
Signer and Message Ambiguity from a Variety of
Keys

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. A signer and message ambiguous signature enables a recip-
ient to request a signer to sign a sensible message such that the signer
cannot guess what message he signed and the receiver cannot deduce
the signer’s identity. In this work, we formalize this type of signature,
introduce the corresponding security requirements and describe two in-
stantions. The first one assumes that the signer hides his identity in n
independently generated public keys, while the second one assumes that
all n public keys share the same public parameters.

1 Introduction

In order to address the increasing interest in privacy protection, Chen [3] intro-
duced the concept of oblivious signatures. He considered two such classes. The
first one is an oblivious signature scheme with n keys, while the second one is
an oblivious signature with n messages.

In the case of oblivious signatures with n keys, we have n signers S0, . . . ,Sn−1
(or a signer with n different keys) and a recipient R. A high level description of
the protocol is the following:

– the recipient chooses a message m and can get it signed with one of the n
keys;

– the signers, even the holder of the accepted key, do not have an idea on who
really signed m;

– when necessary, R can show that he received a valid signature from one of
the n signers.

On the other hand, in the version of oblivious signatures with n messages we
have only one signer S and the main features are the following:

– the recipient chooses n messages m0, . . . ,mn−1 and can get only one signed;
– the signer cannot deduce which message he actually signed;
– when necessary, R can show that he received a valid signature on one of the
n messages.

Remark that in both cases the signer(s) can read the received message(s) and
decide if he(they) agree(s) with the content before signing it. The two concepts
can also be mixed and thus obtain an oblivious protocol with n1 messages and
n2 keys. Some examples of oblivious protocols can be found in [3, 12–14].

Blind signatures [2,6] share the same privacy goal as oblivious signatures with
n messages. More precisely, both signatures allow users to request a signature
without revealing the exact message to the signer. The main difference is that
in the case of blind signature the signer is not aware of the message’s content,
while in the case of oblivious signatures the signer sees a message pool that
contains n messages. Hence, oblivious signatures offer a guarantee to the signer
that no message outside the pool will be signed and thus can be considered an
improvement of blind signatures.

In contrast to oblivious signatures with n keys, an 1-out-of-n signature con-
vinces a verifier that a message was signed by one of n possible independent
signers without allowing the verifier to deduce which signer it was. Hence, the
privacy requirement is shifted from the signers to the verifier. Also, in this case,
only the actual signer decides if he agrees to the message’s content, while the
remaining n−1 signers have access to the message only after the signing process
is over. Some examples can be found in [1, 4, 9].

In some applications we encounter situations where a mixture of oblivious
signatures with n2 messages and 1-out-of-n1 signatures is required. Hence, a re-
ceiver wants to hide his request, while the signer wants to keep its anonymity. We
further call this type of signatures as signer and message ambiguous signatures.

A possible usage for these signatures is the following. Multiple small compa-
nies3 contribute with servers to a storage pool and split the profits according the
contributed storage space. A client wants to make a query to this cluster, but
wants to be able to prove to a third party that the answer is authentic. There-
fore, the cluster has to sign the answer. But the customer must be oblivious of
which company is hosting the corresponding data. Hence, the cluster can use an
1-out-of-n1 signature to hide the exact location of the data. On the other hand,
the client wants to hide the exact content of his query. Thus, he can hide his
query into n2−1 unrelated queries. In this case, we can see that a mixture of an
1-out-of-n1 signature and an n2 message oblivious signature can offer a possible
solution.

In this paper, we propose the first signer and message ambiguous signatures,
one in the key separable model (i.e. the users’ use independently generated
public parameters) and one in the non-separable model (i.e. the users’ public
parameters are identical). In the separable model, we used the zero-knowledge
version of Abe et. al signature [1] in conjunction with a generalized and modified
Tso et. al signature [14]. In the non-separable model, we used the same signature
based on Tso et. al, but we combined it with a generalized version of Abe et. al
signature [1]. The formalization method used for generalizing the signatures is
similar to the approach described in [7].

3 each with its unique public certificate

Structure of the paper. We introduce notations and definitions used throughout
the paper in Section 2. In Sections 3 and 4 we present our main results, namely
two signer and message ambiguous signatures, one in the separable model and
one in the non-separable model. Their performance is analysed in Section 5. We
conclude in Section 6. Abe et. al signatures are presented in Appendix A, while
Tso et. al’s signature is detailed in Appendix B.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of
a set S. The action of selecting a random element x from a sample space X is
denoted by x $←− X, while x← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s− 1} ∈ N is denoted by [0, s). Note we further consider that all of N ’s
subsets are of the form [0, s) and n2 ≤ s. A vector v of length n is denoted either
v = (v0, . . . , vn−1) or v = {vi}i∈[0,n). Also, we use the notations Cnk to denote
binomial coefficients and exp to denote Euler’s constant.

2.1 Groups

Let (G, ?) and (H,⊗) be two groups. We assume that the group operations ?
and ⊗ are efficiently computable.

