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Abstract

Haber and Pinkas [12] discussed the principle of when it is secure to reuse key material
between public-key cryptosystems. They showed that this can be secure for multiple com-
binations of systems, including Schnorr signatures. Degabriele, Lehmann, Paterson, Smart
and Strefler [10] proved the security of sharing a key pair between a generic elliptic curve
Schnorr signature scheme and an elliptic curve Diffie-Hellman based KEM in the random or-
acle model (ROM). They essentially ran the original security proofs in parallel by leveraging
domain separation for the random oracle (RO) usage between the signature scheme and the
specific KDF of the KEM. We make two contributions. First, we extend the result in [10] by
proving the joint security in the ROM of an X25519 based KEM with an HKDF-Extract-like
KDF construction and Ed25519. Second, we make no assumptions about domain separation
of RO usage between the two systems while making minimal assumptions about the format
of the RO usage in Ed25519. Our result is applicable to Ed448 and a corresponding KEM
based on X448 as well.

1 Introduction

Haber and Pinkas [12] discuss the principle of when it is secure to share a key pair between two
public-key cryptosystems. They point out that not sharing key material between two systems
should always be the default choice, and sharing key material should only be considered if there
is a proof that doing so is secure. They go on to discuss that for example differences in life
cycle management may make sharing key material between different types of systems impossible or
unsuitable. However, they also discuss how there may be suitable real-world use cases where sharing
key material makes sense. Part of our motivation here is ongoing work in an IETF draft ietf-core-
oscore-groupcomm [21] where an endpoint, in one mode of operation, needs to sign its messages
delivered to a group of endpoints using e.g. Ed25519 and, in another pairwise mode of operation,
authenticate messages exchanged between itself and another endpoint efficiently using e.g. keys
derived from a X25519 shared secret. All endpoints already have access to each others Ed25519
public keys and it is suitable to reuse those for the pairwise authentication. This results in savings
in key distribution and storage, which may be especially beneficial in constrained applications.
Furthermore, in some constrained IoT scenarios where using two keys is not possible to begin with,
reusing a single key enables replacing signatures with MAC tags (e.g. as in the pairwise mode
of operation described above), which reduces overhead, or prevents applications from resorting to
relying on symmetric keys and weaker security models.

Degabriele, Lehmann, Paterson, Smart and Strefler [10] proved the joint security – that is, that
the key pair can be shared – of a generic elliptic curve Schnorr signature scheme and an elliptic
curve Diffie-Hellman based KEM in the random oracle model (ROM). They essentially ran the
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original proofs in parallel by leveraging domain separation for the RO usage between the signature
scheme and the specific KDF of the KEM. There are a few reasons for us to extend this work here.
While it may be clear to some that this result carries over to the setting of X25519 and Ed25519,
sharing key material is – for good reasons – such a delicate matter that an explicit reference for this
important case is warranted. Another reason for this work is that applications may rather want to
use the common HKDF-Extract (that is, a salted HMAC) as KDF than the KDF specified in [10].
For applications that may support a range of hash functions, and maybe not want to lock in on a
specific one of the Ed25519 variants in for example RFC 8032 [13] it can be tedious to assert that
the multiple underlying hash function invocations in, say, HKDF are separable from those of any
relevant Ed25519 variant – if the systems happen to use the same hash function in a configuration.
Our result here also complement that in [10] in the generic group model for joint security of an
ECDH based KEM and ECDSA, which does not require domain separation for the hash function
usage. Finally, our result is also of independent theoretical interest because it shows that joint
security in the ROM for these two systems is not necessarily dependent on domain separation for
the random oracle (RO) usage.

At a glance, a fairly recent work by Patton and Shrimpton [18] appears to not be relevant
to our aim here. They discuss and prove results for a framework for general key reuse through
context-separable interfaces while our work here aims to provide key reuse between two concrete
cryptosystems without leveraging any context separation. However, their [18, Theorem 6] says that
any of the EdDSA variants of RFC 8032 [13] – including those that do not use context – can be
composed with an interface I for a (in their terminology) simple group G, without hurting security
of I’s intended application. This is similar to our Theorem 1 (though our result is restricted to a
specific KEM). However, their simple groups are by definition cyclic and implicitly enforce point
validation. Our KEM operates on X25519 public keys rather than a (single) group.

Following the definitions in [10], to show joint security we need to show the security of the KEM
in the presence of a signing oracle and the security of the signature scheme in the presence of a
decapsulation oracle.

At the core of showing our KEM secure in the presence of a signing oracle – without relying on
domain separation – is the observation that the unpredictability the commitment in a signature,
which in the case of Schnorr signatures is added when hashing the message, means that we will
not have any collisions with inputs that have been hashed as up until that point in the KDF of
the KEM. This observation is the same as that used in proofs of security for Schnorr signatures to
argue that the RO can be redefined at suitable inputs while keeping the RO consistent in the view
of the adversary, see e.g. [19, Lemma 4]. If formatting allows and the adversary wishes so, it can
potentially later send crafted decapsulation queries so that an RO input previously used in signing
also appears somewhere in the RO invocations of the KEM’s KDF. In our security proofs, we just
need to make sure that our (simulation of the) decapsulation oracle is consistent with regard to the
information about the RO that has leaked through the signing oracle. See Theorem 1 for details.

