
On (Weak) Simulation-Extractability of Universal zkSNARKs

Markulf Kohlweiss1,2 and Michał Zając3

1 University of Edinburgh, Edinburgh, UK
2 IOHK

mkohlwei@inf.ed.ac.uk
3 Clearmatics, London, UK

m.p.zajac@gmail.com

Abstract. In this paper we show that a wide class of (computationally) special-sound proofs of knowledge
which have unique response property and are standard-model zero-knowledge are weak simulation-extractable
when made non-interactive by the Fiat–Shamir transform. We prove that two efficient updatable univer-
sal zkSNARKs—Plonk [27] and Sonic [40]—meet these requirements and conclude by showing their weak
simulation-extractability. As a side result we also show that relying security on rewinding and Fiat–Shamir
transform often comes at a great price of inefficient (yet still polynomial time) knowledge extraction and the
security loss introduced by these techniques should always be taken into account.

1 Introduction

In recent years we have seen indisputable progress in building efficient zero-knowledge proof systems,
e.g. [14, 19, 28, 31, 32, 37, 38, 41] to name a few. Special attention has been devoted to the design of
new zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) with short (ideally
constant-length) proofs. Succinctness makes zkSNARKs especially useful for deployment in real systems,
e.g. [4, 17, 18, 43, 48]. This in turn raises the question: Are the security models of currently zkSNARKs
adequate for real-life deployment? This question is particularly pertinent when one realises that all
zkSNARKs with constant-sized proofs are shown secure in the structured reference string (SRS) model
where the SRS used by the parties—i.e. a prover that shows veracity of a statement using its private
input called witness and a verifier that verifies it—necessarily comes with a trapdoor which can be used
to break (knowledge) soundness; that is, convince the verifier to accept a false statement or a statement
for which the prover does not know the witness. Hence secure real-life deployment of zkSNARKs require
answers to questions such as—How can the parties be sure that the trapdoor has not leaked? Who is the
party that generates the SRS? Can this party be trusted? The questions are especially important in zero
knowledge proofs used in distributed systems, like e.g. blockchains, where assuming that a trusted party
generates the SRS may be unrealistic and subvert the whole purpose of a decentralised system.

Universal, updateable, and subversion-sound SNARKs. One of the first to tackled this question were
Bellare et al. [6] who proposed notions of subversion zero knowledge and subversion soundness and
in turn Groth16 [32], a popular zkSNARK employed in industry was shown to be subversion zero-
knowledge [1, 24]. Although efficient Groth16 comes with a drawback—the SRS is relation-dependent.
That is, if one wants to show that two different arithmetic circuits have been evaluated correctly, one
has to do that using two different SRS-s. Since SRS generation is a troublesome process, it is desired to
have it performed once, not every time a new circuit validity has to be shown. zkSNARKs that utilise
a single SRS for all circuits of a given size are called universal. A constant size universal zkSNARK was
proposed by Groth et al. [33]. This particular proof system also introduced a novel security property
called updatable soundness. Because of the Bellare et al. [6] impossibility result, one cannot wish for a
system that is simultaneously subversion zero-knowledge and subversion-sound. Groth et al. work around
this problem by proposing a notion which allows zkSNARK provers and verifiers to update the SRS, i.e. to
take a SRS and modify it in a well-defined and verifiable way to obtain a new SRS. Updates guarantee
that if at least one of the SRS-updating parties is honest then the proof system is (knowledge) sound.
Although inefficient, as the SRS length is quadratic to the size of the proven statements, [33] set a new
paradigm for designing zkSNARKs.

The first universal zkSNARK with updatable and short SRS was Sonic proposed by Maller et
al. in [40]. Eventually, Gabizon et al. designed Plonk [27] which currently is the most efficient updat-
able universal zkSNARK. Independently, Chiesa et al. [16] proposed Marlin with efficiency comparable to

2 Markulf Kohlweiss and Michał Zając

Plonk. All these protocols utilise strong cryptographic assumptions like the algebraic group model (AGM)
and the random oracle model (ROM) to show their security. They also use their own representation of
circuits instead of the “standard” quadratic arithmetic programs (QAP). However, these protocols are
also one of the most interesting schemes for practitioners due to their practicality stemming from the
efficient proving and verification algorithms, the constant proof size, and the universality of the SRS, as
well as for their security model that diminishes the need for a trusted party to provide a SRS.

On the importance of the simulation extractability. Another problem with existing security models is
proof malleability. Arguably, in the real life one simply cannot assume that the adversary who tries
to break security of a system does not have access to any proofs provided by other parties using the
same zero-knowledge scheme. On the contrary, in the most popular applications of zkSNARKs, like
privacy-preserving blockchains, proofs made by all blockchain-participants are (usually) public. Thus, it
is only reasonable to require a zero-knowledge proof system to be resilient to attacks that utilise proofs
generated by different parties. Nevertheless, most zkSNARKs are only shown to satisfy only a (standard)
knowledge soundness definition. We argue that simulation-extractability (SE) is the property that should
be required from zkSNARKs used in practice.

State of the art—simulation-extractable updatable universal zkSNARKs. To the best of our knowledge,
there are zkSNARKs that are simulation-extractable [3,12,32,34] and zkSNARKs that are universal [16,
27, 33, 40], however there are no known zkSNARKs that enjoy both of these properties out-of-the-box
(even for a weaker notion of simulation extractability). Obviously, given a universal zkSNARK one could
lift it to be simulation-extractable using techniques described e.g. in [2, 36], but such a lift comes with
inevitably efficiency loss. The same applies for updatable zkSNARKs. No out-of-the-box simulation-
extractable updatable zkSNARKs are currently known and there is no transformation that could take a
SE zkSNARK and make it updatable (even though transformations like [2] preserves updatability).

On the popularity and power of Fiat-Shamir. The Fiat-Shamir heuristic takes a public-coin interactive
protocol and makes it interactive by computing the verifier’s public coins by hashing the current protocol
transcript. While in principle justifiable in the Random Oracle model [8], it is theoretically unsound [29]
and so should be used with care. Nevertheless, the Fiat-Shamir heuristic is a popular design tool when
it comes to constructing zkSNARKs. Many works, including [16,27,40], design interactive protocols and
prove them secure. However, they then only conjecturing the security for their non-interactive variants by
employing the Fiat-Shamir heuristic. The more rigorous approach is to prove security of the Fiat-Shamir
heuristic in the Random Oracle model.

1.1 Our contribution

We show that a class of computationally special-sound interactive proofs of knowledge that are zero-
knowledge in the standard model and have a unique response property are weakly simulation-extractable
out-of-the box in the Random Oracle model when the Fiat–Shamir transformation is applied to them.
Although a similar problem has been already tackled by Faust et al. [22] for special-sound 3-message
Σ-protocols, we extend it to a much wider class of protocols and thus make it applicable to zkSNARKs.

The weakness of the simulation extractability property considered in this paper and in Faust et
al. relates to the fact that the extractor’s probability of returning a witness depends on the adversary’s
probability acc of producing an acceptable proof. More precisely, the extractor is not guaranteed to
succeed if the adversary outputs an acceptable proof with probability acc smaller than knowledge error
ν. On the other hand, we show that this ν can be arbitrarily small, even negligible. However, for acc close
to ν the extractor becomes fairly inefficient. On the other hand, the extractor considered in this paper
is black-box as it only needs an oracle access to the adversary. (However, it also depends on a number
of properties required from the protocol. In case of Plonk and Sonic, these properties are often proven
in the AGM.) Importantly, it does not depend on any knowledge assumption. We also note that when
an extractor depends on rewinding the adversary, it is expected to have extractor’s success probability
dependent on the adversary’s probability of returning a valid proof.

Since in the later part of this paper we do not consider other simulation extractabilty definition than
the weak one, we skip “weak” while referring to that property.

On (Weak) Simulation-Extractability of Universal zkSNARKs 3

To show that our result is useful and practical we prove that two of the most efficient updatable
and universal zkSNARKs—Plonk and Sonic—are simulation-extractable. To obtain this result, without
having to change anything at all in these protocols, we define new intermediary properties satisfied
by these multi-round computationally sound protocols and their building blocks: computational special
soundness, generalized unique response, and a generalized forking lemma. These conceptual insights into
interactive SNARK systems help us overcome a number of challenges, as we explain below.

1.2 Our techniques

Before we continue, we note that Plonk and Sonic—as originally presented in [27] and [40]—are interactive
proofs of knowledge made non-interactive by the Fiat–Shamir transform. In the following, we denote the
underlying interactive protocols by P (for Plonk) and S (for Sonic) and the resulting, non-interactive
ones, by PFS and SFS, respectively.

Special soundness. First, following [22], we need to show that P and S are special-sound. However the
standard definition of special soundness could not be met. First of all, the definition requires extraction
of a witness from any two transcripts, each containing three messages and sharing the first message. For
P and S that is not enough. The definition had to be tuned to cover protocols that have more messages
than just three. Furthermore, the number of transcripts required is much greater. Concretely, (n + 3)—
where n is the number of constraints in the proven circuit—for P and (n + Q + 1)—where n and Q are
the numbers of multiplicative and linear constraints—for S. Hence, we do not have a pair of transcripts,
but a tree of transcripts.

Secondly, both protocols rely on structured reference strings which come with trapdoors that allow an
adversary who knows them to produce multiple valid proofs even without knowing the witness or for false
statements. Recall that the standard special soundness definition requires witness extraction from any
pair of acceptable transcripts that share a common root—even those that contain an acceptable proof for
an incorrect statement. In this paper we define a weaker version of special soundness—a computational
special soundness. That is, we show that it is possible to extract a witness from all but negligibly
many trees of acceptable transcripts produced by probabilistic polynomial time (PPT) adversaries. Said
otherwise, an adversary that produced a tree of acceptable transcripts from which one cannot extract
can be used to break some underlying computational assumption.

Unique response property. Another property that has to be proven is the unique response property
which states, as expressed in [23], that except for the first message, all messages sent by the prover
are deterministic (intuitively, the prover can only employ fresh randomness in the first message of the
protocol). Again, we can not use this definition right out of the box. P does not satisfy it—both the
first and the second prover’s messages are randomised. We thus propose a generalisation of the definition
which states that a protocol is i-ur if the prover is deterministic starting from its i-th message. For our
proof it is sufficient that this property is met by P for i = 3.

To be able to show the unique response property (for both of the protocols) we also had to show that
the modified KZG polynomial commitment schemes [35] proposed in [27] and [40] have a unique opening
property which states that for a polynomial f(X) evaluated at some point z it should be infeasible for
any PPT adversary to provide two different but acceptable openings of the commitment.

HVZK. In order to show our result we also show that (interactive) P and S are honest verifier zero-
knowledge in the standard model, i.e. the simulator is able to produce a transcript indistinguishable from
a transcript produced by an honest prover and verifier without any additional knowledge, esp. without
knowing the SRS trapdoor. Although both Sonic and Plonk are shown to be zero-knowledge, the proofs
provided by their authors utilise trapdoors. For our reduction to work, we need simulators that provide
indistinguishable proofs relying only on reordering the messages and picking suitable verifier’s challenges.
That is, any PPT party should be able to produce a simulated proof by its own. (Note that this property
does not necessary break soundness of the protocol as the simulator is required only to produce a
transcript and is not involved in a real conversation with a real verifier). This property allows us to build
simulators for PFS and SFS that rely only on programmability of the random oracle.

4 Markulf Kohlweiss and Michał Zając

Generalisation of the general forking lemma. Consider an interactive 3-message special-sound
protocol Ψ and its non-interactive version ΨFS obtained by the Fiat–Shamir transform. The general
forking lemma provides an instrumental lower bound for probability of extracting a witness from an
adversary who provides two proofs for the same statement that share the first message. Since P and S
have more than 3 messages and are not special-sound, the forking lemma, as stated in [7], cannot be used
directly. We thus propose a modification that covers multi-message protocols where witness extraction
requires more transcripts than merely two. Unfortunately, we also observe that the security gap grows
with the number of transcripts and the probability that the extractor succeeds diminishes significantly.
(That said, we have to note that the security loss is polynomial, albeit big.)

We note that some modern zkSNARKs, like [14, 40], rely on the Fiat–Shamir transform and the
forking lemma heavily. First, an interactive protocol is proposed and its security and (a variant of)
special-soundness analysed. Second, one uses an argument that the Fiat–Shamir transform can be used
to get a protocol that is non-interactive and shares the same security properties.

We see our generalized forking lemma as contributing to a critical assessment of this approach. The
analysis of the interactive protocol is not enough and one has to consider the security loss implied by the
generalisation of the forking lemma or disclose a transformation that does not suffer this loss. We note
that the security loss may also apply when knowledge soundness is proven. That is the case for Sonic,
whose security proof relies on so-called witness-extended emulation. Authors of Plonk worked around this
problem by showing their protocol security directly in the algebraic group model.

Towards simulation-extractability. Given our modified, less restrictive, definition for special-
soundness and the unique response property, and our generalised forking lemma we are able to show
the announced result—simulation extractability of PFS and SFS. The proof is inspired by simulation-
extractability and simulation-soundness proofs from [22], with major modifications, which were required
as [22] considers only Σ-protocols that are undoubtedly simpler protocols than the considered proof
systems.

Generalising Boneh-Boyen-Goh [10] uber assumption. To show that Plonk is zero-knowledge we
rely on a variant of BBG’s uber assumption. In its original version, the assumption assures that some
polynomial evaluation (on a random, unknown point) represented in a bilinear pairing target group GT

is indistinguishable from a random element. In our variant, we modify two things.

– Firstly, the polynomial evaluation can be represented in other groups than GT ; here we use G1;
– Secondly, the distinguisher is given not a single polynomial evaluation, but a number of polynomials.

That is, it either gets k polynomial evaluations representations or k random numbers.

We show security of the generalized uber assumption directly in the generic group model.

1.3 Structure of the paper

In the next section we present necessary preliminaries. Section 3 compounds of new notions and theorems
that instantiate our framework. Then, in Section 4, we show our main result, that is a proof of simulation-
soundness for a class of zero-knowledge proofs of knowledge. In Section 5 and Section 6 we show that
Plonk and Sonic fulfils requirements of our framework and in fact is simulation extractable.

1.4 Related Work

There are many results on simulation extractability for non-interactive zero-knowledge proofs (NIZKs).
First, Groth [30] noticed that a (black-box) simulation extractable NIZK is universally-composable (UC)
[15]. Then Dodis et al. [21] introduced a notion of (black-box) true simulation extractability and showed
that no NIZK can be UC-secure if it does not satisfy this property. In the context of zkSNARKs it is
important to mention such works as the first simulation-extractable zkSNARK by Groth and Maller [34]
and SE zkSNARK for QAP by Lipmaa [39]. Kosba’s et al. [36] give a general transformation from a NIZK
to a black-box SE NIZK. Although their transformation works for zkSNARKs as well, succinctness of the
proof system is not preserved as the statement’s witness is encrypted. Recently, Abdolmaleki et al. [2]

On (Weak) Simulation-Extractability of Universal zkSNARKs 5

showed another transformation that obtains non-black-box simulation extractability but also preserves
succinctness of the argument.

Independently, some authors focused on obtaining simulation extractability of known zkSNARKs, like
Groth16 [32], by introducing minor modifications and using stronger assumptions [3,12]. Interestingly,
although such modifications hurt performance of the proof system, the resulting zkSNARKs are still
more efficient than the first SE zkSNARK [34], see [3]. Recently, [5] showed that the original Groth’s
proof system from [32] is weakly SE and randomisable.

Forking lemma generalizations. In [11] Bootle et al. proposed a novel inner-product argument which
security relies on, so-called, witness-extended emulation. To show that property, the authors proposed a
new version of forking lemma, which gives a lower bound on probability that a tree finding algorithm
is able to produce a tree of acceptable transcripts by rewinding a conversation between a (potentially
malicious) prover and verifier.

Although the result of presented in that paper is dubbed “forking lemma” it differs from forking
lemmas known from e.g. [7, 42]. First of all, the forking lemmas in these papers analyse probability of
building a tree of acceptable transcripts for Fiat–Shamir based non-interactive proof systems, while the
protocol presented by Bootle et al. is intended to work for interactive proof systems.

