
on the Kummer line. Following Remark 1, we need a group structure to im-
plement point hiding under the OMTUP-assumption, hence we will use twisted
Edwards curves in this case. While most optimized approaches in isogeny-based
cryptography over Fp2 use Montgomery curves, we can easily use the transfor-
mations discussed in Section 2.2 and translate the results on twisted Edwards
curves to Montgomery curves at negligible cost, allowing seamless integration
of our delegation schemes into Montgomery-curve based protocols. We assume
the non-delegated cases to always be performed in optimized Montgomery arith-
metic.

In the following subsections, we will compare the delegated runtimes to the
local (non-delegated) runtimes of some cryptographic protocols. We express our
results in terms of the cost reduction function α introduced in Definition 4. To
reduce communication costs we assume that servers scale points to Z = 1 and
return them as X on Montgomery curves or (X : Y) on twisted Edwards curves.
In the latter case, the delegator can then easily regain T by multiplying X and
Y . This increases the cost established in Section 3.2 by (µ0 + µ2(N + 1))m.

We present our results using the theoretical runtimes established throughout
this work and compare them to benchmarks illustrating the runtimes of the
delegator under both the HBC- and OMTUP-assumptions. The benchmarks
were implemented using Magma v2.25-6 on an Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz with 128 GB memory. Our implementation uses parts of the
Microsoft(R) vOW4SIKE implementation from [19].6

For the sake of conciseness, we assume that the protocols throughout this
section are known. While we briefly review the protocol steps in order to assess
the local computation cost, we refer the reader to the original sources for more
details.

Remark 2 (Free Delegation). Note, that we can freely delegate any protocol that
does not need hiding, i.e. where the kernel is unprotected and µ = 0. Verification
under the OMTUP-assumption reduces then to simple comparison operations
and so we find a complexity of O(1) for any such protocol. Some examples of
such schemes are isogeny-based hash functions [12,25] with unprotected messages
or verifiable delay functions [24].

5.1 Key-agreement protocols

We consider the key agreement protocols from [3,26], which are n-party exten-
sions to SIDH [30]. In this scenario, the public parameters are the starting curve
E defined over Fp2 , where p + 1 =

∏n
i=1 `

ei
i for n parties with different indices

i = 1, . . . , n, as well as kernel generators for the subgroup of each party, i.e.
〈Pi, Qi〉 = E[`eii]. The secret key of each party i is a value ai ∈ Z`eii , defining

Ai = Pi + aiQi as the kernel of φi : E → Ei = E/〈Ai〉, while the corresponding

6 https://github.com/microsoft/vOW4SIKE

https://github.com/microsoft/vOW4SIKE

public key contains the codomain as well as the maps of all other torsion group
generators, i.e. for party i,

(Ei, P
i
1, Q

i
1, . . . , P

i
n, Q

i
n) .

Public key generation step. We first show how Alice would delegate the com-
putation of her public key. Following the concept of Section 4 and the discussion
from Section 4.2, we know that she could not map Bob’s kernel generators via
a hidden kernel delegation along the `eBB -torsion path. In the case n > 2, she
can however do this via the `eCC -torsion shrouding path. Similarly, she can map
the E[`eCC]-torsion group generators along the `eBB -torsion shrouding path. We
obtain the commutative diagram in Figure 6.

EL E EK

EAL EA EAK

U2

U2U1

U1

U1 U2

Fig. 6. Alice’s concept of delegating the computation of her public key via two detours
using two server groups U1 and U2.

More generally, let I1 6= I2 be coprime torsion group indices and let Alice’s
group index be 1. Then Alice can delegate the computation of her public key
using IsoDetour twice, i.e. once for each path.