Let f : G → H be a function (not necessarily one-to-one). We say that f is
a homomorphism if f(x ? y) = f(x) ⊗ f(y). Throughout the paper we consider
f to be a one-way function, i.e. it is infeasible to compute x from f(x). To be
consistent with [7], we denote by [x] the value f(x). Note that given [x] and
[y] we can efficiently compute [x ? y] = [x] ⊗ [y], due to the fact that f is a
homomorphism.

2.2 Signer and Message Ambiguous Signatures

Based on the formal models defined in [1,12,14], we introduce signer and message
ambiguous signatures (SMAS) and their corresponding security models. Hence,
a SMAS involves three types of entities:

– A signature requesterR. For any list of public keys L and any list of messages
M , R can choose any message from M to get signed by any of the signers
from L. Note that R is not able to learn which signer from L actually signed
the message.

– An ambiguous signer S. One of the signers from L proceeds to sign the
message chosen by R, but he is not able to learn which message from M has
actually been signed.

– A verifier V. R converts the SMAS into a signer ambiguous signature σ and
transmits σ to V. The verifier is able to check the validity of σ without mod-
ifying the verification algorithm of the original signer ambiguous signature.

Definition 1 (Signer and Message Ambiguous Signature). A signer and
message ambiguous signature scheme is a digital signature comprised of the fol-
lowing algorithms:

Setup(λ): On input a security parameter λ, this algorithm outputs the private
and public keys (ski, pki) of all the participants and the public parameters
pp = (M,S), whereM is the message space and S is the signature space.

Signature Generation(): An interactive protocol between R and S. In the first
step, the recipient takes as input a list of public keys L and sends to the
signer a list of messages M and some additional information A. Then, S
takes as input a list of messages M , the information A, the private key skk
and a list of public keys L such that pkk ∈ L and sends a list of signatures
W to R. After receiving W, the recipient uses A to convert the SMAS into
a signer ambiguous signature σ for a message m ∈ M and then outputs
(m,σ, L).

Verify(m,σ, L): An algorithm that on input a message m, a signature σ and a
list of public keys L outputs either true or false.

The following definitions capture the intuitive notions of signer and mes-
sage ambiguity. In Definitions 2 and 3 we assume that the attacker is R and,
respectively, S.

Definition 2 (Signer Ambiguity). Let L = {pki}i∈[0,n1), where pki are gen-
erated by the Setup algorithm. Also, for a set L ⊆ L we define L̃ = {skk |
skk is the secret key corresponding to pkk ∈ L}. A SMAS is perfectly signer am-
biguous if for any list of messages M and their corresponding additional in-
formation A, any L ⊆ L, any skk ∈ L̃ and any signature W generated by
S(M,A, skk, L), any unbounded adversary A outputs an sk such that sk = skk
with probability exactly 1/|L|.

Definition 3 (Message Ambiguity). A SMAS is perfectly message ambigu-
ous if for any list of messages M and their corresponding additional information
A and for any message m` ∈ M chosen by R to be signed, any unbounded ad-
versary A outputs an m such that m = m` with probability exactly 1/|M |.

The security requirement for S is unforgeability of signatures, even when the
signature receiver is the adversary.

Definition 4 (Existential Unforgeability against Adaptive Chosen Mes-
sage and Chosen Public Key Attacks - euf-cmcpa). The notion of un-
forgeability for signatures is defined in terms of the following security game be-
tween the adversary A and a challenger:

1. The Setup algorithm is run and all the public parameters are provided to A.
2. For any list of messages M and any subset of L = {pki}i∈[0,n1), A can

fix a message m` ∈ M and request the signature associated to m` to the
challenger.

3. Finally, A outputs a signature (m,σ, L), where L ⊆ L.

A wins the game if Verify(m,σ, L) = true, L ⊆ L and A did not query the
challenger on any pair (M,L) such that m` = m. We say that a signature scheme
is unforgeable when the success probability of A in this game is negligible.

We further introduce the notions of a Boolean matrix and of a heavy row
in such a matrix [8]. These definitions are then used in stating the heavy row
lemma [8].

Definition 5 (Boolean Matrix of Random Tapes). Let us consider a ma-
trix M whose rows consist of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Its entries are
0 if the adversary fails the game and 1 otherwise.

Definition 6 (Heavy Row). A row of M is heavy if the fraction of 1’s along
the row is at least ε/2, where ε is the adversary’s success probability.

Lemma 1 (Heavy Row Lemma). The 1’s in M are located in heavy rows
with a probability of at least 1/2.

3 SMAS with Key Separation

3.1 Description

By modifying the protocol from [14] (see Appendix B) and endowing it with the
technique described in [1] (see Appendix A.1) we developed a SMAS in the sepa-
rable model. Note that in a separable scheme each key pair can be generated by
a different scheme, under a different hardness assumption. In practice, each user
can use different trusted third parties (TTP) to generate their public parame-
ters and key pair. To simplify description we present the Setup algorithm as a
centralized algorithm. We will denote the following signature with SMAS-KSS.