Importantly, it is not obvious how the result of Bootle et al. can be used to show security of non-
interactive protocols as it relies interactive provers whose proving strategies are more limited than proving
strategies of non-interactive ones. For example, if a challenge given by the verifier does not suit an
interactive prover, it can only try to finish a proof with it or abort. On the other hand, a non-interactive
prover has far wider scope of possible actions—when the protocol is non-interactive the prover may adapt
its strategy respectively to the random oracle outputs. For example, seeing a response h after sending
k-th message it may decide to “go back” a number of steps, e.g. prior sending k′-th message (k′ ≤ k),
provide different messages hoping for better suited response h′ on its k-th message. Furthermore, the
adversary may even interrupt the proof and try again with another instance. All of these actions would
make the proof unacceptable for an interactive verifier, however they may give a perfectly fine proof for
a non-interactive one.

2 Preliminaries

Let PPT denote probabilistic polynomial-time and λ ∈ N be the security parameter. All adversaries are
stateful. For an algorithm A, let im(A) be the image of A (the set of valid outputs of A), let R(A) denote
the set of random tapes of correct length for A (assuming the given value of λ), and let r←$ R(A) denote
the random choice of the randomiser r from R(A). We denote by negl(λ) (poly(λ)) an arbitrary negligible
(resp. polynomial) function.

Probability ensemblesX = {Xλ}λ and Y = {Yλ}λ, for distributionsXλ, Yλ, have statistical distance ∆
equal ε(λ) if

∑
a∈Supp(Xλ∪Yλ)|Pr[Xλ = a]− Pr[Yλ = a]| = ε(λ). We write X ≈λ Y if ∆(Xλ, Yλ) ≤ negl(λ).

For values a(λ) and b(λ) we write a(λ) ≈λ b(λ) if |a(λ)− b(λ)| ≤ negl(λ).
For a probability space (Ω,F , µ) and event E ∈ F we denote by E an event that is complementary

to E, i.e. E = Ω \ E.
Denote by R = {R} a family of relations. We assume that if R comes with any auxiliary input,

it is benign. Directly from the description of R one learns security parameter λ and other necessary
information like public parameters p containing description of a group G, if the relation is a relation of
group elements (as it usually is in case of zkSNARKs).

Bilinear groups. A bilinear group generator Pgen(1λ) returns public parameters p =
(p,G1,G2,GT , ê, [1]1 , [1]2), where G1, G2, and GT are additive cyclic groups of prime order p = 2Ω(λ),
[1]1 , [1]2 are generators of G1, G2, resp., and ê : G1 × G2 → GT is a non-degenerate PPT-computable
bilinear pairing. We assume the bilinear pairing to be Type-3, i.e., that there is no efficient isomorphism
from G1 to G2 or from G2 to G1. We use the by now standard bracket notation, i.e., we write [a]ι to denote
agι where gι is a fixed generator of Gι. We denote ê([a]1 , [b]2) as [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We
freely use the bracket notation with matrices, e.g., if AB = C then A [B]ι = [C]ι and [A]1• [B]2 = [C]T .
Since every algorithm A takes as input the public parameters we skip them when describing A’s input.
Similarly, we do not explicitly state that each protocol starts with generating these parameters by Pgen.

6 Markulf Kohlweiss and Michał Zając

2.1 Computational assumptions.

Discrete-log assumptions. Security of Plonk and Sonic relies on two discrete-log based security
assumptions—(q1, q2)-dlog assumption and its extended with negative exponents version (q1, q2)-ldlog
assumption4.

Definition 1 ((q1, q2)-dlog assumption). Let A be a PPT adversary that gets as input
[1, χ, . . . , χq1]1 , [1, χ, . . . , χq2]2, for some randomly picked χ ∈ Fp, then

Pr[χ← A([1, χ, . . . , χq1]1 , [1, χ, . . . , χ
q2]2) |χ←$Fp] ≤ negl(λ).

Definition 2 ((q1, q2)-ldlog assumption). Let A be a PPT adversary that gets as input
[χ−q1 , . . . , 1, χ, . . . , χq1]1 , [χ−q2 , . . . , 1, χ, . . . , χq2]2, for some randomly picked χ ∈ Fp, then

Pr
[
χ← A(

[
χ−q1 , . . . , 1, χ, . . . , χq1

]
1 ,
[
χ−q2 , . . . , 1, χ, . . . , χq2

]
2)
∣∣χ←$Fp

]
≤ negl(λ).

BBG uber assumption. Also, to be able to show computational honest verifier zero knowledge of Plonk
in the standard model, what is required by our reduction, we rely on the uber assumption introduced by
Boneh et al. [10] as presented by Boyen in [13].

Let r, s, t, c ∈ N \ {0}, Consider vectors of polynomials R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s and
T ∈ Fp[X1, . . . , Xc]t. Write R = (r1, . . . , rr), S = (s1, . . . , ss) and T = (t1, . . . , tr) for polynomials ri, sj , tk.

For a function f and vector (x1, . . . , xc) we write f(R) to denote application of f to each element of
R, i.e.

f(R) = (f(r1(x1, . . . , xc), . . . , f(rr(x1, . . . , xc)) .

Similarly for applying f to S and T.

Definition 3 (Independence of R, S,T). Let R,S,T be defined as above. We say that polyno-
mial f ∈ Fp[X1, . . . , Xc] is dependent on R,S,T if there exists rs + t constants ai,j , bk such that
f =

∑r
i=1

∑s
j=1 ai,jrisj +

∑t
k=1 bktk. We say that f is independent if it is not dependent.

To show (standard-model) zero knowledge of Plonk we utilize a generalization of Boneh-Boyen-Goh’s
uber assumption [10] stated as follows (the changed element has been put into a dashbox)

Definition 4 ((R, S,T,F, 1)-uber assumption). Let R, S,T be defined as above,
(x1, . . . , xc, y1, . . . , yd)←$Fc+dp and let F be a set of pair-wise independent polynomials which are
also independent on (R,S,T), cf. Definition 3. Then, for any PPT adversary A

Pr
[
A([R(x1, . . . xc)]1 , [S(x1, . . . , xc)]2 , [T(x1, . . . , xc)]T , [F(x1, . . . , xc)]1) = 1

]
≈λ

Pr
[
A([R(x1, . . . xc)]1 , [S(x1, . . . , xc)]2 , [T(x1, . . . , xc)]T , [y1, . . . , yd]1) = 1

]
.

Compared to the original uber assumptions, there are two major changes. First, we require not target
group GT elements to be indistinguishable, but elements of G1. Second, Boneh et al.’s assumption works
for distinguishers who are given only one challenge polynomial f, i.e. |F| = 1. We prove our variant of
the uber assumption in the generic group model, see Theorem 3.

Proofs by Game-Hoping. Proofs by game hoping is a method of writing proofs popularised by e.g. Shoup
[46] and Dent [20]. The method relies on the following lemma.

Lemma 1 (Difference lemma, [46, Lemma 1]). Let A,B,F be events defined in some probability
space, and suppose that A ∧ F ⇐⇒ B ∧ F. Then |Pr[A]− Pr[B]| ≤ Pr[F] .

4 Note that [40] dubs their assumption a dlog assumption. We changed that name to distinct it from the more standard
dlog assumption used in [27]. “l” in ldlog relates to use of Laurent polynomials in the assumption.

On (Weak) Simulation-Extractability of Universal zkSNARKs 7

KGen(1λ,max)

χ←$F2
p

return
[
1, . . . , χn+2]

1
, [χ]2

Com(srs, f(X))

return [c]1 = [f(χ)]1

Op(srs,γ, z, s, f(X))

for i ∈ [1 .. |z|] do

oi(X)←
ti∑
j=1

γj−1
i

fi,j(X)− fi,j(zi)
X − zi

return o = [o(χ)]1

Vf(srs, [c]1 , z, s, [o(χ)]1)

r ← F|z|p
for i ∈ [1 .. |z|] do

if
|z|∑
i=1

ri ·

[
tj∑
j=1

γj−1
i ci,j −

∑
j = 1tj si,j

]
1

• [1]2 +

|z|∑
i=1

rizioi • [1]2 6=

[
−
|z|∑
i=1

rioi

]
1

• [χ]2 then

return 0
return 1.

Fig. 1: PCP polynomial commitment scheme.

KGen(1λ,max)

α, χ←$F2
p

return
[
{χi}n

i=−n, {αχi}n
i=−n,i 6=0

]
1
,[

{χi, αχi}n
i=−n

]
2
, [α]T

Com(srs,max, f(X))

c(X)← α ·Xd−maxf(X)
return [c]1 = [c(χ)]1

Op(srs, z, s, f(X))

o(X)← f(X)− f(z)
X − z

return [o(χ)]1

Vf(srs,max, [c]1 , z, s, [o(χ)]1)

if [o(χ)]1 • [αχ]2 + [s− zo(χ)]1 • [α]2 =
[c]1 •

[
χ−d+max]

2
then return 1

else return 0.

Fig. 2: PCS polynomial commitment scheme.

2.2 Algebraic Group Model

The algebraic group model (AGM) introduced in [25] lies between the standard model and generic bilinear
group model. In the AGM it is assumed that an adversary A can output a group element [y] ∈ G if [y]
has been computed by applying group operations to group elements given to A as input. It is further
assumed, that A knows how to “build” [y] from that elements. More precisely, the AGM requires that
whenever A([x]) outputs a group element [y] then it also outputs c such that [y] = c> ·[x]. Both Plonk and
Sonic have been shown secure using the AGM. An adversary that works in the AGM is called algebraic.

2.3 Polynomial commitment.

In the polynomial commitment scheme PC = (KGen,Com,Op,Vf) the committer C can convince the
receiver R that some polynomial f which C committed to evaluates to s at some point z chosen by R.
Plonk and Sonic use variants of the KZG polynomial commitment scheme [35]. We denote the first by
PCP, presented in Fig. 1, and the latter by PCS, presented in Fig. 2. The key generation algorithm KGen
takes as input a security parameter 1λ and a parameter max which determines the maximal degree of
the committed polynomial. We assume that max can be read from the output SRS.

We emphasize the following properties of a secure polynomial commitment PC:

Evaluation binding: A PPT adversary A which outputs a commitment c and evaluation points z has
at most negligible chances to open the commitment to two different evaluations s, s′. That is, let
k ∈ N be the number of committed polynomials, l ∈ N number of evaluation points, c ∈ Gk be the
commitments, z ∈ Flp be the arguments the polynomials are evaluated at, s, s′ ∈ Fkp the evaluations,

8 Markulf Kohlweiss and Michał Zając

and o,o′ ∈ Flp be the commitment openings. Then for every PPT adversary A

Pr


Vf(srs, c, z, s,o) = 1,
Vf(srs, c, z, s′,o′) = 1,
s 6= s′

∣∣∣∣∣∣∣∣
srs← KGen(1λ,max),
(c, z, s, s′,o,o′)← A(srs)

 ≤ negl(λ) .

We say that PC has the unique opening property if the following holds:

Opening uniqueness: Let k ∈ N be the number of committed polynomials, l ∈ N number of evaluation
points, c ∈ Gk be the commitments, z ∈ Flp be the arguments the polynomials are evaluated at, s ∈ Fkp
the evaluations, and o ∈ Flp be the commitment openings. Then for every PPT adversary A

Pr


Vf(srs, c, z, s,o) = 1,
Vf(srs, c, z, s,o′) = 1,
o 6= o′

∣∣∣∣∣∣∣∣
srs← KGen(1λ,max),
(c, z, s,o,o′)← A(srs)

 ≤ negl(λ) .

Intuitively, opening uniqueness assures that there is only one valid opening for the committed polynomial
and given evaluation point. This property is crucial in showing simulation-extractability of Plonk and
Sonic. We show that the Plonk’s and Sonic’s polynomial commitment schemes satisfy this requirement in
Lemma 3 and Lemma 7 respectively.

Commitment of knowledge For every PPT adversary A who produces commitment c, evaluation
point z, evaluation s and opening o there exists a PPT extractor Ext such that

Pr


f = ExtA(srs, c),
c = Com(srs, f),
Vf(srs, c, z, s, o) = 1

∣∣∣∣∣∣∣∣
srs← KGen(1λ,max),
(c, z, s, o)← A(srs)

 ≥ 1− εk(λ).

In that case we say that PC is εk-knowledge.

Intuitively when a commitment scheme is a commitment of knowledge then if an adversary produces a
(valid) commitment c, which it can open, then it also knows the underlying polynomial f which commits
to that value. [40] shows, using AGM, that PCS is a commitment of knowledge. The same reasoning
could be used to show that property for PCP. We skip a proof for that fact due to the lack of space.

2.4 Zero knowledge

In a zero-knowledge proof system, a prover convinces the verifier of veracity of a statement without
leaking any other information. The zero-knowledge property is proven by constructing a simulator that
can simulate the view of a cheating verifier without knowing the secret information—witness—of the
prover. A proof system has to be sound as well, i.e. for a malicious prover it should be infeasible to
convince a verifier on a false statement. Here, we focus on proof systems that guarantee soundness
against PPT malicious provers.

More precisely, let R(1λ) = {R} be a family of NP relations. Denote by LR the language determined
by R. Let P and V be PPT algorithms, the former called prover and the latter verifier. We allow our
proof system to have a setup, i.e. there is a KGen algorithm that takes as input the relation description
R and outputs a common reference string srs. We denote by 〈P(R, srs, x,w),V(R, srs, x)〉 a transcript
(also called proof) π of a conversation between P with input (R, srs, x,w) and V with input (R, srs, x).
We write 〈P(R, srs, x,w),V(R, srs, x)〉 = 1 if in the end of the transcript the verifier V returns 1 and say
that V accepts it. We sometimes abuse notation and write V(R, srs, x, π) = 1 to denote a fact that π
is accepted by the verifier. (This is especially handy when the proof system is non-interactive, i.e. the
whole conversation between the prover and verifier consists of a single message π sent by P).

A proof system Ψ = (KGen,P,V,Sim) for R is required to have three properties: completeness,
soundness and zero knowledge, which are defined as follows:

On (Weak) Simulation-Extractability of Universal zkSNARKs 9

Completeness. An interactive proof system Ψ is complete if an honest prover always convinces an honest
verifier, that is for all R ∈ R(1λ) and (x,w) ∈ R

Pr[〈P(R, srs, x,w),V(R, srs, x)〉 = 1 | srs← KGen(R)] = 1 .

Soundness. We say that Ψ for R is sound if no PPT prover A can convince an honest verifier V to accept
a proof for a false statement x 6∈ L. More precisely, for all R ∈ R(1λ)

Pr[〈A(R, srs, x),V(R, srs, x)〉 = 1 | srs← KGen(R), x ← A(R, srs); x 6∈ LR] ≤ negl(λ) ;

Sometimes a stronger notion of soundness is required—except requiring that the verifier rejects proofs
of statements outside the language, we request from the prover to know a witness corresponding to the
proven statement. This property is formalised by the so-called knowledge soundness. That is, we call an
interactive proof system Ψ knowledge-sound if for any R ∈ R(1λ) and a PPT adversary A

Pr

V(R, srs, x, π) = 1,
R(x,w) = 0

∣∣∣∣∣∣∣∣
srs← KGen(R), x ← A(R, srs),
(w, π)← Ext〈A(R,srs,x),V(R,srs,x)〉(R, x)

 ≤ negl(λ) ,

Zero knowledge. We call a proof system Ψ zero-knowledge if for any R ∈ R(1λ), (x,w) ∈ R, and adversary
A there exists a PPT simulator Sim such that{
〈P(R, srs, x,w),A(R, srs, x,w)〉

∣∣∣ srs← KGen(R)
}

≈λ
{

SimA(R, srs, x)
∣∣∣ srs← KGen(R)

}
.

We call zero knowledge perfect if the distributions are equal and computational if they are indistinguish-
able for any NUPPT distinguisher.

An SRS srs comes with a secret string called trapdoor td that allows the simulator to produce a
simulated proof. In that case algorithm KGen(R) outputs (srs, td) and td is given to the simulator. In
this paper we distinguish simulators that requires a trapdoor to simulate and those that do not. We call
the former SRS-simulators and denote them by Simtd.

Occasionally, a weaker version of zero knowledge is sufficient. So called honest verifier zero knowledge
(HVZK) assumes that the verifier’s challenges are picked at random from some predefined set. Although
weaker, this definition suffices in many applications. Especially, an interactive zero-knowledge proof that
is HVZK and public-coin (i.e. the verifier outputs as challenges its random coins) can be made non-
interactive and zero-knowledge in the random oracle model by using the Fiat–Shamir transformation.