To show that Ed25519 is secure in the presence of a decapsulation oracle for our KEM we tap
into recent work by Brendel, Cremers, Jackson and Zhao [7] which, among other things, adapts
a generic Schnorr signature security proof to the specific setting of Ed25519. In [7, Theorem 3]
a reduction algorithm B leverages an adversary A against the EUF-CMA security of Ed25519 to
impersonate the prover in a related identification protocol. To do this, B needs to guess the index
of an RO query which is relevant to a forged signature output by A in the EUF-CMA game. In our
setting we want to make minimal assumptions about the format of the hash input used in signature
verification, so we also need to account for the fact that A could learn the relevant information
through a decapsulation query. In addition to this, we have the consistency issues from above that
we need to deal with. See Theorem 2 for details.
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Theorems 1 and 2 show the joint security of our KEM and Ed25519. Theorems 3 and 4 do the
corrsponding for a corresponding KEM for X448 and Ed448.

1.1 Notation

We write s ←$ S if an element s is chosen uniformly at random in a set S. For a set S, |S| is its
size. We will work with bytestrings rather than e.g. bitstrings and all functions we mention work
on bytestrings. For a bytestring s, |s| is its length in bytes. In the specific case of of the random
oracle H below, we write H(s1, ..., sn) instead of H(s1||...||sn) for readability, where s1||...||sn is the
concatenation of the bytestrings s1, ..., sn. For bytestrings s1, ..., sn, the n-tuple (s1, ..., sn) is the
concatenation s1||...||sn. We sometimes implicitly interpret bytestrings as integers, in those cases
the bytestrings are interpreted as being little-endian encoded integers as in [13, 5.1.2]. We write
s←$ {0, 1, ..., 255}n to indicate that a bytestring of length n is chosen uniformly at random. We let
blocklen be the block length in bytes of the hash function H that instantiates our RO in practice. We
let hashlen be the length in bytes of the output of H. For a byte b, bn is the bytestring consisting of
b repeated n times. We will sometimes refer to an elliptic curve basepoint G, depending on context
this will either be the base point of Ed25519 in [13] or the encoding of the base point of X25519 in
[17]. In the context of Ed25519 we let ` be the order of G. We often let the encoding of points on
edwards25519 (the curve of Ed25519) be handled implicitly for readability.

2 Specification

Suppose that we want to use a single key pair for both Ed25519 and a KEM based on X25519. If
different hash functions are used in the signature scheme and the KEM, then the original standalone
proofs for the respective systems can be run in parallel to prove joint security. The proof in [10,
Theorem 2] already covers this case since that proof assumes domain separation for the hash
function usage between the two systems. It is also clear that our proofs for the specific variants we
deal with here can be adapted to this simpler case. For the rest of this paper we consider the less
trivial case where same hash function H is used for both systems. We model H as an RO in our
security proofs.

Ed25519 was introduced by Bernstein, Duif, Lange, Schwabe and Yang in [6], and standardized
in RFC 8032 [13]. We follow the scheme as defined in [13] and refer there for the full definition.
We highlight the following

• Our result does not cover pre-hashing variants of Ed25519 such as Ed25519ph from RFC
8032 [13] which ”SHOULD NOT be used” according to [13, 8.5]. We are not aware of any
fundamental problems with extending our result to include Ed25519ph or other pre-hashing
variants.

• We avoid depending on the specifics of the hash input for signature verification of a message
m. To have something concrete we will write H(R,X,m) (where R is the commitment and X
is the public key), but our theorems only depend on R being a substring of the hash input.

• Our theorems are valid for (but not necessarily limited to) any of the Ed25519 variants listed
in [7, Table 2], including the Ed25519 variants Ed25519 and Ed25519ctx in RFC 8032 [13].

• In Ed25519, the commitment R = rG for a message m is deterministically generated through
r = H(k′,m), where k′ are the rightmost hashlen/2 bytes of H(k) and k is the root secret
key (that is the ”private key” in [13, 5.1.2]).
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• We write an (honestly generated) Ed25519 signature for a message m as (R, s) with R = rG
and s = r + h · clamp(x) mod `, where R and r are as above, h = H(R,X,m) is as above,
clamp is as defined in Section 3, and x is the private signing key bytestring (which is also
deterministically generated from the root secret key).

X25519 was introduced by Bernstein in [5] and standardized in RFC 7748 [17]. Let a and x be
randomly chosen bytestrings as in [17], and let G be the endoding of the basepoint for X25519 in
[17]. We define the following KEM.

• KeyGen() := (x,X) = (x,X25519(x,G))

• Encap() := (A,Z) = (X25519(a,G),KDFH(A,X25519(a,X))

• Decap(A) := KDFH(A,X25519(x,A))

Note that the encapsulation A can also be produced differently. For example, in ietf-core-oscore-
groupcomm [21], the encapsulation is the sender’s (static) Ed25519 public key. In this case the
recipient translates the public key from edwards25519 to an X25519 public key using the map from
[17]. To avoid potential malleability and preserve IND-CCA security, the original untranslated
encapsulation A should be put into the KDF during decapsulation (and encapsulation).

In the following, salt is a bytestring that is at most blocklen bytes long (it serves the same
purpose as the salt in HKDF [15], see discussion below). The key derivation function is then
defined as (note Item (iii) with a condition on salt)

• KDFH(A,Z) := HMACH(salt, A||Z) = H(z(salt)⊕ out,H(z(salt)⊕ in,A, Z)), where

(i) z(salt) = salt||0x00(blocklen−|salt|)

(ii) in and out are HMAC constants from [14]

(iii) salt is such that
z(salt)⊕ out 6= z(salt′)⊕ in

for any other salt′ used with the same key pair1. Two possible ways that this can be
achieved are by letting salt be

– fixed to a bytestring of blocklen many 0x00 bytes, or

– |salt| ≤ |blocklen| − 1

Note that the second item above says that salt is 1 byte (not bit) shorter than the block
length of the hash function2.