Setup(λ): Let i ∈ [0, n1). Choose for each user two groups Gi, Hi, a homomor-
phism [·]i : Gi → Hi and a hash function Hi : {0, 1}∗ → Ci ⊆ N. Note that
we require that |Gi| ≥ 2λ. Choose ai, xi

$←− Gi and compute yi ← [xi]i and
bi ← [ai]i. Output the public key pki = yi. The secret key is ski = xi. The
elements bi are known to all participants, but the ai’s are used only once
and are discarded afterwards.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n1) and output L.4

Signature Generation(): Assume that recipient R would like to get a signature
from signer S on a message m` ∈ {mt}t∈[0,n2). To compute the ambiguous
signature the following protocol is executed:
Step 1 : For j ∈ [0, n1), R selects αj

$←− Gj and computes cj ← [αj]j ⊗j b`j .
Then, R sends C = {cj}j∈[0,n1) and M = {mt}t∈[0,n2) to S.

Step 2 : For t ∈ [0, n2), S (with access to xk) does the following:
4 Note that L can be fixed or periodically updated.

a) Generate an element βt
$←− Gk and compute zk,t ← ck⊗k b−tk ⊗k [βt]k

and dk+1,t ← Hk+1(L,mt, zk,t).
b) For j ∈ [k+ 1, n1)∪ [0, k), randomly select sj,t

$←− Gj and then com-
pute zj,t ← cj⊗j b−tj ⊗j [sj,t]j⊗jy

dj,t

j and dj+1,t ← Hj+1(L,mt, zj,t)5.
c) Compute sk,t ← βt ?k x

−dk,t

k .
d) Send to R the signature (d0,t,Wt), where Wt = {sj,t}j∈[0,n1).

Step 3 : For j ∈ [0, n1) and t ∈ [0, n2), R computes δj,t ← [αj]j ⊗j b`−tj ,
ej,t ← δj,t ⊗j [sj,t]j ⊗j y

dj,t

j and then dj+1,t ← Hj+1(L,mt, ej,t) if
j 6= n1 − 1. R accepts the ambiguous signature if and only if d0,t =
H0(L,mt, en1−1,t), where t ∈ [0, n2). Otherwise, output false.

Step 4 : To convert the signer and message ambiguous signature into a signer
ambiguous signature, R sets d0 ← d0,` and computes sj ← αj ?j sj,`,
where j ∈ [0, n1). Output the signature (d0,W), whereW = {sj}j∈[0,n1).

Verify(m, d0,W,L): For j ∈ [0, n1), compute ej ← [sj]j⊗j y
dj

j and then dj+1 ←
Hj+1(L,m, ej) if j 6= n1−1. Output true if and only if d0 = H0(L,m, en1−1).
Otherwise, output false.

Remark 1. In the Setup phase, the bi elements can be generated for each user
after they receive their public parameters and key-pairs, and by a TTP different
from the one generating the initial system’s parameters. Thus, our scheme is
compatible with preexisting signature certificates and can be seen as adding an
extra functionality to existing systems.

Correctness. First we need to check that R accepts a genuine signature. Thus,
if (c0,t,Wt) is generated according to the scheme, then for j 6= k we have

ej,t = δj,t ⊗j [sj,t]j ⊗j y
dj,t

j = cj ⊗j b−tj ⊗j [sj,t]j ⊗j y
dj,t

j = zj,t

and for j = k we have

ek,t = δj,t ⊗k [sk,t]k ⊗k y
dk,t

k = ck ⊗k b−tk ⊗k [βt ?k x
−dk,t

k]k ⊗k y
dk,t

k

= ck ⊗k b−tk ⊗k [βt]k ⊗k [xk]−dk,t

k ⊗k y
dk,t

k = ck ⊗k b−tk ⊗k [βt]k = zk,t.

Now we need to check if the verification process returns true. Hence, if the pair
(d0,W) is generated according to the scheme, then we have

ej = [sj]j ⊗j y
dj

j = [αj ?j sj,`]j ⊗j y
dj

j = δj,` ⊗j [sj,`]j ⊗j y
dj

j = ej,`.

3.2 Security Analysis

Theorem 1. The SMAS-KSS scheme is perfectly signer ambiguous.
5 When j = n1 − 1 we abuse notation and consider j + 1 = 0.

Proof. Note that all sj,t are taken randomly from Gj , except for sk,t. Since βt is
a random element from Gk, then sk,t is also randomly distributed in Gk. Hence,
for a fixed (mt,L) the probability of Wt is always 1/

∏
|Gi|, regardless of the

closing point sk,t and index t. The remaining c0,t are uniquely determined from
(mt,L) and Wt. ut

Theorem 2. The SMAS-KSS scheme is perfectly message ambiguous.