Idealised verifier and verfication equations Usually the verifier V verifies messages send by the prover
by checking a number of equations depend on the instance, SRS and the proof. We call these equations
verification equations and denote by vei, for i being an index of the equation. We require that an
acceptable proof yields vei = 0.

In the proof systems we consider—Plonk and Sonic—verification equations can be interpreted as
group representations of polynomial evaluations at the trapdoor χ. In other words, the verifier checks
that vei(χ) = 0. Gabizon et al. [27] formalized a notion of an idealised verifier who, instead of checking
that polynomial vei(X) evaluates to 0 at χ, just checks that vei(X) is a zero polynomial.

Sigma protocols A sigma protocol Σ = (P,V,Sim) for a relation R ∈ R(1λ) is a special case of an
interactive proof which transcript compounds of three messages (a, b, z), the middle being a challenge
provided by the verifier. Sigma protocols are honest verifier zero-knowledge in the standard model and
specially-sound. That is, there exists an extractor Ext which given two accepting transcripts (a, b, z),
(a, b′, z′) for a statement x can recreate the corresponding witness if b 6= b′. Formally,

Special soundness. A sigma protocol Σ is specially-sound if for any adversary A the probability

Pr
[

w← Ext(R, x, (a, b, z), (a, b′, z′)),
R(x,w) = 0

∣∣∣∣∣ (x, (a, b, z), (a, b′, z′))← A(R), b 6= b′,

V(R, x, (a, b, z)) = V(R, x, (a, b′, z′)) = 1,

]
≤ negl(λ) .

Another property that sigma protocols may have is a unique response property [23] which states
that no PPT adversary can produce two accepting transcripts that differ only on the last element. More
precisely,

10 Markulf Kohlweiss and Michał Zając

Unique response property. Let Σ = (P,V,Sim) be a sigma-protocol for R ∈ R(1λ) which proofs compound
of three messages (a, b, z). We say that Σ is has a unique response property if for all PPT algorithms A
holds

Pr
[
V(R, x, (a, b, z)) = V(R, x, (a, b, z′)) = 1

∣∣ (x, a, b, z, z′)← A(R), z 6= z′
]
≤ negl(λ) .

If this property holds even against unbounded adversaries, it is called strict, cf. [22]. Later on we call
protocols that follows this notion ur-protocols. For the sake of completeness we note that many sigma
protocols, like e.g. Schnorr’s protocol [44], fulfil this property.

2.5 From interactive to non-interactive—Fiat–Shamir transformation
Consider a (2µ + 1)-message, public-coin, honest verifier zero-knowledge interactive proof system Ψ =
(KGen,P,V,Sim) for R ∈ R(1λ). Let π be a proof performed by the prover P and verifier V compound of
messages (a1, b1, . . . , aµ−1, bµ, aµ+1), where ai comes from P and bi comes from V. Denote by H a random
oracle. Let ΨFS = (KGenFS,PFS,VFS, SimFS) be a proof system such that
– KGenFS behaves as KGen.
– PFS behaves as P except after sending message ai, i ∈ [1 .. µ], the prover does not wait for

the message from the verifier but computes it locally setting bi = H(π[0..i]), where π[0..j] =
(x, a1, b1, . . . , aj−1, bj−1, aj). (Importantly, π[0..µ+ 1] = (x, π)).

– VFS behaves as V but does not provide challenges to the prover’s proof. Instead it computes the
challenges locally as PFS does. Then it verifies the resulting transcript π as the verifier V would.

– SimFS behaves as Sim, except when Sim picks challenge bi, SimFS programs the random oracle to
output bi on π[0, i].
Fiat–Shamir heuristic states that ΨFS is zero-knowledge non-interactive proof system for R ∈ R(1λ).

2.6 Simulation extractable NIZKs from sigma protocols
Real life applications often require from a NIZK proof system to be non-malleable. That is, no adversary
seeing a proof π for a statement x should be able to provide a new proof π′ related to π. A strong version of
non-malleability is formalised by so-called simulation extractability which assures that no adversary can
produce a valid proof without knowing the corresponding witness. This must hold even if the adversary
is allowed to see polynomially many simulated proofs for any statements it wishes.

Definition 5 (Weak simulation-extractable NIZK, [22]). Let Ψ = (KGen,P,V, Sim) be a com-
putationally special-sound HVZK proof and ΨFS = (KGenFS,PFS,VFS, SimFS) be Ψ transformed by the
Fiat–Shamir transform. We say that ΨFS is simulation-extractable with extraction error ν if for any
PPT adversary A that is given oracle access to a random oracle H and simulator SimFS, and produces
an accepting transcript of Ψ with probability acc, that is

acc = Pr
[

VFS(R, srs, xA, πA) = 1,
(xA, πA) 6∈ Q

∣∣∣∣∣ srs← KGen(R), r←$ R(A),
(xA, πA)← ASimFS,H(R, srs; r)

]
,

probability

frk = Pr


VFS(R, srs, xA, πA) = 1,
(xA, πA) 6∈ Q,
R(xA,wA) = 1

∣∣∣∣∣∣∣∣
srs← KGen(R), r←$ R(A),
(xA, πA)← ASimFS,H(R, srs; r)
wA ← Extse(R, srs,A, r, xA, πA, Q,QH,)


is at at least

frk ≥ 1
poly(λ)(acc− ν)d − ε(λ) ,

for some polynomial poly(λ), constant d and negligible ε whenever acc ≥ ν. List Q contains all (x, π)
pairs where x is an instance provided to the simulator by the adversary and π is the simulator’s answer.
List QH contains all A’s queries to H and H’s answers.

Consider a sigma protocol Σ = (P,V,Sim) that is specially sound and has a unique response property.
Let ΣFS = (PFS,VFS,SimFS) be a NIZK obtained by applying the Fiat–Shamir transform to Σ. Faust et
al. [22] show that every such ΣFS is simulation-extractable. This result is presented in Appendix A along
with the instrumental forking lemma, cf. [7].

On (Weak) Simulation-Extractability of Universal zkSNARKs 11

GFmZ (y, h1
1, . . . , h

1
q)

ρ←$ R(Z)
(i, s1)← Z(y, h1

1, . . . , h
1
q; ρ)

i1 ← i

if i = 0 return (0,⊥)
for j ∈ [2 ..m]
hj1, . . . , h

j
i−1 ← hj−1

1 , . . . , hj−1
i−1

hji , . . . , h
j
q ←$H

(ij , sj)← Z(y, hj1, . . . , h
j
i−1, h

j
i , . . . , h

j
q; ρ)

if ij = 0 ∨ ij 6= i return (0,⊥)

if ∃(j, j′) ∈ [1 ..m]2, j 6= j′ : (hji = hj
′

i) return (0,⊥)
else return (1, s)

Fig. 3: Generalised forking algorithm GFmZ

3 Towards simulation extractability of multi-message protocols, definitions and
lemmas

Unfortunately, Faust et al.’s result cannot be directly applied in our case since the protocols we consider
have more than three messages, require more than just two transcripts for the extractor to work and
are not special sound. In this part we generalize the forking lemma, special soundness, and the unique
response property to make them compatible with multi-message protocols.

3.1 Generalised forking lemma.

First of all, although dubbed “general”, Lemma 11 is not general enough for our purpose as it is useful
only for protocols where witness can be extracted from just two transcripts. To be able to extract a
witness from, say, an execution of P we need to obtain at least n + 3 valid proofs, and even more for
S. Here we propose a generalisation of the general forking lemma that given probability of producing
an accepting transcript acc lower-bounds the probability of generating a tree of accepting transcripts T,
which allows to extract a witness.

Definition 6 (Tree of accepting transcripts, cf. [11]). Consider a (2µ + 1)-message interactive
proof system Ψ. An (n1, . . . , nµ)-tree of accepting transcript is a tree where each node on depth i, for
i ∈ [1 .. µ+ 1], is an i-th prover’s message in an acceptable transcript; edges between the nodes are labeled
with verifier’s challenges, such that no two edges on the same depth have the same label; and each node
on depth i has ni − 1 siblings and ni+1 children. Altogether, the tree consists of N =

∏µ
i=1 ni branches,

which makes N acceptable transcripts. We require N = poly(λ).

Lemma 2 (General forking lemma II). Fix q ∈ Z and set H of size h ≥ m. Let Z be a PPT
algorithm that on input y, h1, . . . , hq returns (i, s) where i ∈ [0 .. q] and s is called a side output. Denote
by IG a randomised instance generator. We denote by acc the probability

Pr[i 6= 0 | y ← IG; h1, . . . , hq←$H; (i, s)← Z(y, h1, . . . , hq)] .

Let GFmZ denote the algorithm described in Fig. 3 then the probability frk :=
Pr[b = 1 | y ← IG; h1, . . . , hq←$H; (b, s)← GFmZ (y, h1, . . . , hq)] is at least

accm
qm−1 − acc ·

(
1− h!

(h−m)! · hm
)
.

Proof. First let denote by acc(y) and frk(y) the following probabilities

acc(y) = Pr[i 6= 0 |h1, . . . , hq←$H; (i, s)← Z(y, h1, . . . , hq)] .

12 Markulf Kohlweiss and Michał Zając

frk(y) = Pr[b = 1 | (b, s)← GFmZ (y, h1, . . . , hq)] .

We start by claiming that for all y

frk(y) ≥ acc(y)m

qm−1 − acc(y) ·
(

1− h!
(h−m)! · hm

)
(1)

Then with the expectation taken over y←$ IG, we have

frk = E [frk(y)] ≥ E
[acc(y)m

qm−1 − acc(y) ·
(

1− h!
(h−m)! · hm

)]
(2)

≥ E [acc(y)]m

qm−1 − E [acc(y)] ·
(

1− h!
(h−m)! · hm

)
(3)

= accm
qm−1 − acc ·

(
1− h!

(h−m)! · hm
)
. (4)

Where Eq. (2) comes from Eq. (1); Eq. (3) comes from linearity of expected value and Lemma 12; and
Eq. (4) holds by the fact that E [acc(y)] = acc.

We now show Eq. (1). Denote by J = [1 ..m]2 \ {(j, j)}j∈[1 ..m]. For any input y, with probabilities
taken over the coin tosses of GFmZ we have

frk(y) = Pr
[
ij = ij′ ∧ ij ≥ 1 ∧ hjij 6= hj

′

ij′
for (j, j′) ∈ J

]
≥ Pr

[
ij = ij′ ∧ ij ≥ 1 for (j, j′) ∈ J

]
− Pr

[
ij ≥ 1 ∧ hjij = hj

′

ij′
for some (j, j′) ∈ J

]
= Pr

[
ij = ij′ ∧ ij ≥ 1 for (j, j′) ∈ J

]
− Pr[ij ≥ 1] ·

(
1− h!

(h−m)! · hm
)

= Pr
[
ij = ij′ ∧ ij ≥ 1 for (j, j′) ∈ J

]
− acc(y) ·

(
1− h!

(h−m)! · hm
)
.

Probability that for some (j, j′) ∈ J and ij = ij′ holds hjij 6= hj
′

ij′
equals

h · (h− 1) · . . . · (h−m− 1)
hm

= h!
(h−m)! · hm .

That is, it equals the number of all m-element strings where each element is different divided by the
number of all m-element strings, where elements are taken from a set of size h.

It remains to show that Pr
[
ij = ij′ ∧ ij ≥ 1 for (j, j′) ∈ J

]
≥ acc(y)m/qm−1. Let R(Z) denote the set

from which Z picks its coins at random. For each ι ∈ [1 .. q] let Xι : R(Z)×Hι−1 → [0, 1] be defined by
setting Xι(ρ, h1, . . . , hι−1) to

Pr[i = ι |hι, . . . , hq←$H; (i, s)← Z(y, h1, . . . , hq; ρ)]

for all ρ ∈ R(Z) and h1, . . . , hι−1 ∈ H. Consider Xι be a random variable over the uniform distribution
on its domain. Then

Pr
[
ij = ij′ ∧ ij ≥ 1 for (j, j′) ∈ J

]
=

q∑
ι=1

Pr[i1 = ι ∧ . . . ∧ im = ι]

=
q∑
ι=1

Pr[i1 = ι] · Pr[i2 = ι | i1 = ι] · . . . · Pr[im = ι | i1 = . . . = im−1 = ι]

=
q∑
ι=1

∑
ρ,h1,...,hι−1

Xι(ρ, h1, . . . , hι−1)m · 1
|R(Z)| · |H|ι−1 =

q∑
ι=1

E [Xm
ι] .

Importantly,
∑q
ι=1 E [Xι] = acc(y).

By Lemma 12 we get
q∑
ι=1

E [Xm
ι] ≥

q∑
ι=1

E [Xι]m .

On (Weak) Simulation-Extractability of Universal zkSNARKs 13

Note that for e.g. Xi = 1, i ∈ [1 .. q] the inequality becomes equality, that is, it is tight.
We now use the Hölder inequality, cf. Lemma 13, for xi = E [Xi], yi = 1, p = m, and q = m/(m− 1)

obtaining (q∑
i=1

E [Xi]
)m
≤
(q∑
i=1

E [Xi]m
)
· qm−1 (5)

1
qm−1 · acc(y)m ≤

q∑
i=1

E [Xi]m . (6)

Finally, we get

frk(y) ≥ acc(y)m

qm−1 − acc(y) ·
(

1− h!
(h−m)! · hm

)
.

ut

To highlight importance of the generalised forking lemma we describe how we use it in our simulation-
extractability proof. Let Ψ be a computationally special sound proof system where for an instance x the
corresponding witness can be extracted from an (1, . . . , 1, nk, 1, . . . , 1)-tree of accepting transcripts. Let
A be the simulation-extractability adversary that outputs an acceptable proof with probability at least
acc. (Although we use the same acc to denote probability of Z outputing a non-zero i and probability
of A outputing an acceptable proof we claim that these probabilities are exactly the same what comes
from how we define Z.) Let A produce an acceptable proof πA for instance xA; r be A’s randomness; Q
the list of queries submitted by A along with simulator’s Simπ answers; and QH be the list of all random
oracle queries made by A. All of these are given to the extractor Ext that internally runs the forking
algorithm GFnkZ . Algorithm Z takes (R, srs,A, Q, r) as input y and QH as input h1

1, . . . , h
1
q . (For the sake

of completeness, we allow GFnkZ to pick h1
l+1, . . . , h

1
q responses if QH has only l < q elements.)

Next, Z runs internally A(R, srs; r) and responds to its random oracle and simulator queries by using
QH and Q. Note that A makes the same queries as it did before it output (xA, πA) as it is run on the
same random tape and with the same answers from the simulator and random oracle. After A finishes
its acceptable proof πA, algorithm Z outputs (i, πA), where i is the index of a random oracle query
submitted by A to get the challenge after k-th message from the prover—a message where the tree of
transcripts branches. Then, after the first run of A is done, the extractor runs Z again, but this time
it provides fresh random oracle responses h2

i , . . . , h
2
q . Note that this is equivalent to rewinding A to a

point just before A is about to ask its i-th random oracle query. Probability that the adversary produces
an acceptable transcript with the fresh random oracle responses is at least acc. This continues until the
required number of transcripts is obtained.

We note that in the original forking lemma the forking algorithm F, cf. Fig. 4, gets only as input y
and elements h1

1, . . . , h
1
q are randomly picked from H internally by F. However, assuming that h1

1, . . . , h
1
q

are random oracle responses, thus are random, makes the change only notational.
We also note that the general forking lemma proposed in Lemma 2 works for protocols which have

extractable witness from a (1, . . . , 1, nk, 1, . . . , 1)-tree of acceptable transcripts. This limitation however
does not affect the main result of this paper, i.e. showing that both Plonk and Sonic are simulation
extractable.

3.2 Unique-response protocols.

Another problem comes with another assumption required by Faust et al.—the unique response property
of the transformed sigma protocol. The original Fischlin’s formulation, although suitable for applications
presented in [22, 23], is not enough in our case. First of all, the property assumes that the protocol has
three messages, with the middle being the challenge from the verifier. That is not the case we consider
here. Second, it is not entirely clear how to generalize the property. Should one require that after the
first challenge from the verifier the prover’s responses are fixed? That could not work since the prover
needs to answer differently on different verifier’s challenges, as otherwise the protocol could have fewer
rounds. Another problem arises when the protocol contains some message—obviously, except the first
one—where the prover randomises its message. In that case unique-responsiveness can not hold as well.

14 Markulf Kohlweiss and Michał Zając

Last but not least, the protocols we consider here are not designed to be in the standard model, but
utilises SRS what also complicates things considerably.