Our KDF is similar to a one-step KDF based on HMAC in NIST SP 800-56C [8], when we take
only hashlen output. Our security proofs depend on

• being able to parse A and Z from the input of the inner hash invocation, and

• that the input to the inner hash invocation of HMAC is distinct for any distinct A 6= A′.

1This simplifies our security proofs by providing domain separation between the inner and outer hash invocations
between invocations with distinct salt.

2Also note that salts longer than blocklen which are first hashed (as in the HMAC specification [14]) are fine,
assuming that hashlen < blocklen− 1.
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Other than that, applications are free to use other formatting or insert other information into the
message field of the HMAC application3. Our KDF also agrees with HKDF-Extract [15] when A is
appended to the typical Input Key Material (IKM) Z. The output from our KDF can be plugged
into a PRF like HKDF-Expand. We note that the computational min-entropy of Z [16, Definition
4] is already conditioned on the public information A. Krawczyk discusses various randomness
extraction results for NMAC and HMAC and keying material of required min-entropy in [16]4,
referencing work by Dodis, Gennaro, H̊astad, Krawczyk and Rabin [11].

How salts are derived or authenticated is not in scope in this paper. To achieve generality
in our security proofs we work in a worst-case scenario where the attacker chooses the salt at all
times (conditioned on the constraint we set on salts in the KDF definition). See for example the
discussion by Krawczyk and Eronen in [15] for a starting point about choosing salts. Salts longer
than blocklen are hashed first in HMAC. We do not treat this explicitly since the attacker is free
to run a salt through the RO before supplying it to us in the security proofs.

It appears to be necessary for us to give a security proof for the KEM from scratch since we
want to argue that there is no harmful interaction between the hash invocations in HMAC and the
hash invocation in the signature scheme. It is otherwise natural to consider the whole KDF as a
single RO, e.g. as in [9, Theorem 9]. For the security proof of our KEM we follow the proof in [9,
Theorem 9] by Cramer and Shoup for their KEM [9, Figure 8] with some tweaks:

• there is some extra bookkeeping due to the key derivation being implemented through iterated
invocations of H, and

• differently from the KEM in [9, Figure 8], we do not perform any public key validation during
decapsulation.

The second difference above is natural because underlying X25519 implementations may skip val-
idating public keys since the curve and public key format was chosen Bernstein in [5] to remain
secure without such validation [4]. As a consequence of this difference we will rely on the Strong
Diffie-Hellman (SDH) assumption described by Abdalla, Bellare and Rogaway in [1, Definition 9],
instead of the Gap-DH assumption as used in [9, Theorem 9]. In both the SDH problem and the
Gap-DH problem the task is to solve the Computational Diffie-Hellman (CDH) problem with the
help of an oracle. That is, to compute xaP when given xP and aP for a known basepoint P .
Our version of the CDH problem will be: Given X25519(x,G) and X25519(a,G), where x and a
are randomly chosen bytestrings as in RFC 7748 [17], compute X25519(x,X25519(a,G)). In the
Gap-DH problem, while solving CDH, we are given access to a Decisional DH (DDH) oracle that
recognizes DH triples (bP, cP, bcP ) for public keys bP , cP , bcP . In the SDH problem applied to
our setting we instead have an oracle Ox that takes X25519 public keys as input and is defined as

Ox(A,Z) := (X25519(x,A) == Z)

where x is one of the private keys from the CDH problem. We assume that we can apply the
oracle to any X25519 public keys, and thus we can check scalar multiplication by x outside the
main prime subgroup used by X25519, and in particular on the twist5. A traditional DDH oracle
does not appear to be sufficient to simulate decapsulations in our security proof since there is no
apparent way to use it to ensure consistency between decapsulation queries on the twist and RO

3For example, if symmetry is desirable, then A⊕X||Z instead of A||Z would agree with our security proofs.
4Note that applications that want to rely on the particular result of [16, Lemma 6] may want to e.g. make sure

that block length of the inner hash invocation after padding (including the salt block) is two blocks.
5Note that this differs from the oracle in [1, Definition 9], which is defined for, by their terminology, represented

groups [1, 2.1].
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queries related to those decapsulation queries. The SDH assumption is that CDH is sufficiently
hard, when given access to Ox. This assumption matches typical static key X25519 usage in the
real-world since Ox can be simulated by an active attacker that interacts through DH with the
holder of a target static X25519 key pair. Checking whether X25519(x,A) = Z, for an attacker
crafted public key A and some guess for the shared secret Z, can typically be done by for example
trying to decrypt some ciphertext that was encrypted by the holder of the target key using a key
derived from the shared secret. Finally, note that our oracle Ox appears to be similar to a decision
oracle DH in a recent work by Alwen, Blanchet, Hauck, Kiltz, Lipp and Riepel [2, Definition 5] in
that Ox(A,Z) = DH(X,A,Z) when their nominal group is curve25519. They do use this oracle in
the security proof for a KEM, but the KDF is modeled as a single RO.

The following lemma will be used implicitly throughout theorems 2 and 3.