(EA1
;NA1

1 , ∅)← IsoDetour(E,A1, I1;N1, ∅),
(EA1

;NA1
2 , ∅)← IsoDetour(E,A1, I2;N2, ∅),

where N1∪N2 = {(Pi, Qi)}i∈{2,...,n}, the set of all other torsion group generators
on E, such that N1 ∩N2 = ∅ and (PI1 , QI1) ∈ N2 and (PI2 , QI2) ∈ N1.

As indicated in Section 4.2, we need twice the amount of servers for an
instance of IsoDetour as we would need for Iso. By using two parallel instances of
IsoDetour with alternating server groups U1 and U2 as also indicated in Figure
6, we still only need two groups and three rounds.

Extending the concept of delegation-friendly primes to n players (i.e. there
is at least one smooth torsion group τS |p − 1 with τS ≈ `eAA), the public-key
computation step can be delegated using a single instance of IsoDetour. Let in
this case S label the smooth torsion group on the twist of the initial curve. Alice
can then delegate the public key computation step via

(EA1
;NA1 , ∅)← IsoDetour(E,A1, S;N , ∅) ,

where N = {(Pi, Qi)}i∈{2,...,n}.

Let d ∈ {0, 1} distinguish, if we have a delegation-friendly prime (d = 1) or
not (d = 0) at our disposal. The cost reduction for public-key delegation can
then be expressed as

αPubKey,n(d, τA) =
(2− d)TIsoDet(0, τA)

I(τA, 3n) + S(τA) +A

In Figure 7 we depict and compare our theoretical estimate of the public-key
computation with the benchmarked results for the special case n = 2, which
is used in most standard cryptographic protocols. Note that in this case, a
delegation-friendly prime is necessary. The figure shows that the gain for the
delegator increases with the security level. It further shows that our theoret-
ical predictions slightly underestimate the cost reduction via delegation. This
discrepancy is mainly due to the computational overhead of local isogeny com-
putations. The overhead becomes less important for higher degree isogenies, since
the cost of isogeny computation itself increases.

p434 p502 p610 p751
0

2

4

6

8

10

12

14

16

18

20

22

24

Co
st

 re
du

ct
io

n
fu

nc
tio

n
(%

)

Public-key computation (n=2) HBC - theoretical
HBC - benchmark
OMTUP - theoretical
OMTUP - benchmark

Fig. 7. Theoretical and benchmarked cost reduction function for delegating public-key
computations of 2-party protocols in the HBC and OMTUP assumptions

The communication cost is given by the inputs and outputs within the three
rounds of IsoDetour. We assume that the initial E and its torsion group gener-
ators are known by the servers. We note that the kernel generators in Figure 4
are computed locally and we thus have Z 6= 1, which increases the upload cost.
The results are summarized in Table 1.

Table 1. Upload and Download costs (per server) of delegating public-key computation
of 2-party protocols in the HBC and OMTUP assumptions. The results are given in
kilobytes.

p434 p503 p610 p751
HBC OMT HBC OMT HBC OMT HBC OMT

Upload 1.30 2.83 1.50 3.28 1.82 3.98 2.25 4.90
Download 1.59 4.44 1.84 5.15 2.23 6.25 2.75 7.70

Key agreement steps. After computing her public-key, Alice still has to per-
form two types of steps in a n-party key agreement protocol.

Intermediate steps. In the case n > 2, after computing her public key, Alice
has to perform n − 2 intermediate steps. We label these with the index k =
2, . . . , n − 1 (k = 1 corresponding to the public-key generation step). At step
k, Alice has to compute (Ek′ ,N k′) from (Ek,N k ∪ {(P kA, QkA)}) and her secret
a1, where Ek′ = Ek/〈P kA + a1Q

k
A〉 and where N k = {(P ki , Qki)}i∈{k+1,...,n} and

N k′ = {(P k′i , Qk
′

i)}i∈{k+1,...,n}. Alice could delegate computations of this type

using IsoDetour. However, in this scenario, it is actually cheaper to compute Ak1
locally, then delegate the isogeny using Iso

(Ek′ ;N k′ , ∅)← Iso(Ek, A
k
1 ;N k, ∅) .