We walk around these obstacles by providing a generalised notion of the unique response property.
More precisely, we say that a (2µ + 1)-message protocol has unique responses from i, and call it an
i-ur-protocol, if it follows the definition below:

Definition 7 (i-ur-protocol). Let Ψ be a (2µ + 1)-message proof system Ψ = (KGen,P,V,Sim). Let
ΨFS be Ψ after the Fiat–Shamir transform, Denote by a1, . . . , aµ, aµ+1 protocol messages output by the
prover, We say that Ψ has unique responses from i on if for any PPT adversary A:

Pr


x,a = (a1, . . . , aµ+1),a′ = (a′1, . . . , a′µ+1)← AH(R, srs),
a 6= a′, a1, . . . , ai = a′1, . . . , a

′
i,

VHFS(R, srs, x,a) = VHFS(R, srs, x,a′) = 1

∣∣∣∣∣∣∣∣ srs← KGenFS(R)

 ≤ negl(λ).

Intuitively, a protocol is i-ur if it is infeasible for a PPT adversary to produce a pair of acceptable
and different proofs π, π′ that are the same on first i messages. We note that the definition above is
independent on whether the proof system Ψ utilises SRS (and compounds of the SRS-generating KGen
algorithm) or not.

3.3 Computational special soundness

Note that the special soundness property (as usually defined) holds for all—even computationally
unbounded—adversaries. Unfortunately, since a simulation trapdoors for P and S exist, the protocols
cannot be special sound in that regard. This comes since an unbounded adversary could reveal the trap-
door and build a number of simulated proofs for a fake statement. Hence, we provide a weaker, yet
sufficient, definition of computational special soundness. More precisely, we state that an adversary that
is able to answer correctly multiple challenges either knows the witness or can be used to break some
computational assumption.

Definition 8 (Computational special soundness). Let Ψ = (KGen,P,V,Sim) be an (2µ+1)-message
proof system for a relation R. We say that Ψ is (εss, (n1, . . . , nµ))-computationally special sound if there
exists an extractor Exttree that given an (n1, . . . , nµ)-tree of acceptable transcripts T and instance x output
by some PPT adversary A(R, srs), for srs←$ KGen(R), outputs w such that R(x,w) = 1 with probability
at least 1− εss.

Since we do not utilise the classical special soundness (that holds for all, even unbounded, adversaries)
all references to that property should be understood as references to its computational version.

4 Simulation-extractability—the general result

Equipped with definitional framework of Section 3 we are ready to present the main result of this paper—
simulation extractability of multi-round protocols.

Theorem 1 (Simulation-extractable multi-message protocols). Let Ψ = (KGen,P,V, Sim) be an
interactive (2µ+1)-message proof system for R(1λ) that is honest verifier zero-knowledge in the standard
model5, has k-ur property with security εur, is (n1, . . . , nµ)-special sound for ni = 1, i ∈ [1 .. µ] \ {k} and
nk = n.

Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Then ΨFS is simulation-extractable with extraction
error εur against PPT algebraic adversaries that makes up to q random oracle queries and returns an
acceptable proof with probability at least acc. The extraction probability ext is at least

ext ≥ 1
qn−1 (acc− εur)n − ε ,

for some negligible ε.
5 Crucially, we require that one can provide an indistinguishable simulated proof without any additional knowledge, as
e.g knowledge of a SRS trapdoor.

On (Weak) Simulation-Extractability of Universal zkSNARKs 15

Proof. The proof goes by game hoping. The games are controlled by an environment E that internally runs
a simulation extractability adversary A, provides it with access to a random oracle and simulator, and
when necessary rewinds it. The games differ by various breaking points, i.e. points where the environment
decides to abort the game.

Denote by πA, πSim proofs returned by the adversary and the simulator respectively. We use π[i]
to denote prover’s message in the i-th round of the proof (counting from 1), i.e. (2i − 1)-th message
exchanged in the protocol. π[i].ch denotes the challenge that is given to the prover after π[i], and π[i..j]
to denote all messages of the proof including challenges between rounds i and j, but not challenge π[j].ch.
When it is not explicitly stated we denote the proven instance x by π[0] (however, there is no following
challenge π[0].ch).

Without loss of generality, we assume that whenever the accepting proof contains a response to a
challenge from a random oracle, then the adversary queried the oracle to get it. It is straightforward
to transform any adversary that violates this condition into an adversary that makes these additional
queries to the random oracle and wins with the same probability.

Game G0: This is a simulation extraction game played between an adversary A who has given access
to a random oracle H and simulator ΨFS.Sim. There is also an extractor Ext that, from a proof πA for
instance xA output by the adversary and from transcripts of A’s operations is tasked to extract a witness
wA such that R(xA,wA) holds. A wins if it manages to produce an acceptable proof and the extractor
fails to reveal the corresponding witness. In the following game hops we upper-bound the probability
that this happens.

Game G1: This is identical to G0 except that now the game is aborted if there is a simulated proof πSim
for xA such that (xA, πSim[1..k]) = (xA, πA[1..k]). That is, the adversary in its final proof reuses a part of
a simulated proof it saw before and the proof is acceptable. Denote that event by Errur.

G0 7→ G1: We have, Pr
[
G0 ∧ Errur

]
= Pr

[
G1 ∧ Errur

]
and, from the difference lemma, cf. Lemma 1,

|Pr[G0]− Pr[G1]| ≤ Pr[Errur] .

Thus, to show that the transition from one game to another introduces only minor change in probability
of A winning it should be shown that Pr[Errur] is small.

We can assume that A queried the simulator on the instance it wishes to output—xA. We show a
reduction Rur that utilises A, who outputs a valid proof for xA, to break the k-ur property of Ψ. Let Rur
run A internally as a black-box:

– The reduction answers both queries to the simulator ΨFS.Sim and to the random oracle. It also keeps
lists Q, for the simulated proofs, and QH for the random oracle queries.

– When A makes a fake proof πA for xA, Rur looks through lists Q and QH until it finds πSim[0..k] such
that πA[0..k] = πSim[0..k] and a random oracle query πSim[k].ch on πSim[0..k].

– Rur returns two proofs for xA:

π1 = (πSim[1..k], πSim[k].ch, πSim[k + 1..µ+ 1])
π2 = (πSim[1..k], πSim[k].ch, πA[k + 1..µ+ 1])

If π1 = π2, then A fails to break simulation extractability, as π2 ∈ Q. On the other hand, if the proofs
are not equal, then Rur breaks k-ur-ness of Ψ, what may happen with some negligible probability εur
only, hence Pr[Errur] ≤ εur .

Game G2: This is identical to G1 except that now the environment aborts also when it fails to build a
(1, . . . , 1, n, 1, . . . , 1)-tree of accepting transcripts T by rewinding A. Denote that event by Errfrk.

G1 7→ G2: Note that for every acceptable proof πA, we may assume that whenever A outputs in Round
k message πA[k], then (xA, πA[1..k]) random oracle query that was made by the adversary, not the
simulator6, i.e. there is no simulated proof πSim on xSim such that (xA, πA[1..k]) = (xSim, πSim[1..k]).
Otherwise, the game would be already interrupted by the error event in Game G1. As previously,

|Pr[G1]− Pr[G2]| ≤ Pr[Errfrk] .
6 [22] calls these queries fresh.

16 Markulf Kohlweiss and Michał Zając

We describe our extractor Ext here. The extractor takes as input relation R, SRS srs, A’s code, its
randomness r, the output instance xA and proof πA, as well as the list Q of simulated proofs (and their
instances) and the list of random oracle queries and responses QH. Then, Ext starts a forking algorithm
GFnZ(y, h1, . . . , hq) for y = (R, srs,A, r, xA, πA, Q) where we set h1, . . . , hq to be the consecutive queries
from list QH. We run A internally in Z.

To assure that in the first execution of Z the adversary A produce the same (xA, πA) as in the
extraction game, Z provides A with the same randomness r and answers queries to the random oracle
and simulator with responses pre-recorded responses in QH and Q. Note, that since the view of the
adversary run inside Z is the same as its view with access to real random oracle and simulator, it
produces exactly the same output. After the first run, Z outputs the index i of a random oracle query
that was used by A to compute the challenge π[k].ch = H(πA[0..k]) it had to answer in the (k + 1)-
th round and adversary’s transcript, denoted by s1 in GF’s description. If no such query took place Z
outputs i = 0.

Then new random oracle responses are picked for queries indexed by i, . . . , q and the adversary is
rewound to the point just prior it gets the response to RO query πA[0..k]. The adversary gets a random
oracle response from a new set of responses h2

i , . . . , h
2
q . If the adversary requests a simulated proof after

seeing h2
i then Z computes the simulated proof on its own. Eventually, Z outputs index i′ of a query

that was used by the adversary to compute H(πA[0..k]), and a new transcript s2. Z is run n + 1 times
with different random oracle responses. If a tree T of n+ 1 transcripts is build then Ext runs internally
the tree extractor Exttree(T) and outputs what it returns.

We emphasize here the importance of the unique response property. If it does not hold then in some
j-th execution of Z the adversary could reuse a challenge that it learnt from observing proofs in Q. In
that case, Z would output i = 0, making extractor fail. Fortunately, the case that the adversary breaks
the unique response property has already been covered by the abort condition in G1.

Denote by ãcc the probability that A outputs a proof that is accepted and does not break k-ur-ness
of Ψ. Denote by ãcc′ probability that algorithm Z, defined in the lemma, produces an accepting proof
with a fresh challenge after Round k. Given the discussion above, we can state that ãcc = ãcc′.

Next, from the generalised forking lemma, cf. Lemma 2,

Pr[Errfrk] ≤ 1− ãcc ·
(

ãccn−1

qn−1 + (2λ)!
(2λ − n)! · (2λ)n − 1

)
.

For the sake of simplicity we loose this approximation a bit and state

Pr[Errfrk] ≤ 1−
(

ãccn

qn−1 + ãcc ·
(

2λ − n
2λ

)n
− ãcc

)
.

Game G3: This is identical to G2 except that now the game is aborted if Exttree(T) run by Ext fails to

extract the witness. Denote that event by Errss.

G2 7→ G3: As previously,
|Pr[G2]− Pr[G3]| ≤ Errss .

Since Ψ is special-sound the probability of Errss is upper-bounded by some negligible εss.
Game G3 is aborted when it is impossible to extract the correct witness from T, hence the adversary

A cannot win. Thus, by the game-hoping argument,

|Pr[G0]− Pr[G3]| ≤ 1−
(

ãccn

qn−1 + ãcc ·
(

2λ − n
2λ

)n
− ãcc

)
+ εur + εss .

Thus the probability that extractor Extss succeeds is at least

ãccn

qn−1 + ãcc ·
(

2λ − n
2λ

)n
− ãcc− εur − εss .

Since ãcc is probability of A outputting acceptable transcript that does not break k-ur-ness of Ψ, then
ãcc ≥ acc−εur, where acc is the probability of A outputing an acceptable proof as defined in Definition 5.

On (Weak) Simulation-Extractability of Universal zkSNARKs 17

It thus holds

ext ≥ (acc− εur)n

qn−1 − (acc− εur) ·
(

1−
(

2λ − n
2λ

)n)
− εur − εss︸ ︷︷ ︸

ε

.

Note that the part of Section 4 denoted by ε is negligible as εur, εss are negligible, and
(
(2λ − n)/2λ

)n
is

overwhelming. Thus,
ext ≥ 1

qn−1 (acc− εur)n − ε .

thus ΨFS is simulation extractable with extraction error εur. ut

5 Simulation extractability of PFS

In this section we show that PFS is simulation-extractable. To that end, we proceed as follows. First we
show that the version of the KZG polynomial commitment scheme that is proposed in the Plonk paper
has the unique opening property, cf. Section 2.3 and Lemma 3. This is then used to show that P has the
3-ur property, cf. Lemma 4.

Next, we show that P is computationally special-sound. That is, given a number of acceptable tran-
scripts which match on the first 3 rounds of the protocol we can either reveal a correct witness for the
proven statement or use one of the transcripts to break the dlog assumption. This result is shown in the
AGM, cf. Lemma 5.

Given special-soundness of P, we use the fact that it is also 3-ur and show, in a similar fashion to [22],
that it is simulation-extractable. That is, we build reductions that given a simulation extractability ad-
versary A either break the protocol’s unique response property or break the dlog assumption, if extracting
a valid witness from a tree of transcripts is impossible. See Corollary 1.

5.1 Plonk protocol rolled out

The constrain system Assume C is a fan-in two arithmetic circuit, which fan-out is unlimited and has
n gates and m wires (n ≤ m ≤ 2n). Plonk’s constraint system is defined as follows:

– Let V = (a, b, c), where a, b, c ∈ [1 ..m]n. Entries ai, bi, ci represent indices of left, right and output
wires of circuits i-th gate.

– Vectors Q = (qL, qR, qO, qM , qC) ∈ (Fn)5 are called selector vectors:
• If the i-th gate is a multiplicative gate then qLi = qRi = 0, qM i = 1, and qOi = −1.
• If the i-th gate is an addition gate then qLi = qRi = 1, qM i = 0, and qOi = −1.
• qC i = 0 always.

We say that vector x ∈ Fm satisfies constraint system if for all i ∈ [1 .. n]

qLi · xai + qRi · xbi + qO · xci + qM i · (xaixbi) + qC i = 0.

Algorithms rolled out Plonk argument system is universal. That is, it allows to verify computation of
any arithmetic circuit which has no more than n gates using a single SRS. However, to make computation
efficient, for each circuit there is allowed a preprocessing phase which extend the SRS with circuit-related
polynomial evaluations.

For the sake of simplicity of the security reductions presented in this paper, we include in the SRS
only these elements that cannot be computed without knowing the secret trapdoor χ. The rest of the
SRS—the preprocessed input—can be computed using these SRS elements thus we leave them to be
computed by the prover, verifier, and simulator.

Plonk SRS generating algorithm KGen(R): The SRS generating algorithm picks at random χ←$Fp,
computes and outputs

srs =
([
{χi}n+2

i=0

]
1
, [χ]2

)
.

18 Markulf Kohlweiss and Michał Zając

Preprocessing: Let H = {ωi}ni=1 be a (multiplicative) n-element subgroup of a field F compound of
n-th roots of unity in F. Let Li(X) be the i-th element of an n-elements Lagrange basis. During the
preprocessing phase polynomials Sidj, Sσj, for j ∈ [1 .. 3], are computed:

Sid1(X) = X,

Sid2(X) = k1 ·X,

Sid3(X) = k2 ·X,

Sσ1(X) =
n∑
i=1

σ(i)Li(X),

Sσ2(X) =
n∑
i=1

σ(n + i)Li(X),

Sσ3(X) =
n∑
i=1

σ(2n + i)Li(X).

Coefficients k1, k2 are such that H, k1 ·H, k2 ·H are different cosets of F∗, thus they define 3 · n different
elements. [27] notes that it is enough to set k1 to a quadratic residue and k2 to a quadratic non-residue.

Furthermore, we define polynomials qL, qR, qO, qM, qC such that

qL(X) =
n∑
i=1
qLiLi(X),

qR(X) =
n∑
i=1
qRiLi(X),

qM(X) =
n∑
i=1
qM iLi(X),

qO(X) =
n∑
i=1
qOiLi(X),

qC(X) =
n∑
i=1
qC iLi(X).

Plonk prover P(R, srs, x,w = (wi)i∈[1 .. 3·n]).

Round 1 Sample b1, . . . , b9←$Fp; compute a(X), b(X), c(X) as

a(X) = (b1X + b2)ZH(X) +
n∑
i=1

wiLi(X)

b(X) = (b3X + b4)ZH(X) +
n∑
i=1

wn+iLi(X)

c(X) = (b5X + b6)ZH(X) +
n∑
i=1

w2·n+iLi(X)

Output polynomial commitments [a(χ), b(χ), c(χ)]1.
Round 2 Get challenges β, γ ∈ Fp

β = H(π[0..1], 0) , γ = H(π[0..1], 1) .