Lemma 1. Let q be any fixed bytestring. Let p1 be the probability that an honestly generated X25519
public key equals q. Independently, let p2 be the probability that q equals rG, where

• G, of order `, is the basepoint from Ed25519,

• r ←$ {0, 1, ..., `− 1}, and

• (the scalar multiplication of G by r) rG is encoded using the point to bytestring encoding of
[13].

Then we have p1, p2 ≤ 2−250.

Proof. See [2, Lemma 1] for p1. For p2, the encoded rG determines the scalar r and ` > 2250.

For the rest of the paper we set the variable minentropy := 250.

3 Public key translation and the SDH problem

As stated in Section 2 our SDH problem is: Given X25519(x,G), X25519(a,G) and access to Ox,
where x, a ←$ {0, 1, ..., 255}32, compute X25519(x,X25519(a,G)). To argue about joint security
we need a related public key for Ed25519 on the curve edwards25519 from [17]. Now, X25519(x,G)
is an encoding of the u-coordinate of xG [17], where G is the basepoint on curve25519 and the
arithmetic is on that curve as well. We will retrieve the two candidates for the v-coordinate from
the curve equation and choose one of them uniformly at random. We then change coordinates to
edwards25519 using the map in [17, 4.1]. This change of coordinates preserves addition on the curve
and the basepoint of curve25519 is mapped to the basepoint on edwards255196. Furthermore, the
same clamping (and decoding) of private key bytestrings is used in Ed25519 [13, 5.1.5] and X25519
[17, 5]. If we guessed the correct v-coordinate, the obtained point is thus equal to

clamp(x)G

where G is the basepoint on edwards25519 and clamp is the (decoding and) clamping in [13, 5.1.5].
We define a new SDH problem which is identical to the original one, but where we are additionally
given clamp(x)G on edwards25519. As described above, if we can solve the new SDH problem with
advantage ε, then we can solve the original one with advantage ε/2. We accept this slight loss and
assume below that we are given an SDH problem of the new form.

6The small number of possible values for u for which the mapping is not defined has at most a negligible probability
of occurring by Lemma 1. We omit dealing with them. A more detailed or less elementary analysis might eliminate
the possibility of them occurring completely for our application here.
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4 Security of our KEM in the presence of an Ed25519 signing
oracle

We assume that salts have always already been zero-padded to length blocklen in this section.
Recall the IND-CCA game for a KEM with an adversary A from [9, 7.1.2]:

1. We generate a target key pair (x,X ′) using KeyGen.

2. The adversary A is given the public key X ′ and access to a decapsulation oracle Decap.

3. At some point A requests a challenge encapsulation (and supplies a salt∗ in our setting).
We then generate (K∗, A∗) = Encap(salt∗). After that we sample a secret bit b∗ uniformly
at random. If b∗ = 0, then we update K∗ ←$ {0, 1, ..., 255}hashlen. Either way, we return
(K∗, A∗) to A.

4. The adversary A continues to have oracle access with the restriction it can not query
Decap(A∗, salt∗).

5. The adversary A outputs a bit b and wins if b = b∗.

A KEM is IND-CCA secure if |Pr(A wins)− 1/2| is sufficiently small, for all efficient probabilistic
adversaries A. Following the definition from [10] we need to show that our KEM is IND-CCA
secure even when A is given additional access to a signing oracle that is using the public key
X = clamp(x)G where the arithmetic is on edwards25519 and clamp is as in Section 3.

Theorem 2. Our KEM is IND-CCA secure in the presence of an Ed25519 signing oracle in the
ROM, under the SDH assumption7

Proof. We will follow the proof for [9, Theorem 9] with some changes due to our setting. Let G0

be the original IND-CCA game for the KEM and suppose that A is the adversary in G0. We let
QH, QDecap and QSign be the number of RO queries, decapsulation queries and signing queries,
respectively, that A makes during the game. We will define a series of games Gi similar to those
in [9, Theorem 9]. We also let Ti be the event that b = b∗ and we let Fi be the event that an
abort event introduced in game Gi occurs. We replace the output bit b by a bit chosen uniformly
at random if a game aborts, so in this case A wins with probability 1/2. We assume, without loss
of generality, that all signing queries performed by A are distinct. We let Z∗ := X25519(x,A∗) and
h∗ := H(salt∗ ⊕ in,A∗, Z∗).

We use the following terminology to discuss the state of the random oracle H and A’s view of
it.

• We say that a string q is revealed if A issues an RO query q or if a signature (R, s) for a
message m is issued with q = (R,X,m). We define QReveal as the number of strings that are
revealed during the game. We have

QReveal ≤ QH +QSign

• We say that a string q is evaluated if H is applied to q within the decapsulation oracle, within
the signing oracle, during the generation of the challenge encapsulation, or if q is revealed. We
assume that the oracles and the encapsulation challenge generation follow the specification
in Section 2. We define QEval as the number of strings that are evaluated during the game.
We have

QEval ≤ 2(QDecap + 1) +QH + (2QSign + 1)
7The SDH assumption is in the X25519 setting as in Section 3.
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Let k be the root secret key in Ed25519 (that is the ”private key” in [13, 5.1.2]) in the following.
Now, let G1 be as G0 but where

(i) We abort if

• k is ever evaluated outside of the deterministic commitment generation in Ed25519 [13,
5.1.6 steps 1 and 2], or if

• a bytestring starting with k′ is ever evaluated outside of the deterministic commitment
generation, where k′ are the rightmost hashlen/2 bytes of H(k).