Proof. All the information regarding ` is contained in the cj elements. Since
αj is random, then cj is also random. Thus, for a fixed M the probability of
{cj}j∈[0,|M |) is always 1/

∏
|Gi|. So, no information about ` is leaked to S. ut

Theorem 3. If the following statements are true
– an euf-cmcpa attack on the SMAS-KSS has non-negligible probability of

success in the ROM,
– for all i values, fi ∈ Z are known such that gcd(d0 − d1, fi) = 1 for all
d0, d1 ∈ Ci with d0 6= d1,

– for all i values, ui ∈ Gi are known such that [ui]i = yfi

i ,

then at least a homomorphism [·]i can be inverted in polynomial time.

Proof. Let A be an efficient euf-cmcpa attacker for SMAS-KSS that requests
at most qs and qh signing and, respectively, random oracle queries. Also, let ε
be its success probability and τ its running time. By qm we denote the total
number of messages sent to S for signing.

In order to make A work properly we simulate the random oracles that
correspond to each hash function (see Algorithm 1) and the signing oracle (see
Algorithm 2). For simplicity we treat all the random oracles as one big random
oracle OH that takes as input the j-th query (i, Lj ,mj , rj) and returns a random
value corresponding to Hi(Lj ,mj , rj). To avoid complicated suffixes y0 and m0,
for example, refer to the first public key and the first message from the current
Lj and, respectively, Mj . Hence, y0 ∈ Lj and y0 ∈ Lj′ could differ. The same is
also true for m0.

Algorithm 1: Hashing oracle OH simulation for all Hi.
Input: A hashing query (i, Lj , mj , rj) from A

1 if ∃hj such that {Lj , mj , rj , hj} ∈ Ti then
2 e← hj

3 else
4 e

$←− Ci

5 Append {Lj , mj , rj , e} to Ti

6 end if
7 return e

The signing oracle OS fails and returns ⊥ only if we cannot assign d0,t to
(Lj ,mj , e|Lj |−1,t) without causing an inconsistency in T0. This event happens

with probability at most qh/q, where q = 2λ. Thus, OS is successful with prob-
ability at least (1− qh/q)qsqm ≥ 1− qhqsqm/q.

Algorithm 2: Signing oracle OS simulation.
Input: A signature query (Mj , Cj , Lj) from A

1 for t ∈ [0, |Mj |) do
2 d0,t

$←− C0
3 for i ∈ [0, |Lj |) do
4 si,t

$←− Gi

5 ei,t ← ci ⊗i b−t
i ⊗i [si,t]i ⊗i y

di,t

i

6 if i 6= |Lj | − 1 then
7 di+1,t ← Hi+1(Lj , mt, ei,t)
8 end if
9 end for

10 if @ht such that {Lj , mt, e|Lj |−1,t, ht} ∈ T0 then
11 Append {Lj , mt, e|Lj |−1,t, d0,t} to T0

12 Sent to A the signature (d0,t, {si,t}i∈[0,|Lj |))
13 else
14 return ⊥
15 end if
16 end for

Let Θ and Ω be the random tapes given to OS and A. The adversary’s
success probability is taken over the space defined by Θ, Ω and OH . Let Σ be
the set of (Θ,Ω,OH) with which A successfully creates a forgery, while having
access to a real signing oracle. Let (m, d0, {si}i∈[0,n′), L) be A’s forgery, where
|L| = n′. Then, Ti+1 contains a query for (L,m, ei) for all i ∈ [0, n′) with
probability at least 1−1/|Ci+1|, due to the ideal randomness of OH . Let Σ′ ⊆ Σ
be the set of (Θ,Ω,OH) with which A successfully creates a forgery, while having
access only to the simulated oracle OS . Then, Pr[(Θ,Ω,OH) ∈ Σ′] ≥ ε′, where
ε′ = (1− qhqsqm/q)(1− 1/w)ε and w is the smallest |Ci|.

Since the queries form a ring, there exists at least an index k ∈ [0, n′) such
that the u query Qu = (k + 1, L,m, ek) and the v query Qv = (k, L,m, ek−1)
satisfy u ≤ v. Such a pair (u, v) is called a gap index. Remark that u = v only
when n′ = 1. If there are two or more gap indices with regard to a signature, we
only consider the smallest one.

We denote by Σ′u,v the set of (Θ,Ω,OH) that yield the gap index (u, v).
There are at most Cqh

2 + Cqh

1 = qh(qh + 1)/2 such sets. If we invoke A with
randomly chosen (Θ,Ω,OH) at most 1/ε′ times, then we will find at least one
(Θ,Ω,OH) ∈ Σ′u,v for some gap index (u, v) with probability 1− (1− ε′)1/ε′ >
1− exp(−1) > 3/5.

We define the sets GI = {(u, v) | |Σ′u,v|/|Σ′| ≥ 1/(qh(qh + 1))} and B =
{(Θ,Ω,OH) ∈ Σ′u,v | (u, v) ∈ GI}. Then, we have Pr[B|Σ′] ≥ 1/2. Using the

heavy row lemma we obtain that a triplet (Θ,Ω,OH) that yields a successful
run of A is in B with probability at least 1/2.