Compute permutation polynomial z(X)

z(X) = (b7X
2 + b8X + b9)ZH(X) + L1(X)+

+
n−1∑
i=1

Li+1(X)
i∏

j=1

(wj + βωj−1 + γ)(wn+j + βk1ω
j−1 + γ)(w2n+j + βk2ω

j−1 + γ)
(wj + σ(j)β + γ)(wn+j + σ(n + j)β + γ)(w2n+j + σ(2n + j)β + γ)


Output polynomial commitment [z(χ)]1

Round 3 Get the challenge α = H(π[0..2]), compute the quotient polynomial

t(X) =

(a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X)) 1
ZH(X)+

+ ((a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X)) α

ZH(X)

On (Weak) Simulation-Extractability of Universal zkSNARKs 19

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω)) α

ZH(X)

+ (z(X)− 1)L1(X) α2

ZH(X)

Split t(X) into degree less then n polynomials tlo(X), tmid(X), thi(X), such that

t(X) = tlo(X) +Xntmid(X) +X2nthi(X) .

Output [tlo(χ), tmid(χ), thi(χ)]1.
Round 4 Get the challenge z ∈ Fp, z = H(π[0..3]). Compute opening evaluations

a(z), b(z), c(z), Sσ1(z), Sσ2(z), t(z), z(zω),

Compute the linearisation polynomial

r(X) =

a(z)b(z)qM(X) + a(z)qL(X) + b(z)qR(X) + c(z)qO(X) + qC(X)
+ α · ((a(z) + βz + γ)(b(z) + βk1z + γ)(c(z) + βk2z + γ) · z(X))
− α · ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)βz(zω) · Sσ3(X))
+ α2 · L1(z) · z(X)

Output a(z), b(z), c(z), Sσ1(z), Sσ2(z), t(z), z(zω), r(z).
Round 5 Compute the opening challenge v ∈ Fp, v = H(π[0..4]). Compute the openings for the poly-

nomial commitment scheme

Wz(X) = 1
X − z



tlo(X) + zntmid(X) + z2nthi(X)− t(z)
+ v(r(X)− r(z))
+ v2(a(X)− a(z))
+ v3(b(X)− b(z))
+ v4(c(X)− c(z))
+ v5(Sσ1(X)− Sσ1(z))
+ v6(Sσ2(X)− Sσ2(z))


Wzω(X) = z(X)− z(zω)

X − zω

Output [Wz(χ),Wzω(χ)]1.

Plonk verifier V(R, srs, x, π):
The Plonk verifier works as follows

Step 1 Validate all obtained group elements.
Step 2 Validate all obtained field elements.
Step 3 Validate the instance x = {wi}ni=1.
Step 4 Compute challenges β, γ, α, z, v, u from the transcript.
Step 5 Compute zero polynomial evaluation ZH(z) = zn − 1.
Step 6 Compute Lagrange polynomial evaluation L1(z) = zn−1

n(z−1) .
Step 7 Compute public input polynomial evaluation PI(z) =

∑
i∈[1 .. n] wiLi(z).

Step 8 Compute quotient polynomials evaluations

t(z) = 1
ZH(z)

(
r(z) + PI(z)− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)

(c(z) + γ)z(zω)α− L1(z)α2
)
.

20 Markulf Kohlweiss and Michał Zając

Step 9 Compute batched polynomial commitment [D]1 = v [r]1 + u [z]1 that is

[D]1 = v


a(z)b(z) · [qM]1 + a(z) [qL]1 + b [qR]1 + c [qO]1 +
+ ((a(z) + βz + γ)(b(z) + βk1z + γ)(c + βk2z + γ)α+ L1(z)α2)+
− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)

+

+ u [z(χ)]1 .

Step 10 Computes full batched polynomial commitment [F]1:

[F]1 =
(
[tlo(χ)]1 + zn [tmid(χ)]1 + z2n [thi(χ)]1

)
+ u [z(χ)]1 +

+ v


a(z)b(z) · [qM]1 + a(z) [qL]1 + b(z) [qR]1 + c(z) [qO]1 +
+ ((a(z) + βz + γ)(b(z) + βk1z + γ)(c(z) + βk2z + γ)α+ L1(z)α2)+
− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)


+ v2 [a(χ)]1 + v3 [b(χ)]1 + v4 [c(χ)]1 + v5 [Sσ1(χ)]1 + v6 [Sσ2(χ)]1 .

Step 11 Compute group-encoded batch evaluation [E]1

[E]1 = 1
ZH(z)

[
r(z) + PI(z) + α2L1(z)+
− α ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + γ)z(zω))

]
1

+
[
vr(z) + v2a(z) + v3b(z) + v4c(z) + v5Sσ1(z) + v6Sσ2(z) + uz(zω)

]
1
.

Step 12 Check whether the verification equation holds

(
[Wz(χ)]1 + u · [Wzω(χ)]1

)
• [χ]2 −

(
z · [Wz(χ)]1 + uzω · [Wzω(χ)]1 + [F]1 − [E]1

)
• [1]2 = 0 . (7)

The verification equation is a batched version of the verification equation from [35] which allows the
verifier to check openings of multiple polynomials in two points (instead of checking an opening of a
single polynomial at one point).

5.2 Unique opening property of PCP

Lemma 3. Let PCP be a batched version of a KZG polynomial commitment [35] as described in [27]
then PCP has the unique opening property in the AGM.

Proof. Let z = (z, z′) ∈ F2
p be the two points the polynomials are evaluated at, k ∈ N be the number of the

committed polynomials to be evaluated at z, and k′ ∈ N be the number of the committed polynomials
to be evaluated at z′, c ∈ Gk, c′ ∈ Gk′ be the commitments, s ∈ Fkp, s′ ∈ Fk′p the evaluations, and
o = (o, o′) ∈ F2

p be the commitment openings. We need to show that for every PPT adversary A the
probability

Pr


Vf(srs, c, c′, (z, z′), s, s′,o),
Vf(srs, c, c′, (z, z′), s, s′, õ)
o 6= õ

∣∣∣∣∣∣∣∣
srs← KGen(1λ,max),
(c, c′, z, s, s′,o, õ)← A(srs)


is at most negligible.

Step 1: First, consider a case where the commitment is limited to commit to multiple polynomials
which are evaluated at the same point z. As noted in [27, Lemma 2.2] it is enough to upper bound
the probability of the adversary succeeding using the idealised verification equation—which considers
equality between polynomials—instead of the real verification equation—which consider equality of the
polynomials’ evaluations. This holds since an adversary that manages to provide a commitment opening
that holds for the real verifier, but does not hold for the idealised verifier can be used to break the dlog
assumption and reveal the secret trapdoor used to produce the commitment’s SRS, cf. [27, Lemma 2.2]
for more details.

On (Weak) Simulation-Extractability of Universal zkSNARKs 21

For polynomials f = f1, . . . , fk, evaluation point z, evaluation result s = s1, . . . , sk, random γ, and
opening o(X) the idealised check verifies that

k∑
i=1

γi−1fi(X)−
k∑
i=1

γi−1si ≡ o(X)(X − z) . (8)

Since o(X)(X − z) ∈ Fp[X] then from the uniqueness of polynomial composition, there is only one o(X)
that fulfils the equation above.

Step 2: Second, consider a case when the polynomials are evaluated on two points z = (z, z′) and
the adversary is asked to provide two openings o = (o, o′). Similarly, we analyse the case of the ideal
verification. In that scenario, the verifier checks whether the following equality, for γ, r′ picked at random,
holds:

k∑
i=1

γi−1 · fi(X)−
k∑
i=1

γi−1 · si + r′

 k′∑
i=1

γ′i−1 · f ′i(X)−
k′∑
i=1

γ′i−1 · s′i


≡ o(X)(X − z) + r′o′(X)(X − z′) (9)

Since r′ has been picked at random, probability that Eq. (9) holds while either

k∑
i=1

γi−1 · fi(X)−
k∑
i=1

γi−1 · si 6≡ o(X)(X − z)

or
k′∑
i=1

γ′i−1 · f ′i(X)−
k′∑
i=1

γ′i−1 · s′i 6≡ o′(X)(X − z′)

is negligible [27]. This brings the proof back to Step 1 above. ut

5.3 Unique response property

Lemma 4. Let PCP be commitment of knowledge with security εk, εbind-binding and has unique opening
property with security εop, then probability that a PPT adversary A breaks P’s 3-ur property is at most
εk + 2 · εbind + εop.

Proof (sketch). Let A(R, srs = (
[
1, χ, . . . , χn+2]

1 , [χ]2)) be an adversary tasked to break the 3-ur-ness of
P. It is sufficient to observe that the first 2 rounds of the protocol determines, along with the verifiers
challenges, the rest of it.

In Round 3 the adversary outputs a commitment to polynomial t(X) which assures that all constraints
of the system are fulfilled. Since the commitment scheme is deterministic, there is only one value c that
is a commitment to t(X). Assume that A outputs c′ 6= c and is later able to open c′ to y = t(z), where z
is a random point determined later. Using the AGM and arguments similar to [40], we argue that PCP
is a commitment of knowledge. That is, an AGM adversary A that outputs a commitment c′ which it
can later open, knows a polynomial f of degree-(≤ n + 2) such that [f(χ)]1 = c′. Thus if c′ 6= c and the
commitment scheme is evaluation binding then A when picking c′ picks it as a commitment to f which
evaluates at z to t(z). The probability of that is negligible as there can only be no more than n + 2
overlapping points between f(X) and t(X), and z remains random for A when it computes c′. Hence, the
probability that A is able to produce two different outputs of Round 3 is upper-bounded by εk + εbind.

In Round 4 the prover is asked to give evaluations of predefined polynomials at some point z. Naturally,
for the given polynomials only one value at z is correct. Assume A is able to produce two different
outputs in that round: r4 = (ã, b̃, c̃, S̃σ1, S̃σ2, r̃, z̃) and r4 = (ã′, b̃′, c̃′, S̃σ1

′
, S̃σ2

′
, r̃′, z̃′) which suppose to be

evaluations at z of polynomials a, b, c,Sσ1, Sσ2, r and an evaluation at zω of z. Clearly, at least one of r4,
r′

4 has to be incorrect, thus if both evaluations are acceptable by the PCP.Vf then the evaluation binding
property of PCP is broken. This happens with probability upper-bounded by εbind.

In the last round of the protocol the prover provides openings for the polynomial commitment eval-
uations done before. Assume A is able to produce two different polynomial commitment openings pairs:

22 Markulf Kohlweiss and Michał Zając

r5 = (W̃z, W̃zω) and r′
5 = (W̃z

′
, W̃zω

′
). Since PCP has unique opening property, one of the openings has

to be incorrect and should be rejected by the polynomial commitment verifier. This happens except with
probability εop.

Hence, the probability that after fixing the two first rounds, the adversary is able to produce two
different outputs in one of the following rounds is upper-bounded by

εk + 2 · εbind + εop .

ut

5.4 Computational special soundness

Lemma 5. P is (εss, (1, 1, n + 3, 1))-computational special sound for

εss ≤ εbtch + εdlog ,

where εbtch is the (negligible) probability that P’s idealised verification equation veπ(X) accepts an in-
valid proof because of batching and εdlog is a probability that a PPT algorithm breaks the (n + 2, 1)-dlog
assumption.

Proof. Let srs be P’s SRS and denote by srs1 all SRS’s G1-elements; that is, srs1 =
[
1, χ, . . . , χn+2]

1.
Let A be an algebraic adversary that for produces a statement x and (1, 1, n + 3, 1)-tree of acceptable
transcripts T. Note that in all transcripts the instance x, proof elements [a(χ), b(χ), c(χ), z(χ), t(χ)]1 and
challenges α, β, γ are common as the transcripts share the first three rounds. The tree “branches” after
third round of the protocol where challenge z is presented, thus tree T is build by using different values
of z.

We consider two mutually disjunctive events. The first, E holds when all of the transcripts are ac-
ceptable by the idealised verification equation, i.e. veπ(X) = 0, cf. Eq. (7). The second, E holds when
there is a transcript that is acceptable by the real verifier, but not by the ideal verifier. That is, for that
particular transcript holds veπ(χ) = 0, but veπ(X) 6= 0. When event E holds we construct the extractor
Exttree. If it does not, we show a reduction Rdlog that breaks the dlog assumption.

When E happens: Let (x,T)← A(R, srs). Since the protocol P, instantiated with the idealised verifi-
cation equation, is perfectly sound, except with probability of batching failure εbtch, for a valid proof π of
a statement x there exists a witness w, such that R(x,w) holds. Note that polynomials a(X), b(X), c(X),
which contain witness in their coefficients, have degree (n + 2) and since A answered correctly on (n + 3)
different challenges z then (n + 3) evaluations of these polynomials (at different points) are known. The
extractor Exttree interpolates the polynomials and reveals the corresponding witness w. The extractor
finds the witness with probability 1.

When E happens: Let A be an adversary that for relation R and randomly picked srs←$ KGen(R)
produces a tree of acceptable transcripts such that E happens. Let Rdlog be a reduction that gets as
input an (n + 2, 1)-dlog instance [1, . . . , χn]1 , [χ]2 and is tasked to output χ. The reduction proceeds as
follows—it gives the input instance to the adversary as the SRS. Let (x,T) be the output returned by
A. Consider a transcript π ∈ T such that veπ(X) 6= 0, but veπ(χ) = 0. Since the adversary is algebraic,
all group elements included in T are extended by their representation as a combination of the input
G1-elements. Hence all coefficients of the verification equation polynomial veπ(X) are known and Rdlog
can find its zero points. Since veπ(χ) = 0, the targeted discrete log value χ is among them. ut

5.5 Honest verifier zero-knowledge

Lemma 6. P is computationally honest verifier zero-knowledge and its simulator Sim does not require
a SRS trapdoor.7 More precisely, assume that Plonk’s SRS simulator Simχ produces proof that are dis-
tributed at most εzk-far from real proofs, and (R, S,T, f, 1)-uber assumption for R, S,T, f as defined in
Eq. (10) is εuber-secure. Then any PPT adversary A has advantage in telling a proof produced by Sim
from a real proof upper-bounded by εzk + εuber.

7 The simulator works as a simulator for proofs that are zero-knowledge in the standard model. However, we do not say
that Plonk is HVZK in the standard model as proof of that requires the SRS simulator.

On (Weak) Simulation-Extractability of Universal zkSNARKs 23

Proof. The proof goes by game-hoping. The environment that controls the games provides the adversary
with a SRS srs, then the adversary outputs an instance–witness pair (x,w) and, depending on the game,
is provided with either real or simulated proof for it. In the end of the game the adversary outputs either
0 if it believes that the proof it saw was provided by the simulator and 1 in the other case.

Game G0: In this game A(R, srs) picks an instance–witness pair (x,w) and gets a real proof π for it.

Game G1: In this game for A(R, srs) picks an instance–witness pair (x,w) and gets a proof π that
is simulated by a simulator Simχ which utilises for the simulation the SRS trapdoor and proceeds as
follows. In the first round the simulator Simχ picks randomisers b1, . . . b9, sets wi = 0, for i ∈ [1 .. 3n],
computes polynomials a(X), b(X), c(X) and outputs [a(χ), b(χ), c(χ)]1. Then it picks Round 1 challenges
β, γ honestly.

In Round 2 Simχ computes the polynomial z(X) and outputs [z(χ)]1. Then it picks randomly Round
2 challenge α.

In Round 3 the simulator computes polynomial t(X) and evaluates it at χ, then outputs
[tlo(χ), tmid(χ), thi(χ)]1. Note that this evaluation is feasible (in the polynomial time with non-negligible
probability) only since Simχ knows the trapdoor.

In the last two rounds the simulator proceeds as an honest prover would proceed and picks corre-
sponding challenges at random as an honest verifier would.

G0 7→ G1: Since Plonk is zero-knowledge, probability that A outputs a different bit in both games is
negligible. Hence

|Pr[G0]− Pr[G1]| ≤ εzk.

Game G2: In this game A(R, srs) picks an instance–witness pair (x,w) and gets a proof π simulated by
the simulator Sim which proceeds as follows.

In Round 1 the simulator picks randomly both the randomisers b1, . . . , b6 and sets wi = 0 for
i ∈ [1 .. 3n]. Then Sim outputs [a(χ), b(χ), c(χ)]1. For the first round challenge, the simulator picks
permutation argument challenges β, γ randomly.

In Round 2, the simulator computes z(X) from the newly picked randomisers b7, b8, b9 and coefficients
of polynomials a(X), b(X), c(X). Then it evaluates z(X) honestly and outputs [z(χ)]1. Challenge α that
should be sent by the verifier after Round 2 is picked by the simulator at random.