Note that Ak1 does not reveal any information about A1 because of the difficulty
of solving the Decisional Point Preimage Problem 3.

Final step. Alice’s final step is the computation of the shared secret. As discussed
in Section 4.3, this step needs to be computed locally. It involves the computation
of the kernel generator and then of the final isogeny.

Cost. We establish the total cost of an n-party key agreement protocol. Let
d ∈ {0, 1} again distinguish if we have a delegation-friendly prime (d = 1) or not
(d = 0) at our disposal. The public-key is computed using 2 − d invocations of
IsoDetour with µ = 0. The n − 2 intermediate computations can then each be
delegated using Iso with µ = 0. The final step is then be computed locally at the
cost of S(τA) +A+ I(τA, 0). Since after the public-key computation, Alice does
not need to hide any points in either of the steps, she can simply perform all
of these computations on Montgomery curves, reducing her computational and
communication cost. We find the total cost of

TnPDH(d, τA) = (2− d)TIsoDet(0) + (n− 1)(S(τA) +A) + I(τA, 0) ,

under both the HBC and OMTUP assumptions.7 In the local version of the
protocol, Alice has to transport 2(n − k) points in round k, and compute the

7 TIsoDet(0) denotes a placeholder for the either THBC
IsoDet(µ = 0, τA) or TOMTUP

IsoDet (µ = 0, t)
of Section 4.2 depending on the underlying assumption.

map of A given her generators on each curve except the first, so that the total
local cost of this protocol becomes

(n− 1)(S(`eAA) +A) +

n∑
k=1

I(τA, 2(n− k)) = (n− 1)(S(`eAA) +A) + nI(τA, n− 1).

We find

αnPDH(d, τA) =
(2− d)TIsoDetour(0) + (n− 1)(S(τA) +A) + I(τA, 0)

nI(τA, n− 1) + (n− 1)(S(τA) +A)
.

We compare our theoretical estimates and benchmarks for 2-party SIDH
(where d = 1) in Figure 8. Figure 9 further shows the evolution of the cost
reduction for p434 in terms of n, the number of parties in the key-agreement,
for both the cases with and without delegation-friendly primes.

p434 p502 p610 p751
0

5

10

15

20

25

30

35

40

45

50

55

60

Co
st

 re
du

ct
io

n
fu

nc
tio

n
(%

)

2-party SIDH HBC - theoretical
HBC - benchmark
OMTUP - theoretical
OMTUP - benchmark

Fig. 8. Theoretical and benchmarked cost reduction function for delegating SIDH in
the HBC and OMTUP assumptions

Concerning the communication costs, we also distinguish the case with and
without delegation-friendly primes in Table 2 for different n. In the intermediate
steps, Alice has to transport 2(n− k) unprotected points. Since the final step is
computed locally, no communication costs apply.

Remark 3. Note that the computational and communication cost established
throughout this section also apply to the delegation of isogeny-based public-key
encryption [30] and key encapsulation [39] as the steps of these protocols are the
same (up to some negligible computations) as (2-party) SIDH.

2 3 4 5 6 7 8 9
Number of parties n

0
5

10
15
20
25
30
35
40
45
50
55
60

Co
st
 re

du
ct
io
n
fu
nc
tio

n
(%

)

HBC (with DFP)
OMTUP (with DFP)
HBC (no DFP)
OMTUP (no DFP)

n-party SIDH

Fig. 9. Theoretical evolution of the cost reduction function for p434 with the number of
parties in the n-party key-agreement protocol in the HBC and OMTUP assumptions.
We distinguish the cases with and without a delegation-friendly prime

Table 2. Upload and Download costs (per server) of delegating the n-party key agree-
ment protocols in the HBC and OMTUP assumptions. We distinguish the cases with
and without a delegation-friendly prime. The results are given in kilobytes. Note that
the communication costs for n = 2 (with DFP) are the same as the costs in Table 1.