Let OH′ be the identical to OH except for the Qv query to which OH′ re-
sponds with a random element d′k 6= dk. Then according to the heavy row lemma,
with probability 1/2, (Θ,Ω,OH′) satisfies Pr[(Θ,Ω,OH′) ∈ Σ′u,v] = ε′′/2, where
ε′′ = ε′/(2qh(qh + 1)). Hence, if we run A at most 2/ε′′ times, then with proba-
bility 1/2 · [1− (1− ε′′/2)2/ε′′] > 1/2 · (1− exp(−1)) > 3/10 we will find at least
one d′k such that (Θ,Ω,OH′) ∈ Σ′u,v. Since Qu is queried before Qv, ek remains
unchanged. Therefore we can compute

x̃k = uak ?k (s′k
−1
?k sk)b,

where a and b are computed using Euclid’s algorithm such that fka+(d′k−dk)b =
1. Note that for some β

[s′k
−1
?k sk]k = [s′k

−1]k ⊗k [sk]k

= y
d′k
k ⊗k ([β]k)−1 ⊗ c−1

k ⊗ ck ⊗k [β]k ⊗k y−dk

k

= y
d′k−dk

k

and thus

[x̃k]k = [uak ?k (s′k
−1
?k sk)b]k

= ([uk]k)a ⊗k ([s′k
−1
?k sk]k)b

= (yfk

k)a ⊗k (yd
′
k−dk

k)b

= yk.

The overall success probability is 9/100 = 3/5 · 1/2 · 3/10 and A is invoked
at most 1/ε′ + 2/ε′′ times. ut

3.3 Concrete Examples

In this subsection we present a few concrete examples of the SMAS in order
to help readers who are familiar with Schnorr or Guillou-Quisquater type signa-
tures. The reader can easily infer more examples from the unified zero-knowledge
protocol’s instantiations described in [7, 11].

All Discrete Logarithm Case. Let p and q be two prime numbers such that q|p−1.
Select an element h ∈ Hp of order q in some multiplicative group of order p− 1.
The discrete logarithm of an element z ∈ Hp is an exponent x such that z = hx.
We further describe the parameters of the all discrete logarithm signature.

Define (Gi, ?i) = (Zqi
,+) and Hi = 〈hi〉. The one-way group homomorphism

is defined by [xi]i = hxi
i and the challenge space Ci can be any arbitrary subset of

[0, qi). Let 1i be the neutral element of Hi. Then the conditions of Theorem 3 are
satisfied for fi = qi and ui = 0. Note that we have [u]i = [0]i = 1i = yfi

i = yqi

i

since every element of Hi raised to the group order qi is the neutral element 1i.

All eth-root Case. Let p and q be two safe prime numbers such that (p − 1)/2
and (q − 1)/2 are also prime. Compute N = pq and choose a prime e such that
gcd(e, ϕ(N)) = 1. An eth-root of an element z ∈ Z∗N is a base x such that z = xe.
Note that the eth-root is not unique. We further describe the parameters of the
all eth-root signature.

Define (Gi, ?i) = (Hi,⊗i) = (Z∗Ni
, ·). The one-way group homomorphism is

defined by [xi]i = xei
i and the challenge space Ci can be any arbitrary subset of

[0, ei). The conditions of Theorem 3 are satisfied for fi = ei and ui = yi.

Mixture of Discrete Logarithm and eth-root. For simplicity, we consider the case
n = 2. Let (G0, ?0) = (Zq,+), H0 = 〈h〉 and (G1, ?1) = (H1,⊗1) = (Z∗N , ·). The
one-way group homomorphisms are defined by [x0]0 = hx0 and [x1]1 = xe1. The
corresponding challenge spaces C0 and C1 can be any arbitrary subset of [0, q)
and, respectively, [0, e). Finally, the conditions of Theorem 3 are satisfied for
f0 = q, f1 = e, u0 = 0 and u1 = y1.

4 SMAS Without Key Separation
4.1 Description
In this section we present a more efficient SMAS signature. This signature only
works when all the participants use the same underlying commutative group.
To achieve our goal, we used a generalized version of the technique developed
in [1] (see Appendix A.2). We further denote the following signature with SMAS-
NKSS.
Setup(λ): Choose two commutative groups G, H, a homomorphism [·] : G→ H

and a hash function H : {0, 1}∗ → C ⊆ N. Note that we require that |G| ≥
2λ. Choose a $←− G and compute b ← [a]. For each user, choose xi

$←− G
and compute yi ← [xi]. Output the public key pki = yi. The secret key is
ski = xi. The element b is known to all participants, but a is used only once
and is discarded afterwards.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n1) and output L.

Signature Generation(): Assume that recipient R would like to get a signature
from signer S on a message m` ∈ {mt}t∈[0,n2). To compute the ambiguous
signature the following protocol is executed:
Step 1 : R selects α $←− G and computes c← [α]⊗ b`. Then, R sends c and
M = {mt}t∈[0,n2) to S.