In Round 3 the simulator starts by picking at random a challenge z, which in the real
proof comes as a challenge from the verifier sent after Round 3. Then Sim computes evaluations
a(z), b(z), c(z), Sσ1(z), Sσ2(z),PI(z), L1(z),ZH(z), z(zω) and computes t(X) honestly. Since for a random
a(X), b(X), c(X), z(X) the constraint system is (with overwhelming probability) not satisfied and the
constraints-related polynomials are not divisible by ZH(X), hence t(X) is a rational function rather than
a polynomial. Then, the simulator evaluates t(X) at z and picks randomly a degree-(3n− 1) polynomial
t̃(X) such that t(z) = t̃(z) and publishes a commitment [̃tlo(χ), t̃mid(χ), t̃hi(χ)]1. After this round the
simulator outputs z as a challenge.

In the next round, the simulator computes polynomial r(X) as an honest prover would, cf. Section 5.1
and evaluates r(X) at z.

The rest of the evaluations are already computed, thus Sim simply outputs

a(z), b(z), c(z),Sσ1(z),Sσ2(z), t(z), z(zω) .

After that it picks randomly the challenge v, proceeds in the last round as an honest prover would proceed
and outputs the final challenge, u, by picking it at random as well.

G1 7→ G2: We now describe the reduction R which relies on the (R, S,T,F, 1)-uber assumption
where R,S,T,F are polynomials over variables B = B1, . . . , B9 and are defined as follows. Let
E = {{2}, {3, 4}, {5, 6}, {7, 8, 9}} and E′ = E \ {2}. Let

F(B) = {B1} ∪ {B1Bi | i ∈ A, A ∈ E′} ∪ {B1BiBj | i ∈ A, j ∈ B, A,B ∈ E′, B 6= A}∪
{B1BiBjBk | i ∈ A, j ∈ B, k ∈ C, A,B,C ∈ E′, A 6= B 6= C 6= A} ,

R(B) = {Bi | i ∈ A, A ∈ E} ∪ {BiBj | i ∈ A, j ∈ B, A 6= B,A,B ∈ E}∪ (10)
{BiBjBk | i ∈ A, j ∈ B, k ∈ C, A,B,C all different and in E}∪

24 Markulf Kohlweiss and Michał Zając

{BiBjBkBl | i ∈ A, j ∈ B, k ∈ C, l ∈ D, A,B,C,D all different and in E}
\ F(B) ,

S(B) = ∅ ,
T(B) = ∅ .

That is, the elements of R are all singletons, pairs, triplets and quadruplets of Bi variables that occur
in polynomial t(B) except the challenge element f(B) which are all elements that depends on a variable
B1. Variables B are evaluated to randomly picked b = b1, . . . , b9.

The reduction R learns [R]1 and challenge [w]1 = [w1, . . . , w12]1 where w is either a vector of evalu-
ations F(b) or a sequence of random values y1, . . . , y12, for the sake of concreteness we state w1 = b1 or
w1 = y1 (depending on the chosen random bit). Then it picks χ, z and computes the SRS srs from χ.
Elements bi are interpreted as polynomials in X that are evaluated at χ, i.e. bi = bi(χ). Next, R sets for
ξi, ζi←$Fp [

b̃1
]

1
(X) = (X − z)(X − ωz) [w1]1 (X) + ξi(X − z) [1]1 + ζi(X − ωz) [1]1 ,

and [
b̃i
]

1
(X) = (X − z)(X − ωz) [bi]1 (X) + ξi(X − z) [1]1 + ζi(X − ωz) [1]1 ,

for i ∈ [2 .. 9].
Denote by b̃i evaluations of b̃i at χ. The reduction computes all

[
b̃ib̃j

]
1
,
[
b̃ib̃j b̃k

]
1
,
[
b̃ib̃j b̃k b̃l

]
1
such

that [BiBj , BiBjBk, BiBjBkBl]1 ∈ R. This is possible since R knows all singletons [w1, b2, . . . , b9]1 and
pairs [bibj]1 ∈ R which can be used to compute all required pairs

[
b̃ib̃j

]
1
:[

b̃ib̃j
]

1
= ((χ− z)(χ− ωz) [bi]1 + ξi(χ− z) [1]1 + ζi(χ− ωz) [1]1)·

((χ− z)(χ− ωz) [bj]1 + ξj(χ− z) [1]1 + ζj(χ− ωz) [1]1) =
((χ− z)(χ− ωz))2 [bibj]1 + ((χ− z)(χ− ωz) [bi]1 (ξj(χ− z) [1]1 + ζj(χ− ωz) [1]1)+
((χ− z)(χ− ωz) [bj]1 (ξi(χ− z) [1]1 + ζi(χ− ωz) [1]1) + ψ,

where ψ compounds of ξi, ξj , ζi, ζj , z, ωz, χ which are all known by R and no bi nor bj . Analogously for
the triplets and quadruplets and elements dependent on w.

Next the reduction runs the adversary A(R, srs) and obtains from A an instance–witness pair (x,w).
R now prepares a simulated proof as follows:

Round 1 R computes [a(χ)]1 using as randomisers
[
b̃1
]

1
,
[
b̃2
]

1
and setting wi = 0, for i ∈ [1 .. 3n].

Similarly it computes [b(χ)]1 , [c(χ)]1. R publishes the obtained values and picks a Round 1 challenge
β, γ at random. Note that regardless w1 = b1 or a random element, [a(χ)]1 is random. Thus R’s
output has the same distribution as output of a real prover.

Round 2 R computes [z(χ)]1 using b̃7, b̃8, b̃9 and publishes it. Then it picks randomly the challenge α.
This round output is independent on b1 thus R’s output is indistinguishable from the prover’s.

Round 3 The reduction computes tlo(χ), tmid(χ), thi(χ), which all depend on b1. To that end
[
b̃1
]

1
is

used. Note that if w is a vector of F(b1, . . . , b9) evaluations then [tlo(χ), tmid(χ), thi(χ)]1 is the same
as the real prover’s. Alternatively, if w is a vector of random values, then tlo(χ), tmid(χ), thi(χ) are all
random polynomials which evaluates at z to the same value as the polynomials computed by the real
prover. That is, in that case tlo(χ), tmid(χ), thi(χ) are as the simulator Sim would compute. Eventually,
R outputs z.

Round 4 The reduction outputs a(z), b(z), c(z), Sσ1(z), Sσ2(z), t(z), z(ωz). For the sake of concreteness,
denote by S = {a, b, c, t, z}. Although for a polynomial p ∈ S, reduction R does not know p(χ) or
even do not know all the coefficients of p, the polynomials in S was computed such that the reduction
always knows their evaluation at z and ωz.

Round 5 R computes the openings of the polynomial commitments assuring that evaluations at z it
provided were computed honestly.

If the adversary A’s output distribution differ in Game G1 and G2 then the reduction uses it to
distinguish between w = F(b1, . . . , b9) and w being random, thus |Pr[G1]− Pr[G2]| ≤ εuber. Eventually,
|Pr[G0]− Pr[G2]| ≤ εzk + εuber. ut

On (Weak) Simulation-Extractability of Universal zkSNARKs 25

5.6 From special-soundness and unique response property to simulation extractability of
PFS

Since Lemmas 4 and 5 hold, P is 3-ur and computationally special sound. We now make use of Theorem 1
and show that PFS is simulation-extractable as defined in Definition 5.

Corollary 1 (Simulation extractability of PFS). Assume that P is 3-ur with security εur(λ), and
computational special-sound with security εss(λ). Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Let A
be a PPT adversary that can make up to q random oracle queries and outputs an acceptable proof for
PFS with probability at least acc. Then PFS is simulation-extractable with extraction error η = εur. The
extraction probability ext is at least

ext ≥ 1
qn+2 (acc− εur)n+3 − ε ,

for some negligible ε and n being the number of constrains in the proven circuit.

6 Simulation extractability of SFS

6.1 Sonic protocol rolled out

In this section we present Sonic’s constraint system and algorithms. Reader familiar with them may jump
directly to the next section.

The constraint system Sonic’s system of constraints composes of three n-long vectors a, b, c which
corresponds to left and right inputs to multiplication gates and their outputs. It hence holds a · b = c.

There is also Q linear constrains of the form

auq + bvq + cwq = kq,

where uq,vq,wq are vectors for the q-th linear constraint with instance value kq ∈ Fp. Furthermore
define polynomials

ui(Y) =
Q∑
q=1

Y q+nuq,i ,

vi(Y) =
Q∑
q=1

Y q+nvq,i ,

wi(Y) = −Y i − Y −i +
Q∑
q=1

Y q+nwq,i ,

k(Y) =
Q∑
q=1

Y q+nkq.

(11)

In Sonic we will use commitments to the following polynomials.

r(X,Y) =
n∑
i=1

(
aiX

iY i + biX
−iY −i + ciX

−i−nY −i−n
)

s(X,Y) =
n∑
i=1

(
ui(Y)X−i + vi(Y)Xi + wi(Y)Xi+n

)
r′(X,Y) = r(X,Y) + s(X,Y)
t(X,Y) = r(X, 1)r′(X,Y)− k(Y) .

Algorithms rolled out

Sonic SRS generation KGen(R). The SRS generating algorithm picks randomly α, χ←$Fp and outputs

srs =
([
{χi}di=−d, {αχi}di=−d,i 6=0

]
1
,
[
{χi, αχi}di=−d

]
2
, [α]T

)

26 Markulf Kohlweiss and Michał Zając

Sonic prover P(R, srs, x,w = a, b, c).
Round 1 The prover picks randomly randomisers cn+1, cn+2, cn+3, cn+4←$Fp. Set r(X,Y)← r(X,Y) +∑4

i=1 cn+iX
−2n−i. Commits to r(X, 1) and outputs [r]1 ← Com(srs, n, r(X, 1)). Then it gets challenge

y from the verifier.
Round 2 P commits to t(X, y) and outputs [t]1 ← Com(srs, d, t(X, y)). Then it gets a challenge z from

the verifier.
Round 3 The prover computes commitment openings. That is, it outputs

[oa]1 = Op(srs, z, r(z, 1), r(X, 1))
[ob]1 = Op(srs, yz, r(yz, 1), r(X, 1))
[ot]1 = Op(srs, z, t(z, y), t(X, y))

along with evaluations a′ = r(z, 1), b′ = r(y, z), t′ = t(z, y). Then it engages in the signature of correct
computation playing the role of the helper, i.e. it commits to s(X, y) and sends the commitment [s]1.
Then it obtains a challenge u from the verifier.

Round 4 In the next round the prover computes [c]1 ← Com(srs, d, s(u, x)) + [s(u, x)]1 and computes
commitments’ openings

[w]1 = Op(srs, u, s(X, y)),
[qy]1 = Op(srs, y, s(u, Y)),

and returns [w]1 , [qy]1 , s(u, y). Eventually the prover gets the last challenge from the verifier—z′.
Round 5 In the final round, P computes opening [qz′]1 = Op(srs, z′, s(u,X)) and outputs [qz′]1 and

s(u, z′).

Sonic verifier V(R, srs, x, π). The verifier in Sonic runs as subroutines the verifier for the polynomial
commitment. That is it sets t′ = a′(b′ + s)− k(y) and checks the following:

PCS.V(srs, n, [r]1 , z, a
′, [oa]1),

PCS.V(srs, n, [r]1 , yz, b
′, [ob]1),

PCS.V(srs, d, [t]1 , z, t
′, [ot]1),

PCS.V(srs, d, [s]1 , u, s, [w]1),
PCS.V(srs, d, [c]1 , y, s, [qy]1),
PCS.V(srs, d, [c]1 , z

′, sz′ , [qz′]1),

and accepts the proof iff all the checks holds.

6.2 Unique opening property of PCS

Lemma 7. PCS has the unique opening property in the AGM.

Proof. Let z ∈ Fp be the attribute the polynomial is evaluated at, [c]1 ∈ G be the commitment, s ∈ Fp
the evaluation value, and o ∈ G be the commitment opening. We need to show that for every PPT
adversary A probability

Pr

Vf(srs, [c]1 , z, s, [o]1) = 1,
Vf(srs, [c]1 , z, s̃, [õ]1) = 1

∣∣∣∣∣∣∣∣
srs← KGen(1λ,max),
([c]1 , z, s, s̃, [o]1 , [õ]1)← A(srs)


is at most negligible.

As noted in [27, Lemma 2.2] it is enough to upper bound the probability of the adversary succeeding
using the idealised verification equation—which considers equality between polynomials—instead of the
real verification equation—which considers equality of the polynomials’ evaluations.

For a polynomial f , its degree upper bound max, evaluation point z, evaluation result s, and opening
[o(X)]1 the idealised check verifies that

α(Xd−maxf(X) ·X−d+max − s) ≡ α · o(X)(X − z) , (12)

what is equivalent to
f(X)− s ≡ o(X)(X − z) . (13)

Since o(X)(X − z) ∈ Fp[X] then from the uniqueness of polynomial composition, there is only one o(X)
that fulfils the equation above. ut

On (Weak) Simulation-Extractability of Universal zkSNARKs 27

6.3 Unique response property

The unique response property of S follows from the unique opening property of the used polynomial
commitment scheme PCS.

Lemma 8. If a polynomial commitment scheme PCS is evaluation binding with parameter εbind and has
unique openings property with parameter εop, then S is 2-ur with parameter εur ≤ εbind + εop.

Proof. Let A be an adversary that breaks 2-ur-ness of S. We consider two cases, depending on which
round A is able to provide at least two different outputs such that the resulting transcripts are acceptable.
For the first case we show that A can be used to break the evaluation binding property of PCS, while
for the second case we show that it can be used to break the unique opening property of PCS.

The proof goes similarly to the proof of Lemma 4 thus we provide only draft of it here. In each Round
i, for i > 1, the prover either commits to some well-defined polynomials (deterministically), evaluates
these on randomly picked points, or shows that the evaluations were performed correctly. Obviously, for
a committed polynomial p evaluated at point x only one value y = p(x) is correct. If the adversary was
able to provide two different values y and ỹ that would be accepted as an evaluation of p at x then the
PCS’s evaluation binding would be broken. Alternatively, if A was able to provide two openings W and
W̃ for y = p(x) then the unique opening property would be broken. Hence the probability that A breaks
2-ur-property of PCS is upper-bounded by εbind + εop. ut

6.4 Computational special soundness

Lemma 9. Let A be a PPT algebraic adversary. The probability εss that A breaks computational special
soundness of S is upper-bounded as

εss ≤ εs + εldlog ,

where εs is a soundness error of the protocol, and εldlog is a probability that a PPT algorithm can break
the (d, d)-ldlog assumption.

Proof. The proof goes similarly to the proof of Lemma 5. Let A be an adversary that produces a
(1, n + Q + 1, 1, 1)-tree of acceptable transcripts T for a statement x. We consider two disjunctive events
E and E. The first corresponds to a case when all transcripts in T are acceptable for the ideal verifier,
i.e. ve(X) = 0. In that case we show an extractor Extss that from T extracts a valid witness w. The
second, corresponds to a case when T contains a transcript that is acceptable by the real verifier but is
not acceptable by the ideal verifier. In that case we show a reduction Rldlog that uses A to break the
(d, d)-ldlog assumption.

When E happens: Since S is statistically sound regarding the ideal verifier, for an acceptable proof π
for a statement x there exists a witness w such that R(x,w) holds and the polynomial r(X, y) contains
witness at its coefficients. Note that the polynomial r(X, y), which has witness elements at its coefficients,
has degree at most n + Q and since A answered correctly on (n + Q + 1) different challenges z (for the
sake of concreteness let us call them z1, . . . , zn+Q+1) then (n+Q+1) evaluations r(z1, y), . . . , r(zn+Q+1, y)
of r(X, y) are known. The extractor Extss interpolates r(X, y) and reveals the corresponding witness w.

When E happens: Consider a transcript such that for some verification equation vei(X) 6= 0, but
vei(χ) = 0. Since the adversary is algebraic, all group elements included in the tree of transcripts are
extended by their representation as a combination of the input G1 or G2-elements. Hence all coefficients of
the verification equation polynomial vei(X) are known andRdlog can find its zero points. Since vei(χ) = 0,
the targeted discrete log value χ is among them. ut

6.5 Honest verifier zero-knowledge

Lemma 10. Sonic is honest verifier zero-knowledge.