no DFP DFP
p434 p751 p434 p751

HBC OMT HBC OMT HBC OMT HBC OMT

n = 3
Upload 3.95 7.68 6.84 13.32 2.24 4.11 3.88 7.12

Download 4.76 11.74 8.25 20.35 2.54 6.03 4.40 10.45

n = 5
Upload 7.32 12.61 12.68 21.85 4.77 7.41 8.27 12.85

Download 8.57 18.08 14.85 31.34 5.08 9.83 8.80 17.05

5.2 Identification protocols and signatures

In this section, we establish the costs of identification protocols and signature
schemes. We assume the public key (EA, P

A
B , Q

A
B) to be precomputed as it is

directly related to the identity of the prover.

Zero-knowledge proof of identity. We show how the ZKPI-protocol from [30]
can be delegated. In every round of the protocol, the prover needs to compute
the isogenies β : E → EB , β′ : EA → EAB and the map AB of the prover’s
secret. This can be done by delegating

(EB ; ∅, AB)← Iso(E, {PB , (b,QB)}; ∅, A) ,

(EAB ; ∅, ∅)← Iso(EA, {PAB , (b,QAB)}; ∅, ∅) .

Depending on the challenge, the response is either b or AB for c = 0, 1, respec-
tively. If c = 0, the verifier delegates

(EB ; ∅, ∅)← Iso(E; {PB , (b,QB)}; ∅, ∅)
(EAB ; ∅, ∅)← Iso(EA; {PAB , (b,QAB)}, ∅, ∅) ,

otherwise (EAB ; ∅, ∅)← Iso(EB , A
B ; ∅, ∅).

Signature schemes. We can easily extend the identification scheme to the sig-
nature schemes presented in [27]. Similarly, the delegation procedure of signa-
ture schemes is analogous to the identification schemes with the small difference
that the delegator still needs to compute hash-functions. We assume that these
hash functions are computed locally (or that they can be delegated with other
schemes) and that their cost is negligible compared to the isogeny computations.
For each of the commitments, the prover and/or verifier proceed exactly as in
the identification protocol.

Cost. Following the discussion from Section 3.2, since AB might be used as an
unprotected input by the verifier, we have to choose tN ≥ λ, so the cost for
the prover becomes TOMTUP(1, N/λ) in the OMTUP assumption. In the HBC
assumption, we find THBC(1). For both cases, we get the cost reduction functions

αZKPI.P(τB) =
T (1)

2(S(τB) +A) + I(τB , 1) + I(τB , 0)
, αZKPI.V = O(1)

Figure 10 shows theoretical estimates and benchmarked results for ZKPI-
delegation by the prover. The theoretical predictions again underestimate the
cost reduction via delegation, due to the overhead in isogeny computations. The
discrepancy is higher this time higher than in Figure 7 due to the much lower
cost for the delegator. Again, the gain increases with higher security.

For the communication cost, we assume that the starting curve E and the as-
sociated generators are known by the servers. In the case of the prover, we further
assume that its public key EA and associated generators are also known to the
servers. We also assume that the ephemeral parameter b has to be transmitted
only once to the servers. Since the OMTUP case reduces to simple comparison
operations for the verifier, these can also be done on Montgomery curves, sav-
ing some of the communication. The associated upload and download costs are
summarized in Table 3.

p434 p502 p610 p751
0

1

2

3

4

5

6

7

8

9

10

11

12

Co
st

 re
du

ct
io

n
fu

nc
tio

n
(%

)

Zero-knowledge Proof of identity (Prover) HBC - theoretical
HBC - benchmark
OMTUP - theoretical
OMTUP - benchmark

Fig. 10. Theoretical and benchmarked cost reduction function of the prover delegating
zero-knowledge proofs of identity in the HBC and OMTUP assumptions

Table 3. Upload and Download costs (per server) of delegating the zero-knowledge
proof of identity in the HBC and OMTUP assumptions, as well as for the verifier.
The results are given in bytes. The cost for the verifier is averaged over both challenge
scenarios.

p434 p751
HBC OMTUP Ver. HBC OMTUP Ver.