The probability of this occurring during the game is at most

2QEval · 2−4hashlen

(ii) Let h be the hashlen/2 rightmost bytes of H(k). We abort if the signing oracle is queried at
a message m such that

H(h,m) ≥ 28hashlen − 1− (28hashlen − 1 mod `)

The probability of this occurring during the game is at most approximately

`QSign · 2−8hashlen

Note that hashlen is 64 (the output length SHA-512) and ` ≈ 2252 in Ed25519. The hash
output H(h,m) is interpreted as the scalar r in the commitment R = rG for the message m.
Unless abort events (i) or (ii) here occur, A can not distinguish our signing oracle simulation
described later from the real thing.

(iii) The challenge encapsulation A∗ is generated immediately at the start of the game and we
abort the game if A happens to query the decapsulation oracle with A∗ (with any associated
salt) before it is given as the challenge. The probability of this occurring during the game is
at most

QDecap · 2−minentropy

(iv) We abort if q = (salt∗⊕out, h∗) is evaluated – outside the challenge encapsulation generation
– before (salt∗ ⊕ in,A∗, Z∗) has been revealed. The probability of this occurring during the
game is at most

QEval

28hashlen −QEval

since there are at least 28hashlen − QEval choices of h∗ that are consistent with the game up
to the point q is evaluated. To see this, consider the moment just before q is evaluated.
First, note that (salt∗ ⊕ in,A∗, Z∗) has actually not been evaluated – outside the challenge
encapsulation generation – either, since

• It is not evaluated in the deterministic commitment generation in Ed25519 [13, 5.1.6
steps 1 and 2] by abort condition (i).

• It is not the input to the inner hash invocation of the KDF for a decapsulation query by
abort condition (iii).

• It is not the input to the outer hash invocation of the KDF for a decapsulation query
by our condition (iii) on salt in the KDF definition.
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• It has by assumption not been revealed yet.

Thus, just before q is evaluated, we can replace h∗ – that is, the output H(salt∗⊕ in,A∗, Z∗)
– with any h such that (salt∗ ⊕ out, h) has not been evaluated8, and the game would still be
consistent up to this point.

Let G2 be as G1 but where we abort the game if (salt∗ ⊕ in,A∗, Z∗) is revealed. Thus, unless we
abort, (salt∗ ⊕ out, h∗) is never evaluated outside the challenge encapsulation generation either by
abort condition (iv) in G1. This means that

Pr(T2) =
1

2

Now, for i = 1, 2 we have
|Pr(Ti−1)− Pr(Ti)| ≤ Pr(Fi)

by conditioning on Fi occurring. By our analysis above, F1 is sufficiently small. So we are done
if we can show that Pr(F2) is sufficiently small. Similarly to [9, Theorem 9], we will describe an
adversary B that solves the SDH problem by using A, with probability sufficiently close to Pr(F2).

As described in Section 3, in the SDH problem the adversary B is given two honestly generated
X25519 public keys X25519(x,G) and X25519(a,G), and is asked to compute the shared secret

X25519(x,X25519(a,G))

Additionally, B is given access to an Ox oracle and an Ed25519 public key X such that X =
clamp(x)G on edwards25519. To use A, B sets the public key of the KEM in G2 to X25519(x,G),
the challenge encapsulation A∗ := X25519(a,G) and K∗ ←$ {0, 1, ..., 255}hashlen. Also, B sets the
public key of the signing oracle to X. We need to show that B can simulate G2 sufficiently well to
A. We essentially follow the construction in [9, Theorem 9] with some changes due to our different
KDF and the additional signing oracle that A expects access to. To simulate the required oracles,
B will use two lookup tables

• H which is B’s simulation of the RO in G2.

• LDecap for which LDecap(A, salt) = h, if we should have h = H(salt⊕ in,A,X25519(x,A))

We write LDecap(A, salt) = ⊥, when LDecap has not been set at input (A, salt). We do the same
for H. We assume that B does not solve the SDH problem if it aborts the simulation.
On a decapsulation query (A, salt), B does

1. If A = A∗, then it aborts the simulation. This corresponds to abort event (iii) in G1.

2. If LDecap(A, salt) = ⊥, then it lets LDecap(A, salt) := h for h←$ {0, 1, ..., 255}hashlen.

3. It then processes q = (salt⊕ out,LDecap(A, salt)) as it would for an RO query q below.

On an RO query q, B does

1. If q = (q′, Z) for a X25519 public key Z such that Ox(A∗, Z) = 1, then it outputs the correct
answer Z to the SDH problem.

8We would also switch the output values H(salt∗ ⊕ out, h∗) and H(salt∗ ⊕ out, h), and consider (salt∗ ⊕ out, h∗)
as not evaluated.
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2. If H(q) 6= ⊥, then it returns H(q). Otherwise, it lets h←$ {0, 1, ..., 255}hashlen and continues
below.

3. If q = (salt⊕ in,A, Z) with |salt⊕ in| = blocklen and X25519 public keys A and Z such that
Ox(A,Z) = 1, then it does

(a) If LDecap(A, salt) = ⊥, then it lets LDecap(A, salt) := h.

(b) It lets H(q) := LDecap(A, salt) and returns H(q).

4. Otherwise, it lets H(q) := h and returns h.

On a signing query m, B does

1. It lets s←$ {0, 1, ..., `− 1} and h←$ {0, 1, ..., 255}hashlen. Then it defines R as

sG− hX

where the arithmetic is on the curve used by Ed25519. The distribution of R (uniform in
〈G〉) is as expected by abort event (ii) in G1. This is the common way to simulate Schnorr
signatures in the ROM introduced by Pointcheval and Stern [19].