Step 2 : For t ∈ [0, n2), S generates a random element βt
$←− G and dj,t

$←− C,
where j ∈ [0, n1) \ {k}. Then computes the following:

zt ← c⊗ b−t ⊗ [βt]⊗ y
d0,t

0 ⊗ . . .⊗ ydk−1,t

k−1 ⊗ ydk+1,t

k+1 ⊗ . . .⊗ ydn1−1,t

n1−1

dt ← H(L,mt, zt)
dk,t ← dt − d0,t − . . .− dk−1,t − dk+1,t − . . .− dn1−1,t mod |C|

st ← βt ? x
−dk,t

k .

Send to R the signature (st,Wt), where Wt = {dj,t}j∈[0,n1).
Step 3 : For t ∈ [0, n2),R computes δt ← [α]⊗b`−t, ut ←

∑n1−1
j=0 dj,t mod |C|

and vt ← δt ⊗ [st] ⊗ (⊗n1−1
j=0 y

dj,t

j). R accepts the ambiguous signature
if and only if ut ≡ H(L,mt, vt) mod |C|, where t ∈ [0, n2). Otherwise,
output false.

Step 4 : To convert the signer and message ambiguous signature into a signer
ambiguous signature, R computes s ← α ? s` and sets dj ← dj,`, where
j ∈ [0, n1). Output the signature (s,W), where W = {dj}j∈[0,n1).

Verify(m, s,W,L): Compute the intermediary values u←
∑n1−1
j=0 dj mod c and

v ← [s]⊗ (⊗n1−1
j=0 y

dj

j). Output true if and only if u = H(L,m, v). Otherwise,
output false.

Correctness. First we need to check that R accepts a genuine signature. Thus,
if (st,Wt) is generated according to the scheme, then we have

vt = δt ⊗ [st]⊗ (⊗n−1
j=0 y

dj,t

j) = c⊗ b−t ⊗ [βt]⊗ [xk]−dk,t ⊗ (⊗n−1
j=0 y

dj,t

j) = zt.

Now we need to check if the verification process returns true. Hence, if the pair
(s,W) is generated according to the scheme, then we have

v = [s]⊗ (⊗n−1
j=0 y

dj

j) = [α ? s`]⊗ (⊗n−1
j=0 y

dj,`

j) = δ` ⊗ [s`]⊗ (⊗n−1
j=0 y

dj,`

j) = v`.

4.2 Security Analysis

Theorems 4 and 5’s proofs are similar to Theorems 1 and 2’s proofs and thus
are omitted.

Theorem 4. The SMAS-NKSS scheme is perfectly signer ambiguous.

Theorem 5. The SMAS-NKSS scheme is perfectly message ambiguous.

Theorem 6. If the following statements are true

– an euf-cmcpa attack on the SMAS-NKSS has non-negligible probability of
success in the ROM,

– an f ∈ Z is known such that gcd(d0 − d1, f) = 1 for all d0, d1 ∈ C with
d0 6= d1,

– for all i values, ui ∈ G are known such that [ui] = yfi ,

then the homomorphism [·] can be inverted in polynomial time.

Proof (sketch). In order to make A work properly we simulate the random oracle
that correspond to the hash function (see Algorithm 1 with i always set to 0)
and the signing oracle (see Algorithm 3). Note that A requests at most qs and
qh signing and, respectively, random oracle queries. Also, qm denotes the total
number of messages sent to S for signing.

Algorithm 3: Signing oracle OS simulation.
Input: A signature query (Mj , cj , Lj) from A

1 for t ∈ [0, |Mj |) do
2 for i ∈ [0, |Lj |) do
3 si,t

$←− G

4 di,t
$←− C

5 ei,t ← [si,t]⊗ y
di,t

i

6 end for
7 st ← s0,t ? . . . ? s|Lj |−1,t

8 dt ← d0,t + . . . + d|Lj |−1,t mod c

9 et ← cj ⊗ b−t ⊗ e0,t ⊗ . . .⊗ e|Lj |−1,t

10 if @ht such that {Lj , mt, et, ht} ∈ T0 then
11 Append {Lj , mt, et, dt} to T0
12 Send to A the signature (st, {di,t}i∈[0,|Lj |))
13 else
14 return ⊥
15 end if
16 end for

The signing oracle OS fails and returns ⊥ only if we cannot assign dt to
(Lj ,mt, zt) without causing an inconsistency in T0. Thus, OS is successful with
probability at least (1−qh/q)qsqm ≥ 1−qhqsqm/q. The success probability ofA in
the simulated environment is (1−qhqsqm/q)ε, where ε is A’s success probability.

Let (m, s, {di}i∈[0,n′), L) be A’s forgery, where |L| = n′. Define z ← δ⊗ [s]⊗
(⊗n

′−1
i=0 ydi

i). Due to the ideal randomness of OH , A queries OH on (L,m, z) with
probability 1 − 1/|C|. Let k ∈ [0, n′) be the index of the user associated with
the forgery. Then, according to Theorem 4, A will guess k with a probability of
1/n′. If we invoke A at most 1/ε′ times, where ε′ = n′(1−qhqsqm/q)(1−1/|C|)ε,
then we will find at least one (Θ,Ω,OH) for which A knows k with probability
3/5. According to the heavy row lemma we are situated on a heavy row H with
probability 1/2.