Upload 54 189 298 94 328 516
Download 433 1516 162 751 2628 282

6 Conclusion and future work

In this work, we presented two outsource-secure delegation schemes, Iso and
IsoDetour under the one honest-but-curious (HBC) and one-malicious version
of a two untrusted program (OMTUP) models of [29]. The first algorithm, Iso,
allows the delegation of isogeny computations, while mapping along points hid-
den from the auxiliary servers. The second algorithm, IsoDetour uses Iso as a
subroutine and allows to delegate the computation of an isogeny, while keeping
the kernel hidden from the auxiliary servers.

We introduced the concept of delegation-friendly primes (DFP), which allow
the implementation of IsoDetour in the 2-party key exchange case. For n > 2,
this is not necessary, but increases efficiency of the delegation protocol. It is left
open, if there is a more efficient way to find DFPs than the methods introduced
in [16], or, more generally, if there is a way around using DFPs in the 2-party
case.

Our delegation algorithms can be used as a toolbox to delegate common
isogeny-based cryptographic protocols in a secure and verifiable manner. We
showed how to apply Iso and IsoDetour to several isogeny-based cryptographic
schemes. Our approach reduces the cost of the zero-knowledge proof of identity
from [30] as well as the related signature schemes from [27] to about 7% of
the original cost in the HBC case and 4% in the OMTUP case. While the cost
of n-party key-exchange delegation strongly decreases with increasing n, the
case n = 2 only reaches a reduction to about 55% of the original cost. It is
of substantial interest to further reduce this number in order to make e.g. the
standardization candidate SIKE efficiently delegatable. While we were able to
reduce the public-key generation step in the SIDH setting to about 20% and 11%
of the original cost in the HBC and OMTUP cases, respectively, the main open
question in these protocols remains how to efficiently delegate the computation
of an isogeny where both the kernel and codomain curve are hidden from the
servers. We leave it open to apply the proposed delegation algorithms to other
interesting isogeny-based schemes over Fp2 . We further note that any protocol
that does not need hiding of data is virtually free to delegate. Examples include
hashing functions with unprotected messages [12,25] and the verifiable delay
function proposed in [24].

We generally find, that while HBC has a much cheaper communication cost
and is fully verifiable, our OMTUP implementations result in lower computa-
tional cost for the delegator. Further, in all the schemes of Section 5, OMTUP
has a very high verifiability, close to 1. It would be interesting to see, if other
server assumptions are possible in the isogeny framework, especially using only
malicious servers, such as the two-untrusted program (TUP) or one-untrusted
program (OUP) models introduced in [29].

For future work, it is also of interest to construct delegation algorithms for
other isogeny-based schemes, such as CSIDH [11] and CSI-FiSh [8] over Fp, or
the endomorphism ring based signature protocol of [27] as well as SQI-Sign [23].

References

1. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the second round
of the NIST post-quantum cryptography standardization process. NISTIR 8309,
07/2020 2020.

2. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, et al. Su-
persingular isogeny key encapsulation. Submission to the NIST Post-Quantum
Standardization project, 2017.

3. Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. Practical
supersingular isogeny group key agreement. IACR Cryptol. ePrint Arch., 2019:330,
2019.

4. Reza Azarderakhsh, Elena Bakos Lang, David Jao, and Brian Koziel. Edsidh:
Supersingular isogeny Diffie-Hellman key exchange on Edwards curves. In Inter-

national Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 125–141. Springer, 2018.

5. Daniel Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. arXiv preprint arXiv:2003.10118,
2020.

6. Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards curves. In International Conference on Cryptology in Africa,
pages 389–405. Springer, 2008.