2. If H(R,X,m) 6= ⊥, then it aborts the simulation. The probability of this occurring in the
simulation is less than

QSignQEval · 2−minentropy

3. Otherwise, it runs through the steps above as ifA would have queried the RO at q = (R,X,m).
Only, instead of choosing h randomly in Step 2 there, it uses h from here and returns the
signature (R, s) instead of h in the end. If it ends up executing Step 3(a) of the RO query
handling and LDecap(A, salt) 6= ⊥, then it aborts the simulation. The probability of this
occurring during the simulation is less than

QSignQEval · 2−minentropy

If neither of the abort events during signing query handling described above occurs, then our
simulation and G2 are indistinguishable up until any of the abort events in G2 occur. Also, the
event F2 must occur before any of the other abort events in G2. We therefore have

Pr(B solves SDH) ≥ Pr(F2)− 2QSignQEval · 2−minentropy

and Pr(B solves SDH) is sufficiently small under the SDH assumption.

5 Security of Ed25519 in the presence of a decapsulation oracle
for our KEM

Recall that in the EUF-CMA security game the adversary A is given access to a public key X and
a signing oracle for X, and attempts to output a (valid) forged signature σ for a message m such
that m was not queried to the signing oracle. If the probability that any probabilistic efficient A
succeeds (wins) is sufficiently small, then we say that the signature scheme is EUF-CMA secure.
See e.g. [7, Definition 2] for details. Following the definition in [10, 4.1], we additionally give A
access to a decapsulation oracle for our KEM with public key X25519(x,G), where x is the private
key bytestring of the signing oracle.
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Theorem 3. Ed25519 is EUF-CMA secure9 in the presence of a decapsulation oracle for our KEM,
under the SDH assumption10

Proof. We let A be the adversary in the EUF-CMA game and we call the EUF-CMA game G0. As
in Theorem 1, we will assume that salts have always already been zero-padded to length blocklen
before being supplied by A. We assume that QH, QDecap and QSign is the maximum number of
RO queries, decapsulation queries and signing queries, respectively, that A makes during the game.
The notation QReveal and QEval, and the terms revealed and evaluated are defined as in Theorem
111. We assume without loss of generality that

• all RO queries issued by A are distinct,

• all decapsulation queries issued by A are distinct, and

• all signing queries issued by A are distinct.

Now, let G1 be as G0 but where

(i) We abort if the correponding events to those in abort events (i)-(ii) from G1 in the proof of
Theorem 1 occur.

(ii) We abort if a string q = (salt⊕ out, h) is evaluated such that

• there was previously a decapsulation query (A, salt) such that
h = H(salt⊕ in,A,X25519(x,A)),

• q had not been evaluated previously to the decapsulation query, and

• (salt⊕ in,A,X25519(x,A)) has not been revealed.

The probability that this abort event occurs during the game is at most

QEvalQDecap

28hashlen −QEval

since there are at least 28hashlen −QEval choices of h that are consistent with the game up to
the point q is evaluated. To see this, consider the moment just before q is evaluated. First,
note that (salt ⊕ in,A,X25519(x,A)) has actually not been evaluated – except once during
the assumed decapsulation query – either, since

• It is not evaluated in the deterministic commitment generation in Ed25519 [13, 5.1.6
steps 1 and 2] by abort condition (i).

• It is not the input to the inner hash invocation of the KDF for any other decapsulation
query since we assume that all decapsulation queries are distinct.

• It is not the input to the outer hash invocation of the KDF for a decapsulation query
by our condition (iii) on salt in the KDF definition.

• It has by assumption not been revealed yet.

9Through a non-tight reduction, see the end of the proof for references.
10The SDH assumption is in the X25519 setting as in Section 3.
11Without the part about the challenge encapsulation generation which is not relevant here.
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Thus, just before q is evaluated, we can replace h – that is, the output H(salt ⊕ in,A, Z) –
with any h′ such that (salt⊕ out, h′) has not been evaluated12, and the game would still be
consistent up to this point.

(iii) If there is a decapsulation query (A, salt) such that

• a string (salt⊕ out, h) has been previously evaluated with
h = H(salt⊕ in,A,X25519(x,A)), and

• (salt⊕ in,A,X25519(x,A)) has not been revealed,

then we abort immediately after processing it. The probability that this abort event occurs
during the game is at most

QDecapQEval

28hashlen

To see this, note that (salt ⊕ in,A,X25519(x,A)) had actually not been evaluated prior to
the decapsulation query, since

• We would have aborted during decapsulation query processing if it had been previously
evaluated in the deterministic commitment generation in Ed25519 by abort condition
(i).

• It was not the input to the inner hash invocation of the KDF for any other decapsulation
query since we assume that all decapsulation queries are distinct.

• It was not the input to the outer hash invocation of the KDF for a decapsulation query
by our condition (iii) on salt in the KDF definition.

• It had by assumption not been revealed yet.

Thus, H(salt⊕ in,A,X25519(x,A)) could just as well have taken any other value than h.

(iv) Let 2c be the edwards25519 cofactor. Note that, by the verification equation [13, 5.1.7], a valid
forgery signature (R∗, s∗) for a message m∗ output by A determines H(R∗, X,m∗) modulo `
as

log2cX(s∗2cG− 2cR∗)

If A outputs a valid forgery such that (R∗, X,m∗) has not been evaluated during the game,
then we abort (before A wins). This happens with probability at most approximately `−1.