Proof. The simulator proceeds as follows. In the first round, it picks randomly vectors a, b and sets

c = a · b. (14)

28 Markulf Kohlweiss and Michał Zając

Then it pick randomisers cn+1, . . . , cn+4, honestly computes polynomials r(X,Y), r′(X,Y), s(X,Y) and
t(X,Y) and concludes the first round as an honest prover would. Because of the randomisers the poly-
nomial r(X,Y) computed by the simulator is indistinguishable from a polynomial provided by an honest
user for an adversary that only learns [r]1 , [t]1 , a′, b′ from the proof (the other proof elements are fixed
by these elements and the public information, see Section 6.1).

Next, Sim computes the first verifier’s challenge y such that t(X, y) is a polynomial that has 0 as a
coefficient next to X0. I.e. t(0, y) = 0. By the definition of t(X,Y), the coefficient next to X0 in t(X,Y)
equals

t(0, Y) = a · u(Y) + b · v(Y) + c ·w(Y) +
n∑
i=1

aibi(Y i + Y −i)− k(Y), (15)

for public u(Y), v(Y),w(Y), k(Y) as defined in Section 6.1 (Vectors uq,vq,wq are n-elements long and
correspond to Q linear constrains of the proof system. Field element kq is the instance value). When the
proven instance is correct, t(0, Y) is a zero polynomial. See [40] for details. Also, when Eq. (14) holds,
that polynomial simplifies to

t(0, Y) = a · u(Y) + b · v(Y) + c · w̃(Y)− k(Y), (16)

where w̃(Y) is defined as

w̃i(Y) =
Q∑
q=1

Y q+nwq,i .

Note that t(0, Y) is a “classical”, i.e. non-Laurent, polynomial. Also, it is a polynomial of degree Q + n
with 0 coefficients for Y i, for i ∈ [0 .. n]. Also, since a, b were picked at random, t(0, Y)/Y n+1 is a degree-
(Q− 1) polynomial of random coefficients. Recall, that the view of the adversary is independent of a, b
because of randomisers cn+1, . . . , cn+4.

The probability that a random degree-(Q−1) polynomial over Fp[Y] has a root is at least 1/(Q−1)!,
see Lemma 14 for a proof of that bound. Since we assume that Q = poly(λ), we can say that the
polynomial t(0, Y) as computed by the simulator has roots with non-negligible probability. Furthermore,
these roots can be found and the simulator picks fresh a, b until t(0, Y) has a root. As the roots of a
random polynomial are themselves random Fp elements, the challenge y picked by the simulator comes
from the same distribution as if it was picked by an honest verifier.

The simulator continues building the transcript by honestly computing the prover’s messages and by
picking verifier’s challenges at random. This and the fact that t(0, y) = 0 guarantees that the transcript
provided by the simulator is acceptable and comes from the same distribution as a transcript of an honest
prover and verifier. ut

Remark 1. As noted in [40], Sonic is statistically subversion-zero knowledge (Sub-ZK). As noted in [1], one
way to achieve subversion zero knowledge is to utilise an extractor that extracts a SRS trapdoor from a
SRS-generator. Unfortunately, a NIZK made subversion zero-knowledge by this approach cannot achieve
perfect Sub-ZK as one has to count in the probability of extraction failure. However, with the simulation
presented in Lemma 10, the trapdoor is not required for the simulator as it is able to simulate the
execution of the protocol just by picking appropriate (honest) verifier’s challenges. This result transfers
to SFS, where the simulator can program the random oracle to provide challenges that fits it.

6.6 From special-soundness and unique response property to simulation extractability of
SFS

Since Lemmas 8 and 9 hold, S is 2-ur and computationally special sound. We now make use of Theorem 1
and show that SFS is simulation-extractable as defined in Definition 5.

Corollary 2 (Simulation extractability of SFS). Assume that S is 2-ur with security εur(λ), and
computational special-sound with security εss(λ). Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Let A
be a PPT adversary that can make up to q random oracle queries and outputs an acceptable proof for
SFS with probability at least acc. Then SFS is simulation-extractable with extraction error η = εur. The
extraction probability ext is at least

ext ≥ 1
qn+Q (acc− εur)n+Q+1 − ε.

On (Weak) Simulation-Extractability of Universal zkSNARKs 29

for some negligible ε, n and Q being, respectively, the number of multiplicative and linear constrains of
the system.

7 Further work

We identify a number of problems which we left as further work. First of all, the generalised version of
the forking lemma presented in this paper can be generalised even further to include protocols where
(n1, . . . , nµ)-special soundness holds for more than one nj > 1. I.e. to include protocols that for witness
extraction require transcripts that branch at more than one point.

Although we picked Plonk and Sonic as examples for our framework, it is not limited to SRS-based
NIZKs. Thus, it would be interesting to apply it to known so-called transparent zkSNARKs like Bullet-
proofs [14], Aurora [9] or AuroraLight [26].

Since the rewinding technique and the forking lemma used to show simulation extractability of PFS
and SFS come with security loss, it would be interesting to show SE of these protocols directly in the
algebraic group model.

Although we focused here only on zkSNARKs, it is worth to investigating other protocols that may
benefit from our framework, like e.g. identification schemes.

Last, but not least, this paper would benefit greatly if a more tight version of the generalised forking
lemma was provided. However, we have to note here that some of the inequalities used in the proof are
already tight, i.e. for specific adversaries, some of the inequalities are already equalities.

References

1. B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. A subversion-resistant SNARK. In T. Takagi and T. Peyrin,
editors, Advances in Cryptology – ASIACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer Science,
pages 3–33. Springer, Heidelberg, Dec. 2017.

2. B. Abdolmaleki, S. Ramacher, and D. Slamanig. Lift-and-shift: Obtaining simulation extractable subversion and up-
datable SNARKs generically. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 20: 27th Conference on
Computer and Communications Security, pages 1987–2005. ACM Press, Nov. 2020.

3. S. Atapoor and K. Baghery. Simulation extractability in groth’s zk-SNARK. Cryptology ePrint Archive, Report
2019/641, 2019. https://eprint.iacr.org/2019/641.

4. Aztec. A private layer 2. https://developers.aztec.network, 2020.
5. K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov. Another look at extraction and randomization of groth’s zk-SNARK.

Cryptology ePrint Archive, Report 2020/811, 2020. https://eprint.iacr.org/2020/811.
6. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: Security in the face of parameter subversion.

In J. H. Cheon and T. Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume 10032 of Lecture
Notes in Computer Science, pages 777–804. Springer, Heidelberg, Dec. 2016.

7. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In A. Juels, R. N.
Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer and Communications
Security, pages 390–399. ACM Press, Oct. / Nov. 2006.

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In D. E.
Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73. ACM Press, Nov. 1993.

9. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct arguments
for R1CS. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of
Lecture Notes in Computer Science, pages 103–128. Springer, Heidelberg, May 2019.

10. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In R. Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440–
456. Springer, Heidelberg, May 2005.

11. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic circuits in
the discrete log setting. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 327–357. Springer, Heidelberg, May 2016.

12. S. Bowe and A. Gabizon. Making groth’s zk-SNARK simulation extractable in the random oracle model. Cryptology
ePrint Archive, Report 2018/187, 2018. https://eprint.iacr.org/2018/187.

13. X. Boyen. The uber-assumption family (invited talk). In S. D. Galbraith and K. G. Paterson, editors, PAIRING 2008:
2nd International Conference on Pairing-based Cryptography, volume 5209 of Lecture Notes in Computer Science, pages
39–56. Springer, Heidelberg, Sept. 2008.

14. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer Society
Press, May 2018.

15. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive,
Report 2000/067, 2000. https://eprint.iacr.org/2000/067.

https://eprint.iacr.org/2019/641
https://developers.aztec.network
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2000/067

30 Markulf Kohlweiss and Michał Zając

16. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume
12105 of Lecture Notes in Computer Science, pages 738–768. Springer, Heidelberg, May 2020.

17. cLabs. The celo protocol: A multi-asset cryptographic protocol fordecentralized social payments. https://celo.org/
papers/whitepaper, 2020.

18. Clearmatics. Zeth: On integrating zerocash on ethereum. https://www.github.com/clearmatics/zeth, 2020.
19. G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with applications to succinct NIZK

arguments. In P. Sarkar and T. Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 532–550. Springer, Heidelberg, Dec. 2014.

20. A. W. Dent. A note on game-hopping proofs. Cryptology ePrint Archive, Report 2006/260, 2006. https://eprint.
iacr.org/2006/260.

21. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the presence of key leakage.
In M. Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 613–631. Springer, Heidelberg, Dec. 2010.

22. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of the Fiat-Shamir transform. In
S. D. Galbraith and M. Nandi, editors, Progress in Cryptology - INDOCRYPT 2012: 13th International Conference in
Cryptology in India, volume 7668 of Lecture Notes in Computer Science, pages 60–79. Springer, Heidelberg, Dec. 2012.

23. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 152–168. Springer,
Heidelberg, Aug. 2005.

24. G. Fuchsbauer. Subversion-zero-knowledge SNARKs. In M. Abdalla and R. Dahab, editors, PKC 2018: 21st Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part I, volume 10769 of Lecture Notes in
Computer Science, pages 315–347. Springer, Heidelberg, Mar. 2018.

25. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In H. Shacham and A. Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages
33–62. Springer, Heidelberg, Aug. 2018.

26. A. Gabizon. On the security of the BCTV pinocchio zk-SNARK variant. Cryptology ePrint Archive, Report 2019/119,
2019. https://eprint.iacr.org/2019/119.

27. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases for oecumenical noninterac-
tive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

28. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs. In
T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes
in Computer Science, pages 626–645. Springer, Heidelberg, May 2013.

29. S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th Annual Symposium on
Foundations of Computer Science, pages 102–115. IEEE Computer Society Press, Oct. 2003.

30. J. Groth. Fully anonymous group signatures without random oracles. In K. Kurosawa, editor, Advances in Cryptology
– ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 164–180. Springer, Heidelberg, Dec.
2007.

31. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, editor, Advances in Cryptology
– ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 321–340. Springer, Heidelberg, Dec.
2010.

32. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin and J.-S. Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages 305–326. Springer,
Heidelberg, May 2016.

33. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common reference strings
with applications to zk-SNARKs. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 698–728. Springer, Heidelberg, Aug. 2018.

34. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from simulation-extractable SNARKs. In
J. Katz and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in
Computer Science, pages 581–612. Springer, Heidelberg, Aug. 2017.

35. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. In
M. Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 177–194. Springer, Heidelberg, Dec. 2010.

36. A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, a. shelat, and E. Shi. How to use SNARKs
in universally composable protocols. Cryptology ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/
2015/1093.

37. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In R. Cramer,
editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer Science, pages
169–189. Springer, Heidelberg, Mar. 2012.

38. H. Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes.
In K. Sako and P. Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part I, volume 8269 of Lecture Notes
in Computer Science, pages 41–60. Springer, Heidelberg, Dec. 2013.

39. H. Lipmaa. Key-and-argument-updatable QA-NIZKs. Cryptology ePrint Archive, Report 2019/333, 2019. https:
//eprint.iacr.org/2019/333.

40. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-size universal and
updatable structured reference strings. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019:
26th Conference on Computer and Communications Security, pages 2111–2128. ACM Press, Nov. 2019.

https://celo.org/papers/whitepaper
https://celo.org/papers/whitepaper
https://www.github.com/clearmatics/zeth
https://eprint.iacr.org/2006/260
https://eprint.iacr.org/2006/260
https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2019/333
https://eprint.iacr.org/2019/333

On (Weak) Simulation-Extractability of Universal zkSNARKs 31

FZ(y)

ρ←$ R(Z)
h1, . . . , hq ←$H

(i, s)← Z(y, h1, . . . , hq; ρ)
if i = 0 return (0,⊥,⊥)
h′i, . . . , h

′
q ←$H

(i′, s′)← Z(y, h1, . . . , hi−1, h
′
i, . . . , h

′
q; ρ)

if (i = i′) ∧ (hi 6= h′i) return (1, s, s′)
else return (0,⊥,⊥)

Fig. 4: Forking algorithm FZ

41. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.

42. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, June 2000.

43. A. Rondelet and M. Zajac. Zeth: On integrating zerocash on ethereum. https://arxiv.org/abs/1904.00905, 2019.
44. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor, Advances in Cryptology –

CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer, Heidelberg, Aug. 1990.
45. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Advances in Cryptology –

EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 256–266. Springer, Heidelberg, May 1997.
46. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report

2004/332, 2004. https://eprint.iacr.org/2004/332.
47. E. Weisstein. Jensen’s inequality.
48. Zcash. Zchas documentation. https://zcash.readthedocs.io, 2020.

A Simulation-extractability of sigma protocols and forking lemma

Theorem 2 (Simulation extractability of the Fiat–Shamir transform [22]). Let Σ = (P,V, Sim)
be a non-trivial sigma protocol with unique responses for a language L ∈ NP. In the random oracle model,
the NIZK proof system ΣFS = (PFS,VFS, SimFS) resulting by applying the Fiat–Shamir transform to Σ
is simulation extractable with extraction error η = q/h for the simulator Sim. Here, q is the number of
random oracle queries and h is the number of elements in the range of H.

The theorem relies on the following general forking lemma [42].

Lemma 11 (General forking lemma, cf. [7, 22]). Fix q ∈ Z and a set H of size h > 2. Let Z be
a PPT algorithm that on input y, h1, . . . , hq returns (i, s), where i ∈ [0 .. q] and s is called a side output.
Denote by IG a randomised instance generator. We denote by acc the probability

Pr[i > 0 | y ← IG;h1, . . . , hq←$H; (i, s)← Z(y, h1, . . . , hq)] .

Let FZ(y) denote the algorithm described in Fig. 4, then the probability frk defined as frk :=
Pr[b = 1 | y ← IG; (b, s, s′)← FZ(y)] holds

frk ≥ acc
(acc
q
− 1
h

)
.

B Omitted lemmas and proofs

Lemma 12. Let R(Z) denote the set from which Z picks its coins at random. For each ι ∈ [1 .. q] let
Xι : R(Z)×Hι−1 → [0, 1] be defined by setting Xι(ρ, h1, . . . , hι−1) to

Pr[i = ι |hι, . . . , hq←$H; (i, s)← Z(y, h1, . . . , hq; ρ)]

for all ρ ∈ R(Z) and h1, . . . , hι−1 ∈ H. Consider Xι as a random variable over the uniform distribution
on its domain. Then E [Xm

ι] ≥ E [Xι]m.

https://eprint.iacr.org/2004/332
https://zcash.readthedocs.io

32 Markulf Kohlweiss and Michał Zając

Proof. First we recall the Jensen inequality [47], if for some random variable X holds |E [X]| ≤ ∞ and
f is a Borel convex function then

f(E [X]) ≤ E [f(X)] .

Finally, we note that |E [X]| ≤ ∞ and taking to the m-th power is a Borel convex function on [0, 1]
interval. ut

Lemma 13 (Hölder’s inequality. Simplified.). Let xi, yi, for i ∈ [1 .. q], and p, q be real numbers
such that 1/p+ 1/q = 1. Then

q∑
i=1

xiyi ≤
(q∑
i=1

xpi

) 1
p

·
(q∑
i=1

ypi

) 1
q

.

Remark 2 (Tightness of the Hölder inequality). In is important to note that Inequality (??) is tight.
More precisely, for E [Xi] = x, i ∈ [1 .. q] we have

q∑
i=1

x =
(q∑
i=1

xm
) 1
m

·
(q∑
i=1

1
m
m−1

)m−1
m

qx = (qxm)
1
m · q

m−1
m

(qx)m = qxm · qm−1

(qx)m = (qx)m .

Lemma 14. Let f(X) be a random degree-d polynomial over Fp[X]. Then the probability that f(X) has
roots in Fp is at least 1/d!.

Proof. First observe that there is pd canonical polynomials in Fp[X]. Each of the polynomials may have
up to d roots. Consider polynomials which are reducible to polynomials of degree 1, i.e. polynomials that
have all d roots. The roots can be picked in C̄pd ways, where C̄nk is the number of k-elements combinations
with repetitions from n-element set. That is,

C̄nk =
(
n+ k − 1

k

)
.

Thus, the probability that a randomly picked polynomial has all d roots is

p−d · C̄pd = p−d ·
(
p+ d− 1

d

)
= p−d · (p+ d− 1)!

(p+ d− 1− d)! · d! =

p−d · (p+ d− 1) · . . . · p · (p− 1)!
(p− 1)! · d! = p−d · (p+ d− 1) · . . . · p

d!