7. DJ Bernstein and T Lange. Explicit-formulas database. https: // www.

hyperelliptic. org/ EFD , 2019.
8. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: efficient

isogeny based signatures through class group computations. In International Con-
ference on the Theory and Application of Cryptology and Information Security,
pages 227–247. Springer, 2019.

9. Cyril Bouvier and Laurent Imbert. An alternative approach for SIDH arithmetic.
IACR Cryptol. ePrint Arch., 2020, 2020.

10. Wouter Castryck, Steven D Galbraith, and Reza Rezaeian Farashahi. Efficient
arithmetic on elliptic curves using a mixed Edwards-Montgomery representation.
IACR Cryptol. ePrint Arch., 2008:218, 2008.

11. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 395–427. Springer, 2018.

12. Denis X Charles, Kristin E Lauter, and Eyal Z Goren. Cryptographic hash func-
tions from expander graphs. Journal of Cryptology, 22(1):93–113, 2009.

13. Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou. New algo-
rithms for secure outsourcing of modular exponentiations. IEEE Transactions on
Parallel and Distributed Systems, 25(9):2386–2396, 2014.

14. Céline Chevalier, Fabien Laguillaumie, and Damien Vergnaud. Privately outsourc-
ing exponentiation to a single server: cryptanalysis and optimal constructions. In
European Symposium on Research in Computer Security, pages 261–278. Springer,
2016.

15. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29,
2014.

16. Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted tor-
sion. IACR Cryptol. ePrint Arch., 2019:1145, 2019.

17. Craig Costello and Huseyin Hisil. A simple and compact algorithm for SIDH
with arbitrary degree isogenies. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 303–329. Springer, 2017.

18. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny Diffie-Hellman. In Annual International Cryptology Conference,
pages 572–601. Springer, 2016.

19. Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Vir-
dia. Improved classical cryptanalysis of the computational supersingular isogeny
problem. IACR Cryptol. ePrint Arch., 2019:298, 2019.

20. Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic: The
case of large characteristic fields. IACR Cryptology ePrint Archive, 2017:212, 2017.

21. Jean-marc Couveignes. Hard homogeneous spaces, 2006.
https://eprint.iacr.org/2006/291.pdf.

https://www.hyperelliptic.org/EFD
https://www.hyperelliptic.org/EFD

22. Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062, 2017.

23. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: compact post-quantum signatures from quaternions and
isogenies. In International Conference on the Theory and Application of Cryptol-
ogy and Information Security, pages 64–93. Springer, 2020.

24. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 248–
277. Springer, 2019.

25. Javad Doliskani, Geovandro CCF Pereira, and Paulo SLM Barreto. Faster cryp-
tographic hash function from supersingular isogeny graphs. IACR Cryptol. ePrint
Arch., 2017:1202, 2017.

26. Satoshi Furukawa, Noboru Kunihiro, and Katsuyuki Takashima. Multi-party key
exchange protocols from supersingular isogenies. In 2018 International Symposium
on Information Theory and Its Applications (ISITA), pages 208–212. IEEE, 2018.

27. Steven D Galbraith, Christophe Petit, and Javier Silva. Identification protocols and
signature schemes based on supersingular isogeny problems. Journal of Cryptology,
33(1):130–175, 2020.

28. Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
Edwards curves revisited. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 326–343. Springer, 2008.

29. Susan Hohenberger and Anna Lysyanskaya. How to securely outsource crypto-
graphic computations. In Theory of Cryptography Conference, pages 264–282.
Springer, 2005.

30. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

31. Samuel Jaques and John M Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In Annual International Cryptology Conference,
pages 32–61. Springer, 2019.

32. Mehmet Sabır Kiraz and Osmanbey Uzunkol. Efficient and verifiable algorithms
for secure outsourcing of cryptographic computations. International Journal of
Information Security, 15(5):519–537, 2016.