(v) If A outputs a valid forgery (R∗, s∗) for a message m∗ such that q = (R∗, X,m∗) has only been
evaluated as the input to the inner hash invocation of the KDF for a decapsulation query
and nowhere else, then we abort (before A wins). This happens with probability at most
approximately `−1. To see this, note that abort conditions (iii) and (ii) imply that the input
to the outer hash invocation in the KDF of the decapsulation query has not been evaluated –
except for that one time in the decapsulation oracle – either. We can thus argue as for abort
condition (ii) that we can replace the output value H(q) with any h ←$ {0, 1, ..., 255}hashlen
such that (salt⊕ out, h) has not been evaluated.

(vi) If A outputs a valid forgery (R∗, s∗) for a message m∗ such that (R∗, X,m∗) has only been
evaluated inside the deterministic commitment generation in Ed25519 [13, 5.1.6 steps 1 and
2], then we abort (before A wins). This happens with probability at most 21−4hashlen.

12We would also switch the output values H(salt⊕ out, h) and H(salt⊕ out, h′), and consider (salt⊕ out, h) as not
evaluated.
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Let Ti for i = 1, 2 be the event that A wins in Gi. Letting F1 be the event that any abort event in
G1 occurs, we have

Pr(T1) ≥ Pr(T0)− Pr(F1)

As in [7, Theorem 3], we will now use A to build an adversary B against the IMP-KOA security
[7, Figure 2]13 of the underlying identification scheme. In [7, Theorem 3], B guesses the index i of
the RO query that equals (R∗, X,m∗) for the forged signature (R∗, s∗) for m∗ that A eventually
outputs. What B does is that it takes the commitment R∗ and outputs it to its own challenger in
the IMP-KOA game [7, Figure 2]. After receiving a challenge h←$ {0, 1, ..., 255}hashlen in response
from its challenger, B lets H(R∗, X,m∗) := h. If (R∗, s∗) for the message m∗ is a valid forgery, then
B wins in the IMP-KOA game by just outputting s∗ after A outputs the forgery in the end of the
game. Letting ε′ be the probability that A outputs a valid forgery, the main term in the success
probability of B in its own game in [7, Theorem 3] is ε′

QH
due to the need to guess the index i. We

follow the same idea of index guessing, but to keep our proof as general as possible we account for
the scenario that (R∗, X,m∗) can also be equal to one of the inputs to the RO in the KDF for a
decapsulation query.

• To account for the scenario that (R∗, X,m∗) is equal to the input in the outer hash invocation
of one of the KDF invocations we do the following. Instead of guessing an index i for the ith
RO query, B will guess an index i for the ith RO/decapsulation query, where i ranges from
1 to QH +QDecap. This means that the main term in the success probability for B becomes

ε′

QH+QDecap
, instead of ε′

QH
as in [7, Theorem 3].

• The scenario that it is equal to the input q in the inner hash invocation of one of the KDF
invocations is already covered. In that case there must additionally be an RO query for q at
some other point in time by abort conditions (v)-(vi) above.

Note that, if A wins in G1, then (R∗, X,m∗) must be evaluated during the game by abort condition
(iv).

As in Theorem 1, we will now describe how B simulates the oracles in G1 to A. We will assume
that B has access to an Ox oracle and an X25519 public key X25519(x,G), where X = clamp(x)G
on edwards25519 for the Ed25519 public key X that B is given in [7, Figure 2]14. The adversary B
lets X be the public key of the signing oracle in G1 and lets X25519(x,G) be the public key of the
decapsulation oracle. The lookup tables H and LDecap are defined as in the simulation in Theorem
1. Note that with regard to the processing related to the guessing of the ith decapsulation/RO
query below we will only discuss how the processing is done when we have guessed the correct
index, since we assume that B fails in the IMP-KOA game otherwise.
On a decapsulation query (A, salt), B does

1. If LDecap(A, salt) = ⊥, then it lets LDecap(A, salt) = h for h←$ {0, 1, ..., 255}hashlen.

2. It then processes q = (salt⊕ out,LDecap(A, salt)) as it would for an RO query q below.

On an RO query q, B does

1. If this is the ith RO/decapsulation query, then

13Actually, B is an IMP-PA adversary in [7, Theorem 3], but we do not use OTrans from [7, Figure 2].
14We can assume that B has access to what is specified here since the algorithm C that will use B to solve a discrete

logarithm problem later in the proof has access this.
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(a) If H(q) 6= ⊥, then B aborts15.

(b) it parses the commitment R∗ from q, sends R∗ to its challenger and lets h be the received
challenge.

Otherwise, B lets h←$ {0, 1, ..., 255}hashlen. Either way, it then continues below.

2. If H(q) 6= ⊥, then it returns H(q).

3. If q = (salt⊕ in,A, Z) with |salt⊕ in| = blocklen and X25519 public keys A and Z such that
Ox(A,Z) = 1, then it does

(a) If this is the ith RO/decapsulation query16 and if LDecap(A, salt) 6= ⊥, then B lets

(i) h′ := LDecap(A, salt)

(ii) LDecap(A, salt) := h

(iii) H(salt⊕ out, h) := H(salt⊕ out, h′)
(iv) H(salt⊕ out, h′) := ⊥
and continues below. The update that we perform here is possible due to abort events
(ii)-(iii) above, which imply that (salt⊕out, h′) can not have been evaluated besides the
single application in the decapsulation oracle, since q had not been revealed previously
to this query17.