≥ p−d · p
d

d! = 1
d!
ut

B.1 Uber assumption

We show security of our version of the uber assumption using the generic group model as introduced
by Shoup [45] where all group elements are represented by random binary strings of length λ. That
is, there are random encodings ξ1, ξ2, ξT which are injective functions from Z+

p to {0, 1}λ. We write
Gi = {ξi(x) | x ∈ Z+

p }, for i ∈ {1, 2, T}. For the sake of clarity we denote by ξi,j the j-th encoding in
group Gi.

Let Pi = {p1, . . . , pτi} ⊂ Fp[X1, . . . , Xn], for i ∈ {1, 2, T}, τi, n ∈ N, be sets of multivariate poly-
nomials. Denote by Pi(x1, . . . , xn) a set of evaluations of polynomials in Pi at (x1, . . . , xn). Denote by
Li = {(pj , ξi,j) | j ≤ τi}.

Let A be an algorithm that is given encodings ξi,ji of polynomials in Pi for i ∈ {1, 2, T}, ji = τi.
There is an oracle O that allows to perform A the following queries:

On (Weak) Simulation-Extractability of Universal zkSNARKs 33

Group operations in G1,G2,GT : On input (ξi,j , ξi,j′ , i, op), j, j′ ≤ τi, op ∈ {add, sub}, O sets τ ′i ←
τi + 1, computes pi,τ ′i = pi,j(x1, . . . , xn) ± pi,j′(x1, . . . , xn) respectively to op. If there is an element
pi,k ∈ Li such that pi,k = pτ ′i , then the oracle returns encoding of pi,k. Otherwise it sets the encoding
ξi,τ ′i to a new unused random string, adds (pi,τ ′i , ξi,τ ′i) to Li, and returns ξi,τ ′i .

Bilinear pairing: On input (ξ1,j , ξ2,j′) the oracle sets τ ′ ← τT + 1 and computes rτ ′ ← pi,j(x1, . . . , xn) ·
pi,j′(x1, . . . , xn). If rτ ′ ∈ LT then return encoding found in the list LT , else pick a new unused random
string and set ξT,τ ′ to it. Return the encoding to the algorithm.

Given that, we are ready to show security of our variant of the Boneh et al. uber assumption. The
proof goes similarly to the original proof given in [10] with minor differences.

Theorem 3 (Security of the uber assumption). Let Pi ∈ Fp[X1, . . . , Xn]mi, for i ∈ {1, 2, T} be
τi tuples of n-variate polynomials over Fp and let F ∈ Fp[X1, . . . , Xn]m. Let ξ0, ξ1, ξT , G1,G2,GT be as
defined above. If polynomials f ∈ F are pair-wise independent and are independent of P1,P2,PT , then for
any A that makes up to q queries to the GGM oracle holds:∣∣∣∣∣∣∣∣∣∣

Pr

A

ξ1(P1(x1, . . . , xn)),
ξ2(P2(x1, . . . , xn)),
ξT (PT (x1, . . . , xn)),

ξ1(F0), ξ1(F1)

 = b

∣∣∣∣∣∣∣∣∣∣
x1, . . . , xn, y1, . . . , ym←$Fp,

b←$ {0, 1},
Fb ← F(x1, . . . , xn),
F1−b ← (y1, . . . , ym)

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ d(q +m1 +m2 +mT +m)2

2p

Proof. Let C be a challenger that plays with A in the following game. C maintains three lists

Li = {(pj , ξi,j) | j ∈ [1 .. τi]},

for i ∈ {1, 2, T}. Invariant τ states that τ1 + τ2 + τT = τ +m1 +m2 +m.
Challenger C answers A’s oracle queries. However, it does it a bit differently that the oracle O would:

Group operations in G1,G2,GT : On input (ξi,j , ξi,j′ , i, op), j, j′ ≤ τi, op ∈ {add, sub}, C sets τ ′ ←
τi+1, computes pi,τ ′(X1, . . . , Xn) = pi,j(X1, . . . , Xn)±pi,j′(X1, . . . , Xn) respectively to op. If there is
a polynomial pi,k(X1, . . . , Xn) ∈ Li such that pi,k(X1, . . . , Xn) = pτ ′(X1, . . . , Xn), then the challenger
returns encoding of pi,k. Otherwise it sets the encoding ξi,τ ′ to a new unused random string, adds
(pi,τ ′ , ξi,τ ′) to Li, and returns ξi,τ ′ .

Bilinear pairing: On input (ξ1,j , ξ2,j′) the challenger sets τ ′ ← τT +1 and computes rτ ′(X1, . . . , Xn)←
pi,j(X1, . . . , Xn) · pi,j′(X1, . . . , Xn). If rτ ′(X1, . . . , Xn) ∈ LT , C returns encoding found in the list LT .
Else it picks a new unused random string and set ξT,τ ′ to it. Finally it returns the encoding to the
algorithm.

After at most q queries to the oracle, the adversary returns a bit b′. At that point the challenger C
chooses randomly x1, . . . , xn, y1 . . . , ym, random bit b, and sets Xi = xi, for i ∈ [1 .. n], and Yi = yi, for
i ∈ [1 ..m]; furthermore, Fb ← F(x1, . . . , xn) and F1−b ← (y1, . . . , ym). Note that C simulates perfectly
unless the chosen values x1, . . . , xn, y1, . . . , ym result in equalities between polynomial evaluations that
are not equalities between the polynomials. That is, the simulation is perfect unless for some i, j, j′ holds

pi,j(x1, . . . , xn)− pi,j′(x1, . . . , xn) = 0,

for pi,j(X1, . . . , Xn) 6= pi,j′(X1, . . . , Xn). Denote by bad an event that at least one of the three conditions
holds. When bad happens, the answer C gives to A differs from an answer that a real oracle would give.
We bound the probability that bad occurs in two steps.

First we set Fb = F(X1, . . . , Xn). Note that symbolic substitutions do not introduce any new equalities
in G1. That is, if for all j, j′ holds p1,j 6= p1,j′ , then p1,j 6= p1,j′ even after setting Fb = F(X1, . . . , Xn).
This follows since all polynomials in F are pairwise independent and F independent on P1,P2,PT . Indeed,
p1,j − p1,j′ is a polynomial of the form

m1∑
j=1

ajp1,j +
m∑
j=1

bjfj(X1, . . . , Xn),

34 Markulf Kohlweiss and Michał Zając

for some constants aj , bj . If the polynomial is non-zero, but setting Fb = F(X1, . . . , Xn) makes this
polynomial vanish, then some fk must be dependent on some P1,F \ {fk}.

Now we set X1 . . . , Xn,F1−b and bound probability that for some i and j, j′ holds (pi,j(x1, . . . , xn)−
pi,j′(x1, . . . , xn) = 0 for pi,j 6= pi,j′ . By the construction, the maximum total degree of these polynomials
is d = max(dP1 + dP2 , dPT , dF), where df is the total degree of some polynomial f and for a set of
polynomials F = {f1, . . . , fk}, we write dF = {df1 , . . . , dfk}. Thus, for a given j, j′ probability that a
random assignment to X1, . . . , Xn, Y1, . . . , Yn is a root of pi,j − pi,j′ is, by the Schwartz-Zippel lemma,
bounded by d/p, which is negligible. There is at most 2 ·

(q+m0+m1+m
2

)
such pairs pi,j , pi,j′ we have that

Pr[bad] ≤
(
q +m0 +m1 +m

2

)
· 2d
p
≤ (q +m0 +m1 +m)2d

p
.

As noted, if bad does not occur then the simulation is perfect. Also the bit b has been chosen
independently on the A’s view, thus Pr[b = b′ | ¬bad] = 1/2. Hence,

Pr
[
b = b′

]
≤ Pr

[
b = b′

∣∣¬bad
]
(1− Pr[bad]) + Pr[bad] = 1

2 + Pr[bad]
2

Pr
[
b = b′

]
≥ Pr

[
b = b′

∣∣ 6= bad
]
(1− Pr[bad]) = 1

2 −
Pr[bad]

2 .

Finally, ∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ ≤ Pr[bad]/2 ≤ (q +m0 +m1 +m)2 d

2p
as required.

C (Tight) simulation soundness of Plonk

Theorem 4 (Simulation soundness). Assume that (n + 2, 1)-dlog is εdlog(λ)-hard, P is sound and
2-ur with security εs(λ) and εur(λ) respectively. Then the probability that an algebraic, PPT adversary
Ass breaks simulation soundness of PFS is upper-bounded by

εur(λ) + q6
H(εdlog(λ) + εs(λ)) ,

where qH is the total number of queries required by the adversary Ass.

Proof. We proceed by contradiction. Suppose there exists a PPT adversary Ass that breaks simulation
soundness with non-negligible probability

ε := Pr


PFS.V(R, srs, x, πAss),
(xAss , πAss) 6∈ Q,
xAss 6∈ LR

∣∣∣∣∣∣∣∣
srs← PFS.KGen(R, 1λ)
(xAss , πAss)← Ass

Sim,H(R, srs),

 .
In such case, we are able to build reductions Rs, Rur, Rdlog which using Ass as a black-box, violate

either the soundness, unique response properties of the underlying interactive protocol P, or the (n+2, 1)-
dlog assumption.

In the following we denote by πAss , πSim proofs returned by the adversary and the simulator respec-
tively. We use π[i] to denote prover’s message in the i-th round of the proof, π[i].ch to denote the challenge
that is given to the prover after π[i], and π[i .. j] to denote all messages of the proof including challenges
between rounds i and j.

Without loss of generality, we assume that whenever the accepting proof contains a response to
a challenge from a random oracle, we assume that the adversary queried the oracle to get it. It is
straightforward to transform any adversary that violates this condition into an adversary that makes
these additional queries to the random oracle and wins with the same probability.

A crucial observation is that the adversary Ass may have learned πAss [1 .. 3] by querying the simulator
on xAss or might have computed it itself. We denote the first event by E and the second by E. Additionally,
we divide event E into two disjunctive subevents: E0 and E1. Event E0 considers a case when the final

On (Weak) Simulation-Extractability of Universal zkSNARKs 35

proof provided by the adversary Ass is accepted by the idealised verification equation, i.e. for that proof
veπ(X) = 0. Alternatively, event E1 covers a case when for πAss it holds that veπ(χ) = 0, but veπ(X) 6= 0,
where χ is PFS’s trapdoor. As all these events are mutually exclusive and exhaustive, we have

ε = Pr[Ass wins] = Pr[Ass wins,E] + Pr
[
Ass wins,E0

]
+ Pr

[
Ass wins,E1

]
.

Before analysing the events, we make the following observation. First of all, we allow reductions
Rdlog,Rur,Rs to simulate the random oracle and simulator for the adversary Ass. We argue that since
the reductions in their simulation behaves as real random oracle or simulator would, the chances the
adversary breaks simulation soundness does not change.

Furthermore, we note that since Ass is algebraic, it outputs a proof πAss that can be written as

πAss = M · (1‖χ‖ . . . ‖χn+2︸ ︷︷ ︸
srs

‖π̃Sim
>
1 ‖ . . . ‖π̃Sim

>
qSim)> ,

where
[
1, χ, . . . , χn+2]

1 are all G1-elements from the SRS of PFS, M is a matrix of coefficients output
by Ass aside the proof, π̃Simi denote all G1-elements from the simulated proof πSimi, and the adversary
makes qSim queries to the simulator. Since the reduction itself provides the simulated proofs, it knows a
matrix M ′ such that

πAss = M ′ · (1‖χ‖ . . . ‖χn+2)> . (17)

We use this property when analysing the success probability of reductions Rs and Rdlog.
Also note that a proof π could be accepted only if the verification equation veπ(χ) holds. That is,

the verifier plugs-in elements of π into veπ(χ) and checks whether it equals 0. That is what is called a
real check in [27]. On the other hand there is an idealised check, which verifies whether veπ(X) = 0 as a
polynomial—with proof elements being polynomials as well.

When E happens: We assume that xAss is submitted to the simulator Sim. We show how Rur utilizes
Ass, that makes use of xAss , πAss [1 .. 3], to break the 2-ur property of P. This way we bound the probability
Pr[A wins,E] by the probability of Rur being able to win in the 2-ur game.

Consider an algorithm Rur that runs Ass internally as a black-box:

– The reduction answers both queries to the simulator PFS.Sim and to the random oracle. It also keeps
lists Q, for the simulated proofs, and QH for the random oracle queries.

– When Ass outputs a fake proof πAss for xAss , Rur looks through lists Q and QH until it finds πSim[1 .. 3]
such that πAss [1 .. 2] = πSim[1 .. 3] and a random oracle query πSim[3].ch on πSim[1 .. 3].

– Rur returns two proofs for xAss :

π1 = (πSim[1 .. 3], πSim[3].ch, πSim[4 .. 5])
π2 = (πSim[1 .. 3], πSim[3].ch, πAss [4 .. 5])

If π1 = π2, then Ass fails to break simulation extractability, as π2 ∈ Q. On the other hand, if the proofs
are not equal, then Rur breaks 2-ur-ness of P. Thus

Pr[Ass wins,E] ≤ εur(λ).

When E0 happens: In this case the reduction Rs uses Ass to break soundness of P with probability
εs/q

6
H, where qH is the number of total random oracle queries performed by the adversary or by Rs on

behalf of the simulator. As previously, Rs runs Ass internally and simulates its environment by answering
to its queries to PFS.Sim and H. The reduction works as follows:

– It guesses indices i1, . . . , i6 such that random oracle queries hi1 , . . . , hi6 are the queries used in πAss .
This is done with probability at least 1/q6

H (since there are 6 challenges from the verifier in P).
– On input h for the i-th, i 6∈ {i1, . . . , i6}, random oracle query, Rs returns randomly picked y, sets
H(h) = y and stores (h, y) in QH if h is sent to H the first time. If that is not the case, R finds h in
QH and returns the corresponding y.

– On input hij for the ij-th, ij ∈ {i1, . . . , i6}, random oracle query, Rs parses hij as a partial proof
transcript π[1..j] and runs P using π[j] as a P.P’s j-th message to P.V. The verifier responds with a
challenge π[j].ch. The reduction sets H(hij) = π[j].ch.

36 Markulf Kohlweiss and Michał Zając

– On query xSim to Sim it runs a simulator PFS.Sim internally and returns πSim. If the random oracle
query with input πSim[j], 1 ≤ j ≤ 2, of the simulator is the ij-th query, generate πSim[j].ch by invoking
P.V on πSim[j] and programming H(hij) = πSim[j].ch.

– Answers P.V’s challenge π[j].ch using the answer given by Ass, i.e. πAss [j + 1].

Assume that the P.V accepts πAss . We consider a case when the idealised verification equation accepts.
(Thus, the real verification accepts as well.) In that caseRs extracts fromM ′ coefficients of 1, χ, . . . , χn+2

for polynomials a(X), b(X), and c(X) and reveals the witness wAss (as it is encoded in theses polynomials’
coefficients). If R(xAss ,wAss) holds then Ass failed to break simulation-soundness of PFS. On the other
hand, if that is not the case, thenRs breaks soundness of P. Since the reduction guesses queries hi1 , . . . , hi6
with probability 1/q6

H, then

Pr[Rs wins] = Pr
[
Ass wins, hi1 , . . . , hi6 are guessed correctly,E0

]
.

Hence,
Pr
[
Ass wins,E0

]
≤ q6
H · εss(λ).

When E1 happens: The reduction Rdlog runs internally a protocol PFS, which SRS is computed from
the challenge

[
1, χ, . . . , χn+2]

1 , [χ]2 from the (n + 2, 1)-dlog assumption challenger. Then it proceeds as
Rs does, except in the last part, when the adversary provided its proof πAss , Rdlog uses the fact that the
real verification equation holds, but the ideal verification equation does not to break the dlog assumption.

Since veπ(X) 6= 0, but veπ(χ) = 0 and Rdlog knows M ′, as defined in Eq. (17), it can recreate all
the polynomials submitted by Ass as part of the proof and included in veπ(X). This way, it knows all
coefficients of veπ(X). Thus it can factorize it and find its roots, one of them is the required χ. Hence it
holds, by the analogous analysis as in the previous case, that

Pr
[
Ass wins,E1

]
≤ q6
H · εdlog(λ).

The proof is concluded by observing that the analysis of events E,E0,E1 gives

ε ≤ εur(λ) + q6
H(εdlog(λ) + εss(λ)) ,

hence ε is negligible if dlog is hard and P is sound and 2-ur. ut

	On (Weak) Simulation-Extractability of Universal zkSNARKs