Define OH′ as a random oracle identical to OH except for the (L,m, z) query
to which OH′ responds with a random element d′ 6= d. We rewind the simulation
and run A at most 2/ε′ times, but with access to OH′ instead of OH . We will
be situated on H with a probability of 3/10. Now we can compute

x̃k = ua ? (s′−1
? s)b,

where a and b are computed using Euclid’s algorithm such that fa+(d′−d)b = 1.
As in Theorem 3’s proof, we obtain [x̃k] = yk.

The overall success probability is 9/100 and A is invoked at most 3/ε′ times.
ut

5 Performance Analysis

When n1 = 1 and n2 = n both SMAS schemes become an oblivious signature
with nmessages (denoted simply as SMAS). Two such signatures are described in
[3,14] for G = Z∗p. In Tables 1 and 2 we provide the reader with the performance
analysis of our scheme. In Table 1 the communication overhead is measured
in bits, while in Table 2 the computation cost is measured in exponentiations.
We consider |p| = 3072 and |q| = 256, which according to [5] offers a security
strength of 128 bits.

Scheme Steps R→ S S → R R → V
SMAS 2 |q| ' 256 2n|q| ' 512n 2|q| ' 512

Tso et. al [14] 2 |q| ' 256 2n|q| ' 512n 2|q| ' 512
Chen [3] 3 |q| ' 256 3n|p|+ n|q| ' 9472n 7|p|+ 2|q| ' 22016

Table 1. Communication cost comparison.

Scheme S R V
SMAS 2n 3n + 2 2

Tso et. al [14] 2n 3n + 2 2
Chen [3] 3n 2n + 10 8

Table 2. Computation cost comparison.

In order to measure the efficiency of our SMAS schemes, we compare them to
the protocol described in [12]. Although the philosophy of this scheme is a little
bit different than ours, it is the closest one. Again, let G = Z∗p. The results are
presented in Tables 3 and 4. Note that in Tso’s protocol, the receiver transforms
the signature into a Schnorr signature6 [10], while we transform it into an Abe
et.al signature [1]. Hence, the larger communication and computational overhead
on V’s side.

Scheme Steps R → S S → R R → V
SMAS-KSS 2 n1|q| (n1 + 1)n2|q| (n1 + 1)|q|
SMAS-NKSS 2 |q| (n1 + 1)n2|q| (n1 + 1)|q|

Tso [12] 2 |q| 2n1n2|q| 2|q|
Table 3. Communication cost comparison.

6 i.e. n1 = 1

Scheme S R V
SMAS-KSS 3n1n2 − n2 3n1n2 + 2n1 2n1
SMAS-NKSS (n1 + 1)n2 (n1 + 2)n2 + 2 n1 + 1

Tso [12] 2n1n2 3n1n2 + 2 2
Table 4. Computation cost comparison.

6 Conclusion

Our SMAS protocols are the abstraction of a large class of protocols that al-
low users to sign sensible information, while maintaining the signers anonymity.
We introduced two versions, one with independently selected public parameters
and one with common public parameters. We managed to relate the presented
protocols’ security to the hardness of inverting one-way homomorphisms.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys.
In: ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501, pp. 415–432.
Springer (2002)

2. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982. pp.
199–203. Plenum Press, New York (1982)

3. Chen, L.: Oblivious Signatures. In: ESORICS 1994. Lecture Notes in Computer
Science, vol. 875, pp. 161–172. Springer (1994)

4. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocolss. In: CRYPTO 1994. Lecture Notes
in Computer Science, vol. 839, pp. 174–187. Springer (1994)

5. Elaine, B.: NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation
for Key Management: Part 1 – General. Tech. rep., NIST (2020)

6. Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In:
CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 150–164.
Springer (1997)

7. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: AFRICACRYPT
2009. Lecture Notes in Computer Science, vol. 5580, pp. 272–286. Springer (2009)

8. Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived
from Identification. In: CRYPTO 1998. Lecture Notes in Computer Science,
vol. 1462, pp. 354–369. Springer (1998)

9. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: ASIACRYPT
2001. Lecture Notes in Computer Science, vol. 2248, pp. 552–565. Springer (2001)

10. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In:
CRYPTO 1989. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer
(1989)

11. Teşeleanu, G.: Unifying Kleptographic Attacks. In: NordSec 2018. Lecture Notes
in Computer Science, vol. 11252, pp. 73–87. Springer (2018)

12. Tso, R.: Two-in-One Oblivious Signatures Secure in the Random Oracle Model. In:
NSS 2016. Lecture Notes in Computer Science, vol. 9955, pp. 143–155. Springer
(2016)

13. Tso, R.: Two-in-One Oblivious Signatures. Future Generation Computer Systems
101, 467–475 (2019)

14. Tso, R., Okamoto, T., Okamoto, E.: 1-out-of-n Oblivious Signatures. In: ISPEC
2008. Lecture Notes in Computer Science, vol. 4991, pp. 45–55. Springer (2008)

A Abe et. al 1-out-of-n Signatures

A.1 With Key Separation

The authors of [1] introduce an 1-out-of-n1 signature for a variety of keys. Their
proposed signature is based on three-move type zero-knowledge protocols. We
further present Abe et. al’s signature instantiated with the unified zero knowl-
edge protocol proposed in [7].