33. Michael Meyer, Steffen Reith, and Fabio Campos. On hybrid SIDH schemes us-
ing Edwards and Montgomery curve arithmetic. IACR Cryptol. ePrint Arch.,
2017:1213, 2017.

34. Peter L Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of computation, 48(177):243–264, 1987.

35. NIST. NIST reveals 26 algorithms advancing to the post-quantum crypto ’semi-
finals’, 2019. https://www.nist.gov/news-events/news/2019/01/nist-reveals-26-
algorithms-advancing-post-quantum-crypto-semifinals.

36. NIST. NIST post-quantum cryptography PQC, 2020.
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

37. Robi Pedersen and Osmanbey Uzunkol. Secure delegation of isogeny computa-
tions and cryptographic applications. In Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop, pages 29–42, 2019.

38. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994.

39. SIKE. Supersingular Isogeny Key Encapsulation, 2018. https://sike.org.
40. Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer Science

& Business Media, 2009.
41. Martin Lysoe Sommerseth and Haakon Hoeiland. Pohlig-Hellman applied in elliptic

curve cryptography. 2015.
42. Anton Stolbunov. Constructing public-key cryptographic schemes based on class

group action on a set of isogenous elliptic curves. Adv. in Math. of Comm.,
4(2):215–235, 2010.

43. Andrew V Sutherland. Identifying supersingular elliptic curves. LMS Journal of
Computation and Mathematics, 15:317–325, 2012.

44. Osmanbey Uzunkol, Jothi Rangasamy, and Lakshmi Kuppusamy. Hide the mod-
ulus: a secure non-interactive fully verifiable delegation scheme for modular expo-
nentiations via CRT. In International Conference on Information Security, pages
250–267. Springer, 2018.

45. William C Waterhouse. Abelian varieties over finite fields. In Annales scientifiques
de l’École Normale Supérieure, volume 2, pages 521–560, 1969.

46. Nolan Winkler. The discrete log problem and elliptic curve cryptography.

A Delegation-friendly primes

Let τA = 2e2 and τB = 3e3 as in the SIDH setting. In order to find delegation-
friendly primes (Definition 7) in this setting, we used the approach presented in
[16], which uses the extended Euclidean algorithm. We first choose a ← 2e23e3

and b ←
∏n
i `

ei
i ≈

√
a coprime to a, where the `i are small primes bound by a

fixed n. We then search for s, t ∈ Z, such that sa + tb = 1 with |s| small, and
where |sa− tb| = p is prime (for more details, cf. [16]). If this is the case, then

p+ 1 = 2|s|a = 2e2+13e3 |s| , and

p− 1 = 2|t|b = 2|t|
∏
i

`eii ,

and we can set τA = 2e2+1, τB = 3e3 and τS =
∏
i `
ei
i

An example prime we found using this method, and representing the NIST-1
security level is the following:

p = 0x48126f2641dabaf550b925fcc833262eb7c974c962aad6bf6565db634622

56b3468e522f111e85e2c416a82c0c5739c81af4c650000000000000000000

000000000000000000000000000000000001

which has τA = 2220, τB = 3147 and s ≈ 2177, and

τS = 17 · 29 · 41 · 47 · 53 · 59 · 61 · 67 · 79 · 1033 · 109 · 113 · 139 · 1572 · 163 · 1992

· 2292 · 2572 · 311 · 331 · 359 · 401 · 457 · 467 .

Remark 4. We would like to point out the differences to the special primes intro-
duced in [16] and also used in [23]. While conceptually related, these primes are

defined as having two smooth torsion groups, one on each “side” of the twists,
i.e. there exist smooth τA, τS , such that τA | p ± 1 and τS | p ∓ 1. Delegation-
friendly primes on the other hand require two smooth torsion groups τA, τB on
the “frontside” and at least one smooth torsion group τS on the “backside”.

	Delegating Supersingular Isogenies over Fp2 with Cryptographic Applications