(b) If LDecap(A, salt) = ⊥, then it lets LDecap(A, salt) := h.

(c) It lets H(q) := LDecap(A, salt) and returns H(q).

4. Otherwise, it lets H(q) := h and returns h.

On a signing query m, B does

1. It lets s←$ {0, 1, ..., `− 1} and h←$ {0, 1, ..., 255}hashlen. Then it defines R as

sG− hX

where the arithmetic is on edwards25519.

2. If H(R,X,m) 6= ⊥, then it aborts the simulation. The probability of this occurring during
the simulation is less than

QSignQEval · 2−minentropy

3. Otherwise, it runs through the steps above as ifA would have queried the RO at q = (R,X,m).
Only,

• This specific RO query processing is excluded from the index guessing of the ith
RO/decapsulation query that we have described above.

15Since we are interested in the case when q = (R∗, X,m∗) here, q can not have been revealed by the signing oracle.
Since we also assume that all RO queries are distinct, and that all decapsulation queries are distinct, we can only fail
here if H(q) was previously set due to an RO query and we are now processing a decapsulation query, or vice versa.
Either way, we could then initially instead have guessed the index i′ of that RO/decapsulation query and succeeded.

This means that the main term in the success probability for B remains ε′

QH+QDecap
.

16In this case we must be here due to an RO query (and not a decapsulation query) by condition (iii) on salt in
the definition of the KDF in the KEM.

17The probability that H(salt⊕ out, h) 6= ⊥ prior to this processing is less than (28hashlen −QEval)
−1 and we omit

dealing with it.
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• Instead of choosing h randomly in Step 2 there, it uses h from here and returns the
signature (R, s) instead of h in the end.

If it ends up executing Step 3(b) of the RO query handling and LDecap(A, salt) 6= ⊥, then it
aborts the simulation. The probability of this occurring during the simulation is less than

QSignQEval · 2−minentropy

If neither of the abort events during signing query handling described above occurs, then our
simulation and G1 are indistinguishable up until any of the abort events in G1 occur. If A outputs
a forgery in the end of the simulation, then B outputs the (response part of the) forgery as its own
response, if B had also guessed the right decapsulation/RO query index. In conclusion, B succeeds
with at least probability

ε′

QH +QDecap

minus the sufficiently small sum of abort probabilities discussed above, where ε′ is the probability
that A outputs a valid forgery in G0. As shown in [7, B1] an adversary C against our SDH problem
can now use B and [3, Reset Lemma] to obtain the discrete logarithm clamp(x) of X through a
non-tight reduction, and thus also solve its SDH instance.

6 X448 and Ed448

One can verify that proofs corresponding to ours hold for a corresponding X448 [17] based KEM
and Ed448 as defined in [13]. As in the case of Ed25519, our result does not cover any pre-hashing
variant of Ed448 such as Ed448ph. Note that, when defining a corresponding SDH problem as in
Section 3, the map from curve448 to edwards448 in [17] maps the basepoint of curve448 to 4G
where G is the edwards448 basepoint. So we should multiply by 4−1 (where inversion is modulo
the prime order of G) after mapping to edwards448. Replacing v2 using the curve448 equation and
using also [2, Lemma 1], the small number of points for which the mapping is not defined can be
dealt with as in Footnote 3.

Theorem 4. Our X448-KEM is IND-CCA secure in the presence of an Ed448 signing oracle,
under the SDH assumption

Theorem 5. Ed448 is EUF-CMA secure in the presence of a decapsulation oracle for our X448-
KEM, under the SDH assumption

7 Conclusion and observations

• If we remove the encapsulation A from the inner hash invocation in the KDF, then we lose
our IND-CCA security and instead apparently obtain a KEM with known malleability. We
are not aware of any other security issues with this construction, but see for example Shoup’s
discussion [20, 15.6.1]. The ephemeral public key A could instead for example be added the
info string in a potential later HKDF-Expand operation. We have not explicitly used the
presence of A in relation to any interaction with the signature scheme in our proofs. One
could therefore ask if there are maybe no ”bad interactions” with the signature scheme when
sharing the key pair and also not including A in the inner hash invocation. We have not
investigated this setting further however. Note that for one thing, it appears that for the
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decapsulation oracle simulation in a proof corresponding to Theorem 1, the running time
would grow like QReveal ·QDecap as discussed by Shoup [20, 15.6.1].

• Returning to the IETF draft ietf-core-oscore-groupcomm [21], we have shown that if [21] uses
our KEM construction, then [21] can securely share the key pair between EdDSA and the
KEM. The only difference between our KEM construction and the current one in [21] is that
we input the encapsulation to key derivation, so with this small change [21] can use our result
to ensure joint security for the systems in question. As discussed earlier, in the specific case of
[21], the encapsulation is static and corresponds to the EdDSA public key of the sender. To
leverage our result for the sender as well, [21] should add both the sender’s and the recipient’s
EdDSA public keys to the KDF. This way, both endpoints of the pairwise mode of operation
in [21] can consider themselves playing the recipient role in the KEM and leverage our result
to ensure joint security for their respective key pairs. Furthermore, [21] can use the KDF from
our KEM in the KEM from [10, Theorem 3] to ensure the same joint security for ECDSA and
that KEM applied to any of the curves also used for ECDSA18. Like our result, [10, Theorem
3] does not require any domain separation for the hash function usage and this way [21] can
use a single KDF construction regardless of which hash function is used for a KEM.
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