Setup(λ): Let i ∈ [0, n1). Choose for each user two groups Gi, Hi, a homomor-
phism [·]i : Gi → Hi and a hash function Hi : {0, 1}∗ → Ci ⊆ N. Note that
we require that |Gi| ≥ 2λ. Choose xi

$←− Gi and compute yi ← [xi]i. Output
the public key pki = yi. The secret key is ski = xi.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n1) and output L.

Sign(m, skk,L): To sign a messagem ∈ {0, 1}∗, first generate a random element
β

$←− C and compute dk+1 ← Hk+1(L,m, [β]k). For j ∈ [k + 1, n) ∪ [0, k),
select sj

$←− Gj and then compute dj+1 ← Hj+1(L,m, [sj]j⊗j y
dj

j). Compute
sk ← β ?k x

−dk

k . Output the signature (d0,S), where S = {sj}j∈[0,n).
Verify(m, d0,W,L): For j ∈ [0, n1), compute ej ← [sj]j⊗j y

dj

j and then dj+1 ←
Hj+1(L,m, ej) if j 6= n1. Output true if and only if d0 = H0(L,m, en1−1).
Otherwise, output false.

A.2 Without Key Separation

The following is an efficient 1-out-of-n1 signature in the non-separable model
presented in [1]. Keep in mind that in this case, we are working modulo a prime
number and the signature’s security is based on the discrete logarithm assump-
tion.

Setup(λ): Choose two prime numbers p and q, such that p ≥ 2λ and q|p − 1.
Let 〈g〉 denote a subgroup of Z∗p generated by g whose order is q. Also, let
H : {0, 1}∗ → Zq be a hash function. For each user, choose xi

$←− Zq and
compute yi ← gxi mod p. Output the public key pki = yi. The secret key is
ski = xi.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n1) and output L.

Sign(m, skk,L): To sign a message m ∈ {0, 1}∗, first generate the random
elements α, dj

$←− Zq, where j ∈ [0, n1) \ {k}. Then compute the following:

z ← gα · yd0
0 · . . . · y

dk−1
k−1 · y

dk+1
k+1 · . . . · y

dn1−1
n1−1 mod p

d← H(L,m, z)
dk ← d− d0 − . . .− dk−1 − dk+1 − . . .− dn1−1 mod q
s← α− dkxk mod q.

Output the signature (s,W), where W = {dj}j∈[0,n1).
Verify(m, s,W,L): Compute the values u ←

∑n1−1
j=0 dj mod q and v ← gs ·

(
∏n1−1
j=0 y

dj

j) mod p. Output true if and only if u = H(L,m, v). Otherwise,
output false.

B Tso et. al Signature

Based on the Schnorr signature, Tso et. al [14] propose an oblivious protocol with
n2 messages. Then, the authors prove that the signature’s security is equivalent
with solving the discrete logarithm problem. We further detail their proposed
signature.

Setup(λ): Choose two prime numbers p and q, such that p ≥ 2λ and q|p−1. Let
〈g〉 denote a subgroup of Z∗p generated by g whose order is q. Choose another
element h of order q such that logg h is unknown to all the participants. Let
H : {0, 1}∗ → Zq be a hash function. For signer S, choose x $←− Zq and
compute y ← gx mod p. Output the public key pk = y. The secret key is
sk = x.

Signature Generation(): Assume that recipient R would like to get a signature
from signer S on a message m` ∈ {mt}t∈[0,n2). To compute the ambiguous
signature the following protocol is executed:
Step 1 : R selects α $←− G and computes c← gαh` mod p. Then, R sends c

and M = {mt}t∈[0,n2) to S.
Step 2 : For t ∈ [0, n2), S does the following

a) Generate an element βt
$←− Zq and compute zt ← cgβt−ihi mod p.

b) Compute dt ← H(mt, zt) and st ← βt − dtx mod q.
c) Send to R the signature (dt, st).

Step 3 : For t ∈ [0, n2), R computes et ← gst+β−th`−tydt mod p. R accepts
the oblivious signature if and only if dt = H(mt, et), where t ∈ [0, n2).
Otherwise, output false.

Step 4 : To convert the oblivious signature into a Schnorr signature, R sets
d← d` and computes s← β− `+ s` mod q. Output the signature (d, s).

Verify(m, d, s): Compute the value v ← gsyd mod p. Output true if and only
if d = H(m, v). Otherwise, output false.

	Signer and Message Ambiguity from a Variety of Keys

